
Complex Numbers
Were you bored by maths at school?

Unfortunately, the teaching of maths, not only
in schools but also in engineering colleges,
tends to be a pure science instead of showing
the practical applications to electronics and
other branches of engineering.

Mathematics is an exact science with the
answers popping out like a pudding out of a
pudding bowl, as my teacher used to put it.
The frontiers of mathematics, the
philosophical side usually predicts the trend
that engineering is likely to take.

For instance, the large scale digital
processing of signals was shown
mathematically long before the technology
was available. Fourier analysis showed the
components in a waveform much before
spectrum analysers were available. Explosions
and massive gravitational forces in space,
compressing material into a black hole were
explained mathematically before the physical
phenomena were understood.

Mathematics also serves the purpose of
manipulating data into the required form. For
example, Laplace transforms transfer an
expression from the frequency domain into the
time domain. This is useful in electronics since
old methods of analogue amplification and
filtering were in the frequency domain
(frequency division multiplex) whereas
modern techniques are in the time domain
(time division multiplex).

Complex numbers is an important branch
of mathematics with applications to electronic
engineering. Mathematicians use the letter 'i'
in complex numbers, but 'j' is used in
electronics since the letter 'i' in electronics is
reserved for current. The 'y symbol is often
called the 'y operator. The need for a 'j'
operator arises for the following reasons. In a
circuit that is purely resistive the current is in
phase with the voltage, see Figure 1. In a
circuit that is reactive, the current may lead or
lag the voltage depending on whether the
circuit is inductive or capacitive, see Figures 2
and 3.

Argand, a mathematician, was the first to
invent the use of 'i' or the imaginary operator.
This was useful for explaining the square roots
of negative numbers. Consider the equation
x2 - 16 = 0. The solution is x = ±4 which is

Figure 1. Current in phase with voltage.

Figure 2. Current leading voltage.

Figure 3. Current lagging voltage.

represented on an Argand diagram as in
Figure 4.

But how does one solve the equation
X2 -1- 16 = 0?

Here x2 = -16

x =±4 V-1
There is no real number which represents

the square root of -1. Argand's solution to
this problem was to assign real values along
the x axis and imaginary values along the y
axis. The solution of x2 = -16 is now shown
in Figure 5.

In electrical engineering there are no
imaginary values but we call these quadrature
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Figure 4. Argand diagram.
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Figure 5. Imaginary (quadrature)
components.
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components. Therefore a purely resistive
circuit will have real components only and a
reactive circuit will have quadrature
components. An Argand diagram has facilities
for describing a circuit that has both real and
quadrature components.

From now on we shall use the j symbol
and examine the addition and subtraction of
complex numbers. An expression that has
both real and quadrature components is called
a complex number. For instance a number that
has 2 units of real value and 4 units of
quadrature value would be represented as in
Figure 6. The vector P is represented in the
general form of: a + jb, or 2 + j4 in this case.

The above method of representing a
complex number uses the Cartesian co-
ordinates. There is another method of
representing complex numbers using polar
co-ordinates. In this method, if we define an
angle 0 (Figure 7) from a reference point then
we have one of the attributes defined.

The other attribute must be the length of
the vector. Both quantities can be calculated
from the cartesian co-ordinates. From
Pythagoras' theorem the hypoteneuse in
Figure 7 is given by:

V a2 b2

or V 202 + 152

V 400 + 225

V 625
25

The tangent of angle 0 is = 0.75
20

Therefore 0 = 36.87°

The resultant is sometimes called the
modulus and the angle is called the argument.

Addition and
Subtraction

One of the advantages of the complex
notation is that numbers are added and
subtracted quickly and easily. This is done by
adding or subtracting the real components
separately from the quadrature components.
The alternative is the tedious method of
drawing parallelograms and finding the
resultant of only two vectors at a time.

Figure 8 (not to scale) shows three
complex numbers 2 + j2, -5 + j8, -10 - j4.
Adding the real components gives -13 and
adding the quadrature components produces
j6. Therefore the answer is -13 +j6.
Subtraction is just as easy compared to the
parallelogram method of operating on only two
vectors each time.

Multiplication and
Division of Complex
Numbers

Before we deal with the multiplication of
complex numbers we must see what happens
when we multiply j by itself successively.
Since:

= V -1
j2 _1

j3 = -1 X j = -j
j4 = -1 X -1 = +1
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Figure 6. Cartesian co-ordinates.

Figure 7. Polar co-ordinates.

Figure 8. Three complex numbers.
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Figure 9. The 'j' operator.

Now we can see why it is called an
operator. From Figure 9, each successful
multiplication by j has the effect of swinging
the value through 90 degrees.

In order to multiply two complex
numbers together, we simply expand the
brackets in the usual manner.

For example: (3 + j5) (4 - j2)

12 + j20 -j22

Remembering j2 = -1,

12 + j20 + 2

14 + j20 is the result.

Division of complex numbers is just as
simple, the answer dropping out like a pudding
out of a pudding bowl.

3 + j5
For instance

4 - j2

First we rationalise the denominator by
multiplying it by its conjugate. The conjugate
has the same values but opposite phase and
has the effect of turning into a wholly real
number. The conjugate of 4 - j2 is 4 + j2.

So
(3 + j5) (4 + j2)
(4 - j2) (4 + j2)

12 + j6 + j20 + j210

16 + j8 - j8 - j24

12 + j26 - 10
16 + 14

2 + j26
20

= 0.1 + j 1.3

Multiplication and
Division using Polar
Co-ordinates

Polar co-ordinates lend themselves quite
easily to multiplication and division. The
modulus is multiplied separately and the
angles (argument) are added together in
multiplication:

ri lei x r2102 = rl xr210i + 02

6 135 x 7 140 = 42 75

For division the moduli are divided and the
angles are subtracted:

Continued on Page 46.

Figure 10. Roots of a number.
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digital converter (the joystick port) which
will accept a voltage of up to 1.8 volts and
produce a signal in proportion to the voltage.
This makes life very easy. The signal from
the port will be approximately 35168 for 1
volt input. The advantage of using the
computer is that it can store the results and a
graph of the results after several hours can
be produced. The principle behind the circuit
in Figure 2 is that the cell is discharged
through a low value resistor and the

Cell under test

0-4
RT RT (See text )

Pin 8 Analogue ground
Pin 7 Channel 1

8 7 60 50 40 30 20 10

15 14 13 12 11 10 9
0 0 0 0 0 0 0

View into analogue port

Figure 2. Circuit for BBC micro.

computer is used to monitor the voltage.
The value of the resistor that is used to

discharge the cell should be calculated to
produce a current of C/2, C/4 and C/8 to give
a spread of figures. Thus for an AA cell of
capacity 0.5 amp -hours, the discharge rate
at C/2 is 0.25 amps, the resistor will have to
be 1.25/0.25 or 5Q. For C/4 the resistor will
be 1011 and so on. In each case, it is a good
idea to place an ammeter in the circuit to
check that the cell is discharging at the
correct rate. In practice, it is often a problem
to obtain resistors of these values and it is
quite satisfactory to set up a circuit with
several resistors wired in parallel to obtain
approximately the correct current, as long
as the same block of resistors is used when
comparisons are made several months later.

The program to check the performance
of the cell is shown in Table 1, it is very
simple and could be much enhanced.
Possible improvements include an automatic
graphing routine and a method of storing the
information on each cell so that a comparison
can be made at a later stage in the cell's life.

Line 150 stops further readings being
taken when the voltage drops below
approximately 1 volt. It does not stop the cell
being further discharged, though by using
relays switched from the user port, it could
turn off the cell when the voltage drops too
low.

10 REM Ni Cad cell monitor.
20 DIM Rdg%(1000)
30 REM Readings stored in Rdg%()
40 PRINT "Enter the time interval for

readings in minutes."
50 INPUT Min
60 Gap=Min*60*100
70 Co = 0
80 REPEAT
90 TIME=0
100 Co=Co+ 1
110 REPEAT
120 UNTIL TIME>Gap
130 Rdg%(Co)=ADVAL(2)
140 PRINT Co*Min,

INT(Rdg%(Co)/35.168)/1000
150 UNTIL Rdg%(Co)<35000
160 REM This stops the routine when

the voltage falls too low
170 FOR C=1 TO Co
180 PRINT C*Min,

INT(Rdg%(Co)/35.168)/1000
190 NEXT C

Table 1. Monitor program.

I hope this monitor program will be
useful to you and that you have learnt
something from this article about the correct
way of caring for your Nicads.

Calcs continued from Page 43.

11101 r2102 = r1 let - 02
12

251611+ 5 140 = 5 IZO_

Polar co-ordinates are particularly useful
in finding square roots. The square root of the
modulus is found and the angle divided in half:

( r VL) 1/2 = VT10/2

(25 [60 1/2 = 5 IR

Now a real number like 25 has two roots 5 and
-5

These are of the same magnitude but
opposite sign (phase) to each other. Similarly,
a complex number has two roots, one 180
degrees out of phase (opposite phase) to each
other.

Hence (25160)1/2 has roots of 5130 and

5 1210 , see Figure 10. To square a number in

polar co-ordinates we square the modulus and
double the argument.

(r 111).2 = r210 x 2

(4120)2 = 16140

Application of
Complex Numbers to
A.C. Bridges

We shall now see how many of the above
methods are applied to the solution of

equations for AC bridges. In an equation
containing both real and imaginary
(quadrature) terms, the real components can
be equated separately from the quadrature
components.

For instance:

R+jwL= 13 + j1 9

Therefore R = 13

and jw L = j19

Let us examine a more complicated case
like the Maxwell bridge of Figure 11.

At balance Zi Zx = Z2 Z3

(1)
where Zi = R1

(jw
=

Z2 = R2
Z3 = R3
Zx = Rx + jwLx

w + 1

Substituting in Zi Zx = Z2 Z3:

(R1)
(Rx + jw Lx) = R2 R3

(jW C1 R1 + 1)

Multiplying both sides of the equation by

(jw + 1):

(Rx + jw Lx) = R2 R3 (jW C1 R1 ± 1)

Rx + jw Lx = jw C1 Ri R2R3 ± R2R3

Equating real terms:

Rx = R2 R3

Figure 11. Maxwell bridge.

Rx =
R2R3

Equating imaginary terms:

w Lx = w C-1 Ri R2 R3

Lx =C1 Ri R2 R3
This enables one to calculate the value of

an unknown inductor Lx and its associated
resistance Rx from known values of the other
components in the bridge. It is hoped that the
above shows how even large mathematical
problems can be tackled in small easy steps.
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