
COMPUTER EVOLUTIOIM 
PART TWO By S. A. HODSON B.Sc. 

BASIC AIMALOGUE CIRCUITS 
IN the opening article of this series, the differences 

between analogue and digital computers were 
explained, and their early development from simple 
calculating machines was traced. Now we shall come 
up to date and look at modern analogue computers 
and some of their uses. 

Two important concepts were described in the 
previous article. The first of these concepts was that of 
the “model”. It should be obvious that a scale model 
of a ship or an aeroplane will be a great help in predict¬ 
ing its behaviour when it is built full size. 

What may not be so obvious is that, especially in 
these days of electronics, the model need not be a 
physical scale model at all, but can be a model made in 
any medium the modeller likes to use. Of course some 
media are more direct than others, and it is this that 
directs the attention to the first means of classification 
of analogue computers: “Direct” and “Indirect”. A 
scale model of an aeroplane in a wind tunnel is a 
“direct” computer, whereas an electronic analogue 
computer, programmed to represent the aeroplane in 
the air flow, >^ould be an “indirect” computer. 

In this case, the electronic computer works by 
representing the air flow over the aircraft; and it does 
this by means of mathematical equations that can take 
into account every bump or curve on its skin. What is 
perhaps more important is that these equations can be 
altered to take account of a design change without the 
aircraft having to be hacked about by a welding torch, 
in fact the performance of the whole plane can be 
predicted before hacksaw has touched metal. 

These mathematical equations or “functions” as they 
are more properly called, are the second of the two 
concepts mentioned above: that of being able to 
represent any physical occurrence by means of an 
equation. 

COMPUTING MEDIA 
There are three main computing media in the field of 

analogue computing. The first of these is that of 
mechanics. Scale models are a good example of the 

direct application of a computing device ip this field, 
while a slide rule serves to illustrate the indirect use of a 
mechanical device. 

The use of the term “computer” about a scale model 
is not as loose as it may seem. Take for example the 
case of the model in the wind tunnel. Physical 
distances and hence velocities have obviously to be 
scaled, but what about the pressure, the density, and 
even the composition of the air flowing in the tunnel? 
These must be scaled too. 

A whole science known as “dimensional analysis” 
has ^own up around these scale models, and a lot of 
time is devoted to the calculation of the correct scaling 
factors for all the parameters involved in a scale model. 

The second medium used in analogue computing is 
the fluid; here the term fluid includes both liquids and 
gases, thus embracing the sciences of hydraulics and 
pneumatics in one term. The fluid medium is mostly 
commonly used in the direct fashion in scale models of 
dams and hydroelectric schemes. 

It can, however, be used indirectly, and a good 
example of this is the “electrolytic tank”. This device 
is used mainly in computations involving field theory 
of one form or another. The details are not important 
here but the general idea is to have a tank full of an 
electrolyte and to immerse electrodes in this tank. The 
arrangement of the electrodes represents the system 
being investigated, and when they are charged up, the 
value of the electric field at any point in the electrolyte 
can be used to calculate the behaviour of the system. 

The third, and certainly the most widely used, of the 
three media that have been mentioned is, of course, that 
of electronics; and it is the application of this medium 
that is of interest here. 

It should be noted that nearly all the devices described 
so far can only be used for one purpose. For instance, 
the model aircraft can only represent one full size 
machine, any other design will have to have a diflerent 
model. A computer of this type is known as a “fixed 
purpose” machine, and as such is limited in its field of 
operations. 



MATHEMATICAL FUNCTION 
The great advantage of an electronic computer is that 

U is a general purpose machine and can be programmed 
for one job then, when that job is finished, programmed 
for something entirely different. To achieve this 
flexibility of operation, the electronic machine works in 
the realm of the mathematical function, and it is to the 
explanation of these that the next few paragraphs must 
be devoted. 

Suppose that a capacitor is being charged from a 
battery, through a resistor. The voltage and current 
wave-forms will look like Fig. 2.1. 

If the graphs of V and I are examined more closely, it 
will be seen that the actual value of I is directly pro- 
iwrtional to the slope of V. That is, near the origin of 
the graphs, V is sloping upwards quite sharply, and I 
has a high positive value. As time progresses, V 
slopes less sharply and the value of I drops away. In 
mathematical terms this can be expressed 

where the term dVjAt is used to represent the rate of 
change of voltage V with time. The operation per¬ 
formed on V to get dF/dr is known as “differentiation”. 
The letter d is an arbitrary symbol of differentiation. 
Similarly, to get back to Ffrom dF/dr the process used 
IS known as “integration”, and may be written thus: 

Two very similar equations can be written to represent 
the behaviour of an inductor namely: 

/=-^jVdr (4) 

The elongated S sign denotes integration. 
No apology is made for starting at such an elementary 

point in the theory of functions, since these equations 
are by far the most important in the realm of analogue 
computing. It is in fact possible, with these four 
equations to set up solutions to the most complex 
differential equations imaginable. 

Just as it is possible to differentiate Fonce and obtain 
dF/dr, it is equally possible to do it again and end up 
with d^F/dr*. 

An easy way of understanding this is to consider a 
car travelling along a road, and to let the distance it has 
covered be x miles. Then if jr were to be differentiated 
djc/dr would be obtained which is the velocity of the car 
in miles per hour. A further differentiation would give 
d^x/dr^ which is its acpleration, in miles per hour per 
hour, and so on. In just the same manner integration 
may be performed again and again. 

In all these examples the function “time” t has been 
involved and the differentiations and integrations that 
have been performed have been done with respect to 
time. Any computations done with respect to time in 
this manner would be known as “real time” com¬ 
putations. 

A great deal of analogue computing is done with 
respect to time, although, as will be seen, it need not 
always be real time that is used. In some cases it is 
very convenient to use “half time” or “quarter time”. 
This gives a very powerful method of speeding up what 
may be a tedious calculation. 

r 
t: 

Fig. 2.1. Capacitor charging circuit with volt- 
age and current waveforms 

Having described the basic formulae involved in 
calculus (this is the term used to describe integration 
and differentiation), it is possible now to turn to the 
differential equation, which forms the basis of all 
computations performed on an analogue computer. 
The general form of such an equation is: 

This looks positively frightening, and as it stands, has 
no solution. However, if it is broken up into its 
separate terms, it will be seen that each term is no more 
than one differentiation of the previous term with a 
different constant attached. When all the terms are 
added together they might, for instance, represent the 
flow of air across an aircraft’s wing surfaces, or, in a 
simplified form, they might, as has already been seen in 
previous equations, represent the behaviour of a 
capacitor or an inductor. 

Solartron analogue computer in use in the electrical and 
mechanical research laboratories at the Universitv of 
Shefpeld ' 
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OPERATIONAL AMPLIFIER 
To turn now to the actual hardware involved, the basic 

linear computing unit is the “operational amplifier” 
(see Fig. 2.2). The amplifier has a very high gain, and 
its input current is assumed to be zero. 

If this is the case, then A = A, putting this in another 
form gives 

Now if the gain of the amplifier is in the thousands or 
even millions, then Vg can be neglected in comparison 
with V, and Kq, and this equation becomes 

Zt ~ Zi 

where G is the “closed loop” gain of the unit as a whole. 
Thus the gain of this device can be controlled at will by 
the user simply by juggling with the two impedances Z, 
and Z2. 

Suppose now that Zi was a resistance of lOkfl and 
Z2 a resistance of lOOkfi, then the gain C would 10 
and the output voltage Kq would be 10 times the input 
voltage Fi. This is a simple way of multiplying a 
variable voltage by a constant. In fact it has per¬ 
formed one of the operations required to form equation 5. 

The patch board and analogue control panel on the 
Solartron basic 24 amplifier equipment 

Fig. Basle operational amplifier 

Fig. 2J. Two Inputs fed Into a basic amplifier 

Fig. 2.4. Simplified diagram of an operational 
ampllfler 

In the above diagrams A Is normally prefixed with 
a minus sign to denote ISO degrees phase shift 

If the input voltage were to represent dx/dt, and 
Z2/Z1 = c, then the output voltage will be C(dx/dt); 
one of the terms in equation 5. 

Consider now what would happen if two inputs were 
added on to a basic amplifier, as in Fig. 2.3. 

Now, using the same assumptions as before, 

/« = A + A 
then 

K_yt,yi 
Ro Rs Ri 

therefore 

but RoIRt and RJRi can be varied independently of 
each other, and hence it is possible to add two variables 
together. For instance; 
Let 

Vi = 1 and RoIRi = a 
and 

= X while RolRz = b 

then Vt = a + bx, which are the first two terms of 
equation 5. It is easy to see how this technique can be 
extended to accomodate any number of inputs with 
different multipliers for each one. The only thing that 
remains now is to be able to differentiate and integrate 
electronically. Once this is possible, the whole of 
equation 5 will be constructed from just one input. 

The only type of amplifier that has been dealt with so 
far is that in which the two impedances, Zo and Zi (see 
Fig. 2.4) were both resistances. 



Fig, 2JS. Zi it represented by a capacitor 

Fig. 2.6. Z, is represented by a resistor and Z, 
by a capacitor 
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la the above diagrams A is normally prefixed with 
a minus sign to denote 180 degrees phase shift 

Eliiott air data anaiogue computer 
for aircraft. Signals from the air¬ 
craft’s sensors are converted for 
use in flight control 

It may have been noted that, in Fig. 2.4, no earth or 
zero voltage line has been drawn. This is a matter of 
convenience, and provided that all voltages given on a 
diagram are given with respect to earth, then no con¬ 
fusion should arise. This makes the drafting of large, 
more complex circuits, a very rfluch less tedious task. 

Having described the results of calling Zg and Z, 
r^istances, consider now what would happen if one of 
them, say Zi, were to be a capacitance, leaving Zn as a 
resistance, as in Fig. 2.5. 

Assuming, as before, that the amplifier draws no 
current at its input, then /„ = /, 
hence, using equation 1 

This means that the output of this type of operational 
amplifier is directly proportional to the differential of 
the input. It is now that the possibilities of such an 
amplifier begin to make themselves felt. Given, say, 
X in equation 5, and this may be the distance that a car 
has travelled as read from its trip-meter, then solely by 
using a tram of differentiators, as in Fig. 2.5, dx/dr, and 
all the further derivatives of jf, may be found. This gives 
the speed of the car at any one point; also, its accelera¬ 
tion, its rate of change of acceleration, and so on. 

Supposing Zo and Zi were to be interchanged, 
making Z„ a capacitance, and Z, a resistance, as in 
Fig. 2.6. 

In this case 

Now, remembering that, to get from d F„/d/ to Vg, it is 
necessary to integrate, it is possible to integrate both 
sides of equation 7, and get 

or 

The dr is included to show that the integration has 
been performed with respect to time. 

Not only is it possible to differentiate and multiply 
with an operational amplifier, it is also possible to 
integrate. 

The flexibility of these units is such that they can be 
mixed up together to give more complex results 
without having to use large quantities of hardware. 
For instance. Fig. 2.7 shows how a differentiator and a 
scaler ran be mixed together. This dodge can save two 
operational amplifiers straight away. 

It rnay have been noticed that nowhere in the 
preceding paragraphs is an inductor mentioned. 

The reason for leaving out the inductor is that in 
practical circuits for this purpose they are never used. 
Capacitors are cheaper, smaller, easier to obtain, and 
more stable than inductors. Furthermore, there just 
isn t any need for them, since all the functions that are 
needed can be performed using capacitors alone. 

In the next article it is intended to describe how 
these methods are put to use in practical analogue 
computers; types of d.c. amplifier that can be used; 
setting up for computation. 
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