
Gas Alarm
Project number F175

Abstract

The article describes the home combustible gas detector. Main motivation for
this construction was my 3 years old son who has very “positive” relationship with the
home hardware. Of course, nice buttons on the gas cooker are very interesting for him
and he can hear nice hiss of the gas. The first situation like this accelerated my plan to
develop some gas detector. The detector can be used in the kitchen, near gas boiler, in
the garage, during camping etc. Everywhere where leaking gas could make problems.
By changing the sensor type, the detector can be used for other gas types. Used sensor
TGS2611 is recommended for methane and natural gas detection.

The detector is based on the commercial gas sensor from Figaro company. The
electronic circuit needs to evaluate change in the internal sensor resistance. For proper
operation you also need to use few comparators what watch the reference voltage,
sensor resistance and sensor proper operation. You need to add delay after power on
and the delay after first gas detection to avoid false alarms. If you want to detect two
different gas concentrations you need to add additional comparator. The result is at
least two DIL14 quad comparators, some transistors and many resistors.

I have decided to use MC68HC908QT2 “Nitron” microcontroller because it
makes the detector much simpler. It is in small DIP8 (or SO8) package and 4-inputs
8-bit analog to digital converter covers all demands for this application. All delays
and comparators are implemented in the software. The result is small, cost effective
and flexible gas detector. It also has possibility to upgrade the firmware through serial
link from PC using poor man’s interface (zener diode and the resistor). The total cost
of the application is lower compared to standard operational amplifier solution. This
simple application does not need external oscillator, the internal Nitron’s oscillator is
used. It enables to use pins OSC1 and OSC2 as AD converter inputs.
 The software is written in the special, free version of the CodeWarrior. The
code is uploaded to the chip using bootloader method described in AN2295. This
allows really low cost and easy development of any Nitron application. The program
measures voltage across the sensor and compares it to the reference. If this value is
higher then the threshold value for more then 15 sec, level 1 alarm is initiated. If the
value exceeds the second threshold, level 2 alarm starts. Alarm levels are indicated by
the LED diode, by the piezzo siren and also relay contacts are closed. The relay can
be used for switching another necessary device like home alarm or the fan. If the gas
concentration falls down, alarm is stopped. With the memory function the detector
will indicate alarm continuously and the user will see potential risk of the gas leakage.
 The software also controls current consumption of the sensor heather and the
value of the sensor resistance. If any of these values is out of limits, the detector
indicates sensor malfunction. The software can be simply modified for other functions
based on user wish.
 The detector is built in the Bopla EG 1030 L box and is powered from
external power supply. This enables to use certified power supplies for given AC
voltage (110V or 230V).

Gas Detector block diagram.

Detector schematic.

Detector photo, inside.

Detector photo, overall view.

Main source code

/*
The programm for gas detector

Project number F175

*/

#include "map.h" // processor register defines
#include "sci.h" // Bootloader's SCI included

#define BYTE unsigned char
#define WORD unsigned int

#define EnableInterrupts() asm CLI
#define DisableInterrupts() asm SEI

#define Gas 2
#define Reference 3
#define Consumption 0 // number of ADC input for given value

#define Alarm2Level 20 // delta between alarm1 and alarm2 levels
#define Hysteresis 5 // hysteresis on measurement
#define CurrentLimit 252 // voltage level for sensor
current problem
#define WaitTime 2 // how long time I need signal
before alarm
#define SensKOLow 10 // below this value the sensor is bad

///
// I/O mappings

#define LED PTA1
#define OUTPUT PTA3
#define MEMORY_FUN PTA2

///

#pragma DATA_SEG SHORT MY_ZEROPAGE

WORD Tick1;
BYTE Tick2,Led_on;
unsigned int x;
unsigned int i;

#pragma DATA_SEG DEFAULT

BYTE ConsumptionValue, GasValue;
BYTE Alarm1, Alarm2, SensorAlarm;
BYTE ReferenceValue;
BYTE Al_enable;

void Init(void)
{
#ifdef COP_ENABLE
 CONFIG1 = 0x00;
#else
 CONFIG1 = CONFIG1_COPD;
#endif

 DDRA = 0xFF; // all outputs
 DDRA_BIT0 = 0; // PTA0 is input
 DDRA_BIT4 = 0; // PTA4 is input
 DDRA_BIT5 = 0; // PTA5 is input
 PTAPUE = 0x00; // no pull ups

 TSC_PS2 = 1;
 TSC_PS1 = 1;
 TSC_PS0 = 0; // prescaller /64

TSC_TOIE = 1; // enables TIM interrupt
TSC_TSTOP = 0; // runs timer

 TMODH = 0xC3;
 TMODL = 0x50; // 1sec preset

 EnableInterrupts();

}

interrupt IV_IRQ1 void Int_IRQ(void)
{
// ISCR_ACK1 = 1; /* IRQ ack */
}

interrupt IV_TCHO void Int_TimerCH0(void)
{
// TSC0;
// TSC0_CH0F = 0; /* clearing CH0 flag */

}

interrupt IV_TCH1 void Int_TimerCH1(void)
{
// TSC1;
// TSC1_CH1F = 0; /* clearing CH1 flag */
}

interrupt IV_TOVF void Int_TimerTOV(void)
{
 TSC;
 TSC_TOF = 0; /* clearing TOV flag */
// TMODH = 0xC3;
 // TMODL = 0x50; //1sec preset
 TMOD = 500;
 Tick1++;
 Tick2++;

 if (Al_enable == 1)
 {
 if (Tick2 < 2)
 {
 LED = 0; //LED is on
 OUTPUT = 1;
 }
 else
 {
 LED = 1;
 OUTPUT = 0;
 }
 if (Tick2 > Led_on) Tick2 = 0;
 }
}

interrupt IV_KBRD void Int_Keyboard(void)
{
// KBSCR_ACKK = 1; /* keyb int. acknowledge */

}

interrupt IV_ADC void Int_ADConv(void)
{
BYTE temp;

// temp = ADR; /* just read ADR or write to ADSCR to clear int. */

}

/*---*/

void Waiting(unsigned int Koliko)
{

 Tick1 = 0;
 while(Tick1 != (Koliko*10));

}

/*---*/

BYTE Measure (BYTE InputNumber)
{

BYTE temp;

 ADSCR = 0x80 | InputNumber; // sets one
conversion, no interrupt
 while(ADSCR_COCO == 0); //
waits for conversion complete
 temp = ADR; //
reads value
 return(temp);

}

/*---*/
void main(void)
{
 Init();
 SCIAPIInit();

#ifdef COP_ENABLE
 COPCTL = 0; /* bump watchdog */
#endif

 LED = 0; // switch led on
 Waiting (150); // waits 150sec after
reset - sensor needs it
 SensorAlarm = 0;

 for (;;) // stadard
operation, wait for Ticks and then measure&write
 {
 GasValue = Measure(Gas);
 ReferenceValue = Measure(Reference);
 ConsumptionValue = Measure(Consumption);

 if (GasValue < (ReferenceValue - Hysteresis))
 {
 Alarm1 = 0;
 Alarm2 = 0; // delay alarms, level is
below treshold
 }
 if (GasValue > ReferenceValue)
 {
 Al_enable = 1;
 if (GasValue > (ReferenceValue + Hysteresis))
 {
 Alarm2 = 1; // 2nd alarm level,
big concentration
 Alarm1 = 0;
 }
 else
 {
 Alarm2 = 0;
 Alarm1 = 1; // alarm 1
level
 }
 }
 if (ConsumptionValue > CurrentLimit)
 {
 SensorAlarm = 1; // sensor alarm!
 }
 else if (GasValue < SensKOLow)
 {
 SensorAlarm = 1; // sensor alarm!
 }
 else SensorAlarm = 0;

 if ((SensorAlarm == 0) & ((Alarm1 == 0) & (Alarm2 == 0)))
 {
 if (MEMORY_FUN) // if mem_fun pin
is open, then delete alarms
 {
 Tick1 = 0; // no alarm, clear
flags
 LED = 1;
 OUTPUT = 0;
 Al_enable = 0;
 }
 }

 else if (Tick1 >= WaitTime)
 {
 if (Alarm1) Led_on = 25;
 if (Alarm2) Led_on = 10;
 if (SensorAlarm) Led_on = 1;
 }

 Waiting (1);

 }

}

