

Digital Electronics 3

Series Editor
Robert Baptist

Digital Electronics 3

Finite-state Machines

Tertulien Ndjountche

First published 2016 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms and licenses issued by the
CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the
undermentioned address:

ISTE Ltd John Wiley & Sons, Inc.
27-37 St George’s Road 111 River Street
London SW19 4EU Hoboken, NJ 07030
UK USA

www.iste.co.uk www.wiley.com

© ISTE Ltd 2016
The rights of Tertulien Ndjountche to be identified as the author of this work have been asserted by him
in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2016950312

British Library Cataloguing-in-Publication Data
A CIP record for this book is available from the British Library
ISBN 978-1-84821-986-1

Contents

Preface . ix

Chapter 1. Synchronous Finite State Machines 1

1.1. Introduction . 1

1.2. State diagram . 2

1.3. Design of synchronous finite state machines 6

1.4. Examples . 7

1.4.1. Flip-flops . 7

1.4.2. Binary sequence detector . 12

1.4.3. State machine implementation based on a state table 21

1.4.4. Variable width pulse generator . 22

1.5. Equivalent states and minimization of the number of states 27

1.5.1. Implication table method . 28

1.5.2. Partitioning method . 37

1.5.3. Simplification of incompletely specified machines 42

1.6. State encoding . 55

1.7. Transformation of Moore and Mealy state machines 61

1.8. Splitting finite state machines . 63

1.8.1. Rules for splitting . 63

1.8.2. Example 1 . 64

1.8.3. Example 2 . 67

1.9. Sequence detector implementation based on a programmable circuit . 68

1.10. Practical considerations . 70

1.10.1. Propagation delays and race conditions 72

1.10.2. Timing specifications . 74

1.11. Exercises . 79

1.12. Solutions . 97

vi Digital Electronics 3

Chapter 2. Algorithmic State Machines 169

2.1. Introduction . 169

2.2. Structure of an ASM . 169

2.3. ASM chart . 170

2.4. Applications . 175

2.4.1. Serial adder/subtracter . 175

2.4.2. Multiplier based on addition and shift operations 183

2.4.3. Divider based on subtraction and shift operations 187

2.4.4. Controller for an automatic vending machine 189

2.4.5. Traffic light controller . 193

2.5. Exercises . 200

2.6. Solutions . 205

Chapter 3. Asynchronous Finite State Machines 213

3.1. Introduction . 213

3.2. Overview . 214

3.3. Gated D latch . 214

3.4. Muller C-element . 218

3.5. Self-timed circuit . 220

3.6. Encoding the states of an asynchronous state machine 224

3.7. Synthesis of asynchronous circuits . 227

3.7.1. Oscillatory cycle . 227

3.7.2. Essential and d-trio hazards . 228

3.7.3. Design of asynchronous state machines 239

3.8. Application examples of asynchronous state machines 240

3.8.1. Pulse synchronizer . 240

3.8.2. Asynchronous counter . 243

3.9. Implementation of asynchronous machines using SR latches or

C-elements . 247

3.10. Asynchronous state machine operating in pulse mode 251

3.11. Asynchronous state machine operating in burst mode 256

3.12. Exercises . 258

3.13. Solutions . 266

Appendix. Overview of VHDL Language 287

A.1. Introduction . 287

A.2. Principles of VHDL . 287

A.2.1. Names . 288

A.2.2. Comments . 288

A.2.3. Library and packages . 289

A.2.4. Ports . 289

A.2.5. Signal and variable . 289

Contents vii

A.2.6. Data types and objects . 289

A.2.7. Attributes . 290

A.2.8. Entity and architecture . 291

A.3. Concurrent instructions . 292

A.3.1. Concurrent instructions with selective assignment 293

A.3.2. Concurrent instructions with conditional assignment 293

A.4. Components . 294

A.4.1. Generics . 296

A.4.2. The GENERATE Instruction . 296

A.4.3. Process . 297

A.5. Sequential structures . 298

A.5.1. The IF instruction . 298

A.5.2. CASE instruction . 303

A.6. Testbench . 306

Bibliography . 311

Index . 313

Preface

The omnipresence of electronic devices in everyday life is accompanied by the size

reduction and the ever-increasing complexity of digital circuits. This comprehensive

and easy-to-understand book deals with the basic principles of digital electronics and

allows the reader to grasp the subtleties of digital circuits, from logic gates to finite

state machines. It presents all the aspects related to combinational logic and sequential

logic. It introduces techniques to establish logic equations in a simple and concise

manner, as well as methods for the analysis and design of digital circuits. Emphasis

has been especially laid on design approaches that can be used to ensure a reliable

operation of finite state machines. Various programmable logic circuit structures by

practical examples and well-designed exercises with worked solutions.

This series of books discusses all the different aspects of digital electronics,

following a descriptive approach combined with a gradual, detailed and

comprehensive presentation of basic concepts. The principles of combinational and

sequential logic are presented, as well as the underlying techniques for the analysis and

design of digital circuits. The analysis and design of digital circuits with increasing

complexity is facilitated by the use of abstractions at the circuit and architecture levels.

The series is divided into three volumes devoted to the following subjects:

1) combinational logic circuits;

2) sequential and arithmetic logic circuits;

3) finite state machines.

A progressive approach has been chosen and the chapters are relatively

independent of each other. To help master the subject matter and put the different

concepts and techniques into practice, the book is complemented by a selection of

exercises with solutions.

x Digital Electronics 3

Summary

This volume deals with finite state machines. These machines are characterized

by a behavior that is determined by a limited and defined number of states, and

the holding conditions for each state and the branching conditions from one state

to another. They only allow one transition at a time and can be divided into two

components: a combinational logic circuit and a sequential logic circuit. This third

volume contains the following three chapters.

1) Synchronous Finite State Machines;

2) Algorithmic State Machines;

3) Asynchronous Finite State Machines.

The reader

This book is an indispensable tool for all engineering students in a bachelors or

masters course who wish to acquire detailed and practical knowledge of digital

electronics. It is detailed enough to serve as a reference for electronic, automation

engineers and computer engineers.

Tertulien NDJOUNTCHE

August 2016

1

Synchronous Finite State Machines

1.1. Introduction

Digital circuits composed of combinational and sequential logic sections are

generally described as finite state machines.

A machine is synchronous when the state transitions are controlled or

synchronized by a clock signal.

A machine whose operation is not dependent on a clock signal is said to be

asynchronous.

The present state (PS) of a state machine is determined by the variables stored

in the flip-flops of the sequential section. The next state (NS) of the state machine is

defined by the circuit of the combinational logic section.

Among finite state machines, we can differentiate between the Moore model and

the Mealy model:

– Moore state machine: the state machine output depends entirely on the PS;

– Mealy state machine: the state machine output depends on the inputs and PS.

It must be noted that there are also hybrid machines with some outputs being of

Moore type and others of Mealy type.

A machine always has a finite number of states. For N variables, the machine must

have between 2 and 2N states.

A machine is defined by specifying the number of inputs and outputs, the initial

state, the PS and the NS.

Digital Electronics 3: Finite-state Machines
First Edition. Tertulien Ndjountche.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.

,

2 Digital Electronics 3

1
Outputs

Inputs PSNS Sequential
circuit

Combinational
circuit
2

Combinational
circuit

Figure 1.1. Finite state machine: Moore model
(NS: next state; PS: present state)

1

OutputsPSNS Sequential
circuit

Combinational

2
circuit Combinational

circuit
Inputs

Figure 1.2. Finite state machine: Mealy model
(NS: next state; PS: present state)

1.2. State diagram

Consider the state diagram for the Moore state machine shown in Figure 1.3.

Starting from the initial state S0, the machine goes to the state S1 regardless of the

logic state of the input X . Assuming that the PS corresponds to S2 and that the

output is set to 1, the NS will be either S1, with the output remaining at 1 if the logic

level of the input X becomes 0, or S3, with the output being set to 0 if the input X
takes the logic level 1.

PS

1 /1 X

X

S 3 /0S 2 /1X

X
S 0 /0

X

NS if XNS if

X
XS

Figure 1.3. Moore state machine: state diagram with
present state and next state

Figure 1.4(a) shows a section of the state diagram for a Mealy state machine. The

states whose binary codes are 000, 010, 001 and 011 are denoted by A, B, C and D,

respectively, and the outputs are S1 and S2.

We assume that B is the PS. The holding condition in state B is X Y and the

outputs S1 and S2 take the logic state 1. The input condition X causes the machine

Synchronous Finite State Machines 3

to enter the state D and the output, S2, is set to 0. Once in this state, the X condition

allows the machine to remain in this state. When the logic condition X Y is true, the

machine goes to the state C, where there is no holding condition and the output S1 is

set to 0.

0

000
A

010
B

001
D

011
C

X/ S

XY/S 1S2

XY/ S1 2

X/ S 2

(a)

X
0 1Y

1

D

C B

D

(b)

Figure 1.4. Mealy state machine: a) state diagram;
b) map showing input/next state from state B

Figure 1.4(b) shows what state the machine may move to once in the state B based

on the logic levels of inputs X and Y .

A state diagram is constructed according to certain rules. For a section of the state

diagram, such as the one illustrated in Figure 1.5, where the conditions that cause the

machine to remain in state Sj and to move from Sj to Sk (k = 1, 2, · · · , n − 1) are

represented by F0 and Fk, respectively, the following logic equations must be verified:

– Sum rule: the Boolean sum of all conditions under which a transition from a

given state occurs must be equal to 1:

F0 + F1 + · · ·+ Fn−1 = 1 [1.1]

– Mutual-exclusion requirement: each condition under which a transition from a

given state occurs cannot be associated with more than one transition path:

F0 = F1 + F2 + · · ·+ Fn−1 [1.2]

F1 = F0 + F2 + · · ·+ Fn−1 [1.3]

...

Fn−1 = F0 + F1 + · · ·+ Fn−2 [1.4]

4 Digital Electronics 3

As a result, the Boolean product of both state transition conditions, Fl · Fk (l, k =
0, 1, 2, · · · , n− 1 and l �= k), is equal to 0.

2

2

F1

F0

S n−1
S 1

S j

Fn−1 F

S

Figure 1.5. Section of a state diagram

However, these relationships need not be verified for applications where certain

conditions will never happen or are not allowed (don’t-care conditions).

EXAMPLE 1.1.– Let us consider the section of the state diagram illustrated in

Figure 1.6(a). Using the Boolean transformation, we have:

X +X · Y +X · Y = X +X(Y + Y) = X +X = 1 [1.5]

and

X = X · Y +X · Y = (X + Y)(X + Y) = X(1 + Y + Y) = X [1.6]

X · Y = X +X · Y = X(X + Y) = X · Y [1.7]

X · Y = X +X · Y = X(X + Y) = X · Y [1.8]

Thus, the sum rule and the mutual-exclusion requirement are both satisfied.

Figure 1.6(b) depicts the map showing the input/NS from state A.

EXAMPLE 1.2.– Analyzing the state diagram shown in Figure 1.6(c), we can see that

the sum rule is verified while the mutual-exclusion requirement is not fulfilled because

the product of the terms X and X · Y is not equal to 0. Figure 1.6(d) shows the map

for the input/NS from state A. For the branching condition XY = 11, the NS can be

either B or C, while only one transition at a time can be carried out from a given state.

Thus, when the mutual-exclusion requirement is satisfied for a given state, no cell in

the input/NS map should contain more than one state symbol.

EXAMPLE 1.3.– A section of the state diagram of a finite state machine is depicted in

Figure 1.6(e). We can verify that the sum rule is satisfied, but not the mutual-exclusion

Synchronous Finite State Machines 5

requirement. This is because the product of the terms X and Y is not equal to 0. As

shown in Figure 1.6(f), that illustrates the input/NS starting from the state A, the X ·Y
condition causes the state machine either to remain in state A or to advance to state C.

However, this ambiguity can be ignored if it is assumed that the condition X · Y will

never occur.

(d)

X

A /0

B /1

X
0 1Y

1

A

C B

A0

X

A /0

B /1

X

A /0

B /1

Y

X
Y

1

0

X
Y

1

0

0 1

A

C

A

B+C

XY

C /1

XY

(a) (c) (e)

XY

C /1

X XY

C /1

(f)(b)

0 1

C

A

B

A+C

Figure 1.6. Examples of state diagram sections and
maps showing the input/next state from state A

In a state diagram, we can differentiate between conditional and unconditional

transitions:

– conditional transitions are only carried out on the edge of a clock signal when

a certain condition, relating to the inputs, is verified. There are always at least two

conditional transitions from the same state;

– unconditional transitions are automatically carried out on the occurrence of a

clock signal edge. Only one unconditional transition is possible from a given state.

Let us consider an example: the state diagram for an incompletely specified Moore

state machine shown in Figure 1.7. There are two inputs and the output can take either

0 or 1 or a don’t-care state, represented by (–). The only unconditional transition exists

between the states S3 and S0.

The operation of this machine can also be described based on the state table shown

in Table 1.1. Starting from the state S3, where the output is in the don’t-care state, the

machine goes to S0 regardless of the logic combination of the inputs.

6 Digital Electronics 3

11

2/1

S 1/0 S 3/−

S 0/0
1−

10

11 01,10

− −
 00

0−

0−

S

Figure 1.7. State diagram for an incompletely specified
state machine based on Moore model

PS NS Output

XY = 00 01 10 11

S0 S0 S0 S1 S1 0

S1 S0 S0 S1 S2 0

S2 S0 S3 S3 S2 1

S3 S0 S0 S0 S0 –

Table 1.1. State table of an incompletely specified
state machine based on Moore model

1.3. Design of synchronous finite state machines

The procedure for designing synchronous finite state machines may include the

following steps:

1) derive the state diagram;

2) draw up the state table;

3) assign bit combinations to the variables in order to represent the different states

(encoding the different states) and draw up the corresponding state table;

4) choose the flip-flop type;

5) derive the input equations based on Karnaugh maps;

6) represent the resulting logic circuit.

Synchronous Finite State Machines 7

There are several possibilities for encoding the states, leading to different logic

equations. However, it is preferable to assign bits to states such that the simplest logic

expression can be obtained. The minimal logic equation is obtained if the 1s in the

Karnaugh map are adjacent to each other. In general, this can be achieved by using

one of the following rules (see Figure 1.8):

– adjacent codes, or codes differing by one bit, are assigned to states that lead to

the same NS for a combination of inputs;

– adjacent codes, or codes differing by one bit, are assigned to the NSs from the

same state.

– adjacent codes, or codes differing by one bit, are assigned to states that produce

the same output for a combination of inputs.

Code:

0

S 4

S 2S 3

S 0 S 2/0S 1/0

S 1

100

010011

000

Code: 001

(a)

Code: 000

(b) (c)

001000

S

Figure 1.8. State encoding

However, it should be noted that the only viable method to obtain optimum

encoding of the states is to test all possibilities.

For a state machine, the number of bits and flip-flops will be N if the number of

states is between 2N−1 + 1 and 2N .

When designing a finite state machine, the excitation table of each flip-flop can be

used to derive the logic equations for the inputs (D, J and K, T, or S and R) based on

the output’s PS (Q) and NS (Q+). Tables 1.2–1.5 give the excitation tables of the D,

JK, T and SR flip-flops, respectively.

In the case of synchronous state machines, it must be noted that the T and SR

flip-flops are implemented on programmable logic circuits using a D or JK flip-flop.

1.4. Examples

1.4.1. Flip-flops

The operation of the SR (without forbidden states), D, JK and T flip-flop can be

described using a finite state machine model.

8 Digital Electronics 3

Q → Q+ D

0 → 0 0

0 → 1 1

1 → 0 0

1 → 1 1

Table 1.2. Excitation table of the D flip-flop

Q → Q+ J K

0 → 0 0 x

0 → 1 1 x

1 → 0 x 1

1 → 1 x 0

Table 1.3. Excitation table of the JK flip-flop

Q → Q+ T

0 → 0 0

0 → 1 1

1 → 0 1

1 → 1 0

Table 1.4. Excitation table of the T flip-flop

Q → Q+ S R

0 → 0 0 x

0 → 1 1 0

1 → 0 0 1

1 → 1 x 0

Table 1.5. Excitation table of the SR flip-flop

Only the inputs can be used to annotate the transitions in the state diagram, because

each flip-flop can have only two states, which are the same as the output states.

Figure 1.9(a) depicts the logic circuit and symbol of the SR flip-flop; Figure 1.9(b)

shows the state diagram, and the transition table is given in Table 1.6.

Figure 1.10(a) presents the symbol of the D flip-flop; Figure 1.10(b) depicts the

state diagram, and the transition table is shown in Table 1.7.

Synchronous Finite State Machines 9

Q

Q

RQ

QD

Q
S R

S R
Q

S R

S R

S R

(b)

S R

CK
(a)

R

S
S

Figure 1.9. SR flip-flop: a) circuit and symbol; b) state diagram

R S Q Q+

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 x

1 1 1 x

Table 1.6. Transition table of the SR flip-flop

Figure 1.11(a) depicts the symbol of the JK flip-flop; Figure 1.11(b) depicts the

state diagram, and the transition table is represented in Table 1.8.

Figure 1.12(a) shows the logic circuit and symbol of the T flip-flop; Figure 1.12(b)

depicts the state diagram, and the transition table is represented in Table 1.9.

(a)

D

Q

QD

QQ

D

D

D

(b)

Figure 1.10. D flip-flop: a) symbol; b) state diagram

10 Digital Electronics 3

D Q Q+

0 0 0

0 1 0

1 0 1

1 1 1

Table 1.7. Transition table of the D flip-flop

(a)

Q
J K

J K
Q

J K

J K

J K

J K

J K

J K

(b)

Q

Q

K

J

Figure 1.11. JK flip-flop: a) symbol; b) state diagram

J K Q Q+

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

Table 1.8. Transition table of the JK flip-flop

Synchronous Finite State Machines 11

The characteristic equations can be written as follows:

– SR flip-flop: Q+ = S +R ·Q (without a forbidden state);

– D flip-flop: Q+ = D;

– JK flip-flop: Q+ = J ·Q+K ·Q;

– T flip-flop: Q+ = T ⊕Q.

T

Q T

Q

QD
T

Q

QT

(a)
CK

(b)

QT

T

Figure 1.12. T flip-flop: a) circuit and symbol; b) state diagram

T Q Q+

0 0 0

0 1 1

1 0 1

1 1 0

Table 1.9. Transition table of the T flip-flop

Some applications require the use of flip-flops with a synchronous reset input. The

logic circuit of a D flip-flop with a synchronous reset input and enable signal is shown

in Figure 1.13(a).

By analyzing the circuit, the timing diagram can be represented as shown in

Figure 1.13(b) and the following characteristic equation can be obtained:

Q+ = D = (Di · EN+Q · EN)RST [1.9]

where EN is the enable signal and RST designates the reset signal. When the reset is

only taken into account at the active edge of the clock signal, it is possible to eliminate

the effect of parasitic disturbances that may affect RST.

12 Digital Electronics 3

RST i

Di

(b)

RST

CK

EN

Q

(a)

0

1

Q

QD

EN

CK

D

Figure 1.13. D flip-flop with a synchronous reset input and enable
signal: a) logic circuit; b) timing diagram

1.4.2. Binary sequence detector

A logic circuit that can recognize the binary sequence 101 is to be designed. The

output, Y , will be set to 1 immediately after the last bit of this sequence is applied at

the input, X , of the circuit.

The initial step consists in representing the state diagram describing the state

changes and the output in response to each of the input bits. This diagram is then

converted into a state table that, in conjunction with the excitation table of a given

flip-flop, helps to fill in the Karnaugh maps used for the determination of the logic

equations of the NSs and output.

1.4.2.1. Mealy model

Based on the Mealy model of the sequence detector for the sequence 101, the

state diagram can be represented as shown in Figure 1.14, where the initial state is

designated by S0. With a single input variable, each state must have two exit paths

(one for each logic state of the input variable). However, depending on the

specifications, it can have any number of incoming paths. Tables 1.10 and 1.11 depict

possible representations of the state tables. Starting from a given state, the NS

depends on the value of the input X . As each flip-flop can only have two states, two

flip-flops are required to implement the 101 sequence detector.

The Karnaugh maps for the NSs A+ and , and for the output Y are represented in

Figures 1.15(a)–(c), respectively. Choosing to use the D flip-flop, whose characteristic

equation is of the form, Q+ = D, the logic equations for the NSs are given by:

A+ = D1 = B ·X [1.10]

and:

B+ = D2 = X [1.11]

Synchronous Finite State Machines 13

0/0

2

S 1S 00/0

1/0

1/1

1/0

0/0

S

Figure 1.14. State diagram (Mealy model)

PS NS Output

Y

X = 0 1 X = 0 1

S0 S0 S1 0 0

S1 S2 S1 0 0

S2 S0 S1 0 1

Table 1.10. State table (Mealy model)

PS NS Output

AB A+B+ Y

X = 0 1 X = 0 1

00 00 01 0 0

01 10 01 0 0

10 00 01 0 1

Table 1.11. Transition table (Mealy model)

The logic equations for the output is written as:

Y = A ·X [1.12]

Figure 1.16 shows the logic circuit for the 101 sequence detector based on the

Mealy state machine. The timing diagrams represented in Figures 1.17(a) and (b) show

the case where the input signal is ideal and when it is affected by an undesirable

transient disturbance (or glitch). In general, the output of a machine based on a Mealy

model can be sensitive to a transient disturbance affecting the input signal.

NOTE 1.1.– It is possible to represent four states with two flip-flops. There is,

therefore, a state that is unused by the 101 sequence detector based on the Mealy

14 Digital Electronics 3

model. In general, when there are unused states their effect on the state machine

operation must be analyzed.

(a)

1

1

1

AB

X

0 1

00

01

11

10

A

B

x x

X

1

AB

X

0 1

00

01

11

10

A

B

x x

X

AB

X

0 1

00

01

11

10

A

B

x

1

x

X

(c)(b)

Figure 1.15. Mealy state machine: Karnaugh maps for
a) A+; b) B+; c) Y

CLR

2

Q

Q

CLR

D

CK

1

Q

QD
X Y

Figure 1.16. Logic circuit (Mealy model)

1.4.2.2. Moore model

For implementation of the detector based on the Moore model, we proceed as

previously described, but by associating possible outputs with the states rather than

with the transitions between states. The state diagram of the Moore state machine is

represented in Figure 1.18. The output will be set to 1 only if the sequence 101 is

detected. With the initial conditions, which are defined by choosing S0 as the current

state and by setting the output to 0, three conditions, S1, S2 and S3, are required for the

recognition of the sequence 101. Tables 1.12 and 1.13 give the possible representations

of the state table. The output is determined by the PS and is not dependent on the input.

The Karnaugh maps for the NSs, A+ and B+, and for the output Y are shown in

Synchronous Finite State Machines 15

Figures 1.19(a)–(c), respectively. When a D bascule is used to represent each variable,

we have Q+ = D, and the logic equations for the NSs are given by:

A+ = D1 = B ·X +A ·B ·X [1.13]

and:

B+ = D2 = X [1.14]

(a)

CK

X

Y

A

B

CK

X

Y

A

B

(b)

Figure 1.17. Mealy state machine: a) ideal timing diagram;
b) non-ideal timing diagram

The logic equation for the output can be reduced to:

Y = A ·B [1.15]

The logic circuit for the 101 sequence detector based on the Moore model is

represented in Figure 1.20. The timing diagram shown in Figure 1.21 illustrates the

working of this circuit, where X designates the input signal, and A and B are the

outputs of the flip-flop 1 and 2, respectively. The output of the machine, Y , can

change only at the rising edge of the clock signal, CK, and is memorized for at least

one clock cycle.

16 Digital Electronics 3

/0

2 /0S 3 /1

S 1 /0 1
1

0

1 0
1

0

0 S 0

S

Figure 1.18. State diagram (Moore model)

PS NS Output

Y

X = 0 1

S0 S0 S1 0

S1 S2 S1 0

S2 S0 S3 0

S3 S2 S1 1

Table 1.12. State table (Moore model)

PS NS Output

AB A+B+ Y

X = 0 1

00 00 01 0

01 10 01 0

10 00 11 0

11 10 01 1

Table 1.13. Transition table (Moore model)

The state encoding of a finite state machine determines the complexity of the

logic equations that can be obtained for the NSs and for the output and is not unique.

Tables 1.14 and 1.15 show the correspondence between the state tables when the

states are represented using Gray code (or reflected binary code). The Karnaugh

maps shown in Figures 1.22(a)–(c), respectively, can be used to deduce the following

equations:

A+ = D1 = A ·B ·X + A ·B ·X +A ·B ·X [1.16]

B+ = D2 = A ·B + A ·B + A ·X [1.17]

Synchronous Finite State Machines 17

and:

Y = A ·B [1.18]

1

1

1

1

AB

X

0 1

00

01

11

10

A

B

X

AB

X

0 1

00

01

11

10

A

B

1

X

(c)(b)(a)

0

1

B
A

A

0 1

B

1

1

1

Figure 1.19. Karnaugh maps (Moore model)

D

X

Y

2

Q

Q

CLR

CLR
CK

1

Q

QD

Figure 1.20. Logic circuit (Moore model)

A heuristic method to encode states in an optimal manner consists in assigning

codes with the highest number of possible zeros to the states with the most incoming

transition arrows.

NOTE 1.2.– (Comparison of the Mealy and Moore Machines). In general, a finite

state machine based on the Mealy model uses fewer states than one based on the

18 Digital Electronics 3

Moore model. This is because the dependence of the output to the inputs is exploited

to reduce the number of states required in order to satisfy the specifications of a given

application. A state machine based on the Mealy model is faster than one based on

the Moore model. The output of the Moore model is generally obtained one clock

period later. The output of a state machine based on the Mealy model can be affected

by transient disturbances superposed on the input signal. This is not the case for state

machines based on the Moore model, which are, therefore, preferable for applications

that require level triggering or control.

B

CK

X

Y

A

Figure 1.21. Timing diagram (Moore model)

PS NS Output

Y

X = 0 1

S0 S0 S1 0

S1 S2 S1 0

S2 S0 S3 0

S3 S2 S1 1

Table 1.14. State table of the Moore state machine

PS NS Output

AB A+B+ Y

X = 0 1

00 00 01 0

01 11 01 0

11 00 10 0

10 11 01 1

Table 1.15. Transition table with Gray encoding

Synchronous Finite State Machines 19

NOTE 1.3.– By choosing a code to represent the states of a machine, a tradeoff is

made between the size and electrical performance (power consumption, response

time) of the circuit. At least two bits are required to represent four states, and various

possible codes are given in Table 1.16. Gray code is used when the states are decoded

asynchronously. For instance, if a machine must proceed from 01 to 10, as is the case

with natural binary code, and the flip-flops do not switch exactly at the same instant,

transient states may appear, taking the form of 11 or 00. This can affect the normal

operation of the state machine.

1 1

1 1

1

1

AB

X

0 1

00

01

11

10

A

B

X

AB

X

0 1

00

01

11

10

A

B

X

(c)(b)(a)

0

1

B
A

A

0 1

B

1

1

1

Figure 1.22. Karnaugh maps for the Moore state machine with the
states represented according to Gray code

Codes

Natural Random
PS

binary
Gray

binary

S0 00 00 00

S1 01 01 11

S2 10 11 01

S3 11 10 10

Table 1.16. Example of two-bit codes

NOTE 1.4.– A sequence detector accepts a bit string as its input and its output takes the

logic state 1 only if a given sequence is detected. When this sequence is recognized,

the detection can continue by taking into account any overlapping that may occur

between the input bits, as illustrated in the following example:

Input X 101011011011001010101

Output Y (with overlapping) 001010010010000010101

Output Y (without overlapping) 001000010010000010001

20 Digital Electronics 3

Figure 1.23 depicts state diagrams that correspond to detection without

overlapping.

(b)

2

S 1

S 2 /0S 3 /1

S 0

S 1 /0

(a)

0/0

1/0

1/0

0/0 0/0

1/1

1
1

0

0
1

0

0 S 0 /0

1

S

Figure 1.23. State diagram when the overlapping of bits is not taken
into account: a) Mealy model; b) Moore model

NOTE 1.5.– (Detector for the Sequences 110 and 101). A finite state machine can

also be implemented to detect more than one binary sequence. This is, for instance,

the case with the 110 and 101 sequence detector, whose output is set to 1 to indicate the

detection of either sequence. After each detection, it is assumed that the next detection

is realized by taking into account any overlapping of the input bits, as shown below:

Input X 0110100101010

Output Y (with overlapping) 0001100001010

The state diagrams for the 110 and 101 sequence detector is given in

Figures 1.24(a) and 1.24(b) for the Moore and Mealy machines, respectively.

(b)

C D

1/0

B

0/0

0/0

A

1/0

1/0
0/1

0/0

1/1

A/0

B/ 0

1

01

1 0

1

1

F/ 0

E/ 1

(a)

C/ 0

D/1

0

1

0
0

0

Figure 1.24. Detector for the sequences 110 and 101:
a) Moore model; b) Mealy model

Synchronous Finite State Machines 21

Starting from the initial state A, the state machine based on the Moore model

changes to the state D or E if either of the sequences, 110 or 101, is recognized.

The output of the state machine based on the Mealy model is set to 1, indicating the

recognition of one of the sequences, 110 or 101, when there is a transition from the

state C to D or from D to B. Transitions involving several states (C , D, E, and F for

the Moore state machine; B, C and D for the Mealy state machine) are added to take

into account any eventual overlapping of input bits.

1.4.3. State machine implementation based on a state table

Implement a synchronous finite state machine whose operation is described by the

state table given in Table 1.17 by using, respectively:

– D flip-flops;

– JK flip-flops.

PS NS Output

A B A+B+ Y

X = 0 1

0 0 0 0 0 1 0

0 0 0 0 1 0 0

0 0 0 0 1 1 0

1 1 0 0 1 1 1

Table 1.17. State table

1.4.3.1. D flip-flop

By referring to the state table and the D flip-flop excitation table, we can construct

the transition table (see Table 1.18), which yields the data needed to fill the Karnaugh

maps associated with the D inputs of flip-flops, as shown in Figures 1.25 and 1.26.

The logic equations obtained for the D inputs can be used to construct the logic

circuit shown in Figure 1.27.

1.4.3.2. JK flip-flop

As before, in order to determine the logic equations for the inputs of each JK flip-

flop, we construct the transition table as shown in Table 1.19, and the Karnaugh maps

as shown in Figures 1.28–1.31.

The logic circuit using JK flip-flops is represented in Figure 1.32. It should be

noted that the use of JK flip-flops results in a reduction of the number of logic gates.

22 Digital Electronics 3

X A = Q1 B = Q2 A+ = D1 B+ = D2

0 0 0 0 0

0 0 1 0 0

0 1 0 0 0

0 1 1 0 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 1

1 1 1 1 1

Table 1.18. Transition table that can be used to derive the logic
expressions for the D inputs

21
Q1

0

1X

0 0 00

0 1 1 1

X 00 01 1011

Q2

QQ

Figure 1.25. Input D1

D1 = Q1 ·X +Q2 ·X

21
Q1

0

1X

Q2

0 0 00

1 0 1 1

X 00 01 1011

QQ

Figure 1.26. Input D2

D2 = Q1 ·X +Q2 ·X

1.4.4. Variable width pulse generator

The generator to be implemented has two inputs, X1 and X2, and the output Y .

The output is set to logic level 1 during a certain number of clock signal cycles; this

Synchronous Finite State Machines 23

number is specified by the bits applied to both inputs. Thus:

– if X2X1 = 01, Y = 1 for one cycle;

– if X2X1 = 10, Y = 1 for two cycles;

– if X2X1 = 11, Y = 1 for three cycles.

X

CK Q

QD

CLR

Q

QD

CLR

Y
1

2

Figure 1.27. Logic circuit using D flip-flops

21
Q1

0

1X

0 x x0

0 1 x x

X 00 01 1011

Q2

QQ

Figure 1.28. Input J1

J1 = Q2 ·X

21
Q1

0

1X

x 1 1x

x x 0 0

X 00 01 1011

Q2

QQ

Figure 1.29. Input K1

K1 = X

24 Digital Electronics 3

21
Q1

0

1X

x 00

1 x x 1

x

X 00 01 1011

Q2

QQ

Figure 1.30. Input J2

J2 = X

21
Q1

0

1X

1 1 xx

1 0 xx

X 00 01 1011

Q2

QQ

Figure 1.31. Input K2

K2 = X +Q1

Y

Q

QJ

CLR

Q

QJ

CLR
K

K

CK

X

2

1

Figure 1.32. Logic circuit using JK flip-flops

The Moore model can be used to describe a finite state machine based on the

working described above.

There are four states (S1, S2, S3 and S4) and S1 is considered as the initial state.

Synchronous Finite State Machines 25

X A = Q1 B = Q2 A+ = Q+
1 B+ = Q+

2 J1 K1 J2 K2

0 0 0 0 0 0 x 0 x

0 0 1 0 0 0 x x 1

0 1 0 0 0 x 1 0 x

0 1 1 0 0 x 1 x 1

1 0 0 0 1 0 x 1 x

1 0 1 1 0 1 x x 1

1 1 0 1 1 x 0 1 x

1 1 1 1 1 x 0 x 0

Table 1.19. Transition table that can be used to derive the logic
expressions for the J and K inputs

The state table of the generator is represented in Table 1.20.

PS NS Output

X2X1 = 00 01 11 10 Y

S1 S1 S2 S2 S2 0

S2 S1 S1 S3 S3 1

S3 S1 S1 S4 S1 1

S4 S1 S1 S1 S1 1

Table 1.20. State table

Transitions that depend on several input variables are difficult to represent when

bits (0 and 1) are used. In this case, it is more convenient to express the transition

conditions as Boolean expressions.

Figure 1.33 shows the state diagram of the generator. After having reached the

state S4, the machine returns to the state S1, regardless of the state of the inputs. The

transition table may be obtained by adopting Gray code to represent these states, as

shown in Table 1.21.

Using the excitation table for the D flip-flop, Karnaugh maps can be constructed

as shown in Figures 1.34 and 1.35.

The logic equations for the flip-flop inputs are thus given by:

D1 = A+ = A ·B ·X2 +B ·X1 ·X2 [1.19]

D2 = B+ = A ·B ·X1 + A ·X2 [1.20]

26 Digital Electronics 3

2

2/1 S 3/1
S 4/1S 1/0

2+ X1X XX1X2X1+X1X + X2X1X2X1

2X1X

+XX1 2X1X

2+X1XX2X1 + X2X1

2+ X1XX2X1 + X2X1 + X2X1 =1

2

2

S

Figure 1.33. State diagram of the pulse generator

PS NS Output

AB A+B+ Y

X2X1 = 00 01 11 10

00 00 01 01 01 0

01 00 00 11 11 1

11 00 00 10 00 1

10 00 00 00 00 1

Table 1.21. Transition table

B

01

11

10

1X 1XX2

X2

0 00 0

0 0 1 0

0 0 0 0

0 1 1 0

AB

A

00 01 11 10

00

Figure 1.34. Function A+

The logic equation for the output is written as follows:

Y = A+B [1.21]

The logic circuit of the pulse generator is represented in Figure 1.36.

Synchronous Finite State Machines 27

B

01

11

10

1X 1XX2

X2

1 10 1

0 0 0 0

0 0 0 0

0 1 1 0

AB

A

00 01 11 10

00

Figure 1.35. Function B+

1

A

CLR

1

CK

Y

X2

X

Q

QD
B

CLR

2

Q

QD

Figure 1.36. Logic circuit for the pulse generator

1.5. Equivalent states and minimization of the number of states

The process of designing finite state machines can, in general, be optimized for

certain applications that require minimizing the area occupied by the circuit or the

number of components. This can be achieved by reducing the number of states.

DEFINITION 1.1.–

Two states, S1 and S2, are said to be equivalent and are referred to as S1 ≡ S2

if, from each of these states, a finite state machines generates the same output bit

sequence in response to any input bit sequence.

In practice, two states, S1 and S2 can be considered to be equivalent if for any input

bit sequence the corresponding outputs, Y1 and Y2, are identical. That is, Y1 = Y2,

and the NSs, S+
1 and S+

2 , are equivalent, or to put it another way, S+
1 ≡ S+

2 .

A state that is the equivalent of another state can be considered redundant.

28 Digital Electronics 3

As an example, let us consider the finite state machine whose state table is

represented in Table 1.22. Regardless of whether it starts from state S2 or S4, the

machine goes through identical NSs and yields the same output. The states S2 and S4

are, therefore, equivalent, and state S4 can be eliminated from the state table as

shown in Table 1.23.

PS NS Output

Y

X = 0 1

S0 S0 S1 0

S1 S0 S2 0

S2 S0 S3 0

S3 S0 S3 1

S4 S0 S3 0

Table 1.22. State table

PS NS Output

Y

X = 0 1

S0 S0 S1 0

S1 S0 S2 0

S2 S0 S3 0

S3 S0 S3 1

Table 1.23. Reduced state table

For a completely specified finite state machine, the equivalence relationship

between states is symmetrical and transitive.

1.5.1. Implication table method

Let us consider the state table shown in Table 1.24, where the NSs and the output

are dependent on the logic level, Xk, at the input. Table 1.25 gives the implication

table, which has as many cells as there are possible pairs of states. However, as the

cells on the diagonal show the pairs formed by identical states and there is symmetry

between the cells on either side of the diagonal, only the cells in the lower triangle are

necessary. By eliminating redundant cells, the implication table is reduced as shown

in Table 1.26. In general, for a machine with N states, the implication table must have

(N2 −N)/2 cells.

Synchronous Finite State Machines 29

PS NS Output

Y

· · · Xk · · · · · · Xk · · ·
...

...
...

...
...

...
...

Si · · · S+
i · · · · · · Yi · · ·

Sj · · · S+
j · · · · · · Yj · · ·

...
...

...
...

...
...

...

Table 1.24. State table

N

S0 N

S0

SN−1

S

S

S1

Sj

S1 Si i+1 SN−1 S

Table 1.25. Implication table

S

1S0 SN−1

i S j

S S

S1

Sj

Si i+1

SN−1

SN

−

Table 1.26. Implication table

Referring to the section of the state table for the logic level Xk at input, the pair of

states, Si and Sj , may be inserted in the implication table as shown in Table 1.26. If

the corresponding outputs are different, the two states are not equivalent and a cross

can be entered into cell (i, j), as shown in Table 1.27. On the other hand, if the outputs

30 Digital Electronics 3

are identical, the NSs, S+
i and S+

j , must be entered into cell (i, j). This results in the

implication table given in Table 1.27, where S+
i and S+

j are assumed to be different.

N

1S0 SN−1

SN−1

S

S S

S1

Sj

Si i+1

Table 1.27. Implication table when Yi �= Yj

j

1S0 SN−1

S i S

S S

S1

Sj

Si i+1

SN−1

SN

+
−
+

Table 1.28. Implication table when Yi = Yj

The following operations must be carried out in order to determine the NSs:

1) Construct an implication table with a cell (i, j) for each pair of states, Si and

Sj .

2) Identify the outputs, Yi and Yj , and the NSs,S+
i and S+

j , for each combination

of input bits, Xk, and for each pair of states, Si and Sj :

- if Yi �= Yj , insert a cross (X) in the cell (i, j) to indicate that Si �≡ Sj ;

- if Yi = Yj , (S+
i , S+

j) �= (Si, Sj) and S+
i �= S+

j , enter S+
i − S+

j in the cell

(i, j), if not, leave the cell (i, j) empty.

3) Examine each cell that is not yet marked by a cross. Insert a cross in each of

these unmarked cells that contain a pair of states associated with a cell that already

contains a cross.

Synchronous Finite State Machines 31

4) Repeat step 3 until there is no more cell that can be marked with a cross.

Two states, Si and Sj , are, thus, said to be equivalent if the corresponding cell

(i, j) of the implication table does not contain a cross.

The reduction of the number of states consists in identifying and eliminating the

redundant states.

1.5.1.1. Example 1

Let us consider a finite state machine with four states, whose operation is described

by the state table shown in Table 1.29, where X is the input.

PS NS Output

Y

X = 0 1 X = 0 1

S0 S3 S3 1 1

S1 S2 S2 1 0

S2 S1 S1 1 1

S3 S0 S2 1 0

Table 1.29. State table

Reduce the number of states using the implication table method.

For a state machine with four states, the implication table can be represented as

shown in Table 1.30. There are six distinct pairs of states: S0 and S1, S0 and S2, S0

and S3, S1 and S2, S1 and S3 and S2 and S3.

1S0 S2

S3

S2

S1

S

Table 1.30. Implication table

Table 1.31 presents the implication table after a single pass. For the pair of states,

S0 and S1, the outputs are different when X = 1. Thus, states S0 and S1 are not

equivalent and a cross cannot be inserted in the cell (0, 1). By examining the pair of

states, S0 and S2, we can see that the outputs are identical and that the NSs are S3

32 Digital Electronics 3

and S1, regardless of the value of X . The cell (0, 2) now contains the pair of states,

S3 and S1. A cross can also be inserted in cells (0, 3), (1, 2) and (2, 3) because the

outputs are different in each of these cases when X = 1. The pair of NSs, S2 and S0

when X = 0, is entered in the cell (1, 3) that contained the pair of states S1 and S2

because the corresponding outputs are identical, while the pair of NSs when X = 1 is

not considered as it consists of the same state, S2.

0

1S0 S2

S3

S2

S1

S2−

−S1S3

S

S

Table 1.31. Implication table after a marking transition

Given that the states S0 and S2, and S1 and S3, are equivalent, the state table can

be reduced to the form given in Table 1.32.

PS NS Output

Y

X = 0 1 X = 0 1

S0 S1 S1 1 1

S1 S0 S0 1 0

Table 1.32. Reduced state table of the state machine

1.5.1.2. Example 2

The operation of a finite state machine is described by the state table shown in

Table 1.33.

Reduce the number of states using the implication table method.

As there are seven states, the implication table has (72−7)/2 or 21 cells. Table 1.34

shows the implication table that can be constructed initially. Based on the state table,

the implication table can be filled in as shown in Table 1.35. The cell (0, 1) contains

S1 − S3 and S2 − S5 as the same output is obtained starting from the states S0 and

S1. The NS starting from the state S0 is S1 when X = 0 or S2 when X = 1, while

starting from the state S1, the NS is S3 when X = 0 or S5 when X = 1. The cell

(0, 2) contains a cross to indicate that starting from the states S0 and S2, we obtain

different outputs and that these two states cannot be equivalent. The cell (0, 3) only

contains S2 − S6 because the same output is obtained when starting from the states

Synchronous Finite State Machines 33

S0 and S3 and the machine moves to the same NS S1 if X = 0, or to the NSs S2 and

S6, respectively, if X = 1. The filling in of the other cells is carried out in a similar

manner. The inputs S1 − S3, for the cell (1, 3), and S2 − S4, for the cell (2, 4), must

be eliminated as they are identical to the initial states.

PS NS Output

Y

X = 0 1

S0 S1 S2 1

S1 S3 S5 1

S2 S5 S4 0

S3 S1 S6 1

S4 S5 S2 0

S5 S4 S3 0

S6 S5 S6 0

Table 1.33. State table

1S0 S2 S3 S4

S5

S6

S2

S1

S3

S4

S5S

Table 1.34. Implication table

Table 1.36 shows the implication table after the first marking pass. Each of the

cells (4, 5), (2, 5) and (5, 6) must be marked by a cross as each of the cells (2, 3),
(3, 4) and (3, 6) corresponding, respectively, to the implied states, already contain a

cross.

Table 1.37 shows the implication table after the second marking pass. Each of the

cells (2, 5) and (5, 6) must be marked by a cross as each of the cells (0, 1) and (1, 3)
corresponding, respectively, to the implied states, already contain a cross. As it is no

34 Digital Electronics 3

longer possible to add a cross to the implication table, it can be deduced that the states

S2, S4 and S6 are equivalent, (S2 ≡ S4 ≡ S6), as are the states S0 and S3 (S0 ≡ S3).

6

−

S1S0 S2 S3 S5S4

S5

S6

S2

S1

S3

S4

−

−

−

−

−

−
− −

−

−

−

S4
S3 S4

S5

S6S4 S2 S6

S2 S3

S5S4

2 S4

S6

S3
S5

S1

S1 S3
S5S2

S2 S6

S −

S4
S3

S5
S

−

Table 1.35. Implication table based on the state table

4

1S0 S2 S3 S5S4

S5

S6

S2

S1

S3

S4

−

−

−

−
− −

−

−

−

−

S1
S2 S5

S3

S2 S6 S5 S6

S4 S5
S3 S4

S
S2 S3

S5

S4 S6 S2 S6

−

−

S 4 S5
S6S3

S

Table 1.36. Implication table after the first marking pass

By eliminating redundant states, the state table can be reduced to the form shown

in Table 1.38.

1.5.1.3. Example 3

Construct implication tables to minimize the number of states for the finite state

machine whose state table is illustrated in Table 1.39, where X and Y represent the

inputs.

Synchronous Finite State Machines 35

6

1S0 S2 S3 S5S4

S5

S6

S2

S1

S3

S4

− −

−

−

−S1 S3
S5S2

S2 S6 S5 S6−

S4 S6 S2 S

S

Table 1.37. Implication table after the second marking pass

PS NS Output

Y

X = 0 1

S0 S1 S2 1

S1 S0 S5 1

S2 S5 S2 0

S5 S2 S0 0

Table 1.38. Reduced state table of the state machine

PS NS Output

Y

XY = 00 01 10 11

S0 S0 S1 S2 S3 1

S1 S0 S3 S1 S5 0

S2 S1 S3 S2 S4 1

S3 S1 S0 S4 S5 0

S4 S0 S1 S2 S5 1

S5 S1 S4 S0 S5 0

S6 S4 S1 S2 S3 1

Table 1.39. State table

36 Digital Electronics 3

−

5

−

−

−

−

S1S0 S2 S3 S4

S1

S2

S3

S4

S5

S6

S0
S1
S2
S3 S4

S2

S3

S1

−

−

−

−

S0
S3
S1
S5 S5

S4

S0

S1

−

−

−

−

S0S0
S1
S2
S3 S5

S2

S1

S1 S0
S3
S2
S4 S5

S2

S1

−

−

−

−

−

−

−

−

S0
S3
S1
S5 S5

S0

S4

S1 S1 S1
S4S0

S4
S5 S5

S0

S4S1
S3 S1

S2S2
S4 S3 S5 S3

S2S2

S1 S1

S4S0S4S0
S1
S2
S3 S3

S2

S1

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

S

Table 1.40. Implication table based on the state table

4

S1

S2

S3

S4

S5

S6

S5S1S0 S2 S3 S4

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

S0
S3
S1
S5 S5

S4

S0

S1

S3 S4

S2S2

S1

S0 S1
S3

S1 S
S1S3

S2
S4 S5

S2

0

−S0 S4

S1S0
S3 S4

S0S1
S5 S5

S1 S4
S1S3

S2 S2
S3S4

S0
S5

S4
S3

−S3 S5

−S0 S

Table 1.41. Implication state after the first marking pass

Synchronous Finite State Machines 37

The implication table of a state machine with seven states must have (72−7)/2 or

21 cells. Based on the state table, the implication table can be drawn up as shown in

Table 1.40. A cross is inserted in each cell, related to states with different outputs; and

the NSs for the four different input combinations are inserted in each cell for pairs of

states yielding the same output.

By eliminating the pairs made up of identical states, S0 − S0, S1 − S1, S2 − S2,

S3−S3 or S5−S5, the implication table after the first marking pass can be constructed

as shown in Table 1.41. As the cell (0,1) is already marked with a cross, a cross must

be inserted into each of the cells (0,2), (1,3), (1,5) and (2,4), where we have the term

S0−S1. Similarly, we also add a cross in the cell (2,6), where we have the term S1−S4,

because the cell (1,4) is already marked. As there are no more marking possibilities,

the states S0, S4 and S6 are equivalent: (S0 ≡ S4 ≡ S6), as are the states S3 and S5

(S3 ≡ S5).

After the elimination of redundant states, the reduced state table is obtained as

shown in Table 1.42.

PS NS Output

Y

XY = 00 01 10 11

S0 S0 S1 S2 S3 1

S1 S0 S3 S1 S3 0

S2 S1 S3 S2 S0 1

S3 S1 S0 S0 S3 0

Table 1.42. Reduced state table of the state machine

1.5.2. Partitioning method

The partitioning method is used to determine the equivalent states of a finite state

machine and can also be considered as an approach to reduce the number of states. It

consists of successively forming partitions, Pk, k = 1, 2, 3, · · · , which are composed

of a certain number of blocks that group one or more states.

The PSs are placed in the same partition block P1 if and only if the corresponding

outputs of the state machine are identical for each input combination.

For other partitions, Pk, k = 2, 3, · · · , the PSs are placed in the same block if and

only if the NSs of the state machine for each input combination are in the same block

of the partition, Pk−1.

38 Digital Electronics 3

The states belonging to different blocks of the partition Pk cannot be equivalent,

while the states that are in the same block are called k-equivalent. The partitioning

process continues until it is no longer possible to obtain a partition with smaller blocks.

All the states that are in the same block of the last partition are, thus, equivalent.

1.5.2.1. Example 1

Use the partitioning method to reduce the number of states for the finite state

machine whose state table is shown in Table 1.43.

PS NS Output

Y

X = 0 1

S0 S3 S6 0

S1 S2 S4 1

S2 S1 S6 0

S3 S0 S1 1

S4 S5 S4 0

S5 S6 S1 1

S6 S5 S0 0

Table 1.43. State table

We begin by grouping all the states into a single block. That is:

P0 = (S0S1S2S3S4S5S6) [1.22]

In order to form the first partition, the states are distributed across two blocks

depending on whether the state machine generates an output value of 0 or 1. As the

same output value, 0, is obtained when starting from each of the states S0, S2, S4 and

S6, and the same output value, 1, is obtained when starting from the states S1, S3 and

S5, we have:

P1 = (S0S2S4S6)(S1S3S5) [1.23]

To form each of the remaining partitions, we must verify whether the NSs for states

in the same block are in the same or in different blocks.

The machine goes from the states S0, S2, S4 and S6 to the states S3, S1, S5 and

S5, respectively, when X = 0, or to S6, S6, S4 and S0 when X = 1. States S3, S1

and S5, like the states S6, S4 and S0, belong to the same block of the partition P1.

Synchronous Finite State Machines 39

That is, the states S0, S2, S4 and S6 must remain grouped in the same block. Starting

from the states S1, S3 and S5, the state machine advances to the states S2, S0 and S6,

respectively, when X = 0, or S4, S1 and S1 when X = 1. The states S2, S0 and S6

are in the same block of the partition P1, while the states S4 and S1 belong to different

blocks of the partition P1. State S1 differs, therefore, from states S3 and S5, and the

block containing these states must be split into two. Thus:

P2 = (S0S2S4S6)(S3S5)(S1) [1.24]

The state machine goes from the states S0, S2, S4 and S6 to the states S3, S1, S5

and S5, respectively, when X = 0, or to S6, S6, S4 and S0 when X = 1. The states

S3 and S5 are in a block of the partition P2, that is different from the block where

S1 is placed, while the states S6, S4 and S0 belong to the same block of P2. It thus

appears that the block grouping the states S0, S2, S4 and S6 must be split into two.

Starting from the states S3 and S5, the state machine proceeds to the states S0 and S6,

when X = 0, or S1 and S1, when X = 1. The states S0 and S6 are in the same block

of the partition P2, and the state S1 is the only element in one of the blocks of P2. We

thus have:

P3 = (S0S4S6)(S2)(S1)(S3S5) [1.25]

Operating in the same manner as stated before, we obtain the following partition:

P4 = (S0S4S6)(S2)(S1)(S3S5) = P3 [1.26]

As P4 is identical to P3, it follows that the states in each block are equivalent:

S0 ≡ S4 ≡ S6 and S3 ≡ S5. Table1.44 lists the different steps to follow in order to

determine the equivalent states. The reduced state table is shown in Table 1.45.

1.5.2.2. Example 2

Let us consider the finite state machine whose operation is described by the state

table in Table 1.46. Reduce the number of its states using the partitioning method.

Initially, we have:

P0 = (S0S1S2S3S4) [1.27]

40 Digital Electronics 3

Blocks to be formed

P0 (S0S1S2S3S4S5S6)

Output Y 0 1 0 1 0 1 0 S0S2S4S6 and S1S3S5

P1 (S0S2S4S6)(S1S3S5)

NS

X = 0 S3S1S5S5 S2S0S6

X = 1 S6S6S4S0 S4S1S1 S1 and S3S5

P2 (S0S2S4S6)(S1)(S3S5)

NS

X = 0 S3S1S5S5 S2 S0S6 S0S4S6 and S2

X = 1 S6S6S4S0 S4 S1S1

P3 (S0S4S6)(S2)(S1)(S3S5)

NS

X = 0 S3S5S5 S1 S2 S0S6

X = 1 S6S4S0 S6 S4 S1S1

P4 = P3 (S0S4S6)(S2)(S1)(S3S5)

Table 1.44. Determining the equivalent states using
the partitioning method (example 1)

PS NS Output

Y

X = 0 1

S0 S3 S0 0

S1 S2 S0 1

S2 S1 S0 0

S3 S0 S1 1

Table 1.45. Reduced state table

Starting from the states S0, S1 and S2, and the states S3 and S4, the machine

generates the output value 1 and 0, respectively, when X = 0, or the output value 0
and 1, when X = 1. The first partition, thus, takes the following form:

P1 = (S0S1S2)(S3S4) [1.28]

The state machine goes from the states S0, S1 and S2 to the states S2, S2 and S1,

respectively, when X = 0, or to S1, S4 and S4 when X = 1. The states S1 and S4

belong to different blocks of the partition P1 and it can be concluded that the state S0

is different from the states S1 and S2. Starting from the states S3 and S4, the machine

Synchronous Finite State Machines 41

moves to the states S3 and S4, when X = 0, or to S1 and S0 when X = 1. The states

S3 and S4, just like the states S1 and S0, are in the same block of the partition P1. We

can then conclude that the states S3 and S4 must remain in the same block. Thus:

P2 = (S0)(S1S2)(S3S4) [1.29]

PS NS Output

Y

X = 0 1 X = 0 1

S0 S2 S1 1 0

S1 S2 S4 1 0

S2 S1 S4 1 0

S3 S3 S1 0 1

S4 S4 S0 0 1

Table 1.46. State table

Starting from the states S1 and S2, the state machine advances to the states S2

and S1, when X = 0, or to the state S4, when X = 1. Thus, the block grouping the

states S1 and S2 remains unaffected. The machine is held either in the state S3 or in

the state S4 when X = 0; it moves from the states S3 and S4 to the states S1 and S0,

respectively, when X = 1. The block formed by the states S1 and S0 must be split

into two as the states S1 and S0 belong to different blocks of the partition P2. We thus

have:

P3 = (S0)(S1S2)(S3)(S4) [1.30]

Similarly, the next partition can be obtained as follows:

P4 = (S0)(S1S2)(S3)(S4) = P3 [1.31]

As P4 is identical to P3, it follows that the states S1 and S2, which are in the same

block, are equivalent. Table 1.47 lists out the different steps to be followed in order to

determine the equivalent states. The reduced state table is represented in Table 1.48.

1.5.2.3. Example 3

Using the partitioning method, minimize the number of states of the finite state

machine (Moore model) whose state table is illustrated in Table 1.49, where X and Y
represent the inputs.

42 Digital Electronics 3

Blocks to be formed

P0 (S0S1S2S3S4)

Output Y

X = 0 1 1 1 0 0 S0S1S2 and S3S4

X = 1 0 0 0 1 1 S0S1S2 and S3S4

P1 (S0S1S2)(S3S4)

NS

X = 0 S2S2S1 S3S4

X = 1 S1S4S4 S1S0 S0 and S1S2

P2 (S0)(S1S2)(S3S4)

NS

X = 0 S2 S2S1 S3S4

X = 1 S1 S4S4 S1S0 S3 and S4

P3 (S0)(S1S2)(S3)(S4)

NS

X = 0 S2 S2S1 S3 S4

X = 1 S1 S4S4 S1 S0

P4 = P3 (S0)(S1S2)(S3)(S4)

Table 1.47. Determining the equivalent states using
the partitioning approach (example 2)

Table 1.50 summarizes the different steps to be followed in order to determine the

equivalent states. From the last partition, P2, it can be deduced that the states S0 and

S3 are equivalent, (S0 ≡ S3), as are the states S1 and S4 (S1 ≡ S4), and the states

S2, S5 and S7 (S2 ≡ S5 ≡ S7). Assuming that:

A = S0 = S3 [1.32]

B = S1 = S4 [1.33]

C = S2 = S5 = S7 [1.34]

and:
D = S6 [1.35]

we can obtain the reduced state table, as illustrated in Table 1.51. Hence, the number

of states of the state machine has been reduced from eight to four.

1.5.3. Simplification of incompletely specified machines

Finite states machines used in some applications have incompletely specified

state tables. Their behavior is dependent on don’t-care states and therefore cannot be

predicted uniquely.

Synchronous Finite State Machines 43

PS NS Output

Y

X = 0 1 X = 0 1

S0 S1 S1 1 0

S1 S1 S4 1 0

S3 S3 S1 0 1

S4 S4 S0 0 1

Table 1.48. Reduced state table

PS NS Output

Y

XY = 00 01 10 11

S0 S0 S0 S4 S6 1

S1 S2 S5 S3 S6 0

S2 S6 S2 S4 S0 1

S3 S0 S3 S4 S6 1

S4 S5 S7 S0 S6 0

S5 S6 S2 S4 S3 1

S6 S2 S3 S4 S6 0

S7 S6 S7 S4 S3 1

Table 1.49. State table

Consider the incompletely specified state machine whose state table is represented

in Table 1.52.

The direct approach for the simplification of this type of machine consists in

assigning all the possible values to the don’t-care states, then proceeding to the

reduction of the number of states and, finally, choosing only the specified machine

that can be described using the smallest number of states. In the present case, this

leads to the minimization of two completely specified machines.

Table 1.53 depicts the state table when the don’t-care state is assumed to be 0.

The states S0 and S1 cannot be equivalent unless the states S1 and S2 are equivalent.

This is not the case here as the outputs corresponding to the states S1 and S2 are

different. For the same reason, the states S0 and S2 are not equivalent. Therefore, no

simplification is possible.

44 Digital Electronics 3

Blocks to be formed

P0 (S0S1S2S3S4S5S6S7)

Output Y 1 0 1 1 0 1 0 1 S0S2S3S5S7 and S1S4S6

P1 (S0S2S3S5S7)(S1S4S6)

NS

XY = 00 S0S6S0S6S6 S2S5S2 S0S3 and S2S5S7

XY = 01 S0S2S3S2S7 S5S7S3

XY = 10 S4S4S4S4S4 S3S0S4 S1S4 and S6

XY = 11 S6S0S6S3S3 S6S6S6 S2S5S7 and S0S3

P2 (S0S3)(S2S5S7)(S1S4)(S6)

NS

XY = 00 S0S0 S6S6S6 S2S5 S2

XY = 01 S0S3 S2S2S7 S5S7 S3

XY = 10 S4S4 S4S4S4 S3S0 S4

XY = 11 S6S6 S0S3S3 S6S6 S6

P3 = P2 (S0S3)(S2S5S7)(S1S4)(S6)

Table 1.50. Determining the equivalent states using
the partitioning approach (example 3)

PS NS Output

Y

XY = 00 01 10 11

A A A B D 1

B C C A D 0

C D C B A 1

D C A B D 0

Table 1.51. Reduced state table

By assigning the value 1 to the don’t-care state, we can obtain the state table shown

in Table 1.54. The state S0 cannot be equivalent to either of the states S1 or S2. On

the other hand, the states S1 and S2 are equivalent and the number of states can, thus,

be reduced to two, as shown in the reduced state table of Table 1.55.

1.5.3.1. Definition and basic concepts

Two states are said to have compatible outputs if and only if they are associated

with outputs that are identical when specified.

It must be noted that the compatibility relationship for the outputs is reflexive and

symmetrical but is not, generally, transitive.

Synchronous Finite State Machines 45

PS NS Output

Y

X = 0 1 X = 0 1

S0 S2 S1 0 0

S1 S1 S2 – 0

S2 S2 S1 1 0

Table 1.52. State table of an incompletely specified machine

PS NS Output

Y

X = 0 1 X = 0 1

S0 S2 S1 0 0

S1 S1 S2 0 0

S2 S2 S1 1 0

Table 1.53. State table in the case where – is assumed to be 0

PS NS Output

Y

X = 0 1 X = 0 1

S0 S2 S1 0 0

S1 S1 S2 1 0

S2 S2 S1 1 0

Table 1.54. State table when – is assumed to be 1

PS NS Output

Y

X = 0 1 X = 0 1

S0 S1 S1 0 0

S1 S1 S1 1 0

Table 1.55. Reduced state table when – is assumed to be 1

Two states are said to be compatible if and only if they have compatible outputs

and involve only pairs of compatible NSs.

In general, a set of states is said to be compatible if and only if it is made up

entirely of states that are pairwise compatible.

46 Digital Electronics 3

A compatibility class is a set of mutually compatible states.

A compatibility class is said to be maximal if it is strictly not a subclass of another

compatibility class.

A set of compatibility classes forms a cover of the state machine if each of the

states of this machine belongs to at least one of these compatibility classes.

A set of compatibility classes is said to be closed and constitutes a closed cover if

any compatibility class implied by one of the compatibility classes of this set is also

contained in this set.

In the case of the machine described by the state table shown in Table 1.52, the

pairs of states, (S0, S1) and (S1, S2), are compatible. As the concept of compatibility

can be used to merge rows in the state tables in order to simplify an incompletely

specified machine, it is possible to obtain a reduced state table that is identical to

the previous one, as shown in Table 1.56, by assuming that A = (S0, S1) and B =
(S1, S2).

PS NS Output

Y

X = 0 1 X = 0 1

A B B 0 0

B B B 1 0

Table 1.56. Reduced state table

Another example of an incompletely specified machine is characterized by the

state table shown in Table 1.57. By assigning each value, 0 and 1, to the don’t-care

state, we obtain Tables 1.58 and 1.59, respectively. In both cases, no other

simplification is possible.

PS NS Output

Y

X = 0 1 X = 0 1

S0 S2 S1 0 0

S1 S1 S0 – 0

S2 S0 S1 1 0

Table 1.57. State table for an incompletely specified machine

On the other hand, if we take into account the fact that the pairs of states, A =
(S0, S1) and B = (S1, S2), are compatible, we can merge the row S0 and the row S1

Synchronous Finite State Machines 47

in the state table, as well as the rows S2 and S1. As a result, the reduced state table

can be obtained as shown in Table 1.60.

PS NS Output

Y

X = 0 1 X = 0 1

S0 S2 S1 0 0

S1 S1 S0 0 0

S2 S0 S1 1 0

Table 1.58. State table when – is assumed to be 0

PS NS Output

Y

X = 0 1 X = 0 1

S0 S2 S1 0 0

S1 S1 S0 1 0

S2 S0 S1 1 0

Table 1.59. State table when – is assumed to be 1

PS NS Output

Y

X = 0 1 X = 0 1

A B B 0 0

B A B 1 0

Table 1.60. Reduced state table

In order to simplify incompletely specified machines, the concept of compatibility

is used instead of the concept of equivalence. Two states that are equivalent to a third

state are also equivalent to one another. However, two states that are compatible with

a third state are not necessarily compatible with each other.

As a result of this difference, the simplification of incompletely specified machines

can appear to be complicated and, in general, does not yield a unique solution.

The following steps are used for the simplification of incompletely specified

machines:

1) determine the pairs of compatible states;

2) form all compatibility classes, including those said to be maximal;

48 Digital Electronics 3

3) select the smallest set of compatibility classes making up a closed cover of the

state machine;

4) construct a reduced state table by replacing each compatibility class with a

single state.

The rows of the state table are merged by selecting a single state to represent each

set or subset of compatible states and by considering, each time, the specified state (or

specified output) as representative of the combination of this state (or output) with an

indefinite state (or indefinite output) when these appear in the same column.

The implementation of the simplification requires the use of tools such as a merger

graph to determine the set of compatible state pairs and compatibility classes, and the

compatibility graph to find the different sets of closed compatibility classes.

The merger graph is an undirected graph, where the number of nodes is equal to

the number of states of the machine.

For each pair of compatible states (Si, Sj), an uninterrupted arc can be drawn

between the two nodes associated with Si and Sj .

For each pair of states, (Si, Sj), whose compatibility depends on different pairs

of NSs, an arc interrupted by a label, indicating the conflicting pairs of states, can be

drawn between the two nodes associated with Si and Sj .

It should be noted that the conditions relating to the states Si and Sj are ignored.

For each pair of incompatible states, (Si, Sj), no arc is drawn between the two

nodes associated with Si and Sj .

The maximal compatibility classes can be determined from the merger graph by

searching for complete polygons that are not contained in any other complete polygons

of a higher order.

A polygon is said to be complete when each of its nodes is connected to all the

other nodes.

A compatibility graph is a directed graph, where the number of nodes is equal

to the number of compatible states. An arc goes from the compatible states (Si, Sj)
toward (Sk, Sl) if and only if the compatibility of (Si, Sj) implies the compatibility

of (Sk, Sl).

A subgraph of the compatibility graph is considered closed if, for all nodes of

this subgraph, the emerging arcs are directed toward nodes that are also a part of this

subgraph.

Synchronous Finite State Machines 49

A closed subgraph with at least one node associated with each state of the state

machine corresponds to a closed cover.

The minimal form of an incompletely specified finite state machine is often not

unique and can be determined only after several trials. In this case, knowledge of the

minimum and maximum number of states that can be used to represent the minimal

form of the state machine could prove useful. The minimum number of states is given

by:

Nm = max(NI1 , NI2 , · · · , NIk , · · ·) [1.36]

where NIk is the number of states of the kth incompatibility class, while the maximum

number of states is of the form:

NM = min(N,NC) [1.37]

where N is the number of states of the machine and NC is the maximal number of

compatibility classes.

1.5.3.2. Example 1

Consider the incompletely specified finite state machine, whose state table is

represented in Table 1.61:

– determine the compatibility classes for this machine;

– construct the reduced state table.

PS NS Output

Y

X = 0 1 X = 0 1

A D A – –

B E A 0 –

C D B 0 –

D C C – –

E C B 1 –

Table 1.61. State table for example 1

The merger graph is constructed as shown in Figure 1.37(a). The states B and D
cannot be compatible because the implied NSs, C and E, are not compatible. The

simplified merger graph for the compatible states is represented in Figure 1.37(c).

50 Digital Electronics 3

The maximal compatibility classes are as follows: (AB), (AC), (AD), (AE), (BC),
(CD), (DE), (ABC), (ACD) and (ADE).

(c)

AC

(b)

B

CD

E

A

(a)

AB
DE

B

CD

E

AB
CD

DE

A

ABAC
CD

BC
CD

BC

B

CD

E

A

CE

Figure 1.37. a) Merger graph. Simplified merger graph:
b) compatible states and c) incompatible states

From the compatibility graph shown in Figure 1.38, it can be deduced that the set

of states (ABC) and (DE) form a closed cover.

BC AD

CD

AE

DE ACAB

Figure 1.38. Compatibility graph

PS NS Output

Y

X = 0 1 X = 0 1

S0 S1 S0 0 –

S1 S0 S0 1 –

Table 1.62. Reduced state table for example 1

By assuming that S0 = (ABC) and S1 = (DE), we can obtain the reduced state

table as illustrated in Table 1.62.

Synchronous Finite State Machines 51

1.5.3.3. Example 2

An incompletely specified finite state machine is characterized by the state table

shown in Table 1.63:

– determine the compatibility classes for this machine;

– construct a reduced state table.

PS NS Output

Z

XY = 00 01 10 11

A A H B – 0

B F – B C 0

C – H – C 1

D A D – E 1

E – D G E 1

F F D – – 0

G F – G – 0

H – H – E 0

Table 1.63. State table for example 2

Figures 1.39(a) and (b) show the compatible and incompatible states, respectively.

The maximal compatibility classes are as follows: (AH), (BFG), (C), (DE) and

(GH).

H

(a) (b)
G

B C

E

D

F

A

H

G

B C

E

D

F

A

Figure 1.39. Merger graph: a) compatible states; b) incompatible states

The largest number of states that can be grouped in an incompatibility class is

equal to the minimum number of states necessary for the representation of the state

52 Digital Electronics 3

table. This value is 4, as the largest incompatibility classes are as follows: (ABCD),
(ACDG), (ACEG) and (BCEH).

Considering the closed cover that consists of the compatibility classes S0 = (AH),
S1 = (BFG), S2 = C and S3 = (DE), we can obtain the reduced state table shown

in Table 1.64.

PS NS Output

Z

XY = 00 01 10 11

S0 S0 S0 S1 S3 0

S1 S1 S3 S1 S2 0

S2 – S0 – S2 1

S3 S0 S3 S1 S3 1

Table 1.64. Reduced state table for example 2

1.5.3.4. Example 3

Using the merger graph and the compatibility graph, simplify the incompletely

specified finite state machine whose state table is given in Table 1.65.

From the merger graph, as shown in Figure 1.40, we can obtain the pairs of

compatible states (AB), (AC), (AD), (BC), (BD), (BE), (CD), (CF) and (EF).
We can also deduce that the set of states (ABCD) forms a compatibility class. As no

closed polygon can be identified on the merger graph for incompatible states, we can

conclude that there are only pairs of incompatible states.

A choice of maximal compatibility classes that covers all the states of the state

machine consists of (ABCD) and (EF). However, the closure conditions are not

satisfied as the set (ABCD) implies (CF) for XY = 01 and (BE) for XY = 10.

From the compatibility graph shown in Figure 1.41, we can identify the closed

cover that consists of the pairs of states (AB), (CD) and (EF). Table 1.66 presents

the reduced state table, obtained by assuming that S0 = (AB), S1 = (CD) and

S2 = (EF).

NOTE 1.6.– We can also determine the pairs of compatible or incompatible states

by making use of the concept of compatibility in the construction of an implication

table. An implication table is filled in by inserting, in each cell, either a cross, when

two states are incompatible, or closed bracket when two states or the implied NSs are

compatible.

Synchronous Finite State Machines 53

PS NS Output

Z

XY = 00 01 10 11 XY = 00 01 10 11

A – C E B – 1 1 1

B E – – – 0 – – –

C F F – – 0 1 – –

D – – B – – – 1 –

E – F A D – 0 0 1

F C – B C 0 – 0 1

Table 1.65. State table for example 3

ACE

EF

AB
CD

(a) (b)

F

D C

B

(c)

F

D C

B
F

CF

D C

B

BE

A A

EE E

Figure 1.40. a) Merger graph. Simplified merger graph:
b) compatible states and c) incompatible states

CF

AB

BC

AD

BE

BD

EF CD

AE

Figure 1.41. Compatibility graph

For example 3, Table 1.67 presents the implication tables obtained. The first table

(see Table 1.67(a)) is constructed based on the state table. The second table (see

Table 1.67(b)) is drawn up by taking into account the implication relationship that

exists between pairs of incompatible states, or state pairs that correspond to cells that

already contain a cross, and the other states. Thus, as states B and F imply the NSs

54 Digital Electronics 3

C and E, which are incompatible, a cross must be inserted in each cell corresponding

to the states B and F to indicate that they are also incompatible.

PS NS Output

Z

XY = 00 01 10 11 XY = 00 01 10 11

S0 S2 S1 S2 S0 0 1 1 1

S1 S2 S2 S0 – 0 1 1 –

S2 S1 S2 S0 S1 0 0 0 1

Table 1.66. Reduced state table for example 3

(a) (b)

B

C

BED

E

F

A B C D E

CF EF

AB
CD

B

C

BED

E

F

A B C D E

CF EF

CE
AB
CD

Table 1.67. a) Implication table based on the state table;
b) implication table after a pass

When the final implication table has been obtained, the set of maximal

compatibility classes can be determined as follows:

1) Begin with the right-most column. If the states are compatible, write down the

corresponding compatibility class. Otherwise, enter the compatibility class that only

implies the state associated with this column.

2) Continue with the next column on the left. If the state associated with the

present column is compatible with all the states in the previously determined set

of compatible states, it must be added to this set to form a larger compatibility

class. If this state is only compatible with a subset of the previously determined set

of compatible states, it must be added to this subset to form a new compatibility

class. List out all the compatibility classes that are not included in an already

formed compatibility class, including the compatibility class implying only the state

associated with this column if it is incompatible with any other state.

Synchronous Finite State Machines 55

3) Repeat steps 1 and 2 until the left-most column is reached. The set of maximal

compatibility classes consists of the compatibility classes obtained in the last step.

The same procedure can be used to determine the maximal incompatibility classes

by using the concept of incompatibility instead of compatibility.

In the case of example 3, we have:

– maximal compatibility classes:

Column E: (EF)

Column D: (EF) (D)

Column C: (CD) (CF) (EF)

Column B: (BCD) (BE) (CF) (EF)

Column A: (ABCD) (BE) (CF) (EF)

The elements of the set of maximal compatibility classes are of the form:

(ABCD), (BE), (CF) and (EF).

– maximal incompatibility classes:

Column E: (E)

Column D: (DF) (DE)

Column C: (CE) (DF) (DE)

Column B: (BF) (CE) (DF) (DE)

Column A: (AF) (AE) (BF) (CE) (DF) (DE)

The set of maximal compatibility classes is made up of the following pairs of

states: (AF), (AE), (BF), (CE), (DF) and (DE).

1.6. State encoding

The hardware cost for the implementation of finite state machines depends on the

state encoding.

For a finite state machine with NE states, at least �log2(NE)� bits or binary

variables are required to code each state, where �x� represent the smaller integer,

which is equal to or greater than x.

The number of flip-flops, NB , required for the implementation of a finite state

machine with NE states is such that:

2NB−1 < NE < 2NB [1.38]

56 Digital Electronics 3

The number of possible ways to assign 2NB combinations of binary variables to

NE states or the number of possible ways to encode states is given by1:

P =
2NB !

(2NB −NE)!
[1.39]

where 2NB > NE . However, not all these codes are unique as the variables may be

permuted in NB! ways. In addition, as each variable may be complemented, there are

2NB ways of complementing the set of NB variables. Thus, the number of unique

possible ways of encoding states is reduced to:

U =
2NB !

(2NB −NE)!
· 1

NB !2NB
=

(2NB − 1)!

(2NB −NE)!NB !
[1.40]

Table 1.68 gives the number of encoding possibilities for state machines that can

have up to eight states. The higher the number of states, the more difficult it becomes

to identify an encoding method that can be implemented with a minimal number of

logic gates and/or the smallest possible propagation delay.

NE NB P U

1 0 – –

2 1 2 1

3 2 24 3

4 2 24 3

5 3 6, 720 140

6 3 20, 160 420

7 3 40, 320 840

8 3 40, 320 840

Table 1.68. Number of state encoding possibilities

1 In general, the binomial coefficient gives the number of possibilities to form different subsets

of NE elements from 2NB elements. It is given by

(
2NB

NE

)
, the value of which is given by

2NB !/[(2NB − NE)!NE !]. When it comes to ordered subsets, the NE ! possible permutations

must be taken into account and the number of possible choices then has a value of P = NE !×(
2NB

NE

)
.

Synchronous Finite State Machines 57

In general, the state encoding of a machine should be realized such that there is an

increase in the number of adjacent terms in the Karnaugh map associated with each

function that is to be simplified. The optimal state encoding can be achieved by:

– minimizing the number of bits that change during the transition from one state

to another (for example Gray code, Johnson code);

– assigning the highest priority constraint to the adjacent groupings of 1’s in the

state functions;

– adopting one-hot encoding (or 1-out-of-n encoding).

Table 1.69 gives some examples of codes for a finite state machine with eight

states.

Codes

Natural Almost
PS

binary
Gray Johnson 1-out-of-8

1-out-of-8

S0 000 000 0000 00000001 0000000

S1 001 001 0001 00000010 0000001

S2 010 011 0011 00000100 0000010

S3 011 010 0111 00001000 0000100

S4 100 110 1111 00010000 0001000

S5 101 100 1110 00100000 0010000

S6 110 101 1100 01000000 0100000

S7 111 111 1000 10000100 1000000

Table 1.69. Examples of codes for eight states

With binary encoding, the number of binary variables required to represent n states

is of the form log2(n). This last expression can also be considered as the minimum

number of flip-flops required.

Binary encoding presents the disadvantage of increasing the complexity of the

combinational logic section that is required for the decoding of each state, as well as

the flip-flop switching activity needed for the state representation. It should be noted

that the power consumption increases with an increase in the switching activity. The

latter may also prove to be a limitation when trying to achieve a high operating speed.

With Gray encoding, two consecutive states only differ by a single bit. In other

words, the transition from one state to another only affects one flip-flop. However, the

decoding of the states may become complex, especially when the number of states

increases. The number of binary variables is equal to the number of flip-flops, that is

log2(n) for a machine with n states.

58 Digital Electronics 3

Johnson encoding requires n/2 bits (or flip-flops) in order to represent n states.

Only one bit changes between two consecutive states.

One-hot encoding (or 1-out-of-n encoding) is characterized by the fact that for

each state, a single bit is set to 1 while all other bits are at 0. Each internal state of

the machine is identified by a single bit and represented by a single flip-flop. Thus, n
flip-flops are required to implement a state machine with n states. One-hot encoding

is suitable for implementations based on CPLDs or FPGAs, which generally have a

large number of flip-flops.

The synthesis of the combinational logic section of the machine is simpler because

each term in the logic equation for the NS of each flip-flop has exactly one variable.

A machine that uses one-hot encoding can have quite a high operating speed as the

speed is not dependent on the number of states but, rather, on the number of transitions

required to move from one state to the other.

Almost-one-hot encoding corresponds to one-hot encoding that begins with a null

code, all the bits of which are set to 0. The null code is frequently used to represent

the initial state, which in practice may be achieved by applying the appropriate signals

to the asynchronous reset inputs of flip-flops. Thus, two bits need to be considered to

fully decode a given state.

EXAMPLE 1.4.– Using 1-out-of-3 code to represent the states of a 101 sequence

detector (Mealy model).

The state table of the 101 sequence detector based on the Mealy model is shown in

Table 1.70. Using 1-out-of-3 code to represent the states, we obtain the transition table

given in Table 1.71. The implementation of the state machine requires three flip-flops.

Because each state is characterized by one of the three flip-flops set to 1, the logic

equations of the NSs and the output can be deduced by analyzing the state diagrams

shown in Figure 1.42.

0/0

2

S 1S 00/0

1/0

1/1

1/0

0/0

S

Figure 1.42. State diagram (Mealy model)

Synchronous Finite State Machines 59

PS NS Output

Y

X = 0 1 X = 0 1

S0 S0 S1 0 0

S1 S2 S1 0 0

S2 S0 S1 0 1

Table 1.70. State table of the sequence detector

PS NS Output

ABC A+B+C+ Y

X = 0 1 X = 0 1

001 001 010 0 0

010 100 010 0 0

100 001 010 0 1

Table 1.71. Transition table of the sequence detector

Flip-flop A, associated with the state S2, is set to 1 if the machine is in the state

S1, which is represented by flip-flop B, and the input X takes the logic level 0 (see the

dash-dot line in Figure 1.42). Thus:

A+ = X ·B [1.41]

Flip-flop B is set to 1 if the machine is in state S2 and the input X assumes the

logic level 1, or the machine is in the state S1 and the input X takes the logic level 1;

or if the machine is in the state S0, which is represented by flip-flop C, and the input

X is set to 1 (see the full line in Figure 1.42). Hence:

B+ = X ·A+X ·B +X · C = X(A+B + C) [1.42]

Flip-flop C is set to 1 if the machine is in the state S2 and the input X takes the

logic level 0; or if the machine is in the state S0 and the input X is set to 0 (see the

dash-dash line in Figure 1.42). Thus:

C+ = X ·A+X ·A = X(A+ C) [1.43]

60 Digital Electronics 3

The output Y is set to 1 only if the machine is in the state S2 and the input X is set

to 1. We then have:

Y = X ·A [1.44]

We can also determine the expressions for A+, B+, C+ and Y by using Karnaugh

maps, which are filled out based on the transition table, as shown in Figures 1.43–1.46.

Considering these functions to be four-variable functions: only six of the 16 possible

combinations, XABC, are used; 0000 and 1000 are the forbidden states as they stem

from the almost 1-out-of-3 code; and the remaining combinations are don’t-care states.

x

01

11

10

−−

x x x

1 x x

x x

XA

BC

B

00 01 11 10

A

X

C

00

Figure 1.43. Function A+ = X ·B

101

11

10

−

x x x

x x

x

XA

BC

B

00 01 11 10

A

X

C

1

x

1

x

−00

Figure 1.44. Function B+ = X

Figure 1.47 depicts the logic circuit of the 101 sequence detector based on the

Mealy state machine whose states are represented using the 1-out-of-3 code.

Synchronous Finite State Machines 61

−

01

11

10

−

x x x

x x

x

XA

BC

B

00 01 11 10

A

X

C

x

1

x1

00

Figure 1.45. Function C+ = X ·B

x01

11

10

−

x x x

x x

XA

BC

B

00 01 11 10

A

X

C

x

x

− 100

Figure 1.46. Output Y = X ·A

2

CK

X B C
A

1 3

PR

CLR
Q

QD
PR

CLR
Q

QD
PR

CLR
Q

QD

Y

Figure 1.47. Logic circuit of the 101 sequence detector (Mealy state
machine whose states are represented using the 1-out-of-3 code)

1.7. Transformation of Moore and Mealy state machines

Finite state machines are generally designed on the basis of either the Moore or

the Mealy model. However, it is possible to convert one of these models into the other.

62 Digital Electronics 3

The number of states in the Moore model is higher or equal to the number of states of

the equivalent Mealy model.

Figure 1.48 shows examples of the transformation of a Moore model to a Mealy

model for a section of a finite state machine.

(b)

YX/

Y

YX/X
Y

X
Y

X

XX

YC/

YA/

X X/Y
X/Y

YX/ YX/

A

X/Y

X/

B

CC/Y

B/

X

(a)

X

X

A/

B/Y
X

X

A

X/Y

C

X/Y

Figure 1.48. Transformation examples of a
Moore model to a Mealy model

To obtain the Mealy model from the Moore model, the output generated at a given

state is attached along with the input condition on the transition arcs that are directed

toward that state.

If the transitions from two different states and for the same input condition lead to

the same state, it is possible to eliminate a state.

Referring to Figure 1.48(b), two transitions lead to the state C under the input

condition X . Thus, either state A or state B can be eliminated.

Figure 1.49 gives examples of transformation of a Mealy model to a Moore model

for a section of a finite state machine.

If all transitions to one state of the Mealy state machine are associated with an

identical output, this output should be allocated to the NS of the equivalent Moore

state machine.

If all outputs associated with transitions to a state of the Mealy state machine are

not identical, an additional state must be used.

Synchronous Finite State Machines 63

X

Y

X/Y
YX/

YX/

YX/

YX/

YX/
Y

X

X

Y

YX/

X

X
Y

X

X

Y

X
Y1A /

Y2A /

X

A

B

C

X/

(a)

A

B

C

X/Y

X/

X/Y

B/Y

X

X

C/

(b)

X

X

A/

B/Y

C/

Figure 1.49. Transformation examples of a
Mealy model to a Moore model

1.8. Splitting finite state machines

After the synthesis of a finite state machine, it may be necessary to split the

machine if it cannot be implemented using a single programmable logic component,

or must be implemented using several different platforms (CPLD or FPGA,

microprocessor or microcontroller). One approach to accomplish this consists in

using intermediate states. Splitting a finite state machine can help to achieve a

compromise between the number of flip-flops required to code the states and the

complexity of the logic functions needed to generate the NSs.

1.8.1. Rules for splitting

When choosing to split a finite state machine, we can encounter either the case of

a single transition or that of several transitions:

– Case of a single transition (see Figure 1.50): The transition between a state Si,

called the source, and a state Sj , called the destination, that yields the output Y when

the input condition X is verified can be split by using two intermediate idle states, Sr1

and Sr2, and another output Zi. After the split, the transition from the state Si to the

state Sr1 takes place when the condition X is satisfied and results in the generation of

the outputs Y and Zi. We then have an unconditional hold on the state Sr1. Starting

from the state Sr2, there is either a transition to the state Sj if the condition X · Zi

64 Digital Electronics 3

is verified, or the PS is held if the logic expression X · Zi is true. In both cases, the

output is considered to have a don’t-care state.

(a)
j

S i

S i

S j

−/− −

X/YZ i

.X /−Z i

.X /−Z i
S r2S r1

X/Y

(b)

S

Figure 1.50. Splitting rule: case of a single transition

– Case of several transitions (see Figure 1.51): The aim is to develop rules

applicable when several transitions are associated with the same source or destination.

The transitions from the same source (for example state Si) are grouped under a

single transition that enables the state machine to move from this source state to an

intermediate idle state and occurs when one of the conditions associated with each of

these transitions is verified. The transitions that lead to the same destination state (for

example state Sk) are replaced by a single transition that allows the state machine to

change from an intermediate idle state to the destination state and is triggered when

the logical OR function of conditions associated with each of these transitions is true.

The holding condition for an intermediate idle state corresponds to the inverse of the

logical OR function of all conditions for the exit transition from this state.

1.8.2. Example 1

Consider the finite state machine whose state diagram is shown in Figure 1.52(a).

This machine has six states, an input X and an output Y . It is to be split into two

four-state machines that can communicate between themselves.

Figure 1.52(b) depicts the result of splitting a machine into two submachines. The

submachine with the intermediate idle state, Sr1, has three outputs, Y , Z1 and Z2,

while the machine with the intermediate idle state, Sr2, only generates two outputs, Y
and Z3.

Figure 1.53 shows the implementation of the machine in its split form, as shown

in Figure 1.52(b). At any given instant only one submachine is active and the other

is in a standby state. As the different outputs are combined using an OR logic gate,

the output of the inactive submachine must be set to zero so as not to affect the active

submachine.

Synchronous Finite State Machines 65

(b)

k

S k

S l

+.Z iX 1

S j

S i

S l

Z kX 2/Y2

Z iX 3/Y3

Z iX 1/Y1

jZ

X 1/Y1

X 3/Y3

X 4/Y4

S j

S i

(a)

.Z j /− −

.Z j /− −X 4

X 2/Y2

X 4

.Z i /− −X 3+.Z iX 3
+.Z iX 1

.Z k/− − −X 2

Z k/− − −.X 2

X 4/Y4−

−

−

S r1 S r2

S

Figure 1.51. Splitting rule: case of several transitions

(a)

2

S 1

S 0

X/YZ 3

X/YZ 3
S 3

S 4

S 5.Z 2 /− −X+.Z 1X

X/Y− −

X/Y− −X/Y− −

X/Y− −

S 3

S 4S 2

S 1

S 5S 0

X/Y

X/Y

X/Y

X/Y

X/Y

X/Y

X/Y

X/Y

X/Y

X/Y

X/Y−X/Y−

X/Y−

X/Y−
.Z 2 /− −X+.Z 1X

.Z 3 /− − −X+.Z 3X

Z 3 /− − −.X

Z 3 /− − −.X

−

X/Y−Z2

X/YZ1

(b)

S r1 S r2

X/YX/Y

S

Figure 1.52. State diagrams: a) initial finite state machine; b) finite
state machine obtained after the splitting

The choice of 1-out-of-4 code to represent the states leads to the use of four

flip-flops for the implementation of each submachine. Tables 1.72 and 1.73 present

66 Digital Electronics 3

the state encoding with the outputs for the flip-flops being Q1, Q2, Q3 and Q4 for

submachine 1, and QA, QB , QC and QD for submachine 2.

 Y

2

Z 1 M 2M 1

Z 3

Y Y

CK

X XX

RESET

Z

Figure 1.53. Implementation of the state machine

Q4 Q3 Q2 Q1

Sr1 1 0 0 0

S2 0 1 0 0

S1 0 0 1 0

S0 0 0 0 1

Table 1.72. Encoding the states of submachine 1

QD QC QB QA

Sr2 1 0 0 0

S5 0 1 0 0

S4 0 0 1 0

S3 0 0 0 1

Table 1.73. Encoding the states of submachine 2

As the number of flip-flops can be high with a code of the 1-out-of-n type, it may

be necessary to add a circuit section to stop the flip-flop switching by synchronizing

the clock signal, and consequently, reducing the power consumption of the circuit.

Such an implementation is illustrated in Figure 1.54, where additional logic gates and

flip-flops allow the deactivation of the clock signal of the submachine that is in the

standby state.

The activation function for the clock signal of the submachine 1 and 2 can be

defined as follows:

A1 = Q4 · Z3 = Q4 + Z3 [1.45]

Synchronous Finite State Machines 67

and:

A2 = QD · Z1 + Z2 = QD + Z1 + Z2 [1.46]

CK

 1
Z 1

Z 2

Q4

CK1

Q

Q

CK2

M 2

Z 3

QD

Q

Q

Y

XX

RESET

D

Y

X

 Y

D

M

Figure 1.54. Implementation using a clock
signal synchronization system

It should be noted that one of the terms, Q4 or QD, is set to 1 to indicate that one

of the submachines is in the standby state. Additionally, a submachine can only exit

the standby state when the other submachine sets one of the signals, Z1, Z2 and Z3,

to 1. The clock signal is deactivated for submachine i when Ai (i = 1, 2) is set to 0.

The functions Ai are derived so that there is a correspondence between the last

period of the clock signal to be deactivated and the first period of the clock signal to

be activated. This results in an overlapping period between the signals, as shown in

the timing diagram represented in Figure 1.55.

1.8.3. Example 2

A finite state machine is characterized by the state diagram represented in

Figure 1.56(a), where X denotes the input signal. Split this machine into three

submachines, with the states S0, S1 and S2; S3, S4 and S5; and S6, S7 and S8,

respectively.

After the split, we obtain three submachines that can communicate with each

other, as shown in Figure 1.56(b), where Sr1, Sr2 and Sr3 represent the intermediate

68 Digital Electronics 3

idle states. Only one submachine is active at a time and the other two are in the idle

state. Using 1-out-of-4 code to represent the states of each submachine we obtain the

implementation shown in Figure 1.57. As the transition to a given state results in the

output Qi (i = 1, 2, 3, 4) of only one of the flip-flops of a submachine being set at 1,

the signals Z4, Z5, Z6 and Z8 can be obtained directly from the appropriate outputs,

Qi.

1

3

CK2

Z2

Z1

CK

QD

Q4

CK

Z

Figure 1.55. Timing diagram

1.9. Sequence detector implementation based on a programmable
circuit

In general, a serial communication protocol uses a binary sequence to mark the

beginning and end of a frame (or each word to be transmitted).

Use a PAL (or programmable array logic) with versatile outputs to implement a

binary sequence detector that serially receives data at the input X and sets the output

Y to 1 only if the sequence 01111110 has been identified.

The operation of a 01111110 sequence detector can be described by the state

diagram shown in Figure 1.58 or by the state table given in Table 1.74. The detector

has eight states that can be represented using three-bit Gray code. Table 1.75 presents

the transition table.

For implementation using D flip-flops, the characteristic equation is of the form,

Q+ = D, and the logic equation for each input is obtained by constructing the

corresponding Karnaugh map based on the transition table. Karnaugh maps shown in

Synchronous Finite State Machines 69

Figures 1.59–1.61 can be used to determine the logic equations of the variables A+,

B+ and C+, while the logic equation of the output Y is obtained based on the

Karnaugh map shown in Figure 1.62. Thus:

DA = A+ = X ·A · C +X ·B · C [1.47]

DB = B+ = X ·A · C +X ·B · C [1.48]

DC = C+ = X +A ·B +A ·B · C [1.49]

and:

Y = X ·A ·B · C [1.50]

where A = QA, B = QB and C = QC . The PAL implementing the sequence

detector is illustrated in Figure 1.63. The different outputs are configured by assigning

the appropriate logic states to the bits S1 and S0.

r1

6

S 7

S 8

X

X

Z5
.X

.Z5X

S 0

S 1

X X

X

X

Z5
.X

Z8
.X

Z4
.X

S 0

S 1

X

X

X

X

S 6

S 7

S 8

X

X

Z6
.X

.Z6X
X

S 3

S 4

S 5

X

S 2

X

S 3

S 4

S 5

X

+.Z4X +.Z5X .Z8X

S 2

S r3

X

X

−

X

X

(b)

X

X

X

X

−

X(a)

X

−

X
S r2

X

X

X

S

S

Figure 1.56. State diagrams: a) initial finite state machine;
b) finite state machines obtained after the splitting

70 Digital Electronics 3

CK

 1 M 2

Q4

Q3

Q2

Q4

Q3

Q2

Q1 Q1

M 3

Q4

Q3

Q2

Q1

Z 5

Z 4

Z 8
Z 5Z 6

X X XX

RESET

M

Figure 1.57. Implementation of the state machine

h
X Y/ Y Y Y Y YY/ X

Y/ X
X Y/ X Y/ X Y/ X Y/ X Y/

Y/ X
X Y/

X

/ X / X / X / X / X

/ Y

S a S b S c S d S e S f S g S

Figure 1.58. State diagram of the sequence detector

PS NS Output, Y

X = 0 X = 1 X = 0 X = 1

Sa Sb Sa 0 0

Sb Sb Sc 0 0

Sc Sb Sd 0 0

Sd Sb Se 0 0

Se Sb Sf 0 0

Sf Sb Sg 0 0

Sg Sb Sh 0 1

Sh Sb Sa 1 0

Table 1.74. State table of the sequence detector

1.10. Practical considerations

To ensure the proper operation of a finite state machine, the outputs should not be

affected by undesirable transient signals, which may be caused by propagation delays

of logic gates in the output combinational circuit section or race conditions between

the state variables.

Synchronous Finite State Machines 71

PS NS, A+B+C+ Output, Y

ABC X = 0 X = 1 X = 0 X = 1

000 001 000 0 0

001 001 011 0 0

011 001 010 0 0

010 001 110 0 0

110 001 111 0 0

111 001 101 0 0

101 001 100 0 0

100 001 000 1 0

Table 1.75. Transition table of the sequence detector

C

01

11

10

0 00 0

0 0 1 0

0 0 1 1

0 0 1 0

XA

BC

B

00 01 11 10

A

X

00

Figure 1.59. Function A+

C

01

11

10

0 00 0

0 0 0 1

0 0 1 1

0 0 0 1

XA

BC

B

00 01 11 10

A

X

00

Figure 1.60. Function B+

72 Digital Electronics 3

C

01

11

10

1 01 0

1 1 1 0

1 1 1 0

1 1 0 1

XA

BC

B

00 01 11 10

A

X

00

Figure 1.61. Function C+

C

01

11

10

1 00 0

0 0 0 0

0 0 0 0

0 0 0 0

XA

BC

B

00 01 11 10

A

X

00

Figure 1.62. Output Y

1.10.1. Propagation delays and race conditions

A critical race condition is caused by a transition between two states leading to

a change in at least two state variables. In fact, when the change in n (n ≥ 2) state

variables required for the transition from one state to another cannot be simultaneous,

there are npossible paths. This implies a race between the state variables and the race

may be non-critical or critical.

In the case of a non-critical race, each path associated with a transition leads to the

same destination state. However, for a critical race, the destination state depends on

the path associated with the transition or the order in which the variables change. This

can result in the generation of undesirable transient signals at the output of a machine.

For a transition that can involve only two paths, the race may not result in the

generation of a transient signal if, for each output, the type of operation associated

with the original state is different from that of the destination state.

Synchronous Finite State Machines 73

Y

0 4 8 12 16 20 24 28 31

CK

QC

QB

QA

Q

D

Q

QD

Q

QD

X

Q

Figure 1.63. Sequence detector implemented by programming a PAL

In general, one of the following approaches can be used to eliminate transient

signals caused by a critical race condition:

– judiciously assign a value to a don’t-care state that is found on a race path;

– use another code (for example Gray code) to represent states;

– filter the output signal;

74 Digital Electronics 3

– insert an intermediate state (for example adding a state to a machine that initially

had only three states);

– increase the number of state variables, as is the case for a machine based on a

code of the 1-out-of-n type.

Unlike other approaches, the first two may not result in an increase in the number

of components and a reduction in the operating speed.

Transient signals caused by a critical race condition usually appear at times just

after the active edge of the clock signal. They can, therefore, be filtered by connecting

a flip-flop triggered by the opposite edge of the clock signal at the output of the finite

state machine. Thus, if the flip-flops of the state machine are triggered by the rising

edge of the clock signal, the flip-flop of the filter must be activated by the falling

edge of the clock signal, as shown in Figure 1.64(a). The timing diagram showing the

suppression of transient signals is depicted in Figure 1.64(b). It should be noted that

the filter introduces an additional delay of half a period.

Inputs

CK

(b)

Transient signals

Q

QD Z
Y

(a)

Z

Y

CK

Delay

Finite state
machine

Figure 1.64. a) Suppression of transient signals
by filtering; b) timing diagram

1.10.2. Timing specifications

To ensure the proper working of a finite state machine, certain timing constraints

must be satisfied. In the case of a synchronous machine, the clock signal is used to

synchronize the flip-flops. As the sequential logic section and the combinational logic

section exhibit a propagation delay, it takes a period of time before the output of the

state machine acquires its final value after each change of the input signal.

The timing characteristics of a logic circuit are illustrated in Figure 1.65.

The set-up time, tsu, is the minimum amount of time the data signal must be held

constant before the active edge of the clock signal.

The hold time, th, is the minimum amount of time the data signal must stay

constant after the active edge of the clock signal.

Synchronous Finite State Machines 75

p

thtsu

TCK

CK

X

Y

t

Figure 1.65. Illustration of the timing characteristics of a logic circuit

The propagation time, tp, corresponds to the time that elapses between the instant

when the signal is applied at the input and the instant when the output acquires its final

value. This depends on the operating conditions of the logic circuit.

In general, component manufacturers specify a time window around the sampling

instant and wherein the input signal must stay constant to prevent the circuit from

entering a metastable state. After the sampling instant, the sequence of the data signal

must not change for a certain time that is lower than the propagation delay from the

input to the output of the circuit. Thus, for the proper operation of a synchronous

circuit, the following relationships must be verified:

TCK > tp,max + tsu [1.51]

th < tp,min [1.52]

where TCK is the clock signal period, tp,min and tp,max represent the minimal and

maximal values of the propagation delay, respectively. The first relationship can be

used to determine the maximum operating frequency, that is fCK = 1/TCK . The

second relationship is independent of the clock signal period and is always verified

for circuits whose hold time is equal to zero.

The maximum frequency of the clock signal is obtained by assuming that there is

no timing margin. However, a good rule of thumb consists of adding a timing margin

of about 10% of the minimal period of the clock signal to the set-up time to take into

account various fluctuation phenomena (jitter, timing skew) that may affect the clock

signal. Furthermore, a timing margin greater than zero for the hold-time means there

is no violation of the constraint on the hold time.

The timing analysis of the logic circuit of a finite state machine consists of

identifying the slowest path that determines the maximum frequency of the clock

signal and the fastest path that sets the timing margin for the hold time.

76 Digital Electronics 3

Consider the 101 sequence detector shown in Figure 1.66, where X represents the

input and Y is the output. Determine the maximum frequency of the clock signal,

assuming that a timing margin of 10% of the minimal period of the clock signal has

been added to the set-up time. What is the value of the timing margin for the hold

time?

CLR

2

Q

Q

CLR

D

CK

1

Q

QD
X Y

Figure 1.66. Logic circuit of the 101 sequence detector

From datasheets, the following parameters can be obtained:

– D flip-flop of the type 74LS74A:

tsu = 20 ns, th = 5 ns, tp,max = 40 ns, tp,min = 13 ns;

– AND gate of the type 74LS08:

tp,max = 20 ns, tp,min = 8 ns;

– NOT gate of the type 74LS04:

tp,max = 5 ns, tp,min = 1 ns.

The path with the highest propagation delay goes through the NOT gate, the AND

gate (that is tpcomb,max = (5 + 20) ns for the combinational logic section of the

circuit), and the flip-flop 1 (that is a delay of tpbd,max+tsu). Taking into consideration

the timing margin, tsu,marg, that has been added to the hold time, the minimal period

of the clock signal is given by:

TCK,min = tpbd,max + tpcomb,max + tsu + tsu,marg [1.53]

Synchronous Finite State Machines 77

Using tsu,marg = TCK,min/10, we can obtain:

TCK,min = (10/9)(tpbd,max + tpcomb,max + tsu) [1.54]

= (10/9)(40 + 25 + 20) = 94.44 ns [1.55]

and

fCK,max = 1/TCK,min = 1/(94.44× 10−9) = 10.58 MHz [1.56]

The path with the smallest propagation delay goes through flip-flop 2 whose input

is not connected to any logic gate. That is to say, tpcomb,min = 0. We can, therefore,

write:

th + th,marg = tpbd,min + tpcomb,min [1.57]

or:

th,marg = tpbd,min + tpcomb,min − th [1.58]

= 13 + 0− 5 = 8 ns [1.59]

Because th,marg > 0, there is no violation of the constraint related to hold time.

For the logic circuit shown in Figure 1.67, where the Sync flip-flop is used to

ensure the synchronization of the input signal X , determine the maximum frequency

of the clock signal and the temporal margin for the hold time. The clock signal has a

duty cycle of 50% and from datasheets, we can obtain:

– D flip-flop of the type 74LS74A:

tsu = 20 ns, th = 5 ns, tp,max = 40 ns, tp,min = 13 ns;

– AND gate of the type 74LS08:

tp,max = 20 ns, tp,min = 8 ns;

– OR gate of the type 74LS32:

tp,max = 22 ns, tp,min = 14 ns;

– NOT gate of the type 74LS04:

tp,max = 5 ns, tp,min = 1 ns.

78 Digital Electronics 3

Q

QD

Q

QD

CLRCLR

CK

Y

Sync

X

Figure 1.67. Finite state machine with a synchronization stage

As the flip-flops are triggered by the opposite edges of the clock signal, we can

consider that the input signal, X , is delayed by TCK,min/2 by the Sync flip-flop. The

slowest path across the combinational logic section passes through the inverter, the

AND gate, and the OR gate, that is tpcomb,max = (5 + 20 + 22) ns. The minimal

period of the clock signal can be expressed as follows:

TCK,min = TCK,min/2 + tpcomb,max + tpbd,max + tsu [1.60]

Hence:

TCK,min = 2(tpcomb,max + tpbd,max + tsu) [1.61]

= 2(47 + 40 + 20) = 214 ns [1.62]

The maximum frequency of the clock signal is then given by:

fCK,max = 1/TCK,min = 1/(214× 10−9) = 4.67 MHz [1.63]

The fastest path leading to the input of the second flip-flop passes through the AND

gate and the OR gate, that is tpcom,min = (8+14) ns. Thus, the hold time must satisfy

the following relationships:

th + th,marg = tpbd,min + tpcomb,min. [1.64]

or, equivalently:

th,marg = tpbd,min + tpcomb,min − th [1.65]

= 13 + 22− 5 = 30 ns. [1.66]

For a proper operation, the timing margin th,marg must be greater than zero.

Synchronous Finite State Machines 79

1.11. Exercises

EXERCISE 1.1.– Can we implement the finite state machine described by the state

diagram in Figure 1.68 using only one flip-flop and logic gates?

1S 0 S 1 S 2 S 3

1 1 1

0

0
0

0

Figure 1.68. State diagram

EXERCISE 1.2.– Propose the state diagrams corresponding to the transition table

shown in Table 1.76 and to the state table shown in Table 1.77.

PS NS, A+B+ Output Y

A B X = 0 1 X = 0 1

0 0 00 10 0 1

0 1 00 00 0 0

1 0 11 01 1 1

1 1 10 10 1 0

Table 1.76. Transition table

PS NS Output Y

X = 0 1

S1 S1 S2 1

S2 S4 S3 1

S3 S4 S3 0

S4 S1 S2 0

Table 1.77. State table

EXERCISE 1.3.– RT (fictional) flip-flop.

The RT (fictional) flip-flop, which has two inputs (R and T) and two outputs (Q

and Q), is characterized by the state table shown in Table 1.78:

a) We wish to implement this RT flip-flop using a D flip-flop, triggered by the

rising edge of the clock signal, and logic gates (AND and OR).

80 Digital Electronics 3

– determine the logic equation for the input D;

– deduce the characteristic equation, Q+, of the RT flip-flop;

– construct the state diagram;

– draw up the truth table;

– represent the logic circuit.

PS NS = Output

Q Q+

RT = 00 01 10 11

0 0 1 0 1

1 0 0 0 1

Table 1.78. State table

b) Consider the case where the implementation of the RT flip-flop requires the use

of a JK flip-flop triggered by the rising edge of the clock signal and logic gates:

– determine the logic equation for both inputs, J and K;

– represent the logic circuit.

EXERCISE 1.4.– The logic circuit shown in Figure 1.69 represents a three-input flip-

flop:

– determine the characteristic equation;

– complete the truth table shown in Table 1.79;

– construct the state diagram.

G Q

QD

CLR

PR

CK

YF

E

Figure 1.69. Logic circuit

Synchronous Finite State Machines 81

E F Y

0 0

0 1

1 0

1 1

Table 1.79. Truth table

EXERCISE 1.5.– Consider the finite state machine whose logic circuit is represented

in Figure 1.70:

– determine the characteristic equation;

– complete the truth table shown in Table 1.80;

– construct the state diagram;

– what is the role of this finite state machine?

G

10

01

00

11

Q

QD

CLR

PR

CK

F

E Y

Figure 1.70. Logic circuit

F G Y

0 0

0 1

1 0

1 1

Table 1.80. Truth table

EXERCISE 1.6.– We wish to implement the 01 sequence detector as a finite state

machine based on Mealy and Moore models:

– represent the state diagram;

82 Digital Electronics 3

– draw up the state table;

– implement the logic circuit using D flip-flops and logic gates;

– modify the state diagram in order to enable the recognition of the two binary

sequences, 01 and 10.

EXERCISE 1.7.– Implement a finite state machine (Mealy and Moore) whose output,

Y , corresponds to the two’s complement of the binary number applied sequentially to

the input, X , beginning with the least significant bit, as shown in Figure 1.71. Each

conversion operation begins with the reset of the state machine, and the Start signal

then takes logic state 1. At the end of the conversion, the TC signal is set to 1, causing

the output register to enter the hold state.

The two’s complement can be obtained by scanning a binary number starting from

the least significant bit and complementing only the bits that come after the first bit

assuming the logic state 1.

EXERCISE 1.8.– Serial comparator.

A serial comparator can be implemented as shown in Figure 1.72, where two

registers contain the numbers, A = a0a1 · · · an−1 and B = b0b1 · · · bn−1, to be

compared starting from the most significant bit. Initially, the finite state machine and

the counter are reset. The Start signal takes the logic state 1 to indicate the beginning

of the count cycle and a sequence of comparisons that will end when the output, TC,

of the counter is set to 1.

Shift
EN

SI

EN

CK

CLR

machine

CLR

TC
CNT

CLR

X
SO

Y

Start

SO

SI
Finite state

Counter

register

register
Shift

Figure 1.71. Finite state machine for the sequential
generation of two’s complement

Using D flip-flops with an enable signal, EN , and logic gates, implement the

finite state machine that is assumed to be characterized by the state table shown in

Table 1.81, where ai and bi are any two bits of A and B, respectively.

Synchronous Finite State Machines 83

Shift

CK

A<B

A>B

Start

SO
SI

SO CLRA

B machine
Finite state

CLR

TC
CNT

CLR

EN

A=B

SI

Counter

Shift
register

register

Figure 1.72. Serial comparator

PS NS Output

OA<B OA=B OA>B

aibi = 00 01 10 11

A = B S0 S0 S2 S1 S0 0 1 0

A > B S1 S1 S1 S1 S1 0 0 1

A < B S2 S2 S2 S2 S2 1 0 0

Table 1.81. State table (Moore model)

EXERCISE 1.9.– A shift register can be considered as a Moore state machine whose

states are defined by flip-flop outputs.

Construct the state diagram for each of the shift registers shown in Figure 1.73.

(b)

1 Q3Q2Q1 Q2

Q

QD

CLR

PR

CK

1

Di

Q

QD

CLR

PR

3

Q

QD

CLR

PR

2

Q

QD

CLR

PR

Q

QD

CLR

PR

CK

21

Di

(a)

Q

Figure 1.73. Two-bit a) and three-bit b) shift registers

84 Digital Electronics 3

EXERCISE 1.10.– Each of the finite state machines, whose state diagram is

represented in Figure 1.74, can only operate correctly if the sum rule and the

mutual-exclusion requirement are fulfilled.

(X + Y)/ P Q

1

Y/ Z.X

Y/ Z.X

S 2
Y/ Z.X

Y/ Z.X

Y/ Z

(X + Y)/ Z
X/ Z

S 0

S 1

Y/ P Q.X

Y/ P Q.X

S 3

S 0

Y/ P Q.X

S 2 Y/ P Q

Y/ P Q.X

Y/ P Q.X

Y/ P Q

Y/ P Q.X

Y/ P Q.X

S 3

Y/ Z.X

Y/ Z.X

(X + Y)/ Z

(a)

X/ P Q

X Y/ P Q

(b)

S

 0

X

X

X

Y.X

X Y

Y.X

Y.X

X Y Y.X

Y.X

X Y

Y.X

Y.X

Y.X

X

S 0

X

X

/ Y

X

/ YS 0

S 2

(c) (d)

X Y

/ YS 3 / YS 1 /S C 0S 1
/S C 0S 2

/S C 0S 3

/S C

Figure 1.74. Finite state machines

The output of the machine shown in Figure 1.74(a) is set to 1 if and only if each of

the input sequences, 10, 11 and 01, is detected at least once.

The operation of the state machine represented in Figure 1.74(b) is described by

the state table shown in Table 1.82, where X and Y are the inputs, and P and Q denote

the outputs.

The machine shown in Figure 1.74(c) operates as a 011 sequence detector.

The machine shown in Figure 1.74(d) is a 1-bit serial adder, and S and C0 represent

the sum and the carry-out.

Synchronous Finite State Machines 85

PS NS Outputs

PQ

XY = 00 01 10 11 XY = 00 01 10 11

A D B A A 00 00 00 00

B D B B C 00 11 11 00

C D C A C 00 10 00 10

D D B D C 01 00 01 00

Table 1.82. State table for machine 2

Analyze each state diagram to determine the incorrect term and perform the

necessary modifications to ensure the proper operation of the state machine.

EXERCISE 1.11.– Consider the finite state machines whose state diagrams are

represented in Figure 1.75, where X and Y denote the inputs and the output is

designated by Z.

11

1 S 3

Y/ Z.X Y/ Z.X

Y/ Z.XY/ Z.X

X/ Z

Y/ Z

X/ Z

Y/ Z.X

Y/ Z

X Y/ Z

S 1 S 3

Y/ Z.X Y/ Z.X

X/ Z

Y/ Z

X/ Z

Y/ Z.X

Y/ Z

Y/ Z.XX Y/ Z

Y/ Z.X

Y/ Z.X

S 0

S 2

S 0

S 2

01 10
Y/ Z.X

(b)

01 10

(a)

00

11

00

S

Figure 1.75. State diagram: a) machine 1; b) machine 2

Analyzing the state machine 1, show that there is a critical race condition that can

affect the transition from the state S2 to the state S0 and that is caused by the input

condition X · Y .

Verify that there is no critical race condition that affects the operation of the state

machine 2, which is based on the same algorithm as the state machine 1.

EXERCISE 1.12.– Analyze the finite state machine (state table, state diagram) shown

in Figure 1.76 and complete the timing diagram given in Figure 1.77.

86 Digital Electronics 3

2

CLR

1

Q

Q

K

J

Q

Q

K

JX

Y

A B

CK

CLR

Figure 1.76. Finite state machine (Moore model)

Y

B

A

X

CK

Figure 1.77. Timing diagram

EXERCISE 1.13.– Using D flip-flops, implement a synchronous counter, whose output

depends on the logic state of a control signal C:

– when C = 0, the output sequence is 00, 01, 11;

– when C = 1, the output sequence is 00, 11, 01.

EXERCISE 1.14.– Using JK flip-flops, implement a logic circuit whose output is set

to 1 when the sequence 010 is detected at the input. We assume that the operation of

this circuit is similar to that of a Moore state machine and that there is no overlapping

of the bits applied to the input. For the input 010100, the sequence 010 will, therefore,

be detected only once.

EXERCISE 1.15.– Analyze (state diagram, state table) the finite state machine

represented in Figure 1.78 and complete the timing diagrams shown in Figures 1.79

and 1.80.

EXERCISE 1.16.– Using two JK flip-flops, implement a counter that operates as

follows:

– if the input X = 0, the counting is carried out in increasing order, according to

the sequence: 0, 1, 2, 3, 3;

Synchronous Finite State Machines 87

– if the input X = 1, the counting is carried out in decreasing order, according to

the sequence: 3, 2, 1, 0, 0.

CK

2

B

X

A

CLR CLR
Q

QD

1

Y

Q

QD

Figure 1.78. Finite state machine (Mealy model)

Y

B

A

X

CK

Figure 1.79. Timing diagram 1

Y

B

A

X

CK

Figure 1.80. Timing diagram 2

EXERCISE 1.17.– Implement a Mealy state machine that allows for the detection of

the 010 sequence in the following two cases (see Table 1.83):

a) the overlapping of input bits is allowed;

b) the overlapping of input bits is not allowed.

88 Digital Electronics 3

Input X 1 1 0 1 0 1 0 1 0 0 1 0 0 1 0 0 1 1 0

(a) Output Y 0 0 0 0 1 0 1 0 1 0 0 1 0 0 1 0 0 0 0 0

(b) Output Y 0 0 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 0 0 0

Table 1.83. Table illustrating the operation of the detector

EXERCISE 1.18.– Implement a counter that can periodically generate the sequence

2 6 1 7 5 using:

a) D flip-flops;

b) JK flip-flops.

EXERCISE 1.19.– Use the implication table approach to minimize the number of

states of the finite state machine whose state tables are shown in Tables 1.84 and 1.85,

where X is the input.

PS NS Output

Y

X = 0 1

A A B 1

B C A 0

C A D 0

D C C 1

E G F 1

F C E 0

G E B 1

Table 1.84. State table for the finite state machine 1

PS NS Output

Y

X = 0 1 X = 0 1

S0 S1 S2 1 1

S1 S3 S5 1 1

S2 S5 S4 0 0

S3 S1 S6 1 1

S4 S5 S2 0 0

S5 S4 S3 0 0

S6 S5 S6 0 0

Table 1.85. State table for the finite state machine 2

Synchronous Finite State Machines 89

EXERCISE 1.20.–

a) use the partitioning method to minimize the number of states of the finite state

machines whose state tables are shown in Tables 1.87 and 1.88;

b) Table 1.86 gives the state table of a finite state machine. Minimize the number

of states of this machine using the partitioning method;

c) consider the finite state machine whose state table is shown in Table 1.89. Use

the partitioning method to minimize the number of states of this machine.

PS NS Output

Z

XY = 00 01 10 11

A A F C B 0

B A B D H 1

C G B C D 0

D C F D D 1

E G A E D 1

F F F G B 0

G G B G E 0

H F B E H 1

Table 1.86. State table for the finite state machine 1

EXERCISE 1.21.– Consider the finite state machine whose state tables are shown in

Tables 1.90–1.93.

To simplify the state machine 1:

– construct the merger graph;

– determine the set of maximum compatibility classes;

– construct the compatibility graph;

– draw up the reduced state table.

To simplify each of the state machines 2, 3 and 4:

– construct the implication table;

– determine the set of maximum compatibility classes;

– construct the compatibility graph;

– draw up the reduced state table.

90 Digital Electronics 3

PS NS Output

Y

X = 0 1

S0 S1 S2 1

S1 S3 S5 1

S2 S5 S4 0

S3 S1 S6 1

S4 S5 S2 0

S5 S4 S3 0

S6 S5 S6 0

Table 1.87. State table for the finite state machine 1

PS NS Output

Y

X = 0 1 X = 0 1

S0 S4 S3 0 1

S1 S5 S3 0 0

S2 S4 S1 0 1

S3 S5 S1 0 0

S4 S2 S5 0 1

S5 S1 S2 0 0

Table 1.88. State table for the finite state machine 2

PS NS Output

Z

XY = 00 01 10 11 XY = 00 01 10 11

A A G E H 0 0 1 1

B F B B D 0 1 0 0

C F C G H 0 1 0 1

D H C E D 1 0 1 0

E A F E D 1 0 1 0

F F C B A 0 1 0 1

G F G G D 0 1 0 0

H H B E H 0 0 1 1

Table 1.89. State table for the finite state machine 2

Synchronous Finite State Machines 91

PS NS Output

Y

X = 0 1 X = 0 1

A B C – 0

B D – 0 –

C – E 1 –

D B G 0 0

E F C 1 1

F E D 0 1

G F – 1 0

Table 1.90. State table (machine 1)

PS NS Output

Y

X = 0 1

A D – 0

B C E 1

C B G 0

D A B –

E – E 0

F G B –

G F – 0

Table 1.91. State table (machine 2)

EXERCISE 1.22.– Transform each of the finite state machines based on Moore model

(see Figure 1.81) into the equivalent Mealy model.

Y

Y

Y

XX

X X X X

X
YX

Y

Y

B/

C/A/

D/

X,

XX

X

Y

Y X

X
X

X

(b)(a)

A/

B/

C/

D/

Figure 1.81. Moore model: a) machine 1; b) machine 2

92 Digital Electronics 3

PS NS Output

Z

XY = 00 01 10 11

A A B – D –

B A B C – 0

C – B C H 0

D – – G D –

E E F – D 1

F E F G G 1

G D F G H 1

H A – – H 0

Table 1.92. State table (machine 3)

PS NS Output

Z

XY = 00 01 10 11 XY = 00 01 10 11

A G A – H – 1 – 1

B G – B D 0 – 0 0

C C F E – 0 – – –

D – A E D – – – 0

E C – E D – – 1 –

F G F – D – 1 – –

G G A B – 0 – 0 –

H – – E H – – 1 1

Table 1.93. State table (machine 4)

EXERCISE 1.23.– For Figures 1.82 and 1.83, transform each of the Mealy model

based finite state machines into the equivalent Moore state machine.

(a)

X/

YX/

Y

Y

X/Y

X/Y
YX/

C YX/AYX/

A

B

(b)

X/

X/

C

X/Y

Y

Figure 1.82. Mealy model: a) machine 1; b) machine 2

Synchronous Finite State Machines 93

EXERCISE 1.24.– Split each of the finite state machines (modulo 6 counter and 010
and 1001 sequence detector) into two machines with an identical number of states

and that can communicate with each other, as shown in Figures 1.84 and 1.85. It is

assumed that the states are represented using a 1-out-of-n code.

(a)

B

C

BA

C

A

A

0/1

1/1

0/0
1/1

1/0

0/0

0/1

10/00
−1/−0

 00/00

10/10

01/−1

11/11

−1/01

−1/01

(b)

00/10

00/01

1/0

Figure 1.83. Mealy model: a) machine 1; b) machine 2

X

5

S 3S 2

S 0

S 4

X

X

X

X

X

X

S 1
X

X
X X

X

S

Figure 1.84. Modulo 6 counter

EXERCISE 1.25.– Consider the finite state machines whose logic circuit, shown in

Figure 1.86, is based on D flip-flops.

Complete the signals A and B of the timing diagram given in Figure 1.87.

EXERCISE 1.26.– Consider the logic circuit shown in Figure 1.88, representing a

finite state machine implemented using JK flip-flops and logic gates.

Complete the signals, A and B, and the output signal, Y, of the timing diagram

given in Figure 1.89.

94 Digital Electronics 3

X/Y

1

S 4

S 0

S 2

YX/

YX/
S 3

YX/

YX/

YX/

YX/

YX/
YX/

S 5

X/Y

YX/

YX/

S

Figure 1.85. State diagram of the 010 and 1001 sequence detector

A QD

CLR

2

B

CLR

CK

X

Q

QD

CLR

1

Q

Figure 1.86. Logic circuit

B

CK

X

CLR

A

Figure 1.87. Timing diagram

EXERCISE 1.27.– Using T flip-flops and logic gates, implement a Mealy state

machine that has two inputs, X and Y , and one output, Z, and which operates as

follows:

Synchronous Finite State Machines 95

– Z = X− · Y (AND operation) until the input Y assumes the logic state 1;

thereafter, Z = X− + Y (OR operation), with X− being the previous state of X;

– the next transition of the input Y to the logic state 1 causes the output to revert

to the AND operation and this switching of the output between the AND and OR

operations, continues whenever the input Y takes to logic state 1.

EXERCISE 1.28.– Median filter.

Using D flip-flops and logic gates, implement a median filter that can be described

as a Moore state machine whose role is to replace at the output each input bit 0 located

between two 1 bits by a bit of value 1.

2

X

CLR

CK

1

Q

Q

K

J

Q

Q

K

J

Y

A B

CLR CLR

Figure 1.88. Logic circuit

B

CK

X

CLR

A

Y

Figure 1.89. Timing diagram

EXERCISE 1.29.– Bus arbiter.

Consider the bus arbiter that allocates the bus to one of the two elements, A or B,

prioritizing element A when two simultaneous requests occur. In the block diagram

96 Digital Electronics 3

shown in Figure 1.90, the bus arbiter provides the control signals for two three-state

buffers connected to a common data bus.

Bus arbiter
 A

GB

GA

CLR

Bus

CK

Component B

Component A

R B

R

Figure 1.90. Bus arbiter

The bus arbiter must be implemented as a synchronous Moore state machine,

which operates as follows: when the two inputs RA and RB are set to 0, the machine

returns to the initial state or is held in the initial state. When the inputs RA and RB

take the binary combination 10 or 11, the machine goes to the state where the bus is

allocated to element A and is held in this state as long as the input RA remains at 1.

On the other hand, when the combination 01 is assigned to the inputs RA and RB ,

the machine moves from the initial state to the state where the bus is allocated to the

component B and remains in this state as long as the input RB remains at 1. The

transition between the two states where the bus is allocated to one of the two

components is caused by assigning either the combination 01 or the combination 10
to the inputs RA and RB .

– construct the state diagram for the state machine;

– using Gray code to represent the states, determine the logic equations for the

implementation using D flip-flops;

– represent the logic circuit of the state machine.

EXERCISE 1.30.– Robot ant.

Consider a robot ant whose legs are controlled by servo motors, which are

controlled by a finite state machine. Two antennae attached to the front part of the

robot act as sensors to indicate possible contacts with the different sections of the

walls of a labyrinth. The labyrinth exit is recognized by a indicator light detector that

sets the signal EN to 1, thereby disabling the outputs of the finite state machine.

Synchronous Finite State Machines 97

Using D flip-flops, implement a finite state machine that allows the robot ant to

find a way out of the labyrinth shown in Figure 1.91. It is assumed that the robot ant

moves forward by trying to keep the wall to its right after each control pulse, and that

a Moore state machine with the following characteristics is used:

– inputs: signals from the left and right antennae, L and R, set to 1 whenever there

is a contact with a wall section;

– outputs: control signals that are used to initiate a forward movement, F , and a

slight rotation to the left or right, TL or TR.

Figure 1.91. Labyrinth

1.12. Solutions

SOLUTION 1.1.– The state diagrams shown in Figure 1.92 are equivalent and a

machine with two states can be implemented using a single flip-flop and logic gates.

1S 0 S 1 S 2 S 3 S bS a

1 1 1

0

0
0

0

1

1

0

0

Figure 1.92. State diagram

SOLUTION 1.2.– The state diagram corresponding to each state table is represented

in Figure 1.93.

Tables 1.94 and 1.95 give bit sequences (input, states and output) that illustrate the

operation of each finite state machine. The output sequence is obtained in response to

a given input binary sequence. In some cases, it is possible to predict the behavior of

the state machine even when the input is not yet known.

98 Digital Electronics 3

(b)

4/0

S 1/1

S 2/1

S 3/0

0/1
1/0

0/1
1/1x/0

1/1

0/0

01

00 11

10

(a)

01

1

1

0

0

0

1

S

Figure 1.93. State diagram

Input X 0 1 0 0 1 1 1 0

AB 00 → 00 → 10 → 11 → 10 → 01 → 00 → 10 → 11 → 10 → - 1 → - 0

Output Y 0 1 1 1 1 0 1 1 - 1

Table 1.94. Illustration of the operation of the state machine a

Input X 0 1 0 1 1 1 0 0 0 0

PS S1 → S1 → S2 → S4 → S2 → S3 → S3 → S4 → S1 → S1 → S1

Output Y 1 1 1 0 1 0 0 0 1 1 1 1

Table 1.95. Illustration of the operation of the state machine b

SOLUTION 1.3.– (RT (Fictional) Flip-Flop).

a) The state table can be used to construct the transition table shown in Table 1.96.

For an implementation based on a D flip-flop, we have Q+ = D, and Figure 1.95(a)

depicts the Karnaugh map obtained from the transition table. The logic equation for

the input D can be written as follows:

Q+ = D = R · TQ+R · TQ+R · T ·Q = T (R +Q) [1.67]

Synchronous Finite State Machines 99

Q R T Q+

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Table 1.96. Transition table of the flip-flop

T

1

1 1

1

00 01 1011

T

Q

RT R

Q

T

10
S 1 R T

S
01
 0

R +(b)

(a)

T

0

Figure 1.94. a) Karnaugh map; b) state diagram

The RT flip-flop has two states: S0 where Q = 0 and Q = 1, and S1 where Q = 1
and Q = 0. Analyzing the state table, we can deduce the conditions:

– to remain in the state S0:

R · T +R · T = (R+R)T = T

– for the transition from S0 to S1:

R · T +R · T = (R+R)T = T

– to remain in the state S1:

R · T

100 Digital Electronics 3

– for the transition from S1 to S0:

R · T +R · T +R · T = R(T + T) + R · T = R +R · T = R+ T

The state diagram is represented in Figure 1.94(b).

R T Q+

0 0 0

0 1 Q

1 0 0

1 1 1

Table 1.97. Truth table

T

CK

PR

CLR

R

Q

QD

Figure 1.95. Logic circuit

Table 1.97 depicts the truth table. The logic circuit of the RT flip-flop is given in

Figure 1.95.

b) For the implementation based on a JK flip-flop, the transition table is obtained

from the state table using the JK flip-flop excitation table as shown in Table 1.98.

From the Karnaugh maps shown in Figure 1.96, we can obtain the logic equations

for the inputs J and K. Thus:

J = T and K = R + T = R · T [1.68]

Figure 1.97 depicts the logic circuit of the RT flip-flop.

SOLUTION 1.4.– Analyzing the logic circuit of the finite state machine, we can obtain:

Q+ = D [1.69]

= E · F ·Q+E · F ·Q+ E · F ·G [1.70]

Synchronous Finite State Machines 101

Q R T Q+ J K

0 0 0 0 0 x

0 0 1 1 1 x

0 1 0 1 0 x

0 1 1 1 1 x

1 0 0 0 x 1

1 0 1 0 x 1

1 1 0 1 x 1

1 1 1 1 x 0

Table 1.98. Excitation table of the flip-flop

(a)

1

0

1

1 1

x x x x

00 01 1011

T

Q

RT R

Q

x x xx

1 1 1

00 01 1011

T

Q

RT R

Q

(b)

0

Figure 1.96. Karnaugh maps: a) J ; b) K

CK

R Q

Q
J

K
T

Figure 1.97. Logic circuit

102 Digital Electronics 3

E F Y

0 0 G

0 1 Q

1 0 Q

1 1 0

Table 1.99. Truth table

Q

(E + G)F

E + .F G F + .E G
E (F + G)

Q

Figure 1.98. State diagram

The characteristic equations can be used to construct the truth table shown in

Table 1.99.

The state diagram is represented in Figure 1.98.

SOLUTION 1.5.– The characteristic equation of the finite state machine is obtained as

follows:

Q+ = D [1.71]

= (Q+ E)F ·G+ E · F ·G+E · F ·G+Q · E · F ·G [1.72]

F G Y

0 0 Q · E
0 1 E

1 0 E

1 1 Q+ E

Table 1.100. Truth table

The truth table obtained from the characteristic equation is shown in Table 1.100.

Figure 1.98 presents the state diagram.

The function table is shown in Table 1.101.

Synchronous Finite State Machines 103

G
E F G

.E GE.F + .F G +

.E GE.F + .F G +

Q Q

E F

Figure 1.99. State diagram

Inputs Output Y Observation

3 inputs at 0 Q Toggle

2 of 3 inputs at 0 0 Reset

2 of 3 inputs at 1 1 Set

3 inputs at 1 Q No change

Table 1.101. Function table

SOLUTION 1.6.– (Sequence Detector Design).

In the case of the Mealy state machine, the state diagram for the 01 sequence

detector is given in Figure 1.100.

1/0 bS a

0/0

1/1

0/0S

Figure 1.100. State diagram (Mealy model)

Table 1.102 depicts the state table.

As the machine has only two states, we can assign the binary code 0 to the state

Sa, and 1 to the state Sb. The Karnaugh maps shown in Figures 1.101(a) and (b) are

obtained by using the D flip-flop excitation table. We can obtain the following logic

equations:

Q+ = D = X [1.73]

and

Y = X ·Q [1.74]

104 Digital Electronics 3

PS NS Output

Y

X = 0 1 X = 0 1

Sa Sb Sa 0 0

Sb Sb Sa 0 1

Table 1.102. State table (Mealy model)

Q

0 1

Q

QD

CLR

PR

CK

X

(c)(b)(a)

Q

X

0

1

00

0

Q

X

0

0

11

0

Y
0 1

X 1 1X

Q

Figure 1.101. Karnaugh maps for a) Q+ and b) Y ; c) logic circuit

Figure 1.101(a) presents the logic circuit of the sequence detector.

Figure 1.102 shows the state diagram of the 01 sequence detector based on the

Moore model.

0
0

1

1 0

1

0

2S /1

1S /0

0S /

Figure 1.102. State table (Moore model)

The state table can be constructed as shown in Table 1.103.

Synchronous Finite State Machines 105

PS NS Output

Y

X = 0 1

S0 S1 S0 0

S1 S1 S2 0

S2 S1 S0 1

Table 1.103. State table (Moore model)

The codes 00, 01 and 11 are assigned to the states S0, S1 and S2, respectively.

Using the excitation table of a D flip-flop, we can obtain the Karnaugh maps

represented in Figure 1.103. By grouping together adjacent cells containing 1s, we

obtain the following equations:

A+ = X ·A ·B [1.75]

B+ = X + A ·B [1.76]

and

Y = A ·B [1.77]

Figure 1.104 presents the logic circuit of the 01 sequence detector.

(b)

1X

0

1X

0 0 x0

0 1 0 x

X 00 01 1011

B

AB A

(a)

A

B

A

0

1 1

00

0

(c)

0 1

B

1 1 x1

0 1 0 x

X 00 01 1011

B

AB A

0

Figure 1.103. Karnaugh maps: a) A+; b) B+; c) Y

In order to recognize the two binary sequences, 01 and 10, the state machine must

operate according to each of the state diagrams shown in Figure 1.105. To satisfy the

same requirements, the Moore state machine generally requires a higher number of

states as compared to the number of states required by the Mealy state machine.

SOLUTION 1.7.– A finite state machine that generates the two’s complement of a

number can be based on Mealy or Moore model.

106 Digital Electronics 3

X
PR

PR

CK

1

CLR
Q

QD
Y

A

2

CLR
Q

QD B

Figure 1.104. Logic circuit

0

bS c

S a

0/1

1/1

0/01/0

0/01/0

(a)

0S /0

1

0
1

1
1

(b)

0

1S /0

0

1

0

0

3S /1
4S /1

2S /

S

Figure 1.105. State diagram: a) Mealy model b) Moore model

The state diagram of the state machine based on Mealy model is represented in

Figure 1.106.

1/1
bS a0/0 1/0

0/1
S

Figure 1.106. State diagram (Mealy model)

Synchronous Finite State Machines 107

PS NS Output

Y
X = 0 1 X = 0 1

Sa Sa Sb 0 1
Sb Sb Sb 1 0

Table 1.104. State table (Mealy model)

The state table can be constructed as shown in Table 1.104.

The machine has two states that can be represented by 0 and 1. The excitation

table of the D flip-flop can be used to construct the Karnaugh maps shown in

Figures 1.107(a) and (b). Thus:

Q+ = X +Q [1.78]

Y = X ⊕Q [1.79]

The logic circuit of the finite state machine is depicted in Figure 1.107(c).

(a)

0 1
Q

X

0

1

10

1

Q

X

0

1

10

1

0 1

X 1 1X

QQ

Q

QD

CLR

PR

CK

X Y

(c)(b)

Figure 1.107. Karnaugh maps for a) Q+ and b) Y ; c) logic circuit

0
0S /0

1

0 0

1

0 1

1S /1 2S /

Figure 1.108. State diagram (Moore model)

In the case of the Moore model, the finite state machine that generates the two’s

complement of a number can be described by the state diagram in Figure 1.108.

The state table is represented in Table 1.105.

The machine has three states, S0, S1 and S2, that can be represented by 00, 01
and 11, respectively. The logic equations for the implementation using D flip-flops are

108 Digital Electronics 3

obtained from each of the Karnaugh maps shown in Figure 1.109 and can be written

as follows:

A+ = X ·B [1.80]

B+ = X +B [1.81]

and:

Y = A ·B [1.82]

PS NS Output

Y

X = 0 1

S0 S0 S1 0

S1 S1 S2 1

S2 S1 S2 0

Table 1.105. State table (Moore model)

B

1X

0

1X A

1 1 x0

1 1 1 x

X 00 01 1011

B

AB A

(b)

0 0 x0

0 1 1 x

X 00 01 1011

B

AB A

(a)

B

A

0

1 0

10

0

(c)

0 1

0

Figure 1.109. Karnaugh maps: a) A+; b) B+; c) Y

Figure 1.110 depicts the logic circuit for the state machine.

SOLUTION 1.8.– (Serial Comparator).

The transition table shown in Table 1.106 is obtained by assigning the binary codes

00, 01 and 10 to the states, S0, S1, and S2, respectively, of the state table.

Using the excitation table for the D flip-flop, it is possible to construct, based on the

transition table, the Karnaugh maps in Figure 1.111, where the code 11 is associated

with don’t-care states. The logic equations that characterize the NSs are given by:

X+ = X + ai · bi · Y [1.83]

Y + = Y + ai · bi ·X [1.84]

Synchronous Finite State Machines 109

B

PR

PR

CK

1

CLR
Q

QD

2

CLR
Q

QD

X

Y

A

Figure 1.110. Logic circuit

PS NS Outputs

X+Y + OA<B OA=B OA>B

XY aibi = 00 01 10 11

00 00 10 01 00 0 1 0

01 01 01 01 01 0 0 1

10 10 10 10 10 1 0 0

11 x x x x 0 0 0

Table 1.106. Transition table (Moore model)

The output logic equations are derived from the Karnaugh maps shown in

Figure 1.112 as follows:

OA>B = X · Y [1.85]

OA=B = X · Y [1.86]

OA<B = X · Y [1.87]

The logic circuit of the finite state machine is represented in Figure 1.113, where

EN denotes the enable signal.

110 Digital Electronics 3

(a)

X

a i

b i

b ia i
YX

b ia i
a i

b i

1 00 0

x x x x

1 1 1 1

0 0 0 0

00 01 11 10

00

01

11

10

X

Y

00 0

x x x x

0 0 0 0

1 1 1

00 01 11 10

00

01

11

10

1

1

X

Y

(b)

Y

Figure 1.111. Karnaugh maps: a) X+; b) Y +

Y1 0

0 1

0

1

(a)

0 0

0 0

0 1

0

1

(b)

1 0

0 0

0 1

0

1

(c)

0 1

X X X
Y

X

Y

Y

Y

X
Y

X

Figure 1.112. Karnaugh maps: a) OA>B ; b) OA=B ; c) OA<B

SOLUTION 1.9.– (State Diagram of a Shift Register).

The state diagram of the two-bit shift register is shown in Figure 1.114(a), where

the states correspond to the different Q1Q2 combinations and each transition is

determined by the value applied to the input Di.

Figure 1.114(b) depicts the state diagram of the three-bit shift register. The state

machine has eight states that are defined by the different combinations of Q1Q2Q3

and it moves from one state to another based on the value applied to the input Di.

We can see that the complexity of the state diagram is not directly related to the

complexity of the logic circuit.

SOLUTION 1.10.– (State Diagram: Sum Law and Mutual-Exclusion Requirement).

Each of the state diagrams shown in Figure 1.115 has been modified so as to satisfy

the sum law and mutual exclusion requirement.

Synchronous Finite State Machines 111

Y

O

bi

a i

1

0

Q

QD

CLR

PR

1

0

Q

QD

CLR

PR

CKEN

OA=B

A<BO

X

A>B

Figure 1.113. Logic circuit of the serial comparator

(b)
01

10

11
1

00
0 010 101

011

000

001

110100

0 1
1110

1

1 1

00

(a)

1

0

1

0

1

0

1

0 0

1

1

1

0

1

Figure 1.114. State diagram: a) two-bit register; b) three-bit register

SOLUTION 1.11.– (Critical Race Condition).

For the state machine 1, the transition from the state S2 (11) to the state S0 (00)
requires the modification of two state variables. If the state of the first variable changes

before that of the second, the transition takes place via the state S3 (10), and the

machine wrongly remains in this state as the holding condition, Y , is verified. If, on

the other hand, the second variable changes state before the first, the transition takes

place via the state S1 (01) and the state machine moves correctly to the state S0. As

it is difficult in practice to predict the path the machine will take, this is a critical race

condition.

In the case of the state machine 2, each transition requires the modification of only

one variable and there is, therefore, no critical race condition.

112 Digital Electronics 3

X

1

Y/ Z.X

Y/ Z.X

S 2
Y/ Z.X

Y/ Z.X

Y/ Z

(X + Y)/ Z
X/ Z

S 0

S 1

Y/ P Q.X

Y/ P Q.X

S 3

S 0

Y/ P Q.X

S 2 Y/ P Q

Y/ P Q.X

Y/ P Q.X

Y/ P Q

Y/ P Q.X

Y/ P Q.X

S 3

Y/ Z.X

Y/ Z.X

(X + Y)/ Z

(a)

X/ P Q

X Y/ P Q

(b)

Y/ P Q.

S

1
X

X

X

Y.X

X Y

Y.X

Y.X

X Y Y.X

Y.X

X Y

Y.X

Y.X

Y.X

S 0

X

X

X

/ Y

X

/ YS 0

S 2

X

(c) (d)

X Y

/S C 0

/S C 0S 1
/S C 0S 2

/S C 0S 3

/ YS 3 / YS

Figure 1.115. Finite State Machine

SOLUTION 1.12.– (Analysis of a Finite State Machine (Moore Model)).

The logic equations for the inputs J and K obtained from the logic circuit of the

state machine are given by:

J1 = X [1.88]

K1 = X ·B [1.89]

J2 = K2 = X + A [1.90]

For the output, we have:

Y = A+B [1.91]

Synchronous Finite State Machines 113

It is possible to represent four states with two flip-flops. These states are encoded

with two variables, A and B. The truth table of the JK flip-flop can be used to obtain

the NSs (A+ and B+) for the state machine.

PS NS, A+B+ Output

AB X = 0 1 Y

S1 0 0 0 1 1 1 0

S2 0 1 0 0 1 0 1

S3 1 0 1 0 0 1 1

S4 1 1 1 1 1 0 1

Table 1.107. State table

We can also draw up the state table as shown in Table 1.107 by using the

characteristic equation for the JK flip-flop, that is:

Q+ = J ·Q+K ·Q

Thus

A+ = J1 ·A+K1 ·A
= X ·A+X ·B ·A [1.92]

= X ·A+X ·A+A ·B
B+ = J2 ·B +K2 ·B

= (X +A) ·B + (X + A) ·B
= X ·A ·B +X ·B +A ·B [1.93]

To complete the description of the finite state machine, Figure 1.116 presents the

state diagram and a timing diagram is illustrated in Figure 1.117.

SOLUTION 1.13.– (Synchronous Counter).

The counter to be implemented can be described as a Moore state machine:

– the outputs of the flip-flops correspond to the outputs of the counter;

– there are four states (S1, S2, S3 and S4).

Figure 1.118 shows the state diagram of the counter.

114 Digital Electronics 3

0

3/1

S 2/1

S 1/0

S 4/1

0

1
11

1

0

0

S

Figure 1.116. State diagram

Y

B

A

X

CK

Figure 1.117. Timing diagram

0 or 1

2/01 S 3/11

S 4/10

S 1/00

0

1 1

0

0

1

S

Figure 1.118. State table of the counter

The state table is represented in Table 1.108.

By assigning a binary code to each state, we can obtain the transition table shown

in Table 1.109.

Synchronous Finite State Machines 115

PS NS

C = 0 1

S1 S2 S3

S2 S3 S1

S3 S1 S2

S4 S1 S1

Table 1.108. State table

PS NS, A+B+

AB C = 0 1

00 01 11

01 11 00

11 00 01

10 00 00

Table 1.109. Transition table

The logic equations for the NSs, obtained based on the Karnaugh maps in

Figures 1.119 and 1.120, are given by:

A+ = D1 = A ·B · C + A ·B · C [1.94]

B+ = D2 = A ·B · C + A ·B · C +A · C [1.95]

In the expression for B+, the term A · B · C, which also appears in A+, has not

been reduced to allow the sharing of a logic gate.

The logic circuit for the counter is represented in Figure 1.121.

SOLUTION 1.14.– (Design of a 010 Sequence Detector (Moore Model)).

The 010 sequence detector can be described by the state diagram shown in

Figure 1.122, which is based on a Moore model.

Table 1.110 presents the state table, while Table 1.111 shows the transition table

obtained by assigning a binary code to each state.

From Table 1.112, Karnaugh maps can be obtained as shown in Figures 1.123–

1.126.

116 Digital Electronics 3

A

1

1 0 00

1 0 0 0

C 00 01 1011

B

C

AB

0

Figure 1.119. Function A+

A+ = D1 = A ·B · C +A ·B · C

01

C 00 01 1011

B

C

AB A

1 0 01

1 0 1

0

Figure 1.120. Function B+

B+ = D2 = A ·B · C +A ·B · C +A · C

B

Q

QD

CLR

1

C

CK

A

Q

QD

CLR

2

Figure 1.121. Logic circuit of the counter (outputs: A and B)

The logic equations for the flip-flop inputs can be written as follows:

J1 = A+B ·X [1.96]

K1 = B +X [1.97]

J2 = X [1.98]

K2 = X [1.99]

Synchronous Finite State Machines 117

0

2/0 S 3/0 S 4/1S 1/0
0 1 0

1

1

0

1

S

Figure 1.122. State diagram of the 010 sequence detector

PS NS Output

X = 0 1 Y

S1 S2 S1 0

S2 S2 S3 0

S3 S4 S1 0

S4 S2 S1 1

Table 1.110. State table

PS NS, A+B+ Output

AB X = 0 1 Y

00 01 00 0

01 01 10 0

10 11 00 0

11 01 00 1

Table 1.111. Transition table

For the output of the detector, we obtain:

Y = A ·B [1.100]

Figure 1.127 depicts the logic circuit of the 010 sequence detector.

118 Digital Electronics 3

X A = Q1 B = Q2 A+ = Q+
1 B+ = Q+

2 J1 K1 J2 K2

0 0 0 0 1 0 x 1 x

0 0 1 0 1 0 x x 0

0 1 0 1 1 x 0 1 x

0 1 1 0 1 x 1 x 0

1 0 0 0 0 0 x 0 x

1 0 1 1 0 1 x x 1

1 1 0 0 0 x 1 0 x

1 1 1 0 0 x 1 x 1

Table 1.112. Table that can be used to derive the logic
expressions for the flip-flop inputs

x

1

0

0 1 x

00 01 1011

B

X

AB A

x

x

X

00

Figure 1.123. Input J1

J1 = B ·X

1

1

x

x x 1

00 01 1011

B

X

AB A

1

0

X

x0

Figure 1.124. Input K1

K1 = B +X

SOLUTION 1.15.– (Analysis of a Finite State Machine (Mealy Model)).

Analyzing the logic circuit of the finite state machine, we can obtain the logic

equation for the D input of each flip-flop as follows:

D1 = A+ = X ·A+X ·B [1.101]

D2 = B+ = X ·A ·B [1.102]

Synchronous Finite State Machines 119

1

1

1

0 x 0

00 01 1011

B

X

AB A

x

x

X

x0

Figure 1.125. Input J2

J2 = X

0

1

x

x 1 x

00 01 1011

B

X

AB A

1

x

X

00

Figure 1.126. Input K2

K2 = X. For a color version of this figure, see
www.iste.co.uk/ndjountche/electronics3.zip

Y

1 2

X

CK

Q

Q

K

J
A

CLR
Q

Q

K

J
B

CLR

Figure 1.127. Logic circuit of the 010 sequence detector

We have, for the output:

Y = X ·A [1.103]

Table 1.12 depicts the state table constructed on the basis of the logic equations

for the flip-flop inputs and output.

The state diagram is represented in Figure 1.128:

120 Digital Electronics 3

PS NS, A+B+ Output Y

AB X = 0 1 X = 0 1

S1 00 00 01 0 0

S2 01 00 10 0 0

S3 10 00 10 0 1

S4 11 00 10 0 1

Table 1.113. State table

0/0 4

S 3

S 2

S 1

0/0

1/1

0/0
1/0

0/0

1/0 1/1

S

Figure 1.128. State diagram

Y

B

A

X

CK

Figure 1.129. Timing diagram 1. For a color version of this figure, see
www.iste.co.uk/ndjountche/electronics3.zip

– the output, Y , is set to 1 when the input signal, X , has been at the logic state 1

for three consecutive clock cycles;

Synchronous Finite State Machines 121

Y

B

A

X

CK

Figure 1.130. Timing diagram 2 (synchronization problem). For a color
version of this figure, see www.iste.co.uk/ndjountche/electronics3.zip

– the machine never reaches the state S4 and can only take this state initially;

– with an input X whose logic state is 0, we can realize the condition for the state

machine to remain in the state S1. The initialization to S1 is, thus, not necessary.

Figure 1.129 depicts a timing diagram of the finite state machine.

Because this is a Mealy state machine, the timing diagram can be affected by the

propagation delays of logic gates, as shown in Figure 1.130.

SOLUTION 1.16.– (Bidirectional Counter).

The bidirectional counter can be described by the transition table shown in

Table 1.114.

PS NS Inputs

X A B A+ B+ J1 K1 J2 K2

0 0 0 0 1 0 x 1 x

0 0 1 1 0 1 x x 1

0 1 0 1 1 x 0 1 x

0 1 1 1 1 x 0 x 0

1 0 0 0 0 0 x 0 x

1 0 1 0 0 0 x x 1

1 1 0 0 1 x 1 1 x

1 1 1 1 0 x 0 x 1

Table 1.114. Transition table

122 Digital Electronics 3

x

1

0

0 0 x

00 01 1011

B

X

AB A

x

x

X

10

Figure 1.131. Input J1

J1 = X ·B

x

1

1

0 x 1

00 01 1011

B

X

AB A

x

1

X

x0

Figure 1.132. Input J2

J2 = X +A

Figures 1.131–1.134 present Karnaugh maps obtained based on the transition

table. The logic equations for the inputs of the JK flip-flops are, therefore, given by:

J1 = X ·B [1.104]

K1 = X ·B [1.105]

J2 = X +A [1.106]

and:

K2 = X +A [1.107]

SOLUTION 1.17.– (Design of a 010 Sequence Detector (Mealy Model)).

The Mealy state machine that can be used for the detection of the binary sequence

010 is described either by the state table shown in Table 1.115 (detection with overlap,

or case a), or by the state table shown in Table 1.116 (detection without overlap, or

case b).

Synchronous Finite State Machines 123

0

1

x

x x 1

00 01 1011

B

X

AB A

0

0

X

x0

Figure 1.133. Input K1

K1 = X ·B

0

1

x

x 1 x

00 01 1011

B

X

AB A

1

x

X

10

Figure 1.134. Input K2

K2 = X + A

PS NS Output Y

X = 0 1 X = 0 1

S1 S2 S1 0 0

S2 S2 S3 0 0

S3 S2 S1 1 0

Table 1.115. State table (case a)

PS NS Output Y

X = 0 1 X = 0 1

S1 S2 S1 0 0

S2 S2 S3 0 0

S3 S1 S1 1 0

Table 1.116. State table (case b)

124 Digital Electronics 3

Two bits must be used to encode three states. The state S4, which is unused, must

be inserted in the state diagram in such a way as not to affect the operation of the

detector.

The state diagrams for cases a and b are shown in Figures 1.135 and 1.136,

respectively.

0/0

2

S 4

S 3

S 1

1/0
1/0

0/1

0/0

0/0

1/0

1/0

S

Figure 1.135. State diagram (case a)

0/0

0/0 S 2 S 3

S 4 S 1

1/0

0/0

1/0

1/0
0/1

1/0

Figure 1.136. State diagram (case b)

X A = Q1 B = Q2 A+ = Q+
1 B+ = Q+

2 J1 K1 J2 K2

0 0 0 0 1 0 x 1 x

0 0 1 0 1 0 x x 0

0 1 0 0 1 x 1 1 x

0 1 1 0 1 x 1 x 0

1 0 0 0 0 0 x 0 x

1 0 1 1 0 1 x x 1

1 1 0 0 0 x 1 0 x

1 1 1 0 0 x 1 x 1

Table 1.117. Table that can be used to derive the logic expressions for
the J and K inputs (case a)

Synchronous Finite State Machines 125

X A = Q1 B = Q2 A+ = Q+
1 B+ = Q+

2 J1 K1 J2 K2

0 0 0 0 1 0 x 1 x

0 0 1 0 1 0 x x 0

0 1 0 0 0 x 1 0 x

0 1 1 0 1 x 1 x 0

1 0 0 0 0 0 x 0 x

1 0 1 1 0 1 x x 1

1 1 0 0 0 x 1 0 x

1 1 1 0 0 x 1 x 1

Table 1.118. Table that can be used to derive the logic expressions for
the J and K inputs (case b)

x

1

0

0 1 x

00 01 1011

B

X

AB A

x

x

X

00

Figure 1.137. Input J1

J1 = X ·B

1

1

x

x x 1

00 01 1011

B

X

AB A

1

1

X

x0

Figure 1.138. Input K1

K1 = 1

The tables that can be used to derive the logic expressions for the flip-flop inputs,

J and K, are represented in Tables 1.117 and 1.118. These tables are used to construct

Karnaugh maps shown in Figures 1.137–1.141. We thus have:

J1 = X ·B [1.108]

K1 = 1 [1.109]

J2 =

{
X for case a

X ·A for case b
[1.110]

126 Digital Electronics 3

and:

K2 = X [1.111]

x

1

1

0 x 0

00 01 1011

B

X

AB A

x

1

X

x0

Figure 1.139. Input J2 (a)
J2 = X

0

1

x

x 1 x

00 01 1011

B

X

AB A

1

x

X

00

Figure 1.140. Input K2

K2 = X

The logic equation for the output is obtained from the Karnaugh map shown in

Figure 1.142 and can be written as follows:

Y = X ·A ·B [1.112]

SOLUTION 1.18.– (Counter Generating the Sequence 2 6 1 7 5).

Three flip-flops are needed, and the maximum number of states that can then be

represented is eight. The three unused states are associated with don’t-care states, x,

of NSs and inputs.

Karnaugh maps that can be used to derive the logic equations of the flip-flop inputs

are constructed from the transition table presented in Table 1.119.

Synchronous Finite State Machines 127

x

1

1

0 x 0

00 01 1011

B

X

AB A

x

0

X

x0

Figure 1.141. Input J2 (b)
J2 = X ·A

0

1

0

0 0 0

00 01 1011

B

X

AB A

0

1

X

00

Figure 1.142. Output Y
Y = X ·A ·B

PS NS Input

A B C A+ B+ C+ J1 K1 J2 K2 J3 K3

0 0 0 x x x x x x x x x

0 0 1 1 1 1 1 x 1 x x 0

0 1 0 1 1 0 1 x x 0 0 x

0 1 1 x x x x x x x x x

1 0 0 x x x x x x x x x

1 0 1 0 1 0 x 1 1 x x 1

1 1 0 0 0 1 x 1 x 1 1 x

1 1 1 1 0 1 x 0 x 1 x 0

Table 1.119. Table that can be used to derive the
logic expressions of the flip-flop inputs

For the state machine implementation using D flip-flops, Karnaugh maps are

represented in Figures 1.143–1.145. The input logic equations are given by:

D1 = A+ = A+B · C [1.113]

D2 = B+ = A+B [1.114]

D3 = C+ = A ·B +A ·B or D3 = C+ = A ·B +A · C [1.115]

128 Digital Electronics 3

01

x

x 0

00 01 1011

C

A

BC B

1

1

A

1 x0

Figure 1.143. Inputs D1

D1 = A+B · C

11

x

x 0

00 01 1011

C

A

BC B

0

1

A

1 x0

Figure 1.144. Input D2

D2 = A+B

01

x

x 1

00 01 1011

C

A

BC B

1

0

A

1 x0

Figure 1.145. Input D3

D3 = A · B +A ·B

Substituting the sequences not used for counting, we obtain:

– PS: 0 (000), D1 = 1, D2 = 1, D3 = 1 or D3 = 0 ⇒ NS: 111 (7) or 110 (6);

– PS: 3 (011), D1 = 1, D2 = 1, D3 = 0 or D3 = 1 ⇒ NS: 110 (6) or 111 (7);

– PS: 4 (100), D1 = 0, D2 = 1, D3 = 0 ⇒ NS: 010 (2).

Synchronous Finite State Machines 129

70

2 3

5 6

1

4

Figure 1.146. State diagram
D3 = A ·B +A · B

7

2 0

5 6

1

4

3

Figure 1.147. State diagram
D3 = A ·B +A · C

The two possible state diagrams are shown in Figures 1.146 and 1.147.

The Karnaugh maps, in the case of the JK flip-flops, are depicted in Figures 1.148–

1.153. The logic equations for the inputs J and K can be written as follows:

J1 = 1 and K1 = B + C [1.116]

J2 = 1 and K2 = A [1.117]

J3 = A and K3 = A ·B [1.118]

Substituting the sequences not used for counting, we obtain:

– PS: 0 (000), J1 = K1 = 1, J2 = 1, K2 = 0, J3 = K3 = 0 ⇒ NS: 110 (6);

– PS: 3 (011), J1 = 1, K1 = 0, J2 = 1, K2 = 0, J3 = K3 = 0 ⇒ NS: 111 (7);

– PS: 4 (100), J1 = K1 = 1, J2 = K2 = 1, J3 = K3 = 1 ⇒ NS: 011 (3).

Figure 1.154 shows the state diagram of the counter.

130 Digital Electronics 3

x1

x

x x

00 01 1011

C

A

BC B

x

x

A

1 10

Figure 1.148. Input J1

J1 = 1

11

x

x x

00 01 1011

C

A

BC B

x

x

A

1 x0

Figure 1.149. Input J2

J2 = 1

x1

x

x 1

00 01 1011

C

A

BC B

x

0

A

x x0

Figure 1.150. Input J3

J3 = A

Synchronous Finite State Machines 131

11

x

x 1

00 01 1011

C

A

BC B

0

x

A

x x0

Figure 1.151. Input K1

K1 = B + C

x1

x

x 1

00 01 1011

C

A

BC B

1

0

A

x x0

Figure 1.152. Input K2

K2 = A

11

x

x x

00 01 1011

C

A

BC B

0

x

A

0 x0

Figure 1.153. Input K3

K3 = A ·B

132 Digital Electronics 3

4 7

2 0

5 6

13

Figure 1.154. State diagram (JK flip-flops)

SOLUTION 1.19.– Minimizing the number of states using the implication method.

The state table shown in Table 1.120 can be used to construct the implication table

represented in Table 1.122. After a single marking pass, we obtain the implication

table shown in Table 1.123. As there are no more possibilities for marking, we can

conclude that the states A, E and G are equivalent (A ≡ E ≡ G), as are the states B
and F (B ≡ F). Table 1.124 presents the reduced state table of the state machine 1.

PS NS Output

Y

X = 0 1

A A B 1

B C A 0

C A D 0

D C C 1

E G F 1

F C E 0

G E B 1

Table 1.120. State table of the state machine 1

The implication table corresponding to the state table shown in Table 1.121 is

represented in Table 1.125, where the pair of states S5 − S3, which is found in a cell

implicating these same states, is redundant and can be eliminated. As some cells

marked with a cross, because they are associated with states leading to different

outputs, can also lead to other markings, we can construct the implication table

shown in Table 1.126. Taking into account the different marking possibilities that

become apparent, the resulting implication table can be set up as shown in

Synchronous Finite State Machines 133

Table 1.127. We can, thus, establish the following equivalent relationships:

S1 ≡ S2 ≡ S4 and S3 ≡ S5. Assuming that:

A = S0 [1.119]

B = S1 = S2 = S4 [1.120]

C = S3 = S5 [1.121]

D = S6 [1.122]

we obtain, for the state machine 2, the reduced state table shown in Table 1.128.

PS NS Output

Y

X = 0 1 X = 0 1

S0 S1 S2 1 1

S1 S3 S5 1 1

S2 S5 S4 0 0

S3 S1 S6 1 1

S4 S5 S2 0 0

S5 S4 S3 0 0

S6 S5 S6 0 0

Table 1.121. State table of the state machine 2

F

−A

B F

G

−A E
−

−C

C B

E

−

−G

F B

E

−A E

−

−C

A D

A

−

−A

B C

C

−

−A

D E

C

−

−C

C F

G

B

C

D

E

F

G

BA C D E

−

Table 1.122. Implication table according to the state table

134 Digital Electronics 3

F

−A

B C

C

−

−A

B F

G

−A E

−

−C

A D

A

−

−A

D E

C

−

−C

C F

G

−

−C

C B

E

−A E

−F B

B

C

D

E

F

G

BA C D E

−

Table 1.123. Implication table after the first marking pass

PS NS Output

Y
X = 0 1

A A B 1

B C A 0

C A D 0

D C C 1

Table 1.124. Reduced state table for the state machine 1

−

5S1S0 S2 S3 S4

−

−

S1

S2

S3

S4

S5

S6

−

S2
S3 S5

S4

S5S3
S6 S1

S2
S3 S5

S1 S4 S1

−S2S6

−S2 S0
S4
S5 S3

S0

S1 S2

S5 S3

S1 S0
S3S5−
−

−

−

−

−

−

−

−

S

Table 1.125. Implication table according to the state table

Synchronous Finite State Machines 135

−

5S1S0 S2 S3 S4

S1

S2

S3

S4

S5

S6

−

S S4
S5

S5S3
S6 S1

S2 S1
S5S3

S4 S1

−S2S1−S2S6

S0S2
S4 S0

S3S5

S1 S0
S3S5

S
2

3

−

−
−

−

−

−

−

−

−

−

S

Table 1.126. State table after one marking pass

−

5S1S0 S2 S3 S4

S1

S2

S3

S4

S5

S6

−

−

−

−

−

−

−

S2 S4
S5S3

S5S3
S6 S1

S2 S1
S5S3

S4 S1

S6 S2 −S1 S2

−

−

−

−

S5

S4S0S2 S3

S0
S5

S1 S0
S3

−

S

Table 1.127. Implication table after two marking pass

PS NS Output

Y

X = 0 1 X = 0 1

A C D 1 1

B B C 0 1

C C B 1 1

D A C 0 1

Table 1.128. Reduced state table for the state machine 2

136 Digital Electronics 3

PS NS Output

Y

X = 0 1

S0 S1 S2 1

S1 S3 S5 1

S2 S5 S4 0

S3 S1 S6 1

S4 S5 S2 0

S5 S4 S3 0

S6 S5 S6 0

Table 1.129. State table of the state machine 1

SOLUTION 1.20.– (Minimizing the Number of States Using the Partitioning Method):

a) Table 1.131 summarizes the different steps necessary for the determination of

equivalent states from the state table shown in Table 1.129. Thus, states S0 and S3 are

equivalent, just like the states S2, S4 and S6. Assuming that:

A = S0 = S3 [1.123]

B = S1 [1.124]

C = S2 = S4 = S6 [1.125]

D = S5 [1.126]

we can obtain the reduced state table in Table 1.132.

PS NS Output

Y

X = 0 1 X = 0 1

S0 S4 S3 0 1

S1 S5 S3 0 0

S2 S4 S1 0 1

S3 S5 S1 0 0

S4 S2 S5 0 1

S5 S1 S2 0 0

Table 1.130. State table of the state machine 2

Synchronous Finite State Machines 137

Blocks to be formed

P0 (S0S1S2S3S4S5S6)

Output Y 1 1 0 1 0 0 0 S0S1S3 and S2S4S5S6

P1 (S0S1S3)(S2S4S5S6)

NS

X = 0 S1S3S1 S5S5S4S5

X = 1 S2S5S6 S4S2S3S6 S2S4S6 and S5

P2 (S0S1S3)(S2S4S6)(S5)

NS

X = 0 S1S3S1 S5S5S5 S4

X = 1 S2S5S6 S4S2S6 S3 S0S3 and S1

P3 (S0S3)(S1)(S2S4S6)(S5)

NS

X = 0 S1S1 S3 S5S5S5 S4

X = 1 S2S6 S5 S4S2S6 S3

P4 = P3 (S0S3)(S1)(S2S4S6)(S5)

Table 1.131. Determination of equivalent states using the partitioning
method (state machine 1)

PS NS| Output

Y

X = 0 1

A B C 1

B A D 1

C D C 0

D C A 0

Table 1.132. Reduced state table (state machine 1)

The state machine 2 is described by the state table shown in Table 1.130. Based on

Table 1.133, the states S0 and S2 are equivalent, as are the states S1 and S3. Assuming

that:

A = S0 = S2 [1.127]

B = S1 = S3 [1.128]

C = S4 [1.129]

D = S5 [1.130]

we can obtain the reduced state table shown in Table 1.134.

138 Digital Electronics 3

C| Blocks to be formed

P0 (S0S1S2S3S4S5)

Output Y

X = 0 0 0 0 0 0 0

X = 1 1 0 1 0 1 0 S0S2S4 and S1S3S5

P1 (S0S2S4)(S1S3S5)

NS

X = 0 S4S4S2 S5S5S1

X = 1 S3S1S5 S3S1S2 S1S3 and S5

P2 (S0S2S4)(S1S3)(S5)

NS

X = 0 S4S4S2 S5S5 S1

X = 1 S3S1S5 S3S1 S2 S0S2 and S4

P3 (S0S2)(S4)(S1S3)(S5)

NS

X = 0 S4S4 S2 S5S5 S1

X = 1 S3S1 S5 S3S1 S2

P4 = P3 (S0S2)(S4)(S1S3)(S5)

Table 1.133. Determination of equivalent states using the partitioning
method (state machine 2)

PS NS Output

Y

X = 0 1 X = 0 1

A C B 0 1

B D B 0 0

C A D 0 1

D B A 0 0

Table 1.134. Reduced state table (state machine 2)

b) The state table for the state machine 1 is represented in Table 1.135. Forming

partitions as shown in Table 1.136, we can deduce that the equivalent states are as

follows: A and F , C and G, B and H and D and E. The reduced state table is

represented in Table 1.137.

Synchronous Finite State Machines 139

PS NS Output

Z

XY = 00 01 10 11

A A F C B 0

B A B D H 1

C G B C D 0

D C F D D 1

E G A E D 1

F F F G B 0

G G B G E 0

H F B E H 1

Table 1.135. State table of the state machine 1

Blocks to be formed

P0 (ABCDEFGH)

Output Z 0 1 0 1 1 0 0 1 ACFG and BDEH

P1 (ACFG)(BDEH)

NS

XY = 00 AGFG ACGF

XY = 01 FBFB BFAB AF and CG

XY = 10 CCGG DDEE

XY = 11 BDBE HDDH

P2 (AF)(CG)(BDEH)

NS

XY = 00 AF GG ACGF BH and DE

XY = 01 FF BB BFAB BH and DE

XY = 10 CG CG DDEE

XY = 11 BB DE HDDH

P3 (AF)(CG)(BH)(DE)

NS

XY = 00 AF GG AF CG

XY = 01 FF BB BB FA

XY = 10 CG CG DE DE

XY = 11 BB DE HH DD

P4 = P3 (AF)(CG)(BH)(DE)

Table 1.136. Determination of equivalent states using the partitioning
method (state machine 1)

140 Digital Electronics 3

PS NS Output

Z

XY = 00 01 10 11

A A A C B 0

B A B D B 1

C C B C D 0

D C A D D 1

Table 1.137. Reduced state table (state machine 1)

c) For the state machine 2, whose state table is shown in Table 1.138, the

construction in Table 1.139 allows to determine the following equivalent states: A
and H , B and G, C and F and D and E. Table 1.140 presents the reduced state table.

PS NS Output

Z

XY = 00 01 10 11 XY = 00 01 10 11

A A G E H 0 0 1 1

B F B B D 0 1 0 0

C F C G H 0 1 0 1

D H C E D 1 0 1 0

E A F E D 1 0 1 0

F F C B A 0 1 0 1

G F G G D 0 1 0 0

H H B E H 0 0 1 1

Table 1.138. State table of the state machine 2

SOLUTION 1.21.– Simplification of the finite state machines whose state tables are

shown in Tables 1.141–1.144.

Figure 1.155(a) shows the merger graph for the state machine 1 that can be used

to construct the simplified merger graph for compatible states, as shown in

Figure 1.155(b), and the simplified merger graph for incompatible states, as shown in

Figure 1.155(c). The pairs of compatible states are as follows: (AB), (AC), (AD),
(BD), (CE) and (CG), while the set of maximal compatibility classes is formed of

(ABD), (AC), (CE), F and (CG). Figure 1.155(d) presents the compatibility

graph. Replacing (ABD) by S0, (CE) by S1, (F) by S2 and (CG) by S3 we obtain

the reduced state table shown in Table 1.146.

Synchronous Finite State Machines 141

Blocks to be formed

P0 (ABCDEFGH)

Output Y

XY = 00 0 0 0 1 1 0 0 0 ABCFGH and DE

XY = 01 0 1 1 0 0 1 1 0 ADEH and BCFG

XY = 10 1 0 0 1 1 0 0 1 ADEH and BCFG

XY = 11 1 0 1 0 0 1 0 1 ACFH and BDEG

P1 (AH)(BG)(CF)(DE)

NS

XY = 00 AH FF FF HA

XY = 01 GB BG CC CF

XY = 10 EE BG GB EE

XY = 11 HH DD HD DD

P2 = P1 (AH)(BG)(CF)(DE)

Table 1.139. Determination of equivalent states using the partitioning
method (state machine 2)

PS NS Output

Z

XY = 00 01 10 11 XY = 00 01 10 11

A A B D A 0 0 1 1

B C B B D 0 1 0 0

C C C B A 0 1 0 1

D A C D D 1 0 1 0

Table 1.140. Reduced state table (state machine 2)

In order to determine the pairs of compatible states for the state machine 2, we

can construct the implication tables represented in Tables 1.145(a)–(c). The pairs of

compatible states are as follows: (AD), (AE), (AF), (AG), (CE), (DF), (DG),
(EG) and (FG). Figures 1.156(a) and (b) show the simplified merger graphs for the

compatible and incompatible states, respectively. The set of maximal compatibility

classes consists of (ADFG), (AEG), (B), (CE) and (EG). Figure 1.156(c) presents

the compatibility graph. Assuming that S0 = ADFG, S1 = B, S2 = CE and

S3 = EG, we can obtain the reduced state table shown in Table 1.147.

142 Digital Electronics 3

PS NS Output

Y

X = 0 1 X = 0 1

A B C – 0

B D – 0 –

C – E 1 –

D B G 0 0

E F C 1 1

F E D 0 1

G F – 1 0

Table 1.141. State table (state machine 1)

PS NS Output

Y

X = 0 1

A D – 0

B C E 1

C B G 0

D A B –

E – E 0

F G B –

G F – 0

Table 1.142. State table (state machine 2)

PS NS Output

Z

XY = 00 01 10 11

A A B – D –

B A B C – 0

C – B C H 0

D – – G D –

E E F – D 1

F E F G G 1

G D F G H 1

H A – – H 0

Table 1.143. State table (state machine 3)

Synchronous Finite State Machines 143

PS NS Output

Z

XY = 00 01 10 11 XY = 00 01 10 11

A G A – H – 1 – 1

B G – B D 0 – 0 0

C C F E – 0 – – –

D – A E D – – – 0

E C – E D – – 1 –

F G F – D – 1 – –

G G A B – 0 – 0 –

H – – E H – – 1 1

Table 1.144. State table (state machine 4)

NOTE 1.7.– Referring to the implication table shown in Table 1.145(c), we can also

determine the maximal compatibility or incompatibility classes as follows:

– maximal compatibility classes:

Column F: (FG)

Column E: (EG) (FG)

Column D: (DFG) (EG)

Column C: (CE) (DFG) (EG)

Column B: (B) (CE) (DFG) (EG)

Column A: (ADFG) (AEG) (B) (CE)

– maximal incompatibility classes:

Column F: (F)

Column E: (EF)

Column D: (DE) (EF)

Column C: (CG) (CF) (CD) (DE) (EF)

Column B: (BCG) (BCF) (BCD) (BDE) (BEF)

Column A: (ABC) (BCG) (BCF) (BCD) (BDE) (BEF)

Tables 1.148(a) and (b) give the implication tables for the state machine 3. The

simplified merger graphs for the compatible and incompatible states are shown in

Figures 1.157(a) and (b), respectively. For the compatible pairs, we have: (AG),
(AH), (BF), (BG), (CE), (CH) and (DE). The set of maximal compatibility

144 Digital Electronics 3

classes consists of the following elements: (ABCH), (ADH), (DEF) and (DEG).
Figure 1.157(c) presents the compatibility graph. The reduced state table, as

illustrated in Table 1.150, where S0 = (ABCH), S1 = (DEF), S2 = (DG) and

S3 = (DH), is obtained by merging the rows of the initial state table.

A

A

D

F

E

G

(b)

C

B

CG

A

F

D

E

G

D

F

AGBD

CE AD

AC

AB

(d)

(a)

DE

BF

CG

CE

BD

B

C

C

B

(c)

E

G

Figure 1.155. a) Merger graph; b) simplified merger graph for
compatible states; c) simplified merger graph for incompatible states; d)

compatibility graph

Synchronous Finite State Machines 145

BE

(c)
A B C D E

G

F

F

B

C

D

E

DG

DF

EG

AG

AF

(b)
A B C D E

BFG

F

F

B

C

D

E

BD

DG

DF

EG

AG

AF

AB

BG

AC

BE

CG

BE

(a)
A B C D E

BFG

BGF

F

B

C

D

E BE

BD

DG

DF

EG

AG

AF

Table 1.145. Implication table: a) based on the state table; b) after one
marking pass; c) after two marking pass

(c)

A

D

F

E

G

A

D

F

E

G

AG

C

B

C

B

CE

AD

AE

AFEG

DG

FG

DF

(a) (b)

Figure 1.156. a) Simplified merger graph for compatible states;
b) simplified merger graph for incompatible states; c) compatibility graph

146 Digital Electronics 3

PS NS Output

Y

X = 0 1 X = 0 1

S0 S0 S3 0 0

S1 S2 S1 1 1

S2 S1 S0 0 1

S3 S2 S1 1 0

Table 1.146. Reduced state table (state machine 1)

PS NS Output

Y

X = 0 1

S0 S0 S1 0

S1 S2 S2/S3 1

S2 S1 S3 0

S3 S0 S3 0

Table 1.147. Reduced state table (state machine 2)

(b)

DE

DH

CG

DH

AE

BF

AE
BF
DG

AD
BF
DH

DE

DH

DE

GH

B

C

D

E

DH

A B C D E

H

F

DH

G

DG

DH

DGF

G

B

C

D

E

DH

A B C D E

H

F

DH

G

CG

DG

DH

DGF

G

(a)

Table 1.148. Implication table a) based on the state table and b) after
one marking pass

Synchronous Finite State Machines 147

B

EG

DF
DG

AB

BH

AD

EF

DE

BC

AC

AH

A

E

G

F

H

A

E

G

F

H

(c)(b)

C

D

B

(a)

C

D

DH

Figure 1.157. a) Simplified merger graph for compatible states;
b) simplified merger graph for incompatible states; c) compatibility graph

NOTE 1.8.– Referring to the implication table shown in Table 1.148(b), we can also

determine the maximal compatibility or incompatibility classes as follows:

– maximal compatibility classes:

Column G: (G)

Column F: (F) (G)

Column E: (EF) (EG)

Column D: (DEF) (DEG) (DH)

Column C: (DEF) (DEG) (CH) (DH)

Column B: (BCH) (DEF) (DEG) (DH)

Column A: (ABCH) (ADH) (DEF) (DEG)

– maximal incompatibility classes:

Column G: (GH)

Column F: (FGH)

Column E: (FGH) (EH)

Column D: (FGH) (EH) (D)

Column C: (CFG) (FGH) (CD) (CE) (EH)

Column B: (BFG) (CFG) (FGH) (BE) (BD) (CD) (CE) (EH)

Column A: (AFG) (BFG) (CFG) (FGH) (AE) (BE) (BD) (CD) (CE) (EH)

For the state machine 4, it is possible to construct the implication tables as shown

in Tables 1.149(a)–(c). We can then determine the following pairs of compatible

states: (AG), (AH), (BF), (BG), (CE), (CH) and (DE). Figures 1.158(a)–(b)

show the simplified merger graphs for compatible and incompatible states,

148 Digital Electronics 3

respectively. Assuming that S0 = (AG), S1 = (BF), S2 = (CH) and S3 = (DE),
it is possible to reduce the state table as shown in Table 1.151.

(b)

CG

AF

CG

DH

AF

DH

CG

BE

CG

AF

CGF

B

C

D

E

AF CG

BE AF

G
CG
AF
BE

A B C D E

H

F G

BE

DH

AF

DH

(a)

F

B

C

D

E

G

A B C D E

H

F G
(c)

CGF

B

C

D

E

AF CG

AF

G

A B C D E

H

F G

AF

Table 1.149. Implication table a) based on the state table, b) after one
marking pass and c) after two marking pass

PS NS Output

Z

XY = 00 01 10 11

S0 S0 S0 S0 S3 0

S1 S1 S1 S2 S2 1

S2 S2 S1 S2 S3 1

S3 S0 – S2 S3 0

Table 1.150. Reduced state table (state machine 3)

Synchronous Finite State Machines 149

(a)
E

G

F

H

E

G

F

H

A

B

C

D

(b)

A

B

C

D

Figure 1.158. a) Subgraph of the merger graph for compatible states;
b) subgraph for merger graph of incompatible states

PS NS Output

Z

XY = 00 01 10 11 XY = 00 01 10 11

S0 S0 S0 S1 S2 0 1 0 1

S1 S0 S1 S1 S3 0 1 0 0

S2 S2 S1 S3 S2 0 – 1 1

S3 S2 S0 S3 S3 – – 1 0

Table 1.151. Reduced state table (state machine 4)

NOTE 1.9.– All the maximal compatibility classes are only pairs of states and the

maximal incompatibility classes can be determined using the implication table shown

in Table 1.149(c), as follows:

Column G: (GH)

Column F: (FGH)

Column E: (EFGH)

Column D: (DFGH) (EFGH)

Column C: (DFGH) (EFGH) (CFG) (CD)

Column B: (DFGH) (EFGH) (BEH) (BCD) (CFG)

Column A: (ABCD) (DFGH) (EFGH) (AEF) (BEH) (CFG)

SOLUTION 1.22.– (Transformation of Moore Model Based State Machine to

Equivalent Mealy Model Based State Machine).

150 Digital Electronics 3

Figure 1.159 shows the Moore state machines, while the equivalent Mealy state

machines are represented in Figure 1.160.

Y

Y

Y

XX

X X X X

X
YX

Y

Y

B/

C/A/

D/

X,

XX

X

Y

Y X

X
X

X

(b)(a)

A/

B/

C/

D/

Figure 1.159. Moore model: a) state machine 1; b) state machine 2

(b)

A

A

YX/

YX/

B

C
X/Y

X/Y

BA

YX/

YX/

YX/

C

YX/

YX/

X/Y

X/Y

YX/

X/YX/Y

(a)

Figure 1.160. Equivalent Mealy model: a) state machine 1; b) state
machine 2

SOLUTION 1.23.– (Transformation of Mealy Model Based State Machine to Moore

Model Based State Machine).

Each of the state machines represented in Figure 1.161 can be transformed as

shown in Figure 1.162.

Similarly, each of the state machines depicted in Figure 1.163 can be transformed

as shown in Figure 1.164.

SOLUTION 1.24.– (Splitting Finite State Machines).

Applying the rules for splitting, each finite state machine (modulo 6 counter and

010 and 1001 sequence detector) shown in Figures 1.165 and 1.166 can be transformed

as shown in Figures 1.167 and 1.168. Supposing that the states are represented by a

Synchronous Finite State Machines 151

1-out-of-n code, each signal, Zj , corresponds to a unique flip-flop output, Qj , which

is set to 1 whenever the state machine enters the corresponding state.

(a)

X/

YX/

Y

Y

X/Y

X/Y
YX/

C YX/AYX/

A

B

(b)

X/

X/

C

X/Y

Y

Figure 1.161. Mealy model: a) state machine 1; b) state machine 2

(a)

C/Y YB/

X

X

X

Y

Y X

X

X

A/Y

X

X X
1A /

2A /Y

B/

X

X

X

(b)

Figure 1.162. Moore model: a) state machine 1; b) state machine 2

(a)

B

C

BA

C

A

A

0/1

1/1

0/0
1/1

1/0

0/0

0/1

10/00
−1/−0

 00/00

10/10

01/−1

11/11

−1/01

−1/01

(b)

00/10

00/01

1/0

Figure 1.163. Mealy model: a) state machine 1; b) state machine 2

152 Digital Electronics 3

1

2B /11

1B /01

2A /00

−1

10

1C /−1 2C /10

D/0

B/ 1

0

1C /0
00

00

00

00−1
10

01

10
1001

11
00

11

00

1A /−0

−110

(b)

0

2A /1 2C /1

0

0

1

11

0
1

0

0

1
(a)

1A /0

Figure 1.164. Moore model: a) state machine 1; b) state machine 2

X

5

S 3S 2

S 0

S 4

X

X

X

X

X

X

S 1
X

X
X X

X

S

Figure 1.165. State diagram of the modulo 6 counter

X/Y

1

S 4

S 0

S 2

YX/

YX/
S 3

YX/

YX/

YX/

YX/

YX/
YX/

S 5

X/Y

YX/

YX/

S

Figure 1.166. State diagram of the 010 and 1001 sequence detector

Synchronous Finite State Machines 153

X

5

S 3

S 4

X

Z2
.X

X

X

Z0
.X

S 2

S A

Z3
.XZ5

.X +

Z3
.X

Z5
.X

S 0
X

X

X

X

S 1
S B

Z2
.X + Z0

.X

X

X

X

X

S

Figure 1.167. State diagram of the modulo 6 counter (after splitting)

/−

1 S 2 S 3
YX/

YX/

YX/

+Z0 Z 5

S B

YX/

YX/
+Z0 Z5 Y/X()

S 4

YX/

S 5

X/Y

YX/

YX/

Y/Z3
.X

Z3
.X

Y/Z.X 2

YX/

YX/
S 0 S A

X/Y

X() /−

Z2
.X +

S

Figure 1.168. State diagram of the 010 and 1001 sequence detector
(after splitting)

SOLUTION 1.25.– To complete the timing diagram of the proposed machine, the logic

equations for the D input must first be determined. Analyzing the logic circuit, we can

obtain:

D1 = A+ = A ·B +X ·A [1.131]

D2 = B+ = X ·A+A ·B [1.132]

The content of each flip-flop is only defined from the moment the signal CLR
takes the logic state 0.

Figure 1.169 shows the complete timing diagram of the finite state machine.

SOLUTION 1.26.– The logic equations for the inputs J and K can be written as

follows:

J1 = X ·A [1.133]

K1 = B [1.134]

154 Digital Electronics 3

and:

J2 = K2 = X + A [1.135]

B

CK

X

CLR

A

Figure 1.169. Timing diagram

The output logic equation is given by:

Y = A ·B [1.136]

The CLR signal is used to initialize each flip-flop. The timing diagram for the

state machine can be completed using the truth table or the characteristic equation of

the JK flip-flop. Figure 1.170 shows the timing diagram of the state machine.

B

CK

X

CLR

A

Y

Figure 1.170. Timing diagram

SOLUTION 1.27.– The operation of the finite state machine can be described by the

state diagram shown in Figure 1.171.

Table 1.152 presents the state table of the state machine.

Synchronous Finite State Machines 155

10/1

0

S 2

S 3

S 1

00/0

01/0

10/0

11/1

01/0

00/0
10/1

00/0

00/1
11/1

11/1
10/1

11/0
01/1

01/0 S

Figure 1.171. State diagram

PS NS Output

Z

XY = 00 01 10 11 XY = 00 01 10 11

S0 S0 S2 S1 S3 0 0 0 0

S1 S0 S2 S1 S3 0 0 1 1

S2 S2 S0 S3 S1 0 0 1 1

S3 S2 S0 S3 S1 1 1 1 1

Table 1.152. State table

PS NS Output

A+B+ Z

XY = 00 01 10 11 XY = 00 01 10 11

00 00 10 01 11 0 0 0 0

01 00 10 01 11 0 0 1 1

10 10 00 11 01 0 0 1 1

11 10 00 11 01 1 1 1 1

Table 1.153. Transition table

The transition table shown in Table 1.153 is obtained by assigning the binary codes

00, 01, 10 and 11 to the states S0, S1, S2 and S3, respectively.

156 Digital Electronics 3

B

01

11

10

1 00 1

0 1 1 0

0 1 1 0

0 1 1 0

XY

AB

A

00 01 11 10

Y

X

00

Figure 1.172. Input T1

T1 = Y

B

01

11

10

0 10 1

1 1 0 0

0 0 1 1

1 1 0 0

XY

AB

A

00 01 11 10

Y

X

00

Figure 1.173. Input T2

T2 = B ·X +B ·X

The excitation table for the T flip-flop can be used to construct the Karnaugh maps

that are shown in Figures 1.172 and 1.173, and are required for the determination of

the following logic equations for the T inputs:

T1 = Y [1.137]

T2 = B ·X +B ·X = B ⊕X [1.138]

For the output of the state machine, the logic equation, deduced from the Karnaugh

map in Figure 1.174, is given by:

Z = A ·B +X ·A+X ·B [1.139]

Figure 1.175 shows the logic circuit of the state machine, where the T flip-flop is

implemented using a JK flip-flop with J = K.

Synchronous Finite State Machines 157

1

01

11

10

0 00 0

1 1

0 0 1 1

0 0 1 1

XY

AB

A

00 01 11 10

Y

X

B

1

00

Figure 1.174. Output Z
Z = A ·B +X ·A+X ·B

Z

CLR

2

Y
B

A

CK

Q

Q

K

J

CLR

1
X

Q

Q

K

J

Figure 1.175. Logic circuit

SOLUTION 1.28.– (Median Filter).

A median filter can be described as a Moore state machine, the state diagram for

which is represented in Figure 1.176. To detect each input bit with a value of 0 located

between two bits with a value of 1, and which must be set to 1 at the output, the

machine stores three bits, Q1Q2Q3, at each clock pulse.

The state 101 is unused. But if the state machine enters this state, it will go to the

initial state 000.

Table 1.154 presents the transition table of the median filter.

158 Digital Electronics 3

101

100

001

111

010

110

011

000
1

01

1
1

0

1

0

0

0

0
1

0
1

Figure 1.176. State diagram

Input PS NS

X Q1 Q2 Q3 Q+
1 Q+

2 Q+
3

0 0 0 0 0 0 0

0 0 0 1 0 0 0

0 0 1 0 0 0 1

0 0 1 1 0 0 1

0 1 0 0 0 1 0

0 1 0 1 0 0 0

0 1 1 0 0 1 1

0 1 1 1 0 1 1

1 0 0 0 1 0 0

1 0 0 1 1 0 0

1 0 1 0 1 1 1

1 0 1 1 1 1 1

1 1 0 0 1 1 0

1 1 0 1 0 0 0

1 1 1 0 1 1 1

1 1 1 1 1 1 1

Table 1.154. Transition table

The Karnaugh maps shown in Figures 1.177–1.179 can be constructed using the

excitation table for the D flip-flop. The equations for the D inputs are given by:

D1 = Q+
1 = X ·Q1 +X ·Q3 +X ·Q2 [1.140]

D2 = Q+
2 = X ·Q2 +Q1 ·Q2 +Q1 ·Q3 [1.141]

Synchronous Finite State Machines 159

and:

D3 = Q+
3 = Q2 [1.142]

1

01

11

10

2Q 2QQ3

Q3

1Q

0 00 0

1 0 1 1

1 1 1 1

0 0 0 0

XQ

X

00 01 11 10

00

Figure 1.177. Input D1

D1 = X ·Q1 +X ·Q3 +X ·Q2

1

01

11

10

2Q 2QQ3

Q3

1Q

0 00 0

1 0 1 1

0 0 1 1

1 0 1 1

XQ

X

00 01 11 10

00

Figure 1.178. Input D2

D2 = X ·Q2 +Q1 ·Q2 +Q1 ·Q3

The logic circuit of the median filter is depicted in Figure 1.180, where X denotes

the input and Y is the output.

SOLUTION 1.29.– (Bus Arbiter).

The operation of the bus arbiter can be described by the state diagram shown in

Figure 1.181.

Using Gray code to represent the states, the transition table can be constructed as

shown in Table 1.155, where S3 corresponds to an unused state.

160 Digital Electronics 3

1

01

11

10

2Q 2QQ3

Q3

1Q

0 10

0 0 1 1

0 0 1 1

0 0 1 1

XQ

X

00 01 11 10
1

00

Figure 1.179. Output D3

D3 = Q2

CK

1 2

PR

CLR
Q

QD

3

PR

CLR
Q

QD
PR

CLR
Q

QD Y
X

Figure 1.180. Logic circuit of the median filter

We can obtain the Karnaugh maps represented in Figures 1.182 and 1.183 using

the excitation table of the D flip-flop. The logic equations for the flip-flop inputs can

be written as follows:

D1 = Q+
1 = RA ·RB +RB ·Q1 [1.143]

and:

D2 = Q+
2 = RA +RB [1.144]

The outputs are not dependent on the input signals, RA and RB . Based on the

transition table, the following logic equations can be obtained:

GA = Q1 ·Q2 [1.145]

Synchronous Finite State Machines 161

and:

GB = Q1 ·Q2 +Q1 ·Q2 = Q1 [1.146]

B

BS 0

S 2 S 1

. R BR A

+. R BR A
.R A R B

. R BR A
. R BR A

. R BR A

R BR A

R A

. R BR A

R B

.

GA/

GA/ GB GA/ G

G

Figure 1.181. State diagram

PS NS Outputs

Q1Q2 Q+
1 Q

+
2 GAGB

RARB = 00 01 10 11

S0 00 00 11 01 01 0 0

S1 01 00 11 01 01 1 0

S2 11 00 11 01 11 0 1

S3 10 – – – – x x

Table 1.155. Transition table

Figure 1.184 shows the logic circuit of the bus arbiter. Each flip-flop has an

asynchronous reset input.

SOLUTION 1.30.– (Robot Ant).

The robot ant is equipped with two antennae, L and R, and servo motors that are

controlled by a finite state machine. In order to come out of the labyrinth, the ant must

move trying to keep the wall to its right after each control pulse.

The operation principle of the robot ant is illustrated in Figure 1.185.

162 Digital Electronics 3

 B

01

11

10

Q
1
Q

2

Q
2

Q
1

1 0

0 1 1 0

x x x

0 1 0 0

00 01 11 10

00

x

R A R B R A

R

00

Figure 1.182. Input D1

D1 = Q+
1 = RA ·RB +RB ·Q1

 B

01

11

10

Q
1
Q

2

Q
2

Q
1

1 1

0 1 1 1

x x x

0 1 1 1

00 01 11 10

10

x

R BR A R A

R

00

Figure 1.183. Input D2

D2 = Q+
2 = RA +RB

The signals sent by the antennae correspond to the following situations:

– LR = 00: no contact with the wall;

– LR = 01: contact with the right wall;

– LR = 10: contact with the left wall;

– LR = 11: frontal contact with the wall.

The state table of the finite state machine is given in Table 1.156. It can be reduced

to the form in Table 1.157 by noting that the states C and E are equivalent.

Assigning a binary code to each state, we can obtain the transition table as shown

in Table 1.158.

Figure 1.186 presents the state diagram of the finite state machine.

Synchronous Finite State Machines 163

A

 A

R B

GB

D

2

CLR
CK

G

R

Q

QD

1

CLR

Q

Q

Figure 1.184. Bus arbiter

EB C D

A

Figure 1.185. Operation principle of the robot ant

PS NS Outputs

TL TR F

LR = 00 01 10 11

A A B B B 0 0 1

B C B B B 1 0 0

C E D E D 0 1 1

D C D B B 1 0 1

E E D E D 0 1 1

Table 1.156. State table

164 Digital Electronics 3

PS NS Outputs

TL TR F

LR = 00 01 10 11

A A B B B 0 0 1

B C B B B 1 0 0

C C D C D 0 1 1

D C D B B 1 0 1

Table 1.157. Reduced state table

/TL, F

L .R

L.R

L.R

L.R

R

L + R

L + R
A

R

L

/F /TLB

C /TR, F

D

Figure 1.186. State diagram

PS NS Outputs

Q1Q2 Q+
1 Q

+
2 TL TR F

LR = 00 01 10 11

A 00 00 01 01 01 0 0 1

B 01 10 01 01 01 1 0 0

C 10 10 11 10 11 0 1 1

D 11 10 11 01 01 1 0 1

Table 1.158. Transition table

Synchronous Finite State Machines 165

L

01

11

10

Q
1
Q
2

Q
2

Q
1

0 0

1 1 0 0

1 1 1

1 0 0 0

00 01 11 10

00

1

R

LR

00

Figure 1.187. Input D1

D1 = L ·R ·Q2 + L ·Q1 +Q1 ·Q2

1

01

11

10

Q
1
Q
2

Q
2

Q
1

1 1

0 1 1

1 1 0

0 1 1 1

00 01 11 10

10

0

R

LR L

00

Figure 1.188. Input D2

D2 = R+ L ·Q2 + L ·Q1

The transition table and the excitation table of the D flip-flop can be used to

construct the Karnaugh maps that are shown in Figures 1.187 and 1.188, and are

required for the determination of the following logic equations for the flip-flop

inputs:

D1 = L ·R ·Q2 + L ·Q1 +Q1 ·Q2 [1.147]

and:

D2 = R + L ·Q2 + L ·Q1 [1.148]

166 Digital Electronics 3

0

2

Q
1

0

1

Q
1

Q
2

0

1 1

0 1Q

Figure 1.189. Output TR
TR = Q2

0

2

Q
1

0

1

Q
1

Q
2

1

0 0

0 1Q

Figure 1.190. Output TL
TL = Q1 ·Q2

1

2

Q
1

0

1Q
2

Q
1

1

0 1

0 1Q

Figure 1.191. Output F
F = Q1 +Q2

Figures 1.189–1.191 present the Karnaugh maps that are obtained from the

transition tables and can be used to derive the following output equations:

TR = Q2 [1.149]

TL = Q1 ·Q2 [1.150]

Synchronous Finite State Machines 167

and:

F = Q1 +Q2 [1.151]

EN
CLR

1

CLR
Q

QD

QD

2

CLR
QCK

L

R

F

TL

TR

Figure 1.192. Logic circuit (robot ant)

Taking into account the signal EN , the output equations can be put into the form:

TR = EN ·Q2 [1.152]

TL = EN ·Q1 ·Q2 [1.153]

and:

F = EN(Q1 +Q2) [1.154]

The logic circuit of the finite state machine is represented in Figure 1.192.

2

Algorithmic State Machines

2.1. Introduction

In general, circuits that comprise combinational and sequential logic modules may

be described as finite state machines.

Using a state diagram or state table may prove inadequate for complex digital

systems. It is preferable to adopt algorithmic state machines (ASMs) when the number

of inputs and outputs becomes large. The ASM can be used to describe the operation

of both state machines based on Moore and Mealy models, as well as of systems that

have the output characteristics of both Mealy and Moore models. It is also directly

related to hardware implementation when the machine states are represented using a

one-hot (or 1-out-of-n) code.

2.2. Structure of an ASM

An ASM is a finite state machine based on a flowchart that can be used to represent

the transitions between states and outputs. Compared to a state diagram, this flowchart

is based on the sequence of operations to be carried out rather than the sequence of

states. It offers the advantage of not requiring the listing of all input conditions and

the possible output combinations.

In general, a digital system can be subdivided into a data processing unit and

control unit, as shown in Figure 2.1.

The control of combinational and sequential logic components such as adder,

comparator, multiplexer, decoder, counter and register, which form the processing

unit, ensures the synchronization of data operations. The control unit can be

implemented as a finite state machine.

Digital Electronics 3: Finite-state Machines
First Edition. Tertulien Ndjountche.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.

,

170 Digital Electronics 3

Control signals

inputs

State signals

processing
Control
unit unit

Data

Output
data

Input
data

Control

Figure 2.1. Structure of a digital system

2.3. ASM chart

An ASM chart is a graphical representation of the functional and hierarchical links

that exist between the different operations carried out by the elements of a system. It

consists of symbols representing the different types of operations as well as lines and

arrows that indicate the relationships that exist between these operations. Figure 2.2

presents three types of symbols used in the construction of ASM charts:

1) a rectangle is required to represent the outputs that are not dependent on the

input conditions, such as the flip-flop outputs;

2) a diamond or hexagon is associated with a condition that governs one or several

inputs and that modifies the execution of the operations depending on whether or not

this condition is satisfied. It should be noted that the different output possibilities,

a maximum of 2N possibilities if there are N input variables, must be mutually

exclusive;

3) a rectangle with rounded corners is used to yield the conditional outputs or the

outputs that are dependent on input combinations. Most often, this rectangle precedes

a diamond or a hexagon, which specifies the conditions that are required to generate

these outputs.

of which is valid at a time.

 Condition Conditions
1 (true) 0 (false)

Outputs

(a) (b) (c)

Conditional
outputs

Several output paths, one

Figure 2.2. Symbols representing a) the outputs, b) the decisions and
c) the conditional outputs

Algorithmic State Machines 171

It should be noted that only the output variables whose logic state changes appear

in the rectangles of an ASM chart.

ASMs are most often implemented using one-hot (or 1-out-of-n) encoding to

represent states. Assuming that only one of the state variables takes the value 1 and

that all the others are set to 0 at each instant, it follows that one flip-flop is required

for each state. The implementation of a machine with N states then requires N
flip-flops. Consequently, the logic circuit for an ASM can include several flip-flops,

but only a small number of logic gates, and is easy to implement. It can be directly

derived from an ASM chart. Figure 2.3 depicts some symbols and the corresponding

logic circuits. A D flip-flop can be used to represent a state and a demultiplexer can

be used to realize a condition. The intersection of the ASM chart paths corresponds

to an OR logic gate. Two consecutive states are implemented by connecting two D
flip-flops in series, as shown in Figure 2.4.

E

1S0

A

S0

E X Y

S1 S2 S3

D3D0

S0 S1

X

E

S0 S1 S2 S3

XY

01

00

10

11

EE

A
0 1

E

X

Q

QE D

D1 D2

EN X Y D
M

U
X

CK

F E

F

S

Figure 2.3. Symbols and corresponding logic circuits

The two methods used to represent finite state machines, ASM charts and state

diagrams, are equivalent and interchangeable. An ASM chart can, thus, be converted

to a state diagram and vice versa.

Each rectangle in an ASM chart contains only those outputs or operations that can

be carried out in the same clock period and thus corresponds to a state of the state

diagram.

The input conditions that allow for transitions from one state to another in a state

diagram can be determined from an ASM chart by following the possible paths

through the decision symbols located between two rectangles.

172 Digital Electronics 3

Q

DD

Q Q

D

Q

C

D

Q

3 4

X

C D

Y

Q Q

2

B

Q

0 1
X

B

A

Y

D

CK

1

A

Figure 2.4. Section of an ASM chart and the corresponding logic circuit

Each conditional output that is found between two rectangles is enabled upon

reaching the state associated with the rectangle that precedes this output symbol, and

the necessary conditions are satisfied.

The conversion of a state diagram to an ASM chart is illustrated in Figure 2.5 for

a Mealy machine and Figure 2.6 for a Moore machine.

1 X/ Z

X/ Z

X/ Z

X/ Z

X/ Z

X/ Z

X/ Z

S 1 S 3

S 2

S 0

XX

S 0

S 3S 1

S 2

Z

X

X/ Z

1

(b)(a)

1

0

0

1 0

0
X

Figure 2.5. a) ASM chart for a Mealy machine; b) state diagram

In the case of a Mealy machine, the ASM chart contains symbols for the

conditional outputs, while for a Moore machine, the ASM chart has no symbols for

conditional outputs.

Algorithmic State Machines 173

2

0

X

S 1

Y

X

Y

/ YS 0

X

X

X

X

S 2

X

S 3

X

Y

(a)

1

0

10

(b)

X

 X

/ YS 3

X

0

01

Y

1

/ YS 1

/ YS

S

Figure 2.6. a) ASM chart for a Moore machine; b) state diagram

NOTE.– The ASM chart does not allow a feedback loop that encompasses only one

symbol, as shown in Figure 2.7(a). The correct representation shown in Figure 2.7(b)

is obtained by inserting a state S in the loop.

(a)
1

S

Condition
0

Condition
0

1

(b)

Figure 2.7. a) Incorrect and b) correct representations
of a loop in an ASM chart

The ASM chart section in Figure 2.8(a) does not comply with the rule stating that

only one output path must be valid at a time. When the inputs X and Y take the same

state, the two valid paths can lead to the next states, which are distinct.

Multiple parallel paths can be valid only if they lead to the same output node (or

next state) as shown in Figure 2.8(b), where the outputs P and Q are assumed to be

independent.

For the version of the ASM chart section represented in Figure 2.8(c), only one

output path is valid for each combination of inputs X and Y .

174 Digital Electronics 3

1

P Q

QP

P Q

X Y
0 1

S S

X
1 0

Y
1

Y
1

(c)

X Y
1 0 1

E

(a)

(b)

0

00

0

Figure 2.8. Examples of ASM chart sections

The ASM chart sections shown in Figure 2.9(a) are equivalent, as are those in

Figure 2.9(b). The order in which the variables appear between two states may be

inverted.

(b)

0 1
X+Y X . Y

0 1

X
0 1

Y
0 1

X
0 1

Y
0 1

Y
0 1

X
0 1

X
0 1

Y
0 1

(a)

Figure 2.9. Representations of equivalent ASM chart sections

In practice, each ASM must have an input that can be used to initialize it to a

known state, and a mechanism to prevent its operation from being disturbed by the

unused states.

Algorithmic State Machines 175

2.4. Applications

ASMs find applications in various fields such as the design of circuits and systems,

and process modeling and control.

2.4.1. Serial adder/subtracter

Serial arithmetic operations are generally performed on data stored in shift

registers. This approach offers the advantage of requiring only a small chip area, but

it is limited by low speed as the execution of an operation requires the same number

of clock signal pulses as the number of bits in the representation of each operand.

A serial adder is a sequential circuit that generates one bit of the sum at a time,

while the logic state of the carry out bit is memorized in a flip-flop for the addition of

the next bit. The operands A and B are initially stored in shift registers and, beginning

with the least significant bit, are shifted by one position on each clock pulse.

A bit-serial adder can be designed using the full adder whose truth table is given

in Table 2.1.

A B Ci S Ci+1

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table 2.1. Truth table of a full adder

Analysis shows that it is possible to divide the truth table into two parts, one with

0 being the carry out and the other with 1 being the carry out. The bit-serial adder

can then be described using a state table, as shown in Table 2.2, where each state

is represented by a binary code. Figures 2.10 and 2.11 present the Karnaugh maps

constructed based on the state table. The logic equations can, thus, be obtained as

follows:

Q+ = Ai ·Bi + Ai ·Q+Bi ·Q [2.1]

176 Digital Electronics 3

and:

Si = Ai ⊕Bi ⊕Q [2.2]

where Q = Ci and Q+ = Ci+1. Another version of the state table can be drawn up

by denoting the state with 0 as the carry out by S0, and the state with 1 as the carry

out by S1. This table is represented in Table 2.3. The state diagram of the bit-serial

adder is shown in Figure 2.12(a). Using a D flip-flop to represent the two states of a

bit-serial adder, we can obtain the logic circuit depicted in Figure 2.12(b).

PS NS Output

Si

AiBi = 00 01 10 11 AiBi = 00 01 10 11

0 0 0 0 1 0 1 1 0

1 0 1 1 1 1 0 0 1

Table 2.2. State table of the serial adder with encoded states

Q

1

10

0 1 1

00 01 1011

B

Q

AB A

1

100

Figure 2.10. Karnaugh map for the next state Q+

Q

1

1 00

1 0 0

00 01 1011

B

Q

AB A

1

10

Figure 2.11. Karnaugh map for the output S

A serial adder/subtracter, as shown in Figure 2.13, includes a datapath and a

control unit. The result for a given input data sequence is generated by applying the

Algorithmic State Machines 177

appropriate control signals to the different components of the datapath. The Start
signal takes the logic level 1 to indicate the beginning of an operation. The Add/Sub
signal is set either to 0, for an addition, or to 1, for subtraction. The Reset input can

be used to asynchronously reset the control circuit.

PS NS Output

Si

AiBi = 00 01 10 11 AiBi = 00 01 10 11

S0 S0 S0 S0 S1 0 1 1 0

S1 S0 S1 S1 S1 1 0 0 1

Table 2.3. State table of the serial adder

001/1
10/1

 10/0
 11/1

01/0

A

B

C i

C i+1

SFA

Q

QD

CLR

PR

CK

S i

A

B

i

i

(a) (b)

S 1

11/0

00/1

S
00/0

Figure 2.12. Bit-serial adder: a) state diagram; b) logic circuit

The datapath is made up of two shift registers, a full adder, a D flip-flop and an

XOR logic gate (or programmable inverter). The control unit consists of a down

counter and a control circuit that operates as a finite state machine.

The ASM chart shown in Figure 2.14, where N = 4, describes the operation of

the control unit. The control unit is initially at the state S0 and the shift registers the

down counter, and the D flip-flop are deactivated by the logic level 0 of the Enable
signal.

When the Start signal takes the logic state 1, the LoadR signal is set to 1 and

the operands can be loaded into the shift registers. Meanwhile, all the flip-flops of the

down counter are initialized to 1 when the PrCNT is set to 0, and the control unit then

moves to the state S1. It should be noted that the two signals, LoadR and PrCNT, are

logical complements. The carry in and the Compl signal are then specified depending

on the logic state of the input signal, Add/sub. The control unit only exits the state S1

when the Start signal is reset.

178 Digital Electronics 3

Parallel inputs

Control

circuit

PR

Serial
input SI

Load
EN

EN SO

Parallel outputs

SO

Z

A

B

Ci

C i+1

SFA

1

0

Q

QD

CLR

PR

CK

Load

Reset

Start

Add/Sub

Shift

Shift

Control unit

PrCNT
Enable

PrD

LoadR

Compl
ClrD

EN
Modulo 4

register

down counter

register

Parallel inputs

Figure 2.13. Datapath and control unit for a serial adder/subtracter

After the control unit goes to the state S2, the shift registers, the down counter and

the D flip-flop are activated by setting the Enable signal to 1. The operands can, thus,

be applied to the full adder/subtracter bit by bit, beginning with the least significant bit;

the down counting phase then begins from N − 1, where N equals 4 and corresponds

to the number of bits in each operand.

One bit of the result is generated and transferred to register A on each clock

signal pulse, while the carry out bit is stored in the D flip-flop. The execution of these

different operations continues in the same way for the other bits of the operands and

is only stopped when the signal Z takes the logic state 1 to indicate the detection of a

zero generated by the down counter.

The control unit goes back to the state S0 and waits for the Start signal to be set

to 1 again, indicating the beginning of a new arithmetic operation.

The state table of the control unit is shown in Table 2.4, where the binary codes

00, 01 and 11 are assigned to the states S0, S1 and S2, respectively. As the control

unit has three states, a minimum of two flip-flops are required to encode these states.

Using the excitation table for the JK flip-flop, the transition table can be constructed as

shown in Table 2.5. When the state represented by the binary code 10 is considered as

a don’t-care state, the Karnaugh maps depicted in Figure 2.15 can be used to simplify

Algorithmic State Machines 179

the logic functions required for the implementation of the control circuit. The logic

expressions for the J and K inputs are given by:

JA = B · Start [2.3]

KA = Z [2.4]

JB = Start [2.5]

and:

KB = A · Z [2.6]

0

 i+1

Start

S 0

S 1

B 0 , B(N−1:1)

S i
S 2

0
Z

Done

1

Q

[CNT]−1CNT

1

0

N−1CNT

Add/Sub
1

A Operand A

B Operand B

1

Compl = 1

Q Q 0

Compl = 0

A , A(N−1:1)

C

Figure 2.14. ASM chart of the control unit (N = 4)

180 Digital Electronics 3

PS Inputs NS Outputs

A B Start Z A+B+ LoadR ClrD PrD Compl Enable Done

0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0

0 1 0 1 1 1 Add/Sub Add/Sub Add/Sub 0 0

0 1 1 0 1 1 Add/Sub Add/Sub Add/Sub 0 0

1 1 0 1 1 0 0 0 0 1 0

1 1 1 0 0 0 0 0 0 1 1

Table 2.4. State table of the control unit

PS Inputs NS Inputs J and K

A B Start Z A+B+ JA KA JB KB

0 0 0 0 0 0 x 0 x

0 0 1 0 1 0 x 1 x

0 1 0 1 1 1 x x 0

0 1 1 0 1 0 x x 0

1 1 0 1 1 x 0 x 0

1 1 1 0 0 x 1 x 1

Table 2.5. Transition table

The outputs of the control circuit can be obtained as follows:

LoadR = A ·B [2.7]

PrCNT = LoadR [2.8]

Enable = A [2.9]

ClrD = A ·B ·Add/Sub [2.10]

PrD = A ·B ·Add/Sub [2.11]

and:

Compl = A ·Add/Sub [2.12]

The control circuit is represented in Figure 2.16. Some outputs are active low,

while others are active high.

Figure 2.17 presents the timing diagram of the serial adder/subtracter when the

Add/Sub signal is set to 1. It should be noted that if the shift registers and D flip-flop

Algorithmic State Machines 181

are activated by the rising edge of the clock signal, and the down counter by the falling

edge of the clock signal, the count sequence only starts after each bit-serial arithmetic

operation.

1

Add/Sub

Start

Add/Sub

(h)

(i)

0

x

0

A

B

A

0

1

0

1

B

x

0

A

B

A

(c)

Start x

x

B

1

0

1

x

x

0

A

B

A

B

1

Z

x0

1

0

x

0

A

B

A

B

1

x

(a)

0

1

(d)

x

x

0

A

B

A

Z

0

B

1

0

1

(g)

(b)

x

0

A

B

A

B

1

0

1

(e)

1

0

0

(f)

x

x

0

A

B

A

1

0

B

1

0

1

x

0

A

B

A

1 0

00 Add/Sub

B

1

0

x

0

A

B

A

0

1 0

B

Figure 2.15. Karnaugh maps: a) JA; b) KA; c) JB ; d) KB = Done; e)
LoadR (PrCNT = LoadR); f) Enable; g) ClrD ; h) PrD ; i) Compl

Compl

Add/Sub

Q

QJ

K

B

CLR

Q

QJ

K

A

CLR

Start

Z

Enable

PrD

ClrD

LoadR

Done

PrCNT

Reset

CK

Figure 2.16. Control circuit

182 Digital Electronics 3

Compl

CK

Start

LoadR

PrD

ClrD

PrCNT

Enable

Z

Done

Figure 2.17. Timing diagram of the serial adder/subtracter
(Add/sub = 1)

Table 2.6 summarizes the control signals with the corresponding operations and

the components involved.

Control signal Operation Component

LoadR A ← Operand A Register A

B ← Operand B Register B

PrCNT CNT ← N − 1 CNT down counter

ClrD Q ← 0 Flip-flop D

PrD Q ← 1 Flip-flop D

Compl Complement signal

Enable A ← Si, A(N − 1 : 1) Register A

B ← 0, B(N − 1 : 1) Register B

CNT ← [CNT]− 1 CNT down counter

Done End of addition/subtraction –

Table 2.6. Serial adder/subtracter: summary of the control signals with
the corresponding operations and the components involved

The design approach based on a one-hot (or 1-out-of-n) code and the use of D
flip-flops leads to another architecture of the control circuit, which is directly linked

Algorithmic State Machines 183

to the ASM chart. In this case, the logic equations for the D inputs of the flip-flops are

given by:

DA = A · Start+ C · Z [2.13]

DB = A · Start+B · Start [2.14]

DC = B · Start+ C · Z [2.15]

The logic equations of the outputs can be written as:

LoadR = A [2.16]

PrCNT = LoadR [2.17]

ClrD = B ·Add/Sub [2.18]

PrD = B ·Add/Sub [2.19]

Compl = B ·Add/Sub [2.20]

Enable = C [2.21]

and:

Done = C · Z [2.22]

As one flip-flop is allocated to each state, an increase in the size of the final circuit

is generally expected. However, the operation of the final circuit is not affected by any

critical race condition.

2.4.2. Multiplier based on addition and shift operations

A multiplier is an important component in the arithmetic unit of a microprocessor.

It can be implemented either as a combinational logic circuit or as a sequential logic

circuit, which generally has the advantage of being smaller in size, but is slower.

A multiplier for unsigned four-bit numbers is shown in Figure 2.18. It is based on

addition and shift operations.

The processing unit includes a D flip-flop, registers (Q, A and B) and an adder.

Initially, the Init signal allows the storage of the multiplier and multiplicand in the

registers Q and B, respectively, while the D flip-flop is reset by the ClearC signal.

For each addition, the sum, S, is placed in register A following a parallel transfer, and

the carry, C, is placed in the D flip-flop using the inputs enabled by the AddA signal.

The RshiftDec signal initiates the transfer of the carry, C, stored in the D flip-flop to

184 Digital Electronics 3

register A, whose content is shifted to the right in order to be transferred to register

Q. Each shift results in the loss of the least significant bit of the register Q. Thus, the

control unit can successively access each multiplier bit starting from the position Q0

of the least significant bit of the register Q.

Shift

4

44

Q0

44

Init

44

Init

CK

0

Init

C0

Load
SI
EN

SO

Start Z

Zero

Init

CK

Q

Q

QD

CLR

Product

Load
SOSI

EN
A

EN
CK

RshiftDec

CLR

RshiftDec AddA

Reset

EN
B

SO
Load

Done

0 1

CK

RshiftDec

01

0

AddA

ClrC

ClrC

Multiplier

Multiplicand

SI

PR

state machine
Algorithmic

Modulo 4

down counter

detector

Control unit

Parallel
adder

register

Shift

register

Shift

Processing unit

register

Figure 2.18. Four-bit multiplier based on addition and shift operations

A modulo N down counter, CNT (where N is the number of bits of the multiplier

or multiplicand that is equal to 4), is used to monitor the change in the number of

iterations. After being initialized by the Init signal, it is successively triggered by the

RshiftDec signal to count in a cyclic manner from 3 to 0. The signal Z takes the logic

state 1 as soon as the counter reaches 0.

The control unit uses the logic state of the Start signal, the bit Z, and the least

significant bit, Q0, of the register Q to determine the control signals for the different

components that make up the datapath. For each bit of the multiplier, it determines,

at each iteration or step, whether to execute an addition followed by a shift operation

or only a shift operation. The product is contained in registers A and Q (the most

significant bits being in register A), and all the multiplier bits are lost at the end of the

process.

The control unit comprises an ASM, the ASM chart of which is shown in

Figure 2.19. The multiplication process is initiated by setting the Start signal to 1,

Algorithmic State Machines 185

and three states, S0, S1 and S2, are needed to generate all the signals required to

control the different operations. Once the multiplication is completed, the Done
signal is set to 1. Table 2.7 summarizes the control signals with the corresponding

operations and the components involved. It should be noted that the Done signal,

which indicates the end of a multiplication operation, does not affect the state of any

component.

A(N−1:1)

0

Start

S 1

S 2

[CNT]−1CNT

C 0

10

1

B
Q

0

N−1CNT

C
A

0
0

Multiplicand
Multiplier

Z

Done

10

A C0
Q A(0)

A

C

[A]+[B]

C0

Q
0

, Q(N−1:1)

,

S

Figure 2.19. ASM chart of the control unit (N = 4)

An example of a multiplication of two unsigned binary numbers is illustrated in

Figure 2.20(a). Upon a multiplication by 0 or 1, each partial product is either a copy

of the multiplicand that is shifted by an appropriate number of bits, or zero. As the

product of two unsigned N -bit numbers (with N = 4) has 2N bits, it can only be

generated using a 2N -bit adder.

186 Digital Electronics 3

Third bit of the multiplier = 0; right shift by one bit, [A] = 0100, [Q] = 1001

A [A] + [B]

A [A] + [B]

A [A] + [B]

(a)

0000

1100
1011X

1100
1100

+

1100+

1001
00101

0110

0100
1100
00001
1000

(b)

+

1100
0000

1100
10000100

1100

1100
1011X

+

Initially, register B contains the multiplicand.

Content of the register A = Sum; Carry C = 1
Right shift of the carry and sum by one bit, [A] = 1001, [Q] = 0010

Content of the register A = Sum

Fourth bit of the multiplier = 1;

Right shift of the carry and sum by one bit, [A] = 1000, [Q] = 0100
Content of the register A = Sum; Carry C = 1

The multiplier is loss and the product is contained in registers A and Q.

Right shift of the sum by one bit, [A] = 0110, [Q] = 0101

First bit of the multiplier = 1;

Second bit of the multiplier = 1;

Second partial product
Third partial product
Fourth partial product
Product

Multiplicand
Multiplier
First partial product

Initially, register Q contains the multiplier.
Initially, register A is reset.

00

0

0

100

100
0100

Figure 2.20. a) Multiplication of two unsigned binary numbers; b)
operation principle of the multiplier

Control signal Operation Component

Init B ← Multiplicand Register B

Q ← Multiplier Register Q

Init A ← 0 Register A

CNT ← N − 1 CNT down counter

ClrC C ← 0 Flip-flop D
AddA A ← [A] + [B] Register A

C ← C0 Flip-flop D
RshiftDec A ← C0, A(N − 1 : 1) Register A

Q ← A(0), Q(N − 1 : 1) Register Q

CNT ← [CNT]− 1 CNT counter

Done End of the multiplication –

Table 2.7. Multiplier: summary of the control signals with the
corresponding operations and the components involved

Algorithmic State Machines 187

The working principle of a 4-bit multiplier based on addition and shift operations is

illustrated in Figure 2.20(b). Considering each bit of the multiplier from right to left,

the repetitive execution of the addition operation on the most significant bits of the

partial products and the right-shift operation can provide the product of two unsigned

binary numbers. An addition followed by a right-shift operation is required for a bit at

the logic state 1, while only a right-shift operation is required for a bit at the logic state

0. Thus, the implementation of a multiplier for unsigned N -bit numbers (N = 4) only

requires an N -bit adder.

2.4.3. Divider based on subtraction and shift operations

The division of unsigned binary numbers can be carried out using several types of

structures. For applications that require a small circuit size, it is most often

implemented as a sequential circuit based on subtraction and shift operations.

As an example, Figure 2.21 presents a logic circuit that, from an eight-bit

dividend and a four-bit divider, provides a quotient of four bits. The divider is based

on a configuration that reduces the number of registers required to store data.

Initially, the dividend is found in the five-bit register A and the four-bit register Q,

and the divisor is placed in the four-bit register B.

Processing unit

5

5

C0

C0

34 1

5 3

4

4 8

5 4

PR
EN

CK

Init
LshiftDec

D
ividend

A

SISO

Q

SISO

Q

Q D

CK

0 1

Zero

Start

state machine

Z

DivE

Done

LshiftDec Init
SubA

0

0 1 Init

EN

Load

EN

0 Init1

Remainder

0

Init

SubA

ComplC

Init

LSB

ComplC
LshiftDec

CK

Divider

Load

EN
B

SOSI
Init

0

Load

Quotient

Parallel
subtractor

Shift

register

Shift

register

Control unit

down counter

Modulo 4

Algorithmic

detector

register

Shift

Figure 2.21. A divider based on subtraction and shift operations

188 Digital Electronics 3

During the division process, instead of shifting the divisor to the right before each

subtraction, the dividend is rather shifted to the left. An additional bit is, therefore,

required at the extreme left of register A to prevent the anticipated loss of the most

significant bit of the dividend. As the dividend is shifted to the left, it is replaced by

the quotient, which is stored bit by bit from the right end of the register Q.

The control unit consists of a binary counter, CNT, and an ASM.

The CNT counter has a modulo equal to the number of clock cycles required for

the execution of a division, that is N , 2N being the number of the bits of the dividend

and N being the number of bits of the divisor. It is followed by a zero detector whose

output bit, Z, is connected to the ASM.

Based on the logic state of the Start signal, and the bits Z and C0, the ASM

produces control signals that can be used to sequence the different cycles required for

a division. The operation of this machine is based on the ASM chart shown in

Figure 2.22. Each division begins by setting the signal Start to 1. The dividend is

then placed in the registers A and Q, the divisor in the register B and the number, N ,

in the CNT counter.

To determine whether the division is possible, the content of the register A is

subtracted from that of the register B. If the carry out is equal to 0, the DivE signal

takes the logic state 1 to indicate that the quotient is undefined or has a number of

bits greater to the word length of the register Q. On the other hand, if the carry out is

equal to 1, we proceed to the step of computing the quotient and the remainder.

Before subtracting the divisor from the dividend, the dividend is shifted by one bit

to the left. If the result is greater than or equal to 0, the carry out takes the value 0 and

the value of the dividend is updated. The corresponding quotient bit is set to 1. If, on

the other hand, the result is less than 0, the carry out takes the value 1 and the value of

the dividend is not modified. The corresponding quotient bit is set to 0. The process

of shifting and subtracting is reiterated to determine the other quotient bits and ends

when the signal Z assumes the logic state 1. It is based on a division algorithm with

restoration of the dividend.

Table 2.8 provides a summary of the control signals with the corresponding

operations and the components involved. The Load signal is used to initialize the

registers. The result of the subtraction is stored only when the SubA signal, which

enables the parallel inputs of the register A, is set to 1. Each quotient bit is obtained

as the logical complement of the carry out and is loaded in the D flip-flop by setting

the ComplC signal to 1. It is then applied to the serial input of the register Q. The

logic state of the LShiftDec signal determines whether the contents of the registers A

and Q are to be shifted left and the down counter, CNT, must be decremented.

Algorithmic State Machines 189

The division of two binary numbers is performed using successive subtraction and

shift operations, as in the example shown in Figure 2.23(a). The operating principle

of the divider is illustrated in Figure 2.23(b). It should be noted that each shift results

in the loss of the left-most bit of the register A : Q. At the end of the process, the

quotient is in the register Q, and the remainder in register A.

Dividend

Start

S 0

DivE
S 1

Done
S 3

S 2

B Divider

0

1

0

1 C0

C0

Z
10

QD C0

01

CNT [CNT]−1

A [A]−[B]

QD C0

A A(N:0), Q(N−2)

Q Q(N−3:0), QD

N−1CNT

DA:Q:Q

Figure 2.22. ASM chart of the control unit (N = 4)

2.4.4. Controller for an automatic vending machine

An automatic vending machine is a machine that can provide different products

(drinks, sandwiches, biscuits, tissues, etc.) in exchange for coins.

190 Digital Electronics 3

Control signal Operation Component

Init A : Q : QD ← Dividend Registers A and Q, D flip-flop

B ← Divider Register B

Init CNT ← N − 1 CNT counter

SubA A ← [A]− [B] Register A

ComplC QD ← C0 D flip-flop

LshiftDec A ← A(N : 0), Q(N − 2) Register A

Q ← Q(N − 3 : 0), QD Register Q

CNT ← [CNT]− 1 CNT down counter

DivE Error message –

Done End of division –

Table 2.8. Divider: summary of the control signals with the
corresponding operations and the components involved

Remainder

Q 0 1[A] − [B],A

Q 0 1[A] − [B],A

Q 0 0, [A] = 00110

01111010

110
−

− 000
1101

10

10
− 1100

00−

Dividend
1100

(a)

1 1 0 0
0 1 1 1 10

0 0 1 1 1
1 1 0 0

0 0 0 1 1

1 1 0 0
0 1 1 0 10

0 0 1 1 00

0 0 0 1 0

0 0 0 0 1

0
1 1 0 0

1 1 1 1 0

1 1 0 0

1 1 0 1 0

Register A:Q contains the dividend.

Subtraction (carry−out = 0)

Left shift by one bit

Subtraction (carry−out = 0)

Subtraction (carry−out = 1)

[Q] = 1010 (quotient)

0 1 0

1 0 1 0

0 1 0 1

0 01 0

0 1 0 1

1 0 1

1 0 1 0

Subtraction (carry−out = 1)1 0

1 0 1 0

Q 0 0, [A] = 00010 (remainder)

Register B contains the divider.

Left shift by one bit

1 0

0

0

(b)

Left shift by one bit

Left shift by one bit

1100
1010

Divider
Quotient

Figure 2.23. a) Division of two unsigned binary numbers; b) operation
principle of the divider

The vending machine shown in Figure 2.24 consists of a slot for the 5, 10 and

25 cent coins, a push button to cancel any incomplete transaction, a compartment for

returned coins and a digital keyboard to choose a product. At the start, the keyboard is

disabled and the slot is open. To identify the coins, the signals produced by the sensors

are sampled at each clock pulse to generate the inputs X and Y of the controller, as

Algorithmic State Machines 191

illustrated in Table 2.9. The input R is set to 1 for one clock period, every time the

push button is pressed. This sets into motion the mechanism to return the coin and,

consequently, the cancellation of a transaction.

Push−button

Y R C Z P

Automatic

controller
vending machine

slot
Returned

coins Product

X

Coin

Keyboard

Figure 2.24. Automatic vending machine

X Y Received coins

0 0 None

0 1 25 cents

1 0 5 cents

1 1 10 cents

Table 2.9. Binary code associated with each type of coin

Each product costs 20 cents. After a sufficient number of coins is inserted, the

keyboard is enabled to allow the selection of a product, while the slot is closed to

prevent the insertion of any additional coins. When the total amount of coins is equal

to 25 cents, the controller output, C, is also set to 1 so that coins can be returned. The

vending machine does not accept more than 25 cents per transaction, and returns all

the coins inserted if the total is 30, 35 or 40 cents. This is done by setting the output

Z to 1.

The controller of the automatic vending machine is implemented as a Moore state

machine, which offers the advantage of being unaffected by transient signals that can

appear at the inputs. Its operation is described by the ASM chart shown in Figure 2.25.

The controller, which is initially in the state S0, can move to S5, S10 or S25 when

the corresponding coin is detected. Starting from the state S5 or S10, only one coin of

5 or 10 cents can be used to cause the controller to go to one of the states S10, S15

or S20. Similarly, the transition from the state S15 to the state S20 or S25 only occurs

192 Digital Electronics 3

after the detection of a 5 or 10 cent coin. The transition from one of the states S5, S10

or S15 to the state SZ requires the insertion of a 25 cent coin. A transaction can be

cancelled using the R signal, which is set to 1 by pressing the push button, when the

controller is in one of the following states: S5, S10 or S15. Each time the R signal is

set to 1, the controller returns to the state S0, and the coins are returned. Setting the R
signal to 1 when the controller is in the state S0 provides an opportunity to verify that

all the returned coins were actually recovered.

0
Y

0

R

X
1

0

Y

S 10

0

S 15

0

R

S 5

0

0

0

Y
0

S 20

S Z

S 25

S 0

1

1

1

1

0

P

P
C

Y

0

1

0

1

0

1
R

1

X

Z

Y

1 0

1

X

1

X
0

0
YX

1

X

R

1

1

1

Figure 2.25. ASM chart for the controller of
the automatic vending machine

The state table of the controller for the automatic vending machine is represented

in Table 2.10. The controller has seven states. The slot used to insert the coins is open

during the states S0, S5, S10 and S15, and closed during the states S20, S25 and SZ .

All the input combinations of the form 1xx, where x can take the value 0 or 1, bring

the controller back to the state S0.

Algorithmic State Machines 193

PS NS Outputs

P C Z

RXY = 000 001 010 011 1xx

S0 S0 S25 S5 S10 S0 0 0 0

S5 S5 SZ S10 S15 S0 0 0 0

S10 S10 SZ S15 S20 S0 0 0 0

S15 S15 SZ S20 S25 S0 0 0 0

S20 S0 – – – S0 1 0 0

S25 S0 – – – S0 1 1 0

SZ S0 – – – S0 0 0 1

Table 2.10. State table of the controller

2.4.5. Traffic light controller

We wish to implement a controller for traffic lights that can regulate the movement

of vehicles at an intersection of a main road (north-south) and a secondary road (east-

west), as shown in Figure 2.26. The inputs and outputs are specified as follows:

– inputs:

R: places the controller in the initial state;

C: sensor used to detect the presence of a vehicle in both directions of the

secondary road;

S: signal indicating the end of the short counting sequence;

L: signal indicating the end of the long counting sequence.

– outputs:

IC: initialization signal of the counter;

NR: red light in the north-south direction;

NG: green light in the north-south direction;

NY: yellow light in the north-south direction;

ER: red light in the east-west direction;

EG: green light in the east-west direction;

EY: yellow light in the east-west direction.

Figure 2.27 presents the structure of the traffic light controller, and the logic circuit

for the counter is represented in Figure 2.28.

194 Digital Electronics 3

North

East

C

C

NY

ER

NY

NR

NG

EG

ER

NG

EG

EY

EY

NR

Figure 2.26. Intersection with traffic lights. for a color version of this
figure, www.iste.co.uk/ndjountche/electronics3.zip

Counter

EG

EY

NR

NG

NY

S

C

R

L

RCO L

RCO S

IC

CLR

EN

CK

1

CK

Traffic light
controller

ER

Figure 2.27. Traffic light controller

J

CLR CLRCLR

Q2 Q3Q1

CLR

Q0

RCO S

RCO L

Q

Q

K

J

Q

Q

K

J

Q

Q

K

JEN

CK

Q

Q

K

Figure 2.28. Logic circuit of the counter

Algorithmic State Machines 195

The lights must be switched on in the following cyclic sequence:

NR-ER, NG-ER, NY-ER, NR-ER, NR-EG, NR-EY

The states in which the red lights are switched on in both directions are used to

provide a safety margin. Traffic may be manually directed using the push-button R that

holds the controller in one of the states where the red lights are on in both directions.

A sensor, C, placed on the secondary road allows the detection of a vehicle at the stop.

After the vehicle is detected, when the long counting sequence ends (L set to 1), the

light switches from green to yellow, then to red on the main road, allowing the light

on the secondary road to turn green. The light remains green on the secondary road

only as long as a vehicle is detected and never longer than the duration of the long

counting sequence. The duration for the yellow light is identical in both directions and

is determined by the short counting sequence (S set to 1).

The ASM chart of the traffic light controller is represented in Figure 2.29.

NR, ER 3S 0

S 2

L C.

S 1 S 4

L + C

S 5

ER, NR

0

1
R R

1

0

0

NY, ER

S

0

1

EG, NR

0

EY, NR

0
S

1

1

IC IC

1

IC IC

NG, ER

S

Figure 2.29. ASM chart of the traffic light controller

196 Digital Electronics 3

PS Inputs NS Outputs

Q1Q2Q3 R C L S Q+
1 Q

+
2 Q

+
3 IC NR NG NY ER EG EY

S0 0 0 0 1 0 0 0 0 1 0 0 1 0 0

S0 0 0 0 0 0 0 1 R 1 0 0 1 0 0

S1 0 0 1 0 0 0 0 1 0 0 1 0 1 0 0

S1 0 0 1 0 1 0 0 1 0 0 1 0 1 0 0

S1 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0

S1 0 0 1 1 1 0 1 1 L · C 0 1 0 1 0 0

S2 0 1 1 0 0 1 1 0 0 0 1 1 0 0

S2 0 1 1 1 0 1 0 0 0 0 1 1 0 0

S3 0 1 0 1 0 1 0 0 1 0 0 1 0 0

S3 0 1 0 0 1 1 0 R 1 0 0 1 0 0

S4 1 1 0 0 0 1 1 1 L+ C 1 0 0 0 1 0

S4 1 1 0 0 1 1 1 1 L+ C 1 0 0 0 1 0

S4 1 1 0 1 0 1 1 0 0 1 0 0 0 1 0

S4 1 1 0 1 1 1 1 1 L+ C 1 0 0 0 1 0

S5 1 1 1 0 1 1 1 0 1 0 0 0 0 1

S5 1 1 1 1 0 0 0 0 1 0 0 0 0 1

Table 2.11. Transition table

Three bits are required to encode the states of the traffic light controller. Table 2.11

presents the transition table obtained by representing the states using Gray code.

The D flip-flop is chosen as the memory element for the implementation of the

traffic light controller. The transition table and the excitation table for the D flip-flop

can used to construct the Karnaugh maps shown in Figures 2.30–2.32. The logic

equations for the D inputs of flip-flops can then be obtained as follows:

D1 = Q+
1 = R ·Q2 ·Q3 + S ·Q1 ·Q2 +Q1 ·Q2 ·Q3 [2.23]

D2 = Q+
2 = S ·Q2 + L · C ·Q1 ·Q3 +Q1 ·Q2 +Q2 ·Q3 [2.24]

D3 = Q+
3 = R ·Q1 ·Q2 + S ·Q2 ·Q3+

(L+ C)Q2 ·Q3 +Q1 ·Q2 ·Q3 +Q1 ·Q2 ·Q3 [2.25]

The Karnaugh maps for the outputs of the traffic light controller are depicted in

Figures 2.33–2.39. Hence, the logic equations are given by:

IC = R ·Q1 ·Q3 + L · C ·Q1 ·Q2 ·Q3 + (L+ C)Q1 ·Q2 ·Q3 [2.26]

= R ·Q1 ·Q3 + L · C ·NG+ (L+ C)EG [2.27]

Algorithmic State Machines 197

NR = Q1 +Q3 [2.28]

NG = Q1 ·Q2 ·Q3 [2.29]

NY = Q1 ·Q2 ·Q3 [2.30]

ER = Q1 [2.31]

EG = Q1 ·Q2 ·Q3 [2.32]

EY = Q1 ·Q2 ·Q3 [2.33]

2 2

0

1

Q1

Q1

Q3

R

S

0 00

0 0 1

00 01 1011

Q3Q Q

Figure 2.30. Input D1

1

2

0

1

Q1

Q1

Q3

S

L. C 10

0 0

00 01 1011

Q3Q2

 1

Q

Figure 2.31. Input D2

+

2

0

1

Q1

Q1

Q3

S

R S

C0 0

00 01 1011

Q3Q2

 11

L

Q

Figure 2.32. Input D3

198 Digital Electronics 3

0

2

0

1

Q1

Q1

Q3

R

C

RL.C

0 0

00 01 1011

Q3Q2

L+

0

Q

Figure 2.33. Output IC

0

2

0

1

Q1

Q1

Q3

01

1 1 1

00 01 1011

Q3Q2

1

1

Q

Figure 2.34. Output NR

0

2

0

1

Q1

Q1

Q3

10

− − 0

00 01 1011

Q3Q2

0

0

Q

Figure 2.35. Output NG

0

2

0

1

Q1

Q1

Q3

0

− − 0

00 01 1011

Q3Q2

0

01

Q

Figure 2.36. Output NY

Algorithmic State Machines 199

0

2

0

1

Q1

Q1

Q3

11

− − 0

00 01 1011

Q3Q2

11

Q

Figure 2.37. Output ER

0

2

0

1

Q1

Q1

Q3

0

− − 1

00 01 1011

Q3Q2

0

00

Q

Figure 2.38. Output EG

0

2

0

1

Q1

Q1

Q3

0

− − 0

00 01 1011

Q3Q2

1

00

Q

Figure 2.39. Output EY

It should be noted that the outputs corresponding to the two unused codes, 100 and

101, were defined so as to minimize the logic equation of the output NR.

Figure 2.40 depicts the logic circuit of the traffic light controller.

200 Digital Electronics 3

EY

Q

QD

CLR

2

Q

QD

CLR

1

CK Q

QD

CLR

3

S

R

C

L

ER

NY

IC

NR

NG

EG

Figure 2.40. Logic circuit for the controller of the traffic lights

2.5. Exercises

EXERCISE 2.1.– The operation of a finite state machine can be described by one of

the ASM charts shown in Figure 2.41:

a) Assume that the finite state machine is implemented based on the ASM chart in

Figure 2.41(a):

– construct the state table;

– determine the logic equations for the D inputs and the output, Y, when the states

are represented using a one-hot (or 1-out-of-n) code.

b) To take into account the fact that some D flip-flops do not have an asynchronous

reset input, PR, a reset state is added to the ASM chart of the finite state machine,

Algorithmic State Machines 201

as shown in Figure 2.41(b) and the one-hot code with zero is adopted to represent the

states.

0000

A

C

D

A

C

D

B

X
0

1

X
0

1

Y

(a) (b)

B

X
0

1

X
0

1

Y

Figure 2.41. Two ASM chart versions for a finite state machine

Determine the logic equations for the D input and the Y output.

EXERCISE 2.2.– Consider the finite state machine whose ASM chart is represented

in Figure 2.42:

– construct the state table of this state machine;

– assuming that a one-hot (or 1-out-of-n) code is used to represent the states,

determine the logic equation for the D inputs of flip-flops and for the outputs U and

V .

EXERCISE 2.3.– A finite state machine with two inputs, X and Y , and one output, Z,

is characterized by the state table shown in Table 2.12.

Construct the corresponding ASM chart for this state machine.

EXERCISE 2.4.– Suggest an ASM chart to describe the finite state machine whose

state table is shown in Table 2.13, where the inputs are denoted by X and Y , and the

output by Z.

202 Digital Electronics 3

V

B

1

S
0

S

C

1

1

E

T
0

T

D

T

0

1

A

0

S
1

0

T
1

1

T

V

T

1

1 0

T

0

S
10

1

U
V

0

1

0

0

S
0

1

0

V

T

Figure 2.42. ASM chart of a finite state machine

PS NS Output

Z

XY = 00 01 10 11

S0 S3 S1 S0 S0 0

S1 S3 S1 S1 S2 1

S2 S3 S2 S0 S2 X · Y
S3 S3 S1 S3 S2 Y

Table 2.12. State table of the state machine

EXERCISE 2.5.– We wish to implement the finite state machines, whose operation

is described by each of the ASM charts shown in Figure 2.43, using D flip-flops and

logic gates.

Assuming that the states are represented using a one-hot (or 1-out-of-n) code,

determine the logic equations for the D inputs of flip-flops and the outputs.

Algorithmic State Machines 203

PS NS| Output

Z

XY = 00 01 10 11

S0 S0 S1 S0 S2 0

S1 S1 S1 S0 S3 0

S2 S1 S2 S3 S2 1

S3 S0 S2 S1 S3 X · Y

Table 2.13. State table

L

1

S 0S 0

1
0

U

M

S 3 S 2

S 4

S 3

S 1

S 2

1

0

0
T

S
10

N

1
R

0

K

S
0

1

T

0

1

V
11

S T
00 0

F

U
1

F

01 10

1

(b)(a)

G

S

Figure 2.43. ASM charts: machine a); machine b)

EXERCISE 2.6.– (Programmable Signal Generator).

We wish to design a programmable signal generator based on the ASM chart

shown in Figure 2.44 using D flip-flops and logic gates. For each combination of the

inputs X and Y , a new signal type is available at the output Z of this generator:

– construct the state table of the generator;

– assigning the binary codes 00, 01, 11 and 10 to the states S0, S1, S2 and S3,

respectively, determine the logic equations for the D inputs of flip-flops and the output

Z;

– complete the timing diagram shown in Figure 2.45.

204 Digital Electronics 3

1
X . Y

Z

X
1

0

Z

S 0

S 1

S 3

S 2

Z

Y
10

0

Figure 2.44. ASM chart of the programmable signal generator

Z

X

0

1

1

Y

1

0

1

0

CK

Z

Z

Z

0

Figure 2.45. Timing diagram of the programmable signal generator

EXERCISE 2.7.– (Controller for an Elevator).

The movements of an elevator between three floors are controlled by the finite

state machine whose operation, based on the Mealy model, is described by the state

diagram in Figure 2.46. The input signals A1, A2 and A3 are used to call the elevator

car to floor 1, 2 and 3, respectively. The outputs D1, D2 and D3 cause the elevator car

to move down one, two and three floors, while the outputs M1, M2 and M3 cause it

to move up one, two and three floors, respectively. The output signal, R, allows the

elevator to be held in one state.

Algorithmic State Machines 205

 32

S 1

S 3

 3 / M2A 1 1 / D2

A 2 / D1

 3 / M1A

A 2 / R

 1 / R 1 / R

 2 / M1A

 1A 1 / D1

A

A

A

/ RS

Figure 2.46. State diagram (Mealy machine) of the controller

Propose the state diagram for the equivalent Moore machine.

2.6. Solutions

SOLUTION 2.1.– (Analysis of ASMs).

a) Table 2.14 presents the state table obtained from the state diagram.

PS NS Output

Y

X = 0 1

A A B 0

B C C 0

C A D 0

D C C 1

Table 2.14. State table

The logic equations for the D inputs of flip-flops and for the output can be written

as follows:

DA = QA ·X +QC ·X [2.34]

DB = QA ·X [2.35]

DC = QB +QD [2.36]

DD = QC ·X [2.37]

Y = D [2.38]

206 Digital Electronics 3

b) The logic equations for the D inputs of flip-flops and the output are given by:

DA = QA ·X +QC ·X +QA ·QB ·QC ·QD [2.39]

DB = QA ·X [2.40]

DC = QB +QD [2.41]

DD = QC ·X [2.42]

Y = D [2.43]

SOLUTION 2.2.– The operation of the finite state machine can be described by the

state table shown in Table 2.15, where S and T are the inputs and U and V represent

the outputs.

PS NS Outputs

U V

ST = 00 01 10 11

A B A A A 0 0

B B D E C 0 1

C B C E C 0 0

D E D E C 0 S · T
E E A E E S · T S

Table 2.15. State table

The logic equations for the D inputs of flip-flops and for the outputs can be

obtained from the ASM chart, as follows:

DA = QA · S +QA · T +QE · S · T [2.44]

DB = QA · S · T +QB · S · T +QC · S · T [2.45]

DC = QB · S · T +QC · T +QD · S · T [2.46]

DD = QB · S · T +QD · S · T [2.47]

DE = QB · S · T +QC · S · T +QD · T +QE · S +QE · T [2.48]

U = QE · S · T [2.49]

and:

V = QB +QD · S +QE · S [2.50]

Algorithmic State Machines 207

0

1

Y

1

Y

X

X

Y

0

0

0

X

Z
Z

S 2

S 0

S 3

1

Z

1

X

1

0

10

YY

0

1

1 0

1

1

0

S

Figure 2.47. ASM chart of the finite state machine

SOLUTION 2.3.– The ASM chart obtained from the state table is represented in

Figure 2.47.

SOLUTION 2.4.– The ASM chart shown in Figure 2.48 is obtained from the state

table.

SOLUTION 2.5.– The logic equations of the flip-flop inputs are directly related to the

conditions for transitions between states when one-hot encoding and D flip-flops are

used.

Upon analysis of the ASM chart of the machine (a), the logic equations for the

inputs of D flip-flops can be written as follows:

D0 = R ·Q1 +Q2 + S · U ·Q3 [2.51]

D1 = S · T ·Q0 [2.52]

D2 = S · T ·Q0 +R ·Q1 + S · U ·Q3 [2.53]

and:

D3 = S ·Q0 + U ·Q3 [2.54]

208 Digital Electronics 3

where the flip-flop outputs are designated by Qi (i = 0, 1, 2, 3). For the state machine

outputs, we can obtain:

K = Q0 [2.55]

L = Q1 [2.56]

M = R ·Q1 [2.57]

and:

N = S · U ·Q3 [2.58]

Z

1

X

1

Y

X

1

0

Y

Z

S 3

Y

S 2

X
1 0

S 0

0

0

XY

1

1

0

1

0

1

0

01

S

Figure 2.48. ASM chart of the finite state machine

In the case of the state machine (b), the logic equations for the D inputs of flip-flops

can take the form:

D0 = (S · T + S · T)Q2 +Q4 [2.59]

D1 = Q0 + T · U ·Q1 + V ·Q3 [2.60]

D2 = T ·Q1 + S · T ·Q2 [2.61]

D3 = T · U ·Q1 [2.62]

Algorithmic State Machines 209

and:

D4 = S · T ·Q2 + V ·Q3 [2.63]

The logic equations for the machine outputs are given by:

F = T · U ·Q1 +Q4 [2.64]

and:

G = Q2 [2.65]

SOLUTION 2.6.– (Programmable Signal Generator).

The ASM chart of the programmable signal generator can be used to construct the

state table, as shown in Table 2.16.

PS NS Output

Z

XY = 00 01 10 11 XY = 00 01 10 11

S0 S1 S1 S1 S1 1 1 1 1

S1 S2 S2 S2 S2 1 1 1 0

S2 S3 S3 S0 S3 0 1 0 1

S3 S0 S0 – S0 0 0 – 0

Table 2.16. State table of the signal generator

The characteristic equation of the D flip-flop is of the form Q+ = D. Figure 2.49

presents the Karnaugh maps obtained from the state table. The logic equations for the

D inputs of flip-flops and for the output can, thus, be written as follows:

Q+
1 = Q1 ·Q0 +Q0 ·X +Q0 · Y [2.66]

Q+
0 = Q1 [2.67]

and:

Z = Q1 ·Q0 +Q1 ·X +Q1 · Y +Q1 ·Q0 · Y [2.68]

210 Digital Electronics 3

0

01

11

10

Q1

Q1

00

01

11

10

Q1

Q1

00

01

11

10

Q1

Q1

Q0Q 0Q0

(a) (b) (c)

1 1

0 0 0 0

0 0 −

1 1 1 1

XY

00 01 11 10

Y

X

11

0

1 1

0 1 1 0

0 0 −

1 1 0 1

XY

00 01 11 10

Y

X

11

0

0 0

1 1 1 0

0 0 −

1 1 1 1

XY

00 01 11 10

Y

X

00

0

Q0 Q0Q

00

Figure 2.49. Karnaugh maps for the determination of
a) Q+

1 , b) Q+
0 and c) Z

Z

0

1

1

0

CK

Y

1 Z

0 Z

1 Z

0

X

Figure 2.50. Timing diagram of the programmable signal generator

The timing diagram of the programmable signal generator is illustrated in

Figure 2.50 for the different combinations of the inputs X and Y .

The logic circuit of the programmable signal generator is represented in

Figure 2.51, while Table 2.52 shows the truth table specifying the decoder inputs and

ROM outputs.

SOLUTION 2.7.– (Elevator Controller).

The state diagram (Moore model) of the controller is depicted in Figure 2.53. It

comprises nine states and each state is associated with a particular output signal.

The Moore machine outputs only depend on the present state, while those of the

Mealy machine are determined by the present state as well as the inputs. The Moore

machine, thus, offers the advantage of being less sensitive to undesirable disturbances

that can affect the inputs.

Algorithmic State Machines 211

1

Q

Q

Q

Q

CLR

PR
D

CLR

PR
D

ROM

0

15

X

Y 4:
16

 D
ec

od
er

Z0

1

2

3

2

1

CK

0

Figure 2.51. Logic circuit of the ROM-based
programmable signal generator

Inputs Outputs

Q0 Q1 X Y Q+
0 Q+

1 Z

0 0 0 0 0 1 1

0 0 0 1 0 1 1

0 0 1 0 0 1 1

0 0 1 1 0 1 1

0 1 0 0 1 1 1

0 1 0 1 1 1 1

0 1 1 0 1 1 1

0 1 1 1 1 1 0

1 0 0 0 0 0 0

1 0 0 1 0 0 0

1 0 1 0 0 0 0

1 0 1 1 0 0 0

1 1 0 0 1 0 0

1 1 0 1 1 0 1

1 1 1 0 0 0 0

1 1 1 1 1 0 0

Figure 2.52. Truth table (decoder inputs/ROM outputs)

212 Digital Electronics 3

/ R

A

 3A

 3A

A 2

 1A

 2A

 1A

A 2

 3A

 3A

A 1

 3A

A 2

 1A

 2A

 1 1A

 2A 2A

 1A

 1A

 1A

 3A

 1A

 3A

 2A

S 2a / M1 S 3a / R

S 2b / RS 1b / D 1 S 3b / D 1

S 1a / D 2S 3c / D 2S 2c / D 1S 1b

 2

Figure 2.53. State diagram (Moore model) of the elevator controller

3

Asynchronous Finite State Machines

3.1. Introduction

Finite state machines can be synchronous or asynchronous. The operation of

asynchronous state machines, unlike that of synchronous state machines, does not

require a clock signal. Data transfer or the synchronization of asynchronous

machines is carried out through the bidirectional exchange of request signals and

acknowledge signals, also called handshake communication.

Asynchronous machines offer the advantage of being faster. However, they are

more sensitive to synchronization errors (namely critical race conditions, propagation

delay or hazard, oscillation). As a result, it is much more difficult to design reliable

asynchronous state machines.

Asynchronous state machines can be classified based on their operating mode,

such as the fundamental mode, pulse mode or burst mode.

Operation in the fundamental mode is possible only when a single input can change

at any one time and the state machine is in a stable state.

A state machine designed to operate in the pulse mode uses latches or flip-flops

triggered by data signals, and it is required that the input signal pulses do not overlap.

To operate in burst mode, the state machine must allow multiple inputs to change

simultaneously.

Digital Electronics 3: Finite-state Machines
First Edition. Tertulien Ndjountche.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.

,

214 Digital Electronics 3

3.2. Overview

An asynchronous state machine can have stable and transient (or unstable) states.

A state in which the asynchronous state machine can remain before and after a

transition is said to be stable.

The operation of an asynchronous state machine can be described using a flow

table.

A flow table is the tabular transposition of the possible transitions and outputs for

each input combination of an asynchronous state machine. It highlights stable states,

which are encircled, while the others are unstable.

A flow table for an asynchronous state machine is identical to a state table for a

synchronous machine. It is said to be primitive if each row has only one stable state.

A transition table displays, for each input combination, the transitions that can take

place between the states represented in terms of state variables.

An asynchronous state machine can exit a stable state only if an input changes. It

can move from one stable state to another either directly, or transiting through several

unstable states or states that do not satisfy the stability condition.

An asynchronous state machine operates in the fundamental mode, provided that

only one input changes logic states at a time and then remains constant until a steady

state is reached.

Changing a state variable forces the state machine to pass through a transient state.

For an asynchronous state machine, there is not such a marked difference between

Moore and Mealy models as there is with synchronous state machines. In fact, the

transitions between states in an asynchronous state machine are always initiated by

the inputs, and the outputs are, either directly or through state variables, related to the

inputs.

3.3. Gated D latch

A latch is a logic circuit that maintains a stable state even when the inputs become

inactive. Figure 3.1(a) presents the logic circuit of a gated D latch, which consists of

logic gates (an inverter, two AND gates, and an OR gate) configured as a 2:1
multiplexer.

Assuming that the gated D latch operates in fundamental mode, we obtain the

equivalent circuit shown in Figure 3.1(b), where a delay element is inserted in the

Asynchronous Finite State Machines 215

feedback path. The delay element can be considered to provide the sequential circuit

with a short-term memory. It usually represents the delay caused along the feedback

loop because of the propagation delay of the combinational logic section. The

characteristic equation for the gated D latch can be written as follows:

Q+ = D · C + C ·Q [3.1]

(a)

D

Q

C

D

+

Q

(b)

Q

C

Figure 3.1. a) Logic circuit for a gated D latch; b) equivalent circuit in
fundamental mode

If the signal C is set to 1, the output takes the logic state of the input D. Otherwise,

the output remains in the previous state.

The Karnaugh maps shown in Figure 3.2 represent the values of Q+ as given by

the characteristic equation for all the combinations of the variables D, C and Q.

1

1

1 0 1

00 01 1011

C

Q

DC D

1

Q

00 00

1

(b)

1

1 0 1

00 01 1011

C

Q

DC D

1

Q

00 0

(a)

0

Figure 3.2. Karnaugh maps: a) stable states;
b) characteristic equation Q+

A transition leads to a stable state if and only if the present state is identical to the

next state, that is Q+ = Q. The stable states are encircled in Figure 3.2(a).

Figure 3.2(b) shows the loops of the Karnaugh map that correspond to the terms

of the characteristic equation. As these loops are adjacent, the operation of the latch

can be affected by propagation delays of the logic gates. Figure 3.3 presents a timing

diagram that highlights the transient signals, which are transformed into oscillations

216 Digital Electronics 3

at the latch output. To eliminate this problem, a redundant term can be added to the

characteristic equation, as shown in the Karnaugh map in Figure 3.4(a). Thus:

Q+ = D · C + C ·Q+D ·Q [3.2]

Z or

X.

Y

X

Y

YZ.

Z +

Y

Figure 3.3. Timing diagram illustrating the effect of propagation delays

When the variables D and Q are set to 1, Q+ takes the logic state 1 and is no

longer dependent on the term C + C as previously. An improved version of the logic

circuit for the gated D latch is given in Figure 3.4(b).

(a)

Q

00 00

1

(b)

Q

C

D

1

1 0 1

00 01 1011

C

Q

DC D

1

Figure 3.4. a) Karnaugh map; b) improved version
of the logic circuit for the gated D latch

Another approach is the use of an SR latch and logic gates to implement a gated D

latch based on the state table given in Table 3.1.

The characteristic equation for an SR latch that does not use a forbidden state is

given by:

Q+ = S +R ·Q and S ·R = 0 [3.3]

Asynchronous Finite State Machines 217

PS NS Output

Q Q+

DC = 00 01 10 11

0 0 0 0 1 0

1 1 0 1 1 1

Table 3.1. State table of the gated D latch

Table 3.2 presents the excitation table for the SR latch, which can be used along

with the state table to determine the values required for the construction of the

Karnaugh maps, as shown in Figure 3.5, for the inputs S and R. The corresponding

logic equation can then be obtained as follows:

S = D · C [3.4]

and

R = D · C [3.5]

Q → Q+ S R

0 → 0 0 x

0 → 1 1 0

1 → 0 0 1

1 → 1 x 0

Table 3.2. Excitation table of the SR latch

x1

x 0 x

00 01 1011

C

Q

DC D

x

Q

00 00

1

(a)

0

0 1 0

00 01 1011

C

Q

DC D

0

Q

x x0

1

(b)

Figure 3.5. Karnaugh maps: a) S = D · C ; b) R = D · C

The gated D latch can, thus, be implemented by connecting an SR latch to AND

gates and an inverter, as illustrated in Figure 3.6. This circuit is only composed of

logic gates with a maximum of two inputs, and its operation is not affected by the

propagation delays of logic gates.

218 Digital Electronics 3

SR latch

Q

Q

C

D

Figure 3.6. Implementation of a gated D latch based on an SR latch

3.4. Muller C-element

A Muller C-element can be considered as a building block of asynchronous

circuits. It is used primarily to synchronize events because it can merge two requests

into one.

The logic circuit for a Muller C-element with two inputs and one output is shown

in Figure 3.7(a). It can be described as the implementation of a majority function with

three inputs and whose output signal is fed back to one input. By analyzing this circuit,

we can obtain the following logic equation:

Q+ = A ·B + (A+B)Q [3.6]

where the present state and the next state of the output are represented by Q and Q+,

respectively. The output of the C-element takes the logic level 1 if the majority of the

inputs A, B and Q are set to 1. Otherwise, it remains at the logic state 0. The symbol

of the C-element is depicted in Figure 3.7(b) and an example of the timing diagram is

shown in Figure 3.7(c).

C

(b)

Q

A

B

B

Q

B

A

(a)

Q

(c)

A

Figure 3.7. a) Logic circuit b) symbol and c) timing diagram
of the Muller C-element

Asynchronous Finite State Machines 219

The truth table of the C-element is represented in Table 3.3. When the inputs A
and B take the logic state 0, the output is set to 0. When the logic states of the inputs

A and B are different, the output remains in the previous state. Finally, when both

inputs A and B assume the logic state 1, the output is set to 1.

A B Q+

0 0 0

0 1 Q

1 0 Q

1 1 1

Table 3.3. Truth table of the Muller C-element

An active-low reset input can be added to the C-element, as shown in the logic

circuit and symbol in Figures 3.8(a) and (b).

C

CLR

CLR

A

B

(a)
B

A
Q

(b)

Q

Figure 3.8. a) Logic circuit and b) symbol
of the C-element with a reset input

The excitation table of the C-element is represented in Table 3.4. Two

combinations of the inputs A and B can cause each of the transitions 0 → 0 and

1 → 1.

A C-element can also be implemented by combining logic gates and the SR latch.

The transition table given in Table 3.5 is constructed based on the excitation table

for the SR latch and the truth table for the C-element. The Karnaugh maps shown in

Figure 3.9 can be used to derive the minimum logic expressions for the inputs S and

R of the latch. That is:

S = A ·B [3.7]

220 Digital Electronics 3

and

S = A ·B [3.8]

Q → Q+ A B

0 x
0 → 0

x 0

0 → 1 1 1

1 → 0 0 0

1 x
1 → 1

x 1

Table 3.4. Excitation table of the C-element

A B Q Q+ S R

0 0 0 0 0 x

0 0 1 0 0 1

0 1 0 0 0 x

0 1 1 1 x 0

1 0 0 0 0 x

1 0 1 1 x 0

1 1 0 1 1 0

1 1 1 1 x 0

Table 3.5. Transition table

The resulting logic circuit of the C-element is depicted in Figure 3.10.

3.5. Self-timed circuit

Self-timed circuits consist of modules that communicate with each other using

handshake protocol. They can be implemented by exploiting the operating principle

of C-elements.

There are two handshake communication protocols: one with two phases and the

other with four phases.

The two-phase protocol can be implemented as shown in Figure 3.11, where

continuous (dashed) lines represent the operations carried out by the sender

(receiver). Each transition is interpreted as an event carrying information. Thus, a

Asynchronous Finite State Machines 221

transition of the request (REQ) signal corresponds to a binary word being placed on

the data bus by the sender, while a transition of the acknowledgment (ACK) signal is

sent by the receiver to indicate the end of the transfer operation.

x1

0 x x

00 01 1011

B

Q

AB A

x

Q

00 00

1

(a)

0

1 0 0

00 01 1011

B

Q

AB A

0

Q

x x0

1

(b)

Figure 3.9. Karnaugh maps: a) S = A · B ; b) R = A · B

SR latch

Q

Q

A

B

Figure 3.10. Implementation of the C-element using an SR latch

Operation performed by the receiver

1

22

1

CLR

(b)

ACK

REQ

Cycle i+1Cycle i

C

RDY

(a)

REQ

ACK

Data

Sender
circuit circuit

Receiver

Data

Operation performed by the sender

Figure 3.11. a) Handshake communication system based on a
two-phase protocol; b) timing diagram

Initially, all signals are set to 0. The sender usually generates a data ready (RDY)

pulse to mark the beginning of the data transfer and the activation of the C-element

is initiated as a result of its two inputs taking the logic state 1. The transition of the

REQ signal that follows enables the receiver to take control, thereby preventing any

other placement of data on the bus. When the data transfer ends, the receiver produces

222 Digital Electronics 3

a transition of the ACK signal and the C-element may again change the state of the

REQ signal if another RDY pulse is detected.

This protocol has the advantage of minimizing the number of transitions required.

However, the need to store data on flip-flops with a complex triggering mechanism

– or that can be triggered by both the rising and falling edges of the signal – is only

usually possible at the cost of increasing the power consumption and size of the circuit.

In the case of the four-phase protocol, as illustrated in Figure 3.12, a single

transition type (rising edge or falling edge) is considered for each event. As soon as a

binary word is placed on the data bus by the sender, a transition of the REQ signal is

initiated and the control is passed to the receiver. When the receiver is available, the

data transfer can be completed. This causes a transition of the ACK signal. The next

operations consist of returning first the REQ signal and then the ACK signal to their

initial states. Data transfer is performed during each cycle, which comprises four

phases, two of which are carried out by the sender and two of which are performed

by the receiver. The detection of these four phases requires the use of two

C-elements, if the RDY and ACK signals are considered as pulses.

Data

CLR

CLR

1

3

4 4

3

22

1

Operation performed by the sender
Operation performed by the receiver

(b)

C

C

ACK

REQ

Données

Receiver
RDY

(a)

Sender

Cycle i+1Cycle i

ACK

REQ

circuitcircuit

Figure 3.12. a) Handshake communication system based on a
four-phase protocol; b) timing diagram

Asynchronous Finite State Machines 223

The four-phase protocol is slower and more complex. But its operation is not

completely disturbed by faulty initialization, and only flip-flops triggered by either

the rising or the falling edge of the signal are required.

Pipeline architecture is used in microprocessors to introduce parallelism in the

execution of instructions, thereby reducing the response time.

The implementation of a pipeline datapath based on the two-phase protocol is

represented in Figure 3.13, where each logic circuit executes a predefined operation.

The use of double-edge triggered D flip-flops helps reduce the complexity of the

control section. To ensure the proper functionality of the pipeline, the propagation

delay introduced by the buffer circuit connecting the output of one C-element to the

input of another C-element must be long enough to satisfy the data setup time

requirement, while the propagation delay of each C-element must long enough to

meet the data hold time constraint. The minimum duration of a pipeline cycle is equal

to the smallest time interval between two successive pulses of the request signal.

Q

CLR
CLR

Di
0

1
Q

Q

CLR

0

1
Q

Q

Q

Q

CLR

Q

Q

D0

REQ
0

ACK 0

ACK i ACK 0
D0

REQ
0

REQ
i

Di

REQ i

ACK i

REQ
k+1

ACK k+1

ACK k

REQ
k

ACK k+2

REQ
k+2

Q

Q

C

D

D

C

D

D

Q

Q

C

D

D

C

D

D

Stage k Stage k+1

0

1

Q

Q

L
og

ic
 c

ir
cu

it

L
og

ic
 c

ir
cu

it

Pipeline datapath
L

og
ic

 c
ir

cu
it

L
og

ic
 c

ir
cu

it

0

1

Q

Figure 3.13. Implementation of a pipeline datapath based on a
two-phase protocol

For the kth stage of the pipeline, a transition of the request signal, Rk, indicates

that the input data are valid. This implies that the transfer of the previous data has

been completed and the next stage has set the ACKk signal to 0. The output of the

C-element is used as the signal for the new data arriving at the input of the stage and as

the Rk+1 signal after a certain period of time, corresponding to the propagation delay

introduced by the buffer circuit.

224 Digital Electronics 3

It is assumed by this that the transfer of the preceding data is complete and the

next stage has set the ACKk signal to 0. The output of the C-element is used as

the acknowledgment signal for the new data arriving at the input of the stage and as

the Rk+1 signal after a certain period of time corresponding to the propagation delay

introduced by the buffer circuit.

One advantage of the asynchronous control mode is that it facilitates the insertion

of logic or arithmetic functions between the pipeline stages.

3.6. Encoding the states of an asynchronous state machine

In general, in order to avoid introducing critical race conditions in an

asynchronous machine, the states must be encoded such that only one variable can

change during each transition. But if certain critical race conditions still persist, they

will be eliminated by introducing cycles through existing undefined or unstable

states, or by making use of additional states or state variables to allow insertion of the

appropriate cycles. However, sequencing through additional states can lead to a

reduction of the final circuit speed.

Consider the asynchronous state machine described by the flow table shown in

Figure 3.6. It is assumed that both inputs do not change simultaneously. The transition

table, which is used to find the appropriate code for the representation of the states, can

be constructed as shown in Figure 3.14. It highlights the transitions between the states

as specified by the state table and is also called the adjacency diagram. As each state

must be adjacent to three other states, encoding states with two state variables cannot

solve the critical race problem. One possible solution consists, therefore, of using three

state variables and considering a shared-row state assignment or a multiple-row state
assignment.

PS NS Output

XY = 00 01 10 11 XY = 00 01 10 11

A A A D D 0 0 – –

B B A B C 1 – 0 –

C A C B C – 1 – 0

D B C D D – – 1 1

Table 3.6. Flow table

With the shared-row state assignment, the availability of additional state variables

is exploited to define the intermediate states, so that some transitions can take place

without being affected by critical race conditions.

Asynchronous Finite State Machines 225

B

DC

A

Figure 3.14. Transition diagram

The flow table shown in Table 3.7 is obtained by assigning binary codes to the

states as follows: A (000), B (001), C (100), D (010), E (011), F (101) and G
(110). It should be noted that the code 111 is not used. Using three state variables, it is

possible to add lines to the flow table, and transitions between states can be controlled

using cycles.

PS NS Output

XY = 00 01 10 11 XY = 00 01 10 11

A A A D D 0 0 – –

B B A B F 1 – 0 0

C A C F C – 1 0 0

D E G D D 1 1 1 1

E B – – – 1 – – –

F – – B C – – 0 0

G – C – – – 1 – –

Table 3.7. Flow table for a state machine
using shared-row state assignment

Multiple-row state assignment consists of allocating more than one binary code to

each state so that each transition from one state to another requires a change in only

one state variable.

A systematic procedure to implement multiple-row state assignment independent

of the configuration of the flow table is based on the use of an encoding that is said

to be universal. Figures 3.15(a) and (b) illustrate the universal encoding that can be

applied to any case where the minimum number of states does not exceed 4 and 8,

respectively. For universal encodings, it should be noted that the states are pairwise

equivalent and that the binary codes for equivalent states are logical complements. The

synthesis of a state machine based on multiple-row state assignment can be carried out

by replacing each state in a reduced flow table by two equivalent states.

226 Digital Electronics 3

The universal encoding in Figure 3.15(a) must be considered, as an example, to

implement the multiple-row state assignment for the state machine whose flow table

is represented in Table 3.6. The correspondence between the states and the binary

codes is established as follows: A1 (000), A2 (111), B1 (001), B2 (110), C1 (010),
C2 (101), D1 (011) and D2 (100). The extended flow table can then be represented as

shown in Table 3.8. As only one state variable can change during the transition from

one state to another, each of the states in a pair of equivalent states is adjacent to one

of the states of each of the other pairs of equivalent states.

(b)

2 B 2A2D 2

Z2

Z1

Z0

Z2

Z1 Z 0

Z3

Z 2

Z 1

Z 0

C 1A 1 B 1 D1

D1A1 B 1 C 1

H1E 1 F 1 G 1

B 2C 2 D2 A 2

F 2G2 H2 E 2

Z 1 Z0

Z3 Z 2

00 01 1011

0

1

01 11 1000

00

01

11

10

(a)

C

Figure 3.15. Universal encoding when the minimum number of states
does not exceed a) 4, and b) 8

PS NS Output

XY = 00 01 10 11 XY = 00 01 10 11

A1 A1 A1 D2 D2 0 0 - -

A2 A2 A2 D1 D1 0 0 - -

B1 B1 A1 B1 C2 1 - 0 0

B2 B2 A2 B2 C1 1 - 0 0

C1 A1 C1 B2 C1 - 1 0 0

C2 A2 C2 B1 C2 - 1 0 0

D1 B1 C1 D1 D1 1 1 1 1

D2 B2 C2 D1 D1 1 1 1 1

Table 3.8. Flow table of a state machine using
multiple-row state assignment

Asynchronous Finite State Machines 227

Multiple-row state assignment is simpler to implement than shared-row state

assignment. However, it is most often characterized by a greater increase in the rows

in the flow table and, therefore, by an increase in the complexity of the final circuit.

3.7. Synthesis of asynchronous circuits

During the design of an asynchronous state machine, the initial flow table obtained

from the specifications most often has several unspecified inputs. This is due to the fact

that the different possible transitions are listed assuming that a single variable changes

state each time. The unspecified inputs offer a certain flexibility that can be used to

minimize the number of states. Finally, the resulting logic equations depend on the

binary code used to represent the machine states.

In addition to the critical race conditions and static hazards, the operation of an

asynchronous state machine in the fundamental mode can be affected by other

synchronization errors that result in oscillatory cycles, essential hazards or delay-trio
(d-trio) hazards.

It should be noted that dynamic hazards occur mainly in logic circuits with more

than two levels of AND and OR logic gates. As we can avoid using this type of

circuit in the implementation of asynchronous state machines, dynamic hazards are

not generally considered.

3.7.1. Oscillatory cycle

The transition of a machine from one stable state to another stable state, passing

through one or more unstable states, constitutes a cycle.

When, under certain conditions, a machine enters and remains in a section of a

cycle that involves only unstable states, an oscillatory cycle or oscillations can be

observed.

Cycles are useful for the operation of asynchronous machines, while the oscillatory

cycles must be eliminated.

Figure 3.16(a) depicts the state diagram of a machine with two inputs X and Y .

The codes 00, 01, 11 and 10 being assigned to the states Sa, Sb, Sc and Sd,

respectively; we obtain the Karnaugh map shown in Figure 3.16(b) that illustrates the

transitions involving the states Sb and Sc.

An oscillatory cycle exists between the states Sb and Sc because the condition

X · Y can be verified at the same time as the two transition conditions X
 Y and Y .

228 Digital Electronics 3

Once a machine enters one of the states Sb or Sc, it oscillates between these two states

as long as the condition X · Y is maintained at the inputs.

X

a

S d

S c

S b
Y

X Y

X Y.Y

X Y.

01

00

11

0010 00

01 11

11 11 1010

XY

AB

A

00

01

11

10

(a) (b)

Y.X

Y

Y

X + Y

11 11

B

01

00

Y

11 1000 01
S

Figure 3.16. a) State diagram; b) Karnaugh map illustrating an
oscillatory cycle

In general, when the conditions for the transition from the state SI to the state SJ ,

TIJ , and from the state SJ to the state SI , TJI , can be simultaneously true for the

same combination of inputs, then:

TIJ · TJI �= 0 [3.9]

and there exists a logic expression that is common to both transitions and that can

cause oscillations.

One solution to eliminate oscillatory cycles consists of modifying the transition

conditions to suppress or reassign the term X · Y , as illustrated in Figure 3.17(a). For

the state Sb, the holding condition becomes X · Y + X · Y , which is equal to X .

This implies, as shown in the Karnaugh map in Figure 3.17(b), inserting the 01 from

the state Sb instead of the code 11 from the state Sc in the cell corresponding to the

combinations XY = 00 and AB = 01.

Reassigning the term X · Y to eliminate the oscillatory cycle, the machine that is

in the state Sc now goes to the state Sb, where it can be held under the condition X ·Y .

3.7.2. Essential and d-trio hazards

Essential and d-trio hazards are inherent to asynchronous sequential circuits with

at least three states and operating in the fundamental mode. They arise because of the

Asynchronous Finite State Machines 229

propagation delay that can be introduced by the parasitic components in a logic gate

or an interconnect wire, so as to create a critical race condition along two paths (direct

and indirect) stretching from the same input node up to the same logic gate.

X

a

S d

S c

S b
Y

Y

X Y.

01

00

11

0010 00

01 11

11 11 1010

X

Y.X Y.X

01

XY

AB

A

00

01

11

10

(a) (b)Y

Y

X + Y

11

B

01

00

Y

11 1000 01

X

Y.

S

Figure 3.17. a) State diagram after transformation; b) Karnaugh map
illustrating the elimination of the oscillatory cycle

The effect of each of these hazards can be eliminated by introducing delay

elements in the feedback loop of the indirect path to prevent the execution of

incorrect transitions.

3.7.2.1. Essential hazard

An essential hazard is a possible timing error related to a propagation delay

introduced in one of the two paths, starting from an input node and converging

toward the same logic gate. It results in a critical race condition between an input and

a state variable activated by this input to reach a logic gate, and the state machine is

found in an undesirable final state after at least two successive transitions.

Let us consider, as an example, the asynchronous state machine whose working is

described by the state diagram shown in Figure 3.18.

The flow table of this state machine is represented in Table 3.9. Assigning the

binary codes 00, 01, 11 and 10 to the states Sa, Sb, Sc and Sd, respectively, it can be

used to construct the Karnaugh maps shown in Figure 3.19. The logic equations for

the next states and the output can then be written as follows:

Z+
1 = X · Y · Z0 +X · Z1 · Z0 + Y · Z1 [3.10]

Z+
0 = X · Z0 +X · Y + Y · Z1 [3.11]

230 Digital Electronics 3

and:

Z = Z1 · Z0 [3.12]

S
Y.X

Y.XY.X

X + Y X + Y

X Y.

Y

X

Y

ZdS

ZaS

ZbS

Zc

Figure 3.18. State diagram

PS NS Output, Z

XY = 00 01 10 11

Sa Sa Sb Sa Sa 0

Sb Sc Sb Sa Sa 1

Sc Sc Sc Sa Sc 0

Sd Sa Sc Sa Sc 0

Table 3.9. Flow table

Adding the redundant term X ·Z ·Z0 is required to obtain an implementation free

from static hazards. Figure 3.20 depicts the logic circuit for the state machine.

When the state machine is in the state Sa with both inputs X and Y set to 0, the

condition X ·Y drives the state machine to the state Sb. If, on the other hand, a certain

delay, �te, is explicitly located in the direct path of the input Y , the effect of the state

change for Y will first reach the lowermost AND gate and cause the state variable,

Z0, to take to the logic state 1. This causes the state machine to move to the state Sb.

When the logic state 1 of the state variable Z0 is then applied to the uppermost AND

gate (see Figure 3.20), the state variable Z1 is set to 1 and the machine enters the

state Sc. The machine is held in the state Sc even when the effect of the state change

Asynchronous Finite State Machines 231

for Y finally reaches the uppermost AND gate (labeled with ∗ on the logic circuit in

Figure 3.20) because of the logic state 1 taken by the outputs of the other AND gates

connected to the OR gate whose output is Z1.

1

1 Z0 Z1 Z0

Z0
Z1

Z0

Z1

XY

A

01 11 10

Y

X

B

00

00

01

11

10

00

0

0

(a)

0

1

0

1 0

1

1

0

0

1

1

0

XY

A

01 11 10

Y

X

B

00

00

01

11

10

01

0

0

(b)

0

1

0

1 1

1

1

0

0

1

1

0

(c)

10

10

0 0

0

Z

Figure 3.19. Karnaugh maps: a) Z+
1 ; b) Z+

0 ; c) Z

*

IS

Y

X

Z

Z1

Z0

Figure 3.20. Logic circuit

Due to the effect of the essential hazard, the transition Sa → Sb or 00 → 01, under

the condition X ·Y , is carried out as a sequence of transitions, namely Sa → Sb → Sc

or 00 → 01 → 11.

To avoid the formation of the above-mentioned essential hazard, delay elements

must be inserted on the feedback path of the state variable Z0, as illustrated in

Figure 3.20.

Another implementation approach is based on the use of SR latches. In this case,

the excitation table for the SR latch can be used to obtain the Karnaugh maps as

232 Digital Electronics 3

represented in Figure 3.21, based on the flow table where each state is replaced by its

binary code. The logic equations for the inputs of latches and the output of the state

machine are given by:

S1 = X · Y · Z0 [3.13]

R1 = X · Y + Y · Z0 [3.14]

S0 = X · Y + Y · Z1 [3.15]

R0 = X · Y +X · Z1 [3.16]

and:

Z = Z1 · Z0 [3.17]

1

1 Z0 Z1 Z0

Z1 Z0Z 1 Z0

Z0
Z1

Z0

Z1

XY

A

01 11 10

Y

X

B

00

00

01

11

10

00

0

0

(a)

0

x

0

1 0

0

x

0

0

x

x

0

XY

A

01 11 10

Y

X

B

00

00

01

11

10

xx

1

1

(b)

x

0

1

0 x

1

x

x

0

0

x

0

A

11 10

Y

X

B

11

10

x

1

x

0

x 0

0

x

1

0

0

(d)

XY

A

01 11 10

Y

X

B

00

00

01

11

10

01

0

0

(c)

0

x

x

x x

1

x

0

0

1

x

0

XY

0100

00

01

0x

0 0 1

(e)

10

10

0 0

0

Z

Figure 3.21. Karnaugh maps: a) S1; b) R1; c) S0; d) R0; e) Z

Asynchronous Finite State Machines 233

The logic circuit of the state machine is depicted in Figure 3.22. The IS signal is

active low and is used to initialize the machine.

R

Q

QS

1

R

X

Y

QS

0

Z

IS

Q

Figure 3.22. Logic circuit

As suggested previously, delay elements are introduced in the feedback path of

the state variable Z0 to prevent the formation of essential hazards that could affect the

transition Sa → Sb under the condition X · Y .

NOTE.– In the case of an asynchronous state machine with a single input, the effect

of an essential hazard is often manifested by the transformation of a transition into a

sequence of three transitions.

An essential hazard can be identified by analyzing the asynchronous state

machine, whose operation is described by the flow table shown in Table 3.10. This is

a single input state machine whose state diagram is represented in Figure 3.23(a).

The Karnaugh map shown in Figure 3.23(b) is constructed by encoding each of the

states using a binary combination of the variables Y and Z. The state Sa is

represented by 00, Sb by 01, Sc by 11 and Sd by 10.

When the machine is in the state Sa and the input X is set to 0, a change in the

logic state of the input X should cause a transition to the state Sb. However, if during

the transition from Sa to Sb, the effect of the state change of the variable Z is taken

into account before that of the input X , the variable Y can take the logic state 1 and

the machine will then move to the state Sc. And when the state change of the input X
is finally taken into account, the state machine moves to the state Sd.

234 Digital Electronics 3

PS NS

X = 0 1

Sa Sa Sb

Sb Sc Sb

Sc Sc Sd

Sd Sa Sd

Table 3.10. Flow table

(b)

a

S d

S c

S b

X

X

X

X

00

01

11

X

X

XX

X

YZ

Y

1

00

11

0

00

01

11

10

Z

X

01

10

10

(a)

S

Figure 3.23. a) State diagram; b) Karnaugh map
illustrating an essential hazard

Due to the essential hazard, a single input state machine that should go from one

state to another, as in the case Sa → Sb, instead carries out a sequence of transitions

to settle in a different state from the expected one, namely Sa → Sb → Sc → Sd.

Figure 3.24(a) shows the logic circuit of the state machine based on the logic

equations obtained from the flow table as follows:

Y + = X · Y +X · Z + Y · Z [3.18]

and:

Z+ = X · Y +X · Z + Y · Z [3.19]

The timing diagram shown in Figure 3.24(b) illustrates the effect of an essential

hazard on the working of the state machine. Initially, the state of the state machine

Asynchronous Finite State Machines 235

is characterized by Y Z = 00. When the input X changes from the logic state 0 to

1, taking into account the propagation delay of the inverter connected to the signal

X , the effect of the state change is propagated through the machine so that the state

Y Z = 01 is first reached. As the signal X has not yet switched from the logic level

1 to 0, the state of the signal X · Z becomes 1 instead of being held at 0. This causes

the variable Y to move to the logic state 1 and the machine takes the state Y Z = 11.

When the signal X then takes the logic state 1, the machine wrongly enters the state

Y Z = 10.

X

X

Y

Y

Z

+

+

(b)(a)

Z

Y

X

.X

0

1

0

0

1

1

1

1 0

1

Y

Z

Y

.X Y

.X Z

Figure 3.24. a) Logic circuit of the state machine;
b) timing diagram illustrating the effect of the essential

hazard on the state machine operation

The essential hazard can be eliminated by inserting delay elements in the feedback

path of the state variable Z, as shown in Figure 3.25, to prevent incorrect transitions

from taking place.

3.7.2.2. d-trio hazard

A d-trio hazard is caused by the propagation delay introduced on one of the two

paths extending from one input to a logic gate. Due to the effect of a d-trio hazard, an

asynchronous state machine first transits to an erroneous transient state before settling

in the desired state. A d-trio hazard often results in a delayed transition between the

initial and the final states, but it can also cause an undesired state change of an output.

236 Digital Electronics 3

X

Z

Y

Figure 3.25. Logic circuit of the state machine with delay elements

Consider the logic circuit shown in Figure 3.26, where the R signal is active-

low and is used to drive the state machine to the initial state. For operation in the

fundamental mode, the logic equations of the state variables can be written as follows:

Y + = R(X · Y +X · Z) [3.20]

and:

Z+ = R(X + Z) [3.21]

R

Z

Y

X

Figure 3.26. Logic circuit of an asynchronous state machine

Asynchronous Finite State Machines 237

During a normal operation, R = 1, and the transition table can be constructed as

shown in Table 3.11. By assigning binary codes 00, 01, 11 and 10 to the states Sa,

Sb, Sc and Sd, respectively, the flow table can be represented as shown in Table 3.12,

where each stable state is encircled.

PS NS

Y Z Y +Z+

X = 0 1

00 00 01

01 11 01

10 10 01

11 11 01

Table 3.11. Transition table

PS NS

X = 0 1

Sa Sa Sb

Sb Sc Sb

Sd Sd Sb

Sc Sc Sb

Table 3.12. Flow table

In the presence of the d-trio hazard, the path followed by the state machine is

illustrated in the state diagram in Figure 3.27(a), and also in the Karnaugh map in

Figure 3.27(b). A change in the logic state for the input X can follow a direct path

and also an indirect path via Z to reach the AND gate connected to X and Z. From

the state Sa, setting the input X to 1 results in the state variable Z being set at 1.

When, to determine the state variable Y , the effects of these modifications are taken

into account in the order of their occurrence, the machine goes to the state Sb. If, as a

result of the propagation delay caused on the direct path by X , the effect of the logic

state change in Z is propagated and reaches the aforementioned AND gate before that

of the input X , the state variable Y takes the logic state 1 and the machine moves to

the state Sc. When the effect of the state change of X is then taken into account, the

logic state of Y changes again and the machine returns to the state Sb.

238 Digital Electronics 3

10

a

S d

S c

S b

X

X

X

X

R

X

X

X

YZ

Y

1

11

0

00

01

11

10

Z

X

01

01

X

X 01

(a) (b)

00

01

11

S

Figure 3.27. a) State diagram; b) Karnaugh map illustrating the path
taken by the state machine due to the d-trio hazard

Due to the effect of the d-trio hazard, the state machine that should move from one

state to another, as shown by the transition Sa → Sb, actually undergoes undesirable

transitions before stabilizing itself in the target state, namely Sa → Sb → Sc → Sb

or Sa → Sb � Sc. One solution to prevent the formation of d-trio hazards consists of

adding delay elements along the feedback path for the variable Z.

3.7.2.3. Essential and d-trio hazard detection

An asynchronous state machine operating in the fundamental mode can also be

affected by essential hazards or d-trio hazards. A section of the state diagram for such

a state machine is reproduced in Figure 3.28.

c

S b

Fab

Fbc

Fcb

Fa

Fb

Fc

S a

S

Figure 3.28. Section of a state diagram

Asynchronous Finite State Machines 239

Considering only state machines implemented as two-level logic circuits, the

formation of an essential hazard or a d-trio hazard is only possible if a propagation

delay of sufficient value is introduced in the direct path of the initiator input and at

least the following requirements are satisfied:

– the branching condition, Fab, must be contained1 in the holding condition Fb;

– the branching condition Fbc must be contained in the holding condition Fa;

– only a change in the logic state of the hazard initiator input is allowed in the

branching conditions Fab and Fbc and all other inputs must remain constant.

The branching condition Fab is not contained in the branching condition Fcb in the

case of an essential hazard, while the condition Fab is contained in the condition Fcb

in the case of a d-trio hazard.

3.7.3. Design of asynchronous state machines

The synthesis of an asynchronous state machine can involve the following steps:

1) develop functional and temporal specifications for the circuit;

2) obtain the flow table:

i) derive the primitive flow table;

ii) verify that the timing constraints are satisfied and that the primitive flow table

does not contain oscillatory cycles;

iii) minimize the primitive flow table to obtain the reduced flow table;

3) encode the states: the states must be encoded such that each transition from

one state to another requires a change in only one variable. Otherwise, the flow

table must be enlarged by inserting additional states so that the transitions only occur

between logically adjacent states, and all critical race conditions must be searched and

eliminated;

4) derive the logic equations for the next states and the outputs:

i) construct the appropriate Karnaugh maps using the transition table;

ii) if necessary, add redundant terms to the minimal expressions obtained to

eliminate the static hazards;

1 Example: The logic expression A · B is contained in A + B, while the expression A · B is

not contained in A+ B. Thus, every time the expression A · B is true, A+ B is also true, but

the converse may not be true.

240 Digital Electronics 3

iii) identify the essential and d-trio hazards that can only be eliminated by re-

examining the problem or by inserting delay elements (for example two inverters in

series) along the feedback path;

5) implement the logic circuit.

3.8. Application examples of asynchronous state machines

Asynchronous state machines are used as basic components in several data

processing, communication and data verification applications. However, the

examples considered here are characterized by a certain level of simplicity.

3.8.1. Pulse synchronizer

Implement a pulse synchronizer with one input for the clock signal, C , one control

input, P , and one output, Z.

When the clock signal first changes to the logic state 1, and if the control signal is

set to 1, a pulse, whose width is equal to a half period of the clock signal, is generated

at the output. In the case where the clock signal moves to the logic state 1 when the

control signal is set to 1 and then reset to 0 before the clock signal is again set to 1, the

output remains at the logic state 0. If the clock signal goes to the logic state 1 when

the control signal is set to 0, the logic state 0 is maintained at the output.

Two successive edges of the control signal are separated at least by a half period

of the clock signal, and a single pulse is generated at the output whenever the control

signal is set to 1.

The symbol and an example of a timing diagram for the pulse synchronizer are

shown in Figures 3.29(a) and (b), respectively.

(b)

Z

C

PZ

C

P

(a)

Figure 3.29. a) Symbol and b) timing diagram of a pulse synchronizer

The initial state diagram is constructed according to specifications, as shown in

Figure 3.30, by listing the different possible transitions. The initial description of the

Asynchronous Finite State Machines 241

pulse synchronizer uses eight states. Each combination formed by the two inputs and

the output is used to define the condition for the transition toward a given state and the

holding condition in this state. The initial flow table is represented in Table 3.13.

00/0

b

S d

S g

S h

S f

S c

S e

S a

10/0

01/000/0

11/001/0

01/0

10/0

11/1

11/0

10/0

11/0

01/1

11/1

10/0

00/0

00/0

01/1

10/0

11/0

01/0

11/1

10/0

00/0

S

Figure 3.30. Initial state diagram of the pulse synchronizer

PS NS Output

Z

PC = 00 01 10 11

Sa Sa Sb Sd – 0

Sb Sa Sb – Sc 0

Sc – Sb Sd Sc 0

Sd Sa – Sd Se 0

Se – Sh Sf Se 1

Sf Sa – Sf Sg 0

Sg – Sb Sf Sg 0

Sh Sa Sh – Se 1

Table 3.13. Initial flow table of the pulse synchronizer

242 Digital Electronics 3

Applying the simplification procedure for incompletely specified state machines,

we can determine the following compatibility classes: (Sa, Sb, Sc), (Sd), (Se, Sh),
and (Sf , Sg). The reduced flow table shown in Table 3.14 is obtained by making the

following assumptions:

S0 = Sa = Sb = Sc [3.22]

S1 = Sd [3.23]

S2 = Se = Sh [3.24]

and:

S3 = Sf = Sg [3.25]

PS NS Output

Z

PC = 00 01 10 11

S0 S0 S0 S1 S0 0

S1 S0 – S1 S2 0

S2 S0 S2 S3 S2 1

S3 S0 S0 S3 S3 0

Table 3.14. Reduced flow table of the pulse synchronizer

Natural binary code, or Gray code, can be chosen to represent the states of the

pulse synchronizer.

Using the natural binary code, we can obtain the Karnaugh map represented in

Figure 3.31(a), where the oriented arcs indicate the transitions that can be affected by

the race conditions, one of which is non-critical while the other two are critical. The

non-critical race condition does not really hinder the operation as the same final state is

reached regardless of the path taken. On the other hand, the critical race conditions that

can cause a malfunction of the circuit are eliminated by using Gray code. Hence, the

Karnaugh map shown in Figure 3.31(b) exhibits only one non-critical race condition.

The Karnaugh maps for the variables X+ and Y +, as illustrated in Figures 3.32(a)

and (b), are derived from the flow table, assuming that the states are represented using

Gray code. Thus:

X+ = C · Y + P ·X [3.26]

Asynchronous Finite State Machines 243

and:

Y + = C · Y + P · C ·X + P ·X · Y [3.27]

where a redundant term is added to the minimal expression of Y + to prevent a circuit

malfunction due to the hazard caused by unbalanced propagation delays. The logic

equation for the output, Z, is given by:

Z = X · Y [3.28]

race

− −

00

10

00

10

11

10

PC

XY

X

01 11 10

C

P

Y

00

00

00

00

00

01

11

01

11

(a) (b)

PC

XY

X

01 11 10

C

P

Y

00

00

00

00

00

01

01

00

11

11

10

00

− −

10

00

11

10

00

01

11

10

00

01

11

10Non−critical

00

Figure 3.31. Karnaugh maps for two different state encodings

0

PC

XY

X

01 11 10

C

P

Y

00

00

01

11

10

0

0

0

0

0

0

0

1

1

1

0

x

1

0

1

1

(a) (b)

PC

XY

X

01 11 10

C

P

Y

00

00

01

11

10

0

0

0

0

1

1

0

1

1

0

0

x

0

0

1

Figure 3.32. Karnaugh maps: a) X+; b) Y +

Figure 3.33 presents the logic circuit of the pulse synchronizer.

3.8.2. Asynchronous counter

Implement an asynchronous state machine that can count the pulses of an input

signal. This is a modulo 4 counter having one input and two outputs.

244 Digital Electronics 3

X

Z

C

P

Y

Figure 3.33. Logic circuit of the pulse synchronizer

To count the pulses, the asynchronous state machine must change its state each

time a transition of the input signal is detected. Figure 3.34 presents the state diagram

of the counter, where eight states are required to represent the transition of each of the

four consecutive pulses of the input signal.

X

X

S a Z1Z0 Z 1Z 0
X

S d Z1Z 0S h Z 1Z 0

S c Z1Z0

X X

S e Z1Z0

X

X

S f Z 1Z 0S g Z1Z0
X

X

S b
X

X

X

X

X

X

X

Figure 3.34. State diagram of the modulo 4 counter

Initially, the counter is in the state Sa and the input signal X is set to 0. It is held

in one state as long as the signal X is at the same logic state, and changes state each

time there is a transition of the signal X . The outputs Z1 and Z0 are identical for two

states, because a pulse begins with a transition from 0 to 1 and ends with a transition

from 1 to 0.

Asynchronous Finite State Machines 245

The primitive flow table and the transition table of the counter are represented in

Tables 3.15 and 3.15, respectively. To eliminate any race condition, the binary codes

are assigned to the states such that each transition only requires the modification of

one of the state variables: Y2, Y1 or Y0. The outputs, Z1 and Z0, give a binary

representation of the number associated with a given pulse. The Karnaugh maps, as

shown in Figure 3.35, are obtained from the transition table and can be used to

determine the logic equations for the state variables and the outputs, as follows:

Y +
2 = X · Y2 + Y2 · Y0 +X · Y1 · Y0 + Y2 · Y1 [3.29]

Y +
1 = X · Y1 + Y1 · Y0 +X · Y2 · Y0 + Y2 · Y1 [3.30]

Y +
0 = X · Y0 +X · Y2 · Y1 +X · Y2 · Y1 + Y2 · Y1 · Y0 + Y2 · Y1 · Y0 [3.31]

Z+
1 = Y2 · Y0 + Y1 · Y0 + Y2 · Y1 [3.32]

and:

Z+
0 = Y0 [3.33]

(d)

1 Y0

Y2

Y2

Y1

Y0

Y1 Y0

Y2

Y2

Y1

Y0

Y2

Y2

Y1

Y0

Y1 Y0

Y2

Y2

Y1 Y0

Y0

Y1

Y2

Y2

Y1 Y0

Y0

Y1

X

01 11 1000

00

01

11

10

11

1

1

(b)

0

0

0

0 0

0

0

1

0

1

1

1

X

X

01 11 1000

00

01

11

10

01

1

0

(c)

0

0

1

0 1

1

0

1

1

0

1

0

X

X

01 11 1000

00

01

11

10

10

1

0

(a)

0

1

0

0 1

0

1

0

1

0

1

1

X

1

0 1 0

00 01 1011

1

10 00

1

(e)

0

0 1 1

00 01 1011

1

00 10

1

Y

Figure 3.35. Karnaugh maps: a) Y +
2 ; b) Y +

1 ; c) Y +
0 ; d) Z1; e) Z0

It should be noted that the equations for the state variables and for one of the

outputs contain redundant terms to compensate for the effect of hazards on the counter

operation.

246 Digital Electronics 3

PS NS Outputs

Z1Z0

X = 0 1

Sa Sa Sb 0 0

Sb Sc Sb 0 1

Sc Sc Sd 0 1

Sd Se Sd 1 0

Se Se Sf 1 0

Sf Sg Sf 1 1

Sg Sg Sh 1 1

Sh Sa Sh 0 0

Table 3.15. Primitive flow table of the modulo 4 counter

PS NS Outputs

Y2Y1Y0 Y +
2 Y +

1 Y +
0 Z1Z0

X = 0 1

000 000 001 0 0

001 011 001 0 1

011 011 010 0 1

010 110 010 1 0

110 110 111 1 0

111 101 111 1 1

101 101 100 1 1

100 000 100 0 0

Table 3.16. Transition table of the modulo 4 counter

The logic circuit of the asynchronous modulo 4 counter is represented in

Figure 3.36. The CLR signal is active-low and is used to reset the counter.

Asynchronous Finite State Machines 247

X

Y0

Z1

Z0

CLR

Y1

Y2

=

Figure 3.36. Logic circuit of the counter

3.9. Implementation of asynchronous machines using SR latches or
C-elements

An asynchronous state machine can be implemented by combining logic gates and

SR latches or C-elements. The excitation table of the SR latch or the C-element is used

in conjunction with a transition table to construct the Karnaugh maps required for the

determination of the logic equations for the inputs of the SR latches or C-elements and

the output logic equations. In the case of SR latches, the logic equations for the inputs

Si and Ri must be such that Si ·Ri = 0.

248 Digital Electronics 3

The advantage of SR latches or C-elements results from the fact that the generation

of next states is not affected by static hazards.

Two types of sequential components can be used to implement asynchronous state

machines: the SR latch, which operate in the fundamental mode, and the C-element,

which is used to synchronize signals and can operate in modes other than the

fundamental mode. Figure 3.37 presents the symbols of a C-element, an SR latch and

a complementary C-element that has one active-high input and one active-low input.

C

CLR

Q

CLR

C Q

A

B

QS

R

(a) (b) (c)

Q

A

B

Figure 3.37. a) Symbols of C-element, b) an SR latch
and c) a complementary C-element

Each sequential component can be characterized by an excitation table, as shown

in Table 3.17 for a C-element, an SR latch and a complementary C-element. Note that

there is a similarity between the SR latch and the complementary C-element.

C-element SR latch Complementary

C-element

Q → Q+ A B S R A B

0 x 0 x 0 x
0 → 0

x 0 x 1

0 → 1 1 1 1 0 1 0

1 → 0 0 0 0 1 0 1

1 x 1 x
1 → 1

x 1 x 0 x 0

Table 3.17. Comparison of excitation tables for the C-element,
SR latch and complementary C-element

To implement a state machine based on the logic equations for the inputs Si and

Ri, the inputs Ri must be logically complemented if the basic components to be used

are C-elements instead of SR latches.

An arbiter is to be implemented for the serial communication system shown in

Figure 3.38, where the memory is considered as a resource shared by circuits 1 and 2.

Asynchronous Finite State Machines 249

Only a single circuit can access the memory at one time. In the case of multiple

requests, the arbiter circuit establishes an order of priority to allow access to the

memory.

C
om

m
on m

em
ory

Y

P
X

P
Y

Circuit 1

Circuit 2

Arbiter
X

Figure 3.38. Communication system

Circuits 1 and 2 initiate communication by setting the signals X and Y ,

respectively, to 1. When the memory is available, the arbiter can grant access to

circuit 1 by setting the signal PX to 1, or to circuit 2 by setting the signal PY to 1.

The signals X and Y are then reset to 0 by circuits 1 and 2, respectively, at the end of

each transmission. That is, the arbiter can reset one of the signals, PX or PY , to 0.

The flow table of the arbiter is illustrated in Table 3.18, where the initial state is

represented by Sa. The binary codes 00, 01, 10 and 11 are assigned to the states Sa,

Sb, Sc and Sd, respectively.

PS NS Outputs, PXPY

XY = 00 01 10 11

Sa Sa Sb Sc – 0 0

Sb Sa Sb Sd Sb 0 1

Sc Sa Sd Sc Sc 1 0

Sd – Sb Sc – 1 0

Table 3.18. Flow table

Access to the memory is granted, on a priority basis, either to circuit 1 when the

arbiter is in the state Sb, or to circuit 2 when the arbiter circuit is in the state Sc. As the

inputs X and Y are assumed to not change state simultaneously, the transition from

XY = 00 to XY = 11 is not possible from the state Sa, where the requests start to be

250 Digital Electronics 3

received. The state Sd is introduced to prevent the establishment of a race condition

between the states Sb and Sc.

The Karnaugh maps shown in Figure 3.39 can be used to determine the logic

equations for the latch inputs SA, RA, SB and RB , and the state machine outputs PX

and PY . Thus:

S0 = X · Y [3.34]

R0 = X · Y [3.35]

S1 = X · Y [3.36]

R1 = X · Y +X ·A [3.37]

PX = A [3.38]

and:

PY = A ·B [3.39]

1

XY

AB

A

01 11 10

Y

X

B

00

00

01

11

10

10

x

x

(a)

0

0

x

0 0

0

x

x

0

x

x

1

XY

AB

A

01 11 10

Y

X

B

00

00

01

11

10

01

0

0

(b)

0

0

x

0 x

1

x

x

x

0

0

x

A

11 10

Y

X

B

11

10

x

1

x

1

x 0

0

x

0

x

1

0

(d)

XY

AB

A

01 11 10

Y

X

B

00

00

01

11

10

01

0

0

(c)

0

0

x

0 x

1

x

x

x

x

0

x

(e)

(f)

10

00

1 1

A
B

A

B

XY

AB 0100

00

01

0x

1 0
10

10

0 0

A
B

A

B

0

1

0

Figure 3.39. Karnaugh maps: a) S0; b) R0; c) S1; d) R1; e) PX ; (f) PY

Asynchronous Finite State Machines 251

Figure 3.40 shows the logic circuit of the arbiter, whose initialization (or transition

to the state Sa) can be triggered by the active-low signal, IS.

R

Q

X

Q
PY

PX

IS

Y

QS

B

R

QS

A

Figure 3.40. Logic circuit of the arbiter based on SR latches

The arbiter circuit can also be implemented using C-elements, as illustrated in

Figure 3.41.

C

CLR

X

Y

CLR

C PX

PY

Figure 3.41. Logic circuit of the arbiter based on C-elements

3.10. Asynchronous state machine operating in pulse mode

Asynchronous state machines that can operate in pulse mode are designed using

flip-flops activated by data signals and assuming that the input signals are pulses which

252 Digital Electronics 3

do not overlap. They offer the advantage of being insensitive to the imperfections

that may affect the operation of state machines in the fundamental mode. However,

operation that does not depend on a clock signal is only possible at the price of a

constraint imposed on the input signals of the state machine.

The implementation of state machines operating in pulse mode is based on the

use of flip-flops in switching mode. Some possible configurations are illustrated in

Figure 3.42. Because input pulses must have an adequate width and be separated

enough to initiate transition from one state to another, it is preferable to use flip-flops

triggered by the falling edge when using active-high signals or flip-flops triggered by

the rising edge when using active-low signals.

D

Q

QTi

Ti

Q

Q Ti

Ti

Ti

Ti Q

Q

PR

CLR

QT

1

PR

CLR

QT

1

PR

CLR

QJ

K

PR

CLR

QJ

K

1

1

(a)

(b)

PR

CLR

QD

PR

CLR

Q

Figure 3.42. Flip-flops activated by a) the falling edge or b) the rising
edge of a data signal

Determining the input logic equations for the flip-flops and for the outputs of the

state machine from the transition table requires the use of an excitation table, such

as that shown in Table 3.19, where the transitions 0 → 1 and 1 → 0 correspond to

switching.

EXAMPLE 3.1.– sequence detector.

Implement a sequence detector whose output, Z, is set to 1 to indicate the detection

of three consecutive Y pulses following on any number of X pulses, where X and Y
represent the input signals.

The operation of a X − Y − Y − Y sequence detector is described by the state

diagram shown in Figure 3.43. The detector is a state machine which has four states

and its flow table is represented in Table 3.20, where the undefined states must be

Asynchronous Finite State Machines 253

interpreted taking into account the specification. Assigning the binary codes 00, 01,

11, and 10 to the states Sa, Sb, Sc, and Sd, respectively, and using the excitation

table for a flip-flop operating in switching mode (or a T flip-flop), the Karnaugh maps

can be constructed as shown in figures 3.44a, 3.44b, and 3.44c to determine the logic

equations for the inputs TA and TB , and the output Z. It should be noted that the logic

state 0 is assigned to each of the cells associated with the column XY = 00 and the

cell ABXY = 0001, while a don’t-care state is attributed to each cell related to the

column XY = 11. The resulting logic equations can be written as follows:

TA = A ·X + A ·B · Y +A ·B · Y [3.40]

TB = A ·X +B ·X +A ·B · Y [3.41]

and:

Z = A ·B · Y [3.42]

Q → Q+ Ti

0 → 0 0

0 → 1 1

1 → 0 1

1 → 1 0

Table 3.19. Excitation table of a flip-flop configured
to operate in pulse mode

Y/ Z

d

S c

S b

X/ Z

Y/ Z
Y/ Z

X/ Z

X/ Z

X/ Z
S a

S

Figure 3.43. State diagram of the sequence detector

Figure 3.45 shows the logic circuit of the sequence detector.

254 Digital Electronics 3

PS NS Output, Z

XY = 00 01 10 11 XY = 00 01 10 11

Sa - - Sb - - - 0 -

Sb - Sc Sa - - 0 0 -

Sc - Sd Sb - - 0 0 -

Sd - Sa Sb - - 1 0 -

Table 3.20. Flow table of the sequence detector

0x

x

x

x

x

x

x

XY

AB

A

01 11 10

Y

X

B

00

00

01

11

10

10

(b)

XY

AB

A

01 11 10

Y

X

B

00

00

01

11

10

0

0

0

0

0

(c)

0

0

1

0

1

0

x

x

x

x

XY

AB

A

01 11 10

Y

X

B

00

00

01

11

10

0

0

0

1

1

(a)

1

1

0

1

0

1

0

0

0

0

0

0

00

0

0

0

x

Figure 3.44. Karnaugh maps: a) TA; b) TB ; c) Z

NOTE.– In the case of a state machine operating in pulse mode, the state diagram and

the flow table have some specific characteristics:

Each branching condition always corresponds to the logic state of a single

variable or an OR logic function of single variables. It is possible to represent these

variables only in the non-complemented form when the signals are active-high or in

the complemented form when the signals are active-low. No unconditional branching

is allowed.

Only the flip-flop output toggling that characterize the operation in pulse mode

allows the transition from one state to another for each combination of inputs. Thus,

the holding condition in a given state must not appear in the state diagram or flow

table.

The sum law is not verified but the mutual-exclusion requirement is satisfied due

to the fact that input signal pulses must not overlap.

Any code can be adopted to represent the states of a state machine operating in

pulse mode, even though binary encoding is used wherever possible to minimize the

different logic equations.

Asynchronous Finite State Machines 255

Y
Q

Q

CLR

QT

1

A

PR

CLR

QT

1

B

ZX

PR

Figure 3.45. Logic circuit of the sequence detector

EXAMPLE 3.2.– Digital lock controller.

Consider the implementation of a digital lock controller whose state diagram is

shown in Figure 3.46. The lock is opened by setting the output Z to 1 when the input

combination X−X−Y −X is detected. The flow table can be represented as shown

in Table 3.21. It can be used to derive the Karnaugh maps shown in Figure 3.47 when

the binary codes 00, 01, 11, and 10 are assigned to the states Sa, Sb, Sc, and Sd,

respectively, and the excitation table for a flip-flop operating in the switching mode is

used.

X/ Z

c

S b

Y/ Z

Y/ Z

X/ Z

X/ Z

X/ Z

Y/ Z

S a

S d

S

Figure 3.46. State diagram of the controller for a digital lock

256 Digital Electronics 3

PS NS Output, Z

XY = 00 01 10 11 XY = 00 01 10 11

Sa – – Sb – – – 0 –

Sb – Sa Sc – – 0 0 –

Sc – Sd Sa – – 0 0 –

Sd – Sa Sa – – 0 1 –

Table 3.21. Flow table of the controller for a digital lock

0 x

x

x

x

x

x

x

XY

AB

A

01 11 10

Y

X

B

00

00

01

11

10

10

(b)

XY

AB

A

01 11 10

Y

X

B

00

00

01

11

10

0

0

0

0

1

(c)

1

0

1

0

0

0

0

0

0

0

x

x

x

x

XY

AB

A

01 11 10

Y

X

B

00

00

01

11

10

0

1

0

1

1

(a)

0

1

0

0

1

0

0

0

0

0

0

0

0

x

Figure 3.47. Karnaugh maps: (a) TA ; (b) TB ; (c) Z

The logic equations for the inputs of flip-flops and the state machine output can be

written as follows:

TA = A ·X +B ·X +A ·B · Y [3.43]

TB = B · Y + A ·B ·X +A ·B ·X [3.44]

and:

Z = A ·B ·X [3.45]

Figure 3.48 presents the logic circuit of the controller for a digital lock.

3.11. Asynchronous state machine operating in burst mode

Asynchronous state machines operating in burst mode find applications in the

implementation of controllers. They are characterized by the fact that the

simultaneous change in logic state of multiple inputs is allowed and can be described

using a Mealy model.

Asynchronous Finite State Machines 257

Y

Q

Q

CLR

QT

1

A

PR

CLR

QT

1

B

ZX

PR

Figure 3.48. Logic circuit of the controller for a digital lock

To operate in burst mode, the state machine is assumed to remain in a state until

the necessary change or transition is applied to each input of the given set of inputs.

The order in which the inputs undergo the changes does not matter. As soon as the last

change has taken place at the inputs, the machine initiates the transitions for a set of

outputs, if any, and moves to the next state.

Table 3.22 shows the flow table of a state machine that has two inputs and two

outputs and that can operate in burst mode.

PS NS Outputs, KL

XY = 00 01 10 11 XY = 00 01 10 11

’ A A – – B 00 – – 10

B C – – B 11 – – 10

C C D – – 11 10 – –

D A D – – 00 10 – –

Table 3.22. Flow table

In practice, a state machine operating in burst mode can be represented by a state

diagram where each transition from one state to another is associated with a label of

the form I/O, where I denotes a set of transitions to be applied to the inputs and is also

258 Digital Electronics 3

called the input burst; O corresponds to the set of transitions for the output signals

and is also called the output burst. In this case, each signal appearing in a burst is

annotated with the sign + or − to indicate whether it is supposed to undergo a rising

or falling transition.

The specifications of a state machine operating in burst mode must satisfy two

requirements:

– an input burst cannot be empty. Hence, when there is no change at the inputs the

machine remains at the same state;

– the input burst for a transition from a given state cannot be contained in any other

burst associated with a transition leaving that state. This property ensures that, at any

time, the state machine can unambiguously perform a transition or stay in the present

state.

Furthermore, to simplify the synthesis of hazard-free circuits, the same

combination of logic states must be assigned to inputs as well as outputs for all

transitions leading to the same state.

3.12. Exercises

EXERCISE 3.1.– (Implementation of a Rotation-direction Discriminator Based on a

Programmable Circuit).

A rotation-direction discriminator as illustrated in Figure 3.49 is to be designed.

The recognition of the direction of the rotation of a motor is realized by decoding the

two signals, X and Y , produced by sensors. Each sensor gives, on each quarter turn

of the motor shaft, a signal that can take the logic level 0 or 1 depending on whether

the part touched is white or gray.

Z
discriminator

Sensor

Y

X

Rotation−direction

Figure 3.49. Rotation-direction discriminator

The output signal, Z, is set to 0 when the motor turns clockwise and to 1 when

rotating counterclockwise.

Asynchronous Finite State Machines 259

– construct the primitive flow table;

– minimize the number of states and draw up the reduced flow table;

– encode the states and determine the logic equations for the synthesis of the

discriminator using D flip-flops.

Represent the logic circuit of the discriminator using FPGA with four-input lookup

table.

Assume that the signals X and Y do not vary simultaneously and that the

frequency of the clock signal is higher than the frequency of both the X and Y
signals.

EXERCISE 3.2.– (Bus Arbiter).

Let us consider a bus arbiter that allocates the bus to one of two components, A

or B, with priority initially assigned to component A when there are two concurrent

requests. In the block diagram in Figure 3.50, the bus arbiter provides the control

signals for both three-state buffers connected to a common data bus.

Bus

CLR

R A

Bus

Component B

Component A

arbiter
R B GB

GA

Figure 3.50. Bus arbiter

The bus arbiter must be implemented as a Moore model-based asynchronous state

machine that operates as follows. When the two inputs RA and RB are set to 0, the

machine returns to the initial state or is held in the initial state. For the inputs RA

and RB that take the binary combination 10 or 11, the machine goes to the state

where the bus is allocated to the component A and is held in this state as long as the

input RA remains at 1. On the contrary, when the combination 01 is assigned to the

inputs RA and RB , the machine returns to the initial state where the bus is allocated

to the component B and remains in this state as long as the input RB remains at

1. The transition between the two states, where the bus is allocated to one of both

components, occurs by assigning either the combination 01 or the combination 10 to

the inputs RA and RB .

260 Digital Electronics 3

– construct the state diagram for the state machine;

– using Gray code to represent the states, determine the logic equations for the

implementation of the machine when it operates in fundamental mode;

– represent the logic circuit of the state machine.

EXERCISE 3.3.– (T Flip-Flop).

A T flip-flop is described by the flow table shown in Table 3.23, where the input

and output are denoted by T and Q, respectively. The initial state is represented by A.

PS NS Output, Q

T = 0 1

A A B 0

B C B 0

C C D 1

D A D 1

Table 3.23. Flow table

Implement this flip-flop using only logic gates, and from either SR latches or C-

elements. Assume that this flip-flop operates in the fundamental mode and has an

active-low reset input, and the initial state is denoted by A and is represented by the

binary code 00.

EXERCISE 3.4.– (Multiple-Row State Assignment).

Consider the asynchronous machine whose flow table is represented in Table 3.24.

PS NS Output

XY = 00 01 10 11 XY = 00 01 10 11

A A C A B 0 0 0 1

B A C A B 0 1 0 1

C A C A B 0 0 - 0

Table 3.24. Flow table of an asynchronous state machine

i) Construct the transition table and determine the critical race condition when the

states are encoded as follows: A (00), B (01) and C (10);

Asynchronous Finite State Machines 261

ii) Show that a multiple-row state assignment obtained by adding a state to the flow

table helps to eliminate critical race conditions.

EXERCISE 3.5.– (Oscillatory Cycle).

Determine the imperfections that can affect the operation in the fundamental mode

of the asynchronous machine whose state diagram is shown in Figure 3.51, where X
and Y denote the input signals.

X + YaX

S b S c

S d

Y.X Y.X Y.X

X Y

Y

Y.X

Y.X

Y.X

Y.X

S

Figure 3.51. State diagram

Modify the state diagram for this state machine so that it can operate based on the

flow table shown in Table 3.25.

PS NS

XY = 00 01 10 11

Sa Sa Sa Sb Sc

Sb Sa Sb Sb Sc

Sc Sd Sb Sb Sc

Sd Sd Sd Sa Sd

Table 3.25. Flow table

Can we encode the states for this state machine using only two state variables?

262 Digital Electronics 3

EXERCISE 3.6.– (Cycle and Essential Hazard).

Identify the cycles that appear in the operation of the state machine described by

the state diagram shown in Figure 3.52, where X and Y represent the inputs and Z is

the output.

Modify this state diagram so that the state machine can operate according to the

flow table shown in Table 3.26.

Can we eliminate all the critical race conditions by assigning a two-bit binary code

to each state?

With the addition of the intermediate states, Se, Sf , Sg and Sh, the flow table is

modified as shown in Table 3.27. Determine the logic equations for the state variables

and for the output assuming that the states are represented as follows: Sa (000), Sb

(001), Sc (010), Sd (110), Se (010), Sf (100) and Sg (111).

X

a

S d S c

S b
ZX/

Y.X / Z

/ Z

Y.X / Z Y.X / Z

/ ZY.X

X Y/ Z

/ ZY

/ ZY.X

ZY/

Y.X / Z

/ ZY.X

Y.

S

Figure 3.52. State diagram

PS NS Output, Z

XY = 00 01 10 11

Sa Sb Sc Sa Sa 0

Sb Sb Sc Sb Sa X

Sc Sb Sc Sc Sd 0

Sd Sb Sd Sa Sd 0

Table 3.26. Flow table

Are there any essential hazards that can affect the operation of this state machine?

Asynchronous Finite State Machines 263

Represent the logic circuit for this state machine.

EXERCISE 3.7.– (Essential and d-Trio Hazards).

The state machine that is described by the state diagram shown in Figure 3.53 has

two inputs and one output and operates in the fundamental mode. The states Sa, Sb,

Sc and Sd are represented by the binary codes 00, 01, 11 and 10, respectively.

– Construct the flow table for this state machine;

– derive the logic equations that are useful for the implementation of this state

machine using logic gates;

– determine the imperfections that can affect the operation of this state machine;

– represent the logic circuit for this state machine.

PS NS Output, Z

XY = 00 01 10 11

Sa Sb Sc Sa Sa 0

Sb Sb Sc Sb Sa X

Sc Sb Sc Sc Sd 0

Sd Sb Sd Sa Sd 0

Se Sb Sc Sc Sd 0

Sf Sb Sd Sa Sa 0

Sg Sb Sd Sb Sa 0

Sh Sb Sd Sb Sd 0

Table 3.27. Flow table

EXERCISE 3.8.– (Pulse Selector).

The state diagram shown in Figure 3.54 describes the operation of a pulse selector.

Depending on the level of the signal applied to the input D, the input C is either

transferred toward the output H (high level) or the output L (low level).

Assigning the binary codes 00, 01, 11 and 10 to the states Sa, Sb, Sc and Sd,

respectively, determine the logic equations for the implementation of this selector

based on SR latches.

Represent the logic circuit for this selector assuming that the signals are active-

high and the state machine must be able to be initialized in the state Sa.

264 Digital Electronics 3

S

X

X Y.

Y.X

X + Y

Y.X

Y

X

Y

X

ZbS

ZaS

ZdS

Zc

Figure 3.53. State diagram

a

S d S c

S b

D.C / H L

D.C / H L

D.C / H L

D.C / H L

D.C / H L

D.C / H L

D.C / H L
D.C / H L

D.C / H L D.C / H L

D.C / H L

C / H L D.C / H L

D.C / H L

D.C / H L

S

Figure 3.54. State diagram

EXERCISE 3.9.– (Implementation of a Circuit Operating in Pulse Mode).

The asynchronous state machine described by the state diagram in Figure 3.55 is

to be implemented as a circuit operating in the pulse mode.

– Draw up the flow table for this state machine;

– representing the states Sa, Sb, Sc and Sd using the binary codes 00, 01, 11 and

10, respectively, construct the Karnaugh maps that can be used to determine the logic

equations for the flip-flop inputs and the state machine output;

Asynchronous Finite State Machines 265

– represent the logic circuit for the state machine using flip-flops triggered by the

falling edge of the signal;

– what is the logic function for this machine?

X/ Z

c

Y/ Z

Y/ Z
Y/ Z

X/ Z

Y/ Z

X/ Z
S a

S bS d

S

Figure 3.55. State diagram

EXERCISE 3.10.– (Analysis of a Circuit Operating in the Pulse Mode).

The logic circuit shown in Figure 3.56 is that of an asynchronous state machine

designed to operate in the pulse mode. It is initialized by setting the PR input of the

flip-flop A and the CLR signal of the flip-flop B to 0. The inputs are denoted by X
and Y , and the two outputs by K and L.

L

Q

Q

PR

CLR

QT

1

B

X

Y

K

PR

CLR

QT

1

A

Figure 3.56. Logic circuit

266 Digital Electronics 3

– Determine the logic equations for the flip-flop inputs, TA and TB , and the state

machine outputs, K and L;

– draw up the flow table for this state machine;

– construct the state diagram for this state machine;

– what is the logic function of this state machine?

3.13. Solutions

SOLUTION 3.1.– (Rotation-Direction Discriminator).

Each sensor can take the logic state 0 or 1. There are, thus, four possible input

combinations: 00, 01, 10 and 11. The rotation-direction discriminator can, therefore,

be described as a Mealy state machine whose state assignments are given in

Table 3.28.

Clockwise rotation Anticlockwise rotation

XY 00 01 11 10 00 10 11 01

PS S0 S1 S2 S3 S4 S5 S6 S7

Table 3.28. State assignments

PS NS Output

Z

XY = 00 01 11 10 XY = 00 01 11 10

S0 S0 S1 – S4 0 0 – 1

S1 S7 S1 S2 – 1 0 0 –

S2 – S6 S2 S3 – 1 0 0

S3 S0 – S5 S3 0 – 1 0

S4 S0 – S5 S4 0 – 1 1

S5 – S6 S5 S3 – 1 1 0

S6 S7 S6 S2 – 1 1 0 –

S7 S7 S1 – S4 1 0 – 1

Table 3.29. Primitive flow table of the discriminator

Asynchronous Finite State Machines 267

PS NS Output

Z

XY = 00 01 11 10 XY = 00 01 11 10

Sa Sa Sb Sd Sa 0 0 1 1

Sb Sb Sb Sc Sa 1 0 0 1

Sc Sb Sc Sc Sd 1 1 0 0

Sd Sa Sc Sd Sd 0 1 1 0

Table 3.30. Reduced flow table of the discriminator

The flow table with a single stable state per row (or primitive flow table) is shown

in Table 3.29.

The pairs of compatible states can be identified by analyzing the flow table. The

reduced flow table shown in Table 3.30 is constructed by merging the states as follows:

S0 ≡ S4 ≡ Sa, S1 ≡ S7 ≡ Sb, S2 ≡ S6 ≡ Sc, and S3 ≡ S5 ≡ Sd

To reduce the size of the combinational circuit, adjacent codes are attributed first

to the states leading to the same next state for a given input combination. Choosing to

represent the states with two variables, A and B, the binary codes 00, 01, 11 and 10,

can be assigned to the states Sa, Sb, Sc and Sd, respectively.

Figure 3.57 presents the Karnaugh maps for A+, B+ and Z, as derived from the

flow table. The different logic equations are given by:

A+ = A ·X +A · Y +X · Y [3.46]

B+ = B ·X +B · Y +X · Y [3.47]

and:

Z = A ·B ·X +A ·B · Y +A ·B ·X + A ·B · Y [3.48]

The rotation-direction discriminator can be implemented using FPGA with four-

input LUT and D flip-flops as shown in Figure 3.58.

SOLUTION 3.2.– (Bus Arbiter).

The operation of the bus arbiter can be described by state diagram shown in

Figure 3.59.

268 Digital Electronics 3

10

(a)

0 00 1

0

0

0 0 1 0

XY

AB

A

00 01 11 10

Y

X

B

00

01

11

10

1 1 1

1 1 1

(c)

0 10 1

1 1 0 0

0 1 1 0

1 0 0 1

XY

AB

A

00 01 11 10

Y

X

B

00

01

11

10

(b)

1 00 0

1 1 1 0

0 1 0 0

1 1 1 0

XY

AB

A

00 01 11 10

Y

X

B

00

01

11

Figure 3.57. Karnaugh maps: a) A+; b) B+; c) Z

LUT

X

QD A

CLR

CLR

QD B

CK

Z

Four−input

Four−input
LUT

Four−input
LUT

Y

Figure 3.58. Logic circuit of the discriminator

Using Gray code to represent states, the transition table is constructed as shown

in Table 3.31. The transitions between the unused state S3 and other states have been

defined in order to reduce the effects of possible critical race conditions on the

operation of the state machine.

For the state machine operation in the fundamental mode, we can obtain the

Karnaugh maps represented in Figures 3.60 and 3.61. The logic equations for the

next states can be written as follows:

X+ = RA ·RB +RB ·X · Y [3.49]

Asynchronous Finite State Machines 269

and:

Y + = RA +RB [3.50]

B

BS 0

S 1S 2

. R BR A

+. R BR A
.R A R B

. R BR A
. R BR A

. R BR A

R BR A

R A

. R BR A

R B

.

GA/

GA/ GBGA/ G

G

Figure 3.59. State diagram

PS NS Outputs

XY X+Y + GAGB

RARB = 00 01 10 11

S0 00 00 11 01 01 0 0

S1 01 00 11 01 01 1 0

S2 11 00 11 01 11 0 1

S3 10 00 11 01 01 0 0

Table 3.31. Transition table

The outputs are not directly dependent on the input signals, RA and RB . We

obtain, based on the transition table, the following logic equations:

GA = X · Y [3.51]

and:

GB = X · Y [3.52]

270 Digital Electronics 3

XY

01

11

10

1 0

0 1 1 0

1 0 0

0 1 0 0

00 01 11 10

00

0

R A R B R A

R B

X

Y

00

Figure 3.60. Function X+

X+ = RA ·RB +RB ·X · Y

Y

01

11

10

1 1

0 1 1 1

1 1 1

0 1 1 1

00 01 11 10

10

0

R BR A R A

R B

XY

X

00

Figure 3.61. Function Y +

Y + = RA + RB

Figure 3.62 presents the implementation of the bus arbiter. The reset signal, CLR,

is active-low.

SOLUTION 3.3.– (T Flip-Flop).

Assigning the binary codes 00, 01, 10 and 11 to the states A, B, C and D,

respectively, the Karnaugh maps can be constructed from the flow table, as shown in

Asynchronous Finite State Machines 271

Figure 3.63. The logic equations for the state variables and the state machine output

are given by:

Y +
1 = Y1 · T + Y0 · T + Y1 · Y0 [3.53]

Y +
0 = Y1 · T + Y0 · T + Y1 · Y0 [3.54]

and:

Q = Y1 [3.55]

where each of the redundant terms Y1 · Y0 and Y1 · Y0 is added to compensate for the

effect of static hazards.

 A

CLR

R B

R A

Y

X

G B

G

Figure 3.62. Bus arbiter

(c)

1 Y0

Y0

Y1 Y1 Y0

Y0

Y1 Y0Y0

Y1

Y1

1

0 0 1

00 01 1011

1

10 00

1

(a)

1

1 1 0

00 01 1011

0

10 00

1

(b)

T

T T

T 10

00

1 1

0

1

Y

Figure 3.63. Karnaugh maps: a) Y +
1 ; b) Y +

0 ; c) Q

Figure 3.64 shows the logic circuit of the T flip-flop, where IS denotes the reset

signal.

272 Digital Electronics 3

0
Q

CLR

Q

Y1

CLR

Q

T

T

Q

Y

Figure 3.64. Logic circuit

0

1 Y0

Y0

Y1 Y1 Y0

Y0

Y1

Y0Y0

Y1

Y1 10

00

1 1

0

1

(e)

Y1 Y0

Y0

Y1 Y1 Y0

Y0

Y1

x

1 x 0

00 01 1011

0

x0 00

1

(c)

0

x 0 x

00 01 1011

0x x0

1

(d)

T

T T

T

1

x

0 0 x

00 01 1011

x

10 00

1

(a)

0

x x 0

00 01 1011

xx 10

1

(b)

T

T T

T

Y

Figure 3.65. Karnaugh maps: a) S1 ; b) R1 ; c) S0 ; d) R0 ; e) Q

In the case of the T flip-flop implementation based on SR latches, the Karnaugh

maps are constructed as shown in Figure 3.65, using the state table of the T flip-flop

and the excitation table for the SR latch. We thus have:

S1 = Y0 · T [3.56]

R1 = Y0 · T [3.57]

S0 = Y1 · T [3.58]

R0 = Y1 · T [3.59]

Asynchronous Finite State Machines 273

and:

Q = Y1 [3.60]

The logic circuit of the T flip-flop is represented in Figure 3.66, where IS is the

reset signal.

T

Q

IS

Q

S

1

R

QS

0

R

Q

Figure 3.66. Logic circuit based on SR latches

Q

CLR

C

C

Y1

CLR

T

= Q

Y0

Figure 3.67. Logic circuit based on C-elements

Figure 3.67 presents the T flip-flop logic circuit based on C-elements.

274 Digital Electronics 3

SOLUTION 3.4.– (Shared-Row State Assignment).

i) The analysis of the flow table shows that the transition from state B to state C

is affected by a critical race condition, because it requires the simultaneous change in

two state variables.

Other encoding possibilities with two state variables also lead to a possible critical

race condition for at least one of the transitions.

Figure 3.68 shows the state diagram of the state machine.

A

C B

Figure 3.68. Transition diagram

ii) Adding a state, D, between states B and C, helps to eliminate the critical race

condition. The extended flow table is represented in Table 3.32, where the states are

encoded as follows: A (00), B (01), C (10) and D (11).

PS NS Output

XY = 00 01 10 11 XY = 00 01 10 11

A A C A B 0 0 0 1

B A C A B 0 0 0 1

C A C A B 0 0 1 0

D – C – B – 1 – 0

Table 3.32. Extended flow table

SOLUTION 3.5.– (Oscillatory Cycle).

The analysis of the state diagram shows the existence of an oscillatory cycle

between the states Sb and Sc. Under the condition Y , the state machine moves from

the state Sb to the state Sc, while the condition A ⊕ B cause a transition from the

state Sc to the state Sb. The relationship, (A ⊕B) · B = A · B, reveals the existence

of the condition A ·B that, by allowing the transition from the state Sb to the state Sc

and the transition from the state Sc to the state Sb, allowed the machine to enter an

oscillatory cycle.

Asynchronous Finite State Machines 275

Based on the flow table, the state diagram of the state machine can be represented

as shown in Figure 3.69. The critical race condition is eliminated because (A ⊕ B) ·
(A ·B) = 0.

X + YaX

S b S c

S d

Y.X Y.X Y.X

X Y

Y.X

Y.X

X Y

Y.X

Y.X
S

Figure 3.69. State diagram

The states of this state machine cannot be encoded using only two state variables

without running the risk of creating critical race conditions.

SOLUTION 3.6.– (Cycle and Essential Hazard).

The condition X · Y allows the transition sequence Sc → Sa → Sb, while the

condition X · Y causes the transitions Sa → Sb → Sc. In the operation of the state

machine as described by the state diagram, there are two cycles.

The state diagram modified according to the flow table is represented in

Figure 3.70. It can be seen that, in comparison with the initial state diagram, the

cycles were eliminated because of the modifications.

To eliminate the critical race conditions, the binary code assigned to each state of

the state machine must have at least three variables.

Representing each state by its binary code, we can draw up the table shown in

Table 3.33, which can be used to construct the Karnaugh maps required for the

determination of the logic equations for the state variables. From the Karnaugh maps

with entered variables in Figure 3.71, the logic equations for the state variables and

the state machine output can be obtained, as follows:

Z+
2 = Z1 ·X · Y + Z2 ·X · Y + Z2 · Z1 · Y [3.61]

Z+
1 = X · Y + Z1 · Y + Z2 · Z1 ·X [3.62]

Z+
0 = X · Y + Z2 ·X + Z0 · Y + Z2 · Z1 · Y [3.63]

276 Digital Electronics 3

and:

Z = Z2 · Z1 · Z0 ·X [3.64]

X

Y.X / Z

Y.X / Z

/ ZY.X

S a

/ Z

/ ZY.X

Y.X / Z

Y.X / Z

ZX/

S d
ZY/

S c

S b

X Y/ Z

Y.X / Z

/ ZY.X

/ ZY.XY.

Figure 3.70. State diagram

0

1

Y2

Y1 Y0

Y2 Y

Y

Y.X

X

Y

X +X + Y

Y.X

X + Y

Y0

Y2

Y1 Y0

Y.XY.X

Y.X1 Y.X Y YY2

Y0

Y1

Y2

Y1 Y0

Y2

X

Y1

Y0

Y1

Y2

Y1 Y0

Y.X

Y0

Y.XY2

1000 01 11

1

0

(c)

00

0

(b)

11

X + Y X + Y

1001

10

0

(d)

1

01

0

00

11

0

00

0

00

1011

Y.X Y.X0

(a)

00

0

Y Y1

01

Y

Figure 3.71. Karnaugh maps: a) Z+
2 ; b) Z+

1 ; c) Z+
0 ; d) Z

The term Z2 · Z1 · Y helps to eliminate the effect of any static hazard associated

with the presence of X and X when expressing Z+
2 .

Asynchronous Finite State Machines 277

PS Inputs NS PS Inputs NS

Z2Z1Z0 Z+
2 Z+

1 Z+
0 Z2Z1Z0 Z+

2 Z+
1 Z+

0

X · Y 001 X · Y 001

X · Y 011 X · Y 011
000

X · Y 000
010

X · Y 011

X · Y 000 X · Y 110

X · Y 001 X · Y 001

X · Y 011 X · Y 110
001

X · Y 001
100

X · Y 000

X · Y 000 X · Y 000

X · Y 001 X · Y 001

X · Y 011 X · Y 110
011

X · Y 011
101

X · Y 001

X · Y 110 X · Y 000

X · Y 001 X · Y 001

X · Y 110 X · Y 110
110

X · Y 000
111

X · Y 001

X · Y 110 X · Y 110

Table 3.33. Table showing present states/next states

Because of the difference in propagation delays associated with the paths taken by

X and Z1 to reach the AND gate implementing the function Z1 ·X · Y , the transition

Sa → Sc, under the condition X · Y can be affected by an essential hazard.

Assuming that the machine is initially in the state Sa and the two inputs X and Y
are set to 1, a transition from 1 to 0 at the input X brings the variables Z1 and Z0 to

the logic state 1, thus causing a transition of the state machine to the state Sc.

When the effect of the state change in Z1 is taken into account by the above-

mentioned AND gate before that of X , the variable Z2 goes to the logic state 1 (instead

of staying at 0). The state variable Z0 is then reset to 0, while the state of Z1 remains

unchanged. And finally, the state machine settles in the state Sd.

Under the effect of the essential hazard, the transition Sa → Sc is transformed into

a sequence of transitions Sa → Sc → Sd or 000 → 011 → 110.

The logic circuit of the machine is represented in Figure 3.72, where delay

elements are inserted in the feedback path for Z1 to prevent the formation of any

essential hazard.

278 Digital Electronics 3

Z

Z0

Z1

CLR

Z2

Y

X

Figure 3.72. Logic circuit

The propagation delay for the inverter, the AND gate and the OR gate are τi,
τAND and τOR, respectively. Designating the propagation delays associated with the

direct and indirect paths starting from the input X by �te and τi + τAND + τOR,

respectively, the propagation delay introduced by the delay elements must be such

that �te < τi + τAND + τOR +�tc.

SOLUTION 3.7.

–Essential and d-trio hazards:

The operation of the state machine can be described by the flow table shown in

Table 3.34.

Asynchronous Finite State Machines 279

PS NS Output, Z

XY = 00 01 10 11

Sa Sd Sa Sd Sa 0

Sb Sa Sa Sb Sb 0

Sc Sd Sc Sb Sb 1

Sd Sd Sc Sc Sc 0

Table 3.34. Flow table

Representing each state by the corresponding binary code, the flow table can be

used to construct the Karnaugh maps shown in Figure 3.73. The logic equations for

the next states and the state machine output can then be written as:

Z+
1 = Z0 · Y + Z1 ·X + Z1 · Z0 [3.65]

Z+
0 = Z0 ·X + Z1 ·X + Z1 · Y [3.66]

and:

Z = Z1 · Z0 [3.67]

1

0

1Z

Z0

1Z

Z01Z Z 01Z

1Z 1Z

Z0 Z0

XY

01 11 10

Y

X

00

00

01

11

10

10

0

1

(a)

1

1

1

0 0

1

1

0

0

1

0

0

XY

01 11 10

Y

X

00

00

01

11

10

00

1

1

(b)

0

0

0

0 0

1

1

0

1

1

1

1

(c)

10

00

0 1

0

Z

Figure 3.73. Karnaugh maps: a) Z+
1 ; b) Z+

0 ; c) Z

– Essential hazard:

For the transition Sc → Sb or 11 → 01 that takes place under the condition X , the

change from 0 to 1 of the input X causes the transition from 1 to 0 of the state variable

Z1 and the state machine can move to the state Sb.

If the propagation delay introduced on the input path X is such that the state

change in Z1 is taken into account by the AND gates while the input X is still at

280 Digital Electronics 3

the logic state 0, the logic state of each of the inputs of the lowermost OR gate will

become 0, allowing the variable Z0 to reset to 0 and the state machine to erroneously

enter the state Sa.

Under the effect of an essential hazard, the machine which should make the

transition Sc → Sb, or 11 → 01, rather undergoes the sequence of transitions

Sc → Sb → Sa or 11 → 01 → 00.

– d-trio hazard:

Analyzing the operation of the state machine, we can identify a d-trio hazard that

can affect the transition Sa → Sd, or 00 → 10, under the condition Y .

The transition from 1 to 0 of the input Y , from the state Sa or 00, allows the

state variable Z1 to take the logic state 1 and the state machine to move to the state

Sd. Because of the propagation delay introduced in the input path Y , the effect of

the transition of the variable Z1 reaches the lowermost AND gate before that of the

input Y . The response of this AND gate is first determined by the logic state 1 of the

variable Z1 and the input Y , resulting in the state variable Z0 being set to 1 and the

transition of the state machine to the state Sc. When the effect of the transition from 1

to 0 of the input Y is afterward taken into account by the AND gate, the state variable

Z0 is reset to 0 and the state machine goes to the state Sd.

Thus, the transition Sa → Sd, o’r 00 → 10, becomes a sequence of transitions,

Sa → Sd → Sc → Sd, or 00 → 10 → 11 → 10, due to the effect of the d-trio hazard.

The state diagram shown in Figure 3.74(a) illustrates the path between the source

state and the final state for each of the essential and d-trio hazards. Figure 3.74(b)

presents the logic circuit of the state machine with delay elements inserted on the

feedback path to prevent the formation of an essential or d-trio hazard.

Because of component imperfections (or parasitic capacitances), the path

connecting the input X to the AND gate is characterized by the propagation delay

�te.

The essential hazard is caused by the race between the input X and the state

variable Z1 to reach the lowermost OR gate.

Let τi, τAND and τOR be the propagation delays of the inverter, the AND gate

and the OR gate, respectively. The propagation delay on the direct path leading to the

lowermost OR gate is �te + τAND, while the propagation delay on the feedback path

starting from the OR gate takes the form, τi + 2τAND + τOR. The formation of the

essential hazard is only possible if �te + τAND > τi + 2τAND + τOR, that is:

�te > τi + τAND + τOR [3.68]

Asynchronous Finite State Machines 281

S

1Z

Z 0

X

X Y.

X + Y

Y.X

Y
Y.X

essential hazard
d−trio hazard

ZbS

ZaS ZcS

Zd

Z

X

Y

(b)(a)

X

Y

X

Figure 3.74. a) State diagram; b) logic circuit

One solution to prevent the formation of an essential hazard consists of adding

delay elements along the feedback pathway so that:

�te < τi + τAND + τOR +�tc [3.69]

where the propagation delay of the delay elements is designated by �tc.

The d-trio hazard is due to the difference between the propagation delays of the

paths taken by the input Y , �td and the state variable Z1, τi + τAND + τOR, to reach

the lowermost AND gate. It will affect the operation of the state machine if the next

relationship is satisfied:

�td > τi + τAND + τOR [3.70]

Adding delay elements along the feedback path is effective in compensating for

the effect of d-trio hazards if the following condition is verified:

�td < τi + τAND + τOR +�tc [3.71]

where the propagation delay of the delay elements is designated by �tc.

SOLUTION 3.8.– (Pulse Selector).

The flow table shown in Table 3.35 can be constructed based on the state diagram.

282 Digital Electronics 3

PS NS Outputs

H L

XY = 00 01 10 11

Sa Sa Sa Sd Sb 0 0

Sb Sc Sa Sb Sb D 0

Sc Sc Sc Sb Sd D D

Sd Sa Sc Sd Sd 0 D

Table 3.35. Flow table

Representing the states Sa, Sb, Sc and Sd by the binary codes 00, 01, 11 and 10,

respectively, the flow table of the state machine and the excitation table for the SR

latch can be used to construct the Karnaugh maps in Figure 3.75.

1

CD

AB

A

01 11 10

D

C

B

00

00

01

11

10

10

0

x

(a)

0

x

0

1 0

x

x

0

0

x

x

0

CD

AB

A

01 11 10

D

C

B

00

00

01

11

10

0x

1

0

(b)

x

0

1

0 x

0

x

x

0

0

x

0

A

11 10

D

C

B

11

10

x

0

x

0

x 0

0

0

0

x

1

0

(d)

CD

AB

A

01 11 10

D

C

B

00

00

01

11

10

00

x

0

(c)

0

x

0

x 0

x

x

0

0

x

(e)

(f)

10

D0

0 D

A
B

A

B

CD

AB 0100

00

01

xx

0 1
10

00

D D

A
B

A

B

0

1

0

1

1

Figure 3.75. Karnaugh maps: a) S1 ; b) R1 ; c) S0 ; d) R0 ; e) H ; f) L

The input equations for the SR latches and the state machine outputs, H and L,

can be written as follows:

S1 = B · C ·D +B · C ·D [3.72]

R1 = B · C ·D +B · C ·D [3.73]

S0 = A · C ·D +A · C ·D [3.74]

R0 = A · C ·D +A · C ·D [3.75]

H = B ·D [3.76]

Asynchronous Finite State Machines 283

and:

L = A ·D [3.77]

Figure 3.76 shows the logic circuit of the pulse selector with the reset signal being

represented by IS.

C

Q

QS

B

R

H

QS

A

R

D

Q

L

IS

Figure 3.76. Logic circuit

SOLUTION 3.9.– (Implementation of a Circuit Operating in the Pulse Mode).

The flow table may be constructed as shown in Table 3.36 based on the state

diagram.

PS NS Output, Z

XY = 00 01 10 11 XY = 00 01 10 11

Sa – – Sb – – – 0 –

Sb – Sc Sa – – 0 0 –

Sc – Sa Sd – – 0 0 –

Sd – Sc Sa – – 0 1 –

Table 3.36. Flow table

284 Digital Electronics 3

Assigning the binary codes 00, 01, 11 and 10 to the states Sa, Sb, Sc and Sd,

respectively, and using the excitation table of the T flip-flop, the Karnaugh maps can

be constructed as shown in Figures 3.77(a)(c) in order to determine the logic equations

for the inputs TA and TB and the output Z. That is:

TA = B · Y + A ·B ·X [3.78]

TB = A · Y +B ·X + A ·X [3.79]

and:

Z = A ·B ·X [3.80]

0

x

x

x

x

x

x

x

XY

AB

A

01 11 10

Y

X

B

00

00

01

11

10

10

(b)

XY

AB

A

01 11 10

Y

X

B

00

00

01

11

10

0

0

0

0

1

(c)

0

1

1

0

0

0

0

0

0

0

x

x

x

x

XY

AB

A

01 11 10

Y

X

B

00

00

01

11

10

0

0

0

1

(a)

1

0

1

1

1

0

0

0

0

0

0

0

00

x

Figure 3.77. Karnaugh maps: a) TA; b) TB ; c) Z

Figure 3.78 presents the logic circuit of the asynchronous state machine.

This is a X − Y −X −X sequence detector.

SOLUTION 3.10.– (Analysis of a Circuit Operating in Pulse Mode).

The following logic equations can be obtained by analyzing the logic circuit:

TA = A ·B ·X + A · Y +B · Y [3.81]

TB = X + Y [3.82]

K = (A⊕B)Y [3.83]

and:

L = A ·X [3.84]

Asynchronous Finite State Machines 285

B

Q

Q

A

X

Y

Z

PR

CLR

QT

1

PR

CLR

QT

1

Figure 3.78. Logic circuit

Using the characteristic equation of the T flip-flop, which is given by:

Q+ = T ·Q+ T ·Q [3.85]

we can obtain:

A+ = TA ·A+ TA ·A [3.86]

= A · Y +A ·B ·X +A ·B ·X [3.87]

and:

B+ = TB ·B + TB ·B [3.88]

= B ·X +B · Y +B ·X · Y [3.89]

Taking into account the characteristics inherent to circuits that operate in the pulse

mode and using the expressions for A+ and B+, the transition table can be constructed

as shown in Table 3.37.

In the case where the binary codes 00, 01, 11 and 10 represent the states Sa, Sb,

Sc and Sd, respectively, the flow table can be constructed as shown in Table 3.38.

Figure 3.79 presents the state diagram obtained from the flow table.

286 Digital Electronics 3

PS, AB NS, A+B+ Outputs, KL

XY = 00 01 10 11 XY = 00 01 10 11

00 – 01 01 – – 00 00 –

01 – 10 10 – – 10 00 –

11 – 00 10 – – 00 00 –

10 – 01 11 – – 10 01 –

Table 3.37. Transition table

PS NS Outputs, KL

XY = 00 01 10 11 XY = 00 01 10 11

Sa – Sb Sb – – 00 00 –

Sb – Sd Sd – – 10 00 –

Sc – Sa Sd – – 00 00 –

Sd – Sb Sc – – 10 01 –

Table 3.38. Flow table

The operation of the state machine from the initial state Sd corresponds to one of

the four following cases:

Case 1 Case 2 Case 3 Case 4

Inputs: Y Y Y X X Y – X X Y – Y

Outputs KL: 10 01 10 00 01 00 00 00 01 00 00 01

where each hyphen may be replaced by X or Y .

This machine can identify which of the inputs, X or Y , is at the beginning and end

of a binary sequence.

(X+Y)/ K L

a

S c

S d

S b X/ K L

Y/ K L

X/ K L

X/ K LY/ K L

Y/ K L
S

Figure 3.79. State diagram

Appendix

Overview of VHDL Language

A.1. Introduction

VHSIC Hardware Description Language (VHDL, where VHSIC denotes very

high speed integrated circuits) is a hardware description language used to represent

the behavior and architecture of a digital system. VHDL is characterized by the fact

that it allows for the easy expression of the parallelism that is inherent to a circuit.

One of the goals of VHDL is to facilitate the development of digital circuits.

Thus, the specifications of a system, described in VHDL, can be verified by

simulation well before using a synthesis tool for transcription in the form of logic

gates or programmable circuit (PROM, PAL, PLA, PLD, FPGA).

In VHDL, the description of any component has two aspects:

– the interface with the external world is described in the section named ENTITY;

– the function or structure to be implemented is described in the section named

ARCHITECTURE.

In general, the description of a function or a structure is based on the use of

concurrent instructions. However, in cases that might be too complex to be described

in concurrent instructions, an algorithmic description, called PROCESS, can be chosen

for convenience. The instructions used within a process are no longer concurrent but,

rather, sequential. A PROCESS-type declaration provides a behavioral description but

not a structural one.

A.2. Principles of VHDL

VHDL is used to model a digital system as an assembly of entities that can be

described on one of the following three levels:

Digital Electronics 3: Finite-state Machines
First Edition. Tertulien Ndjountche.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.

,

288 Digital Electronics 3

– structural;

– behavioral;

– dataflow.

Unlike the structural description, the behavioral description is not directly related

to the basic elements of a system, but it is based on the use of sequential algorithms.

Dataflow description uses concurrent instructions to assign the corresponding values

to different signals.

A.2.1. Names

In VHDL, a name is used to identify the following elements: ENTITY,

ARCHITECTURE, PACKAGE, PACKAGE BODY and CONFIGURATION. It must be

composed of a letter followed by any number of letters or numbers without any

spaces. An underscore can be used within a name, but not at the beginning or end.

Additionally, two consecutive underscores are not allowed.

It should be noted that VHDL does not differentiate between upper case and lower

case characters.

Certain names or identifiers are used as keywords in VHDL. These are reserved
words:

ABS ACCESS AFTER ALIAS ALL AND ARCHITECTURE ARRAY ASSERT
ATTRIBUTE BEGIN BLOCK BODY BUFFER BUS CASE COMPONENT
CONFIGURATION CONSTANT DISCONNECT DOWNTO ELSE ELSIF END ENTITY
EXIT FILE FOR FUNCTION GENERATE GENERIC GROUP GUARDED IF IMPURE
IN INERTIAL INOUT IS LABEL LIBRARY LINKAGE LITERAL LOOP MAP MOD
NAND NEW NEXT NOR NOT NULL OF ON OPEN OR OTHERS OUT PACKAGE PORT
POSTPONED PROCEDURE PROCESS PURE RANGE RECORD REGISTER REJECT REM
REPORT RETURN ROL ROR SELECT SEVERITY SIGNAL SHARED SLA SLL SRA
SRL SUBTYPE THEN TO TRANSPORT TYPE UNAFFECTED UNITS UNTIL USE
VARIABLE WAIT WHEN WHILE WITH XNOR XOR

A.2.2. Comments

A comment line begins with two hyphens and is ignored by the VHDL compiler.

EXAMPLE A.1.– (Comment Line).

-- This is a comment
-- Description of a state machine

Appendix 289

A.2.3. Library and packages

A library is a collection of precompiled design entities. It must be declared at the

beginning of a VHDL file with the instruction LIBRARY.

VHDL supports two predefined logic libraries: the default work library, WORK,

where the compiled descriptions are stored, and the library containing definitions on

the types and basic functions, STD.

A PACKAGE is used to group declarations and descriptions of types, sub-types,

components, constants or subprogrammes to store them in the library.

The USE instruction is used to declare a package before its use.

A.2.4. Ports

The PORT declaration for an entity gives the definition for the input and output

pin of the component. The direction in which a pin works is specified using one of

the following modes: IN (input), OUT (output), INOUT (input/output) and BUFFER (an

output, but which can also be connected to a feedback path returning inside the entity).

A.2.5. Signal and variable

A signal transports information between the input nodes, output nodes and

internal nodes. A value is allocated to a signal using the operator <= and the change

is effective from the next iteration of the simulation (with a delay, delta).

A signal declared in a PACKAGE is global; in an ENTITY, it is common to all

architectures, and in an ARCHITECTURE, it is local.

A variable is used to store intermediate results. It is only employed in a process

and is, thus, always local. The variable’s value can be modified using an := operator.

Unlike a signal, a variable takes its new value as soon as it is allocated.

A.2.6. Data types and objects

The type determines the values that can be assigned to a pin or that can be taken

by a signal or a variable. In VHDL, any object that explicitly or implicitly belongs to

a type and any data (signal, variable, etc.) must be declared before use by indicating

its type.

290 Digital Electronics 3

Existing types are as follows:

– scalar: integer, real, enumeration (characterized by an enumeration of all

possible values), physical (which makes it possible to represent values of physical

quantities);

– composites: tables, recordings (defined as a collection of named elements (or

fields) whose values may be of different types);

– pointers;

– files.

VHDL has a certain number of predefined types and subtypes. Their declarations

are included in the STANDARD package of the STD library.

To use these types, the following directives must be included in the source code:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.numeric_std.ALL;

It should be noted that it is not possible to mix objects of different types in an

expression without specifying conversion functions. Development environments

generally provide packages that contain type conversion functions. To use these

functions, we can just access the std_ logic_arith package of the ieee library.

USE ieee. std_logic_arith.ALL;

Additionally, a user can define new types (or subtypes) using basic types or types

predefined by all compilers.

A.2.7. Attributes

An attribute is a characteristic associated with a type or an object that can be

evaluated either at the time of compilation or during the simulation. Each attribute is

referenced by its name, which comprises a prefix, an apostrophe, and the attribute

itself. The prefix must correspond to a type, subtype, table or block.

There are two classes of attributes: predefined attributes and attributes declared

and specified by the user.

EXAMPLE A.2.– Among the attributes, we have:

– a’LEFT is the leftmost subscript of a vector or table, a;

Appendix 291

– a’RANGE[(n)] refers to the range of dimension n of a;

– a’LENGTH[(n)] refers to the number of elements of the n-th index of a;

– s’STABLE[(t)] is a Boolean signal that is true if s has not changed value in the

time interval t (optional);

– s’EVENT represents a Boolean function that is true if an event occurs on a signal

in the current simulation cycle.

The following VHDL code can be used to obtain a circuit with a maximum delay

of 10 on all the output ports using the attribute max_delay:

ENTITY example IS
PORT (a, b: IN BIT;

c: IN BIT_VECTOR (1 TO 3);
x, y: OUT BIT;

z: OUT BIT_VECTOR (1 TO 3));
ATTRIBUTE max_delay OF x, y, z: SIGNAL IS 10.0;

END example;

A.2.8. Entity and architecture

A digital system is described in a VHDL file as an entity or several

interconnected entities. Each entity is modeled by an ENTITY declaration and an

ARCHITECTURE section, which is made up of entities, processes and interconnected

components operating concurrently.

EXAMPLE A.3.– (Entity and architecture).

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY andgate IS
PORT (a: IN STD_LOGIC;

b: IN STD_LOGIC;
f: OUT STD_LOGIC);

END andgate;

ARCHITECTURE andgate_beh OF andgate IS
BEGIN
PROCESS(a, b)
BEGIN

f <= a AND b;

292 Digital Electronics 3

END PROCESS;
END andgate_beh;

This is a behavioral description for a two-input AND gate. The sensitivity list for

the process includes the inputs a and b, such that whenever one or the other

undergoes a change, the process is executed again resulting in the generation of an

updated output.

A three-state buffer can be described in VHDL as follows:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY tristate IS
PORT (x: IN STD_LOGIC;

en: IN STD_LOGIC;
y: OUT STD_LOGIC);

END tristate;

ARCHITECTURE tristate_beh OF tristate IS
BEGIN

y <= x WHEN (en = ’1’) ELSE ’Z’;
END tristate_beh;

A.3. Concurrent instructions

In a logic circuit, each gate or logic operator may be considered as a concurrent

structure. A change applied to several concurrent structures affects all of them

simultaneously.

A concurrent instruction is used to assign the value of a Boolean expression or a

constant to a gate or signal. It is useful for the description of a Boolean equation. As

the logic operators NOT, AND, OR, and XOR have the same priority in VHDL, the

order of priority must be explicitly established by parentheses.

EXAMPLE A.4.– A full adder can be described in VHDL as follows:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY FullAdder IS
PORT (a, b, ci: IN STD_LOGIC;

c0, s : OUT STD_LOGIC);

Appendix 293

END FullAdder;

ARCHITECTURE FullAdder_beh OF FullAdder IS
BEGIN
PROCESS(a, b, ci)
BEGIN

-- Concurrent statement
c0 <= (a AND b) OR (b AND ci) OR (a AND ci);
s <= a XOR b XOR ci;

END PROCESS;
END FullAdder_beh;

This is dataflow type architecture.

A.3.1. Concurrent instructions with selective assignment

A concurrent instruction with selective assignment is used to assign different

values to a port or signal depending on the values taken by a selection signal.

EXAMPLE A.5.– A 4 : 1 multiplexer can be described using concurrent instructions

with selective assignment as follows:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY Mux4_1 IS
PORT (x0, x1, x2, x3: IN STD_LOGIC;

s: IN STD_LOGIC_VECTOR(1 downto 0);
y: OUT STD_LOGIC);

END Mux4_1;

ARCHITECTURE Mux4_1beh OF Mux4_1 IS
BEGIN
WITH s SELECT

y <= x0 WHEN "00",
x1 WHEN "01",
x2 WHEN "10",
x3 WHEN "11";

END Mux4_1beh;

A.3.2. Concurrent instructions with conditional assignment

A concurrent instruction with selective assignment is used to modify the state of a

port or a signal based on the result of a test or condition.

294 Digital Electronics 3

EXAMPLE A.6.– The following VHDL description corresponds to that of an 8 : 3
priority encoder:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY PriorityEncoder83 IS
PORT (din : IN STD_LOGIC_VECTOR(7 downto 0);

dout : OUT STD_LOGIC_VECTOR(2 downto 0)
);

END PriorityEncoder83;
mux2_1beh
ARCHITECTURE PriorityEncoder83_beh OF PriorityEncoder83 IS
BEGIN
dout <= "111" WHEN din(7)=’1’ ELSE

"110" WHEN din(6)=’1’ ELSE
"101" WHEN din(5)=’1’ ELSE
"100" WHEN din(4)=’1’ ELSE
"011" WHEN din(3)=’1’ ELSE
"010" WHEN din(2)=’1’ ELSE
"001" WHEN din(1)=’1’ ELSE
"000";

END PriorityEncoder83_beh;

A.4. Components

The VHDL representation of a component consists of a user interface (or ENTITY)

and a description of the function implemented (or ARCHITECTURE).

The structural description of a more complex component can be implemented by

interconnecting other components. It is composed of three sections:

– declarations of components models used as defined in the entities of these

components;

– declarations of the internal signals that will interconnect the components;

– the instantiation of each component, which consists of specifying the parameters

(GENERIC MAP) and the internal wiring or the input and output connections (PORT
MAP).

Appendix 295

EXAMPLE A.7.– A four-bit adder can be described using the following VHDL code:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY Adder_4bit IS
PORT(

carryi: IN STD_LOGIC;
x, y : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
carry0: OUT STD_LOGIC;
sum : OUT STD_LOGIC_VECTOR(3 DOWNTO 0)
);

END Adder_4bit;

ARCHITECTURE Adder_4bit_arc OF Adder_4bit IS
-- Internal carry
SIGNAL c: STD_LOGIC_VECTOR (3 DOWNTO 1);
COMPONENT FullAdder -- Defined in FullAdder.vhd
PORT (a, b, ci: IN STD_LOGIC;

c0, s : OUT STD_LOGIC
);

END COMPONENT;
BEGIN -- Four full adder components interconnected
FA1: FullAdder PORT MAP (x(1),y(1),carryi,c(1),sum(1));
FA2: FullAdder PORT MAP (x(2),y(2),c(1),c(2),sum(2));
FA3: FullAdder PORT MAP (x(3),y(3),c(2),c(3),sum(3));
FA4: FullAdder PORT MAP (x(4),y(4),c(3),carry0,sum(4));

END Adder_4bit_arc;

Each instance of a component is a unique copy of this component with a name and

a list of ports (or inputs and outputs). The PORT MAP instruction is used to describe

the wiring of the different ports of a component:

– the ports can be associated by position:

gate1: and PORT MAP (a, b, f);

– the ports can be associated by denomination:

gate2: and PORT MAP (s1 => a, s2 => b, en => f);

– a port can be open:

muxcir: mux21 PORT MAP (i1, open, s);

A value must be assigned by default to an unconnected (or open) input.

296 Digital Electronics 3

A.4.1. Generics

Generics, or the GENERIC instruction, is used to describe parameterized blocks (or

entities), which can then be instantiated with the values of parameters to implement

a component. It is declared at the entity level and not the architecture level. In the

case of generic parameters, it is possible to specify the values by default, using the :=
operator.

EXAMPLE A.8.– The following VHDL description is that of a 2 : 1 multiplexer whose

generic parameters are the length of words, (tb+1), and the propagation delay, (pd):

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ENTITY mux2_1g IS
GENERIC(tb : natural := 15; -- top bit

pd : time := 100 ps); -- propagation delay
PORT(din0 : IN STD_LOGIC_VECTOR (tb DOWNTO 0);

din1 : IN STD_LOGIC_VECTOR (tb DOWNTO 0);
sel : IN STD_LOGIC;
dout : OUT STD_LOGIC_VECTOR (tb DOWNTO 0));

END ENTITY mux2_1g;

ARCHITECTURE mux2_1beh OF mux2_1g IS
BEGIN -- no process needed with concurrent statements
dout <= din1 WHEN sel=’1’ OR sel=’H’

ELSE din0 AFTER pd;
END mux2_1beh;

A.4.2. The GENERATE Instruction

The GENERATE instruction allows for an iterative or conditional elaboration of a

group of concurrent instructions, thus providing a more compact description.

EXAMPLE A.9.– Another description of the four-bit adder can be obtained using the

GENERATE instruction as follows:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY Adder_4bit IS
PORT(

carryi: in STD_LOGIC;

Appendix 297

x, y : in STD_LOGIC_VECTOR(3 DOWNTO 0);
carry0: out STD_LOGIC;
sum : out STD_LOGIC_VECTOR(3 DOWNTO 0)
);

END Adder_4bit;

ARCHITECTURE Adder_4bit_arc OF Adder_4bit IS
SIGNAL c: STD_LOGIC_VECTOR (4 DOWNTO 0); -- Carry bits
COMPONENT FullAdder -- Defined in FullAdder.vhd
PORT (a, b, ci: in STD_LOGIC;

c0, s : out STD_LOGIC
);

END COMPONENT
BEGIN
c(0) <= carryi;
-- Instantiate four full adders
Adders: -- Note that a label is required here
FOR i IN 1 TO 4 GENERATE

FA: FullAdder
PORT MAP(x(i), x(i), c(i-1), c(i), sum(i));

END GENERATE;
carry0 <= c(4);

END Adder_4bit_arc

In general, the For instruction is used to repeat the execution of the same sequence

of instructions several times. All that is required is designating, in the syntax, the

parameter that will serve as a counter (or down counter), its initial value and final

values.

The WHILE instruction provides another approach for executing the same sequence

of instructions multiple times. The sequence of instructions is executed as long as a

condition is satisfied. However, the WHILE instruction is primarily used to describe the

models for simulation and implementation of test benches.

A.4.3. Process

A process (PROCESS) behaves, from an external point of view, as a concurrent

instruction, even though it consists of sequential instructions just like the classical

control structures of programming languages (if-else, case-when, for/while), which

offer the possibility of implementing more complex logic functions.

The execution of a process only takes place when there is a change in the logic

state of one or more signals, whose names are defined in the sensitivity list at the

process declaration step.

298 Digital Electronics 3

A.5. Sequential structures

VHDL supports the sequential structures in which the order of the instructions

affects the result of the execution.

A sequential structure must always be placed in a process. Even though it can be

used to describe a sequential circuit as well as a combinational circuit, it is especially

used to describe sequential circuits such as flip-flops, registers, counters and finite

state machines.

A.5.1. The IF instruction

The IF instruction is used to implement conditional loops. It allows for the

execution of a series of operations provided a condition is satisfied. Several IF loops

can be nested within each other.

When an IF instruction is followed by several instructions, it is essential to

terminate the series of instructions by the expression END IF. If, however, there is

only one instruction, the END IF expression is not required.

The IF ... THEN ... ELSE expression is used to execute another series of

instructions when the condition is not satisfied.

The IF ... THEN ... ELSEIF ... ELSE instruction is used to sequence a

series of instructions, while avoiding nested IF instructions.

EXAMPLE A.10.– A D flip-flop activated by the high level of the En signal can be

described in VHDL as follows:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY dlatch IS
PORT (d, en : IN STD_LOGIC;

q, qb : OUT STD_LOGIC);
END dlatch;

ARCHITECTURE dlatch_beh OF dlatch IS
BEGIN
PROCESS (d, en)

BEGIN
IF en=’1’ THEN

q <= d;

Appendix 299

qb <= not d;
END IF;

END PROCESS;
END dlatch_beh;

The following VHDL description corresponds to that of a D flip-flop triggered by

the rising edge of a clock signal and having one asynchronous reset input:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY dff_clear IS
PORT (clk, d, clr : in STD_LOGIC;

q, qb : out STD_LOGIC);
END dff_clear;

ARCHITECTURE dff_beh OF dff_clear IS
BEGIN
dff_process: PROCESS (clk, clr)

BEGIN
IF (clr=’0’) THEN

q <= ’0’;
qb <= ’1’;

ELSIF RISING_EDGE(clk) THEN
q <= d;
qb <= not d;

END IF;
END PROCESS;

END dff_beh;

The detection of one of the edges of the clock signal can be implemented using

the expression RISING_EDGE(clk) (or clk’EVENT and clk = ‘1’) for the rising

edge and the expression FALLING_EDGE(clk) (or clk’EVENT and clk = ‘0’) for

the falling edge.

An n-bit right-shift register can be described in VHDL as follows:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY shift_reg IS
GENERIC(n: integer:=4);
PORT(clk, din, rst: IN STD_LOGIC;

300 Digital Electronics 3

dout : OUT STD_LOGIC);
END shift_reg;

ARCHITECTURE behavioral OF shift_reg IS
SIGNAL reg : STD_LOGIC_VECTOR (n-1 DOWNTO 0);
BEGIN

PROCESS(clk)
BEGIN

IF RISING_EDGE(clk) THEN
IF(rst=’1’) THEN

-- n bit synchronous reset
reg(n-1 DOWNTO 0) <= (others => ’0’);

ELSE
-- Shift right
reg(n-1 DOWNTO 0) <= din & reg(n-2 DOWNTO 0);

END IF;
END IF;

END PROCESS;

dout <= reg(n-1);

END behavioral;

The following VHDL description corresponds to that of an n-bit synchronous

binary counter/down counter:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY up_counter_en IS
GENERIC (

bit_width : INTEGER := 4; -- Structure
out_delay : TIME := 3 ns -- Behavior
);

PORT (
reset_n : IN STD_LOGIC;
clk : IN STD_LOGIC;
en : IN STD_LOGIc;
down_count: IN STD_LOGIC;
count : OUT STD_LOGIC_VECTOR(bit_width-1 downto 0)

);
END up_counter_en;

Appendix 301

ARCHITECTURE behav OF up_counter_en IS
SIGNAL count_s : std_logic_vector(BIT_WIDTH-1 downto 0);
BEGIN

PROCESS (clk, reset_n)
BEGIN

IF(reset_n=’0’) THEN
count_s <= (others => ’0’); -- Asynchronous reset

ELSIF RISING_EDGE(clk) THEN
IF (en=’1’) THEN

IF (down_count=’0’) THEN
count_s <= count_s + 1;

ELSE
count_s <= count_s - 1;

END IF;
ELSE

count_s <= count_s;
END IF;

END IF;
END PROCESS;

count <= count_s AFTER out_delay;

END behav;

The WAIT instruction can be used to model asynchronous circuits or systems.

The following VHDL code describes an asynchronous circuit with two inputs, x

and y, and one output, z. If a transition from 0 to 1 at the input x is immediately

followed by a transition from 1 to 0 at the other input, y, then the output z takes the

logic state 1. The output z remains at this state, 1, until the input x is reset to 0 or the

input y is set to 1. Hence:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

ENTITY edge_detector IS
PORT (x, y: IN BIT;

z : OUT BIT);
END edge_detector;

ARCHITECTURE asynchronous OF edge_detector IS
BEGIN

302 Digital Electronics 3

PROCESS
BEGIN

WAIT UNTIL x=’1’;
WAIT ON x, y;
IF y=’0’ AND NOT y’STABLE THEN

z <= ’1’;
WAIT ON x, y;
z <= ’0’;

END IF;
END PROCESS;

END asynchronous;

The IF declaration is used to check whether the change taking place at the input

y, after the rising edge at the input x, is the falling edge.

The following VHDL description gives the structural description of a modulo 10

synchronous counter with a reset signal and an enable signal. The counter is composed

of a sequential section (four flip-flops) and a combinational section. Two counters can

be cascaded using the rco signal. That is:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;
USE ENTITY WORK.dff

ENTITY mod10cnt IS
PORT (clk, clr, en : IN BIT;

count : OUT BIT_VECTOR(3 DOWNTO 0);
rco : OUT BIT);

ARCHITECTURE mod10cnt_arc OF mod10cnt IS
COMPONENT dff

PORT (clk, d, clr : IN BIT;
q, qb : OUT BIT);

END COMPONENT;

SIGNAL d, q, qb : BIT_VECTOR(3 DOWNTO 0);

BEGIN

seq_sec : FOR i IN 3 DOWNTO 0 GENERATE
b : dff PORT MAP (clk, d(i), clr, q(i), qb(i));
END GENERATE;

Appendix 303

d(3) <= (en AND q(2) AND q(1) AND q(0)) OR (q(3) AND
((NOT en) OR qb(0)));

d(2) <= (en AND qb(2) AND q(1) AND q(0)) OR
(q(2) AND ((NOT en) OR qb(1) OR qb(0)));

d(1) <= (en AND qb(3) AND qb(1) AND q(0)) OR (q(1) AND
((NOT en) OR qb(0)));

d(0) <= en XOR q(0);

count <= q;
rco <= q(3) AND q(0);

END mod10cnt_arc;

A.5.2. CASE instruction

The CASE instruction is used to execute one among several instruction sequences

depending on the value of the same expression.

In the CASE instruction, an expression is evaluated and its value is compared to that

of each of the possible choices and the instructions associated with the corresponding

WHEN clause are executed.

The following restrictions are placed on the possible choices:

– it is not acceptable to have two choices if they overlap;

– all the eventual values of the tested expression must be part of the set of choices,

unless the NO OTHERS clause is used as the last choice.

EXAMPLE A.11.– Using the CASE instruction, the VHDL description for a 4 : 1
multiplexer takes the following form:

LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ENTITY Mux4_1 IS
PORT (

s0, s1, in0, in1, in2, in3: IN STD_LOGIC;
output : OUT STD_LOGIC
);

END Mux4_1;

ARCHITECTURE Mux4_1beh OF Mux4_1 IS
BEGIN

304 Digital Electronics 3

Mux: PROCESS(s0, s1, in0, in1, in2, in3)
VARIABLE sel: STD_LOGIC_VECTOR(1 DOWNTO 0);
BEGIN

sel := s1 & s0; -- concatenate s1 and s0
CASE sel IS
WHEN "00" => output <= in0;
WHEN "01" => output <= in1;
WHEN "10" => output <= in2;
WHEN "11" => output <= in3;

END CASE;
END PROCESS Mux;

END Mux4_1beh;

The CASE instruction is suitable for the description of a state table (or state

diagram).

Consider the 1011 sequence detector that operates according to the state table

shown in Table A.1.

PS NS Output

Y

X = 0 1 X = 0 1

S0 S0 S1 0 0

S1 S2 S1 0 0

S2 S0 S3 0 0

S3 S0 S0 0 1

Table A.1. State table of the 1011 sequence detector (Mealy model)

This is a Mealy model based state machine whose VHDL description is as follows:

-- Mealy state machine: 1011 sequence detector
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;

ENTITY DetectSq IS
PORT (reset, clk, x : IN STD_LOGIC;

y : OUT STD_LOGIC);
END DetectSq;

ARCHITECTURE behavioral OF DetectSq IS

Appendix 305

TYPE state_type IS (s0, s1, s2, s3);
SIGNAL presentS, nextS: state_type;

BEGIN
PROCESS (reset, clk) -- Clocked (state) process
BEGIN
IF (reset=’0’) THEN

presentS <= s0;
ELSIF RISING_EDGE(clk) THEN

CASE presentS IS
WHEN s0 => IF x=’1’ THEN nextS <= s1;

ELSE nextS <= s0;
END IF;

WHEN s1 => IF x=’0’ THEN nextS <= s2;
ELSE nextS <= s1;
END IF;

WHEN s2 => IF x=’1’ THEN nextS <= s3;
ELSE nextS <= s0;
END IF;

WHEN s3 => nextS <= s0;
END CASE;

END IF;
END PROCESS;

PROCESS (nextS) -- Combinational process
BEGIN

presentS <= nextS;
CASE presentS IS

WHEN s0 => y <= ’0’;
WHEN s1 => y <= ’0’;
WHEN s2 => y <= ’0’;
WHEN s3 => IF x=’1’ THEN y <= ’1’;

ELSE y <= ’0’;
END IF;

END CASE;
END PROCESS;

END behavioral;

306 Digital Electronics 3

A.6. Testbench

To simulate a VHDL module, another VHDL code, called testbench, must be

written. A testbench can read the test signals from a file and apply them to the model

under test. The output signals are then recovered for analysis.

A process resulting in the generation of signals does not have a sensitivity list.

The execution of a cyclic process restarts each time that it reaches the declaration

END PROCESS, unless it has been interrupted earlier by an unconditional wait

instruction.

The WAIT instruction indefinitely suspends the process from the time it is executed

by the simulator.

EXAMPLE A.12.– The operation of the AND logic gate model can be verified using

the following VHDL testbench:

-- And gate testbench
LIBRARY IEEE;
USE IEEE.std_logic_1164.ALL;
USE WORK.andgate;

ENTITY andgate_tb IS
END andgate_tb;

ARCHITECTURE tb OF andgate_tb IS

COMPONENT andgate IS
PORT(a, b : IN STD_LOGIC;

f : OUT STD_LOGIC);
END COMPONENT;

SIGNAL a, b, f: STD_LOGIC;

BEGIN
-- Create a test instance of the and gate

andut: andgate PORT MAP(a => a, b => b, f => f);
-- Now define a process to apply some stimulus
-- over time

PROCESS
CONSTANT period: TIME := 40 ns;

BEGIN
a <= ’0’;

Appendix 307

b <= ’0’;
WAIT FOR period;
ASSERT (f=’1’)
REPORT "Test failed!" severity error;
a <= ’0’;
b <= ’1’;
WAIT FOR period;
ASSERT (f=’1’)
REPORT "Test failed!" severity ERROR;
a <= ’1’;
b <= ’0’;
WAIT FOR period;
ASSERT (f=’1’)
REPORT "Test failed!" severity ERROR;
a <= ’1’;
b <= ’1’;
WAIT FOR period;
ASSERT (f=’0’)
REPORT "Test failed!" severity ERROR;

WAIT; -- stop running

END PROCESS;
END tb;

CONFIGURATION cfg_tb OF andgate_tb IS
FOR tb
END FOR;

END cfg_tb;

A CONFIGURATION declaration is used to connect an entity to a specific

architecture for synthesis or simulation.

The following VHDL testbench can be used to carry the functional simulation of

a 1011 sequence detector. The sequence of bits applied at the input of the detector is

1101110101. Thus:

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE WORK.DetectSq;

ENTITY tb_DetectSq IS
END tb_DetectSq;

308 Digital Electronics 3

ARCHITECTURE tb OF tb_DetectSq IS

COMPONENT DetectSq
PORT (reset, clk, x : IN STD_LOGIC;

y : OUT STD_LOGIC);
END COMPONENT;

SIGNAL reset, clk, x: STD_LOGIC:= ’0’;
SIGNAL y: STD_LOGIC;

CONSTANT clk_period : time := 10 ns;

BEGIN

-- Instantiate the unit under test (UUT)
uut: ENTITY DetectSq PORT MAP (

reset => reset,
clk => clk,
x => x,
y => y);

-- Clock process definitions
clk_process : PROCESS
BEGIN

clk <= ’0’;
WAIT FOR clk_period/2;
clk <= ’1’;
WAIT FOR clk_period/2;

END PROCESS;

-- Stimulus process : Apply the bits in the sequence
-- one by one.
stim_proc: process
BEGIN

x <= ’1’; --1
WAIT FOR clk_period;

x <= ’1’; --11
WAIT FOR clk_period;

x <= ’0’; --110
WAIT FOR clk_period;

x <= ’1’; --1101
WAIT FOR clk_period;

x <= ’1’; --11011

Appendix 309

WAIT FOR clk_period;
x <= ’1’; --110111

WAIT FOR clk_period;
x <= ’0’; --1101110

WAIT FOR clk_period;
x <= ’1’; --11011101

WAIT FOR clk_period;
x <= ’0’; --110111010

WAIT FOR clk_period;
x <= ’1’; --1101110101

WAIT FOR clk_period;
WAIT;

END PROCESS;

END;

CONFIGURATION cfg_tb_DetectSq OF tb_DetectSq IS
FOR tb
END for;

END cfg_tb_DetectSq;

Bibliography

[BRO 08] BROWN S., VRANESIC Z., Fundamentals of Digital Logic with VHDL Design, 3rd

ed., McGraw-Hill Education, NY, 2008.

[CLE 00] CLEMENTS A., The Principles of Computer Hardware, 3rd ed., Oxford University

Press, 2000.

[COM 95] COMER D. J., Digital Logic and State Machine Design, 3rd ed., Oxford University

Press, NY, 1995.

[DUE 01] DUECK R. K., Digital Design with CPLD Applications and VHDL, Delmar

Thomson Learning, NY, 2001.

[GIV 03] GIVONE D., Digital Principles and Design, McGraw-Hill, NY, 2003.

[HAY 93] HAYES J. P., Introduction to Digital Logic Design, Addison-Wesley, MA, 1993.

[HAY 98] HAYES J. P., Computer Architecture and Organization, McGraw-Hill, NY, 1998.

[KAT 05] KATZ R. H., BORRIELO G., Contemporary Logic Design, 2nd ed., Prentice Hall,

NJ, 2005.

[MAN 01] MANO M. M., Digital Design, 3rd ed., Prentice Hall, NJ, 2001.

[MAR 10] MARCOVITZ A. B., Introduction to Logic Design, 3rd ed., McGraw-Hill Education,

NY, 2010.

[NDJ 11] NDJOUNTCHE T., CMOS Analog Integrated Circuits: High-Speed and Power-
Efficient Design, CRC Press, FL, 2011.

[ROT 04] ROTH Jr. C. H., Fundamental of Logic Design, 5th ed., Brooks/Cole – Thomson

Learning, Belmont, CA, 2004.

[SAN 02] SANDIGE R. S., Digital Design Essentials, Prentice Hall, NJ, 2002.

[TIN 00] TINDER R. F., Engineering Digital Design, Academic Press, CA, 2000.

[TOC 03] TOCCI R. J., Ambrosio F. J., Microprocessors and Microcomputers, 6th ed., Prentice

Hall, NJ, 2003.

Digital Electronics 3: Finite-state Machines
First Edition. Tertulien Ndjountche.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.

,

312 Digital Electronics 3

[WAK 00] WAKERLY J. F., Digital Design Principles and Practices, 3rd ed., Prentice Hall,

NJ, 2000.

[WIL 98] WILKINSON B., The Essence of Digital Design, Prentice Hall Europe, UK, 1998.

[YAR 97] YARBROUGH J. M., Digital Logic – Applications and Design, West Publishing

Company, MN, 1997.

Index

A

adder, 84, 169, 175

algorithmic state machine, 169

ASM chart, 170, 195

asynchronous counter, 243

asynchronous state machine, 213

burst mode, 256

fundamental mode, 214

pulse mode, 251

B, C

bus, 95, 159, 259, 268

bus

arbiter, 95, 259

C-element, 218, 248

characteristic equation, 215, 216, 285

chart, 170

communication protocol, 68, 220

comparator, 82, 169

compatibility, 44

compatibility class, 46, 51, 52

closed, 46

cover, 46

maximal, 46, 48, 50, 52

compatibility graph, 48, 50

complementary C-element, 248

concurrent instruction, 292

controller

digital lock, 255

elevator, 204, 210

traffic lights, 193

vending machine, 191

counter, 93, 169, 300, 302

D

d-trio hazard, 228, 235, 238, 239

datapath, 177

delay element, 214

description

behavioral, 288

dataflow, 288

structural, 288

detector, 13, 15, 93, 103

digital lock, 255

discriminator, 258

divider, 187

down counter, 300

E

elevator, 204

encoder, 294

encoding

1-out-of-n, 58

binary, 57

Gray, 57

Johnson, 58

one-hot, 58

essential hazard, 228, 231, 234, 239

excitation table, 7

Digital Electronics 3: Finite-state Machines
First Edition. Tertulien Ndjountche.
© ISTE Ltd 2016. Published by ISTE Ltd and John Wiley & Sons, Inc.

,

314 Digital Electronics 3

F, G

finite state machine, see state machine

flip-flop, 7, 299

flow table, 214

primitive, 214

reduced, 225

FPGA, 259, 267

full adder, 292

fundamental mode, 214

gated D latch, 214

Gray, 16, 57, 242

code, 196

H, I, J

handshake communication, 220

four-phase protocol, 222

two-phase protocol, 220

hardware description language, see VHDL

hold time, 74

implication table, 28, 54

incompatibility class, 49, 51

maximal, 55

input burst, 258

instruction, 298, 303

Johnson, 58

L, M

latch, 214

gated D, 214

SR, 216

Mealy, 1, 169, 214

median filter, 95

merger graph, 48, 49, 52

method

encoding, 56

implication table, 28

partitioning, 37

Moore, 1, 169, 214

Muller C-element, 218, 247

multiplexer, 293

multiplier, 183

O, P

one-hot encoding, 58, 171, 182

almost, 58

oscillatory cycle, 227, 260

output burst, 258

PAL, 68

partitioning method, 37

pipeline, 223

primitive, 214

priority encoder, 294

process, 287

pulse

generator, 22

mode, 251

synchronizer, 240

R, S

race condition, 72, 85, 229, 250

critical, 72, 229

non-critical, 72, 242

robot ant, 96

self-timed circuit, 220

sequence detector, 12, 58, 68, 252, 284,

304

with overlapping, 20

without overlapping, 20

sequential structure, 298

serial

adder, 175

comparator, 82

subtractor, 175

set-up time, 74

shift register, 110

simulation, 287

SR latch, 216, 247

state

diagram, 2, 169, 227

encoding, 7, 55, 224

table, 5, 169, 214

state machine, 1, 74

algorithmic, 169

asynchronous, 1, 213

compatible states, 45

equivalent states, 27

incompletely specified, 42,

47

Mealy model, 1

Moore model, 1

splitting, 63

synchronous, 1

transformation, 62

Index 315

subtractor, 175

T, U, V

timing specifications, 74

hold time, 74

set-up time, 74

traffic lights, 193

transition table, 214

unsigned number, 183, 187

vending machine, 189, 191

VHDL

architecture, 291

attribute, 290

component, 294

entity, 287, 291

generic, 296

library, 289

package, 289

process, 297

testbench, 306

Other titles from

in

Electronics Engineering

2016
BAUDRAND Henri, TITAOUINE Mohammed, RAVEU Nathalie
The Wave Concept in Electromagnetism and Circuits: Theory and
Applications

FANET Hervé
Ultra Low Power Electronics and Adiabatic Solutions

NDJOUNTCHE Tertulien
Digital Electronics 1: Combinational Logic Circuits
Digital Electronics 2: Sequential and Arithmetic Logic Circuits

2015
DURAFFOURG Laurent, ARCAMONE Julien
Nanoelectromechanical Systems

2014
APPRIOU Alain
Uncertainty Theories and Multisensor Data Fusion

CONSONNI Vincent, FEUILLET Guy
Wide Band Gap Semiconductor Nanowires 1: Low-Dimensionality Effects
and Growth
Wide Band Gap Semiconductor Nanowires 2: Heterostructures and
Optoelectronic Devices

GAUTIER Jean-Luc
Design of Microwave Active Devices

LACAZE Pierre Camille, LACROIX Jean-Christophe
Non-volatile Memories

TEMPLIER François
OLED Microdisplays: Technology and Applications

THOMAS Jean-Hugh, YAAKOUBI Nourdin
New Sensors and Processing Chain

2013
COSTA François, GAUTIER Cyrille, LABOURE Eric, REVOL Bertrand
Electromagnetic Compatibility in Power Electronics

KORDON Fabrice, HUGUES Jérôme, CANALS Agusti, DOHET Alain
Embedded Systems: Analysis and Modeling with SysML, UML and AADL

LE TIEC Yannick
Chemistry in Microelectronics

2012
BECHERRAWY Tamer
Electromagnetism: Maxwell Equations, Wave Propagation and Emission

LALAUZE René
Chemical Sensors and Biosensors

LE MENN Marc
Instrumentation and Metrology in Oceanography

SAGUET Pierre
Numerical Analysis in Electromagnetics: The TLM Method

2011
ALGANI Catherine, RUMELHARD Christian, BILLABERT Anne-Laure
Microwaves Photonic Links: Components and Circuits

BAUDRANT Annie
Silicon Technologies: Ion Implantation and Thermal Treatment

DEFAY Emmanuel
Integration of Ferroelectric and Piezoelectric Thin Films: Concepts ans
Applications for Microsystems

DEFAY Emmanuel
Ferroelectric Dielectrics Integrated on Silicon

BESNIER Philippe, DÉMOULIN Bernard
Electromagnetic Reverberation Chambers

LANDIS Stefan
Nano-lithography

2010

LANDIS Stefan
Lithography

PIETTE Bernard
VHF / UHF Filters and Multicouplers

2009
DE SALVO Barbara
Silicon Non-volatile Memories / Paths of Innovation

DECOSTER Didier, HARARI Joseph
Optoelectronic Sensors
FABRY Pierre, FOULETIER Jacques
Chemical and Biological Microsensors / Applications in Fluid Media

GAUTIER Jacques
Physics and Operation of Silicon Devices in Integrated Circuits

MOLITON André
Solid-State Physics for Electronics

PERRET Robert
Power Electronics Semiconductor Devices

SAGUET Pierre
Passive RF Integrated Circuits

2008

CHARRUAU Stéphane
Electromagnetism and Interconnections

2007
RIPKA Pavel, TIPEK Alois
Modern Sensors Handbook

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

	Cover
	Title Page
	Copyright
	Contents
	Preface
	Summary
	The reader

	1. Synchronous Finite State Machines
	1.1. Introduction
	1.2. State diagram
	1.3. Design of synchronous finite state machines
	1.4. Examples
	1.4.1. Flip-flops
	1.4.2. Binary sequence detector
	1.4.2.1. Mealy model
	1.4.2.2. Moore model

	1.4.3. State machine implementation based on a state table
	1.4.3.1. D flip-flop
	1.4.3.2. JK flip-flop

	1.4.4. Variable width pulse generator

	1.5. Equivalent states and minimization of the number of states
	1.5.1. Implication table method
	1.5.1.1. Example 1
	1.5.1.2. Example 2
	1.5.1.3. Example 3

	1.5.2. Partitioning method
	1.5.2.1. Example 1
	1.5.2.2. Example 2
	1.5.2.3. Example 3

	1.5.3. Simplification of incompletely specified machines
	1.5.3.1. Definition and basic concepts
	1.5.3.2. Example 1
	1.5.3.3. Example 2
	1.5.3.4. Example 3

	1.6. State encoding
	1.7. Transformation of Moore and Mealy state machines
	1.8. Splitting finite state machines
	1.8.1. Rules for splitting
	1.8.2. Example 1
	1.8.3. Example 2

	1.9. Sequence detector implementation based on a programmable circuit
	1.10. Practical considerations
	1.10.1. Propagation delays and race conditions
	1.10.2. Timing specifications

	1.11. Exercises
	1.12. Solutions

	2. Algorithmic State Machines
	2.1. Introduction
	2.2. Structure of an ASM
	2.3. ASM chart
	2.4. Applications
	2.4.1. Serial adder/subtracter
	2.4.2. Multiplier based on addition and shift operations
	2.4.3. Divider based on subtraction and shift operations
	2.4.4. Controller for an automatic vending machine
	2.4.5. Traffic light controller

	2.5. Exercises
	2.6. Solutions

	3. Asynchronous Finite State Machines
	3.1. Introduction
	3.2. Overview
	3.3. Gated D latch
	3.4. Muller C-element
	3.5. Self-timed circuit
	3.6. Encoding the states of an asynchronous state machine
	3.7. Synthesis of asynchronous circuits
	3.7.1. Oscillatory cycle
	3.7.2. Essential and d-trio hazards
	3.7.2.1. Essential hazard
	3.7.2.2. d-trio hazard
	3.7.2.3. Essential and d-trio hazard detection

	3.7.3. Design of asynchronous state machines

	3.8. Application examples of asynchronous state machines
	3.8.1. Pulse synchronizer
	3.8.2. Asynchronous counter

	3.9. Implementation of asynchronous machines using SR latches or C-elements
	3.10. Asynchronous state machine operating in pulse mode
	3.11. Asynchronous state machine operating in burst mode
	3.12. Exercises
	3.13. Solutions

	Appendix. Overview of VHDL Language
	A.1. Introduction
	A.2. Principles of VHDL
	A.2.1. Names
	A.2.2. Comments
	A.2.3. Library and packages
	A.2.4. Ports
	A.2.5. Signal and variable
	A.2.6. Data types and objects
	A.2.7. Attributes
	A.2.8. Entity and architecture

	A.3. Concurrent instructions
	A.3.1. Concurrent instructions with selective assignment
	A.3.2. Concurrent instructions with conditional assignment

	A.4. Components
	A.4.1. Generics
	A.4.2. The GENERATE Instruction
	A.4.3. Process

	A.5. Sequential structures
	A.5.1. The IF instruction
	A.5.2. CASE instruction

	A.6. Testbench

	Bibliography
	Index
	Other titles from iSTE in Electronics Engineering
	EULA

