
f [A T U R [

Even the latest generation of microprocessors with zillions of transistors on a chi pare, at
heart, based on simple binary logic. This month we'll start looking atsomeofthe principals

behindthisessential area of electronics.

Steve Rimmer

Digital logic is often among the most resented by five volts. Different logic
misunderstoodareasofelectronicap- families treat these values differently, but

plications.Ifyoucomefromabackgroundof we'll be talking about generic logical con­

10
01

analog circuitry, logic design can be baf- cepts here. The next simplest logical element... or,
fling. While logic circuitry is based on the Inacademiccircles,alogicstateofzero at least, thenextmostcommonlyusedone ...
same sorts of devices as other types of cir- is referred to as being ''false''. A logic state is the AND gate. This is an element which
cuits are, the input and output of a logic cir- of one is referred to as being "true". This accepts two inputs and produces one output.
cuit consists of connections of states rather willcropuplateron. It works on the rule that if both of the inputs
than of signals per se. Conventional ap- A single logic state doesn't tell you of the gate are high, its output will also be
proaches to design don'treally work when verymuch,inasmuchasitcanonlybeinone high. Otherwise, it will be low. In logical
they'reappliedtologic. of two states. The usefulness of logic is in terms, we would say that if input one AND

It's often possible to design and debug having multiple elements, each with its own inputtwo are true, the result of the process ...
logic circuits without ever powering up an independent state. the gate ... will be true.
oscilloscope. The simplest logical element is a NOT Figure two illustrates the symbol for an

Forthenextfewmonths,we'regoingto gate, or "inverter". This is a box which ANDgate.
look at the basics of computer logic. Logic complements the state of its input. If you This is the truth table for an AND gate.
design can be applied to simple circuits applyastateofonetoitsinput,itsoutputwill
which just happen touselogicalelementsas be zero. Its logical symbol is illustrated in
well as to complex hardware projects figureone.
specifically intended for use with In fact, this device can be seen as the
microcomputers. combination of two still simpler elements.

The triangular bit is a buffer and the dot at

INPUT 1INPUT20UfPUT
000
100
010
111

The Gate . . . the output is the thing that complements the
The!e are relatively _few es~enttallogt~al outputofthebuffer.Inlogicaltermsthereis We can create another gate from this
devtces, and, as we ll see ~n the commg never any need for a buffer, but in practical one very simply by adding a dot to the out­
mo?ths, many of ~e seemmgly co?lplex electronic applications logical signals fre- put. The dot, as you will recall from the dis­
logtcal.elements wht~h hardware de~tgners quently need to be buffered. cussion of the inverter, NOTs everything
use as m.tegrated ~evtces are re~ll~ JUSt ar- Although it's a bit simplistic at this that passes through it. We call the resulting
rays of stmple logtcal ~l~~ents t~stde .. ~art state, wecanrepresentthefunctioningofthe gate a NAND gate. Its truth table is the in­
oftheus~ful?essof~ogtctsttspredtsposttton NOT gate with a truth table. This rational verseofthatoftheANDgate.
forc~atm~.mcreasmgly.~ore complex and can be applied to all logical elements, and it
function~ black h?xe~. : , , will turn up as a design tool when we go to INPUT 1INPUT20UfPUT

Logtc deals wtth bmary states . To actually connecting the logical elements 001
keep the discussion simple, and in familiar together. Here's the truth table for a NOT 101
electrical terms, we'll allow that a binary gate,orinverter. 011
state is a voltage level. The level zero is rep- 110
resented by zero volts. The level one is rep- INPUTOUfPUT

34
E&TTFebruarY1990

D-D-
~1186

If you've been following the C lan­
guage series which has been running in this
magazine for the past few months, you'll
recognize the foregoing truth tables. They
operate the same way as does the bitwise
arithmetic under C.

The next sort of gate we'll encounter is
the OR gate. Its logical symbol is illustrated
in figure three. It works under the rule that if
either of its two inputs are true, its output
will be true. We can write its truth table like
this.

INPUT 1INPUT20UTPUT
000
101
011
111

Like the NAND gate, the OR gate will
also spawn a negative clone of itself if we
tack a dot onto its nose. The NOR gate is
shown in figure four. Its truth table, predict­
ably, is the complement of the OR gate truth
table.

INPUT 1INPUT20UTPUT
001
100
010
110

NAND gates turn out to be very useful
logical elements in designing complex logic
circuits. NOR gates are much less frequent­
lyencountered.

The fmal sort of gate to be discussed is
the exclusive OR gate, or XOR gate. It has

E& TTFebruary1990

a true output if one but not both of its inputs
is true. Its logical symbol is illustrated in
figure five. Its truth table goes like this.

INPUT 1INPUT20UTPUT
000
101
011
110

Wiring
Designing with logical elements simply in­
volves putting these gates together to make
upalogicarraythatdoeswhatyouwant. This
is a bit like saying that playing classical
violin is simply a matter of putting your
fingers on the right strings at the right time
and moving the bow.

While we will discuss binary arithmetic
in much greater detail later in this series,
let's have a look at the basis of it now. Deal­
ing with numbers in this way will help you to
understand how logical elements are
employed to work with numeric values.

Binary numbers are represented as col­
lections of true and false states. For this ex­
ample, we '11 deal with binary numbers from
zero through three. These are said to be
"two bit" numbers, because they can be
represented by two states. We'll call these
two state elements line zero and line one.
This is how they represent the frrst four
numbers.

LINEOLINE 1 VALUE
000
101

012
113

The value of line zero is said to be one.
The value ofline one is two. These are, more
properly, one raised to the power of zero in
the first case and one raised to the power of
one in the second.

Let's create a hypothetical logic ele­
ment called ADD. This is a fictional gate
with two inputs and two outputs. It will add
binary values, although as yet we do not
know how it works. It has four input lines
and four outputs, that is, it will accept two
two-bit binary numbers as input and spit out
a two bit result. In fact, we need an addition­
al output line for a carry, to be used as a flag
should the output exceed the values which
are legalfora two bit number.

The truth table for this element would
be as follows.

INPUT1INPUT20UTPUT
LINEOLINE1LINEOLINE1LINE

OLINE1CARRY
0000000
1000100
0100010
1100110
1110001
1101101
1111011
0000000
0010100
0001010
0011110
1011001
0111101
1111011

You might want to see if this thing's bi­
nary values actually work outright, that is, if
for example the result of this binary calcula­
tion

LINEOLINE1

01
plus10
equalsll

is actually correct in decimal terms.
Let's see how that works. The first input has
the decimal value of two. The second input
has the decimal value of one. One plus two is
three, or at least is was when I checked last.
The decimal result of having both lines of a
two bit number true is, in fact, three.

Next month we'll design the actual
logic array for the ADD element, as well as
looking at some additional binary math. •

35

