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Understanding hardware design with logic involves understanding binary arithmetic. 
This monthwe'lllook at the basis of binary numbers. 

Youcan'treallydesignlogiccircuitry 
from an electronic point of view ... 

or, at least, attempting to do so is exceed
ingly frustrating. Traditional concepts of 
signals and amplitudes don't really apply 
to logic. In its place, one has to start think
ing about things in terms of data. 

A single logical state is usually pretty 
meaningless. Combined with other logi
cal states, however, it may represent data 
and hence the true "signals" of logic. 
This takes some getting used to when one 
is thinking about how logic works, and 
considerable head scratching when one is 
trying to debug the stuff. 

This month we're going to have a 
look at the basis of digital data, binary 
numbers. While a bit awkward unless you 
were born with sixteen fingers ... and like 
to count on them ... binary arithmetic is the 
fundamental key to understanding logic 
design. Without it, you'll probably drive 
yourself insane trying to design half ad
ders and counters as if they were radios. 

Count by Twos 
Numbersofthesorts we're used to work in 
base ten. Computer numbers work in base 
two. We are predisposed to think of things 
which happen in clumps of ten, that is, ten 
things, groups of ten things, groups of 
groups of ten things and so on. This cor
respondstothepositionsinadecimalnum
ber. The rightmost digit represents the 
number of things up to ten. The next to 
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rightmost digit is the number of groups of 
ten, followed by the number of hundreds, 
orgroupsofgroupsoften. 

Because logic only has two states to 
concern itself with, rather than ten, it must 
deal with numbers either as base two ... 
which is rather useless if you have more 
than two of something ... or as some base 
which is an even power of two. The com
monly used one is base sixteen, 
hexadecimal, although a lot of early logic 
design used octal, or base eight. In a real 
sense the logic doesn't care, and much of 
the numerical head bashing which goes on 
about logic design is for the convenience 
oflogicdesigners. 

Allowing that we have a series of 
logical states, like this: 

0000 

The rightmost state will represent the 
number of ones in the number, the next to 
rightmost state will be the number of twos, 
followed by the fours and the eights. 
These values are two raised to the power 
of zero, one, two and three respectively. 

We can use this arrangement to repre
sent actual numerical data ... in this case, 
numbers from zero through fifteen. The 
numbers workout like this. 

0000 0 
0001 1 
0010 2 

0011 3 
0100 4 
0101 5 
0110 6 
0111 7 
10"00 8 
1001 9 
1010 10 
1011 11 
1100 12 
1101 13 
1110 14 
1111 15 

There's all sorts of significance to this 
table,someofwhichwon'tbeapparentfor 
a while. However, note that each of the 
state diagrams ... binary numbers in CO!ll

puter terms ... can be derived from the pre
vious one by doing a binary addition of 
one to the previous value. Let's see how 
this works in state terms. 

The binary value for eleven is 

1011 

If we were to add one to this, we 
would do the following in state terms. 

1011 
+0001 

Now, let's work through this, starting 
with the rightmost value. One plus one is 
two ... in most parts of the universe ... but 
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two is an illegal value for a system which 
can only represent zeros and ones. As 
such, the result of this calculation is zero 
with carry. The next state would be 
oneplus zero plus the one represented by 
the carry. This would be zero, and again 
there would be a carry. The next state 
would be zero plus zero plus the one of the 
carry, for a grand total of one. The final, or 
"high order" state would be one plus zero 
with no carry. The resulting binary num
ber would be 

1100 

which is, in fact, twelve. 
Obviously, this is something which 

could be handled using gates. A binary 
adder is a simple logic array which accepts 
two binary numbers and produces a binary 
result. We'll discuss the design of such an 
array shortly. 

There's another way oflooking at the 
process of binary counting, one which is 
important in discussing counting circuits, 
a primary tenet of logic design. Consider 
that each state can be derived from the last 
by flipping individual logic lines, or bits. 
Beginning with zero, flipping the low 
order, or rightmost, state gives you one. 
Flip it again and it returns to zero and its 
carry flips the next state, giving you two. 
Flip it again and it becomes one, giving 
you three. Flip it again and it becomes 
zero, Its carry flips the next state, which 
also becomes zero. Its carry, it turn, flips 
the next state, giving you four. 

Postulating a black box which be
haves in this way, four such boxes would 
allow you to count in increments of one 
from zero through fifteen. Such boxes are, 
of course, the basic logic elements called 
flip-flops, of which much more will be 
said later. 

Hard Design 
Figure one illustrates a complete 
schematic for a four bit binary adder, this 
one pinched from a logic manual. If you 
study this thingforamomentyou 'll under
stand what it's up to ... and that it's not a 
fierceasitappears. 

If you look at any one of the four 
groups of gates at the left of the diagram, 
you'll pretty well see how a single bit of 
binary addition works. The NOR gates 
handle the addition and NAND gates 
handle the carry. If both inputs are one, the 
result of the addition must be to set the 
carry for this binary digit, passing the 
carry on to the next one. Otherwise, the 
result of the two input bits will be found by 
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ORing them. If either is one, the result will 
be one. 

The binary adder represents a typical 
example oflogic design. We can analyse it 
here with the leisure of hindsight, but the 
approach to creating it will apply to any 
logic array which accepts a finite number 
of binary states as input and produces a 
finite number of states as output. 

In order to create a binary adder from 
scratch, you would start with the problem 
of adding two single binary states 
together. We can represent them and the 
result of the as yet undesigned adder with 
truth tables. 

STATE 1 STATE 2 OUTPUT 
CARRY 

0 0 0 0 
I 0 1 0 
0 1 1 0 
1 1 0 0 

It would be easy enough to design a 
logic array which would accept these two 

sets of input states and produce these two 
output states. In a sense, you don't have to 
know how to do binary addition ... all you 
have to do is to create a gate array which 
produces the desired truth table. 

The approach to designing the four 
bit binary adder in Figure one is essential
ly the same, and the design problem would 
typically involve a fairly massive truth 
table. Once again, the project is not really 
to design a circuit which adds per se, but 
rather one which produces the desired 
truth table. 

Many complex logic circuits can be 
dealt with this way. This approach tends to 
fall apart when you get into dynamic logic 
circuits, those for which you cannot 
develop a state diagram or truth table. A 
counter is a good example of this. Its out
put states are based both on its current 
input states and on the its previous input 
states. 

We'll get into the rational for design
ing dynamic logic arrays later in this 
series .• 
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The logical functions of the 74C83 4-bit binary full adder. 




