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Abstract. We show both theoretically and experimentally that a pair of inductively

coupled active LRC circuits (dimer), one with amplification and another with an

equivalent amount of attenuation, display all the features which characterize a wide

class of non-Hermitian systems which commute with the joint parity-time PT operator:

typical normal modes, temporal evolution, and scattering processes. Utilizing a

Liouvilian formulation, we can define an underlying PT -symmetric Hamiltonian, which

provides important insight for understanding the behavior of the system. When the

PT -dimer is coupled to transmission lines, the resulting scattering signal reveals novel

features which reflect the PT -symmetry of the scattering target. Specifically we show

that the device can show two different behaviors simultaneously, an amplifier or an

absorber, depending on the direction and phase relation of the interrogating waves.

Having an exact theory, and due to its relative experimental simplicity, PT -symmetric

electronics offers new insights into the properties of PT -symmetric systems which are

at the forefront of the research in mathematical physics and related fields.

PACS numbers: 11.30.Er, 05.60.-k, 45.05.+x

1. Introduction

Among the many recent developments in PT systems, the application of pseudo-

Hermitian ideas into the realm of electronic circuitry not only promises a new generation

of electronic structures and devices, but also provides a platform for detailed scrutiny of

many new concepts within a framework of easily accessible experimental configurations.

A first example of this was the demonstration in Ref. [1] that a pair of coupled LRC

circuits, one with amplification and the other with equivalent amount of attenuation,

provided the simplest experimental realization of a PT symmetric system. With a

normal mode structure where all dynamical variables are easily measured in the time

domain, extensions of the circuit approach will provide a valuable testing ground for

further developments into more sophisticated structures. Moreover, the PT -circuitry

approach suggested also opens new avenues for innovative electronics architectures for

signal manipulation from integrated circuits to antenna arrays, and allows for direct

contact with cutting edge technological problems appearing in (nano)-antenna theory,

split-ring resonator arrays, and meta-materials.
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Examples of PT -symmetric systems range from quantum field theories and

mathematical physics [2, 3, 4, 5] to atomic [6, 7], solid state [8, 9, 10] and classical

optics [11, 12, 13, 14, 15, 16, 17, 18, 19]. A PT -symmetric system can be described by a

phenomenological ”Hamiltonian”H which may have a real energy spectrum, although in

general H is non-Hermitian. Furthermore, as some parameter γ that controls the degree

of non-Hermiticity of H changes, a spontaneous PT symmetry breaking occurs. At this

point, γ = γPT , the eigenfunctions of H cease to be eigenfunctions of the PT -operator,

despite the fact that H and the PT -operator commute [2]. This happens because the

PT -operator is anti-linear, and thus the eigenstates of H may or may not be eigenstates

of PT . As a consequence, in the broken PT -symmetric phase the spectrum becomes

partially or completely complex. The other limiting case where both H and PT share

the same set of eigenvectors corresponds to the so-called exact PT -symmetric phase

in which the spectrum is real. This result led Bender and colleagues to propose an

extension of quantum mechanics based on non- Hermitian but PT -symmetric operators

[2, 3]. The class of non-Hermitian systems with real spectrum has been extended by

other researchers in order to include Hamiltonians with generalized PT (antilinear)

symmetries [20].

While the applicability of these ideas in the quantum framework is still being

debated, optical systems provide a particularly fertile ground where PT -related concepts

can be realized [11] and experimentally investigated [13, 14]. In this framework, PT
symmetry demands that the complex refractive index obeys the condition n(~r) =

n∗(−~r). PT -synthetic materials can exhibit several intriguing features. These include

among others, power oscillations and non-reciprocity of light propagation [11, 14, 16],

absorption enhanced transmission [13], and unidirectional invisibility [18]. Despite these

efforts and the consequent wealth of theoretical results associated with PT -structures,

until very recently only one experimental realization of a system with balanced gain

and loss has been reported [14]. These authors studied the light propagation in two

coupled PT symmetric waveguides where the spontaneous PT -symmetry breaking

“phase transition” [21] was indirectly confirmed. The analysis relied on the paraxial

approximation which under appropriate conditions maps the scalar wave equation to

the Schrödinger equation, with the axial wavevector playing the role of energy and with

a fictitious time related to the propagation distance along the waveguide axis.

This observation led us recently to propose a new set-up based on active LRC

circuits where the novel features of PT - symmetric structures can reveal themselves

and can be studied both theoretically and experimentally in great detail. The system

consists of a pair of coupled electronic oscillators, one with gain and the other with loss.

This ”active” dimer, is implemented with simple electronics, and allow not only for a

direct observation of a spontaneous PT -symmetric “phase transition” from a real to a

complex eigenfrequency spectrum but also for its consequences in the spatio-temporal

domain. At the same time the equivalent scattering system, where a localized PT
symmetric structure is connected to one or two transmission line (TL) leads allow us to

access the validity of recent theoretical predictions [17, 22, 23, 24, 25, 26, 27, 28].
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This paper presents our recent results pertaining to the PT electronics. We begin

with a general discussion of electronics in the context of PT symmetric systems in

section 2. Then in section 3 we examine the normal mode structure of the simplest

such circuit, the PT dimer. We experimentally demonstrate how it displays all the

novel phenomena encountered in systems with generalized PT -symmetries. Section 4

discusses the unique aspects of PT dynamics exhibited by the dimer, particularly upon

passage from the exact to broken phase. In section 5 we investigate the simplest

possible scattering situation where the dimer is coupled to a single TL, and derive

a non-unimodular conservation relation connecting the left and right reflectances. A

direct consequence of this relation is the existence of specific frequencies for which

the system behaves either as a perfect absorber or as an amplifier, depending on

the side (gain or loss) to which the TL is coupled. In section 6 we demonstrate

theoretically and experimentally that a two-port PT -symmetric electronic cavity can

act as a simultaneous coherent perfect absorber (CPA)-amplifier. Our circuit is the

electronic equivalent of a CPA-Laser device which was recently proposed in the optics

framework, and constitutes the first experimental realization of such devices. Finally,

section 7 presents several issues involving practical implementation of PT circuits, along

with some related experimental details. Our conclusions are given in section 8.

2. PT electronics

One of the most convenient advantages of an electronic approach is that, at least in the

low frequency domain, where the wavelength is significantly greater than the dimensions

of the circuit, all spatial symmetry considerations can be reduced to a matter of network

topology defined through the application of Kirchoff’s laws. Physical symmetry is

irrelevant as long as the network has the desired node topology and the connecting

elements are appropriately valued. Analogous to the familiar case of a PT -symmetric

potential, the parity operation is equivalent to the interchange of labels corresponding

to pairs of associated circuit components.

For simplicity, we will restrict our discussion to the usual fundamental physical

devices: resistors, capacitors and inductors. Only the resistor, due to it’s dissipative

nature, requires modification upon time-reversal where we include generic Ohmic

elements with either positive or negative resistance. Negative resistance represents

the simplest conceptual inclusion of amplification into electronics since Kirchoff’s laws

can be used without modification. Fig. 1 illustrates how simple linear amplifiers

can be configured to achieve negative resistance. The schematic implementation in

(a) results in a single, ground-referenced node, while that in (b) shows a true two-

terminal configuration. The former is of greatest utility due to it’s simplicity and the

pervasiveness of ground nodes (defining a common zero potential) in typical circuits.

Section 7 discusses further details of the experimental negative resistance converters.

Theoretical analysis of circuits including negative resistance elements, however,

requires respecting a subtle condition: any two terminal circuit structure reducing to
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Figure 1. Two negative impedance converters with their equivalents. (a) A ground

referenced negative resistance node. (b) A floating, two-terminal negative resistance.
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Figure 2. Schematic of the PT -symmetric electronic dimer. Both mutual inductance

coupling and capacitive coupling are included for generality.

a pure negative resistance will be undefined unless the structure is placed in parallel

with a capacitance. This conclusion results from the divergence of the pole associated

with parallel RC combinations (with negative R) in the limit of C → 0. This pole only

arises if parallel capacitance is initially considered, so is hidden, and often overlooked

in the consideration of negative resistance circuits. It is inconsequential with normal,

positive resistance, where it’s sign corresponds to exponential decay. For example, the

standard series LRC circuit, though it appears to have a mathematically well behaved

solution for negative R, is invalid in that realm due to the hidden pole. Our choice of

the parallel LRC configurations was dictated by this consideration.

Thus, for a PT -symmetric circuit incorporating these basic elements, it is necessary

that (1) all reactive elements either have representation in parity-associated network

pairs, or connect parity inverted network nodes, (2) all Ohmic elements are paired

with opposite sign, and (3) each negative Ohmic element has an associated parallel

capacitance, or AC equivalent, as part of the circuit. Valid PT -circuits of arbitrary
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complexity can be built up using these simple rules, though their stability needs to be

independently determined. In principle, the long-wave approximation could be relaxed

with an appropriate inclusion of waveguide connections, however, this would return

geometry into the mix of PT considerations.

3. PT dimer modes

Figure 2 shows the PT -symmetric dimer, the simplest configuration with a non

trivial (more than one mode) pseudo-Hermitian spectrum. Both capacitive and

mutual inductive coupling are included for generality, although the experimental results

presented throughout this work are exclusively one or the other. The gain side on

the left of Fig. 2 is indicated by −R and was implemented using the configuration of

Fig. 1(a). The loss on the right is achieved with a conventional resistance of the same

value, resulting in the gain/loss parameter γ = R−1
√
L/C for this system. Further

details of the experimental circuit are given in section. 7.

Kirchoff’s laws for the dimer with both mutual inductance coupling and capacitive

coupling between the oscillators are given for the gain side (Eq. (1)) and loss side

(Eq. (2)).

V1 = iω(LI1 +MI2) I1 −
V1

R
+ iωCV1 + iωCc(V1 − V2) = 0 (1)

V2 = iω(LI2 +MI1) I2 +
V2

R
+ iωCV2 + iωCc(V2 − V1) = 0 (2)

Eliminating the currents from the relations, scaling frequency and time by ω0 =
√
L/C,

and taking µ = M/L and c = Cc/C gives the matrix equation:(
1

ω(1−µ2)
− ω(1 + c)− iγ ωc− µ

ω(1−µ2)

ωc− µ
ω(1−µ2)

1
ω(1−µ2)

− ω(1 + c) + iγ

)(
V1

V2

)
= 0. (3)

At this point, it is obvious that the system is PT symmetric: swapping the indices and

changing the sign of i leaves the equations unchanged. This linear, homogeneous system

has four normal mode frequencies, as required to fulfill any arbitrary initial condition

for voltage and current, given by

ω1,2 = ±
√
γ2
c − γ2 +

√
γ2
PT − γ2

2
√

1 + 2c
; ω3,4 = ±

√
γ2
c − γ2 −

√
γ2
PT − γ2

2
√

1 + 2c
; (4)

with the PT symmetry breaking point identified as

γPT = | 1√
1− µ

−
√

1 + 2c

1 + µ
| (5)

and the upper critical point by

γc =
1√

1− µ
+

√
1 + 2c

1 + µ
. (6)

Note that the given forms explicitly show all of the relationships among the critical points

and the real and imaginary parts of the frequencies. The exact phase, 0 < γ < γPT ,
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is characterized by four purely real eigenfrequencies coming in two pairs of positive

(ω1, ω3 > 0) and negative (ω2, ω4 < 0) values, while in the broken phase below the upper

critical point, γPT < γ < γc the eigenfrequencies are coming in complex conjugate pairs

with non-vanishing real parts, and above γc, as two purely imaginary complex conjugate

pairs. The broken phase of the PT dimer is unstable, in that it is ultimately dominated

by an exponentially growing mode.

The normal modes in the exact phase are characterized by equal magnitudes for

the voltage oscillations in the gain and loss sides, which in the +ω, real part convention

allowed by the real eigenfrequencies, are given by(
V1

V2

)
±

=
1√
2

(
1

− exp(iφ±)

)
(7)

with a phase φ± of the loss side

φ± = π/2− tan−1

[
1

γ

(
1

(1− µ2)ω±
− (1 + c)ω±

)]
. (8)

As the gain/loss parameter traverses the exact region, 0 ≤ γ ≤ γPT , the phase progresses

from the in- and out-of-phase configuration of a Hamiltonian coupled oscillator, to a

mode coalescence at γPT with φ± ∼ π/2 with the real frequency

ω+ = ω− =
[
(1− µ2)(1 + c)

]−1/4
(9)

Examination of the inductor currents,(
I1

I2

)
±

=

(
1

1−µ2 − µ
1−µ2

− µ
1−µ2

1
1−µ2

)(
V1

V2

)
±

(10)

reveal phase shifts, relative to the corresponding voltages, that advance on the gain side

and retard on the loss side within either mode. This is as required for the net transfer of

electrical energy from the gain side to the loss side as the gain/loss parameter increases.

This evolutionary behavior is helpful in understanding the spectral and dynamical

behavior of the dimer.

An alternate analysis of the dimer is also accomplished by recasting Kirchoff’s

laws, Eqs. (1) and Eq. (2) into a “rate equation” form by making use of a Liouvillian

formalism

dΨ

dτ
= LΨ; L =


0 0 1 0

0 0 0 1

−αβ αζ (1 + c)γ cγ

αζ −αβ −cγ −(1 + c)γ

 (11)

where α = 1/(1 − µ2), β = 1 + c + cµ, ζ = c + µ + cµ and Ψ ≡ (Q1, Q2, Q̇1, Q̇2)T

with Qn = CVn. This formulation opens new exciting directions for applications [29] of

generalized PT -mechanics [20] as it can be interpreted as a Schrödinger equation with

non-Hermitian effective Hamiltonian Heff = iL. This Hamiltonian is symmetric with

respect to generalized P0T0 transformations [29], i.e. [P0T0, Heff ] = 0, where

P0 =

(
σx 0

0 σx

)
; T0 =

(
1 0

0 −1

)
K (12)
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and σx is the Pauli matrix, 1 is the 2× 2 identity matrix, and K denotes the operation

of complex conjugation. By a similarity transformation R [29],

R =


2i(b+d)

1+
√

1+2c
− 2i(b+d)

1+
√

1+2c
−1−2c+

√
1+2c

c
−1−2c+

√
1+2c

c
i(−1−2c+

√
1+2c)(b−d)

c

i(−1−2c+
√

1+2c)(b−d)

c
2

1+
√

1+2c
− 2

1+
√

1+2c
i(1+2c−

√
1+2c)(b−d)

c

i(1+2c−
√

1+2c)(b−d)

c
2

1+
√

1+2c
− 2

1+
√

1+2c
2i(b+d)

1+
√

1+2c
− 2i(b+d)

1+
√

1+2c
1+2c−

√
1+2c

c
1+2c−

√
1+2c

c

 (13)

Heff = R−1HR can be related to a transposition symmetric, PT −symmetric

Hamiltonian H = HT = PH†P , T = K where P = RP0R−1. The matrix H is

then

H = −


0 b+ ir d+ ir 0

b+ ir 0 0 d− ir
d+ ir 0 0 d− ir

0 d− ir d− ir 0

 (14)

where b =

√
α
(
β +

√
β2 − ζ2

)
/2, d =

√
α
(
β −

√
β2 − ζ2

)
/2 and r = 1

2

√
1 + 2cγ.

The frequencies and normal modes within this framework are identical to Eqs. (4,10).

These normal mode properties can be measured in our electronic dimer by

simultaneous observation of the node voltages V1 and V2 of Fig. 2. Our set-up allows

detailed analysis for gain/loss parameters γ on either side of the PT -phase transition

point. In the exact phase, time series samples are captured with the dimer slightly

unbalanced to marginally oscillate the mode of interest. Beyond the critical point, a

transient sample is obtained dominated by the exponentially growing mode. Details are

given in section 7.

In Fig. 3 we report measurements for the dimer frequencies (left) and inter-

component phases (right) compared with the theoretical expressions, Eq. (4) and Eq. (8)

respectively, for the values µ = 0.2 and c = 0. The PT symmetry imposes the

condition that the magnitude of the two voltage components are equal to one-another

in the exact phase. This property is also experimentally observed. For γ = 0, the

phases corresponding to the symmetric and antisymmetric combination are φ− = 0 and

φ+ = π, respectively. When γ is subsequently increased and the system is below the

PT threshold, the eigenstates are not orthogonal and their phases can be anywhere

(depending on γ/γPT ) in the interval [0, π].

The value of phase difference at the spontaneous PT -symmetric breaking point

γ = γPT can be calculated analytically and it is given by the expression:

φPT (µ) = arccos


√

1−
√

1− µ2√
1 +

√
1− µ2

 (15)

We note that in the limit of µ → 0 we get φPT = π/2, corresponding to a ”circular”

polarization of the eigenmode. The opposite limit of µ → 1 results to φPT = 0

corresponding to ”linear” polarization.
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Figure 3. (Left) Parametric evolution of the experimentally measured eigenfrequen-

cies, vs. the normalized gain/loss parameter γ/γPT . A comparison with the theoret-

ical results of Eq. (4), indicates an excellent agreement. In all cases, we show only

the Re(ωl) > 0 eigenfrequencies. The open circles in the lower panel are reflections

of the experimental data (lower curve) with respect to the Im(ω) = 0 axis. (Right)

Parametric evolution of the phase difference φ±. Symbols correspond to experimental

data while the lines indicate the theoretical results of from Eq. (8). The theoretical

φPT (µ) is shown in the inset.

4. PT dimer dynamics

The signatures of PT -symmetry and the transition from the exact phase to the broken

phase are similarly reflected in the temporal behavior of our system. Eq. (11) can

be solved either analytically or via direct numerical integration in order to obtain the

temporal behavior of the capacitor charge Qn(τ) and the displacement current In(τ)

in each of the two circuits of the PT -symmetric dimer. As an example of the dimer

state evolution, we consider an initial displacement current in one of the circuits with

all other dynamical variables zero.

In Fig. 4 we present some typical measurements for the temporal behavior of

circuit voltages along with the corresponding numerical result. We consider a dimer

configuration with µ = 0.2 and c = 0 (i.e. inductive coupling only). In the left panel

of Fig. 4a, we show V1(τ) and V2(τ) for an initial condition having I1(0) = 1.2mA with

all other dynamical variables zero. The right panel shows the same data as a Lissajiou

plot, with the initial condition trajectory leaving the origin with V1 decreasing, and

V2 stationary. Agreement between the experiment (circles) and the simulations (lines)

is observed, illustrating that, in spite of the presence of dissipative elements and non-

orthogonal states, the beat superposition associated with real frequencies occurs. There

is, however, a subtle distinction: Since energy is not conserved, the beat is asymmetric

between the gain side and the loss side nodal times, with oscillatory activity spending

more time between gain side nodal points as energy grows to a significantly larger

size before decaying and growing between the loss side nodal points. However, unlike

traditional coupled-oscillator beats, instead of “slashing” between both sides during the

course of the beats, a growth and decay energy dance occurs with both sides more or



PT Electronics 9

Figure 4. (a) Gain and loss side voltages vs. time compared to the simulation. (b)

Gain vs. loss side Lissajous figure for one beat period. At t = 0 an initial current was

imposed in the gain side inductor with all other dynamical variables zero. Note that

the end of the beat (indicated by the arrow near 200µs) is preceded by a similar point

where both voltages pass through zero (indicated by the arrow near 150µs) with V2
decreasing, and V1 stationary. This corresponds to the complementary initial condition

starting from the loss side, and illustrates an asymmetric time between the beat nodal

points of oscillatory activity in the two oscillators of the dimer.

less equally represented except in the vicinity of the nodal points. This behavior is a

direct result of the non-orthogonal phase relationships that become more pronounced

as γ → γPT . A Hamiltonian dimer would exhibit a perfect half-beat offset between the

left and right voltage beat envelopes.

We have also traced these energy dance features by studying the time-dependence

of the total capacitance energy:

Etot
C (τ) =

Q2
1(τ) +Q2

2(τ)

2C
. (16)

With the initial condition used in the experiment, we expect power oscillations which

are due to the unfolding of the non-orthogonal eigenmodes [2, 11, 16, 14]. This universal

feature is evident in the temporal behavior of Etot
C (τ) as can be seen in Fig. 5. On the

other hand, for γ > γPT the dynamics is unstable and Etot
C (τ) grows exponentially with

a rate given by the maximum imaginary eigenvalue max{Im(ωl)} (see Fig. 5).

The most interesting behavior appears at the spontaneous PT -symmetry breaking

point γ = γPT . At this point the matrix L has a defective eigenvalue. In this case,

the evolution U = exp(Lτ) can be calculated from the Jordan decomposition of L as

J = SLS−1. Having in mind the form of the exponential of a Jordan matrix, it follows

immediately that linear growing terms appear in the evolution of the charge vector

(Q1(τ), Q2(τ))T [30]. This results in a quadratic increase of the capacitance energy i.e.

Etot
C (τ) ∼ τ 2. Although all systems typically becomes very sensitive to parameters near

a critical point, we are able to control the circuit elements sufficiently well to observe

the approach to the predicted τ 2 behavior of the energy. This time range is limited by

the dynamic range of our circuit linearity, as discussed in section 7



PT Electronics 10

0.1 1 10
0.01

0.1

1

10
γ = 0.84γ

PT
γ ∼ γ

PT

τ2

γ = 1.09γ
PT

e
2{Imω1}τ

E
C

   
(τ

)
to

t

τ

Figure 5. Experimentally measured temporal dynamics of the capacitance energy

Etot
C (τ) of the total system for various γ-values. As γ → γPT the τ2 behavior signaling

the spontaneous PT -symmetry breaking is observed.

5. The Janus faces of PT -symmetric scattering

We report our initial scattering studies with the following two reciprocal geometries:

In the first case, a transmission line (TL) is attached to the left (amplified) circuit of

the dimer load while in the second case, the TL is connected to the right (lossy) circuit

of the load (see lower and upper insets of Fig. 6 respectively). Experimentally, the

equivalent of a TL with characteristic impedance Z0 could be attached to either side of

the dimer at the RLC circuit voltage node in the form of a resistance R0 = Z0 in series

with a variable frequency voltage source. The right and left traveling wave components

associated with the TL would be deduced from the complex voltages on both sides of R0.

With VLC the voltage on the LC circuit, and V0 the voltage on the synthesizer side of

the coupling resistor R0, the right (incoming) wave has a voltage amplitude V +
L = V0/2

and the left (reflected) wave has a voltage amplitude V −L = VLC − V0/2. The voltage

source defines the phase of the incoming wave.

At any point along a TL, the current and voltage determine the amplitudes of the

right and left traveling wave components [31]. The forward V +
L,R and backward V −L,R

wave amplitudes, and V1,2 and I1,2 the voltage and current at the left or right TL-dimer

contacts satisfy the continuity relation

V1,2 = V +
L,R + V −L,R; I1,2 =

[
V +
L,R − V

−
L,R

]
/Z0 (17)

which connect the wave components to the currents and voltages at the TL-dimer

contact points. Note that with this convention, a positive lead current flows into the

left circuit, but out of the right circuit, and that the reflection amplitudes for left or

right incident waves are defined as rL ≡ V −L /V
+
L and rR ≡ V +

R /V
−
R respectively.

Application of Kirchoff’s laws at the TL leads allow us to find the corresponding

wave amplitudes and reflection. For this analysis, we assume the e−iωt wave convention.
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Figure 6. (Color) Two experimental configurations associated with a simple PT -

symmetric dimer. In the lower and upper circuits, we couple a transmission line to

the gain and loss sides, respectively. Preliminary experimental measurements for the

corresponding reflection coefficients are shown (loss-side red, gain-side blue) along with

the solid line corresponding to R−1L illustrate the reciprocal nature RLRR = 1 (see text)

of the PT -scattering. Here µ = 0.2, γ = 0.164 and Z0 = 15.5
√
L/C.

For example, the case of the left-attached lead in the lower inset of Fig. 6 gives

η(V +
L − V

−
L ) = IM1 − γV1 − iωV1

V1 = −iω
[
IM1 + µIM2

]
; V2 = −iω

[
IM2 + µIM1

]
(18)

0 = IM2 + γV2 − iωV2

where η =
√
L/C/Z0 is the dimensionless TL impedance, and IM1,2 are the current

amplitudes in the left or right inductors. These are equivalent to the simple dimer

form Eq. (1) and Eq. (2) with the addition of the contact current and the opposite sign

convention for i more appropriate for the traveling wave analysis. Similar equations

apply for the right-attached case shown in the upper inset of Fig. 6. We are interested

in the behavior of the reflectance RL/R ≡ |rL/R|2, as the gain/loss parameter γ, and the

frequency ω changes.

For PT -symmetric structures, the corresponding scattering signals satisfy

generalized unitarity relations which reveal the symmetries of the scattering target.

Specifically, in the single-port set up this information is encoded solely in the reflection.

To unveil it, we observe that the lower set-up of Fig. 6 is the PT -symmetric replica of

the upper one. Assuming therefore that a potential wave at the left lead (lower inset)

has the form VL(x) = exp(ikx) + rL exp(−ikx) (we assume V +
L = 1 and V −L = rL in Eq.

(17)), we conclude that the form of the wave at the right lead associated with the upper

circuit of Fig. 6 is VR(x) = exp(−ikx)+rr exp(ikx) = V ∗L (−x). Direct comparison leads
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to the relation

rL · r∗R = 1→ RL = 1/RR and φL = φR (19)

where φL/R are the left/right reflection phases. Note that Eq. (19) differs from the

more familiar conservation relation R = 1, which applies to unitary scattering processes

as a result of flux conservation. In the latter case left and right reflectances are equal.

Instead in the PT -symmetric case we have in general that RL 6= RR [32].

For the specific case of the PT -symmetric dimer, we can further analytically

calculate the exact expression for the reflection coefficients. From Eqs. (18) we have

rL(ω) = −f(−η,−γ)/f(η,−γ)

rR(ω) = −f(−η, γ)/f(η, γ) (20)

f = 1− [2− γm(γ + η)]ω2 +mω4 − iηω(1−mω2)

with m = 1/
√

1− µ2

In the limiting cases of ω → 0,∞ the reflection amplitude becomes rR → ∓1 and thus

unitarity is restored.

In the main panel of Fig. 6 we plot the reflection coefficients of Eq. (20) for the

two scattering configurations shown in the sub-panels. The measured reflectances RL,

and RR satisfy the generalized conservation relation RL · RR = 1 as expected from Eq.

(19). The slight deviation from reciprocity in the vicinity of large reflectances can be

attributed to nonlinear effects.

A peculiarity of our results is the appearance of a singularity frequency point

ωJ(µ, γ) for which RR →∞, while a reciprocal point for which RL = 0 is also evident.

The corresponding (ωJ; γ∞,0) are found from Eq. (20) to be

γ∞,0 =
1

2

(√
η2 +

4µ2

(1− µ2)
∓ η

)
; ωJ =

1√
1− µ2

(21)

Therefore, our experiment demonstrates that a PT -symmetric load is a simple electronic

Janus device that for the same values of the parameters ωJ , µ, γ acts as a perfect signal

absorber as well as a signal amplifier, depending on the side (gain or loss) that the TL

is coupled to the dimer.

For the more general case of a two-port PT scattering, it was shown theoretically

in [23] and later on confirmed experimentally in [31] that the following conservation

relation holds:√
RLRR = |T − 1| (22)

Equation (19) is a special case of Eq. (22) once we realize that in the single port case

the transmittance T = 0.

6. Two-port coherent perfect absorber-amplifier

Recent theoretical studies in the optics framework [17] have suggested that a two-port

PT -symmetric cavity can act as a simultaneous coherent perfect absorber (CPA)-laser.
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Figure 7. (Color) (a) The overall output coefficient Θ(ω) around the Janus

amplification/attenuation frequency ωJ (vertical dashed line) for a PT -symmetric

electronic circuit coupled to two ports. The parameters used in this simulation are

η = 0.110, γ = 0.186 and c = 0.161. The red curve corresponds to the two port

coherent input excitation with V −R =M21(ω)V +
L ; the blue curve correspond to a two-

port input signal with V −R = V +
L . In the former case the system acts as an perfect

attenuator while in the latter as an amplifier. The dots are experimental values. (b)

Plots of experimental Θ(ωJ) as the loss side input excitation phase is changed, for

several excitation amplitudes. Note the extremely sharp dependence at the Janus

condition.

In this section we provide the first experimental realization of this proposal using a two-

port configuration of our PT -symmetric electronic dimer, and demonstrate it’s action as

simultaneous CPA-amplifier. We consider the capacitively coupled case, with c = Cc/C

as previously defined, to demonstrate the independence of the generic behavior from

the coupling mechanism. Following steps similar to the single-port case, Kirchoff’s laws

lead to the following set of equations:

η(V +
L − V

−
L ) + (V +

L + V −L )

[
iω(1 + c) +

1

iω
+ γ

]
− iωc(V +

R + V −R ) = 0 (23)

−η(V +
R − V

−
R ) + (V +

R + V −R )

[
iω(1 + c) +

1

iω
− γ
]
− iωc(V +

L + V −L ) = 0 (24)

The above equations can be written in a more elegant form by making use of the

transfer matrix formulation:(
V +
R

V −R

)
=M

(
V +
L

V −L

)
; M =

1

2ωcη

(
A+ iB iC

−iD A− iB

)
(25)

where the transfer matrix elements M are A = 2ηΩ, B = Ω2 − η2 − ω2c2 + γ2,

C = (γ− η)2 + Ω2−ω2c2, and D = (γ+ η)2 + Ω2−ω2c2, with Ω = ω(1 + c)− 1/ω. One

can further express the spectral transmission and reflection coefficients for left (L) and

right (R) incidence in terms of the transfer matrix elements as [26, 27]

tL = tR ≡ t =
1

M22

, rL = −M21

M22

, rR =
M12

M22

(26)

where we have used the identity that det(M) = 1.
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An alternative formulation of the transport problem utilizes the so-called scattering

matrix S which connects incoming to outgoing waves and its elements can be written

in terms of the transmission/reflection coefficients. Specifically(
V +
R

V −L

)
= S

(
V +
L

V −R

)
; S =

1

M22

(
1 M12

−M21 1

)
(27)

Using the scattering matrix language one can derive conditions in order our PT -

symmetric structure to act either as an amplifier or as a perfect absorber. For a laser

oscillator without an injected signal, the boundary conditions V +
L = V −R = 0 apply,

which imply from Eq. (27) the condition M22(ω) = 0 [27]. In contrast, for a perfect

absorber the boundary conditions, V −L = V +
R = 0, corresponding to zero reflected waves,

hold. From Eq. (27) this implies M11(ω) = 0, while the amplitudes of the incident

waves must satisfy the condition V −R = M21(ω)V +
L . In general, the condition for an

amplifier/laser system, is not satisfied simultaneously with the condition for a perfect

absorber. However for any PT -symmetric structure, one can show from Eq. (25) that

the matrix elements of M satisfy the relation M22(ω) = M∗
11(ω∗) [17]. As a result, a

real ω = ωJ exists, that satisfies the amplifier/laser condition simultaneously with the

absorber condition (M22(ωJ) = M11(ωJ) = 0). Hence the two-port PT -symmetric

dimer can behave simultaneously as a perfect absorber and as an amplifier. This

property can be explored using an overall output coefficient Θ defined as [17]

Θ =
|V +
R |2 + |V −L |2

|V +
L |2 + |V −R |2

(28)

Note that in the case of a single-port scattering set-up discussed earlier in this section,

the Θ-function collapses to the left/right reflectances. We can further simplify the above

expression using Eq. (25), together with the property det(M) = 1. We get

Θ(ω) =
|V

−
R

V +
L

M12(ω) + 1|2 + |V
−
R

V +
L

−M21(ω)|2

(1 +
|V −

R |2

|V +
L |2

)|M22(ω)|2
(29)

At the singularity frequency point ω = ωJ and for a generic ratio V R
b /V

L
f , the Θ(ω)-

function diverges as ω → ωJ and the circuit acts as an amplifier/laser. If on the other

hand, we assume that V −R =M21(ω)V +
L (perfect adsorbtion condition), we get

Θ(ωJ) =
|M21(ωJ)M12(ωJ) + 1|2

(1 + |M21(ωJ)|2)|M22(ωJ)|2

=
|M22(ωJ)M11(ωJ)|2

(1 + |M21(ωJ)|2)|M22(ωJ)|2
= 0 (30)

In the context of electronics, the two port simultaneous laser/absorber properties

are manifest as a delicate balance of the driven, marginally stable circuit. The

singular behavior of the theoretical Θ in Fig. 7(a), solid curves, illustrate that at the

Janus frequency ωJ the injected signals can result in either amplification or complete

attenuation, depending on the relative amplitude and phase of the injected signals.

The perfect absorption condition is particularly sensitive to the injection parameters:
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the deviation of the experimental data, Fig. 7(a) dots, is characteristic of component

imbalance of less than 1%. In fact, the minimally absorbing experimental points near

the dip in the attenuation curve of Fig. 7(a) can only be obtained by an independent

determination of the minimal reflectance condition at each frequency. Fig. 7(b) shows

this extreme sensitivity to the phase of the right input signal near ωJ and illustrates our

current experimental limits to the observation of the Janus condition.

7. Practical considerations

Although the fundamental theoretical aspects of PT electronic circuits is straightfor-

ward, it is important to realize that all physical electronic elements deviate from their

ideal intended function in two distinctly different ways. First, all have unintentional

or stray impedances – resistive and reactive components – that can become significant

as frequency changes. Second, all components, particularly amplifiers, are subject to

linearity limits.

The experimental dimer, equivalent to that shown in Fig. 2 with either the inductive

or capacitive coupling, consists of a pair of coupled LC circuits, one with amplification

in the form of the negative resistance, and the other with equivalent attenuation. The

circuit was shown in Ref. [1] to be a simple realization of the PT -symmetric dimer.

Each inductor is wound with 75 turns of #28 copper wire on 15cm diameter PVC forms

in a 6 × 6mm loose bundle for an inductance of L = 2.32 mH. The coils are mounted

coaxially with a bundle separation adjusted for the desired mutual inductance M . The

isolated natural frequency of each coil is ω0 = 1/
√
LC = 2× 105s−1.

The actual experimental circuit includes several additions to that of Fig. 2

acknowledging the physical realities mentioned above. First, a resistive component

associated with coil wire dissipation is nulled by an equivalent Ohmic gain component

applied in parallel to each coil. A discussed in section 2, it is not possible to directly

apply a series Ohmic gain for this compensation. This is our dominant deviation from

ideal behavior, however, we have determined from simulation that compensating for this

series loss by a parallel gain has negligible impact on the ideal PT behavior.

Second, additional LF356 op-amps, also used for the negative resistance converter

of Fig. 1(a), are used for voltage followers to buffer the voltages V1 and V2 of Fig. 2,

allowing for a less intrusive capture with the Tektronix DPO2014 oscilloscope used for

signal acquisition.

Finally, small capacitance and gain trims are included to aid in circuit balancing.

Our linearity is constrained by the LF356 op-amps in the negative impedance

converters of Fig. 1a. At the f ∼ 30kHz operating frequency, the limits were consistent

with the ±12V supply voltage used for the circuit. In fact, the op-amp linearity limited

the overall operation frequency of the dimer: higher frequency op-amps are available,

but their linearity and input impedance suffer.

The linear nature of our system allows an exact balance of the PT symmetry only

to the extent that component drift over a time scale necessary to perform a measurement
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is negligible. In the exact phase, real system modes are not perfectly achievable: in time,

any physical linear system ultimately either shrinks to zero or exponentially grows to the

physical linearity limit. In the case of our dimer, component precision and drift dictate

the accuracy of the PT balance to approximately 0.1%, and all data was obtained

respecting the linearity limits and associated transient time scales.

Experimental practice allows for only a marginal determination gain/loss balance.

The chosen gain/loss parameter γ = R−1
√
L/C is set by the loss-side resistance R of

Fig. 2, typically in the range 1− 10kΩ for this work. The gain-side R and capacitance

balance are set with the help of the gain and capacitance trims. In the exact phase, not

too close to γPT , the system is trimmed for simultaneous marginal oscillation of both

modes with growth or decay times greater than ∼ 1s, where data is then obtained. The

imaginary frequency component is then zero to within ∼ 1s−1.

Very close to the critical point, γ ∼ γPT attempts to trim the dimer to the marginal

configuration result in either V = 0 (the gain too small), or a chaotic interplay of the

two modes with the op-amp nonlinearity if the gain is larger. This behavior serves as

one indication that the critical point has been exceeded. In the vicinity of γPT and

beyond, the capacitance trim is kept fixed at its asymptotic value, and the gain trim is

numerically set to compensate for any measured deviation of the gain side R chosen from

the desired value. The exponential growth or decay rate of transient data obtained then

directly gives us the imaginary component. Beyond the PT point, the exponentially

growing mode always dominates.

At this point, these experimental techniques ultimately impact the limits to which

the theory is applicable, particularly in the vicinity of the symmetry breaking point

where small imbalances can drastically impact the dynamics. We anticipate that, due

to the stabilizing nature of resistive loads in the form of transmission lines, the PT
dimer will provide many opportunities for incorporation into scattering configurations.

8. Conclusions

The PT -symmetric dimer opens a new direction towards investigating novel phenomena

and functionalities of PT -symmetric systems in the spatio-temporal domain via

electronic circuits. This minimal example, which is experimentally simple and

mathematically transparent, displays all the universal phenomena encountered in

systems with generalized PT -symmetries. The direct accessibility to all the dynamical

variables of the system enables insight and a more thorough understanding of generic

PT -symmetric behavior. In addition, we envision new opportunities for inclusion of

PT electronics into structures including (nano)-antenna configurations, metamaterials,

or microresonator arrays with electronic control over directional signal transmission

capabilities and real-time manipulation in the spatio-temporal domain.
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