Current Mode PWM Controller

FEATURES

- Optimized For Off-line And DC To DC Converters
- Low Start Up Current (<1mA)
- Automatic Feed Forward Compensation
- Pulse-by-pulse Current Limiting
- Enhanced Load Response Characteristics
- Under-voltage Lockout With Hysteresis
- Double Pulse Suppression
- High Current Totem Pole Output
- Internally Trimmed Bandgap Reference
- 500khz Operation
- Low Ro Error Amp

DESCRIPTION

The UC1842/3/4/5 family of control ICs provides the necessary features to implement off-line or DC to DC fixed frequency current mode control schemes with a minimal external parts count. Internally implemented circuits include un-der-voltage lockout featuring start up current less than 1 mA , a precision reference trimmed for accuracy at the error amp input, logic to insure latched operation, a PWM comparator which also provides current limit control, and a totem pole output stage designed to source or sink high peak current. The out put stage, suitable for driving N Channel MOSFETs, is low in the off state.
Differences between members of this family are the under-voltage lockout thresholds and maximum duty cycle ranges. The UC1842 and UC1844 have UVLO thresholds of 16 V (on) and 10V (off), ideally suited to off-line applications. The corresponding thresholds for the UC1843 and UC1845 are 8.4V and 7.6 V . The UC1842 and UC1843 can operate to duty cycles approaching 100%. A range of zero to 50% is obtained by the UC1844 and UC1845 by the addition of an internal toggle flip flop which blanks the output off every other clock cycle.

BLOCK DIAGRAM

Note 1: $A / B A=D I L-8$ Pin Number. $B=$ SO-14 Pin Number.
Note 2: Toggle flip flop used only in 1844 and 1845.

ABSOLUTE MAXIMUM RATINGS (Note 1)

Supply Voltage (Low Impedance Source) . 30V
Supply Voltage (Icc <30mA) . Self Limiting
Output Current $\pm 1 \mathrm{~A}$
Output Energy (Capacitive Load) . 5 5 J
Analog Inputs (Pins 2, 3) . 0.3 V to +6.3V
Error Amp Output Sink Current . 10mA
Power Dissipation at $\mathrm{T}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ (DIL-8) . 1W
Power Dissipation at $\mathrm{TA}_{\mathrm{A}} \leq 25^{\circ} \mathrm{C}$ (SOIC-14) . 725 mW
Storage Temperature Range . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 Seconds) . 3000ㄷ
Note 1: All voltages are with respect to Pin 5.
All currents are positive into the specified terminal.
Consult Packaging Section of Databook for thermal limitations and considerations of packages.

CONNECTION DIAGRAMS

PLCC-20 (TOP VIEW) Q Package

PACKAGE PIN FUNCTION	
FUNCTION	PIN
N/C	1
COMP	2
N/C	3
N/C	4
VFB	5
N/C	6
IsENSE	7
N/C	8
N/C	9
RT/CT	10
N/C	11
PWR GND	12
GROUND	13
N/C	14
OUTPUT	15
N/C	16
Vc	17
VcC	18
N/C	19
VREF	20

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, these specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{TA} \leq 125^{\circ} \mathrm{C}$ for the UC184X; $-40^{\circ} \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$ for the UC284X; $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq 70^{\circ} \mathrm{C}$ for the $384 \mathrm{X} ; \mathrm{VcC}=$ 15 V (Note 5); $\mathrm{RT}=10 \mathrm{k} ; \mathrm{CT}=3.3 \mathrm{nF}, \mathrm{TA}=\mathrm{TJ}$.

PARAMETER	TEST CONDITIONS	UC1842/3/4/5 UC2842/3/4/5			UC3842/3/4/5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Reference Section								
Output Voltage	$\mathrm{TJ}=25^{\circ} \mathrm{C}, \mathrm{lo}=1 \mathrm{~mA}$	4.95	5.00	5.05	4.90	5.00	5.10	V
Line Regulation	$12 \leq \mathrm{VIN} \leq 25 \mathrm{~V}$		6	20		6	20	mV
Load Regulation	$1 \leq 10 \leq 20 \mathrm{~mA}$		6	25		6	25	mV
Temp. Stability	(Note 2) (Note 7)		0.2	0.4		0.2	0.4	$\mathrm{mV} /{ }^{\circ} \mathrm{C}$
Total Output Variation	Line, Load, Temp. (Note 2)	4.9		5.1	4.82		5.18	V
Output Noise Voltage	$10 \mathrm{~Hz} \leq \mathrm{f} \leq 10 \mathrm{kHz}, \mathrm{TJ}=25^{\circ} \mathrm{C}$ (Note2)		50			50		$\mu \mathrm{V}$
Long Term Stability	$\mathrm{TA}=125^{\circ} \mathrm{C}, 1000 \mathrm{Hrs}$. (Note 2)		5	25		5	25	mV
Output Short Circuit		-30	-100	-180	-30	-100	-180	mA

Oscillator Section	$\mathrm{TJ}=25^{\circ} \mathrm{C}($ Note 6)	47	52	57	47	52	57	kHz
Initial Accuracy	$12 \leq \mathrm{VCC} \leq 25 \mathrm{~V}$		0.2	1		0.2	1	$\%$
Voltage Stability	TMIN $\leq \mathrm{TA} \leq$ TMAX (Note 2)		5			5		$\%$
Temp. Stability	VPIN 4 peak to peak (Note 2)		1.7			1.7		V
Amplitude								

Error Amp Section	VPIN $1=2.5 \mathrm{~V}$	2.45	2.50	2.55	2.42	2.50	2.58	V
Input Voltage			-0.3	-1		-0.3	-2	$\mu \mathrm{~A}$
Input Bias Current	$2 \leq \mathrm{VO} \leq 4 \mathrm{~V}$	65	90		65	90		dB
AvoL	$($ Note 2$) \mathrm{T} J=25^{\circ} \mathrm{C}$	0.7	1		0.7	1		MHz
Unity Gain Bandwidth	$12 \leq \mathrm{VCC} \leq 25 \mathrm{~V}$	60	70		60	70		dB
PSRR	VPIN $2=2.7 \mathrm{~V}$, VPIN $1=1.1 \mathrm{~V}$	2	6		2	6		mA
Output Sink Current	VPIN $2=2.3 \mathrm{~V}, \operatorname{VPIN} 1=5 \mathrm{~V}$	-0.5	-0.8		-0.5	-0.8		mA
Output Source Current	VPIN $2=2.3 \mathrm{~V}, \operatorname{RL}=15 \mathrm{k}$ to ground	5	6		5	6		V
Vout High	VPIN $2=2.7 \mathrm{~V}, \mathrm{RL}=15 \mathrm{k}$ to Pin 8		0.7	1.1		0.7	1.1	V
Vout Low								

Current Sense Section	(Notes 3 and 4)	2.85	3	3.15	2.85	3	3.15	$\mathrm{~V} / \mathrm{V}$
Gain	VPIN $1=5 \mathrm{~V}$ ((ote 3)	0.9	1	1.1	0.9	1	1.1	V
Maximum Input Signal	$12 \leq \mathrm{V}_{\mathrm{CC}} \leq 25 \mathrm{~V}$ (Note 3) (Note 2)		70			70		dB
PSRR			-2	-10		-2	-10	$\mu \mathrm{~A}$
Input Bias Current	VPIN $3=0$ to 2V (Note 2)		150	300		150	300	ns
Delay to Output								

Note 2: These parameters, although guaranteed, are not 100% tested in production.
Note 3: Parameter measured at trip point of latch with VPIN $2=0$.
Note 4: Gain defined as

$$
A=\frac{\Delta V \text { VIN } 1}{\Delta V \text { VIN } 3}, 0 \leq \text { VPIN } 3 \leq 0.8 \mathrm{~V}
$$

Note 5: Adjust Vcc above the start threshold before setting at 15 V.
Note 6: Output frequency equals oscillator frequency for the UC1842 and UC1843. Output frequency is one half oscillator frequency for the UC1844 and UC1845.
Note 7: Temperature stability, sometimes referred to as average temperature coefficient, is described by the equation:

$$
\text { Temp Stability }=\frac{V_{\text {REF }}(\text { max })-\operatorname{VREF}(\text { min })}{T J(\max)-T J(\text { min })}
$$

VREF (max) and VREF (min) are the maximum and minimum reference voltages measured over the appropriate temperature range. Note that the extremes in voltage do not necessarily occur at the extremes in temperature.

ELECTRICAL CHARACTERISTICS: Unless otherwise stated, these specifications apply for $-55^{\circ} \mathrm{C} \leq \mathrm{TA}_{\mathrm{A}} \leq 125^{\circ} \mathrm{C}$ for the UC184X; $-40^{\circ} \mathrm{C} \leq \mathrm{TA} \leq 85^{\circ} \mathrm{C}$ for the UC284X; $0^{\circ} \mathrm{C} \leq \mathrm{TA} \leq 70^{\circ} \mathrm{C}$ for the 384 X ; VcC $=$ 15 V (Note 5); RT $=10 \mathrm{k} ; \mathrm{Ct}=3.3 \mathrm{nF}, \mathrm{TA}=\mathrm{TJ}$.

PARAMETER	TEST CONDITION	UC1842/3/4/5 UC2842/3/4/5			UC3842/3/4/5			UNITS
		MIN	TYP	MAX	MIN	TYP	MAX	
Output Section								
Output Low Level	ISINK $=20 \mathrm{~mA}$		0.1	0.4		0.1	0.4	V
	ISINK $=200 \mathrm{~mA}$		1.5	2.2		1.5	2.2	V
Output High Level	ISOURCE $=20 \mathrm{~mA}$	13	13.5		13	13.5		V
	ISOURCE $=200 \mathrm{~mA}$	12	13.5		12	13.5		V
Rise Time	$\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{CL}=1 \mathrm{nF}$ (Note 2)		50	150		50	150	ns
Fall Time	$\mathrm{TJ}=25^{\circ} \mathrm{C}, \mathrm{CL}=1 \mathrm{nF}$ (Note 2)		50	150		50	150	ns
Under-voltage Lockout Section								
Start Threshold	X842/4	15	16	17	14.5	16	17.5	V
	X843/5	7.8	8.4	9.0	7.8	8.4	9.0	V
Min. Operating Voltage After Turn On	X842/4	9	10	11	8.5	10	11.5	V
	X843/5	7.0	7.6	8.2	7.0	7.6	8.2	V
PWM Section								
Maximum Duty Cycle	X842/3	95	97	100	95	97	100	\%
	X844/5	46	48	50	47	48	50	\%
Minimum Duty Cycle				0			0	\%
Total Standby Current								
Start-Up Current			0.5	1		0.5	1	mA
Operating Supply Current	VPIN $2=$ VPIN $3=0 \mathrm{~V}$		11	17		11	17	mA
Vcc Zener Voltage	$\mathrm{ICC}=25 \mathrm{~mA}$	30	34		30	34		V

Note 2: These parameters, although guaranteed, are not 100\% tested in production.
Note 3: Parameter measured at trip point of latch with VPIN $2=0$.
Note 4: Gain defined as:

$$
A=\frac{\Delta \text { VPIN } 1}{\Delta \operatorname{VPIN} 3} ; 0 \leq \text { VPIN } 3 \leq 0.8 \mathrm{~V} .
$$

Note 5: Adjust Vcc above the start threshold before setting at 15 V.
Note 6: Output frequency equals oscillator frequency for the UC1842 and UC1843. Output frequency is one half oscillator frequency for the UC1844 and UC1845.

ERROR AMP CONFIGURATION

Error Amp can Source or Sink up to 0.5 mA

UNDER-VOLTAGE LOCKOUT

CURRENT SENSE CIRCUIT

Peak Current (Is) is Determined By The Formula

$$
\operatorname{Ismax} \approx \frac{1.0 \mathrm{~V}}{\mathrm{Rs}}
$$

A small RC filter may be required to suppress switch transients.

OSCILLATOR SECTION

OUTPUT SATURATION CHARACTERISTICS

ERROR AMPLIFIER OPEN-LOOP FREQUENCY RESPONSE

OPEN-LOOP LABORATORY FIXTURE

High peak currents associated with capacitive loads necessitate careful grounding techniques. Timing and bypass capacitors should be connected close to pin 5 in a single point
ground. The transistor and 5 k potentiometer are used to sample the oscillator waveform and apply an adjustable ramp to pin 3.

SHUT DOWN TECHNIQUES

Shutdown of the UC1842 can be accomplished by two methods; either raise pin 3 above 1V or pull pin 1 below a voltage two diode drops above ground. Either method causes the output of the PWM comparator to be high (refer to block diagram). The PWM latch is reset dominant so that the output will remain low until the next clock cycle after the shutdown condition at

pin 1 and/or 3 is removed. In one example, an externally latched shutdown may be accomplished by adding an SCR which will be reset by cycling Vcc below the lower UVLO threshold. At this point the reference turns off, allowing the SCR to reset.

OFFLINE FLYBACK REGULATOR

SLOPE COMPENSATION

