Understanding

by Mike Bedford

	450		ncy			
		500	550	600	650	700750
700	650	600	550	500	450	400
			Wavelength (nm)			

AIthrogh it's a concept which most people think they understand, few people really hive an in-clepth appreciation of colour: Yet an understanding of certain elements of colour theory is essential in various areas. Traditionally it was artists, designers and printers who needed to appreciate colour. Increasingly, though, and of particular relevance to reaters of Electronics \& Beyond, it's in graphics programming and opto-electronic design where such
knowledge is needed. Even power users of graphics and design packages will need this sort of appreciation of colour theory My aim here is 10 provide a grounding in basic colour theory which cim be applied in these application areas.

The Basics

Light is that portion of the electromagnetic spectrum which is visible to the human eye and is nommally considered to lie in the approximate wavelength range 400 nm to 700 nm as shown in Figure 1. Nomally, this, rather than frequency (actually in the range 430 TH to 750 THz). is (juoted. The visible part of the spectrum is bounded by infriared at the low-frequency end and ultraviolet at the high frequency end. Our eyes contains two kinds of receptors which are called rods and cones. The rools allkws us to perceive shades of grey whereas the cones allow the brain to perceive different colours. There are actually three types of cones which are sensitive, respectively, (0) red-orange, green, and blue-violet light. When a single cone is stimulated, the brain perceives the colour associated with that

Figure 1.

cone. So , for example, if the eye receives light at a wavelength of 550 mm , the green cones ilte stimulated and we see green. Clearly this is a simplification since we can actually perceive many millions of colours, not just the three which correspond to the clifferent types of cone

Additive Mixing

Al this point, since it's a key to many of the methoxls of defining colour, let's think alosut colour mixing. By colour mixing, I'm talking about the sort of thing we were taught in school physics lessons, as opposed the type of mixing we learned in art lessons - we'll come onto this a bit later. In ligure 2 we see what happens if we project circles of red, green and blue light onto a screen in a darkened room. Where the red and grcen (overlip) we get yellow, the overlap ietween red and blue gives magenta, that between green and blue gives cyan, and in the central portion, where red, green and blue all overlap, we get white. In fact, by varying the amounts of red, green and blue we can produce any colour the eye can perccive so these three colours are referred to as primary colours. Similarly, the three colours cyan, magenta

Flgure 2. Whatad availability of white IEDS people experimented with a mixture of red, green and blue L.EDs to produce white light for high reliability torches. Athough the light appeared to be white, in much the same way as sunlight, the effect was very different when illuminating primary coloured objects. Since the light contained
just three sjectral lancls, any object of a simitar colour to one of these bands would appear to glow in the light of the toreh.

Subtractive Mixing

In the previous section I referred to anolher rype of mixing, that which we were taught in art lessons - this is summed up) in Figure 3. Here we see the effect of mixing three colours of paint - cyan, magenta and yellow (art leachers tend to talk about blue, red and green but this isn't strictly correct) - - on a piece of paper: Now we see that mixing cyan and magenta gives blue, cyan and yellow gives green, magenta and yellow gives red, and that mixing all three gives black. The explanation lies in an understanding of how paints and pigments work. Clearly pigments don't actually emit light since they don't glow in the clark. Insteald, they selecively reflect light by absorbing their complementary colour. Cyan paint, for example, alssortss red light so, when illuminated with white light. allows green and blue light to be reflectexl. Andi, as we already know, adding together green and bluc light gives cyan. Cyan paint can, therefore, be thought of as minus red. Similarly, magenta is minus green and yellow is minus blue.
We can now return to mixing paints or inks and sec that it makes perfect sense. Since cyan paint absorlss red and magent: paint absorbs green, when the two are mixed together we end up with something which absorbs both red and green. When the mixture is illuminated with white light, therefore, only blue is reflected. Because this form of mixing works by subtracting colours from the light illuminating it. the process is called

Figure 4.

Figure 3.
rainhow contains just seven discrete colours whercas in reality, of course, it contains an infinite number of which many thousands can be differentiated by the human eye. And when there are so many colours, coming up with names for them all
this, the numbers assigned to the colours (e.g. Pantone 5415 CV) appear to be largely arhitrary. No cloubt there is some sort of rationale to the numbers but this isn't something Pantone feel the customer needs to be concerned with.

In the early days of computer graphics, none of this was a problem. Since the first colour displays had just eight colours, the three additive primaries: red, green and blue, the three additive secondaries: cyan, magenta and yellow, plus black and white, using names was perfectly adequate. And even when the number of colours increased, perhaps, to 64, names were still used by some companies. So, the progression from yellow to green might be yellow, greenish yellow, yellow-green, yellowish green, and green and these would indicate 100% yellow, 75% yellow/ 25% green, 50% yellow/ 50% green, 25% yellow / 75% green, and 100% green respectively. Fiventually we come to a point, though, at which attempting to use names just isn't
can be a daunting task. 'lhere are, of course, many names of colours in addition to the rainbow colours - cerise, turquoise, alquamatrine, lemon, crimson, mauve, purple and scatlet for example - and many feasil)le and we have to turn to numbers. Not only does using some mathematical delinition of colour solve the problem of colour definition, but the numbers can also be manipulated directly by software.

sultractive mixing. Cyan, magenta and yellow are the subtractive primaries and red, green and blue are the subsractive secondaries.

Defining Colour

Officially, the colours of the rainlow are red, orange, yellow, green, blue, indigo and violet as in the well-know aide memoire "Richard of York gained battles in vain". This is interesting since it suggests that the
colours can take descrip) ive aljectives so we have lime green, botle green, leaf green and so on. But these an imprecise and too few to mame all the available colours. In the printing industry, books of standard colours are proxluced by companies specialising in cokour matching. A popular colour matching scheme is Pantone - customers pick colours for logos ete. from a Pantone booklet and specify these collours to the printer using the

RGB and CMY

One of the most common ways of defining colour is by the proportion of each of the three aldditive primary colours red, green, and blue. This is called the RGB method.
The proportion is nomally defined cither as a value in the range 0-1. a percentage or as a number in the range $0-255$. This latter method is appropriate for typical colsur clisplays which are capable of showing 16.7 million colours since this is the number of

Figure 6.
possible combinations of 265 levels of red, green and blue. The RGB colours are often visualised as a cube - the RGB colour cube - which is shown in Figure 4. Here the amount of red, green and blue increases along the x, y and z -axcs, respectively, starting at the bottom left hand corner. Sometimes this cube is shown differently, perhaps with the black corner at the back or the top tight but the basic principle is the same. All possible colours can be found somewhere inside this cubc. However, since this diagram only allows you to see the colours on three of the faces, and even if you could rotate it you'cl still only see the colours on the other three faces, we show a number of slices through an RGB colour cube as Figure 5. Specifically the cube has been sliced from front to back as viewed in Figure 4. Note also that this particular version of the colour cube is far from the iclealised one which contains all possible colours. Instead of the infinite number of shades in the theoretical colour cube, this one has six levels for each of red, green, and blue so includes just 216 colours. All practical imaging systems will be capable of displaying a limited number of colours.
Since they operate by additive mixing. RGB is a useful way of thinking alosut colour on a display screen, but less so colour printing which operates by subtractive mixing. A close relative to the RGI3 colour cube is the CMY colour cube. Now, instatal of the x, y and $\%$ raxes representing red, grcen and blue, they represent the subtractive primaries cyan, magenta and yellow. The CMY colsur cube is shown as Figure 6 and you'll notice that it is, in fact, an RGB colour cube with each point reflected about the centre of the cube. You won't be surprised to learn, therefore, that colours can casisily he converted between the two colour models using the following simple relationships:

$$
\begin{aligned}
& C=1.0-\mathrm{R} \\
& \mathrm{M}=1.0-\mathrm{G} \\
& \mathrm{Y}=1.0-\mathrm{B}
\end{aligned}
$$

Where C, M, Y, R, G and B are values of cyan, magenta, yellow, red, green and blue, respectively, in the range 0-1. If working with values in the range 0.100% or $0-255$ rather than 0-1, each of the constants 1 in the formulae should be changed tes 100 or 255 , respectively. CMY is important in the printing inclustry since inks combine according to the suburactive mixing moclel. 'liaditionaify, a colour original wouk be split up into the three subtactive primaries by photeggraphing it through coloured filters. Pates are then made for eitch of the primaries and these are used, one at a time with the appropriately colesured ink. The full colour image is, therefore, built up) progressively. Today, the process of splitting a full colour image into the subtractive primaries (which is called colour separation) is normally done by soltware, especially if the artwork is being mastered

Figure 7.
digitally. In fact, l've over-simplified things by suggesting that colour printing is based on the CMY motel; in fact full colour reprocluction is referred to as foumerolsur printing and conforms to the CMYK model where K stands for black (because is would be confused with Blue in RGB). Athough perfect cyan, magenta and yellow inks will overprint 10 procluce black, moss printing inks aren't perfect primaries so blacks would appear as muldy browns. However. by extracting the black comtent and using this information with a pure black ink, a better full colour image results. The conversion of a colour defined in CMY os CMYK (which should really be CM'Y'K to differentiate the different cyan, magenta
and yellow contents in the two models) is given by the following equations:

$$
\begin{aligned}
& K=\operatorname{minimum}(C, M, Y) \\
& C^{\prime}=C-K \\
& M^{\prime}=M-K \\
& Y^{\prime}=Y-K
\end{aligned}
$$

Figure 7 is a full colour original and Figures 8 a, b, c and d are the $\mathrm{C}, \mathrm{M}, \mathrm{Y}$ and K contents separated digitally. Then, in the parts of Figure 9 we see the image being built up as it would be in lithographic printing. Note that the printing normally takes place in order of increasing density, that is yellow, magenta, cyan and black.

HLS and HSB

Although the RGB and CMY colour models are, perhaps, the most obvious ways of

Figure 8.

Figure 9.
defining colour in terms of mixing, they don't teally conform to our perception of colour. The HIS model, on the other hand, uses concepts, if not the words themselves, which we call more casily relate to. H stands for hue and is best described as "colour", by which I mean the continuum from red through orange, yellow, green, cyan, blue, violet and back to red. Note that although red and violet are at opposite ends of the visible spectrum in terms of frequency or wavelength, the two do seem to merge into each other just as red cloes into orange or blue into violet. L stands for lightness and has, as its extremes, black and white. You can think of the brightness control on a TV as a lightness control. Turn it tight down and everything is black, turn it right up and everything would be white if it wasn't for the fact that TV manufacturers
place al limit before this point. S stands for saturation and is the property which is influenced by the colour control on a TV. Turn it right down abd everything is a shade of grey, turn it right up and the colours are all vibrant. Hue takes values of $0^{\circ}-360^{\circ}$, whereas lightness and saturation both take values of $0-1,0-100 \%$ or $0-255$. HLS colour space is represented as a double cone as shown in Figure 10. Hue is the angle around the spine of the cone, lightness is the distance up the cone with 0 at the bottom and 1 at the top, and saturation is the radial distance from the spine. At first you might find it surprising that it's this particular shape. However; as you study it and as you note, for example, that a lightness of 0 is always black irrespective of hue and saturation and that a lightness of 1 is always white irrespecrive of hue and saruration, it should make more sense. As with the RGB colour culbe, we've also shown a few slices through the HLS colour cone in Figure 11 so that you can see some of the internal colours. This is particularly important here since you can only ever see the colours with a saturation value of 1 on the outer surface of the cone. The following formulae shows how HIS values ($0-1$) can be ohtained from RGB values (0-1):

IF minimum colour is B then

$$
H=120 * \frac{G-B}{R+G-2^{*} B}
$$

ELSE IF minimum colout is R then

$$
H=120 *\left(1+\frac{B-R}{B+G-2^{*} R}\right)
$$

ELSE

$$
H=120 *\left(200+\frac{R-G}{R+B-2 * G}\right)
$$

ENDIF

$$
L=\frac{M A X(R, G, B)+M \mid N(R, G, B)}{2}
$$

IF L <0.5 THIEN

$$
S=\frac{\operatorname{MAX}(R, G, B)+M I N(R, G, B)}{\operatorname{MAX}(R, G, B)-\operatorname{MIN}(R, G, B)}
$$

ELSE

$$
S=\frac{\operatorname{MAX}(R, G, B)-\operatorname{MIN}(R, G, B)}{2-\operatorname{MAX}(R, G, B)-\operatorname{MIN}(R, G, B)}
$$

ENDIF
Another colour model, which obviously has cuite a bit in common with HLS, is the HSB model which is represented as a single cone as shown in Figure 12. Here, H stands for hue ats in HIS, similarly S stands for saturation, and B stands for brightness. Occasionally, this colour space is called HSV, in which case V stancls for value but is defined just the same way as brightness.

Hue is defined in exactly the same way as in the HLS model, but saturation is defined rather differently and brightness is not the same as lightness. In this model, the 100% brightness level is achieved if any of the additive primaries are at 100% so all the fully saturated colours are at a brightness value of 1.0 rather than a lightness value of 0.5 as in HLS.

CIE Chromaticity Chart

Although the HLS and HSB colour models purport to be based on the human perception of colour, there are some very obvious anomalies with these schemes. For example, if we were to circumnavigate the circumference of the HLS cone, we'd notice consiclerable changes in the apparent lightness, even though all are colours we'd encounter have lightness values of 0.5 . In particular, the colours in the yellow region appear very much lighter than those in the blue region. So although there's a clear theoretical basis to the colour models we've seen so far, we really need to adept something else if we're genuinely interested in the human perception of colour:
A colour model which was devised back in 1931 but is still in widespread use is the CIE colour space which includes all the colours which can be perceived by the human visual system. It is based on the spectral power distribution of the light emitted from a coloured object and then calibrated by the sensitivity curves for the human eye. Effectively, colours are represented by the proportion of three primary colours, referred to as X, Y and Z, which correspond to the sensitivities of the three types of cone sensors in the human

Figure 10.

Figure 11.
eye. Furthermore, Y represents the perceived brightness and is referred to as luminance. This differs from the lightness in the HLS and HSB models, or the intensity of the three primaries in the RGB or CMY models, each of which are proportional to the physical power level measured in a unit such as watts per square metre. Figure 13 shows the spectral curves for the three CIE primaries. You'll notice that the blue curve is taller than the others because the eye is less sensitive to blue light. Rather than showing the full colour space, this model is normally slown as the CIE chromaticity diagram which appears as Figure 14. This is a slice through the colour space which has equal luminance specifically the slice for $X+Y+Z=1$. In
other words, the X and Y primaries are normalised according to the following formulac to give the co-ordinates x and y which are shown on the diagram.

$$
\begin{aligned}
& x=\frac{X}{X=Y+Z} \\
& y=\frac{Y}{X=Y+Z}
\end{aligned}
$$

In fact, it turns out that all hue and saturation combinations can be represented in terms of x and y alone. Y can, therefore, be used to represent luminance alone so giving the Yxy colour space. It's interesting to note that the colours round the curved edge of the CIF chromaticity diagram are pure colours, that is spectral colours. The corresponding wavelengths are inclicated on the diagram. However, the straight line section of the perimeter, the socalled purple line, inclucles those shacles of magenta or purple for which there is no equivalent monochromatic light.

Figure 15 is another version of the CIE diagram onto which the colours of red, green and blue LEDs and of the red. green and blue phosphors on a CRT are inclicated. In each case, the triangles boundel by the three "primary" colours contain all the colours which can be produced by mixing the three colours. The colours within the triangle are referred to as the gamut of a I.ED-based display or of a CRI: The IED gamut is the smallest and quite clearly there is a significant number of colours which cannot be mixed from red,
green and blue LEDs - basically because they're not perfect primaries. Most notably, the traditional green LED is a very yellowish green. You'll notice, though, that a so-called "pure green" LED is also shown. This is a newer type of LED which uses a similar semiconductor to that which made blue LEDs possible and is much closer to a true primary green. Now the range of colours is much improved, even over the CRT. Also shown on this diagram are the gamuts of four-colour printing and photographic film. You'll notice that the gamut of four-colour (CMYK) printing is particularly limited. For this reason, for high quality work, additional colours are sometimes used in addition to cyan, magenta, yellow and black - the so-called process colours. One common approach is to add a further two "primary" colours, specifically an orange and a green to give six-colour printing. Another option is to add one or more "spot" colours. A spot colour isn't used in mixing, instead it allows a single colour, which cannot faithfully be mixed from the primaries, to lee printed. This might be used, for example, in a glossy brochure showing a red car. If four-colour printing wouldn't do justice to the red of the car: the exact shate would be printed as a spot colour after the four process colours.

YUV Colour Space

So far we ve looked at five colour models in some detail and there are dozens of others. Many are effectively obsolete, though, or applicalle only to very specialised areas so we're not going to go through them all here. However, there is one other we should look

Figure 13.
at because of its importance in colour TV and video. This is the YUV colour model.

The YUV colour model separates
luminance from colour. I'll explain later why this is useful for broadcast IV and in MPEG encoding. Y represents the luminance but, despite numerous reports to the contrary, it is not the same as Y, the luminance in the CIE Yxy. In fact, the YUV moxlel was originally referred to as the Y'LV model in order to make the distinction but the prime has now been dropped. Y in YUV is a gamma corrected luminance value and is sometimes referred to as luma in order to reduce confusion.
Gamma correction involves applying a nonlintar transformation to the luminance value to take into account the non-linear relationship berween the voltage applied to a Cl' Γ and the perceived lightness which results. Fature to apply this gamma correction before transmitting a vicleo signal results in the inefficient use of bandwidth. luma is determined by gamma correding each of the additive primary colouts. R. Gand B. and then combining them with different weightings which correspond to the sensitivity of human rision to each of the additive primaries standardised for video. This is shown in the following formulac:

Figure 15.

Figure 14.
$R_{\text {gamma }}=1.099 \times R^{0.45}-0.099$
$G_{\text {gamma }}=1.099 \times G^{0.45}-0.099$
$\mathrm{B}_{\text {gamma }}=1.099 \times \mathrm{B}^{0.45}-0.099$
$Y^{\prime}=0.288 R_{\text {gamma }}+0.587 G_{\text {gamma }}+0.114 B_{\text {gamma }}$

The U and V values, which are, in fact, colour difference signats (i.e. the difference in intensity between two of the primaries and the luma value) are now calculated according to the following formulae:

$$
\begin{aligned}
& U=0.493^{*}\left(B-Y^{\prime}\right) \\
& V=0.877^{*}\left(\mathrm{R}-\mathrm{Y}^{\prime}\right)
\end{aligned}
$$

If the signal is being transmitted as component video, such as from a DVD player to a TV on separate cables, no more encocling is necessary. However, for analogue broadcast TV the U and V values are combined to produce al chroma signal, C, by quadrate mochulation. The reason for the strange looking coefficients in the above equations is so that the composite

0% density

25% density

50% density

75% density

100% density

Figure 16.

PAL signal (luma plus modulated chroma) is contained within the range $-1 / 3$ to $+4 / 3$. These limits reflect the capability of the composite video recording or transmission channel.

And finally, before leaving the topic of the YUV colour model I need to explain the rationale for separating the colour information from the luma. The eye is more sensitive to detail in colnur than in luminance. In PAL 'TV, therefore, the U and V values are sampled at hall the horizontal frecpuency as the luma. This provides a usefiul decrease in the bandwidtit. A similar technique is employed in video compression, in the MPI:G-2 stanclard, for example.
perception of darkness is to alter the size of the dot and/or its separation from its neighbours. Since lithographic printing really cloesn't have much of a bearing on electronics and computing, I won't describe the solution adopted here. However, this is something which is relevant in desktop publishing so you may like to read up elsewhere on the sulject. You should look for a book on printing or DTP, or search the Web for information on half-toning or screening. In most colour printers intended for use with PCs (e.g. inkjel printers), though, a technique cilled dithering is used. If a printer hals a 1200 clpi x 1200 d pi resolunion it can cleposit clons of ink on a $1 / 1200$ th of an inch gricd. But since
pixef in the image. Figure 16 shows how this can be useful and, for simplicity, I've used a small 2×2 dot block to represent a pixel. Since this contains four cots, $0,1,2,3$ or 4 dots can be printed therely giving an overall density of $0 \%, 25 \%, 50 \%, 75 \%$ or 100%. And at a normal viewing clistance, the indiviclual clots will not be resolved so the eye will just see the shatle of grey represented by the density. By increasing the size of the block. the number of shades of grey is increased at the expense of resolution. But this just relates to greyscale printing. Since we can clo the same for each of the subtractive primaries, a 2×2 dot bleck actually allows 125 colours to be printed, 3×3 dots allows 1,000 colours and with 4×4 dots this

Figure 17.

Practical Colour Mixing

We started off by looking at colour mixing and this is also where we'll conclude. For although it's possible to continuously alter the amount of the addlitive primaries red. green and blue on a CKI tube by controlling the voltage on the tube, this is nor possible on paper. In most forms of printing a dot of ink is either present or it isn't. So the only way of altering the
it only has four colours of ink (cyan, magenta, yellow and black) and since it can overprint to produce another three (red, green, and blue) it can only print at this resolution in seven colours plus the white of the paper: Fortunately, for a photographic image, the eye generally won't notice if the actual resolution is much less than 1200 clpi . So a block of printer dols can be used to represent one rises to almost 5,000. In Figure 17 a few colours mixed by dithering are shown. The scale is large enough to allow you to see how they've been made up from individual dots in one of just 8 colours but from a distance you'll be able to perceive the colours.
This is the way that inkjet printers have operated in the past but some of the newer socalled photographic quality printers have less of a trade-olf between the number of colours and the resolution. Some printers achieve this by having an extra two colours of ink - pale cyan and pale magenta. HP have an alternative technology which, for the first time, actually allows the size of the ink droplet deposited on the paper to be altered. For this reason, comparing headline resolutions alone isn't a good way of judging the quality you're likely to get from a printer for pholographic work.

