
$\frac{\text { SCREWS (8)-(10) } 3 \times 6 \mathrm{~mm} \mathrm{B1}, \mathrm{Fe}, \mathrm{Br} \text { Binding, Self tapping }}{\text { SCREWS (11) - (18) } 3 \times 10 \mathrm{~mm} \mathrm{B1,} \mathrm{Fe,} \mathrm{Br} \mathrm{Binding,} \mathrm{Self} \mathrm{tapping}}$ SCREWS (11) - (18) $3 \times 10 \mathrm{~mm} \mathrm{B1}, \mathrm{Fe}, \mathrm{Br}$ Binding, Self tapping

展Roland
(3rd Printing June 1986 C-2) Printed in Japan AE2 1
(Top View)

BA662

TC4011BP
Quad 2-Input NAND Gate
μ PD444C
HM4334P-4

1024 -word $\times 4$-bit Static CMOS RAM
$\mu \mathrm{PC} 4558 \mathrm{C}$
 Ripple rejection ratio $=15 \mathrm{~dB}$ Output current $=100 \mathrm{~mA}(\max)$
$\mu A 7800$ SERIES

3-TERMINAL POSITIVE VOLTAGE

$8 \mathrm{VV} \mu \mathrm{A} 8806 \mathrm{C}$ нA7806U

absolute maximum ratings

Input Voltage $(5 \mathrm{~V}$ through 18 V$)$ (24 V)		${ }_{40}^{35} \mathrm{~V}$
Internal Power Dissipation		Internall Limited
Storage Temperature RangeOperating Junction Temperature Range		
	$\begin{gathered} \text { } A \text { A } A 780000 \end{gathered}$	$-55^{\circ} \mathrm{C}+10+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 60 s time limit) TO- 3 Package (Soldering. 10 s time limit) TO-220 Package		$300^{\circ} \mathrm{C}$
		230

DUAL $\pm 15 \mathrm{~V}$ TRACKING RAGULATOR

Reg.IN $=5 \mathrm{mV}(\mathrm{typ})(\mathrm{VIN}=18-30 \mathrm{~V})$ Reg. OUT $=5 \mathrm{mV}($ typ $)($ IOUT $=0-50 \mathrm{~mA})$

TA7179P

HD14584B

Hex Schmitt Trigger

MC14051B

$\underset{\text { Mutipiplexer/Demultiplexer }}{\text { 8.Channe Analo }}$
Hex Schmitt Trigger

AN6912
Quad
Comparator

MC14013B
DUAL TYPE D FLIP.FLOP

TR-808 CIRCUIT DESCRIPTION

FIGURE 1 block diagram
${ }^{2}$ PD650C-085 FUNCTIONAL DESCRIPTION

		No.				
$\begin{aligned} & \text { PH } \\ & \text { (Port H) } \end{aligned}$	0 1 2 3	26 27 28 29 29	Scanning signal outputs to switches Switching signal outputs to STATUS BUFFER \& GATE			
$\begin{array}{\|l\|l\|l\|l\|l\|l\|l\|l\|l\|} \hline(\text { Port }) \end{array}$	0 1 2 3 3	33 34 35 36 36	Switch scanning signal inputs STATUS (TEMPO. CLOCK. START/STOP. FILL IN) inputs			
$\begin{aligned} & \text { PB } \\ & \text { (Port B) } \end{aligned}$	0 1 2 3 3	37 38 39 40 40	Inputs from STEP Switches (RHYTHM SELECT Swtiches)			
$\begin{aligned} & \text { PG } \\ & \text { (Port G) } \end{aligned}$	0 1 2 3 3	22 23 24 24 25 12	Drive signals to STEP LEDs			
$\begin{aligned} & \text { PE } \\ & \text { (Port E) } \end{aligned}$	0 1 2 3 3	12 13 14 15 15	$\begin{aligned} & \text { 1st/2nd } \\ & \text { A/B } \\ & \text { Memory bank } \\ & \text { select } \end{aligned}$		$\begin{aligned} & \hline \text { CP } \\ & \text { RS } \\ & H T \\ & M T \end{aligned}$	
$\begin{aligned} & \text { PD } \\ & \text { (Port D) } \end{aligned}$	0 1 2 3	8 9 10 11 11	Rhythm numbers	MEMORY ADDRESSES ADDRESS Decoder to select cells in RAM to be accessed	$\begin{aligned} & \mathrm{CH} \\ & \mathrm{OH} \\ & \mathrm{CY} \\ & \mathrm{CB} \end{aligned}$	instrument data COMMON TRIG to trigger Sound Generator being designated
$\begin{aligned} & \text { PF } \\ & \text { (Port F) } \end{aligned}$	0 1 2 3	16 17 18 19 19	Step numbers		LT SD BD AC	
(Port C)	0 1 2 3	2 3 4 5	Data Input/Outputs			
$\begin{aligned} & \text { PI } \\ & \text { (Port I) } \end{aligned}$	0 1 2	30 31 32	Memory WE Memory CE (associated with PE-2, 3 at ADDRESS DECODER) Trigger Pulse (INSTRUMENT) output			

General

As can be seen from the block diagram, most processes of TR-808 up to generation of pulses triggering sound generators are controlled by the computer. CPU pin functions are as shown at the lower left table.
Once power is turned on for TR-808, pulses are generated from PI-2 of CPU regardless of TR-808 function mode (Start/Stop) and of presence or absence of rhythm patterns. The time length between the pulses is equal to that of the shortest rhythm patterns. The pulse is transfered to TRIGGER MONO, then ACCENT from which it is applied in parallel to all the gates prestaged to Sound Generators; accordingly, called COMMON TRIGGER. On the other hand, instrument data designating sound to be outputted are independently and PF). Since Instrument corresponding exclusive ports (PD, PE and PF). Since Instrument data are time sharing the data buss with memory addresses, the data are aligned with Common Trigs in timing. When these two signals are applied, the gate ANDs the two signals value of this trig signt is sound generator. Since the peak value or Tig pulses, when an proporion the the can be used to cha

Panel control settings are read by interruption of CPU each time an interrupt signal is fed to the INT terminal. First, the Buffer \& gate turns on by a signal from PH , and the status is read through PA. Then, some statuses of function switches are read through PA by a signal from one port of PH. At the same time, some statuses of a group of step switches are read through PB, and the step LED drive signal is outputted from PG as required. Statuses are read each time an INT signal is fed. However, statuses of the step and function switches are read every four times of $\overline{\mathrm{NNT}}$ signals.
Four CMOS RAMs ($1 \mathrm{~K} \times 4$-bit) are used for data storage. Chips are selected when the upper two bits of PE data decoded by IC5 are enabled by pulses from PI-1. Addresses of chip memory cells are designated by bits possible wh toutput from PIO is applied to WE.

Detail

SW Scanning, Status Reading
Reading of statuses of the controls on the panel (step switches, function switches, tempo, etc.) starts when an interrupt signal is applied to INT terminal every 1.9 ms . When the signal is applied to INT terminal, CPU starts interruption. The interruption period is approx. $600 \mu \mathrm{~s}$. During the first $150 \mu \mathrm{~s}$, $\mathrm{PH} 0-\mathrm{PH} 3$ become H , and the collector of AND gate Q18 becomes L. STATUS signals are ANDed with this L by IC3 and read through PA. After 150 15 s , only $\mathrm{PH}-0$ becomes L . This signal is converted to H by Q23, and reaches PB and PA through the closed contacts of the Step switches (No. 1No. 4), SW1a (Mode) and SW2 (Clear). When one of the four Step switches is closed, the corresponding STEP LED lighting signal is immediately fed from PG. Since the PG output is latched until the next INT signal is applied, the lighting period is approx. 1.8 ms . This period b is approx. $450 \mu \mathrm{~s}$. The remaining period c is for processing of main program. When the next INT signal is applied, PHO-PH3 become H again, the statuses of the TEMPO CLOCK, START/STOP, TAP, etc. are read again. Then, only PH1 becomes L and the statuses of switches connected to the collector of Q24 are read. At the next INT signal, STATUS and PH2 become L. Next, PH3 becomes L. This change is repeated. In this way statuses are checked each time an INT signal is applied every 1.9 ms so that the CPU can respond to the four times of INT sigh This correspor to 7.6 ms .

RAM, Address Decoder

Four static CMOS RAMs (μ PD444C, $1 \mathrm{~K} \times 4$-bit) are used for memory The memory map is shown in Fig. 4.
The upper two bits PE2 and PE3 of CPU designate a RAM, IC5 decodes these bits, and the memory select is enabled by a signal from PI-1 ($\overline{C E}$). See Fig. 5.

Cell addresses are designtated by bits from PD, PE and PF. After $10 \mu \mathrm{~s}$ of $\overline{C E}$, the data shown in Fig. 5-2 is read (5-3) or a new data from PC is written (Fig. 5-5).
As can be seen from Fig. 5-2 and -4, during writing, PC output data and RAM data at the $1 / O$ ports of RAM may conflict with one another. To prevent this, the buffer resistors (R85-R88) are connected.

The LED driver transistors (02-05) for BASIC VARIATION, 1ST and 2ND are directly connected to the bus of PD and PE. However, since various data appear on the bus by time sharing processing, the LEDs may sometimes light even when unnecessary signals are applied, resulting in possible lighting timing disparity in a mode.
RAMs' low power consumption during high CE allows memories to be maintained for longer period with back-up battery

Trigger Gate

Pulses corresponding to the shortest rhythm step usable by TR-808 are fed from PI-2 of CPU at a time interval determined by the setting of TEMPO CONTROL (Fig. 6-1). On the other hand, instrument data to be reproduced are applied from PD, PE and PF to the gate of each sound generator in synchronization with step pulses (Fig. 6-3) Since the step pulse width of $10 \mu \mathrm{~s}$ is too narrow to trigger a sound generator, it is widened to approx. 1 ms which is nearly equal to the width of instrument data signal. This widening is accomplished by铞 7 -inverted ulse. (Fig. 6-2). The L period is determined by the sum of th $100 \times \mathrm{C} 23$ and $\mathrm{R} 102 \times \mathrm{C} 27$

The output from pin 10 of IC6 passes through the ACCENT circuit composed of Q31-Q34, becomes a COMMON TRIG signal, and simultaneously applied to the gates of all sound generators in parallel When instrument data is present at a gate, this trigger signal is AND Fig. 7

Since the AND output from the gate is in proportion to the amplitud of the common trig signal, the output of the sound generator has the amplitude in proportion to the common trig signal. Accordingly when ACCEN data are present, they are added to the common trig signal. Since the output of pin 10 of IC6 is a negative logic signal, when there are no step pulses, the output signal becomes $\mathrm{H}, \mathrm{O} 3$ turns on and places a ground at base of Q32. When pin 10 of IC6 becomes L, Q31 becomes off, and when ACCENT data from PF-3 is L (no accent), Q34 turns on to shunt VR3. As a result, the base of號 ACCENT data is H , a voltage between 5 V and 15 V according to VR3 f is in the base of Q 32 , and is converted into trig pulses
the case of $\mathrm{CB}, \mathrm{CY}, \mathrm{OH}$ and CH , trig variation range is narrowed In $7 V-14 \mathrm{~V}$ by $1 / 2$ IC2 (pins $1-3$) on the voicing board to increase

FIGURE 7 VOICE GENERATOR TRIGGER PULSE

FIGURE 8 START/STOP \& TEMPO CLOCK CIRCUITS

Q16 ON (charge)
FIGURE 9 TEMPO CLOCK TIMING DIAGRAM

START/STOP \& Tempo Clock
When the power supply for TR-808 is turned on, the TEMPO clock continues oscillation regardless of the operation mode of TR-808. However, when the START button is pressed in the STOP mode, oscillation stops once for 9 ms to provide a mode change preparation
time to CPU. In this way, the START/STOP circuit and the TEMPO circuit are closely related with each other. When the SYNC IN/OUT wwitch is set to IN , both circuits become ineffective and external signals from the DIN socket duplicate the both circuits.
When the START/STOP switch is pressed (closed) with rhythm stopped, $\overline{\mathrm{O}}$ of F / F IC2B becomes L, the collector of Q 12 becomes H , O of IC2B becomes H and IC2A is reset. $\overline{\mathrm{Q}}$ of IC2A becomes H and the collector of $Q 15$ becomes L. Then, since Q of IC2B becomes
H, pin 2 of IC1 becomes L to turn on Q16. As a result, the TEMPO H , pin 2 of IC1 becomes L to turn on Q16. As a result, the TEMPO
GENERATOR of $2 / 4$ IC1 (D, E) stops oscillation (details are described later). After 9 ms later, pin 1 of IC1A drops below the threshold level and pin 2 is reversed. The rising edge reverses O of IC2A to and the collector of O15 (TEMPO CLOCK output) becomes H . t the same time, $\mathbf{Q 1 6}$ is cut off, and C10 starts discharging throug he ANTI-LOG O14 to continue oscillation.
cillation frequency of he TEMPO clock. The variation range is between 8.3 ms and 65 ms . With TR-808, d is defined to have 24 clocks, and thus d is proximately equal to 400-300.
Wher the level of C10 exceeds the threshold level of pin 13 of IC1 due to discharging, the output of pin 10 is reversed, 016 turns on,
and C10 is charged. The output of pin 12 of IC1 is divided into $1 / 2$ by T-FF of IC2A.

Muting, Reset

The circuit composed of 010-012 detects power on/off or sharp voltage drops in TR-808 DC lines and feeds forward bias (0 volts) to ETT switches connected to point A. These FETs are for resetting CPU (Q64), preventing writing into RAMs (Q75) and muting Master

$$
\begin{aligned}
& \text { Power on: } 0 \mathrm{~V} 1-2 \mathrm{sec}-15 \mathrm{~V} \\
& \text { Power off: }-15 \mathrm{~V} \text { to ov }
\end{aligned}
$$

If this circuit is defective, the CPU may be kept reset. (Detail in TROUBLESHOOTING on page 14.)

FIGURE 11 REPRESENTATIVE BRIDGED T-NETWORK

figure 12 Representative swing type vca

Sound Generators

The bridged T-network filter shown in Fig. 11 is used to generate periodic damping drum sound. This configuration has variations according to application (instrument sound). Values of R and C
can be changed. With this circuit, the decay time Qincreases. With this circuit, the decay time becomes longer as The swing type VCA shown in Fig. 12 is used to generate metalic Q775 sound (noise). This circuit features its output waveform havin many high harmonic components to provide ringing metalic sound. Major features of each sound generator are described below.

Bass Drum

This sound generator is composed of a multi-feedback, bridged T-network including $1 / 2$ IC12 (pins 1-3) as an active element. The decay time of the resonating waveforms can be controlled by ad

Immediately after a trigger pulse is fed into the generator, the filter's time constant - when ACCENT is present - is halved and has resonance on twice its inherent frequency for a half cycle period, then on the fixed frequency with decaying amplitude. This changing frequencies will sound a punchier crisp bass. This trick is performe
by the circuit composed of 041-043.
When a trigger signal is outputted from the collector of Q40, O41 turns on, Q42 turns off, Q43 turns on and R165 is shorted. This
halves the time constant of this network, The ON period of O43 is determined by R156 and C38 and equals 4 ms which is $1 / 2 \times 1 / 2$ of 16 ms of the inherent oscillation period of the filter.
When 042 turns on after 4ms, current discharging from C39 via R161 produces a retriggering pulse. At this time the generator oscilates on the inherent frequency.

Snare Drum

This sound generator has two bridged T-networks for fundamental waveforms and harmonic waveforms. The output ratio of the two can be changed by VR8 to tailor sound characteristic. The amplitude of snappy envelope can be controlled by VR9

LT/LC (MT/MC, HT/HC)

These three sound generators are composed of the circuits based on the same principle. LT/LC is described below as an example.
This sound generator is composed of a multi-feedback, bridged T network including IC5 as an active element. Voices are switched by SW8 (C77 - frequency, R224-level). While the oscillation is large in amplitude immediately after triggering, it is on a higher frequency due to conductions of D80 and D81, which reduce time constant of the filter. As the resonance is damped, its frequency is lowered by the effect of increasing diodes internal resistance. Timbre variations coresponding to time elapse wir appreciably be heard as in the case of Bass Drum.

Pink noise with a slightly longer decay time is mixed for Low Tom Tom to provide artificial reveberation.

RS/CL

CL Output from multifeedback bridged T-network incorporated with IC20 is routed to IC19. Output from IC21 (for RS), also routed via R320, can be ignored because of its minimized level due to impedance imbalance at pin 7 of IC2Ob.

RS Disconnected R313 makes IC20b just as a buffer for Cl 20 a output. The output of IC20b is applied to 062 together with the output of IC21. The envelope applied to 062 is formed by R107 and C24. As described in the beginning of this section, VCA of this type is intended to provide many high harmonics in the output signals.
Normally-conducting 074 remains off only while trigger pulse is transferred from 061 to allow IC19 to pass signals. This switching is provided to eliminate noise leaking from IC20, especially for CL - relatively large amount, being wired for high Q .

CP/MA

White noise passed through the band pass filter (IC21) is applied to two VCAs in parallel to have different envelopes. These envelopes are combined to obtain sound source for the CP sound generator. Since an envelope with a relatively long decay time is applied to the VCA 070, output from this VCA constitutes reverberation of CP sound.
The output envelope at the VCA (IC22, Q71 and Q72) is a unique sawtooth shape, and is a main component of this sound generator The sawtooth envelope generator circuit is mainly described below to explain its rather complicated operation. When trigger pulses are grated by R350 of the quad comparator IC23, the output is inteas shown in Fig. 13-2. At the falling edge of the pulse, pin 13 of IC23 becomes H (Fig. 13-3). The output from pin 1 of IC23 is also applied to pin 4 of IC23, pin 2 of IC23 becomes from -15 V to 0 V ,

figure 13 hand clap generating cycle

073 turns on, pin 5 of IC23 becomes -15 V , pin 2 of IC23 returns to -15 V , and Q 73 returns to off state. Accordingly, the output waveform at pin 2 of IC23 becomes narrow pulses as shown in Fig. 13-5.
The moment Q73 is turned on, C144 is abruptly charged to -15 V . However, immediately after charging, 073 turns off and the charges are discharged through R365 and D71. When the level of pin 5 of IC23 becomes higher than the level of pin 4 due to discharging, pin 2 of IC23 reverses again and C144 is recharged to -15 V . After this process is repeated and advanced to the middle of the third time, pin 1 of IC23 rises to $0 V$. This signal is differenciated by R357 and C141, and the generated pulse turns on Q73. At this time, although the terminal voltage of C144 rises gradually from -15 V due to discharging, pin 2 does not reverse since pin 4 of CC 23 has reached OV . The output (Fig. 13-4) of this envelope generator is applied to the base of 072 and converted exponentially by 272 together with the signals appled to the base ox P3 frem signal via Do8, 072 to pin 1 of Ic22 to chad the is appied from the colleco fitt $1 \mathrm{C21}$. 1 of of noise from the filter IC21.

Note: IC23 (AN6912) is constructed with open collector NPN transis tors for output and operates on single (negative) power only.

MA White noise is gated by 065 and supplied to the same buffer IC19 as for the CP sound generator through the filter O68. Envelop for MA sound generator is generated by 066 and 067 .

CB

This sound generator uses the outputs of two square waveform oscillators with different frequencies (by Schmitt triggers). Each oscillation output passes the corresponding exclusive gate (VCA Q14, Q15) and mixed by the filter IC2.
A series of R82 and C34 connected in parallel with C9 forms an envelope having abrupt level decay at the initial trailing edge to emphasize attack effect

CY
The combined square wave outputs of six Schumitt triggers including two for CB generator is separated into high and low range components by two filters composed of IC3. The high range component from pin 7 of IC3 is further separated into two frequency ranges. The output of the gate Q16 has the highest frequency component of this sound generator. Its decay time is short. The output of $\mathrm{Q17}$ is in a frequency range slightly lower than the above output, and its decay time is controllable.
These three signals with different frequency ranges are outputted with their level ratio controlled by VR4.

OH

The high frequency range component signal obtained by the above $1 / 2$ IC3 is gated by O27 and supplied to the buffer IC7 through the filter O26. When the CLOSED HI-HAT (CH) is triggered while the OH circuit is activated, O23 turns on by the voltage applied through OH circuit terminat

CH
This shares the same sound source with the OH . The signal is gated by O30 and supplied to the filter Q31 and the buffer IC7 (1/2).

MAIN BOARD
OP3116-130 (7311613006)
(pcb 291-402)

MAIN BOARD
OP3116-130 (7311613006)
(pcb 291-400A)
JACK BOARD A
OP3116-100 (7311610000)
(pcb 291-403)
FOIL SIDE

POWER SUPPLY
PS3116-051 (7311605100) 100/117V
PS3116-054 (7311605400) 220/240V

(pcb 291-405A)

JACK BOARD B

OP3116-110 (7311611000)

(pcb 291-404)

COMPONENT SIDE VOICING BOARD VG3116-140 (7311614001)
(pcb 291-401A)

ADJUSTMENT

ADJUSTMENT	Connect	Set	Adjust	Reading
CPU CLOCK	scope to TP-1		$\frac{\text { IFT-I }}{\text { check }}$	$2 \mathrm{~s} / \mathrm{cycle}(500 \mathrm{kHz})$
INT CLOCK	$\begin{aligned} & \text { scope to } \\ & \text { TP-2 } \end{aligned}$		TM-1	$1.9 \mathrm{~ms} / \mathrm{cycle}$
TEMPO CLOCK	$\begin{aligned} & \text { scope to } \\ & T P-3 \end{aligned}$	TEMPO.FINE:FCW	TM-2	$8.33 \mathrm{~ms} / \mathrm{cycle}$
		TEMPO: FCCW FTNE: FCW	check	$65 \mathrm{~ms} \pm 5 \mathrm{~ms} / \mathrm{cycle}$
NOISE GENERATOR	$\begin{aligned} & \text { AC volt- } \\ & \text { meter to } \\ & \text { TP-4 } \end{aligned}$		TM-4	130 mV rms
$\begin{aligned} & \text { CP (HAND } \\ & \text { CLAP) } \\ & \text { OFFSET } \end{aligned}$	scope to TP-5	write, play CP at a tempo w/ LEVEL FCW	TN-3	
$\begin{aligned} & \mathrm{CB} \text { (COW } \\ & B E L L) \end{aligned}$	scope to TP-6		TMM-1	$1.85 \mathrm{~ms} / \mathrm{cycle}$
FREQUENCY	TP-7		TM-2	$1.25 \mathrm{~ms} / \mathrm{cycle}$

- Refer to right-hand table -

Connect scope to the MUIII OUT jack of a VOICE. When observing amplitude, set ACCENT LEVEL to FCCW position and the VOICE LEVEL to FCW, then turn ACCENT FCW. DECAY, TONE, etc. for that voice must be set at $12 \mathrm{o}^{\prime} \mathrm{clock}$.

	AMPLITUDE		FREQUENCY			decay time		
	NовmıL	accent	10w	mı	ні6н	Short	mio	LON6
	Vpp	Vpp	$\begin{gathered} \left.\mathrm{m}_{(\mathrm{Hz}}\right) \\ \hline \end{gathered}$	${\underset{i n z}{(H z)}}_{(H z}$	$\underset{(\mathrm{Hz})}{\mathrm{ms}}$	ms	ms	ms
BD	3.5	10	-	$\begin{gathered} 18 \\ (56) \end{gathered}$	-	50	300	800
$$	3	10	-	$\begin{gathered} 2.1 \\ (476) \\ \hline 4.2 \\ (238) \\ \hline \end{gathered}$	-	-	60	-
LC	3.5	12	$\begin{array}{\|c\|} \hline 6.1 \\ (165) \\ \hline \end{array}$	$\begin{gathered} \hline 5.4 \\ (185) \end{gathered}$	$\begin{gathered} \hline 4.5 \\ (220) \\ \hline \end{gathered}$	-	180	-
LT	3.5	12	$\begin{aligned} & 12.5 \\ & (80) \\ & \hline \end{aligned}$	$\begin{aligned} & 11.1 \\ & (90) \\ & \hline \end{aligned}$	$\begin{gathered} \hline 10 \\ (100) \\ \hline \end{gathered}$	-	200	-
MC	3	10	$\begin{gathered} 4 \\ (250) \end{gathered}$	$\begin{gathered} 3.6 \\ (280) \end{gathered}$	$\begin{gathered} 3.2 \\ (310) \end{gathered}$	-	100	-
MT	3	11	$\begin{gathered} 8.3 \\ (120) \end{gathered}$	$\begin{gathered} 7.4 \\ (135) \\ \hline \end{gathered}$	$\begin{gathered} 6.3 \\ (160) \\ \hline \end{gathered}$	-	130	-
HC	3.5	12	$\begin{gathered} 2.7 \\ (370) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.5 \\ (400) \end{gathered}$	$\begin{gathered} 2.2 \\ (455) \end{gathered}$	-	80	-
HT	3.5	12	$\begin{gathered} 6.1 \\ (165) \end{gathered}$	$\begin{gathered} 5.4 \\ (185) \end{gathered}$	$\begin{gathered} 4.5 \\ (220) \\ \hline \end{gathered}$	-	100	-
c	2.5	8	-	$\begin{array}{c\|} \hline 0.4 \\ (2500) \end{array}$	-	-	25	-
$$	3	10	-	0.6 (1667) 2.2 (455)	-	-	10	-
M	3	5	-	-	-	25	-	35
CP	6	2	-	-	-	-	100	-
CB	3.5	12	-	$\begin{array}{\|c\|} \hline 1.25 \\ (800) \\ \hline 1.85 \\ (540) \\ \hline \end{array}$	-	-	50	-
CY	3.5	7	-	-	-	350	800	1200
OH	3.5	7	-	-	-	90	450	600
CH	3	6	-	-	-	-	50	-

values are typical and variable

troubleshooting

This section describes fundamental approach to isolate defective circuits or components.
Although most TR-808 circuits function under the CPU control, possible reasons will of ten be found on peripheral circuits. Replace CPU last of all. some useful information can be derived from the circuit description.

DC SUPPLY

Confirmation of $D C$ supply voltages is the first thing to be done in troubleshooting. Check $+5 \mathrm{~V}, \pm 15 \mathrm{~V}$ and back-up. CPU is forced to reset and is not allowed to restart when DC source is so irregular that Voltage Change Detector keeps reset signal.
Lower impedance load connecting to voice output jack can draw relatively large current through op amp when the sound level is high. The sum of the currents, when many louder voices are outputted in step, flowing into these loads would cause $D C$ source to drop enough below the Detector sensing level. To make sure of this, pull all plugs off the jacks. Contrast to the above is a shortcircuitting IC. One short circuit in a stage only could not be sensed by the detector since "B" supplied to a particular circuit group is independently filtered, or rather, the short circuit will increase ripples in the line, causing TEMPO CIOCK to be unstable.

Status, switch scanning

Each port at PH routes scanning signal to the switches connecting to its bus. PA and PB read signals coming via the switches. If a switch is misread, check scannings for other switches: one sharing the same PH bus, one sharing the same input port - with corresponding switchings.

RAM Stored data

As shown in memory map on page 4, a RAM is partitioned into blocks. It is unlikely to occur in a RAM that only one block fails to handle data when the RAM or the Decoder malfunctions. For example, if all instrument data but Cow Bell enter IC8, similar phenomenon might true to other RAMs, were the troubles through PC-O bus.

trigger pulse

Lack of trigger pulse from a gate is not what Common
Trig is responsible for, when other sound generators are fired.
Common Trig with pulse width longer or shorter than lms will be a cause of deteriorative voices.

DESIGN CHANGES \& IMPROVEMENTS

The reasons for modifications will help to remedy the problems as described below, may be found on early TR-808.
Some of the modifications were done at the factory on some products bearing serial number earlier than indicated:

MAIN BOARD - modification l, 4
VOICING BOARD - modification I

MAIN BOARD

	EFFECTIVE WITH SERIAL NUMBER	PART AFFECTED	REASON (* SOLUTION)
I	000300	$\begin{aligned} & \begin{array}{l} \text { INT } \\ \text { ICI } \\ \text { ICIOCK } \\ \text { (HD14584) } \end{array} \\ & \text { Cll } 0.068-\longrightarrow \begin{array}{l} 0.047 \\ (0.039 \\ (0203) \end{array} \end{aligned}$	Variations in HD14584 hysterisis sometimes deviate Clock Rate out of specified frequency range. * To down - 0.047+0.039 in parallel * To up - remove 0.039
2	010600	$\begin{array}{ll} \text { CP (Hand Clap) } & \text { IC21 } \\ \text { R346 } \quad 1 \mathrm{~K} \longrightarrow & 680 \\ \text { R332 } 22 \mathrm{~K} \longrightarrow \end{array}$	CP sound overmatches the rest in level. * Reduce the gain (Both proper and reverberation components.)
3	010600	$\begin{aligned} & \text { CPU }(\text { pin } 30) \\ & \mathrm{R91} \\ & \text { 15K } \longrightarrow \end{aligned}$	Small resistance allows CPU to draw relatively larger current from backup batteries wi.th MODE selected otrer than PLAY or MANUAL PLAY in Power OFF. * Increase resistance
4	010600	$\begin{aligned} & \text { DIN SOCKET } \\ & \begin{array}{l} (\text { pin } 5) \\ \text { R25 } \end{array}{ }^{220 \mathrm{~K} \longrightarrow} \longrightarrow 1.5 \mathrm{M} \end{aligned}$	Reject unnecessary signals from external circuitry to prevent false triggering at subsequent stage. * Increase resistance
		CPU (pin 37) Capacitor 0.01 across DIN pin 2 and chaseis Grounding	Protect CPU against static electricity build-up at external circuitry. * By pass charge
5	010600	$\begin{array}{lc} \text { NOISE } & \text { GENERATOR (IC24) } \\ \text { R129 } & 330 \mathrm{~K} \longrightarrow \text { short } \\ \text { R311 } & 330 \mathrm{~K} \longrightarrow \text { IOOK } \\ \text { R127 } & 4.7 \mathrm{~K} \longrightarrow 10 \mathrm{u}(\mathrm{C} 200) \\ \text { C202 } & 0 \longrightarrow 22 \mathrm{p} \end{array}$	Variations in UPC4558 bias current are transferred to $1 / 2$ IC24 output as an offset reducing gain margin. * Decouple DC

MAIN BOARD cont'd

	EFFECTIVE WITH SERIAL NUNBER	PART AFFECTED	REASON (* SOLUTION)
6	010600	$\begin{aligned} & \text { VOICE GATE } \\ & \text { R106, R154, R182, R213, } \\ & \text { R242, R268, R298 } \\ & \text { 22K } \xrightarrow{\text { I0K }} \end{aligned}$	Ensure sufficiency of gate drive signal voltage at lower COMMON TRIG amplitude. * Increase gain
7	010600		High frequency from CP generator induces irregular oscillation on other generators triggered at the same time. * Filter out CP high frequencies
8	020800		Prevent possible disturbance in RAM memories at power on/off switchings with MODE set at other than PLAY or MANUAL PLAY. * Add FET switches
9	031100	$\begin{aligned} & \text { LED } \\ & \text { SEL2110R } \longrightarrow \text { TLR124 } \end{aligned}$	Eliminate possible chance of LED D76(D78) being li.t by base current of Q5(Q2). * Use low sensitive LED

VOICING BOARD

	EFFECTIVE WITH SERTAL NUMBER	PART AFFECTED	REASON (* SOLUTION)
1	000300	$\begin{array}{ll} \text { COW BELI (ICl) } \\ \text { C6 } & 0.01 \longrightarrow 0.022 \\ \text { R44 } & 390 \mathrm{~K} \longrightarrow 150 \mathrm{~K} \\ \text { R45 } & 330 \mathrm{~K} \longrightarrow 100 \mathrm{~K} \end{array}$	Difficulty in setting Cow BELL sound frequency within the specified range. * Extend TMI and TM2 control range
2	010500	$\begin{aligned} & \text { Q1-Q4 } \\ & \text { 2SC945P } \longrightarrow 2 \mathrm{SC}_{2021 R} \end{aligned}$	To have a clearance between Switch Board and transistors' top. * Employ transistors in shorter package
	051850	$\begin{aligned} & \text { Q5-Q8 } \\ & \text { 2SA733P } \longrightarrow \text { 2SA937Q } \end{aligned}$	

TR-808

PANEL				
2221024200	Panel	N-242	top	-
2112511800	Panel	$\mathrm{N}-118$	side (L, H)	(066H021)
2112511900	Panel	N-119	side (R. H)	
2281023401	Chassis	$\mathrm{N}-234$		-
111-021	Rubber Foot G-5		rear	-
111-023	Rubber Foot G-7		front	-
	,			
SOCKET				
13429604	Din connector	TCSO250-	1.03	-
13449106	Jack	SG7622	\#8 mono	(009-012)
TRANSFORMER COIL				
22450217NO	Power transformer	$\mathrm{N}-217 \mathrm{~N}$	100 V	-
22450218 CO	Power transformer	$\mathrm{N}-218 \mathrm{C}$	117 V	-
22450219DO	Power transformer	$\mathrm{N}-219 \mathrm{D}$	220/240V	-
12449217	IFT Coil	S74230 y	low CPU clock	-
SWITCH KNOB				
13129101	SDG5P-001 power	r 100 V		(001-215)
13129102	SDG5P-001 power	r 117 V		(001-216)
13129103	SDG5P-502 power	r 220/240V		(001-217)
13119508	SRM1026 rotary		mode, auto fill in	-
13119806	SRM101C-C rotary		instrument/track	-
13139129	SLE62301 lever		basic variation	-
13139128	SLP62208 lever		I/F variation	-
13159503	SOPR24-12P slide		prescale	(001-228)
13159105	SSP04205 slide		instrument	(001-293)
13159112	SSF22-07 slide		sync	-
13129901	DS102 \#44 push		clear	(001-045)
13129711	KED10001 key		start/stop	-
13129703	KED10903 key		tap	(001-299)
13169601	KHC1 1901 key		step number	-
2247012700	Knob	N-127		(016-077)
2247012800	Knob	N -128		(016-078)
2247016500	Knob	N -165		-
2247516700	Knob	N -167	white	(016H010)
2247516800	Knob	N -168	orange	(016H012)
2247516900	Knob	N -169	yellow	(016H017)
2247518000	Knob	N-180	red	(016H018)
2247050600	Button	N-506	black power switch	(016-009)
SEMICONDUCTOR				
Lsi				
15179116	μ PD650C-085	CMOS CPU		-
15179305	or HM4334P-4 (compatible)			
Ic				
15159101 zo	${ }_{\text {MC14001 }}^{\text {BACP }}$	Vari-conduct	nce amp.	-
15159104TO	TC4011BP	Quad 2-input	NAND gate	-
15159105 TO	TC4013BP	Dual type D	ip-flop	-
$15159113 z 0$	MC14051BCP	Analog multi	demultipxr	-
15159303но	HD14584B	Hex Schmitt	rigger	-
15189113	AN6912	Quad compar		-
15199110то	TA7179P	$\pm 15 \mathrm{~V}$ Regula		-
15199106FO	μ A7805UC	+5 V Regula		-
15189105	${ }_{\text {PPC4558C }}$	Dual op amp		-

transistor				
15119105	2SA733 (P) or (0)			-
15119113	2SA1015 (GR) or (Y)			-
15119806	2 SB596 (0)			-
151291050A	$2 \mathrm{SC828}$ (R)	selected nois		-
15129108				-
15129121	$2 \mathrm{SC2021}$ (R) or (Q), (S)			-
15129815	2SD880 (0)			-
15139101	2SK30ATM (Y)	FET		-
15139103	2 SK 30 ATM (GR)	FET		-
Led				
15029103	TLR124 red	S/N up to **10**		-
15029119	SEL2110R red			-
diode				
15019120	152473	Si diode		-
15019122	IS188FM	Ge diode rectifier stack		-
15019236	W-02			-
15019209	10E-2			-
POTENTIOMETER				
13219310	EVH-LWAD25B52	500Ω (B)	LT, MT, HT tuning	-
13219311	EVH-LWAD25A53	$5 \mathrm{~K}(\mathrm{~A})$	CB level	-
13219312	EVH-LWAD25B14	10 K (B)	AC level, SD, snappy	-
13219313	EVH-LWAD25C14	10K (C)	BD tone	-
13219314	EVH-LWAD25B24	20K (B)	CY tone	-
13219315	EVH-LWAD25A15	100K (A)	Ievel	-
13219316	EVH-LWAD25B15	100K (B)	SD tone	-
13219317	EVH-LWAD25B55	500 K (B)	BD decay	-
13219318	EVH-LWAD25B26	2M (B)	CY, OH decay	-
13219233	Vm10RB10C	50K (A)	master vol.	(028-751)
13219219	Vm10Rb10C	50K (B)	fine	(028-762)
13219761	GM70EF51E	10K (B) ${ }^{2}$	tempo	-
13299114	H1051A013	$10 \mathrm{~K}(\mathrm{~B}) \mathrm{S}$	SR19R trimmer	(030-465)
13299115	H1051A015	22 K (B) S	SR19R trimmer	(030-467)
13299117	H1051A019	100 K (B) S	SR19R trimmer	(030-471)
13299119	H1051A021	220 K (B) S	SR19R trimmer	(030-473)
RESISTOR				
15229909	ERSC33G561	560Ω		-
FUSE, FUSE	holder			
12559104	SGA 0.5A	pri. sec	100/117V	-
12559508	CEE 250 mAT Fuse clip TF785	pri. sec	220/240V	-
12199519				(012-003)
CIRCUIT BOARD ASSEMBLY				
7311613006	main board	OP3116-130	30 (PCB 291-400A)	-
7311614001	voicing board	VG3116-140	40 (PCB 291401A)	-
7311609000	SWITCH BOARD	OP3116-090	(PCB 291402)	-
7311610000	Jack board (a)	OP3116-100	00 (PCB 291-403)	-
7311611000	Jack board (B)	OP3116-110	10 (PCB 291-404)	-
7311605100	POWER SUPPLY BOARD PS3116-051 (PCB 291-405A) (100/117V)			-
7311605400	POWER SUPPLY BOARD PS3116-054 (PCB 291-405A) (220/240V)			-
CAPACITOR				
13639932JO	SL25VB10BP	10ヶF 25 V	non-polar	
13589453MO	ECQ-uc1a473mc	$0.047 \mu \mathrm{~F}$	polypropylene	
	100/117V			
13589454MO	ECQ-U2A473mF	$0.047 \mu \mathrm{~F}$	polypropylene	

TERMINAL		
13439119	$5045-03 A$	-
13439122	$5045-06 \mathrm{~A}$	-
13439123	$5045-07 \mathrm{~A}$	-
13439124	$5045-08 \mathrm{~A}$	-
13439110	$3022-12 \mathrm{~A}$	-
13492121	FH1-12S-2.54DS	-
13459101	TT501 D-1 2P	power cord

WIRING ASS'Y		
2341021000	N-210	$3 P$
2341021100	N-211	$3 P$
2341021200	N-212	$6 P$
2341021300	N-213	$7 P$
2341021400	N-214	$7 P$
2341021500	N-215	$8 P$

Others				
2246010101	Heat sink	N-101		(048-001A)
2215051700	Long nut	N-517	$3 \times 8 \mathrm{~mm}$	(120-042)
2215050100	Long nut	N-501	$3 \times 10 \mathrm{~mm}$	(120-001)
2215050200	Long nut	N-502	$3 \times 16.4 \mathrm{~mm}$	(120-002)
2215050300	Long nut	N-503	$3 \times 18 \mathrm{~mm}$	(120-003)
2215052400	Boss nut	N-524	$3 \times 8 \mathrm{~mm}$	(120-052)
2219525600	Holder	$\mathrm{N}-256$	power switch	(064H076)
2219024600	Holder	N -246	main and voicing board	-
2219024700	Holder	$\mathrm{N}-247$	main and voicing board	
2219024802	Holder	$\mathrm{N}-248$	battery holder	-
2219510600	Holder	N -106	Potentiometer	(064H055)
2219510800	Hiplder	N -108	Power cord	(064H074)
2219510900	Holder	N-109	Power cord	(064H075)
12199525	Battery holder	N-525		-
2224011500	Dust cover	N-115	lever switch	(065-261)
2224010200	Dust cover	N-102	slide switch	(065-065)
2202015901	Battery cover	N-159		-
2202016200	Shield cover	$\mathrm{N}-162$	main board	-
2202061201	Protect cover	N-612		-
2202061701	Protect cover	N-617	top panel	
2226031000	Cushion	N-310	battery cover	-
2216051100	Fiber spacer	N-511	power cord terminal	-
12369504	Bushing	SR-4N-4		-
12369511	Bushing	BU4801	power cord	-
12369410	Cord fastener	1702B		-

Roland has changed parts codings from 6 -digit to 8 - or 10 -digit

" N " followed by abridged number should be used in new coding only. Ex ole is listed at line nor fross reference.

