Crassover Nutworks Many thanks for publithing lucid and informative article on Croseover Notworks (EFY

March, 1986). However, I would like to point out the following:

1. In the formulae glven for calculating the values of C and L there seems to be some error In specifylng the units. On substituting the values for 4 -ohm speaker system with crossover point at 2500 Hz , the values of C and L come out to be 0.0000159 and 0.0002545 respectively. I think these are values in farad and henry and not microfarad and millihenry as written in the article.
2. In the graph showing Impedance curve (Flg. 7 of the article), I presume the Y-axis represents Impedance \mathbf{Z} and not dB.
3. I beg to differ from learned Mr Osan's contention that electrolytic type capacltors are avallable only as 'polarised' units. In fact I have personally used 'Crescent' make nonpolar electfolytlc capacliors, a wide range of which is a vallable with Assoclated Traders, 43

Old Lajpatral Market, Chandni Chowk, Delhi. When we put two capacltors In series (to make the combination behave like a nonpolar unit) I think it will add up ESR (equlvalent serles resistance) of the two capacitors and would result in excessive power loss as compared to single-plece non-polar capacltor.

Kindly enlighten me on the above points through good columns of your Informative, interesting, elegant and perhaps one of the most authentic magazines on electronics avallable In India.

RAKESH KUMAR
Now Delhl
The author, Mr Janvinder Oean, replise:
The formulae glven in equations (1) and (2) give the capacitance and inductance In farads and henry respectively. Also, the equation (6) In part II (April issue) of the article glves Inductance in henry.

The Y -axis of the curve given in Flg. 7 represents variation in voltage in terms of decibels. The curve was traced from the orlglnal, which has plotted on a B\&K lovel recorder to thow the varlation In voltage across the terminais of apeaker, ns the input signal from a constant current source is swept. At resonanot, the Impedance is maximum, and hence the voltige drop across the speaker ts
aiso the maximum, which is evident from the plot The Y-axis is, therefore, proportional to the impedance of the speaker

Should non-polar electrolytic capacitors be avalable readily, then by all means they may be used in crossover notworks However, as regards the ESR of the non-polar electrolytic, to my knowledge, the construction of a single prece non-polar electrolytic consists internally of two polarised electrolytics, back-toback in a single can. Therefore, unless the manufacturer is specifically making these capacitors with a low power factor for use in loudspeaker crossover nutworks, one would not expect there to be a difference in their ESR as compared to two electrolytic capacitois placed back-to-back otherwise.

