Service Manual Roland SH-101

This file is a scan from the original service manual. Never pay for a copy of this file. It should be available for free!

SH-101 SERVICE NOTES
 First Edition

SPECIFICATIONS

vCF
ENV

Modulator
Controller

Sequencer

32 key, F-scale
Range $\left(16,8^{\prime} 4^{\prime}, 2^{\prime}\right)$ Tune (± 50 cent)

Portamento Time ($0 \sim 5 \mathrm{~s}$) Transpose (L/M/H)

Output

Key Follow (0 $\sim 100 \%$)
Attack Time ($1.5 \mathrm{~ms} \sim 4 \mathrm{~s}$) Decay Time ($2 \mathrm{~ms} \sim 10 \mathrm{~s}$) Release Time $(2 \mathrm{~ms} \sim 10 \mathrm{~s})$
LFO/CLK RATE ($0.1 \mathrm{~Hz} \sim 30 \mathrm{~Hz}$)

100 steps max.

Dimensions

Weight

Audio (0 dBm max.)
Audio (0 dBm
Phones (8Ω) Gate ($\mathrm{OFF}=0 \mathrm{~V}, \mathrm{ON}=12 \mathrm{~V}$) CV ($1 \mathrm{~V} / 1$ OCT, $0.415 \mathrm{~V} \sim 5 \mathrm{~V}$)

Gate (+2.5 V or more) CV (1V/1 OCT, 0~7V) EXTCLK (+2.5 or more) DC $(9 \mathrm{~V} \sim 12 \mathrm{~V})$

Drycells $1.5 \mathrm{~V} \times 6$ or $9 \mathrm{~V} \sim 12 \mathrm{~V}$ AC Adaptor
Power Consumption
$570(\mathrm{~W}) \times 311$ (D) $\times 80(\mathrm{H}) \mathrm{mm}$ $22^{7} / 16(\mathrm{~W}) \times 12^{1 / 4}(\mathrm{D}) \times 3^{1 / 8}(\mathrm{H})$ in.
$4.1 \mathrm{~kg} / 9 \mathrm{lb}$. (without Drycells)

TOP VIEW

1.	Switch	SSB02358	(13159319)	12.	Switch	SLE-623-18P	(13139135)
2.	Jack	HEC0470-01-230	(13449706)	13.	Pot.	EVH-5XAP20A26-2MA	(13219275)
3.	Jack	HSJ0789-01-020	(13449611)	14.	Switch	KHD10901	(13169608)
4.	Switch	SRM1034-K15	(13119303)	15.	Keyboard	SK-331-AR	(004H014)
5.	Pot.	EVH-5XAP20B15-100KB	(13219242)	16.	Case	Panel (Cabinet)	(072H133)
6.	Pot.	S3018P405-100KA	(13339420)	17.	Switch	SSB022F3	(13159121)
7.	Switch	SUT113	(13129120)	18.	Pot.	S3018P405-1MA	(13339422)
	Button	TK-305	(12479225)	19.	Pot.	S3018P405-100кв	(13339421)
8.	Pot.	EVH-5XAP20A15-100KA	(13219274)	20.	Jack	HLJo520-01-010	(13449126)
9.	Pot.	S2018P405-100KA	(13339328)	21.	Jack	HLJo520-01-110	(13449125)
10.	Pot.	S2018P405-100кв	(13339329)	22.	Jack	HSJO785-01-030	(13449409)
11.	Bender Unit	PB-5	(029но01)	23.	Case	Battery cover	(065H115)

BLOCK DIAGRAM

- CEM3340 BLOCK \& CONNECTION DIAGRAM

- KEYBOARD CIRCUIT DIAGRAM

Technical Information

- Effective from SN-243200.

The CPU may overrun if excessive static electricity is fed through the jacks, etc. To prevent this, the GND of the GATE OUTPUT jack on the Jack Circuit Board and wire.
It is advisable that this precautionary measure also be applied to the models prior to SN-243200.

- If there is an improper connection in the Keyboard keys, clean the contact (foil pattern) on the side of the Switch P.C. Board with alcohol

The CPU 80C49-6-7301 controls the various modes and functions of the $\mathrm{SH}-101$ through a series of programmed steps, as shown in the attached flow chart. These actions are described below.

Note:

Steps 3 through 13 are a series of program steps that are sequentially executed by the CPU at 1.5 to 3.5 msec intervals. The CPU can modify this sequence any time new data is input.

1. TEST MODE

The Test mode allows easy adjustment of the SH-101. To enter the Test mode, first turn the power switch Off. This is necessary as the Test mode cannot be entered while the SH-101 is in any of the normal operating modes. Now simultaneously press both the LOAD and KEY TRANSPOSE buttons and turn the power switch On. The CPU sets the voltage at the KCV and at the Range to zero and turns the Gate Off. The unit is now in the Test Mode. The voltage values at the KCV and the Range, and the status of the Gate change in each of the function modes listed below.

Function Button	KCV	Range	Gate
PLAY	2.75 V	OV	Off
ARPEGGIO DOWN	2.5 V	OV	Off
ARPEGGIO U\&D	4.75 V	OV	On
ARPEGGIO UP	OV	4.75 V	On
LOAD	OV	OV	Off

To enter a normal mode, either press the Hold button down, or turn the power switch Off and then back On again.

2. INITIAL SET

The CPU performs Initial Set when the power switch is turned On or when the HOLD button is pressed during the Test mode. This operation deletes all the data that is stored in the built-in RAM, such as Keyboard and switch mode data, but does not delete the Sequencer data.

3. RANGE DATA READ

The CPU reads and memorizes the positions of the VCO Range, TRANSPOSE (L, M and H) and GATE/TRIG (LFO) switches.

4. RANGE DATA OUTPUT

The CPU sends the VCO Range data (read in Step 3) to the D/A Converter where it is converted into analogequivalent values.

Range Selector	Range Data
16^{\prime}	1 V
8^{\prime}	2 V
4^{\prime}	3 V
2^{\prime}	4 V

If the CPU contains Key Transpose data (stored during step 8 of the previous program execution), the Key Shift data is added to the Range Selector data. For example, if the user selects the lowest F-key and sets the Range Selector to 16^{\prime}, the Range data value will be 0.417 V . Likewise, if the user selects a higher C-key and sets the Range Selector to 2^{\prime}, the Range data value will be 5 V .

5. KEYBOARD READ

The CPU uses a 4×8 matrix to read the number and position of the keys being pressed on the keyboard, and determines the output priority of the CV data and whether new Gate signal should be output according to the key mode (LEGATO or NON-LEGATO) and the settings of the panel controls (PORTAMENTO, ARPEGGIO, GATE/TRIG, etc.)

6. CLOCK СНЕСК

Any variation in the voltage of the Clock signal (LFO or EXT CLK) is detected at the T1 terminal. If a low Clock signal turns high, TR11 inverts it to low and sends it to the CPU, which then performs the following operations.
(a) Generates Random data.
(b) Prepares the data for Arpeggio and Sequencer playing.

7. RANDOM DATA OUTPUT

The CPU outputs to the D/A Converter the random data generated and stored in step 6(a).

8. FUNCTION SWITCH READ

The CPU scans all the function switches in order to detect any changes made by the user. If an On/Off change is detected, the CPU jumps to the appropriate step.
Refer to the flow chart. The CPU can detect the On/Off status of the HOLD function at both the Panel button and the Pedal switch. When the KEY TRANSPOSE button is pressed and a new key selected, the CPU identifies the key that was pressed on the keyboard and thus identifies the key (pitch) to be transposed.

9. LOAD

If a Keyboard key, the LEGATO (HOLD) button or the REST (KEY TRANSPOSE) button is pressed, the CPU stores that information in the RAM, then jumps to step 12. If no key or button is pressed, the CPU jumps directly to step 12.

10. PLAY

In the Play mode, the CPU reads the Sequencer data stored in the RAM and prepares both the KCV and Gate data, then jumps to step 12.

11. ARPEGGIO

If the CPU detects during step 6 that the Clock signal has turned high, the CPU prepares the KCV data according to the order of the key numbers stored in the 4 -byte (32 keys) Arpeggio Key Buffer, then jumps to step 12. If the Clock Signal remains low, the CPU jumps directly to step 12.

12. CV OUTPUT

During the Arpeggio and Sequencer Play modes, the CPU sends to the D/A Converter the necessary CV data
for executing the relevant steps for Arpeggio or Sequencer playing. During all other modes, the TRANSPOSE Switch data (L, M or H) is either added to or subtracted from the Keyboard information, and the resulting value is sent to the D/A Converter. Examples of this operation are shown below.

Transpose Switch Position	Key	CV D/A Conversion) (After
L	Lowest F	0.417 V
M	Lowest F	1.417 V
H	Lowest F	2.417 V
H	Highest C	5.0 V

13. GATE \& LED DATA OUTPUT

Port 2 of the CPU outputs the Gate, Clock Reset (CLK RST) and LED Illumination signals. The Clock Reset signal resets the Clock signal whenever a key on the keyboard is pressed while either the GATE/TRIG Selector is set to LFO or the ARPEGGIO mode is activated. The LED Illumination signal illuminates the LEDs above the function switches, but does not illuminate the LEDs for the LFO and powerswitches.

At the end of step 13, the CPU returns to program 3 and repeats the sequence of steps from 3 through 13.

- PIN CONNECTION (Top View)

Precautions:

The order of the adjustment procedures in these adjustment specification were determined assuming that the $\mathrm{SH}-101$ unit has not been adjusted at all Therefore, when only a few sections are to be adjusted, please keep the following points in mind.

- When adjusting the VCO Width, VCO Tune, and/or VCF, be sure that the D/A Converter adjustment has first been completed. (This is because D / A Converter failure may affect these circuits.)
- Because the VCO Width and the VCO Tune interact with each other, be sure to perform both adjustment

1. D/A CONVERTER ADJUSTMENT

Preparations:

- Connect the digital voltmeter (with more than 4 significant digits) to the CV OUT jack.
- While pressing both the LOAD button and the KEY TRANSPOS button on the SH-101 unit, turn the Power Switch On. (The SH-101 unit is now in the Test mode.)
(A) D/A Tune

1. Confirm that the LOAD and TRANSPOSE LEDs are illuminated. If any of the LEDs other than the LOAD LED is illuminated, press the LOAD button.
2. Adjust VR-2 (D/A TUNE) on the Synth. Circuit Board until the digita voltmeter reads $\mathrm{OV} \pm 1 \mathrm{mV}$
(B) D/A Width $(+5 \mathrm{~V})$
3. Adjust VR-1 $(+5 \mathrm{~V})$ on the Synth. Circuit Board until the digital volt meter reads $2.75 \mathrm{~V} \pm 1 \mathrm{mV}$.
(C) D/A Linearity
4. Press the ARPEGGIO DOWN button.
5. Adjust VR-3 (D/A LINEAR) on the Synth. Circuit Board until the digital voltmeter reads $2.5 \mathrm{~V} \pm 1 \mathrm{mV}$.
(D) Repeat the above procedures (A) through (C) until all the voltage read ings are within $\pm 1 \mathrm{mV}$ of the specifications.
6. VCO ADJUSTMENT

Preparations:

- If the unit is in the Test mode, release the mode by either pressing the HOLD button or resetting the Power Switch to On
- Set the panel controls as shown in Fig. 1
- Connect the oscilloscope to SH-101 OUTPUT. Supply the reference F note (based on $A=442 \mathrm{~Hz}$) to the scope EXT. Input for the Lissajous figure.

Note:
To compensate for the variations of the components, the VCO Tune Circuit is designed so that a +15 V voltage can be supplied or inhibited. (The position is shown in the circuitdiagram with the mark.)
If the adjustment cannot be properly performed by adjusting VR-7, short-circuit the break in the pattern on the back of resistor R102. If it is already bridged or wired, open it.
A) VCO Width (VCO TUNE) or VR-9 (TUNE) until the Lissajous figure is motionless.
2. Hold the F3 key down, and adjust VR-6 (VCO WIDTH) until the figure is again motionless
The F5 pitch will vary as VR-6 (VCO WIDTH) is turned.
3. Repeat steps 1 and 2 until the F 3 and F 5 figures are motionless
(B) VCO Tune
. Place the unit in the Test mode. (While pressing both the LOAD button and the KEY TRANSPOSE button.turn the Power Switch On.)
. Press the U \& D button
3. Confirm that VR-9 (TUNE) is set in the center position.
4. Adjust VR-7 (VCO TUNE) until the output value is 442 Hz .
(C) Range Width

1. Place the unit in the Test mode
2. Press the $U \& D$ button
3. Press the UP button, and adjustVR-5 (RANGE WIDTH) until the output pitch is the same as the outputpitch in the U \& D mode.
(D) Pulse Width
4. Set the WAVEFORM to \square
5. Adjust VR-2 (D/A TUNE) until the mark/space ratio is $1: 1$

3. VCF ADJUSTMENT

Preparations:

Set the panel controls as shown in Fig. 2

- Connect the oscilloscope to the SH-101 OU TPUT

1. Hold the A4 key down, and set the CUTOFF FREQ. for approximately 1 kHz .
2. Alternately, play the F4 and F5 keys, and adjust VR-8 (VCF WIDTH) until the F5 figure cycle is twice the F4 cycle.

4. LFO MOD OFFSET

Preparation:

- Connect the digital voltmeter to test points TPand TP-2 on the Bender Circuit Board as shown in Fig.3.
- Adjust VR-3 (D/A LINEAR) until the voltmeter reads $0 \pm 2 \mathrm{mV}$

Note
The adjustment can be per formed from the direction of the foil pattern.

CIRCUIT BOARD DIAGRAM

case			SWITCH	
065H117 Cover			13129325	EVQ-PTR18K
0655118 Cover				
064 H157 Holder			others	
064H158 Holder			070НН40	Coil Spring
			$053 \mathrm{H157}$	Plug Cord
KNOB			2228532500	Strap Pin
$016 \mathrm{H} \% 3$			${ }_{13 \text { Нноо }}$	Strap
			${ }^{123 H} \mathrm{HO} 1$	Screw
PCB			107Н041	Rubber Custion
052 H 401				
potentiometer				
13219273 PB-5RO		100kв		
- Sk-331-AR (004H014) PARTS LIST				
1	$106 \mathrm{HO26}$	Natural Key		c.F
1	027	"		D
1	028	"		E.B
	029	"		
	030	"		A
1	031	"		$C^{\prime} \cdot F^{\prime}$
032 Sharp Key				
3	070H029	Key Spring		H29
	0611142	Chassis		H142
5	068 H 004	Guide Bush		
6	1014139	Level Felt		H139
	149H193	OPH193 (poc 052H381)		
8		${ }^{3 \times 10}$ Self Tapping Binding H		
	102 H 007 102H009			
		.		
10	098H006	Key Stopper		H6
11		Nuts		No. 13
	\square			

