
f [A T U R E

Understanding hardware design with logic involves understanding binary arithmetic.
This monthwe'lllook at the basis of binary numbers.

Youcan'treallydesignlogiccircuitry
from an electronic point of view ...

or, at least, attempting to do so is exceed
ingly frustrating. Traditional concepts of
signals and amplitudes don't really apply
to logic. In its place, one has to start think
ing about things in terms of data.

A single logical state is usually pretty
meaningless. Combined with other logi
cal states, however, it may represent data
and hence the true "signals" of logic.
This takes some getting used to when one
is thinking about how logic works, and
considerable head scratching when one is
trying to debug the stuff.

This month we're going to have a
look at the basis of digital data, binary
numbers. While a bit awkward unless you
were born with sixteen fingers ... and like
to count on them ... binary arithmetic is the
fundamental key to understanding logic
design. Without it, you'll probably drive
yourself insane trying to design half ad
ders and counters as if they were radios.

Count by Twos
Numbersofthesorts we're used to work in
base ten. Computer numbers work in base
two. We are predisposed to think of things
which happen in clumps of ten, that is, ten
things, groups of ten things, groups of
groups of ten things and so on. This cor
respondstothepositionsinadecimalnum
ber. The rightmost digit represents the
number of things up to ten. The next to

36

Steve Rimmer

rightmost digit is the number of groups of
ten, followed by the number of hundreds,
orgroupsofgroupsoften.

Because logic only has two states to
concern itself with, rather than ten, it must
deal with numbers either as base two ...
which is rather useless if you have more
than two of something ... or as some base
which is an even power of two. The com
monly used one is base sixteen,
hexadecimal, although a lot of early logic
design used octal, or base eight. In a real
sense the logic doesn't care, and much of
the numerical head bashing which goes on
about logic design is for the convenience
oflogicdesigners.

Allowing that we have a series of
logical states, like this:

0000

The rightmost state will represent the
number of ones in the number, the next to
rightmost state will be the number of twos,
followed by the fours and the eights.
These values are two raised to the power
of zero, one, two and three respectively.

We can use this arrangement to repre
sent actual numerical data ... in this case,
numbers from zero through fifteen. The
numbers workout like this.

0000 0
0001 1
0010 2

0011 3
0100 4
0101 5
0110 6
0111 7
10"00 8
1001 9
1010 10
1011 11
1100 12
1101 13
1110 14
1111 15

There's all sorts of significance to this
table,someofwhichwon'tbeapparentfor
a while. However, note that each of the
state diagrams ... binary numbers in CO!ll

puter terms ... can be derived from the pre
vious one by doing a binary addition of
one to the previous value. Let's see how
this works in state terms.

The binary value for eleven is

1011

If we were to add one to this, we
would do the following in state terms.

1011
+0001

Now, let's work through this, starting
with the rightmost value. One plus one is
two ... in most parts of the universe ... but

E&TrMarch1990

j

two is an illegal value for a system which
can only represent zeros and ones. As
such, the result of this calculation is zero
with carry. The next state would be
oneplus zero plus the one represented by
the carry. This would be zero, and again
there would be a carry. The next state
would be zero plus zero plus the one of the
carry, for a grand total of one. The final, or
"high order" state would be one plus zero
with no carry. The resulting binary num
ber would be

1100

which is, in fact, twelve.
Obviously, this is something which

could be handled using gates. A binary
adder is a simple logic array which accepts
two binary numbers and produces a binary
result. We'll discuss the design of such an
array shortly.

There's another way oflooking at the
process of binary counting, one which is
important in discussing counting circuits,
a primary tenet of logic design. Consider
that each state can be derived from the last
by flipping individual logic lines, or bits.
Beginning with zero, flipping the low
order, or rightmost, state gives you one.
Flip it again and it returns to zero and its
carry flips the next state, giving you two.
Flip it again and it becomes one, giving
you three. Flip it again and it becomes
zero, Its carry flips the next state, which
also becomes zero. Its carry, it turn, flips
the next state, giving you four.

Postulating a black box which be
haves in this way, four such boxes would
allow you to count in increments of one
from zero through fifteen. Such boxes are,
of course, the basic logic elements called
flip-flops, of which much more will be
said later.

Hard Design
Figure one illustrates a complete
schematic for a four bit binary adder, this
one pinched from a logic manual. If you
study this thingforamomentyou 'll under
stand what it's up to ... and that it's not a
fierceasitappears.

If you look at any one of the four
groups of gates at the left of the diagram,
you'll pretty well see how a single bit of
binary addition works. The NOR gates
handle the addition and NAND gates
handle the carry. If both inputs are one, the
result of the addition must be to set the
carry for this binary digit, passing the
carry on to the next one. Otherwise, the
result of the two input bits will be found by

E& TTMarch 1990

ORing them. If either is one, the result will
be one.

The binary adder represents a typical
example oflogic design. We can analyse it
here with the leisure of hindsight, but the
approach to creating it will apply to any
logic array which accepts a finite number
of binary states as input and produces a
finite number of states as output.

In order to create a binary adder from
scratch, you would start with the problem
of adding two single binary states
together. We can represent them and the
result of the as yet undesigned adder with
truth tables.

STATE 1 STATE 2 OUTPUT
CARRY

0 0 0 0
I 0 1 0
0 1 1 0
1 1 0 0

It would be easy enough to design a
logic array which would accept these two

sets of input states and produce these two
output states. In a sense, you don't have to
know how to do binary addition ... all you
have to do is to create a gate array which
produces the desired truth table.

The approach to designing the four
bit binary adder in Figure one is essential
ly the same, and the design problem would
typically involve a fairly massive truth
table. Once again, the project is not really
to design a circuit which adds per se, but
rather one which produces the desired
truth table.

Many complex logic circuits can be
dealt with this way. This approach tends to
fall apart when you get into dynamic logic
circuits, those for which you cannot
develop a state diagram or truth table. A
counter is a good example of this. Its out
put states are based both on its current
input states and on the its previous input
states.

We'll get into the rational for design
ing dynamic logic arrays later in this
series .•

D-:,!21

D-~l l61

The logical functions of the 74C83 4-bit binary full adder.

