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 Our everyday life is supported by countless electronic products, built with silicon 
complementary metal–oxide semiconductor (CMOS) technologies. Thanks to 
efforts to achieve high integration, the transistor density at the minimum cost has 
been doubling every two years – a trend known as Moore’s law, which has 
continued for over half a century. Moore’s law has provided us with a roadmap for 
semiconductor technology. Nevertheless, as the chip size becomes smaller, we 
encounter many obstacles, such as the production of heat in the circuit in operation, 
leakage current and diffi culties in the fabrication process. A breakthrough for this 
limit for silicon CMOS is being strongly sought. One possibility for a breakthrough 
is to utilize internal degrees of freedom of electrons. 

 The degree of freedom we utilize for electronics is the charge. Meanwhile, 
quantum mechanics tells us that the electrons are waves; they also have spin 
degrees of freedom. This wave nature and spins offer us new possibilities to 
provide each electron with internal degrees of freedom. Among them are 
spintronics and graphene, both currently attracting considerable interest. 
Spintronics is the fi eld in electronics using the spin degrees of freedom of 
electrons. Because the spins obey the profound rules of quantum mechanics, there 
are various and non-trivial ways to manipulate electron spins, in comparison with 
conventional electronics. These various possibilities of spin manipulation show 
great promise. 

 Graphene is a single sheet of graphite, a common material. Nevertheless, the 
electronic band structure of graphene is unique and is made from a cone-shaped 
dispersion. This band structure endows electrons with internal degrees of freedom, 
such as pseudospin and valley-spin. These internal degrees of freedom also serve 
like electron spins, offering various possibilities for electron manipulation. 
Spintronics and graphene physics have developed rapidly in recent years, thanks 
to the progress in theory, nanofabrication and measurement techniques. 

 This book reviews basic knowledge for spintronics and graphene 
nanoelectronics. An introduction to the relevant mathematics, quantum mechanics 
and fundamental aspects of electron transport in solids is given. The reader is then 
introduced to the central issues of the book – spintronics and graphene. In these 
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topics we notice with great surprise that the electrons behave so differently and 
elegantly in these materials. We can also see in this book that, in the fi elds of 
spintronics and graphene, science and technology are close to each other; fancy 
ideas from pure theory can be measured directly or even used in applications. The 
role of gauge theory and topological structure is emphasized in this book. Actually, 
due to the electronic band structure in solids, the space where an electron travels 
becomes curved. The gauge theory describes how this space is ‘curved’. This 
curvature sometimes gives ‘topological structure’ to the space. By formulating the 
physics of electron transport in terms of gauge theory and topology, one can get 
new ideas for novel physical phenomena like the spin Hall effect, topological 
insulators and so forth. These abstract concepts hold great interest for condensed 
matter physicists because they can indeed be found in nature and have great 
promise for potential applications. 

     Professor Shuichi Murakami  
     Tokyo   
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xiii

  Foreword by B. Luk’yanchuk 

 Nanoscale electronics and photonics are becoming increasingly important areas 
of research which have excited politicians and attracted a large number of 
scientists, engineers and graduate students. Recent developments in nanoscale 
photonics (e.g. plasmonics, near-fi eld photonics and optical metamaterials) might 
lead to new applications such as high-resolution lithography and heat-localized 
nanoparticles for cancer treatment. Likewise, on the electronics front, spintronics, 
graphene electronics and topological insulators might lead to high-density 
memory and high-speed transistors. By extrapolation, the future of nanoscale 
electrophotonics could be on the horizon. 

 Nanoscale electronics and photonics are modern contexts in which renewed 
interest is found in physical effects discovered much earlier (e.g. the Rashba and 
spin Hall effect in spintronics, and surface wave propagation in plasmonics). This 
book is dedicated to the fi eld of nanoscale electronics, one of the twin engines that 
power modern research in applied physics. It is a good introduction to spintronics, 
single electronics, molecular electronics, Hall effects, carbon nanostructures, 
graphene and topological-based electronics. This book is of a theoretical nature, 
and modern approaches such as non-equilibrium Green’s function (NEGF) and 
topological methods are introduced to discuss physical concepts such as the spin 
torque effect due to Rashba spin orbit coupling. 

     Professor Boris Luk’yanchuk  
     Data Storage Institute, Singapore  

     Honorary Professor at Johannes Kepler University, Linz, Austria   
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  Preface 

 Due to its long history, the term ‘electronics’ is well known to laymen and experts 
alike. But to prefi x it with ‘nano’ is something that would baffl e the laymen and 
set the experts off on an endless debate. The main motivation for writing this book 
arises from our distress at the confusion and the desire to seek an appropriate 
interpretation. And we decided that this should be done in the context of modern 
applied physics, an area which is exciting and relevant to many scientists 
worldwide. It is a broad area which involves condensed matter, optical and atomic, 
devices and nanotechnologies. We therefore think that nanoelectronics should be 
about the discovery and implementation of new physics in electronic devices that 
are approaching the nanometer scale. It should thus encompass, among others, the 
modern topics of spintronics, topological insulators, carbon-based electronics 
(principally carbon nanotubes and graphene), single electronics, quantum Hall 
systems and devices. 

 There have been many good-quality condensed matter physics textbooks, 
ranging from solid state, many-body physics to, more recently, mesoscopic 
physics. On the other hand, there is no shortage of books on devices, particularly 
semiconductor devices, which introduce the workings of bipolar, diodes and 
complementary metal–oxide semiconductors (CMOS) transistors. Nonetheless, it 
is hard not to notice that condensed matter physics has been rather decoupled 
from the physics of electronic devices. Modern books on mesoscopic physics and 
non-equilibrium Green’s functions (NEGFs) might have taken physics a few steps 
closer to the world of devices, but clear links remain elusive. The main intention 
of this book is to extend previous efforts to an extent that future efforts to complete 
the link between physics and electronic devices will be greatly simplifi ed. 
Nanoelectronics is, however, an area so diverse and inclusive that a complete 
study of it would require inter-disciplinary fi elds that would certainly overfi ll a 
book this size. We thus remind readers that reading this book might need to be 
complemented by other specialized textbooks. 

 This book contains seven chapters and focuses on the theoretical aspects of 
nanoscale devices. Chapter 1 provides a revision of mathematics and quantum 
mechanics, which will be of use in subsequent chapters. Chapter 2 introduces the 
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general idea of nanoelectronics as well as the many new contemporary topics that 
defi ne this concept. The concept of energy and many-body physics in condensed 
matter system is introduced as a prelude to the more important topics of electron 
and spin dynamics. 

 Chapters 3 and 4 provide the foundational study of electron charge and spin 
dynamics in condensed matter and device systems. Hence, the concepts of 
interaction, disturbances and non-equilibrium become important here. Discussions 
begin with an equilibrium condensed matter system. The non-equilibrium 
formalism is introduced for device systems with clear boundaries and external 
fi elds. Chapter 5 is exclusively focused on spintronics and introduces the different 
theoretical topics related to quantum spin transport and individual spin 
manipulation. Thus, there is a much greater emphasis on spin orbit coupling, spin 
gauge theory and spin Hall effects than is found in existing books on magnetism 
or metal-based spintronics which, owing to the history of the subject, tend to 
emphasize the semi-classical approach. Nonetheless, the spin drift-diffusive 
theory of giant magnetoresistance (GMR) and tunneling magnetoresistance 
(TMR) effects are also covered in this chapter. 

 Chapter 6 introduces electronics based on carbon materials such as carbon 
nanotubes and graphene. Monolayer and bilayer graphene are discussed and the 
forms of their Hamiltonian are studied. The concept of gauge potential induced by 
strain or graphene deformation is also introduced. Particular attention is paid to 
the extra degrees of freedom in graphene, namely the pseudospin and the valley-
spin, which share the spinor physics of electron spin. Novel graphene behaviors 
like localization, Klein tunneling and minimal conductivity are also discussed. 
The integer quantum Hall effect (IQHE) in graphene is discussed in relation to the 
semiconductor IQHE. 

 Chapter 7 provides a systematic introduction to the fi eld and gauge theoretical 
methods, with a focus on their application in nanoscale systems (e.g. spin orbit 
coupling systems and graphene). This is a departure from the usual treatment of 
gauge theory and topology in existing books, which mainly emphasize the 
development of these theories in high-energy physics. In this book, fi eld and 
gauge theoretical methods are used alongside a phenomenological and statistical 
approach, with an emphasis on applications in nanoelectronics. 

 The writing of this book began with the rearrangement of the lecture notes for 
a graduate class we taught at the National University of Singapore. Nevertheless, 
this apparently straightforward process has taken us three years to complete. This 
task would not be possible without the help and intensive checking by our doctoral 
students and colleagues. We would like to thank Zhuobin Siu, Takashi Fujita, 
Yuan Li, Congson Ho, Mingjun Xing, Jie Guo and Nyuk Leong Chung for reading 
the manuscripts intensively and correcting our mistakes. 

 What we hope to achieve in this book is that readers will generally recognize 
the importance of integrating the physics of condensed matter, atom, electronic 
devices and particle dynamics in one book. In this way, a book like this one is able 
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to discuss effectively the emerging technologies of spintronics, graphene, single 
electronics, topological insulators, plasmonics and many more that we believe 
will continue to emerge and dominate the development of physics in the twenty-
fi rst century. 

   Seng Ghee Tan  
   Mansoor B. A. Jalil                
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                 1 
 Physics and mathematics for 

nanoscale systems  

   Abstract:    This chapter contains a number of useful mathematical subjects that 
might be relevant for the study of the physics of electron transport on the 
nanoscale level. This chapter is intended to be a fast-forward through basic 
mathematics and quantum mechanics topics. Useful topics covered in the 
chapter include vector calculus, Fourier transform and Dirac delta functions, 
basic quantum mechanics, Green’s function and second quantization as a 
method for keeping account of the electron.  

   Key words:    quantum mechanics, vector calculus, Fourier transform, Dirac 
delta, Green’s function, second quantization.   

    1.1  Introduction 

 The rapid development in the 1990s of nanoscale technologies and devices which 
span material and electronic engineering, semiconductor physics, device 
fabrication and characterization technologies, theoretical and computational 
physics, optics and chemistry turns this fi eld into a sort of assembly hall that 
congregates cross-disciplinary expertise. We want to provide in this chapter a 
revision of the mathematics and physics that many (apart from perhaps physicists) 
may have forgotten but are necessary for a better appreciation of the many 
qualitative discussions in this book. This book is intended to be easy to read; its 
derivations may thus appear long-winded for those who are already familiar with 
them. Field theoretic, many-body and topological concepts are introduced ‘gently’ 
to readers to minimize psychological aversion. 

 This chapter contains a number of exercises, with the solutions given in most of 
them. It presents a number of useful mathematical subjects that we think are most 
relevant to the study of electron transport and nanoscale physics. As these are 
well-established topics that can be found in many textbooks, our presentation here 
will be brief, exercise based and summarized in tables. 

 The main purpose of this chapter is to provide a quick revision, a reminder of 
what most readers may have learnt in their younger (undergraduate) years and a 
quick look-up for equations or standard techniques (e.g. integration) that might 
come in handy for understanding the rest of the book.  

   1.2  Vector calculus 

 Vector calculus is usually covered in undergraduate mathematics and 
electrodynamics courses. As mentioned earlier, most are not repeated here. 

�� �� �� �� �� ��
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However, some useful identities will be handy for solving advanced quantum 
mechanics or engineering problems, and these are summarized in  Table 1.1 . Here 
  A, B   and   C   are differentiable vector functions, while  Φ  is a scalar function. The 
following is the vector calculus of some common expressions presented in the 
form of exercises and solutions. 

  Exercise 1.1 

   A, B    are differentiable vector functions and show that: 

    (a)    

   (b)         

  Exercise 1.2 

    (1)     Prove that:    

    

    (2)     With the above where   δ   3 ( r ) =  δ  ( x ) δ  ( y ) δ  ( z ),  prove that:    

    

  Solution 

    (1)        

   (2)     Let R  2  =  r  2  +  v  2     

   Table 1.1     Summary of useful vector identities  

 Useful identities

 1. A· (B × C) = B· (C × A) = C· (A × B)
 2. ∇· (A × B) = B· (∇ × A) − A. (∇ × B)
 3. ∇ × (A × B) = (B·  ∇)A − B(∇·A) − (A· ∇)B + A(∇· B)
 4. A × (B × C) = (A·C)B − (A·B)C
 5. (A × B) × C = (A·C)B − (B·C)A
 6. ∇ × (∇φ) = 0

 7. ∇· (φA) = (∇φ)·A + φ (∇·A)
 8. ∇ × (φA) = (∇φ) × A + φ (∇ × A)
 9. ∇ · ∇φ = ∇2φ
10. ∇· (∇ × A) = 0

�� �� �� �� �� ��
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   Note that    and applying volume integral to both sides:  

     

   One derives by divergence theorem that:  

     

   Recalling that   , one now has: 

        

   1.3  Fourier transform and Dirac delta functions 

 The mathematics of Fourier transform has extensive use in engineering and 
physics and can be found in most second year textbooks for engineering and 
physics undergraduate courses. Here we dole out the quick reminder that, if  f  ( x ) 
is periodic with period  L , it can be written in Fourier series as follows:

    [1.1]  

   

 . [1.2]  

 In the case where  f   ( x ) is not periodic but a function, one can fi nd its spectrum  g ( k ) 
using the Fourier transform with which one has:

   

 

[1.3]

  

�� �� �� �� �� ��
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 where  g ( k ) = � { f  ( x )}. Note that we have followed the convention of unitary, 
angular frequency.  Table 1.2  summarizes some useful Fourier transform (FT) 
identities. 

 The Dirac delta function is an important mathematical object that simplifi es 
calculations required for the studies of electron motion and propagation. It is not 
really a function but a symbol for physicists and engineers to represent some 
calculations. It can be regarded as a shorthand notation for some complicated 
limiting processes. Once the role it plays, for example, as a distribution function 
is implicitly understood, many derivations can be greatly simplifi ed.  Table 1.3  
contains a few useful identities. 

   Table 1.2     Summary of useful Fourier transform identities  

 Function f (x) Unitary, angular FT g(k)

1. ∂
n

x
f(x) (ik)ng(k)

2. f (x − a) e−iakg(k)

3. f (ax)

4. (f * h)x

5. f (x) h(x)
 

   Table 1.3     Common relations and identities involving the 

Dirac delta functions  

 
Useful identities

1. ∫ f (x)δ(x − x
0
)dx = f (x

0
)

2. ∫ δ(x − x
1
)δ(x − x

2
)dx = δ(x

1
 − x

2
)

3. δ(x − x
0
) = 

4. δ(x) = 

where

θ(x) = 

5. δ(ax)= δ(x)

|a|

θ(x)

�� �� �� �� �� ��



 Physics and mathematics for nanoscale systems 5

©  Woodhead Publishing Limited, 2012

  Exercise 1.3 

  Show that     

  Solution  

  Let f   ( x )  be   δ  ( x ).  One then has: 

    

      

  Exercise 1.4 

  Prove the identity     

  Solution  

  Let u  = | a | x .  It is straightforward that: 

     

  leading to: 

     

  By comparing integrand, one has: 

      

 Strictly speaking, the above is an integrand identity. By quick inspection, it is 
clear that the Dirac delta is an even function where  δ ( x ) =  δ (− x ). With some 
ingenuity, the Dirac function can be represented explicitly by mathematical 
functions that are truly functions. One very useful and common example is:

   [1.4]   

 Now  δ   c  ( x ) is a true function. The conventional limiting process with Dirac delta 
should therefore be written in a mathematical manner, that is:

�� �� �� �� �� ��
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    [1.5] 

    [1.6]  

 If interchanging the order of the limiting process is allowed, then one can safely 
say  δ ( x ) =     δ   c  ( x ). Let us prove the second equation:

    

[1.7]

  

 where  0  takes on any value of  x  that lies within    

 Table 1.4  provides a summary of three Dirac delta representations commonly 
used in Green’s functions and the physics of nanoelectronics. 

   Table 1.4     Representation of the Dirac delta by 

smooth functions. More representations can be 

found in standard textbooks  

 Dirac delta representations

δ (x) → lim δ
c
 (x)

     
c→0

1. δ
c
 (x) = 

2. δ
c
 (x) = 

3. δ
c
 (x) = 

  Exercise 1.5 

  The function    clearly plays the role of   δ   c  ( x ) = 0  everywhere 

except at x  = 0,  but there seems to be a freedom in choosing A. Find A.  

�� �� �� �� �� ��
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  Solution 

     

  which leads to: 

     .

  In fact A has a fi xed value.    

   1.4  Basic quantum mechanics 

 Standard quantum mechanics textbooks normally consist of the following topics:

   1.   Wave mechanic description – well-known in Schrödinger’s equation  
  2.   State vector formalism based upon Dirac’s bra-ket notations  
  3.   Green’s function formalism  
  4.   Principle of gauge and symmetry  
  5.   Second quantization  
  6.   Relativistic quantum mechanics.    

 In this book, emphasis is given to the applications of these well-known theories 
and formalism in the new context of electronics that are now fast approaching the 
nanoscale dimension. The foundational and mathematical aspects of quantum 
mechanics are not discussed in detail in this book. Instead we refer readers to 
textbooks 1,2  for foundational knowledge. 

   1.4.1  Vector spaces 

 In this section we show that, under the generalization of vector spaces, the physical 
states of a system can be described by state vectors in so-called bra-ket formalism, 
as well as by wave mechanic representation in Schrödinger’s wavefunctions. In 
an  n -dimensional space, one can choose a set of  n  linearly independent vectors | u   i  〉 
. . . . . | u   n  〉 as the basis vectors for a particular state vector. These basis vectors 
span the vector space and form a complete set of vectors as shown in  Table 1.5  
where the standard bra-ket notations are now used. 

 An electron in a momentum state with momentum  p  is often denoted by | p 〉. On 
the other hand, a spin up state with spin quantization axis chosen along  z  by 
convention is denoted by |↑〉. For simplicity in nanoelectronics one often just refers 
to an electron as spin up or down, where it is understood that the spin quantization 
axis has already been defi ned. One explicit representation of the spin states of up 
and down are the column vectors of (1  0)  T  , (0  1)  T  , respectively, as these 
vectors are linearly independent and they are complete in two dimensions, thus 
satisfying the requirements to represent a single particle’s quantum spin states. 
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 One wonders who might have imposed these requirements of linear 
independence and completeness. The answer lies of course in the law of nature. 
Since this is not a quantum mechanics or mathematical physics book, it suffi ces to 
accept that these are mere rules imposed by nature. In applied physics, all one 
needs to do is fi nd the mathematical methods or objects that satisfy these rules. In 
the above, | u   i  〉 has been introduced as state vectors that are linearly independent. 
But linear independence does not imply orthogonality or orthonormality (e.g. 

〈 u   i  | u   i  〉 =  δ   ij  ), a feature we will use later. For example,    are 
linearly independent but they are not orthogonal. 

  Exercise 1.6 

  Prove that  Σ  
i 
 | u   

i
  〉 〈 u   

i
  | = 1. 

  Solution 

     

  Thus one can write: 

      

 In the following, we discuss the coordinate and momentum representations in 
slightly more detail as these two pictures will be suitable for different types of 
nanostructures. In nanoelectronics and mesoscopic physics, knowledge of the 
fl ow or distribution of electrons in nano-sized structures or devices is required to 
understand some important measurables (e.g. conductivity, spin or charge 
accumulation). Let us now write the position operator  X   v   in vector space (bra-ket) 
notation, and write the state vector as | ψ 〉. The position operator could provide at 

   Table 1.5     Bra-ket representation of quantum states in discrete and 

continuous pictures  

 System Quantum state 

vectors |ψ〉
Resolution of 

identity

1. Discrete |ψ 

2. Continuous |ψ 
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least ‘rudimentary’ insights into the whereabouts of an electron. In coordinate 
representation, the position eigenvectors { | x   i  〉 } are chosen as the basis set. Since:

    [1.8]  

 one can fi nd  X   v   in the function space, i.e.  X    f  . Since:

    [1.9]  

 Defi ning:

    [1.10]  

 one arrives at  X   f   〈 x  |  ψ 〉 ≡ 〈 x | X   v  | ψ 〉. On the other hand, if the above is to be carried 
out in the momentum representation, the basis set will be the momentum 
eigenvectors |  p 〉 satisfying:

    [1.11]  

  Exercise 1.7 

    (1)     Prove that

   

 where the following convention is followed:

 φ  3 ( x ) =  φ  ( x ) φ  (  y ) φ  ( z );  δ  ( x ) =  δ   3 (  x  ) =  δ  ( x ) δ  (  y ) δ  ( z ).  

   (2)     An electron can be regarded as a wave propagating in the crystal 
structure of materials that we use to make nanoscale devices. 
The position operator helps to locate the electron’s whereabouts. 
Prove that the position operator in function space is represented in 

momentum space by   , where μ = x, y, or z and k is the 

wavevector of the electron.    

  Solution 

    (1)     Since    or  and 

one now has:        
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   Recall the above is consistent with the identity    proven 

earlier. With the general form of  〈 x | ħk 〉 =    ce ik.x     ,  now one can also 

write, using the closure relation that: 

     .

   One could thus deduce that   . Note that  〈 ħk | x 〉 = 〈 x | ħk 〉* 

 and that in the convention we follow,  〈  x  | ħ k  〉 = 〈 x | ħk   x  〉 〈 y | ħk   y  〉 〈 z | ħk   z  〉. 
 Therefore: 

     

   Hint: Use the fact that X    f    μ    φ  ( k ) = 〈 ħk  | X    v    μ  | ψ 〉.  

  Exercise 1.8 

    (1)     With the above, deduce that      

   (2)     The locality of an electron can be described by a vector  | ψ 〉  in an infi nite-

dimensional, abstract vector space. The component of this vector φ ( x ) 
 (itself a continuous function) can be interpreted as the probability 

amplitude of fi nding the electron in the continuous position of  x  .
    (a)     Show in coordinate representation that the inner product of two 

such vectors is:       

    

    (b)     Show that:    

 〈 x |[ X ,    P v     ]| x′  〉 = ( x  −  x ′ )〈 x | P   v  | x′ 〉 

     where  X  is the position operator and  P      v     is the momentum operator.   

   Hint: Use the continuous closure relation.   

   (c)     Show that      

   Hint: Use integration by parts.   

   (d)     Hence show that  〈 x | P    v  | x ′ 〉 =  P    f    δ  ( x  −  x′  )   
   where P    v    is the momentum operator in the vector space and P     f    is its 

coordinate representation in function space.  

   Hint:  [ X ,  P    v  ] =  iħ .  
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 Thus to fi nd an operator in different spaces, one can defi ne:

    [1.12]  

 where superscripts  v  and  f  indicate vector and function spaces, respectively. 
 We will now study in more detail how to explicitly write  A   f   such that one 

translates abstract mathematics to clear, quantifi able engineering physics. This 
will better illustrate and enumerate the dynamics of the motion of an electron. Let 
us begin with the Hamiltonian:

    [1.13]  

 In order for the above to be true:

   . [1.14]  

 By comparing integrand, one can deduce that:

    [1.15]  

 Alternatively, one can begin by fi nding the expression for the momentum by 
writing 〈 x | P   v  | x′ 〉 = ∫ 〈 x | P   v  | p 〉 〈 p | x ′〉 dp  = ∫  p  〈 x | p 〉 〈 p | x ′〉 dp . Since, by defi nition,  P    f   
〈 x | p 〉 =  p  〈 x | p 〉, one now has:

    [1.16]  

 and subsequently:

    [1.17]  

 Hence, for a Hamiltonian operator  H , which depends on positive powers of 
the momentum and position operators, we have 〈 x | H   v  | x ′〉 =  H    f    δ ( x  −  x ′). But 
what is  P   f   explicitly in the coordinate representation? In fact it can be found 

that     

   1.4.2  Introduction to Green’s function 

 The Green’s function method is particularly useful for studies of electron 
transport. The propagator in quantum electrodynamics and chromodynamics are 
based on perturbative expansion of the Green’s functions. In condensed matter 
physics, Green’s functions are used in a similar fashion to study the many-body 
effects 3,4  (e.g. the Matsubara Green’s function considers the temperature effect on 
electron dynamics). The Kubo–Greenwood formula was developed for 
conductivity. In modern times, the Keldysh modifi cation of Green’s function 
becomes particularly useful for nanoscale devices where electrical bias drives the 
electron channel into a state of non-equilibrium. The descriptions above are meant 
only to give an idea of the importance of Green’s function. This section introduces 
the mathematical techniques. 
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  Complex integral 

 We start by deriving an important identity used frequently in the Green’s function 
description of electron propagation:

    [1.18]  

 where  P  means the principal value. In order to avoid the pole at  x  = 0, integration 
should be carried out as shown by the arrow. This leads to:

    
[1.19]

  

 where    is the integration along the contour of the semicircle taking a 

detour to the south instead of passing through the origin as shown in  Fig. 1.1 :

   . [1.20]  

 Alternatively, one can also prove that    by 

decomposing    into   . 

1.1 A complex diagram to illustrate the integration of the function in 

Eq. 1.20.

   Electrical potential due to a charge density 

 Green’s function can be a useful method for solving a differential equation. For 
example, in electronics, one is often required to fi nd the electrical potential for a 
fi xed charge distribution:
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    [1.21]  

 Making use of the Dirac delta function, one can write:

    [1.22]  

 In the above, a Green’s function has been defi ned as ∇ 2   r    G ( r  −  r׳ ) =  δ ( r  −  r׳ ). Thus, 
one can now deduce that:

   . [1.23]  

 Thus the electrical potential distribution can be found by solving ∇ 2   r    G ( r  −  r ) = 
 δ ( r  −  r׳ ). But solving for  G ( r ) may not be trivial. One needs the relationship �{∂  n    x   
 f ( x )} = ( ik )  n    g ( k ) mentioned above, where  g ( k ) = �{ f ( x )}. Thus:

   �{∂2
rG(r)} = (ik)2G(k) [1.24]  

 and one is led to:

   

 
[1.25]

  

 where  A  is the constant in the Fourier transform. Thus  G ( r ) can be found by 
inverse Fourier transform of  G  ( k ), i.e.

    [1.26]  

 where  B  is the constant in the inverse Fourier transform. As is shown in 

Section 1.3,    Thus one sees that if    or if 

for convenience  A  = 1, then    

  Exercise 1.9 

  The physics of the electric fi eld in nanoscale electronics is often described 

in differential equations that can be solved with integration techniques. 

    (1)     Show, using Laplace transform or other methods that      

   (2)     For  ∇ 2  G ( r ) =  δ  ( r ),  show that its inverse Fourier transform is    

where k is the wavevector. Eventually, making use of results in (1), 

prove that G ( r ) = 1/4 πr .  
   (3)     In free space, the electric potential V ( r )  due to the presence of charge 

density ρ ( r )  is given by  ∇ 2  V  =  ρ ( r ).  Show that:     
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    (4)     Thus for a point charge located at  r   = 0,  show that the solution for the 

electric potential is   .   

   (5)     In a many-electron system (e.g. a device channel), the effects of 

screening is important because it determines the effect of the external 

electric fi eld on electron motion. The potential–charge relation is 

modifi ed to  ∇ 2  V  =  q  2  e  − qr   + 4 πδ ( r ).  Show that the solution will then be:    

    

    (6)     Using the fact that G ( r ) = 1/4 πr ,  show that       

  Solution 

    (1)     Differentiate with respect to an auxiliary parameter. Defi ne 

  , so that     sinydy . The above can 

continue straightforwardly using by parts integration, but we speed 

up with the following        

   Then     

   Hence     

    Hint: e   ik.r   =  e   ikrcosθ  ;  r is taken to be the z axis, symmetry allows r to be 

taken in any direction.  

    Hint: Rewrite the differential equation  ∇  2  V  =  ρ ( r )  into an integral 

equation with the help of  ∇ 2  G ( r ).  

 The retarded Green’s function is particularly useful for describing electron 
propagation and many other properties related to electron propagation in condensed 
matter or nanoscale devices. The retarded Green’s function by defi nition is:

    [1.27]  

 where  τ  =  t  −  t׳ . Choosing the eigenstates | α 〉 as basis vectors, one can also write:

   . [1.28]  

 Fourier transform with respect to spatial difference can be performed on  G   R  ( xx ′, 
 tt ′), taking  ϕ   α  ( x ) =  e    ik  

 
α

 
  x  . The eigenstates of a non-interacting system are plane 

waves due to translational invariance.
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[1.29]

  

 In the context of nanoelectronics,  iG   R  ( k , τ ) can be viewed as the coherent, 
continued propagation of electron. Its Fourier transform with respect to time 
difference is:

   . [1.30]  

 Thus:

    [1.31]  

 We have dealt with the explicit Green’s function, but what is its origin? Retarded 
Green’s function in quantum mechanics is a solution to a differential equation 
related to the Schrödinger equation, i.e.

   . [1.32]  

 Compare this to the earlier expression where ∇ 2  G ( r ) =  δ ( r ). The Green’s function 
above is a solution to a differential equation of the above. We have seen that  G ( r ) 
is a useful correlator for functions that solve ∇ 2  ϕ ( r ) =  ρ ( r ). Similarly  G   R  ( xx ′,  tt ′) 
will be a useful correlator for functions that solve ( i ∂  t   + ∇ 2 )  ψ  ( r ) = 0, where  ψ ( r ) 
is the wavefunction of the system. In perspectives:

    

[1.33]

  

  ψ  ( r ) is the wavefunction that contains all the electron’s information, but it is 
diffi cult to solve for.  G   R  ( rr ′,  tt ′) is the correlation function that contains information 
related to the electron’s dynamics. The Green’s function might contain less 
information on the system but it is easier to solve for and is therefore a more 
powerful tool with respect to electron dynamics. 

 Green’s function is a correlator in general. But we will be interested in a more 
specifi c interpretation of the physical signifi cance of various Green’s functions in 
nanoelectronics and nanotechnologies. The retarded Green’s function can be 
regarded as a propagator which describes the coherent dynamic of an electron in 
the electronic device. The Fourier transformed  G   R   with respect to time represents 
the strength of propagation at different energy levels. The mathematical expression 
 G   R  ( rr ′,  tt ′) = − i 〈 r | e  − iH   v   τ  | r׳ 〉  θ ( τ ) can be regarded as the probability amplitude (chance) 
that an electron found at earlier time  t ′ in location  r ′ will be found at a later time  t  
in location  r . Similarly one can construct a function that describes the ‘chance’ that 
an electron in state | n ′〉 at earlier time  t ′ will be found in state | n 〉 at a later time  t .
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    [1.34]  

 where | n   i  〉 belongs to a complete set of basis states. Recalling that  τ  =  t  −  t ′, one 
can write:

    
[1.35]

  

 In the absence of scattering, it is certain that an electron will continue to propagate 
in its initial eigenstate, accumulating only phase changes to its wavefunction. 
This, as is proved later, is evident in the expression  G   R  ( kk ′,  tt ′) =  G   R  ( k ,  tt ′) δ   kk ′ . 
Thus, Eq. 1.35 can be written as:

   . [1.36]  

 If | n 〉 and | n ′〉 are eigenstates of the Hamiltonian, one then has:

   
 [1.37]  

 An important function that can be derived from the studies of the Green’s function 
is the spectral function, which by defi nition is:

    [1.38]  

 We have learnt that  

Thus the explicit expression of the spectral function is:

    [1.39]  

 The spectral function is a delta function which says that injecting an electron into 
the system can generate excitation only when the energy of the electron is  E   k  . It is 
thus related to the density of states at a given energy.

    [1.40]  

 In the absence of scattering and in the  k  eigenstate of the system:

   

 [1.41]
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 Note that the above Green’s functions spawn 12 other versions with Fourier and 
inverse Fourier transforms of the space and time parameters. Physically,  G  > ( k , tt ′) 
is related to the propagation of electrons because it is proportional to empty states; 
 G  < ( k , tt ′) is related to the propagation of holes because it is proportional to the 
electron fi lling those empty states. In fact it is more intuitive to view  iG  > ( k ,  tt ′) as 
a measure of the chance/strength of electron scattering into a point in k-space, 
while − iG  < ( k , tt ′) as a measure of the chance/strength of electron scattering out, or 
holes scattering in as shown in  Fig. 1.2 . 

 Since  G  < ( k , tt ′) =  in   k   e  − iE  
 
k
 
  τ  , it makes sense to deduce that − iG  < ( k ,0) =  n   k   represents 

the number of electrons at a particular  k . In fact, in many-body physics, the above 
is simply one example of an equal time fi eld operation, i.e.

    [1.42]  

 In the equilibrium condition,  n   k   =  f   k   where  f   k   is the Fermi Dirac distribution 

function. By inverse Fourier transform,   . Note 

that  B  = 1/2 π  and  A  = 1 is normally followed in inverse Fourier transform and 
Fourier transform, respectively. One can deduce the same for the equal time 
correlation function as follows:

    [1.43]  

 which merely states that the equal time lesser correlation function is the electron 
density. In nanoscale electronic devices with leads playing the function of electron 
reservoirs, one can make use of the kinetic equation of:

   . [1.44]  

 From the above, one can thus defi ne a  A   α    C   =  G   R   Γ   α   G    A  , which will now carry 
the physical meaning of the density of states of the central region due to lead  α  
where  α  is the lead index. Electron density in the central region is  n   c   =  f   α    A   α    c   
with  A   α    c   playing the role of something like the transfer density of states. The 

1.2 Schematic illustration of the physical meanings of the various 

Green’s functions in the context of electron transport in nanoscale 

electronic devices.
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non-equilibrium effect enters via  f   α   which measures the distribution (‘chance’) of 
electron presence in the individual leads as shown in  Fig. 1.3 . 

  Exercise 1.10 

    (1)     Broadening of the spectral function occurs in the presence of 

interaction. For G   R  ( k ,  τ ) = − iθ ( τ ) e  − iE   k   τ    e  − τ / t   d   ,  prove that the spectral 

function is broadened, i.e.      

   (2)     The retarded Green’s function is explicitly G   R  ( xx ′, tt ′ ) = − i 〈 x | e  − iHτ  | x ′ 〉  θ ( τ ). 

 Show that the following is true:    

 ( i ∂  t   −  H  0 )  G   R  ( xx ′, tt ′) =  δ ( x  −  x ′) δ ( t  −  t ′). 

    Hints:    Use chain rules in differentiation. Alternatively, 

one can use the equation of motion method.  

    (3)     (a)  Explain the physical signifi cance of the various Green’s 

functions and the spectral functions with respect to electron 

dynamics. 

    (b)     Why is Green’s function a more powerful tool than the 

wavefunction with respect to electron dynamics?   

   (c)     Derive the energy version of the following Green’s functions: 

  G   R   ( k , tt ′) = − iθ ( τ ) e  − iE   k   τ   
  G   A   ( k , tt ′) =  iθ (− τ ) e  − iE   k   τ   
  G  >  ( k , tt ′) = − i (1 −  n   k  ) e  − iE   k   τ   
  G  <  ( k , tt ′) =  in   k   e  − iE   k   τ             .

1.3 Schematic illustration of a multi-part nanoscale device with the 

central region being where non-equilibrium electron transport is the 

main interest in this book.
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   1.5  Second quantization for electron accounting 

 Nanoscale electronic devices consist of a reasonably large number of electrons 
that interact to give rise to correlation effects on electron transport which cannot 
be neglected, nor can these effects be hidden under simple macroscopic 
manifestation (e.g. conductivity and mobility). Any reliable formalism for 
describing them must embrace many-body considerations, which is usually done 
via ‘second quantization’. In essence, it involves the electron creation operators 
( c †  i  ) and the annihilation operators ( c   i  ) that keep track of the number of electrons 
in the state of the system. 

 In this section, we choose the lattice sites as the basis states. For instance, let us 
defi ne | a, b, c 〉 as the state with  a  particles on spatial site 1,  b  particles on site 2 and 
 c  particles on site 3. Here  a ,  b , and  c  are either 0 or 1 because of the Pauli exclusion 
principle.

    [1.45]  

 meaning that  c † 2  is a creation operator that adds one electron to site 2, and:

    [1.46]  

 since  c  1  is an annihilation operator that subtracts one electron from site 1. The 
famous Pauli exclusion principle states that no two electrons (in general fermions) 
can occupy the same state. This is because fermionic states are anti-symmetric 
under an exchange of particles. In our context, it implies that we cannot have two 
or more electrons in the same site. Hence, at any site  i :

    [1.47]  

 Actually, this fact can be generalized to { c †  i  ,  c †  j  } =  c †  i    c †  j   +  c †  j    c †  i   = 0, which means 
that adding two electrons in an opposite order (which amounts to swapping them) 
gives a state with the opposite sign. Likewise, { c   i  , c   j  } = 0. The operator  c †  i    c   i  , 
however, has a special signifi cance: it means the number of electrons on site  i . Let 
us consider the effect of  c † 3   c  3  on spatial site 3. If there are no electrons on site 3, 
 c † 3   c  3 |  a ,  b , 0〉 =  c † 3  ( c  3 |  a ,  b , 0〉) = 0 because there is nothing to annihilate at site 3. 
But  c † 3  ( c  3 |  a ,  b , 1〉) =  c † 3 |  a ,  b , 0〉 = + | a ,  b , 1〉. We thus see that  c † 3   c  3  is an operator 
on the state of the system with eigenvalues +1 or 0, depending on whether an 
electron is present. In general, the operator:

    [1.48]  

 is known as the number operator that counts the total number of electron 
in the system. The above method, which keeps track of electrons in discrete 
spatial sites, is particularly suited to nanoscale electronic systems that contain 
discrete parts (e.g. semi-infi nite contact reservoirs and a fi nite-sized central 
region). 
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 We will show its relation to the continuous spatial formalism commonly used 
in condensed matter many-body physics. The quantum fi eld associated with an 
electron is:

    [1.49]  

 where  k  is the momentum index. In momentum eigenstates instead of states 
labeled by sites, index  i  will be replaced by the momentum variables  k ,  q   or p . 
The total number of electrons in the system is:

    [1.50]  

 The above is the sum of all electrons over their momentum states, which will yield 
the total number of particles  N  in the system. This leads one to deduce that:

    [1.51]  

 which is the particle density operator.  Table 1.6  shows the identities involving the 
use of these electron operators. 

  Exercise 1.11 

  We will frequently need to evaluate the commutations of operators 

involving more than one creation/annihilation operator. 

    (1)     Prove the identity  [ AB ,  C ] =  A  [ B ,  C ] + [ A ,  C ]  B .  

   (2)     Derive a similar identity involving  [ A ,  BC ].  
   (3)     Prove the Jacobi identity  [ A , [ B ,  C ]] + [ B , [ C ,  A ]] + [ C , [ A ,  B ]] = 0.    

  Note that  [ A ,  B ] =  AB  −  BA .  

  Exercise 1.12 

  Show that [n   j    n   k  ,  c   j  ] = − n   k    c   j    where n   j   =  c †  j    c   j  . 

   Table 1.6     Below is a list of useful identities for second quantized fermionic 

operators  

 Useful identities

1. [c
j 
, n

j
] = c

j

2. [c†
j 
, n

j
] = −c†

j

3. {c
i 
, c 

j 
} = 0

4. {c†
i 
, c† 

j 
} = 0 

5. {c
j 
, c† 

j 
} = δ

ij

6. All commutations between electron or number 

operators denoted by i, j are zero, e.g. [a
i 
, b

j
] = 0
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  Solution 

 [ n   j    n   k  ,  c   j  ] =  n   j    n   k    c   j   −  c   j    n   j    n   k   = − c   j    n   j    n   k   = − n   k    c   j    n   j  .  

  The above can be written as: 

 − n   k    c   j    n   j   = − n   k    c   j    c †  j    c   j   = − n   k   (1 −  c †  j    c   j  ) c   j   = − n   k    c   j  .   

 In retrospect, many-body physics began with the many-body wavefunction which 
gives the probability amplitude of fi nding  N  number of particles in a system. But to 
fi nd the explicit solution for the many-body wavefunction is an immense task. This 
is not surprising as the wavefunction is the probability amplitude of the whereabouts 
of all the particles! Thus the Green’s function, which means the probability of 
fi nding a particle at place  r ′ at time  t ′ given it was found at  r  at time  t , is probably 
easier to fi nd. In fact the Green’s function for a particle, even in the presence of 
interaction due to many other particles, is handier and more useful than the 
wavefunction – especially with respect to electron dynamics. This is the major 
motivation behind the elaborate use of Green’s function to understand electron 
propagation and scattering in nanoscale devices. In fi eld theoretic condensed 
matter physics, the Green’s function has been used to study the effect of interactions 
on electron energy, transport, and so forth. Thus, the Green’s function is also a 
natural tool to include many-body physics in nanoelectronics. The incorporation of 
the effects of electron–electron and electron–phonon scattering are particularly 
useful. In the more recent developments where additional degree of freedoms are 
studied (e.g. spintronics, graphene electronics), the Green’s function provides a 
platform for including spin orbit coupling and spin–spin interaction. 

 In nanoelectronics, one may describe electron dynamics in the conduction band 
only. This point will be apparent in the many-body description, where:

    [1.52]  

 really depends on what the many-body state vector is. In nanoelectronics, it makes 
sense to keep analysis to one band; for example, | ψ  =  C 〉 refers to the conduction 
band only. However, in a more general context, | ψ  =  G 〉 is the ground state that 
represents all fi lled states below the Fermi level and all unoccupied states above it 
at zero temperature. Furthermore, the operator  c   k   morphs an electron at above the 
Fermi level to a hole at below the Fermi level. Thus, 〈 G | c †  k   c   k  | G 〉 = 〈 G | n   k  | G 〉 is 
always zero because in the state of | G 〉 there will be no electron above the Fermi 
level and no hole below the Fermi level:

    [1.53]  

 Since | G 〉 is the fi lled Fermi sea at zero temperature:

    [1.54]  
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 By contrast in nanoelectronics,  c   k   is the operator for electron. Thus:

    [1.55]  

 Since | C 〉 refers to states above the Fermi level, at fi nite temperature:

    
.

 [1.56]
  

 Second-quantized representation of a measurable quantity in a system (e.g. 
momentum, spin, energy) is important when one needs to derive the Green’s 
function to describe the motion of electron in that system. For example, the spin 
angular momentum in second-quantized form is:

    [1.57]  

 where  k  is the momentum and  σ  the spin quantum number. One can easily show 
that the above leads to:

   . [1.58]  

 It is also important to note the following relation for a general measurable quantity 
in second-quantization:

   . [1.59]    
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                 2 
 Nanoscale physics and electronics  

   Abstract:    This chapter defi nes an important area of physics we call the physics 
of nanoscale electronics. The core concepts of non-equilibrium, size effects and 
neighboring perturbation are introduced and a quick run through the emerging 
topics including metal spintronics, semiconductor spintronics, single electronics 
and quantum dot, molecular electronics, carbon nanotube transistors and 
graphene electronics is provided. Lastly, we discuss the electronic environment 
in which all carrier transport takes place. The effect of ionic potential results in 
the bandstructure of metal, semiconductor and insulator. The effect of carrier 
interaction gives rise to electron gas, liquid and solid.  

   Key words:    non-equilibrium, size effects, neighboring perturbation, 
spintronics, quantum dot, single electronics, carbon nanotube, graphene, 
interaction, electron gas.   

    2.1  Introduction to nanoscale electronics 

 What is ‘nanoscale electronics’ and how does it differ from the conventional 
electronics with which we are familiar? The term ‘electronics’ is related to electric 
current, that is, the fl ow of electrons driven by, for example, an externally applied 
voltage across a device channel. Why then does one need to prefi x it with ‘nano’? 
To begin with, an electron is a point particle which might not even have a well-
defi ned volume. The ‘nano’ prefi x would only be a superfl uous term, wouldn’t it? 
These are common questions that arise when one is introduced to this novel, 
exciting and rapidly developing branch of electronics – ‘nanoelectronics’. 
Nanoelectronics is an area which encompasses, among others, subtopics such as 
spintronics, topological insulators and carbon-based electronics (principally 
carbon nanotubes and graphene). 

 Indeed, electron interaction occurs over the average distance between individual 
electrons, which of course is on the nanometer scale. We are also familiar with the 
fact that electrons, like other fundamental particles, are governed by the axioms or 
rules of quantum mechanics. However, more often than not in electronic physics, 
the rules of quantum mechanics are implicit. The degree of freedom (DOF) 
relevant to observation/measurement is normally macroscopic. Underlying these 
macroscopic observables or manifestations are microscopic DOFs which can be 
treated as constituent effects of the macro manifestation. 

 In conventional electronics, one usually does not need to consider quantum 
effects, other than the fact that electrons obey the Fermi–Dirac distribution. The 
transport and dynamics of these electrons can be adequately described by the 
semiclassical drift and diffusion equations, which depend on macroscopic 

�� �� �� �� �� ��



24 Introduction to the physics of nanoelectronics

©  Woodhead Publishing Limited, 2012

properties such as mobility and conductivity. In fact, in micron-sized devices such 
as the conventional metal–oxide–semiconductor fi eld-effect transistor (MOSFET), 
the Fermi–Dirac distribution and the semiclassical drift–diffusion equations are 
all that is required to describe the physics of electron transport under, for example, 
the effect of a biased electrochemical potential. In other words, condensed matter 
physics has been rather decoupled from the device and electron transport physics. 
This also explains why the in-depth study of condensed matter physics has 
traditionally been confi ned mainly to superconductivity, matter phase transition 
and other strongly correlated phenomena, but not to the ubiquitous semiconductor 
devices. In fact, with hindsight, it is rather odd to think that propagators (Feynman 
diagrams) and gauge dynamics, so well established in high energy physics and 
superconductivity, have had so little application in the physics of electron current 
and dynamics in conventional electronics. 

 This scenario is about to undergo a drastic change: nanoelectronics will mark 
the beginning of the application of advanced physics in devices and electronic 
systems. The mesoscopic aspects of condensed matter physics become more 
important due to the following reasons:

   1.   In nanoscale systems, the boundary effects are becoming prominent, giving 
rise to sub-band and edge effects, and tunneling phenomena. For example, in 
single electronics, the quantization of electronic energy and the absence of all 
continuous states in the zero-dimensional quantum dot result in a novel 
correlated transport process where the fl ow of electrons no longer obeys the 
usual ohmic current–voltage (I–V) characteristics. Other examples include a 
two-dimensional electron gas (2DEG) in high-electron mobility transistors 
(HEMTs) and nanowires in carbon nanotube devices, where the presence of 
sub-bands and circumferential boundary conditions, respectively, alters the 
electron transport behavior.  

  2.   Many of the new bandstructures or sub-bands that arise due to geometrical 
modifi cation or reduction in the device generate momentum-dependent 
internal DOFs (e.g. spin–orbit coupling, graphene pseudospin DOF). Some of 
these may lead to topological properties in the transport behavior (e.g. 
quantum Hall effect, quantum spin Hall effect and others).  

  3.   Due to the shrinking size of devices, tunneling current (e.g. across some oxide 
barrier), which is a purely quantum mechanical phenomenon, can no longer 
be ignored.  

  4.   As devices become small, it is also possible for electrons to travel through an 
entire device without being scattered. Ballistic transport becomes important 
and electron motion can be investigated in terms of wavefunction or non-
interacting Green’s function. In fact, in the absence of interaction, electron 
dynamics can be directly described with basic quantum mechanics.  

  5.   As the interaction effect becomes more arbitrary and less intense, internal 
DOFs which normally survive over a short length scale would manifest 
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themselves. For example, the spin coherence of an ensemble of electron spin 
can be observed in a nanoscale device shorter than the spin diffusion length.  

  6.   For a device channel length approaching the screening length, the potential 
drop across the channel becomes signifi cant. Thus specifi c corrections might 
be needed to control the on/off states of transistor devices.  

  7.   Interaction will not totally disappear even in small devices. In fact, the 
effect of interaction becomes more complicated as the number of electrons is 
too small for suffi cient averaging that would lead to statistical macroscopic 
DOFs. One simply cannot rely on the statistical effects to protect the 
macroscopic observables from microscopic interactions. In other words, 
small device size means fewer electrons with less intense interactions 
but, paradoxically, more detectable results (due to the lack of statistical 
averaging).    

 In the following, we discuss one of the most important consequences of device 
miniaturization in the nanoscale range, that is, the effects of boundary which 
gives rise to sub-bands. The sub-band confi guration superimposes itself on 
the intrinsic energy band arising due to the periodic ionic core potential. 
Rapid advances in nanofabrication technologies have enabled us to fabricate 
lower (two, one or even zero) dimensional structures and devices via either the 
bottom-up or, more commonly, the top-down approach. If we regard a three-
dimensional bulk structure as an infi nitely large system for the electron, fabricating 
nanostructures means imposing artifi cial boundaries to the erstwhile infi nite 
structure. 

   2.1.1  Three-dimensional nanostructures 

 A three-dimensional (3D) system consists of a periodic crystalline structure and 
macroscale geometrical boundaries which defi ne its shape. Such a system lacks 
any boundaries at the nanoscale, and thus, one would not expect additional 
energy bands or sub-bands apart from its own intrinsic bandstructure. Typical 
metal-based devices treated as 3D systems include spin valves and magnetic 
tunnel junctions (MTJ). The former have been widely used in recording 
technologies such as hard disk drives. The latter are the crucial storage element of 
the magnetic random access memory (MRAM). These devices are also known as 
current-perpendicular-to-plane devices. Although they appear to be two-
dimensional (2D) devices, with one dimension (their thickness) being much 
smaller than the other two lateral dimensions, electron transport should still be 
treated as in a 3D system, owing to the small Fermi wavelength in metals. Because 
of the translational symmetry in the in-plane directions, the electron transport in 
these spin valve multilayers or MTJs can be modeled by assuming a simple one-
dimensional (1D) treatment.  Figure 2.1  provides a pictorial depiction of a 3D 
electronic system. 
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    2.1.2  Two-dimensional nanostructures 

 A two-dimensional nanostructure is confi ned in one dimension, normally referred 
to as the vertical  z -axis. An electron is free to move in two dimensions contained 
in a plane perpendicular to the confi nement dimension. Semiconductor 2D 
electron gas is a typical example of a 2D system. Such a 2D electron gas system 
was fi rst realized in the inversion layer of silicon-based MOSFET. Subsequently, 
we showed in  Fig. 2.2  a 2DEG which was realized in GaAs/Ga x Al 1-x As 
heterostructures, where long mean free paths exceeding 10 μm can be achieved. 
This makes 2DEG heterostructures important for high-speed electronics. 

 The next most commercially important 2D system is graphene. Graphene is a 
monolayer of carbon atoms packed into a 2D honeycomb lattice. Given its 
thickness of just one atomic layer, it is the fi rst truly 2D system. Thus, monolayer 
graphene is the basic building block of all carbon-based nanostructures in higher 
dimensions. The effect of boundary in 2D systems, however, becomes more 
complicated when magnetic fi eld is applied along the vertical dimension (e.g. due 
to the formation of Landau levels). 

 Since in a 2D system an electron is restricted in one direction but free to move 
around in the other two, quantization along the confi ned direction gives rise to an 
energy sub-band in addition to the usual energy bands arising due to the 2D 
periodic core potential. The effect on the conduction electron of the periodic core 
potential is captured by the effective electron mass. The single-electron 
Hamiltonian of a 2DEG in the presence of perpendicular magnetic fi elds and 
linear spin orbit coupling (SOC) effects is given by:

    

[2.1]  

   2.1     Schematic diagram of a multilayer spin valve. Although it appears 

visually as a two-dimensional system, electronically, it can be treated as 

a three-dimensional bulk system. NM, non-magnetic; FM, ferromagnetic.     
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 where  F   z  ,  H   SO  ,  H   z   and  U  are terms corresponding to the 2DEG triangular confi ning 
potential, the linear spin orbit coupling, the Zeeman split and the applied electric 
potential, respectively. The solution to the bound wavefunction  ϕ ( z ) is given by a 
linear combination of Airy functions, i.e.

   
 [2.2]

  

 where  C  1  and  C  2  are constants, and  

  and  d  =  eF   z   ( E   z   and  E   SO   are the Zeeman and spin orbit energies). 
Solving for the Hamiltonian at  z  = 0, the lowest energy eigenvalue of the system 
is given by:

   . [2.3]  

 Thus, the energy of the lowest sub-band due to vertical confi nement is 

   assuming the triangular well approximation for the 

confi ning potential.  

   2.1.3  One-dimensional nanostructures 

 To date, the most important one-dimensional system in nanoelectronics is the 
carbon nanotube (CNT). The CNT is a normal graphite sheet rolled up into a 

   2.2     Schematic of a typical 2DEG device, which has become an 

essential component in high-speed electronics as well as in future 

spintronic devices.      
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cylinder with typical dimensions of radius 2 nm and length at least a thousand 
times larger. Electron motion in CNTs is confi ned in all except one dimension, 
which is along the cylindrical axis.  Figure 2.3  shows the incorporation of the CNT 
to a transistor device. 

 The wavefunction for an electron in the CNT is normally expressed in the 
cylindrical coordinate:

    [2.4]  

 from which the eigenenergy can be found as follows:

    [2.5]  

 Electrons are confi ned in two dimensions, i.e. azimuthal angle  ϕ  and  R , but free in 
 x . In the following, we estimate the sub-band energy due to the confi nement. For 
a typical CNT diameter, the sub-band due to confi nement along  R  is 

   Likewise, the sub-band energy due to 

confi nement along the circumferential direction  ϕ  can be estimated as 

    

   2.1.4  Zero-dimensional nanostructures 

 It is not hard to deduce a further reduction to the lowest possible dimensionality, 
that is, a zero-dimensional (0D) nanostructure in which the electron is confi ned in 
all three spatial dimensions as shown in  Fig. 2.4 . In other words, the electron is 
not free to travel anywhere within such a geometry. In nanoelectronics, such zero-
dimensional nanostructures usually take the form of quantum dots, in which 
electron states exist as discrete momentum states. Due to the small capacitance of 
the quantum dots, Coulomb blockade or single electron charging effects will be 
signifi cant in these devices. 

   2.3     Transistor device modifi ed to incorporate the carbon nanotube as 

the channel.      
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    2.1.5  Relevant areas of knowledge 

 Having provided an introduction to the low-dimensional structures that underpin 
nanoelectronic devices, we now consider the different knowledge sets required 
for understanding the many current and emerging aspects of nanoelectronics. 
Without doubt, new advances in nanoelectronics have provided a platform and 
test bed for the application of advanced theoretical physics beyond its traditional 
grounds of cosmology and high-energy physics. The trend became evident since 
the early 1990s when the Green’s function propagator and gauge physics started 
to be applied to the new ‘pasture’ of condensed matter physics and nanoelectronics. 
These powerful theoretical tools could now play very signifi cant roles in advancing 
the understanding of electron transport in the realms of nanoscale electronics. 
Nevertheless, nanoelectronics is a very diverse and inclusive fi eld, and a complete 
study of it would require a diverse set of knowledge and skills ranging from 
conventional electronics to advanced cutting-edge physics. This fast-expanding 
fi eld cannot be understood in a holistic manner without interdisciplinary 
knowledge that cuts across device physics, nanofabrication and technologies, 
electron transport, statistical physics, many-body physics and quantum mechanics. 
Methods and approaches aplenty, we attempt to summarize the required skill and 
knowledge sets in  Table 2.1  based on the methods applied in the various fi elds 
over the last half-century. 

 The knowledge required to understand the full breadth of recent development in 
nanoelectronics is too wide to be covered in this book alone. We will assume pre-
existing knowledge on the part of the reader of Topics 1 and 6 in  Table 2.1 ; these 

   2.4     Metal island or quantum dot structure with source, drain and gate 

to control electron or spin fl ux conduction.     
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   Table 2.1     Studies of nanoelectronics require a diverse set of knowledge ranging 

from electronic to condensed matter physics: summary of the different fi elds relevant 

to nanoelectronics  

Topic Required knowledge in different fi elds

1. Boltzmann-based semiconductor physics1,2

Phenomenological condensed matter physics

2. Quantum mechanics6,7

3. Equilibrium many-body physics8,9

4. Non-equilibrium Green’s function device physics10,11

5. Topology and gauge theoretic electron dynamics12,13

6. Electronic devices and MOSFET technologies3

 Nanofabrication and characterization technologies4,5

topics should be familiar to electronic engineering graduates. For Topic 1, we 
recommend standard solid states physics textbooks (see, for example, references 1 
and 2), while Topic 6 is usually covered by most device physics and nanotechnology 
reference books. For example, topics related to semiconductor physics such as  p-n  
junctions, bipolar junction transistors, the junction gate fi eld-effect transistor 
(JFET) which utilizes the  p-n  junction, the metal–semiconductor fi eld-effect 
transistor (MESFET) which utilizes the Schottky barrier, MOSFET which utilizes 
the metal–insulator junction, tunnel devices and semiconductor-based photonic 
devices are routinely covered in many semiconductor textbooks. 3  One can rely on 
modern references or books on nanotechnologies 4,5  to give detailed description of 
the working principles of various nanofabrication and processing systems, which 
form the mainstay of modern clean rooms, such as multi-target sputtering machine, 
molecular beam epitaxy (MBE), electron beam lithography, optical mask aligner, 
focused ion beam writer, ion miller, as well as characterization equipment such as 
atomic/magnetic force microscopes, transmission electron microscopes, vibrating 
sample magnetometer, X-ray diffraction (XPD), X-ray photoelectron spectroscopy 
(XPS), alternating gradient fi eld magnetometer, ellipsometer, torque magnetometer, 
Fourier transform infra-red (FTIR) spectroscopy, micro-Raman system, hard disk 
media tester, magneto-optical Kerr effect, etc. Topics 1 and 6 are used or implied 
throughout this book, without further elaboration on references or their origins. 
Lastly, we shall assume knowledge of Topic 2 which comprises basic quantum 
mechanics. 6,7  This is widely covered in undergraduate textbooks for quantum 
mechanics. Deeper topics on single-particle quantum mechanics are also covered 
in reference books on quantum information. 

 This book focuses on theoretical topics that are not normally covered in textbooks 
on microelectronics. These principally consist of Topics 3, 4 and 5. Topics 3 and 5 
contain subject matter that is covered in fi eld theoretic or many-body condensed 
matter physics. 8,9   Chapters 3  and  4  of this book provides a pedagogical description 
of the non-equilibrium Green’s function method 10,11  and how it is developed for the 
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microscopic transport studies of nanoscale devices under arbitrary voltage bias. 
Topic 5 on gauge symmetry and topology is a recent addition to the theoretical 
‘armory’ of nanoscale condensed matter physics and electronics. These theories 
were fi rst developed in cosmology and high-energy particle physics. Their 
application in mesoscopic or nanoscale condensed matter physics only began in 
earnest in the 1980s with the discovery of the quantum Hall effect, a topic which 
cannot be adequately described by traditional condensed matter physics. The last 
chapter of this book ( Chapter 7 ) provides a systematic introduction to the fi eld and 
gauge theoretic methods, 12–14  with the focus being their application in nanoscale 
electronics. This is a departure from the usual treatment of gauge theory and 
topology in existing books and the literature, which mainly emphasized the 
development and application of these theories in the more traditional areas of high-
energy physics. In this book, fi eld and gauge theoretic methods are used alongside 
phenomenological and statistical approach in a complementary manner.  

   2.1.6  Overview of nanoelectronics 

 We now begin our quest into the various fi elds of nanoelectronics, as well as the 
underlying physics which unite these seemingly disparate fi elds.  Figure 2.5  is a 
pictorial description of the various emerging nanoelectronic fi elds of research and 

   2.5     Schematic description of the various fi elds of nanoelectronics and 

the evolution from theoretical concepts to numerical computation, 

experimental tests and prototyping, and fi nally to engineering 

optimization.     
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application, and the general path which occurs in all these domains starting from 
the fundamental physics of the underlying phenomena onto the device concepts 
and design, and fi nally to the world of applications, devices and industrial 
commercialization. 

 The main underlying physics is nanoscale condensed matter physics, and the 
most powerful theoretical methods to describe this are Green’s function and the 
topology and gauge theoretic approaches. These theories have led to the prediction 
and description of new condensed matter phenomena in meso- and nanoscale 
systems (e.g. quantum Hall effects, novel spin dynamics, electron correlation 
effects and topological transport behavior), properties which are only now being 
explored for possible applications in nanoscale devices. 

 Once the theory of the underlying physics has been formulated, the next step is 
numerical study and computational simulation to confi rm the theoretical 
predictions and to evaluate the robustness or reliability of these effects for practical 
device applications. If the results are promising, experiments will be carried out 
to confi rm the physical phenomena and then to resolve any practical diffi culties to 
achieve a basic or crude prototype as a proof of concept. Finally, the last stage is 
device engineering and optimization. At this point, experimentalists will have 
shown the theoretical benefi ts to be feasible (e.g. in terms of robustness and room 
temperature operation). Furthermore, various environmental and human factors 
(e.g. cost and scalability in manufacturing) will have been analyzed. At this stage, 
engineers are focused on refi ning and improving the practical features of the 
devices and applications so as to turn them into successful commercial products.   

   2.2  Nanoelectronics and nanoscale condensed 
matter physics 

 Our earlier introduction to the various fi elds of nanoelectronics suggested its 
strong linkage to condensed matter physics. One can start by visualizing a 
condensed matter system as something akin to a mini-universe to the electrons 
with a periodic potential that pervades the entire bulk of the material. Advances in 
nanotechnologies have led to spatial shrinkage of this universe so that its boundary 
effects become apparent, giving rise to many properties unique to nanoscale 
condensed matter systems. 

 In Section 2.1, we discussed the many mesoscopic or nanoscale condensed 
matter physics concepts relevant to nanoelectronics as a consequence of its 
shrinking size and concomitant boundary effects. But we have yet to make explicit 
the distinction between nanoelectronics and pure nanoscale condensed matter 
physics. One of the most important effects that distinguishes the physics of 
nanoelectronic devices from mesoscopic or nanoscale condensed matter physics 
is the infl uence of neighboring perturbations. Nanoelectronic devices normally 
contain a few discrete parts, comprising a central channel and adjacent leads. 
From the perspective of the central channel, the adjacent leads can be viewed as 

�� �� �� �� �� ��



 Nanoscale physics and electronics 33

©  Woodhead Publishing Limited, 2012

perturbations. The most common types of leads are the source and drain electrodes, 
and as in conventional electronics (e.g. in a MOSFET device), the electrical 
voltage is applied from source to drain across the channel. 

 Thus, if one were to construct an equation that describes a carrier’s propagation 
in the channel, this equation tends to require local parameter input (e.g. local 
potential and site energies that extend from the channel onto the leads indefi nitely). 
It may seem that we have an open system with divergent effects, which extend far 
from the central channel region under consideration. However, in a homogeneous 
condensed matter system, such an extension to infi nity can be made convergent 
by some renormalization process. In a nanoelectronic device with a channel which 
is treated as the central region, it makes sense to treat the channel as a closed 
system with all the effects of perturbation being absorbed into some physical 
observables of the carrier (electron) in the channel. For example, the lead 
perturbation that extends semi-infi nitely can be re-normalized into a fi nite self-
energy which affects electron propagation in the channel. The device can now be 
viewed not as an open system that is attached to adjacent regions like leads, but as 
a closed one with electron propagation in a modifi ed energy landscape. 

 A consequence of the lead perturbations (under the application of source–drain 
bias) is the induction of non-equilibrium electron density in the channel. By taking 
into account the non-equilibrium electron density as a function of some global 
lead parameters, the channel can be considered as a closed system with modifi ed 
electron density. One can see this if we assume the ohmic relation for current in 
the channel:

    [2.6]  

 where ( V   S   −  V   D  ) are the global lead parameters (i.e. their respective applied 
voltage) which can also be considered as a property of the closed channel system 
which refl ects its non-equilibrium electron density. While Eq. 2.6 is a rather crude 
way of incorporating the effect of leads on the non-equilibrium distribution of an 
electron in momentum space, it is accurate in bulk systems, in which the gradient 
of the non-equilibrium electron density in the central channel is determined by the 
difference in the lead voltage. In this way, a device with three discrete units 
(central channel and two leads) can be viewed as a single closed system without 
leads, but with a modifi ed electron density ( Fig. 2.6 ). 

 A more improved approach suitable for microscopic system is to derive the Kubo 
conductivity, which plays the role of the inverse resistance (1/ R ) in Eq. 2.6. In the 
linear response, one assumes the change of electron density to have minimal effect 
on the conductivity, so that current is obtained via direct multiplication with the 
small voltage difference. Thus, a major challenge in nanoelectronic physics is to 
fi nd clever means to incorporate the seemingly extensive and divergent perturbation 
effects due to neighbors into some physical properties of the channel system, such 
that the channel can be treated as a closed system with modifi ed properties. 
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   2.6     A standard device with three discrete regions can be viewed as a 

closed system with lead perturbations absorbed in terms of a modifi ed 

electron energy and electron distribution within the channel.     

   2.7     Various ways of taking into account the lead effects on the non-

equilibrium electron density in the central region.     

 Different methods of modeling open systems with leads as modifi ed closed 
systems are shown in  Fig. 2.7 . These are three effectively closed systems which 
relate the lead voltage to the non-equilibrium electron density distribution in the 
central channel. Methods 1 and 2 are straightforward. Device 3 makes use of the 
so-called non-equilibrium Green’s function (NEGF) technique to model the effect 
of the lead voltage on the non-equilibrium distribution in the channel in a much 
more involved manner. It involves linewidth functions and Green’s functions of the 
central channel region, which incorporate the coupling strengths to the leads and 
self-energy due to the leads, respectively. This is discussed further in  Chapter 3 . 

 It is now clear that nanoelectronics acquires additional complexities because of 
the following effects:

   1.   Nanoscale size effects – modifi ed equilibrium system properties  
  2.   Source–drain applied voltages – non-equilibrium effects  
  3.   Contact proximity – interaction with channel  
  4.   External applied fi elds – topological effects.     

   2.3  Emerging nanoelectronic devices and systems  

 Considering the diverse nature of nanoelectronic fi elds, it is as yet not possible to 
develop a single formalism suitable for all devices. While the non-equilibrium 
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Green’s function allows lead perturbation effects to be absorbed into the coherent 
propagation and non-equilibrium electron density, it still needs a separate 
mechanism to calculate the electron density distribution within the channel. If 
modifi cation to dimension is not drastic (i.e. if the channel can be considered as a 
quasi-3D structure), then the electronic background of a function of spatial 
separation ( E  −  r ) and in  k -space ( E  −  k ) can be determined based on pure 
condensed matter physics (i.e. disregarding the effects of boundaries). 

 In the event of single-electronic or quantum dot structures, CNT and 2DEG, 
mesoscopic or nanoscale condensed matter physics is required to determine the 
sub-bands. However, in nanoelectronic systems with multiple parts, the electronic 
background will be modifi ed further. As we know, transport equations are based on 
the specifi c background under which they are derived. In quantum dots, electron 
gas as described in  E  −  r  relation, where  r  is related to electron separation, cannot 
be assumed. Electron transport is correlated and the transport equation has to be 
modifi ed to refl ect this (see Section 2.3.3 on single electronics below). In 
semiconductor devices with interfaces like metal–semiconductor or  p-n  junctions, 
local band-bending occurs at the interfaces and this alters the dispersion relation or 
the  E  −  k  property of the device in the affected parts. These changes and 
modifi cations cannot be refl ected automatically in most transport physics, although 
the bandstructure effect could modify the NEGF equations via the modifi cation to 
the Hamiltonian. It is thus important to understand these physics separately. For 
more details of the device physics and interfaces, readers can refer to books on 
devices. 3  For our purpose, it suffi ces to classify them in terms of their relevance to 
the new nanoelectronic devices and systems, many of their designs being based on 
the well-established semiconductor devices. 

 In the following, we introduce and specifi cally discuss several important types 
of nanoelectronic systems. These are spintronics which encompasses metal 
spintronics, hybrid and semiconductor spintronics, single electronic systems (e.g. 
the quantum dot and metal Coulomb blockade devices), molecular electronics, 
carbon nanostructure transistors and graphene electronics. 

   2.3.1  Metal spintronics 

 Many theoretical and simulation studies have been carried out to investigate the giant 
magnetoresistance (GMR) and spin transfer effects in both the current perpendicular-
to-plane (CPP) and current-in-plane (CIP) confi gurations. Phenomenological 
(semiclassical) physics plays an important role, as it describes experimental 
observations to a rather accurate degree. The main semiclassical transport theory to 
describe the GMR effect is one based on the Boltzmann equation, which is a model 
understood by both theorists and experimentalists alike. There is a large body of 
published works and books about the Boltzmann transport model and its specifi c 
applications in spin electronics. Magnetoresistance (MR) based devices are commonly 
known as readers or recording heads by the hard disk drive storage community. 
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  Giant magnetoresistance (GMR) and spin valves 

 The most prominent and useful effect in metal-based spintronics is giant 
magnetoresistance (GMR). The GMR effect refers to a large fractional change in 
resistance induced by an applied external magnetic fi eld, which changes the 
relative magnetization orientations of the two ferromagnetic (FM) layers separated 
by a non-magnetic (NM) spacer from the parallel to the anti-parallel confi guration. 

 In fact the entire development of the emerging spin-based electronics was 
based initially on the success of GMR devices, which are composed primarily of 
ferromagnetic metal multilayers. The MR response is largely a macroscopic effect 
arising due to the collective spin-dependent scattering experienced by electrons in 
the bulk and at interfaces. 

 GMR effects were fi rst reported in multilayer devices 15,16  in the early 1990s 
(e.g. Fe/Cr, Co/Cu and Ag/Co). The early GMR devices existed in CIP form where 
electron fl ow is within the plane of the device. Present GMR devices exist in CPP 
form. Both theoretical simulations and experiments have confi rmed that the 
CPP GMR device can achieve a higher MR ratio than a CIP one. In addition, CPP 
sensors also possess the engineering advantages of requiring a smaller shield-to-
shield gap, thus enabling a higher areal storage density of the hard disk drive 
(HDD). In a CPP GMR element, the resistance difference Δ R  (between the parallel 
and anti-parallel confi gurations) scales with the shrinking of the sensor area. This 
is compatible with future needs as the track density in the recoding medium 
increases.  Figure 2.8  shows a CPP-type GMR device. 

   Tunneling magnetoresistance (TMR) and spin valves 

 At the turn of the twenty-fi rst century, interest in MR research expanded to 
encompass an effect with a more pronounced quantum feature, namely tunneling 
magnetoresistance (TMR). 17,18  This is due in part to the rising demand for HDD 

   2.8     Schematic of a CPP-type GMR device, which is the most common 

fi eld-detecting element in present spin-valve based recording heads.      
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storage. Increasing bit density in the media platter of the HDD has placed 
unprecedented demand on the magnetic fi eld sensor to detect weak magnetic fi eld 
change in order to distinguish one binary state from another. For instance, the use 
of MgO tunnel barriers has resulted in MR (in the ‘pessimistic’ defi nition) well in 
excess of 75% while most CPP GMR based spin valves deliver around 5%. The 
advantage was, however, tempered by the high resistance of TMR devices. While 
a typical CPP GMR device has an overall areal resistance of 100 mΩμm 2 , that of 
TMR hovers at 1–2 mΩ μm 2 , introducing a large impedance mismatch between 
the magnetic sensor and the pre-amplifi er, which results in electrical loading of 
the detection circuitry.   

  Half-metal spin valve 

 The CPP GMR device with an MR of around 3–5%, even in the advanced form of 
an exchange-biased CPP spin valve, is far from adequate to meet the requirements 
imposed by ultra-high density storage of several terabits per square inch. The 
solution to the problem of high resistance area in TMR devices remains elusive. 
In around 2003–2006, some interest also shifted back to all-metal GMR devices 
but with half-metals (HM) taking over the normally ferromagnetic (FM) contacts 
(see  Fig. 2.9 ). Materials with a high bulk polarization ratio (90–100%), such as 
half-metallic (HM) Heusler alloy, 19,20  were studied for their potential to increase 
magnetoresistance. However, the use of these new materials in CPP sensors faced 
diffi culties in terms of achieving high-quality thin fi lm structure, as well as 
unknown interfacial effects. 

   2.9     (a) Schematic of a modern CPP spin-valve based on half-metal. (b) 
Schematic with functional descriptions of the different layers of device (a).     
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   More complicated spin-valve structures 

 Many of the spin-valve GMR devices – be they FM GMR, HM GMR or TMR 
spin valves – have since undergone further technological development and 
improvement. The basic pseudospin valve structure has spawned more complex 
structures, such as exchange-biased spin valve, synthetic antiferromagnetic spin 
valves, half-metal dual spin valve, etc. Readers interested in the specialized fi eld 
of spin-valve devices can refer to the many papers published in engineering and 
applied physics journals, as well as proceedings of the main hard-disk related 
conferences, such as the Magnetism and Magnetic Materials and the International 
Magnetic conferences.  

  Magnetic tunnel junction and spin torque devices 

 Two other important aspects of metal spintronics are the tunneling magnetoresistance 
(TMR) and spin transfer torque. The magnetic tunnel junction has similar physics 
and working principles to a TMR spin valve but it is used as a storage element 
instead of as a fi eld sensor. The use of the magnetic tunnel junction introduces the 
possibility of non-volatile solid state memory. Using such non-volatile memory, 
the possibility of an instant-on computer is no longer far-fetched. Magnetic random 
access memory (MRAM), 21  which consists of a lattice of MTJ cells, has since 
become a leading candidate for spintronic-based non-volatile memory. The reality 
of solid state memory was advanced further with the realization that a spin-
polarized electron fl ux could interact with a local magnetic moment to effect 
magnetization switching. The underlying physics of this phenomenon is known as 
the spin transfer torque, fi rst studied independently by L. Berger and J. C. 
Slonczewski. 22  Their theoretical studies were later supported by experiments. 23  

 This was great news to the MRAM community which hitherto had to rely on 
tiny current-carrying wires to generate magnetic (Oersted) fi eld-to-effect 
magnetization switching in the magnetic tunnel junction. With the advent of spin 
transfer torque switching, the ‘bulky’ wires (relative to the tunnel junction) could 
be dispensed with. However, early experimental studies revealed that a relatively 
large critical current density of the order of 10 8  A/cm 2  is required to trigger 
current-induced magnetization switching (CIMS) via the spin transfer torque 
effect. Such excessive current density may cause electromigration and damage 
electronic devices. Thus much attention is now focused on reducing the required 
current density for CIMS. Current state-of-the-art results 24  reported for CoFeB/
MgO/CoFeB MTJ show high TMR over 120%, high thermal stability at dimension 
40 nm and switching current as low as 49  μ A. 

 The physics of spin torque is an interesting topic by itself. Since the GMR 
effect is the resistance modulation in multilayer ferromagnetic structures arising 
due to the scattering of itinerant electron spins by local magnetization, it would be 
natural to conceive that by reciprocity, a high concentration of electron spins may 
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exert some form of spin-current related torque on the local magnetization, leading 
to possible switching or CIMS. Additionally, spin transfer torque can effect large-
angle magnetization precession in the free layers of spin valves and magnetic 
tunnel junctions, giving rise to microwave oscillations. 25  

 Many theoretical methods have been developed to study CIMS and current-
induced spin oscillations in a variety of structures, ranging from ferromagnetic 
spin valves to Coulomb blockade transistors. 26  The theoretical methods range 
from non-collinear spin drift diffusion (SDD), which imposes phenomenological 
continuity of spin fl ux at the multilayer interfaces, to quantum mechanical method 
with boundary matching of wavefunctions, NEGF and gauge theoretic methods. 
Except for the latter method of gauge theoretic, which will be introduced in 
 Chapter 7 , we will refer readers to the works in the literature for the other methods. 

  Figure 2.10  provides a lateral view of a standard array design for today’s 
MRAM. Each cross point addresses one MRAM cell, and access to these cells is 
performed by decoders selecting the lines and the transistors. 

   2.10     Typical MRAM array in which the writing process is based on the 

CPP spin transfer torque on the free layer, while the reading process of 

the stored information is effected via CPP magnetoresistance.      

     2.3.2  Hybrid and semiconductor spintronics 

  Bipolar spin-valve transistors 

 In the mid to late 1990s there were exhilarating breakthroughs in the fi eld of metal 
spintronics in terms of spin-valve and magnetic memory applications. These 
sparked interest in the design of hybrid spintronic devices which combined 
semiconductor with metal spintronics. The spin valve transistors 27,28  were fi rst 
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conceived in the form of an all-metal bipolar device, before evolving to 
the semiconductor–metal bipolar system fabricated to the structure of 
Si–MultilayerFM–Si in 1995 ( Fig. 2.11 ). Schottky barriers, which form at the 
Si–FM interfaces, act as buffers which set the FM region free from electric fi elds 
applied to the terminal pair. Electrons crossing the FM multilayers lose more 
energy under the anti-parallel confi guration than the parallel confi guration 
of magnetizations. The FM confi gurations can be controlled by applying external 
magnetic fi elds. Thus, collector current can be externally modulated via an applied 
magnetic fi eld. It is, however, important to note that this does not yet constitute a 
semiconductor spintronics device. Spin conductance was modulated entirely by 
the all-metal spin valve via the GMR effects. The semiconductor regions merely 
provide the Schottky barriers and facilitate the injection of spin-neutral hot 
electrons into the spin-valve base region. 

 Modifi cations were made to the above by introducing the injection of spin-
polarized instead of neutral current into the base. The base region can also be 
modifi ed to play the role of a spin fi lter and detecting spin current. If the fi lter 
rejects the spin current, most of the current will be diverted to the collector.  

  Metal–semiconductor spin injection transistor 

 Key prerequisites for the functioning of a truly semiconductor spintronic device 
are the generation of spin-polarized current and long spatial and temporal spin 
coherence in the semiconductor, which is normally paramagnetic. Since normal 
semiconductors are non-magnetic, spin current needs to be generated via spin 
injection from a ferromagnetic material. Current passing through ferromagnetic 
materials becomes spin polarized due to exchange coupling (due to asymmetry in 
the density of states) as well as bulk scattering (due to spin asymmetry in mobility). 
The idea here is to inject the spin polarized current into the non-magnetic 
semiconductor, the latter being a well-established medium for the control of 
electronic conductance. 

   2.11     Schematic of a basic spin-valve transistor.     
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 The long spin diffusion length in semiconductors such as GaAs is tremendously 
helpful for such a purpose. But there is one major obstacle – in diffusive transport, 
spin polarized current cannot be easily injected into semiconductors. The low 
dosage of spin injection has been attributed to a factor 29  related to the conductance 
difference between the metal ferromagnetic and the semiconductor media. 
However, it seems that the incorporation of a spin-asymmetric tunnel or Schottky 
barrier can improve spin injection greatly via quantum mechanical tunneling. 
Besides the intrinsic problem for low spin injection, interfacial spin fl ip is also 
crucial for destroying the proper delivery of spin-polarized fl ux to the 
semiconductor. In general, the spin injection device can normally generate spin 
current, which cannot be transported to where it matters (namely the semiconductor 
region), thus precluding its further exploitation.  

  Magnetic–electric fi eld transistor 

  Figure 2.12  shows that the external fi eld device is particularly suitable for the 
design of a semiconductor MRAM or a programmable logic device. 30  In the 
memory application, the ferromagnetic gates are used to store information. 
Detection of the stored memory states of the FM gates can be achieved by passing 
current through the conduction channel directly below them. The edge fi elds 
emanating from the gates can be correlated to the orientation of the magnetic 
moment of the FM gate. This device can rely on either fi eld-induced switching via 
the write line method (similar to that used in MRAM) or the current-induced-
magnetization-switching (CIMS) effect to switch the gate magnetization. 

 Tunneling through a delta barrier is given by the following:

    [2.7]  

 where  U  has the units of eV m. Over a length scale of 10–50 nm between the 
barriers, the boundary effects on electron transport will be signifi cant. Below, we 

   2.12     Magnetic–electric fi eld MOSFET with multiple ferromagnetic gates 

to realize functions of non-volatile storage and programmable logic.     
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describe the ballistic tunneling process which allows the wave amplitude of 
electron at each region to be determined. Taking  x  = 0 as the interface, and 
assuming infi nitesimal thickness ± ε  of the  δ -function which represents the edge 
fi eld from the FM gate, we have:

   . [2.8]  

 In the case where the barrier is magnetic,    is used. To compute spin 

transport, the standard material parameters for GaAs are used:  m * = 0.067  m  0 , 
 g *= 0.44, Fermi energy  E   F   = 3.55  meV , corresponding to charge density of  n   e   = 
10 11  cm  −2 , and  B  0  = 0.2 T.  

  Rashba spin orbit coupling spin fi eld-effect transistor (FET) 

 Spin orbit coupling (SOC) can be regarded as a form of effective magnetic fi eld 
‘seen’ by the spin of the electron in the rest frame. Based on the notion of effective 
magnetic fi eld, it will be straightforward to conceive that spin orbit coupling can 
be a natural, non-magnetic means of generating spin-polarized electron current. It 
is thus natural to conceive that SOC within a tunnel barrier can be utilized to 
achieve effi cient spin fi ltering. 31  Despite practical diffi culties, it has been accepted 
that, in nanoscale devices, spin current can at least be generated at one end of the 
device and detected on the other. The combined effect of the tunnel barriers and 
the SOC can be used to achieve a spin transistor function. Electrical voltage ( V   g  ) 
is applied to the Schottky gate to alter the Rashba coupling strength within the 
InAlAs–InGaAs 2DEG and thus modulate the spin state of the conduction 
electrons in the semiconductor channel. This, in turn, is translated into a 
conductance modulation by incorporating a ferromagnetic drain electrode to the 
contact to act as the detector for the electron spin. 

 Although experiments 32  have confi rmed the working principles of such devices, 
most have fallen short of demonstrating large conductance modulation. The 
prospect of semiconductor spintronics thus remains unclear for the foreseeable 
future. Spin orbit coupling based spintronics is still fraught with diffi culty due to 
the poor ‘survival’ of measurable spin current amidst such effects as temperature, 
impurity scattering, mode averaging, non-uniformity of spin orbit strength, as 
well as interfacial spin fl ips. Temperature smears the electron distribution over the 
double-conic Rashba bandstructure at the Fermi energy, greatly reducing ideal 
spin polarization. Spin relaxation length is rather long in a ballistic semiconductor, 
but impurity scattering can weaken spin current considerably. Mode-averaging 
can be partially overcome by designing devices that are spatially constrained in 
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the transverse direction, or via an electron wave-guiding action effected by regions 
with different doping densities. Both of these will result in wavevector (mode) 
selection, where only a portion of the Fermi surface is probed for spin detection. 
Note that SOC systems are time-reversal symmetric, and so there will be no net 
spin polarization if the measurement is averaged over the entire Fermi surface.   

   2.3.3  Single electronics and quantum dot 

 Electron transport through a device in which the central electrode is of nanometer 
scale would encounter the so-called Coulomb blockade effect. The size of the CB 
effect depends on the size of the central region and the material system it is made 
of. The discovery of single electron tunneling (SET) 33  marked the arrival of a new 
class of nanoelectronic devices known as single electronic devices. In their 
simplest form, these devices consist of the central island contacted to left and right 
leads – acting in the language of MOSFET as the source and drain electrodes, 
respectively. The device can be in an all-metallic 34  or semiconductor 35  
confi guration, that is, the central island can be in the form of a metal or 
semiconductor quantum dot 36  with metal contact electrodes. In single electronic 
devices, the coupling between the central device and the leads is assumed to be 
weak so that the tunneling term in the Hamiltonian can be regarded as a 
perturbation. However, in the case of a molecular island, the coupling effect 
becomes strong and a different transport mechanism occurs. This is reviewed in 
Section 2.3.4 on molecular electronics. 

 Here we introduce the concept of Coulomb blockade (CB), which is crucial in 
single electronics. If there is already an extra unbalanced electron in the 
nanostructure, the addition of an electron leads to a charging energy of:

    . [2.9]  

 In Eq. 2.9,  E   C   refers to the electrostatic charging energy arising from the Coulomb 
repulsion of an electron unbalanced by the background positive ionic charge, 
while  E   k   is the energy change due to the electron occupying a different quantum 
level. If the fi rst electron in the nanostructure is of state  k  1↑ , then the next electron 
can be either  k  1↓   or   k  2↑ . The charging energies involved are  E   a   =  E   C    or   E   a   =  E   C   + 
( E   k 2  −  E   k 1 ), respectively. In the case of a metallic central island, the small Fermi 
wavelength implies continuous kinetic energy states. Thus, ( E   k 2  −  E   k 1 ) ≈ 0 for 
metal; the charging energy is the same for both cases. However, the scenario 
would be different in the case of a semiconductor quantum dot as the distinct state 
quantization implies ( E   k 2  −  E   k 1 ) can be large. Therefore, if the fi rst electron is of 
state  k  1↑ , then by the Fermi exclusion principle, the next incoming one can only be 
 k  1↓ . This forms the basis of the Anderson model, in which the charging energy 
term is expressed by:

   . [2.10]  
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  Single electron spintronics 

 On the other hand, the contact electrodes can be made magnetic to implement 
spintronics in single electronic system. With magnetic leads, spin injection can 
be implemented leading to the design of a hybrid SET–spinFET device, 37  an 
example of which is a SET device based on a self-assembled InAs quantum dot. 
The interplay between the CB effect and spin-dependent tunneling gives rise to 
several novel magnetotransport effects such as magneto-Coulomb oscillations, 
enhanced magnetoresistance due to cotunneling and the spin blockade effect. 
 Figure 2.13  provides a schematic representation of a hybrid SET–spinFET 
showing magneto-Coulomb effect and a basic single electronic system based on 
quantum dot with quantized energy levels. 

 One of the advantages of single electronic device over MOSFET is its high 
packing density as single electronic devices are scalable down to 1–10 nm. In 
MOSFET, high power consumption is becoming an increasing problem as device 
dimension continues to shrink and leakage current occurs across the thin oxide 
layer via quantum tunneling, draining energy and wasting power. In a single 
electronic device system, power consumption is generally low because of the low 
number of electrons involved. Single electronic devices also deliver a higher 
switching speed as opposed to MOSFETs, which require time to charge up the 
capacitor. The disadvantages include fabrication on the nanometer scale where 
most single electronic devices require sequential e-beam patterning, which is a 
time-consuming process, as opposed to optical lithography for CMOS devices. 
Controlled SET fabrication with repeatable properties at room temperature is still 
diffi cult to achieve. Furthermore, SET devices are particularly sensitive to random 
background charges. Presently, due to these practical diffi culties, single electronics 
is confi ned to a few niche applications such as:

   •   Metrology – very accurate current standard  
  •   Thermometry – absolute temperature measurement based on fundamental 

constants  
  •   Very high resolution surface charge probes.     

   2.13     (a) Hybrid SET–spinFET device exhibiting magneto-Coulomb effect 

which combines the physics of single electronics and spintronics to 

yield new transport properties. (b) Single electronic system based on 

semiconductor quantum dot.     
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  Modeling of single electron tunneling transport 

 Since electron transport in a single electronic system occurs in a sequential 
manner and individual tunneling events are independent uncorrelated events, the 
quantum wavefunction tunneling method cannot be applied here. Furthermore, 
we assume that equilibrium is re-established after each tunnel event. Thus, single 
charge tunneling can be treated as Markovian events, so that the overall transport 
can be modeled via the Master equation approach. Because of charge accumulation 
in these structures, electron tunneling through these structures or junctions 
depends on the type of accumulation present on the island or quantum dot (e.g. 
electron, hole, spin and so forth). 

 The Master equation method consists of a series of linear equations which 
characterize the rate of change of the state probability of the SET system:

   

 [2.11a]

  

   
 [2.11b]

 

 where 〈 n   σ  〉 represents the probability of single occupancy of a carrier (electron or 
hole) with spin  σ  in the island of the SET. Carrier species would have been clearly 
specifi ed if 〈 e   σ  〉 and 〈 h   σ  〉 are used instead. The variable 〈 n  ↑  n  ↓ 〉 is the probability of 
double occupancy by two carriers of opposite spin in the island.    is the 
tunneling rate of a carrier into/out of an empty island in the SET. On the other 
hand,    is the tunneling rate of a carrier into/out of a singly occupied SET 
island. The tunneling rates    under different conditions are 
illustrated in  Fig. 2.14 , while    is the spin fl ip rate within the central island. 

 The occupation probabilities of electron within the central island are variables 
to be determined by solving Eq. 2.11. The tunneling rate equation can be derived 
by treating the tunnel event as a perturbation and applying the Fermi golden rule. 
For SET systems with a metallic island, the rate equation (commonly known as 
the ‘orthodox’ rate equation) is given by:

    [2.12]  
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 where  α  =  L, R  denotes the left or right electrodes,  R   t   is the tunneling resistance, 
which is inversely proportional to the strength of coupling between the contact 
and island,  M, N  are the initial and fi nal number of island charges which 
characterize the initial and fi nal states of the SET system,  E   c   is the electrostatic 
energy sum due to the total number of or  M  or  N  island charges, and  μ  is the 
electrochemical potential of the island or the contact electrode. For SET systems 
with a semiconductor quantum dot as the island electrode, the presence of 
quantized energy levels results in a different rate equation given by:

    [2.13]  

 where  j   N   ( k   N +1 ) is the initial (fi nal) quantum dot states with  N ( N  + 1) charges on 
the quantum dot.  E   k    N +1  / E   j   N    is the energy sum of ( N  + 1)/ N  charges on the quantum 
dot. This would translate to ( E  k   N +1

     −  E   j   N   ) being the highest energy level taken by 
the last electron in the dot. The electrochemical potential of electrode is given by 
 μ   α  . Notation  f  is the Fermi–Dirac distribution function and  γ   ασ   = 2 π | t | 2   ρ   ασ   denotes 
the strength of the tunnel coupling constant, assuming that  t  is the same for all 
electrodes. The spin-dependent density of states is given by  ρ   ασ   in electrode  α . In 
the case of FM electrodes with spin polarization  p   α  , one has  ρ   ασ   = (1 +  σm   α    p   α  ) ρ   α 0 , 
where  ρ   α 0  = ( ρ   α ↑  +  ρ   α ↓ )/2 is the average spin-independent density of states. The 
spin polarization  m   α   p   α   changes sign depending on  m   α  , whose sign depends on the 
magnetization orientation of the FM. One can choose  m   α   to be positive for 
magnetization pointing up and negative for magnetization pointing down.   

   2.3.4  Molecular electronics 

 Molecular electronics 38  is implemented in a nanoscale device structure similar to 
those of single electronic systems with metal and semiconductor central islands, 
except that the central island here is smaller (of molecular size). The main 
advantage of molecular electronics is that transport properties at this molecular 

   2.14     Schematic illustrations of sequential tunneling events in SET 

devices with quantized QD levels for (a) spin up and (b) spin down states.     
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size may be more predictable compared to those of nanoscale SET. On the 
other hand, conventional silicon-based MOSFET devices, if shrunk to the putative 
size of typical molecular electronics, would consist of only a small number 
of atoms, leading to non-statistical and unpredictable transport behavior. 
Presently, the minimum feature size of the state-of-the-art MOSFET devices 
stands at 30–40 nm. Further device miniaturization would lead to problems such 
as insuffi cient gate oxide thickness, resulting in large leakage current and thus 
high power consumption. Molecular electronics may then be a candidate to 
overcome these problems.  Table 2.2  presents a summary of advantages in 
molecular electronics. 

 Electron transport through the molecular structure depends on the types of 
molecules inserted between the two contacts. But there is one crucial aspect of 
molecular electronics that is different from the metal–semiconductor single-
electronic system or MOSFET. The tunneling coupling of molecule to the metal 
electrodes is strong, which could reduce the effect of charge and size quantization. 
In the simplest linear chain of molecules between leads, electron transport could 
be a simple wave tunneling under a barrier. In the more elaborate donor–barrier–
acceptor confi guration, the superexchange process for both electron and hole 
takes over. 

 In the case of a molecular quantum dot, single molecule physics is important, 
e.g. in a single molecule magnet, the Kondo effects could be prominent. In the 
case of large molecules, such as DNA or protein molecules, intramolecular 
transport becomes important because now electrons need to navigate through a 
large molecule with many functional groups. But in general, charge transfer 
within DNA is coherent for short distance; when many base pairs are involved, 
then transport is one of incoherent hopping. More complicated still is electron 
transport through the DNA–metal junction. The donor–bridge–acceptor 

   Table 2.2     Summary of some useful device features in molecular electronics   

 Useful device features in molecular 

electronics

Remarks

1. Small size with predictable behavior Central island is a single molecule

2. Chemical self-assembly In chemistry and nanotechnology, 

a great deal is known about the 

technique of self-assembly

3. Switchable between stable 

confi gurations

Molecule can switch between a few 

stable isomers, each having its own 

electrical and optical properties

4. Tunable optical, electrical and 

structural property by choice of 

chemical composition and geometry

Molecule synthesis has been well-

established and these techniques can be 

applied to tune the electrical and optical 

properties of molecular based devices
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confi guration 38  provides more possibilities in terms of controlling electron or hole 
transport through the molecule. The multiple barriers within the molecule can be 
engineered to effect quantum pumping or current rectifi cation. The bridge between 
the donor and the acceptor can also be engineered to switch between hopping and 
superexchange transport mechanisms. 

 What distinguishes electron transport through molecules from normal 
semiconductor or metal-based nanostructures is the strong coupling across the 
junction separating metal from molecule. Tunnel coupling through molecular 
junction to metal electrode is usually so strong that the correction due to cotunneling 
and the Kondo effect can be signifi cant. This raises the need to incorporate 
additional physics into molecular transport. In this respect, one may note 
that the NEGF method, which takes proper account of intersite coupling, 
might be a useful method with which to study electron transport in molecular 
devices. 

 Here, we give one example of molecular electronics (in this case magnetic) 
where the molecular properties when connected to electrodes or substrates might 
become altered signifi cantly with manipulation. 39  The molecular central channel 
is connected to a substrate and demonstrates a high Kondo effect after manipulation 
is carried out to the molecular structure. This is the fi rst step toward molecular 
electronics or spintronics in which molecular structures are to be connected to 
contacts for the injection of charge current, spin current or even supercurrent. In a 
magnetic molecule, intramolecular exchange and spin orbit coupling can give rise 
to high anisotropy energy at zero magnetic fi eld. 

 By and large, the outlook for molecular electronics is still fraught with 
fundamental challenges. Controlled fabrication of molecular systems suitable for 
electronic applications has still not been fully mastered. A self-assembly technique 
is one of the favorite methods that is being intensively pursued at present. As we 
have learnt earlier, electron transport within the molecule is easier to understand 
than the transport across the junction between metal and molecule. In fact accurate 
measurement of the junction conductance is itself a major experimental challenge. 
There is also a whole host of other practical issues such as reliability, temperature 
stability and so forth that have not been fully addressed.  

   2.3.5  Carbon nanotube transistors 

 Carbon-based electronics 40  can be regarded as a form of molecular electronics. It 
falls under the linear chain type if it is in the form of nanotube sandwiched 
between the contacts, or the quantum dot type if it is in the form of C60 fullerene 
that plays the role of the central island. C60 (fullerene) was fi rst discovered by 
Harold W. Kroto, Richard E. Smalley, Robert F. Curl in 1985, 41  while the carbon 
nanotube was discovered by Sumio Ijima in 1991. 42  These carbon-based 
nanostructures have markedly different electronic, mechanical, optical and 
chemical properties than their fi lm or bulk counterparts. There has been a large 
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body of work dedicated to studying the fabrication of the CNTs. Generally, they 
can be divided into:

   •   Arc discharge, which yields single-walled (anode doped with metals) and 
multiwalled CNT (both electrodes are pure graphite).  

  •   Laser ablation, 43  which yields single-walled nanotubes (SWNT) mixed with 
carbon nanoparticles (e.g. fullerenes). The diameter of the tube is controllable 
by the reaction temperature, but this process is costly.  

  •   Chemical vapor deposition (CVD), 44  which yields both SWNT and multi-
walled nanotubes (MWNT). This method also enables selective and directional 
growth, but tends to produce more defects.    

 A fi eld-effect transistor (FET) with CNT elements has electrical properties which 
promise superior FET performance to that of silicon-based MOSFET. To fully 
appreciate the superiority of CNT FET as opposed to MOSFET, one needs to 
understand the conventional diffi culty faced by the silicon-based MOSFET 
community. The electronic properties of CNT include high conductance, variable 
bandgap and ohmic contact problems. Its electronic properties are similar to 
graphene after considering additional boundary conditions. But unlike graphene, 
the semiconducting CNT shows a large variable bandgap, lending itself to 
generating a large on/off current ratio. This property is especially useful for 
potential transistor application. 

 With more superior electronics features, photonic and chemical properties (the 
photonic and chemical properties of these devices are not discussed here), there is 
the favorable prospect of CNT-based electronics replacing MOSFET electronics. 
Like the problem faced by molecular electronics, the main hurdle lies in the 
successful controlled fabrication of a large quantity of CNTs with the desired and 
repeatable contact and channel qualities. 

 A semiconducting CNT channel is normally connected to metal contacts. 
The alignment of Fermi levels depends on the work functions and the bandgaps of 
the CNT and metal, resulting in the formation of a Schottky barrier. Carrier 
transport through the CNT–metal interface is mainly via quantum tunneling 
through the Schottky barrier. Large quantity synthesis of CNT is making headway, 
and the eventual emergence of CNT electronic products in the marketplace – 
similar to the success achieved by the spintronic spin valve and MRAM – depends 
on how fast and far the fabrication techniques can improve. 

 Metal spintronics have been most successful in terms of commercialization, 
but semiconductor spintronics still have fundamental challenges to overcome. 
Does this paradox suggest an opportunity for CNT spintronics? CNT already 
has the essential ingredients for spintronics (e.g. long spin diffusion length, 
large current carrying capacity). Its electroluminescence property might even 
promise some sort of unifi cation which involves charge, spin and light – 
namely electrophoto-spintronics. This all might seem speculative, but the 
possibility does exist.  
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   2.3.6  Graphene electronics 

 More advances in 2D nanoscale electronics and physics have been achieved in 
recent years with the advent of graphene-based electronic devices 45  consisting of 
monolayer and bilayer carbon-based 2D systems. Graphene has superb or extreme 
electronic properties, which explains why it might be an ideal candidate for 
possibly replacing silicon in the ever shrinking world of nanoscale electronics. 
Fundamentally, the transport in graphene is governed by the Dirac equation rather 
than the Schrödinger equation, refl ecting the effective relativistic behavior of 
electrons in graphene. 

 The extremely high mobility of graphene of up to 100 000 cm 2 V −1 S −1  at room 
temperature is its most striking electronic feature. This property makes graphene 
one of the leading candidates in the post-silicon era. Besides ambient ballisticity, 
the large value of Fermi velocity ( v   F  ) and low Schottky barrier of graphene could 
reduce switching time. However, graphene possesses a lower bound to its 
conductivity, i.e. it has a fi nite minimal conductivity even when carrier density 
goes to zero. This poses an obstacle to achieving a good on/off current ratio, 
which is a key fi gure-of-merit of transistor devices. In fact, one of the main hurdles 
that graphene faces in terms of serving as a suitable material for electronic devices 
is the absence of an energy gap. There have been various proposals (substrate 
choice, and lateral or magnetic confi nement) to induce a gap in graphene. It has 
been demonstrated that a systematic modulation of the graphene gap can be 
accomplished by varying the sample thickness. This work has paved the way for 
possible bandgap engineering in graphene. Some other useful properties of 
graphene are listed in  Table 2.3 . 

  Graphene spintronics 

 Graphene material can be used as the spacer layer between two ferromagnetic 
electrodes in a current-perpendicular-to-plane spin valve. What is important here 

   Table 2.3     Useful transport properties of graphene-based electronics  

Topic Electronic property Experimental value Remark

1. Mobility 15 000 − 

100 000 cm2V−1S−1

300 K

Remains high even with 

increasing n > 1012cm−2

2. Mean free path 300 nm 300 K

Room temperature ballistic is 

already within reach for today’s 

device sizes

3. Screening length 5 A

4. Minimal conductivity 4e2/h Theoretical prediction is 4e2/hπ
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is the attempt to measure CPP MR using graphene. There have been some 
experimental indications that spin current can probably travel though graphene 
without much spin fl ip, indicating a long spin diffusion length. It was also found 
in recent experiments that graphene is enough to reduce the exchange coupling 
between the FM electrodes. 

 One may also consider that the lack of spin orbit coupling and the absence of a 
hyperfi ne effect might render graphene suitable for quantum computation where 
stability of the spin orbit is crucial for the proper functioning of such devices. 
Besides, it has been suggested 46  that the valley degree of freedom in graphene can 
be compared to the spin degree of freedom in spintronics. This is due to the 
independence and the degeneracy of the valley degree of freedom. Indeed the 
valley polarization can be achieved by engineering means. Intervalley scattering 
is very well-suppressed, which makes the valley DOF robust. The concept of 
valley electronics might lead to new devices utilizing this degree of freedom. In 
fact, two valley fi lters in a series may function as an electrostatically controlled 
valley valve.  

  Graphene single electronics 

 Graphene is particularly suitable for single electronic devices if one considers the 
fact that graphene nanostructure is stable down to atomic monolayer thickness. A 
possible means of introducing CB and single electronic effects in graphene is via 
nanopatterning of the entire SET circuitry (including the contacts, the central 
quantum dot and the interconnects) out of a single graphene sheet. 
As mentioned previously, SET circuits constitute a well-established class of 
nanodevices with novel transport properties due to correlated tunneling and 
Coulomb charging effects. However, these distinct transport characteristics are 
usually erased or washed out at room temperature. The thermal stability of 
graphene makes it a good material to exhibit SET effects. 

 It has been conceived that the absence of an energy gap and the effect of Klein 
tunneling would render it diffi cult to achieve one of key requirements of single 
electronics in graphene, i.e. electron confi nement in graphene. However, this 
obstacle can be overcome by making use of lateral confi nement. It is well known 
that a graphene nanoribbon exhibits an energy gap due to confi nement. By 
introducing two constrictions sandwiching the central island, one may be able to 
generate energy gaps of the order of about 6 meV for electron confi nement.    

   2.4  Electronic background 

 Electronics refers to the transport of electrons in device systems. Recent progress 
achieved in nanotechnologies has enabled devices to be made very small down to 
the nanometer scale, giving rise to the emergence of various nanoscale electronics. 
Electron transport is the underlying physics of conductance properties or I–V 
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characteristics of devices. Much has been spoken about the fact that, in 
nanoelectronic devices, one has to take into account both boundary effects and 
neighboring perturbations. For this purpose, the NEGF formalism is the most 
complete and systematic method to derive the transport equations formally. 

 However, the general electronic background in the central channel under which 
the transport equations are to be constructed still needs to be studied separately. 
Electron transport is often closely connected with its energy properties. The 
environment is thus best characterized by the energy–density ( E  −  r ) and the energy–
dispersion ( E  −  k ) relations. For simplicity, we will confi ne ourselves here to pure 
condensed matter systems without boundaries or discrete parts, although it is well 
known that boundaries give rise to sub-bands which alter the ( E  −  k ) relations. 

 How does energy affect the transport properties of electron, or in the language 
of engineering, the I-V characteristics? First of all, knowledge of the  E  −  r  relation 
allows one to determine the correlation energy between electrons and understand 
when a specifi c theory of electron propagation breaks down (for instance, in 
highly correlated systems, the perturbative fi eld theory cannot be applied). An 
electron propagator is a function of the energy and its wavevector, i.e.  G ( E ,  k ). 
The energy band or dispersion profi le can thus provide very physical information 
directly related to the extent of k-space over which one sums the propagator. In 
other words, energy band information allows one to appreciate the physics of 
transport over different energy ranges. The energy band profi le also determines 
the carrier’s effective mass, as well as the carrier type (e.g. the conduction band of 
a semiconductor defi nes an electron carrier), while the valence band defi nes the 
hole carrier, and the Rashba sub-band defi nes a spin particle with a non-scalar, 
special unitary group of degree 2 (SU(2)) charge.  

   2.5  Non-interacting electron gas 

 For metals like Na and Al, the ionic charges are taken to be uniformly distributed 
to form a static positive background which ensures that the total system is neutral. 
Electrons move in this uniform positive background, which is also known as 
jellium (see  Fig. 2.15 ). In the absence of Coulomb interaction, one has a free 
electron gas system. In the presence of Coulomb interaction, no particle is a totally 
independent particle. Every particle is defi ned by its intrinsic property as well as 
interaction with the other particles. 

 Determination of an accurate expression for  E  −  r  is diffi cult if the crystalline 
arrangement of the ions is taken into account. For simplicity, the background ions 
are normally smudged or averaged out to yield the uniform background of positive 
charges, which is the aforementioned jellium. Thus, under this approximation, the 
same  E  −  r  expression applies for material systems with different crystal structure. 
For example, the same  E  −  r  expression is applicable to both metals and 
semiconductors, although they have different values of  r   s  , which is a measure of 
the electron correlation energy. 
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 The same cannot be said for the energy band where the metal and semiconductor 
have distinctly different  E  −  k , because the energy band is derived taking into 
account the crystal arrangement. Thus, different materials such as metals, 
semiconductors, carbon nanotubes, graphene, insulators, molecules and 
superconductors give rise to different energy bands. For the non-interacting 
electron gas system, we will focus on the small  r  region where the electron system 
consists primarily of the kinetic energy and behaves like gas. We will apply the 
non-interacting model known as the jellium model, to derive the energy band. 

   2.5.1  Background energy 

 In this section, we show that the background energy (or the jellium term) of a 
material system will be cancelled exactly by an interaction energy term known as 
the direct energy. Here, we derive the background energy which comprises of the 
ion ( H   b  ) and ion-electron ( H   be  ) energies of: 

    [2.14a] 

    [2.14b] 

 where  N  is the total number of electron and  V  volume of the material bulk. Note 
that due to the long-range nature of the Coulomb interaction, the jellium term is 
individually divergent. However, it is shown later that the direct energy term 
cancels this divergent term exactly. The divergent nature gives rise to diffi culty in 
mathematical representation. The Yukawa term  e  − μ | x  −  xʹ |  is therefore introduced to 
produce a well-defi ned expression prior to its eventual cancellation. With proper 
substitution, the integral becomes:

   

. [2.15]  

   2.15     Electrons can be treated like gas particles moving randomly 
in a positively charged background – also known as jellium in 
many-body physics.      
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 Straightforward integration of the above leads to:

   
 [2.16]

  

 Having evaluated the integral, the total background energy can be found to be as 
follows:

   . [2.17]   

   2.5.2  Electron kinetic and direct energy 

 The background energy has been derived based on semiclassical means. The 
electron energy will now be derived more formally based on quantum methods. 
We learnt earlier that the electron energy of the system consists of kinetic energy 
and potential energy. Note that in the following, the scalar amplitude of electron–
electron interaction (matrix element) has been explicitly written down. Since the 
Fermi gas has been written in the fi eld theoretic form, second quantization is 
required in this section. In second quantization, an operator can be written in the 
form of its matrix elements summed over all possible states, and multiplied by 
the creation and annihilation operators of those states. In the following, we show 
the derivation of these terms as well as the scalar amplitude of electron–electron 
interaction:

   
 [2.18]

Factor of 2 to account for double accounting       Scalar amplitude of electron–electron interaction

 where  T     v   is the fi rst-quantized kinetic energy operator. The derivation of the 
scalar amplitude of electron–electron interaction, upon its completion, imposes an 
important condition that can be interpreted straightforwardly as the conservation 
of momentum, which dictates:

   

 [2.19]
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 With the above, the Hamiltonian can be written in a more intuitive form of:

   

 [2.20]

  

 Note that the potential energy contains two terms, i.e. the fi nite momentum 
transfer and the zero momentum transfer terms. The former is also known as the 
exchange energy, while the latter is called the direct energy. Recalling that 
electrons are fermionic particles, the following anti-commutation rules apply:

    [2.21]  

 Note that  a   kλ   is an operator which destroys a particle with momentum  k  and spin 
 λ , whereas  a †  kλ   is an operator that creates a particle with momentum  k  and spin  λ . 
When the two operators are paired together as follows,  n̂   kλ   =  a †  kλ       a   kλ  , they represent 
the number of particles with momentum  k  and spin  λ . Since in condensed matter 
physics we are only dealing with electrons that are fermions, the average of   n̂   kλ        in 
the ground state or 〈 G |  n̂   kλ       | G 〉 is either 1 or 0, depending on whether momentum  k  
is above or below the Fermi level. Therefore 〈 G |  n̂   kλ       | G 〉 can also be represented by 
the Heaviside function of  θ ( k   F   −  k ). Note that:

   
.
 [2.22]  

 We will now study the direct energy, which is in fact the second term of the 
potential energy.

   

  . [2.23]  

 Because destroying a particle with a particular momentum twice yields a zero, i.e. 
 a   k   a   k   = 0, the momenta  k  and  p  must be different. Any operation on the system in 
the ground state should return the system back to the ground state. Since the above 
Hamiltonian involves zero momentum transfer (i.e. Δ k  = 0), the only possibility is 
that an electron with momentum  k  is destroyed and replaced by the creation of an 
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electron with the same momentum  k . The same goes for an electron with 
momentum  p ; this leads to the pairing as shown below:

   

 . [2.24]  

 Here, one recognizes that  a †  k,λ  1 
   a   k,λ  1   =   n̂   k,λ     1   which is the number operator that gives 

the number of particles with quantum state  k λ  1 . What can be observed or measured 
is the expectation or average value of this operator, which is just the number of 
particles with quantum state  k λ  1 . In the above, we have made use of the anti-
commutation relations, { a   k  ,  a   p  } = 0; { a †  k  ,  a †  p  } = 0. The average direct energy is thus:

    [2.25]  

 It can be seen that the fi rst term of the direct energy cancels the average of the 
background energy. The second term of the direct energy goes to zero with proper 
limit taking. We will ignore the process of limit taking which makes the second 
term vanish. The system is thus left with the kinetic energy if the exchange can be 
neglected for the time being. We discuss the exchange energy in Section 2.6 on 
interaction. The kinetic energy operator is:

    [2.26]  

 where  T   v   is the fi rst-quantized kinetic energy operator. Note that the vector 
quantity has been written in bold. 

  Exercise 2.1 

  Evaluate the matrix element  〈 k  1   λ  1 | T    v  | k  2  λ  2 〉  of the kinetic energy.  

  Solution  

  Hint: The matrix element is: 
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 Thus, the full expression for the kinetic operator is:

  

   [2.27]  

 To fi nd the kinetic energy per particle of the system, one needs to consider the 
Fermi wavevector. The number of particles in the system can be found by the 
following expression:

    [2.28]  

 Note that the summation over spin above leads to a factor of 2. It is not hard to 
deduce from Eq. 2.28 the Fermi wavevector expressed in terms of electron density 
as below:

    [2.29]  

 In Eq. 2.29, use has been made of the important relation of:

    [2.30]  

 Equation 2.30 simply follows from the fact that one state fi lls the k-space volume 

of    Averaging the kinetic energy over the ground state, 

we have:

    

[2.31]  

 Note that to convert SI units to the Rydberg unit, one needs the following 
relationships:

    [2.32]  
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 where  r  0  is the radius defi ning a volume surrounding an electron. Therefore  r  0  can 
be interpreted as the average inter-particle spacing. With the earlier expressions 
found for the Fermi wavevector, the kinetic energy can now be expressed in terms 
of the Fermi wavevector and electron density. It follows that the density of states 
per bulk volume can be deduced by proper substitution to be:

   . [2.33]  

 The number of particles as well as the total energy of the system will be given by:

   . [2.34]  

 Although we have found the density of states, it does not necessarily imply the 
density of electrons. Density of states below the Fermi level implies the density of 
electrons only at zero temperature. At non-zero temperature, the probability of an 
electron occupying a state is given by the probability function also known as the 
Fermi–Dirac function:

   . [2.35]  

 This function is a Heaviside function only at zero temperature, which decrees 
strict occupation of all states below the Fermi energy and the vacation from any 
state above the Fermi energy. But at non-zero temperature, the system becomes 
partially degenerate and electron occupation obeys the smooth Fermi–
Dirac distribution. In fact the Fermi–Dirac function is very robust against 
temperature effect in that its deviation from the Heaviside profi le is only affected 
minimally even at very high temperature. Similarly its derivative is also a strict 
delta function at zero temperature with minimal deviation as temperature 
increases.

   
. [2.36]

  

 It is, however, interesting to note that, in semiconductors, electrons above the 
conduction exceeds the Fermi energy by    Electron 
distribution can be approximated by the Maxwell Boltzmann distribution instead.   

   2.5.3  Energy band 

 Besides the ground state, there is one important approximation in the fi eld 
theoretic description of electron gas, i.e. electrons are free and not bound to the 
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ion cores. In reality, the ion cores are not uniformly distributed but extend 
periodically in three dimensions. This effect can be fully appreciated by studying 
the energy dispersion (or  E  −  k ) relation. The  E − k  relation takes fully into account 
the core periodic potential which, unlike the random electron correlation potential, 
gives rise to the quantization of the electron wavevectors, and hence energy bands 
and bandgaps. It is fortunate that the effect of periodic potential is not hard to 
incorporate and the benefi t of such modifi cation is tremendous. The emergence of 
energy band and bandgaps provides an explanation for the important transport 
concept of conductance and resistance modulation. 

 Most importantly, energy dispersion studies allow one to distinguish metals 
from semiconductors and insulators. Under the free electron assumption, all 
material systems are regarded as consisting of a collection of electrons (forming 
an electron gas or liquid), and thus cannot be differentiated from one another. But 
experiments have shown the presence of different classes of materials that vary 
signifi cantly in terms of their electrical conductance (namely, metals, 
semiconductors, semimetals, insulators) with different periodic ion arrangements. 
It is thus reasonable to expect that ionic arrangements can exert a strong infl uence 
on the electron dynamics, energy and so forth. One would also suspect that under 
this infl uence, the electrons might not travel as freely as was assumed in the free 
electron model and might exist as some kind of bound waves. When electron 
motion is constrained, quantization of the wavevector is to be expected. 

 Bloch’s theory of non-interacting electron traveling in periodic cores explains 
the existence of metal, semiconductor and insulator in 3D electron gas systems. 
The important point here is the Fermi energy relative to the band. For example, in 
metals, the Fermi energy is in the middle of the band, i.e. there will be no energy 
gap between the fi rst unoccupied level and the last occupied level. In insulators, 
the Fermi energy is within an energy gap (bandgap) above the valence band or the 
fi lled band for electrons bound to atomic core. In semiconductors, the situation is 
similar, except that the bandgap is relatively small, i.e. usually less than 2 eV. 
Thus, semiconductors like GaAs and Si are insulators at zero temperature. But at 
room temperature, a suffi cient number of electrons can be excited into the 
conduction band, where they become charge carriers. 

 Let us consider a spatially periodic potential which gives rise to the energy 
bands and bandgaps discussed above. For simplicity, we assume periodicity in 
one dimension only. We know from wave mechanics that when the Bragg 

condition of    is satisfi ed, wave refl ection can occur. Here,  a  is the 

lattice constant of the 1D system and    can be viewed as a property of the 
system related to its periodicity. Thus the fi rst refl ection occurs in the range of 

   which is also known as the fi rst Brillouin zone of the lattice system. 

The points of refl ection at    in fact correspond to the points where energy 
gaps emerge. 
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 We will now explain this in terms of the electron waves. Electron waves with 
long wavelengths (small wavevectors) can be regarded as mostly free waves since 

they are bound only by the material edges. The lowest wavevector is   . These 

wavevectors increase in multiples of   . The energy of these electron waves 

increases parabolically with the wavevectors since the quantization effect due to 
material edge is too small to be noticeable. As the wavevector reaches a value that 
satisfi es the Bragg condition, the electron wave is no longer free. In fact, electron 
waves at these wavevectors exist in the linear superposition consistent with 
quantum mechanics formalism of single particle wave function:

   
. [2.37]

  

 The above are standing waves and the negative sign is due to the change of phase 
upon refl ection. For a free traveling wave, the probability density is  ρ  =  ψ * ψ  = | ψ | 2  
= 1. But for the standing waves of the above, we have:

    [2.38]  

 The above electron densities give rise to a difference of potential energy between 
 ψ (+) and  ψ (−). This difference is the energy gap. The wavefunctions at the fi rst 
Brillouin zone are, after normalization:

   . [2.39]  

 Writing the potential energy of an electron in the crystal as  U ( x ) =  U  cos2 πx / a , the 
fi rst energy gap is:

   

  [2.40]

  

 In the following, we present a model of the periodic potential, known as the 
Kronig–Penny model ( Fig. 2.16 ). 

 The electron waves in region, II, I and III are, respectively,  ψ   II   =  Ae   iKx   +  Be  − iKx   
 ψ   I   =  Ce   Qx   +  De  − Qx  , and  ψ   III   =  ψ   I   e  − ik ( a + b ) , consistent with the Bloch form. 
Matching the wavefunctions and their derivatives at  x  = 0, one has  A  +  B  =  C  +  D  
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as well as  iK ( A  −  B ) =  Q ( C  −  D ). Matching wavefunctions and derivatives at 
 x  =  α , one has:

   
.
 

[2.41]

  

 The wavefunctions and their derivative equations will only have a solution at 
 x  = 0 and  x  =  α  if the determinant of the coeffi cients of A, B, C, D vanishes, or:

   . [2.42]  

 One can simplify Eq. 2.42 by setting  b  = 0,  U  0  = ∝, such that    In this 
limit,  Q  >>  K  and  Qb  << 1, and Eq. 2.42 reduces to:

   . [2.43]  

 The allowed values of the energy  E  are given by ranges of    for 

which the function lies between ±1. For other values of the energy there are no 
travelling waves or Bloch-like solutions to the wave equation. Forbidden gaps are 
thus formed. The energy dispersion relation has been derived above under the 
non-interacting electron system where electron waves are solutions to the non-
interacting Hamiltonian. 

 One immediate benefi t of this analysis is the realization that metal, 
semiconductor, elemental carbon, single molecules and superconductors can all 
be induced to conduct electrons, providing fi ve main classes of material choice for 
the design of new nanoscale electronics. The electron charge and spin provide two 
DOFs which can be represented by the coupling constant of the gauge potential. 

   2.16     Idealized square potential distribution mimic of crystal core 

potential for illustrating the core crystal effect on energy band.      
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Another DOF is the device dimensionality, which can range from 3D (bulk), to 
2D, 1D and 0D. In a crude reasoning, there are at least 40 permutations in terms 
of possible nanoelectronic systems, thus promising a fertile area for further 
development.  Table 2.4  summarizes the different DOFs that can be exploited in 
nanoelectronic systems. 

  Effective mass 

 The dispersion relation ( E  −  k ) arises due to boundary conditions and, under these 
conditions, the electron waves are no longer plane waves. To maintain the simple 
plane wave forms for electron, the effective mass approximation is followed. 
Refer to references 3 and 4 for the elucidation of the concept of effective mass. 
The effective mass has to be used in the derivation of the kinetic energy, particle 
density, average electron energy and so forth. 

 In summary, we have learnt that, for small particle spacing, the electrons can be 
regarded collectively as a gaseous system where the kinetic energy is the only 
relevant energy. Many important quantities like the Fermi wavevector, particle 
density and average electron energy can subsequently be derived under this 
approximation. But since these derivations are based on the free electron 
approximation, where electrons are regarded as plane waves, modifi cation would 
be required to model Bloch electron waves in crystals, which are more complicated 
than plane waves.    

   Table 2.4     Requisite background conditions for the construction of nanoelectronic 

transport equations  

   E − k E − r

1. Device channel 

material

Metal, 

semiconductor, 

carbon, molecule, 

superconductor

Energy band 

Crystal-core 

dependent

Energy correlation 

(electron gas, 

liquid, Wigner 

crystal) 

2. Carrier type 

(coupling 

constant)

Electron charge, 

hole charge

Conduction band

Valence band

Exchange energy

Kinetic energy

Angular spin Zeeman sub-bands

Pseudospin

Isospin

3. Device channel

dimension 

(nanoscale)

3D bulk

2D sheet

1D nanowire

Geometrical sub-

bands

Contact electrode 

perturbation 

 0D quantum dot Geometrical/ 

Coulomb sub-

bands
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   2.6  Interacting electron gas 

 The physics of interaction is rather complicated and takes one into the realm of many-
body effects. As described earlier, the propagators and Green’s functions are used 
extensively to study electron transport in an interacting system. In this book, we do 
not delve fully into interacting electron transport. In this section we discuss the effect 
of electron–electron interaction on the energy and particle density relation in order to 
give readers an idea of the environment in which the electrons reside or travel. 

   2.6.1  Electron exchange energy 

 After the cancellation of the background energy by the direct energy, the total 
energy of the system now consists of just the kinetic energy and the correlation 
energy with fi nite momentum transfer, i.e. the exchange energy.

   

  [2.44]  

 Recalling that the direct energy is     , we hereby label the exchange 
energy according to     . The formal expression of the exchange energy 
is given below:

  

   [2.45]  

 As is the case with the direct energy term, any operation on the ground state of the 
system that involves an electron being destroyed and replaced should, upon 
completion of the process, return the system to the ground state. In the case of 
direct energy, the electron can be replaced by itself which implies the zero 
momentum transfer picture, as explained earlier. In the case of exchange energy, 
the momentum transfer is fi nite, i.e.  q  ≠ 0. One way of achieving this is to let an 
electron of momentum  p  exchange position with that of  k  by imparting momentum 
 q  = ( p  −  k ) to  k  while maintaining the spin angular momentum of both electrons. 
This process is mathematically denoted by  δ   λ  1  λ  2    δ   p,k  +  q  . We then shift the operator 
 a   p  , λ  2  one notch to the left by ‘jumping’ over  a †  p−q,λ  2  :

    [2.46]  

Since these two operators are different, swapping them generates a factor of –1.
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 Thus, the fi nal expression for the exchange energy becomes:

   

 [2.47]

  

 In the integral equation above, all operators and state vectors have disappeared. 
The operators are gone but they have left behind a negative sign and the Heaviside 
functions. In other words, the second quantized form contains information that 
has been translated to the energy’s sign as well as the limit for integration which 
determines the interaction’s strength. 

  Exercise 2.2 

    (1)     In an electron system, the total energy comprises only the kinetic 
energy and the correlation energy with fi nite momentum transfer, 
i.e. the exchange energy. By proper reasoning and pairing of the 
electron operators, the exchange energy can be derived as follows:    

    

     The above can be expressed in the form of an integral function:    

    .

     Show that this integral fi nally leads to the exchange energy per 
particle expression of:    

    

  Solution  

  Hints: Let’s start from one value of  q  in any direction. The strength of  q  
must fall in the range  0 <  q  < 2 k   F    to ensure that, for any q, there exists a 
k  <  k   F    to ensure that |k + q| is less than k   F  .  With this, the limits for this 
integration as imposed by θ  ( k   F   − | k  +  q |) θ ( k   F   − | k |)  would have been fulfi lled. 
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Thus integration is essentially over the overlapping region between two 

circles of radius k   F    each. Use polar coordinates.  

         2.6.2  Scalar strength of electron–electron interaction 

 In the above, much has been used of the explicit expression of the matrix element 
to aid the derivation of the energy terms. Here, we show how the matrix element 
for the electron–electron interaction can be written down by following the four-
fi eld theory commonly used in many-body interaction. The matrix element has the 
slightly more complicated expression as follows:

    [2.48]  

      Site 1  Site 2    Site 1  Site 2

 With the substitution of  x  =  x   2  ;  y  =  x   1   −  x   2  , Eq. 2.48 reduces to:

   

[2.49]  
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 Note that in Eq. 2.49, the relation of 

 has been used. In discrete form,  δ ( a  −  b ) =  δ   ab  . For the change of 

variables above where  x  1 ,  x  2  →  x ,  y , the corresponding Jacobian of:

    [2.50]  

 is trivial. Letting  M  = 〈 k  1  λ  1 ,  k  2  λ  2  | V | k  3  λ  3 , k  4  λ  4 〉 and integrating over the spherical 
coordinates:

    

[2.51]  

 Note that Eq. 2.51 is equivalent to another change of variables where the Jacobian 
is simply  y  2  sin  θ . To save space, we will now represent    with just a 
simple notation of  δ . It thus follows that:

    
[2.52]  

 Integration by parts yields:

    

[2.53]  
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 Recalling the expression in the dashed box in Eq. 2.52 where:

   

[2.54]  

 one can therefore arrive at:

    

[2.55]  

 In fact    plays the role of ensuring an important physical outcome, that is, 
momentum conservation and spin conservation. The delta function allows one to 
simplify the correlation energy expression of electrons, reducing the number of 
possible interaction or pairing in the four fi eld operators. As we have seen, the 
matrix element expression above appears frequently in all second-quantized 
representations of the electron–electron interaction. 

 Drude’s assumption of an independent electron model has been validated by 
the fi eld theoretic description of the electron system which shows that, indeed at 
high electron density, electron–electron correlation can be neglected. The fi eld 
theoretic approach is, however, accurate only for small interparticle spacing 
where the ground state remains valid. 

 We have studied the many-body physics of a free electron gas and, indeed, it 
validates the early conceptualizations of Drude and Somerfeld. We discuss below 
a few aspects of Drude’s conceptualization and compare this with the many-body 
effects derived earlier. Drude’s model assumes independent electron 
approximation, which says electron–electron interaction can be neglected. This 
can be validated by derivations that show that, indeed for high electron density, 
the electron–electron interaction effects scales linearly with density while the 
kinetic energy scales as the square of the density. At high density, electron 
interaction can be neglected, validating Drude’s assumptions. 

 Drude’s model assumes free electron approximation, that is, in between 
collisions, the ionic core has no effect on electron motion. But in reality, the ionic 
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core is not evenly distributed, it is periodically arranged. Electrons are not 
completely free from the ionic core as there will be binding energies associated 
with its infl uence on electron dynamics. 

 The energy for the electron system is:

    [2.56]  

 Equation 2.56 shows that, when electron density is very high, the kinetic energy of 
electrons is very high and thus the potential energy due to interactions can be 
neglected. Thus, a high-density electron system mimics a gaseous atomic system. 
At lower electron density, interaction becomes more prominent as opposed to the 
kinetic energy (although in reality both energies drop with lower density, but the 
kinetic energy drops more rapidly than the interaction energy). Under this condition, 
Coulomb interaction or electron–electron interaction can no longer be neglected. A 
further decrease in density takes the electron system to the liquid phase. 

 At this stage, the density of an electron system can best be characterized by a 
characteristic length known as the Wigner–Seitz radius. This radius defi nes a sphere 
(3D) or a circle (2D) within which there contains only one electron. Normally when 
the Wigner–Seitz radius exceeds one, the electron system can be considered as an 
electron liquid, where interaction is becoming important. Perturbation theory 
normally does not work well for a Wigner–Seitz radius higher than one. However, 
due to screening, the Landau Fermi liquid theory works reasonably well in the 
regime of a Wigner–Seitz radius that slightly exceeds one. For a Wigner–Seitz 
radius lower than one, the electron system can be treated as a gas, where interaction 
can be neglected. In a weakly interacting system like this (gas), perturbation theory 
can be used to study electron–electron interaction. In the electron liquid phase, the 
Wigner–Seitz radius ranges from 1 to 110 for a 3D system, and from 1 to 35 for a 
2D system. Note that, common metallic systems like Na, Mg and Al, have Wigner–
Seitz radii of 2–6. Thus, perturbation theory does not apply very well here. For a 
very low density system, electron–electron correlation is so prominent that the 
electron liquid transforms to a crystalline phase also known as the Wigner crystal. 

 Due to the fact that electron correlation increases with interparticle spacing, one 
can deduce that ground state expectation will be inaccurate when the interparticle 
spacing is large. This is because we have evaluated the energy based on the expectation 
value of the ground state. The Rayleigh–Ritz principle states that the exact ground 
state of a quantum system always has a lower energy than that evaluated by taking 
the experimental value of the total Hamiltonian in any normalized state. Wigner 
showed that, in the low density limit, the energy per particle should be given by:

    [2.57]  

 A pictorial representation of Eq. 2.57 is shown in  Fig. 2.17 . 
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   2.17     Pictorial illustration of electron density effect on the energy of the 

system. Electron transport expressions are thus closely related to the 

electron density.     

 Most of today’s devices are based on electron gas systems. Can devices be 
made from electron liquid systems? The quantum Hall system is one good 
example. Superconductivity is another interesting system which is not gaseous. 
Recently, spintronic systems based on the spin orbital effect are treated as some 
forms of a non-Abelian liquid. We are most familiar with electron gas but we 
should keep our mind open. There are many possibilities in the world of nanoscale 
electronics beyond electron gas systems. 

  Table 2.5  summarizes the energy properties of the various material systems 
represented by their crystal cores. While the crystal cores are fi xed frames, the 
carriers are mobile and move about randomly. The fi nal column of  Table 2.5  
describes the carrier types which have direct physical signifi cance with respect to 
their dynamics and to the types of current one would expect to measure in 
nanoscale electronic systems. 

  Exercise 2.3 

    (1)     In material with a very high electron density or small interparticle 

spacing (e.g. metals), the electron system can be treated as 

a non-interacting gas in which only the kinetic energies of 

individual electrons need to be considered. This is consistent with 

Drude’s assumptions of non-interacting (independent) electron 

approximation. Explain in terms of energy relation with interparticle 
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   Table 2.5     Summary of various nanoelectronic systems with respect to their energy 

systems and carrier types   

  Crystal core E − k E − r Carriers

1. Spin electronics Metal (FM) Exchange 

dispersion

Electron gas Electron 

Semiconductor Rashba, 

Dresselhaus, 

Luttinger, 

sub-bands

Electron gas Electron 

Spin particle

Diluted 

magnetic 

semiconductor

Carbon Cylindrical 

sub-bands

Electron 

2. Single 

electronics

Metal Coulomb 

sub-bands

Correlated Electron

Semiconductor Geometrical/

Coulomb 

sub-bands

Few electron 

system

Electron

3. Carbon 

nanotube (CNT) 

electronics

Carbon Cylindrical 

sub-bands

Luttinger 

liquid

Quasiparticle

(Semiconductor/

metal-like)

4. Molecular 

electronics

Organic/carbon (Semiconductor/

insulator-like)

Correlated 

few electron 

system

Electron

5. Graphene 

electronics

Carbon Relativistic 

neutrino

Electron gas Massless/

Relativistic 

massive

Massive Dirac

Graphene 

nanoribbon (GNR)

Carbon Sub-bands 

(semiconductor/ 

metal like)

Pseudospin 

Valley-spin 

6. Quantum Hall 

systems and 

devices

Semiconductor/

graphene

(IQHE) Landau 

sub-band

Electron 

correlated

Electron

(FQHE) Landau 

sub-band

Electron 

liquid

Anyon

Topological 

insulators

Dirac cone Spin particle 

7. Superconducting Superconductor Superconductor 

bandgap

Electron 

liquid

Cooper pairs

8. Plasmon and 

photonics

Metal–insulator  Electron 

liquid

Plasmon and 

polaron

   Note: Carrier types are classifi ed with respect to their minimal coupling to the 

momentum operator.    
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spacing why Drude’s assumptions are only accurate for high-density 
electronic systems.   

   (2)     While the non-interacting (independent) electron assumption is 
generally correct for most metal and semiconductor materials, the 
free electron approximation which ignores the periodic distribution 
of the ion cores is problematic. Explain how the development of band 
theoretic method provides the fi nal explanation for why materials 
behave like metal, semiconductor, and insulator.   

   (3)     The current density in diffusive transport is given by:    

  j  =  nev  

   where  e  is the electron charge,  n  is the bulk electron density,  v  is the 
drift velocity. This expression seems to suggest that electric current is 
contributed by all electrons below the Fermi energy. But the energy-
resolved experiment as well as Boltzmann theory show that the 
measured electric current is contributed by the dynamic of electron 
close to the Fermi energy. Explain the apparent contradiction of the 
current expression to experimental and theoretical consensus.   

  Exercise 2.4 

  The number of particles in a non-interacting system is formally described 
by the following expression  

    

  where  n̂   kλ         is the number operator, V is the volume of the sample, 

θ ( k   F   − | k |)  is a Heaviside function,    Using the spherical 

coordinates or other methods, deduce that: 

    (1)     the Fermi wavevector of a bulk electron gas is given by k   F   = (3 π  2  n ) 1/3   

   (2)     the kinetic energy per particle in the ground state is      

    (3)    the density of states per bulk volume is     

  where  n  is carrier density.        

   2.7  Electron localization 

 The phase relaxation length ( l   φ  ) is a special quantum mechanical relaxation length 
which has no analogs in classical physics. Namely, classical motion can be 
described as evolution of the probability of fi nding a particle at a given point at a 
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given time. However, in quantum mechanics, the state is characterized by the 
wavefunction which has a phase. The phase is important in the so-called 
interference phenomena, where the electron wavefunctions having different pre-
history are collected at the same point. If the phases of the waves are not destroyed, 
a specifi c quantum interference phenomenon can be observed. The phase 
relaxation time,  τ   φ   describes the relaxation of this phase memory. It is clear that 
scattering against any static, spin-independent potential cannot lead to the phase 
relaxation. Indeed, in any stationary potential the equations of motion are time-
reversible. The processes that can be responsible for phase relaxation are the ones 
which break the symmetry with respect to time reversal. These processes are, 
among others, inelastic scattering by phonons and spin–fl ip processes. 

 One can thus visualize that, within a phase coherence length, an electron 
experiences many elastic collisions during a typical time  τ   φ  . Since the electron is 
considered to be moving diffusively, i.e. subject to many scattering events, the 
length can be estimated to be  l   φ  , where:

    [2.58]  

 and where    is the diffusion constant ( d  is the dimensionality of the electron 
gas). The relaxation process mentioned above is relevant to the interference of the 
wavefunctions belonging to a single-electron state. However, interference can also 
be important for the interaction of two electrons having close energies. Indeed, if 
the energy difference between the electrons is ≈  kT  they travel almost coherently 
during the time  ħ / kT . Thus the characteristic length of coherent propagation is 
   which is known here as the thermal dephasing length ( l   T  ). 

 Today’s MOSFET technology, which makes semiconductor as short as 100 nm, 
can already deliver commercial 2DEG devices shorter than the mean free path 
(MFP). Electron transport can be considered ballistic. Since  l   φ   is normally longer 
than the mean free path because it is harder for collision process to destroy phase 
coherence than to scatter momentum, nanoscale devices normally fall within  l   φ   
( Fig 2.18 ). Electron phase is randomized (losing phase coherence) if the device is 
longer than  l   φ  . Within the  l   φ  , device, resistance scales with an extra quantity beyond 
the normal linear scaling effect due to only momentum scattering. Such scaling 
becomes exponential when the device length approaches a critical value known as 
the localization length. In other words, electron transport becomes impossible 
through a conductor whose length extends beyond the localization length. 

 At fi rst glance, the reasoning above seems to suggest that any conductor longer 
than the critical localization length will become an insulator. But this is not 
consistent with our knowledge in electrical engineering. Electrical engineers have 
been able to lay long wires for data transmission. This is because the localization 
effect is valid only when the electron phase is coherent. In other words, the device 

�� �� �� �� �� ��



 Nanoscale physics and electronics 73

©  Woodhead Publishing Limited, 2012

length must be shorter than the phase coherent length but comparable to the 
localization length in order for this effect to manifest ( Fig 2.19 ). 

 A conductor which is shorter than its  l   φ   is known as the phase coherent 
conductor. Take the example of a metal. The localization length of a metal is  M  
×  L  where  L  is of the order of the MFP and  M  is the number of modes. An electrical 
wire with cross section 200 nm × 200 nm has nearly 10 6  modes. With the MFP in 
metal approximately 1 nm, the localization length works out to be 1 mm. An 
electron in metal would have had its phase randomized before it can experience 
the localization effect. Nonetheless, weak localization has been observed in very 
thin metal wires at very low temperature. In semiconductors, the number of modes 
is much less than metals; weak and strong localization have been observed in 
1D/2D semiconductors. 

 If a conductor’s length is comparable to the localization length, it is said to be 
in a strong localization regime; if the conductor length is much shorter, it is in a 
weak localization regime. Weak localization in 1D/2D materials entails 
conductivity correction. As temperature increases,  l   φ   decreases and the weak 
localization effect will disappear. Earlier we mentioned that the localization effect 
can only manifest for phase-coherent electrons. It is also known that electron–
electron scattering could give rise to similar conductivity correction with 
increasing temperature. Since the two effects are similar, they can be distinguished 
by applying a low magnetic fi eld. A low magnetic fi eld destroys a weak localization 
effect and hence the conductivity correction due to it. More descriptions of 
localization effects can be found in fi eld theoretic textbooks. 8,9  

  Table 2.6  provides a summary of the length scales discussed in this chapter with 
respect to electron transport under the electron gas system. The length scales are 
compared to the many areas of emerging nanoscale electronics to provide 
contextual understanding. 

Table 2.6 Summary of physical length scales in the context of sizes relevant to 
modern nanoelectronic devices and systems

1 mm

Mean free path in the quantum Hall regime
Phase relaxation length of metal

100 µm

Mean free path/phase relaxation length in high-mobility 
semiconductor at T < 4 K

10 µm

Spin diffusion length in GaAs at low temperature

1 µm

MOSFET devices (1990)
Spin diffusion length in semiconductor

(Continued)
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100 nm

Mean free path in 2DEG at room temperature
Fermi wavelength in semiconductors
Quantum Hall devices
Graphene devices
MOSFET 22 nm (2010)
Flash memory 18 nm (2011)
Mean free path in polycrystalline metallic fi lms
CNT electronic devices
Molecular electronic devices

10 nm

Optical lithography limit
Metal spintronic devices (CPP thickness)
Spin diffusion length in metal
Single-electronic devices (channel radius)
Electron beam lithography
Fermi wavelength in metals

1 nm

Distance between atoms

1 Å  

Table 2.6 Continued.

2.18 Contextual comparison of Fermi wavelength, mean free path and 
phase relaxation length of a semiconductor channel.

2.19 Illustration of localization effect occurring in a device with length 
scale in the above context.
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 Electron dynamics in nanoscale devices  

   Abstract:    This chapter introduces the concept of linear response and 
conductivity, which is by far the most appropriate quantifi cation of electron 
transport. The concept of non-equilibrium necessary for nanoscale devices is 
then incorporated, introducing the modern non-equilibrium Green’s function 
(NEGF) formalism, which has become a standard computational method in 
nanoscale device transport. The equation of motion and the matrix formalisms 
are discussed. The formula for current is also introduced, taking into account 
the sizes and shapes of the device.  

   Key words:    linear response, conductivity, non-equilibrium Green’s function, 
NEGF, equation of motion, matrix, current.   

    3.1  Introduction to electron transport 

 The underlying physics which crucially distinguishes the various fi elds of 
nanoelectronics is the transport or dynamics of electrons in these systems. The 
construction of dynamic equations requires the background conditions described 
in the fi rst two chapters:

   •   electron spatial density ( E – r )  
  •   electron dispersion relation ( E – k )  
  •   carrier types (charge scalar/ spin matrix).    

 The background conditions determine the forms and types of transport equations, 
their approximations and assumptions as well as providing the parametric input to 
these equations. The spatial density of electrons determines if they are to be 
collectively known as gas, liquid or even solid (solid due to localized electrons, 
not atoms). Electron gas is by far most useful for nanoelectronic applications 
because of the ease with which conductance modulation can be effected on these 
systems. In  Chapter 2 , we have understood the energy properties and their direct 
relevance to electron transport. For example, the independent and free electron 
approximation in Boltzmann transport is only valid in electron gas that can be 
formally categorized in the  E – r  studies of electronic energies. The perturbative 
expansion used in equilibrium or non-equilibrium electron transport is also valid 
within a certain spectrum of  E – r , thus allowing one to contemplate when these 
formalisms might break down or become less accurate. 

 From the electronic standpoint, different material systems simply means 
different crystal arrangement (ions) which give rise to the energy bands of metals, 
semiconductors, insulators, superconductors and semi-metals. Crystal nature 
determines the types of bonds with which the atoms are bonded and hence the 
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number of free or bound electrons that might, under non-equilibrium conditions 
(e.g. application of external fi elds), participate in some processes of collective 
motions. Thus, electron dynamic equations are normally constructed within 
certain bands;  E – k  studies allow one to decide the range over which the energy 
limit is to be taken. Particularly in semiconductors, which have complicated 
bandstructures, electron transport can be simplifi ed by understanding the band 
effects (e.g. effective mass) and restricting studies to within the band of interest. 

 Carrier type is particularly important in nanoelectronics that involve internal 
degrees of freedom (DOF), for example, the electron spin in metals, semiconductors, 
graphene and insulator spintronics, and pseudospin and valley spin in graphene 
electronics. The transport equations (e.g. Boltzmann or the non-equilibrium 
Green’s function) are modifi ed to incorporate the internal DOF. Since spin states 
are quantum vectors complete in two dimensions, transport equations become a 2 
× 2 matrix as a result of the modifi cation of the coupling constant due to carrier 
type. We refer readers to  Table 2.4  for a clear recapitulation of these descriptions.  

   3.2  Equilibrium Green’s function in electron transport 

 In condensed matter physics, the fi eld theoretic version of Green’s function has been 
used extensively 1  to study the ground state energy, excited lifetime, linear response 
and so forth of electron particles or holes depending on their energy level relative to 
the Fermi energy. These methods, similar to those developed for the studies of 
particle propagation in high energy physics, have been particularly useful for studying 
the many-body effects of the electron gas, nuclear matter and superconductivity. 

 In modern electronics where mesoscopic physics is gaining importance, the 
Green’s function methods are useful for studying the equilibrium microscopic 
effects on the functioning of these devices. For example, in spintronics, the spin 
fl ip and spin orbital effects affect the transport of both charge and spin fl uxes in 
these devices; understanding these effects goes a long way towards resolving 
many problems popular in the area of applied physics such as spin transfer 
switching, spin oscillations and spin injection. 

 In the language of quantum fi eld theory, the fi eld operator and its conjugate for 
particles are given by:

    [3.1]  

 where  aλ(t1) = aλe–ieλt1 . The annihilation fi eld operator destroys a particle above the 
Fermi level and creates a hole below the Fermi level as expressed below:

    [3.2]  

 On the other hand, the creation operator creates a particle above the Fermi level 
and destroys a hole below the Fermi energy as below:
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   . [3.3]  

 In Keldysh formalism for devices, the lesser and greater Green’s functions are 
crucial for non-equilibrium effects. Below are defi nitions of the greater, lesser, 
retarded and advanced Green’s functions:

   

 [3.4]  

 The Green’s function or the propagator is normally expressed in the perturbative 
expansion or the path integral formalism. But before discussing the perturbative 
expansion, we fi rst show that a propagator can be written in a consecutive series 
of intermediate propagators. If one likes, each of these propagators can be 
expanded perturbatively to include the effect of global scattering (e.g. electron–
electron or electron–phonon) during that interval of propagation. Using the 
defi nition of  ψI(t) = eiH0t ψS(t) , one could work out the wavefunction of a single 
particle in the interaction and the Schrödinger pictures as follows:

   

 [3.5]  

 where  H   S   =  H  0  +  V . Equation 3.5 shows how a wavefunction evolves according to 
the rules of quantum dynamics. One can establish a path integral formalism by 
choosing either the interaction or the Schrödinger picture. The generator of time 
evolution would be  H  =  H  0  +  V  and, in the absence of interaction, the generator is 
simply  H  0 . One could now express evolution in interaction and Schrödinger 
pictures, respectively, in the form of:

 

     
 [3.6]

 which essentially describes the evolution of a particle from one spatial point to 
another,  G ( xt, x  0  t  0)  would then be the propagator between these times. Under the 
path integral formalism, a Green’s function between two points can always be 
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expressed as a consecutive series of Green’s functions, each correlating a pair of 
spatial points between the initial and the fi nal points as shown below:

    
[3.7]  

 where  x  and  t  are the ( n +1) th  terms of the spatial and the time points, respectively. 
Here we will focus specifi cally on the Schrödinger picture, so that:

    [3.8]  

 is the propagator between a pair of spatial points of  x   n   and  x   n −1 . Taking the limit, 
Δ t  → 0, yields:

    

[3.9]  

 where    would be the action of the system. Note 

that    has the dimension of    which cancels those due to  dx   n   . . . 

 dx  1  dx  0 . The propagator between a pair of space–time points in the path integral is:

   

 [3.10]  

 One can now look into the perturbative expansion of the individual propagator for 
any space–time point. Two important theories are crucial for the basic formalism 
of the perturbative Green’s function, namely the generation of time evolution by 
the interaction expressed in the form of the integral equation, and the four-fi eld 

�� �� �� �� �� ��



82 Introduction to the physics of nanoelectronics

©  Woodhead Publishing Limited, 2012

theory which describes the interaction itself. In the perturbative expansion for 
 U   I  (t,t 0 ), one takes note that [ H   I  ( t ),  H   I  ( t′ )] ≠ 0, and  HI (t1) = eiH0tVe–iH0t   . Due to the 
non-commutativity of the Hamiltonian in time,  ψ   I   ( t ) cannot be expressed in the 
simple form of:

    [3.11]  

 but instead:

    [3.12]  

 where  T   is the time-ordering operator. Here  ψ   I   ( t ) is treated as a fi eld operator 
instead of a function. The steps leading to the solution for the above are involved 
and the fi nal results are:

    
.
 

[3.13]  

 Following standard mathematics, the above can be expressed in the more useful 
form of:

    
[3.14]  

 It is clear from the above that the generator of the evolution is the interaction 
Hamiltonian itself. Readers are referred to reference 1 for standard derivations of 
fi eld theoretic Green’s functions. 

 In non-interacting systems, the Green’s function being considered will thus be 
the propagator with,  H   S   =  H  0  i.e.  V  set to zero. Considering its retarded version, 
one has the bare propagator for a uniform system as follows:

    
[3.15]  

 if | α 〉, | γ 〉 are chosen to be eigenstates of  H . Replacing  t  –  t  0  with  τ , the time Fourier 
transform of the above, yields:

    [3.16]  
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 In fact one can check that:

    [3.17]  

 Similarly, the Fourier transform version needs to satisfy the following:

    [3.18]  

    [3.19] 

 where we have taken care to distinguish  H    f   from  H    v  . The signifi cance of such 
distinction is discussed in  Chapter 1 .  

   3.3  Electric current under linear response 

 In Drude’s theory, besides the independent and free electron approximation which 
relates to the study of electron interaction and its effect on the system’s energy/
particle, the concept of mean free time has been discussed in the context of 
electron collision and its effect on the electron’s propagation under a slightly out-
of-equilibrium condition in the Fermi gas. Drude attributed electron collisions to 
electrons bouncing off the impenetrable ion cores. Under the concept of mean free 
time or mean free path and the relaxation time approximation, one could conjecture 
that an electron picked at random at a given moment will, on average, travel for a 
time  τ  before its next collision and have been travelling for time  τ  since its last 
collision. Immediately after each collision, an electron is taken to emerge with a 
velocity that is not related to its velocity just before the collision, but is randomly 
directed and with a speed appropriate to the temperature prevailing at where the 
collision takes place. This approximation is important for deriving the conductivity 
as well as the electric current density of the out-of-equilibrium electron gas in the 
diffusive regime based on the Boltzmann method. 

 In linear response, a weak perturbation generates a small out-of-equilibrium 
response that is proportional to this perturbation. In the context of nanoelectronics, 
an external voltage is the applied perturbation. The current response is expected 
to be proportional to this perturbation, where the response coeffi cient will be the 
conductivity, which is independent of the strength of the external voltage applied 
through the channel. Linear response marks the fi rst small step towards the fully 
non-equilibrium treatment of carrier transport in nanoscale devices. There are 
numerous ways to derive the conductivity that fulfi ll the linear response theory. 
The most general treatment was prescribed by the Kubo’s formula, which 
describes the linear response conductivity as a retarded correlation function of the 
internal current operators of the electronic channel. The general Kubo expression 
could, under the appropriate specialization technique, lead to:
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   •   Boltzmann conductivity in the diffusive treatment  
  •   Landauer conductivity in the ballistic treatment.    

 Nonetheless, it should be remembered that these two formalisms were derived 
independently of the Kubo approach. Conceptual details of these methods can be 
found in solid state and mesoscopic transport reference books. 

 The semiclassical non-equilibrium transport applies mainly to few-electron 
systems such as the quantum dot or metallic island channels. For simplicity, 
carrier type is treated as electron charge with scalar coupling constant.  Table 3.1  
provides a summary of the different types of electron transport on the nanoscale. 

  Table 3.1     Summary of the physics of electron transport in various nanoscale 

electronic systems  

Type of nanoscale 

device

Linear response Semiclassical 

non-equilibrium

Quantum non-

equilibrium

Diffusive current Boltzmann (macro) 

Kubo (micro)

Master equation 

(correlated)

NEGF (micro)

Ballistic current Quantum tunneling 

Landauer 

conductance 

Kubo (ballistic)

Master equation 

(ballistic)

NEGF (ballistic)

      3.4  General Kubo conductivity 

 The purpose of this section is to introduce readers to the equilibrium conductivity 
formula which, upon expansion, can incorporate the effects of microscopic 
scattering. As nanoscale devices or system get smaller, many-body effects cannot 
be approximated with the statistical averaging that worked well for large systems 
(e.g. the statistical methods based on Boltzmann derivation for bulk conductivity). 
On the small scale, quantum mechanics is required to give a description that takes 
into account many-body interactions. 

 In quantum mechanics, one can view the state and operators in different 
pictures. Here, the interaction picture is required. The following is a quick 
revision:

    [3.20]  

 which leads to:

    [3.21]  

  U ( t , t  0 ) is an integral equation that captures all the interaction effect that affects the 
time evolution of the state. This explains the need to express operators and state 
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vectors in the interaction picture. It is clear that  U ( t , t  0 ) plays the role of evolving 
a particular state from its initial condition to the fi nal condition. One deduces that:

    [3.22]  

 We have seen how the quantum state of the electron system evolves with time. In 
the following, we study the Hamiltonian of the electron system in the presence of 
interaction as given below:

    [3.23]  

 Note that the  U  matrix is an evolution operator which consists of multiple integral 
functions to describe the time evolution of the state vector in the interaction picture. 
This operator would thus contain information about the effect of interaction on the 
time evolution of the state vector. It is, however, important to understand the 
physical implication of this function. The evolution operator in its explicit form is:

    
[3.24]  

 One can understand the physical outcome of the above expression by examining the 
individual terms. It is not hard to notice that the  U  matrix contains only the interaction 
part of the Hamiltonian (i.e. the  V ). In other words, in the absence of interaction,  U  
is reduced to 1. One can thus imagine that the higher order terms correspond to the 
effects of electron interaction. This interaction could affect the observables or the 
propagators of a many-body system depending on how it is used. 

 In the following we apply this to the study of the effect of microscopic interaction 
on the average value of a particular observable, namely 〈 A 〉. It is understood that  A  
is an operator; it can only be measured when its average or expectation is given by 
〈 G | A | G 〉. In the language of nanoscale engineering, an ‘observable’ refers to 
something that one can measure or detect. Examples of observables are current, 
momentum, etc. Since temperature has an effect on the average of an observable or 
measureable, one can deduce from statistical quantum mechanics that an observable 
under the effect of fi nite temperature is to be given by:

   . [3.25]  

 We are thus led to:

    
[3.26]  

The Heaviside function shows that 
interaction is turned on at t = t0.
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 where the symbol † means transpose conjugate. In the above, use has been made 
of ( ab )† =  b †  a † and | ψ   S  ( t )〉 =  e  − iH  0  t    | ψ   I  ( t )〉 =  e  − iH  0  t   U ( t , t  0 )| ψ   I  ( t  0 )). The expectation of 
an observable should not depend on the picture used, i.e. Schrödinger, Heisenberg 
or interaction pictures should all yield the same expectation, consistent with the 
fact that one only measures one type of average. Thus one can write:

   
.
 

[3.27]  

 One thus has:

   . [3.28]  

 The fi nal expression is the remarkable Kubo formula, which states that the 
deviation of an observable from its unperturbed state due to the application of 
external fi eld (e.g.  V ) can be expressed as a correlation function of the observable 
and the external effect  V :

   . [3.29]  

 Since the  U  matrix is a time-ordered function, the correlation is naturally retarded 
(i.e. the correlation function can be described with a Heaviside function) and is 
now known as the retarded correlation function:

    [3.30]  

 where  CR
AV(t, t′) = –iθ (t – t′)〈[AI (t), V(t′)]〉0 . One can express the interaction as  V ( t ′) 

=  Bf ( t ′), so that  CR
AV(t, t′) = CR

AB(t – t′) f (t′) . One could then deduce that the non-
equilibrium deviation is a convolution function. Note that  C   AV   = [ A , V ] and  C   ABf   = 
[ A , B ]   f  =  C   AB     f . It is thus clear that  CR

AB(t – t′) f (t′)  is a convolution of the response 
function  CR

AB(t – t′) . Let,  t  0  → −∞, one arrives at:

    [3.31a]  

    [3.31b] 

 Now, we will take it a step further to consider the external potential to be 
slightly more complicated. Instead of  V ( t ′) =  Bf ( t ′), we take the interaction 
potential to be:

    [3.32a]  
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    [3.32b] 

 One would now obtain:

    [3.33]  

 Therefore, one can write in complete analogy to Eq. 3.33 that:

    [3.34]  

 where    contains the paramagnetic and the diamagnetic 

components. Let us now compare  V ( ω ) to the external perturbation due to an 
electric fi eld where:

   . [3.35]  

 It is clear that    With this, one can now 
write:

   . [3.36]  

 Since   :

   . [3.37]  

 Since    and noting that   

, we are now ready to compare current expressions in the 
following manner:

    [3.38a]  

   . [3.38b] 

  Exercise 3.1 

  Show by comparing the above current expressions that the conductivity 

is given by:  
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  Solution  

    

 The equilibrium studies of electron transport will not yield any net current and 
conclude with the derivation of an equilibrium property of the system (e.g. 
conductivity). But in the above, the non-equilibrium effect arises via the linear 
response method, which is an approximation to study the non-equilibrium effect 
using basically equilibrium methods. Note that the entire derivation is based 
on the equilibrium time-ordered but not the non-equilibrium contour-ordered 
Keldysh Green’s function. However, the linear response approximation is useful 
because it allows one to derive a current expression which is essentially an 
equilibrium conductivity multiplied by a low applied voltage, or a conductivity 
expression which is essentially a current–voltage differential. 

 Explicitly, the dissipative part of the general Kubo conductivity is:

    

[3.39]  

 After Fourier transformation, the DC Kubo conductivity is:

   . [3.40]  

 Based on the general Kubo conductivity derived earlier, one can decide to use this 
formula to study interacting (diffusive) or non-interacting electron transport. For 
diffusive transport, a perturbative expansion of the general expression is required. 
In this book, we will merely show that the general Kubo expression can be written 
for perturbative expansion but we will not delve into the details of such expansion. 
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The zeroth order of this expansion will be the conductivity for a non-interacting 
system. The general Kubo formula is a retarded correlation function. 

 Rewriting the current correlation function to give greater clarity using more 
simplifi ed notations gives:

    [3.41]  

 Note that  J0
α(rt)  has been replaced with  J   α  ( rt ) and    with  C   R   ( r r ′,  t t ′). 

The Fourier transform of Eq. 3.41 with respect to space yields:

    [3.42]  

 In the frequency domain, the correlation function is  C   R  ( q , t  −  t ′) →  C   R  ( q , ω ). We 
will look particularly at the free electron expression where in the absence of 
interaction:

   . [3.43]  

 One can obtain:

   . [3.44]  

 On the other hand, one can also arrive at the above using the Matsubara approach. 
The Matsubara version of the current correlator  C   R  ( q , t  −  t ′) is:

    [3.45]  

 where  T  τ  is the Matsubara version of the time ordering operator. In the frequency 
domain:

    [3.46]  

 where  iq   n   is the Bosonic frequency. By analytic continuation, one can convert a 
Matsubara Bosonic frequency function into the retarded correlation function, i.e.

    [3.47]  

 where  η  is a small number. Alternatively, one can proceed with the Matsubara 
version and derive that:

   . [3.48]  

 Equation 3.48 can be derived by applying Wick’s theorem to 
 to fi rst obtain:
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   . [3.49]  

 The two Green’s functions are a product function in the time domain and the 
Fourier transform of the product function will be a convolution function in the 
frequency domain. Thus performing a Fourier transform now yields the important 
equation, Eq. 3.48. Alternatively, one performs Fourier transform directly on 
   to obtain    Wick’s 

theorem is then performed to obtain Eq. 3.48.

   

 [3.50]  

 Again, analytic continuation can be applied, and one obtains the expression 
identical to     

  Exercise 3.2 

  The retarded correlator is one of the most important functions in 
nanoscale electronic transport. For example, in the linear response, the 
conductivity has been found to be a current–current correlator χ   G  ( rr ′, tt ′). 
 Falling short of a full-scale non-equilibrium treatment, the general Kubo 
conductivity provides the best approximation. In a similar fashion, the 
polarization function is a charge–charge correlator χ    P   ( rr ′, tt ′).  Below, the 
correlators are shown explicitly:  

    

  (1) Show that in momentum space, electron polarization in the device 
channel is given by:  

    

   where V is the volume of the channel and q is the transfer of 
momentum in the interaction.  
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  (2) In the absence of interaction, charge density of the device in 

momentum space is:  

    
.

   Noting that    , show that: 

    .

  (3) Show that in the frequency domain, one has:  

      .

   3.5  Non-equilibrium electron transport 

 Mesoscopic physics became important in the 1980s with the advances in 
nanotechnologies that enabled quantum-sized nanostructures to be fabricated and 
characterized. This has led to discoveries in modern phenomena (e.g. quantum 
Hall, giant magnetoresistance) and advances in single-electronics, quantum dot 
electronics, spintronics, carbon-based electronics and other novel forms of 
devices. Each of these electronic systems normally comprises a few discrete 
structures with dimensions on the nanometer scale. Of key interest to researchers 
here is the physics of electron transport across these nanostructures, the apparent 
departure of which from classical circuit and semiclassical transport theory is a 
result of quantum effects. 

 In traditional equilibrium condensed matter physics, the Green’s function 
method has played an important role in the studies of electron transport and many-
body effects such as screening, conductivity, localization and others. In modern 
day nanoscale electronic systems, the traditional Green’s function description of 
electron transport in an equilibrium condensed matter system needs new 
modifi cations. The new Green’s function methods need to take into account:

   1.   Interaction with electrodes or device parts  
  2.   Non-equilibrium electron distribution in device channel.    

   3.5.1  Interaction with electrodes or device parts 

 Nanoelectronics demands a form of Green’s function that conveniently refl ects 
the discrete effects due to spatial separation between device parts as shown 
in  Fig. 3.1 . 
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 A Hamiltonian discretized in a real space lattice, which spans the entire device, 
is particularly suitable for describing electronic energy and propagation in periodic 
ion crystal or devices with discrete parts. The Hamiltonian can be derived by 
second quantization or the fi nite difference method. A Green’s function based 
upon these Hamiltonians suits the discontinuous nature of these devices, and 
could thus provide an intuitive and physical description of electron propagation. 
For second-quantized Hamiltonian, equation of motion or Feynman diagram 
methods can be used to derive the Green’s function. For fi nite difference 
Hamiltonian, a matrix-based Green’s function method can be used. Alternatively, 
the fi nite difference Hamiltonian can be converted to the second-quantized 
Hamiltonian. Therefore in this formalism, electron transport can be studied under 
the combined mesoscopic boundary effects of device components and the 
microscopic effects of electron–electron, electron–phonon scattering.  

   3.5.2  Non-equilibrium electron distribution in device channel 

 Under the application of external electric potential across the device (e.g. by 
connecting a battery or current source to the two electrodes), electron distribution 
in the central device is driven out of equilibrium. The current considered here is 
the net device current, which conserves across the entire device. This is unlike the 
equilibrium system where local currents cancel, resulting in zero net fl ow of 
device current. It is thus important for readers to keep in mind the difference 
between the internal, local current of an equilibrium condensed matter system and 
the net device current of a non-equilibrium device system. Net electron current 
fl ows through the device from high electron potential to low. In conventional 
electrical engineering, electric current fl ows in the opposite direction to electron 
current. To avoid confusion, device current here refers to electron current which 
fl ows from the negative battery terminal to the positive. 

 The expression for device current requires the knowledge of the lesser Green’s 
function, whose non-equilibrium expression departs markedly from its equilibrium 
version. The Keldysh formalism provides a systematic approach to derive the 
non-equilibrium Green’s function, which includes the time-ordered, retarded, 
advanced, lesser and greater versions. The non-equilibrium lesser Green’s function 

   3.1     Three-region device representing the left electrode, right electrode 
and central regions. The central region is discretized into points labeled 
from left from 1 to  n . This one-dimensional horizontal structure can 
adequately represent even a three-dimensional device if the other two 
dimensions consists of homogeneous material.     
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can be expressed in terms of the retarded and advanced Green’s function of the 
central region and the self-energy due to the electrodes, i.e.  G  <  =  G   R   Σ <  G   A  . 

 The application of non-equilibrium Green’s function (NEGF) methods to the 
transport in discrete electronic systems began in earnest in the early 1990s, 2–4  
providing a quantum transport approach in mesoscopic physics that is consistent with 
the semiclassical Landauer–Buttiker 5  method. The discrete or lattice Green’s function 
method has since been refi ned with more application oriented studies. 6–9  Its adaptation 
to different nanoscale applications results in the construction of a simulation platform 
for the entire range of modern nanoelectronics, e.g. current imaging in 
nanostructures, 10,11  electron transport in single-electronic and quantum dot, 12–14  spin 
transport in spintronic systems, 15–18  and carbon-based or graphene systems. 19    

   3.6  Electron propagation – physics of Green’s function 

   3.6.1  Equation of motion 

 In the following, we derive the retarded (advanced) Green’s function with the 
equation of motion (EOM). We also present a derivation of the lesser Green’s 
function based on deriving the Keldysh equation using the Langreth theorem. The 
device shown in  Fig. 3.1  can be described by the second-quantized Hamiltonian 
shown in Eq. 3.51, where  H   EL/ER   is the Hamiltonian for the left/right electrodes, 
 H   D   is the Hamiltonian for the central region and  H   T   is the tunneling Hamiltonian 
which describes electron propagation from electrodes to leads and vice versa. 

    

   

 [3.51] 

 Let’s begin with the equilibrium time-ordered Green’s function for the central 
region:   , in which  T  is the time-ordering operator. 
One can then obtain the kinetic equation of the time-ordered Green’s function for 
a point in the central region of the device, denoted by  j :

    [3.52]  

 in which  H  =  H   EL/ER   +  H   c   +  H   T  . It is clear that −[ H   EL/ER  ,  d   j  ] = 0, since the electrode’s 
intrinsic Hamiltonian is unrelated to electron existence in the central region. The 
non-vanishing terms are:
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[3.53]  

 where operators above are understood to be in time  t . 

  Exercise 3.3 

  Prove, where d †   j  ,  d   j  ,  n   j
   are fermionic operators, that: 

  (1)  [ d   j  ,  n   j  ] =  d   j   
  (2)  [ d †j ,  n   j  ] = − d †j  

 For simplicity, consider a discretized device system where,   
. The particular case of  G   t   11  is:

    [3.54]  

 where  τ  =  t − t ′ Consider the central region is being isolated, one would have:

    [3.55]  

 For convenience, we use  R  11 ( t  −  t ′), = ∫  dt  1   δ ( t  −  t  1 ) R  11 ( t  1  −  t ′) to represent the 
right-hand side of Eq. 3.54. It can then be expressed as:

    [3.56]  

 One then arrives at:

    [3.57]  

 According to the theory of Keldysh NEGF, the equilibrium expression above has 
precisely the same form as its non-equilibrium version, except that in the latter the 
intermediate time integration has to be performed on the Keldysh loop in the 
complex contour, i.e.

    
[3.58]  

 where  T  is the time stamp in the Keldysh contour. Applying the Langreth theory 2  
to the contour integral yields the following retarded Green’s function in the normal 
time loop:

    [3.59]  
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 If we assume the Hamiltonian to be time independent, the Green’s function is only 
dependent on the time difference ( t  −  t ′). In this case, it is more convenient to 
perform Fourier transform in the energy space:

    [3.60]  

 To evaluate the last term on the right-hand side of Eq. 3.60, we start from 
   , which leads to:

    [3.61]  

 due to the fact that  t  −11  = 0. Thus, its retarded counterpart in energy space is:

    [3.62]  

 Substituting the above into Eq. 3.60, one obtains:

    [3.63]  

 Similarly, one can deal with other lattice points of  Fig. 3.1  and 
obtain   , in which 

   is the self-energy due to the leads. If now one carries 
out the above for  n  = 3 instead of  n  = 1, one obtains:

    
[3.64]

  

 in which   . Readers should keep the 
result of Eq. 3.64 in mind and compare it with results to be obtained using the 
fi nite difference method. 

 Before we proceed to the matrix Green’s function and the fi nite difference 
method, we complete this section with the derivation of the lesser Green’s 
function, which is the most crucial aspect of the NEGF. We derive the expression 
for the lesser Green’s function, i.e. the Keldysh equation. Let us consider the 
system in  Fig. 3.1  again where  n  = 1 is considered:

    [3.65]  

 one can then obtain:

    [3.66]  
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 The matrix representation for an  n  = 3 isolated device (i.e. without lead effects) 
would then be:

    [3.67]  

 where explicitly:

    [3.68]
  

 Similarly, one can deal with the  Gt
jj(τ) , and rewrite them as:

    [3.69]  

 Following similar procedures, one fi nds that the time-ordered and contour-ordered 
Green’s functions satisfy the Dyson’s equation as follows:

    
[3.70a]  

    

[3.70b] 
 where:

   .

 

[3.71]

  

 Applying Langreth theorem, the retarded Green’s function can also be found to 
satisfy the Dyson’s equation, as would be expected:

    [3.72]  

 In the above, there has been no difference between the equilibrium and non-
equilibrium versions of the retarded and advanced Green’s functions. Of particular 
interest here is the lesser Green’s function, which by Langreth theory, yields a 
non-equilibrium version which differs markedly from its equilibrium expression. 
The non-equilibrium lesser Green’s function is:
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  [3.73]  

 By recursive substitution, the above can be simplifi ed to:

    [3.74]  

 in which the matrix component   .  

  Exercise 3.4 

  (1) Prove by using the Dyson equations of  GR = GR
0 + G0

RΣRGR  and   GA = GA
0 

+ G0
AΣAGA, and by iteration of  [ G ] <  = [ G  0 ] <  + [ G  0 ]  R   [Σ]  R   [ G ]  <   + [ G  0 ]  R   [Σ] <  

[ G ]  A   + [ G  0 ] <  [Σ]  A   [ G ]  A  ,  that the following is true:  

 [ G ] <  = (1 + [ G ]  R   [Σ]  R  ) [ G  0 ] <  (1 + [Σ]  A   [ G ]  A  ) + [ G ]  R   [Σ] <  [ G ]  A   .

  (2) In the fl uctuation dissipation theorem, where f is the equilibrium 

Fermi–Dirac distribution of the central region:  

 [ G  0 ] <  = ([ G  0 ]  A   − [ G  0 ]  R  )  f . 

   Relate this expression to the electron density, density of states and 

occupation probability.  

  (3) Prove, using the above identities, that:  

 [ G   ] <  = [ G   ]  R   [ Σ ]  <        [ G   ] A 

   3.6.2  Matrix Green’s function 

  Finite difference Hamiltonian in a single-band device 

 In a nanoscale electronic device, one needs a formalism to study the propagation 
of electron from one discrete part of the device to another. In device technology, 
a basic electronic device is commonly designed into three regions 3,4  with distinct 
parametric differences in each region. It becomes clear that a Hamiltonian which 
refl ects neighboring site perturbation might be a suitable one to use here since one 
can perceive the device system to be, in the crudest form, a central region subject 
to the perturbation of the neighboring source and drain electrodes. One conjectures 
a Hamiltonian that takes a site eigenstate instead of a momentum, and yields the 
energy related to the site as well as its nearest neighbor perturbations. Since the 
perturbation effect repeats for each spatial site, it will manifest in the propagator 
as a self-energy. Since what is key to refl ecting the perturbation effects of 
discrete parts lies in the Hamiltonian, we perform a simple mathematical 

manipulation for the Hamiltonian in function space    One 

fi rst applies  H    f   to a particular lattice point discretized with an intersite distance  a  
as shown in  Fig. 3.1 :
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    [3.75]  

 where, for compactness,  ψ   j   represents  ψ ( x  =  ja ). Using the fi nite difference 
approximation where  a  is small:

   . [3.76]  

 For a more vivid illustration, we introduce the basic three-part metal–oxide–
semiconductor fi eld-effect transistor (MOSFET) device, which has also been 
widely employed in new areas such as spintronics, carbon and molecular 
electronics, and even quantum dot style single-electronics. Each part of the device 
can be regarded as an isolated system containing the unperturbed states, e.g. the 
spatial orbital states. 

 To start we choose a spatial site within the central region denoted generally by 
 j  as shown in  Fig. 3.1  and write the Hamiltonian about this point. This is repeated 
for all other spatial sites. The central region has thus been discretized into a fi nite 
number ( n ) of discrete spacings with intersite distance  a , while the source part of 
the device extends semi-infi nitely to the left with the same discretization. The 
above approximation leads, with straightforward substitution, to:

    [3.77]  

 where  t  =  ћ  2 /2 ma  2 . Normally ( H    f    ψ )  j      ∝  k  2  ψ   j   but with the fi nite difference method, 
one has ( H    f    ψ )  j   ∝  g ( ψ   j  ,  ψ   j  + 1 ,  ψ   j  − 1 ), which clearly refl ects the effects of local 
perturbation from neighboring sites. In fact, one could now defi ne a  H   r  , which acts 
upon an orbital site  ψ   j  , to yield the energy associated with the site and its nearest 
neighbors, i.e.

    [3.78]  

 In fact Eq. 3.78 can be expressed in the more general form of  H   r    ψ   j   =  α ψ   j   −  β ψ   j  + 1  
−  β †  ψ   j −1  where under specifi c cases,  α  = 2 t ,  β  =  t . If one represents a lattice site using 
the Hilbert space vector | x   j  〉 instead of the scalar  ψ   j  , and summing over all lattice 
sites, the Hamiltonian has to be represented in vector space as follows:

    [3.79]  

  H   v   applies generally to any discrete site represented by | x   j  〉. One can substitute 
Eq. 3.79) into the following 〈 x   j  |  H    v   |  ψ 〉 = 〈 x   j   |2 t |  ψ 〉 − 〈 x   j −1  | t | ψ 〉 − 〈 x   j +1  | t | ψ 〉 to recover 
Eq. 3.78. Similarly, one also sees that 〈 x   i   |  H   v   |  x   j  〉 =  α   δ   ij   −  β   δ   ij  + 1  −  β †  δ   ij  − 1  in 
a more general form. In the second-quantized form,  H   v   will be written as below:
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    [3.80]  

 where  a †  i   and  a   i   replace | x   i  〉 and 〈 x   i   |, respectively. The Green’s function can be 
derived with the second-quantized Hamiltonian by noting that:

    

[3.81a]  

 and:

    

[3.81b]  

 To derive the second-quantized Hamiltonian, the following substitution is carried 
out with the Hamiltonian in vector space:

   . [3.82]  

 Denoting    with  G   jj  , we have the following:

    

[3.83]  

 where 〈 x   j  | x   i  〉 =  δ   ij  . Note that  H    f   is the Hamiltonian in function space whose relation 
to the Hamiltonian in vector space is described in  Chapter 1 . Since we are only 
dealing with the retarded Green’s function here,  G  implies  G   R  . It thus follows that:

    [3.84]  
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 To give a more explicit illustration, one can repeat this through the longitudinal 
points of the central region for  j  = 1,2,3 and obtain a series of equations:

   

 [3.85]  

 This series of equations are the discrete single-electron Green’s function equations 
for the different spatial sites in the central region. Solving these equations 
simultaneously allows one to fi nd the self-energy of the Green’s function discretized 
at a particular site. Generalizing the above to a three-region device (see  Fig. 3.1 ), 
where the labeling and notations follow the standard format used throughout this 
chapter, we arrive at a block matrix representation of all discrete spatial points 
which now compactly but clearly depicts a three-region device system:

   .

 [3.86]  

  E  −  H   L / R   are  m  ×  m  infi nite matrices that describe the left (right) contacts from site 0 
( n  + 1) onwards to the left (right),  τ    LC   ( τ    RC  ) are the coupling matrices between the left 
(right) contacts to the central region and have dimensions of  m  ×  n , and  τ   CL  ( τ   CR  ) are 
the transpose of the coupling matrix of dimensions  n  ×  m . The central region is 
described by  E  −  H   C  , a  n  ×  n  matrix representing the discrete sites 1  to n  of the central 
region. Note also that  H   L/R   are scalar terms related to the coupling between neighboring 
discrete sites in different parts of the device. Matrix multiplication results in:

   

 [3.87]  

 The equations above can now be expressed as semi-infi nite matrices of  m  ×  n :

    [3.88]  

 and  g                             

L   = ( E  +  iη  −  H   L  ) 
−1  and  g   R   = ( E  +  iη  −  H   R  ) 

−1  are the  m  ×  m  Green’s function 
matrices of the isolated left and right leads, respectively. With a few straightforward 
derivations, one obtains for the central region the well-established and intuitively 
compact expression of the Green’s function correlating the lattice sites of the 
central region:

    
[3.89]  
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 where Σ  L  , Σ  R   are the  n  ×  n  self-energy matrices, which can now be interpreted as 
perturbation effects due to adjacent sites on the contacts to the left and right of the 
central region on the propagation of electrons in the central region of the device. 
Taking the specifi c example of  n  = 3, the Green’s function matrix for central 
region is explicitly expressed as:

    

[3.90]
  

 where  g  0  is the Green’s function for site −1 on the left lead and  g  4  is the Green’s 
function for site  n  + 1 on the right lead. It is clear from the above that the central 
region Green’s function correlating point  μ  to  ν  is given by the matrix component:

   . [3.91]  

 For physical clarity, we show below that the Green’s function at the central site 
(2,2) is given by an expression which shows the effect of lead perturbation 
appearing as self-energies:

    
[3.92]

  

 Although the above analysis allows a microscopic analysis of electron propagation 
in one dimension only, it can actually be used to study a three-dimensional 
nanoelectronic system in which periodicity is assumed for the other two dimensions. 
The discretization is carried out only for the longitudinal and not the transverse 
directions. The full matrix for such a system (e.g.  n  = 3 for ease of comparison with 
the above) would then, with proper rearrangement and substitution, be:

   . [3.93]  
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 It is worth noting that in the above,  E  has been used to denote the total energy, 

i.e.    where  m * is the effective mass in the parallel ( p ) or 

 y, z  directions, assuming they are the same. If  G   C   represents transmission of one 
mode, summation has to be carried out over  k   p   and  E   x   where the Green’s function 
matrix would now be:

   . [3.94]  

  Exercise 3.5 

  Given that  〈 a | ( E  −  H    v  ) ( E  −  H    v  ) −1  | b 〉 =  δ   ab  ,  show that: 

   I   = ( E   I   −   H  )   G    

  where  H  is the matrix whose components are  [  H     ]ij   = 〈 i |  H    v   |  j 〉. 

  Solution  

  Since  〈 a|  ( E  −  H    v   ) ( E  −  H    v  ) −1 | b 〉 =  δ   ab  : 

    

  In matrix form, one can represent the above as:  

   I   = ( E   I − H  )   G     .

  Discrete two-dimensional planar structure 

 The one-dimensional discretization approach might be adequate for most 
nanoelectronic systems if microscopic analysis of the other two dimensions is not 
needed. If, however, one is interested in the spatial current distribution within the 
bulk nanostructure, one might need to extend the present formalism to the other 
dimensions. For illustration of how this can be carried out, we will expand the 
central device into a two-dimensional geometry as shown schematically in 
 Fig. 3.2 . A similar approach to that used in the previous sections is followed to 
derive the Green’s function matrix. Specifi cally for illustration, we have chosen 
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the site of  x   m    v   where ( m, v ) = (1,2), where one could write the Schrödinger equation 
at site 1,2 as follows:

    

[3.95]

  

 Note that Eq. 3.95 has been deduced from Eq. 3.79 with the assumption that  β   x   = 
 ħ  2  / 2 m   x   a  2   x   =  β   y   =  ħ  2  /2 m   y   a  2   y  . The labeling convention for the longitudinal direction 
follows the one-dimensional system in the previous section. The vertical 
dimension begins with 1 denoting the lowest vertical site. Superscript denotes the 
longitudinal site while subscript denotes the vertical site. 

 Following the approach of the previous section, the Green’s function equation 
for a two-dimensional equation can be derived as follows:

    

[3.96]

  

 This leads to the Green’s function equation of:

   . [3.97]  

 Grouping these equations for different sites, one obtains a matrix which contains 
the sub-matrices as below:

   3.2     Expanded central device with right and left leads in two-dimension 
discretization. Arrow shows the horizontal or longitudinal direction. The 
other dimension is known as transverse or vertical.     
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 = I [3.98]  

 Following the approach of the previous section, the above matrix can be partitioned 
into matrix blocks based on device parts, e.g. leads and central region. The 
following algebra is performed:

    [3.99]  

 Note that the convention of summation over double index has been followed in 
Eq. 3.99 and that bold letters denote matrices. This is to avoid confusion as 
the presence of subscripts normally implies matrix components. With proper 
substitution and rearrangement, one obtains the Green’s function equation similar 
to those expressed for the one-dimensional system in the previous section:

    [3.100]  

 which leads to the well-established form of:

   . [3.101]  

 One has to be aware that here    but, in some other representations, 

it is sometimes written as   . 

  Exercise 3.6 

  Prove that:  

    

  and:  
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  Solution  

    

  By defi nition  g    L   ( E  −  H   L  ) = 1 

  

  Thus, multiplying the last line of the above by  [ G   L  ]  gives:  

        

   3.7  Device current formalism 

 In this section we study the current formalism suitable for device systems with 
discrete parts. We start with the current expression 20  for a single longitudinal 
bond, joining two neighboring lattice sites, crossing from the lead to the central 
region of the device. One can thus apply Dyson’s equation, which prescribes an 
expression of Green’s function that suits the physical interpretation of electron 
propagation across a nanoelectronic system that consists of discrete parts like the 
emitter (e), central region (d) and collector (c). The expression for a longitudinal 
bond current crossing over from the left lead (emitter) to the central region is:

    [3.102]  

 The Dyson’s equation provides a Green’s function expression which decouples 
the emitter from the device as follows:

    [3.103]  
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 where  e, d  can be regarded as some general lattice states belonging to the lead and 
the central region, respectively. 

 Under the general framework of the above one can, by proper assignment of 
lead or central region states to the  e, d  lattice points, defi ne various current 
expressions. We will show how a longitudinal bond current with vertical/
longitudinal site perturbations can be developed. Subsequently, momentum states 
are assigned to  e, d , and we show the generation of current in momentum 
representation from the same general current and Dyson’s equation which generate 
the spatial current. Before we proceed, it is worth recalling that the correlation 
functions  G<

de  or  g<
de   are by defi nition:

    [3.104]  

 In momentum space, where  d  and  e  are eigenstates, Eq. 3.104 would be  g  <   de   ( t, t′ ) 
=  in   d    δ   ed    e  − iE    d    

( t  −  t′  ) . Since  g  <   ee   ( t, t′ ) =  in   e   e  − iE    e   
( t–t′ ) , it is not hard to see that  g  <   de   ( t, t′ ) 

=  g  <   ee  ( t, t′ ) δ   ed  . In the above, use has been made of the interaction representation 
where:

    [3.105]  

   3.7.1  Device transverse length effect 

 To study the longitudinal bond current subject to the vertical site perturbation 
effect, Eq. 3.40 is adapted to follow the mapping rule below:

    [3.106]  

 where the horizontal site of the central region is denoted by only one lattice point, 
i.e.  m   d   = 1. The bond current between the left lead (emitter) and the central region 
would then be that between  m   e   = 0 and  m   d   = 1. The longitudinal branch current 
would then be given by:

    [3.107]  

 which, together with its transverse counterpart, can be used to image the spatial 
distribution of bond current over the entire nanostructure. In Eq. 3.107, summation 
over  k   z   appears because the energy integral is only carried out for energy due to 
the two discrete dimension of  x  and  y . Thus for a fi xed sub-band due to the vertical 
( z ) confi nement, the above bond current and its transverse version image the 
spatial distribution of bond current in a two-dimensional ( x, y ) system. 

 In fact, the above has also been further adapted to image spin current in two-
dimensional spintronic or graphene systems. The summation over momentum 
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state is a simple theoretical concept but has a numerical implication. We hereby 
give an example where discretization is carried out for one dimension, say  x . In 
this case, summation over  k   z   and  k   y   would be required, leading to:

    [3.108]  

 where  L  2  is the transverse dimension of the device and  T  ( E   x  ) is the trace of a 
Green’s function matrix multiplication which corresponds to electron transmission 
through the device;  f   L  ,  f   R   are the Fermi–Dirac distribution. In this case integration 
over  k   z   and  k   y   or  k   p   (parallel wave-vector) applies to  f   L   and f  R   only, which yields 
expressions that can be solved analytically. In short, a homogeneous material 
system (take the example of a three-layer central region) allows one to express the 
transmission function  T ( E   x  ) and the Fermi–Dirac function in terms of  E   x  ; the 
Green’s function would be:

    [3.109]  

 where   , and integration with respect to  k   p   leads to:

    [3.110]  

 where  F  =    However, in an inhomogeneous device where 

there are different materials within the device, the central region matrix will contain 
different effective mass at different diagonal points, which would then result in:

    [3.111]

  

 as  E  =  E   x   +  E   yz   =    would now have to be  E  =  E   xn      where  n  indicates 

the material type. For a three-layer central region made from material of  m  1 ,  m  2  
and  m  3 , respectively,  E  xn  will take on  E   x 1 ,  E   x 2  and  E   x 3 , which will now appear in 
the matrix above. Thus one now has to re-express the Green’s function and  f  in 
terms of total energy  E  as follows:
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[3.112]

  

 This matrix contains  k   p  , while the Fermi–Dirac function is   . In 

this case, calculation is normally carried out by integrating over  E  and summing 
over  k   p   by numerical methods as opposed to analytical integration. For illustration, 
we show this below for a homogenous material system, and compare the current 
obtained with analytical integration and numerical integration methods. 

 It is clear from  Fig. 3.3  that the numerical method requires a large number of  k   y   
points in order to give an accurate estimate of the current. As shown in previous 
sections,  G   C   can be found by inverting the Hamiltonian. It is therefore important 

to convert    and   , which straddle between the left lead and the 

device’s central region in terms of the Green’s function for the isolated lead and 
isolated central region.  Figure 3.4  shows a three-part device discretized vertically 
into multiple sites to consider the effect of vertical perturbation on current. 

   3.3     Estimate of current using analytical integration and 

numerical integration methods. For large number of points, 

the numerical integration method shows results approaching 

that of analytical integration method.     
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 One now uses the Dyson’s equation and applies the mapping to arrive at:

    [3.113]  

   . [3.114] 

 It is clear that the dummy indices   veʹ  and   vd ʹ  run through the vertical sites, thus 
incorporating the effects of vertical site perturbations on bond current. In tight 
binding approximation,  are diagonal, i.e.  
With these, one could now show the longitudinal bond current between horizontal 
site 0 and site 1 to be:

    
[3.115]

  

 Equation 3.115 is the expression for a longitudinal bond current with one set of  v   e   
and  v   d  . But if one could recall, the total current indeed requires a summation over 
 e  and  d . In this case, it simply means summing over  v   e   and  v   d   as  m   e   and  m   d   have 
been fi xed to 0 and 1, respectively. The summation process physically means 
summation over all bonds in all manners of vertical correlation. Under the tight 
binding approximation, one notes again that    and   , which simply 
discards all correlation pairs beyond nearest neighbors. Thus, the total current 
expression is greatly simplifi ed to an intuitive form of:

   3.4     Schematic of a three-part device discretized vertically to incorporate 

the vertical perturbation effect on current. Arrow shows the bond 

current between a pair of spatial sites across the emitter–device 

junction. This device has been discretized in  x  and  y  directions but 

not  z . Total current would thus require summation over k
z
.     
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    [3.116]  

 It is apparent that the total current is simply the summation over all the parallel 
branches. This expression is both simple and physically intuitive for it simply 
means the total current is the vertical sum of all the longitudinal bond current in 
parallel, consistent with the Kirchoff current law in electrical circuit. This leads to 
the useful insight that the Kirchoff law applied to most MOSFET circuit calculations 
is not to be assumed; however, it is a valid approximation. Using the identities of:

    [3.117]  

    [3.118] 

 one now obtains a current expression in terms of the leads’ distribution functions:

      

 [3.119]  

 It is common in Green’s function formalism to defi ne self-energy and coupling 
energy constants in terms of the Green’s function as follows:

    [3.120]  

 We have noted earlier that    can be written as either 
   it is only a matter of choice. In the following we will use the 
format of    Applying the following mapping for the left and right leads:

   

[3.121]  

 and with  m   e   =  m   d   − 1,  m   c   =  m   d   + 1,  m   d   = 1,  m   e   = 0,  m   c   = 2, one has:

    

[3.122]  
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 With proper substitutions and rearrangements, one obtains the current expression:

   

   . [3.123]  

 In matrix form the above is written as follows:

   . [3.124]  

 It is worth noting that all the Green function matrices above correspond to the 
particular longitudinal site  m   d  , while the superscript  L  for the Γ and Σ matrices 
indicates the correspondence to longitudinal site  m   e  . The total longitudinal current 
would be the sum of all parallel longitudinal bond currents (refer to  Fig. 3.4 ):

  

    . [3.125]  

 Noting that  Trace ( AB ) =  Trace (BA), and Γ  L   =  i (Σ  L  )  R   −  i (Σ  L    )A  , one has:

    [3.126]  

 To obtain the standard current form for computation, a process known as 
symmetrization is used. We will not elaborate on the standard symmetrization 
process as the current expression above is adequate for illustrating the physics of 
NEGF transport.  

   3.7. 2  Device channel length effect 

 The previous section showed the longitudinal bond current crossing over to the 
central region is subject to the perturbative effect of the vertical sites. However, 
perturbation due to the horizontal sites was ignored because discretization along 
this direction was kept to the minimum of three lattice sites, representing the 
respective emitter, central and collector parts. To be more accurate, current 
crossing any central structure is also subject to perturbation due to the horizontal 
sites. Here we consider a horizontal structure with multiple horizontal sites. 

 For simplicity, we begin our studies of the longitudinal site perturbation effect by 
restricting the vertical dimension to a single vertical site. What was applied to account 
for the vertical site perturbation has a direct analogy to what we can apply here to 
account for the longitudinal site perturbation. Since discrete points in the emitter, 
central and collector are denoted by  ee ′,  dd ′ and  cc ′, respectively, one simply needs to 
remember that now they run through the horizontal sites in much the same way that 
they ran through the vertical sites in the previous section. The vertical indices can be 
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considered to have been set according to  v   e   =  v   d   = 1, which applies to every term and 
is therefore not shown above. For ease of visualization in both longitudinal and 
vertical perturbations  e, d  can be fi rst be regarded to have been fi xed to  e  = ( m   e   = 0, 
 v   e   = 1) and  d  = ( m   d   = 1,  v   d   = 1), respectively. But the actual current expression shows 
summation over  e, d  (as shown earlier). Since summation over  e  and  d  in the vertical 
effect means summing over  v   e   and  v   d   under the tight binding approximation, it is 
equivalent to the summation of all parallel longitudinal bond currents, similar to 
Kirchoff’s law. But in the longitudinal effect, summation over  e, d  means summing 
over  m   e    and   m   d  . The physical interpretation for this process is not apparent with 
respect to circuit law in MOSFET. Here, the running indices of  e ′ = ( m ′  e    and   v ′  e   and 
 d ′ = ( m ′  d    and   v ′  d  ) through horizontal sites in the lead and the central region means 
summing over  m ′  e    and   m ′  d  . In the vertical effect, they ran through vertical sites, 
i.e. summing over  v ′  e    and   v ′  d  . We also note in the above that use has been made of  
G  <   de   = − ( G  <   ed  ) 

† ,  t   ed   =  t   de   and  t  =  t  * . Recalling the Dyson equation one arrives at:

    

[3.127]  

 Note that here discretization is in the  x  direction and that summing over  k   y   and  k   z   
would be required to fi nd the total current. Similar mapping can be carried out for 
the horizontal site perturbation, but to keep the notation simple, we will not carry 
out explicit mapping. One only needs to keep in mind that the running indices of 
 e, d  or  e ′  d ′ denote the horizontal components only. The subscripts  e, d ,  e ′ d ′, which 
now represent the horizontal sites only, sum from 0 → −∞, 1 →  n , respectively, 
consistent with the labeling format for the leads and central regions of  Fig. 3.4 . 
Taking note that  t   de    g    R    ee ′   t   e ′ d ′  = Σ  R    dd ′  and  t   de   g  <   ee′   t   e′d ′   = Σ <   dd ′  , and that  e, e′  are discrete 
points, we now have:

   

      . [3.128]  

 Note that  d ′ is the dummy index across the longitudinal sites within the central 
region. There is also an implicit summation over  e, e ′ that has been absorbed into 
 t   de   g   R    ee ′   t   e ′ d ′  = Σ  R    dd ′ . It follows that:

  

       . [3.129]  
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 Noting that  Trace ( AB ) =  Trace ( BA ), one obtains:

    

[3.130]  

 The fi nal current expression for the one-dimensional system contains a double 
index sum or Trace over  d  which, as is the case of  d ′, essentially means the running 
of  m   d   or  m   d   ′ from longitudinal sites 1 to  n  within the central region. This compares 
to the vertical perturbation where double index sum or Trace over  d  or  d ′ is that of 
 v   d   or  v   d   ′ running over vertical sites 1 to  n , and which has the physical meaning of 
summing of all parallel branches of the longitudinal bond current. Although the 
physical meaning for the summation over  m   d   or  m   d  ′ is not very apparent, it would 
be interesting to examine Σ  R    dd ′  =  t   de    g   R    ee ′   t   e ′ d ′  to appreciate the simple results that can 
be deduced from the horizontal summation. In the horizontal effect, since only  t  10  
and  t  01  are considered, Σ  R   11  =  t  10   g   R   00  t  01 . This is because site 1 in the central region 
is closest to the emitter. The only point in the emitter that has perturbation effect 
would be site 0. It is also worth noting that Σ  R   11  =  t  10   g   R   00  t  01  is defi ned by  g   R   00 , while 
in the case of vertical perturbation, self-energy based on  g   R   00  is sometimes labeled 
Σ  R   00  in some literature. A quick examination of Γ shows that only the diagonal 
components are non-vanishing.  

   3.7. 3  Longitudinal current in momentum space 

 We now make a direct comparison of the above real space lattice to the momentum 
lattice. For ease of comparison, we will use  e  to represent all momentum states in 
the left lead and  d  to represent all momentum states in the central device, i.e.,  e  → 
( kσ )  e  , and → ( kσ )  d  .  Figure 3.5  is an illustration of the momentum states in the 
electrode and the device channel. 

 The Dyson’s equations of    and 

   used here are somewhat simpler, i.e. no iteration by  e ′ 

is required. It can be shown later that, in momentum representation,  e ′ =  e . It thus 
makes sense to start with a simple expression. In previous sections,  e ′ represents 

   3.5     Schematic structure of a device with discrete momentum states in the 

device channel (d) and emitter(e). Summation over discrete states in the 

emitter would later be converted to summation over continuum states.     
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vertical or horizontal site perturbation in the leads; however, the index of  e ′ in 
previous sections was also inconsequential as eventually  m ′  e   =  m   e   = 0. The current 
would now be:

    

[3.131]  

  Exercise 3.7 

  Show using the identity G  >  −  G  <  =  G   R   −  G   A    that:  

    .

  Solution  

  We begin with the expression of Eq. 3.131. Since d and d′ are dummy 

indices, we can switch them in the second term:  

    

  Rearranging the terms further and using the identity G  >  −  G  <  =  G   R   −  G   A   
 yields:  

     

.
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 Note that straightforward direct analogy with real space discretization ends here, 
when the following identities are used:

    [3.132]
  

 In the real space, summation over emitter sites (indexed by  e, e ′ in    or 
  ) are absorbed into the self-energy terms. However, summation over 

emitter sites is restricted to site 0 as one needs only to consider coupling of site 0 
in the emitter and site 1 in the device. Finally, integration with respect to energy is 
carried out; effectively this corresponds to considering transmission at all energy 
levels for an emitter represented by one site only that is site 0. In the momentum 
representation, emitter discrete states are momentum states but not sites, so one can 
consider the emitter to be already effectively represented by one site. 

 We now proceed to determine that integration over energy is in fact restricted 
to the energy level of one emitter state only as below:

    

[3.133]  

 Note that the term  δ  ( E  −  E   e  ) appears because  e  represents the momentum states 
in the lead here. As the term  δ  ( E  −  E   e  ) results in the suppression of the energy 
integral, in momentum representation, current is summed over the states of the 
emitter. But, since the emitter consists of a continuum of momentum states, one is 
allowed to convert the summation over  e  to an integral following the standard 

procedure of    thus recovering the energy integral commonly 

present in the NEGF current. 
 The above analysis allows one to understand that, in momentum representation, 

current is integrated over the energy continuum of the emitter. The next step is to 
carry out the summation over all the energy levels on the emitter, which means 
summing over all momentum states in the emitter. (Note the contrast to the real 
space analog, where summation over all emitter sites is restricted to one spatial site.)

  

    [3.134]  

 Note that summation over  e  runs over the momentum and spin states of the emitter, 
i.e.  k   e   and  σ ; and summation over  k   e   is now represented by  ∫   dE   e    ρ   σL  . Under the 
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summation symbol,  e  is removed; we have also inserted  σ  and  ρ   σL   is the density of 
states on the emitter lead. Further simplifi cation leads to:

  

      . [3.135]  

 Now the two representations (momentum and real space) have converged in form 
as both treat the emitter as one single site and involve summing over all energy 
levels due to the emitter site:

    [3.136]  

 where   . Disregarding spin dynamic effects (e.g. spin 

fl ipping), Eq. 3.136 is reduced to the simple form of   

 

 We would, however, like to stress here that the real space and momentum space 
current are mere analogies as the parameters of both representations have different 
physical meanings. For example, the coupling constant in the spatial representation 
relates to spatial wavefunction overlap; while in momentum representation, the 
coupling constant is related to momentum state transition. The Green’s functions 
of both representations also have different interpretations. The spatial Green’s 
function is suitable for large systems with many discrete sites; for small systems 
with many momentum states, the discrete momentum representation is suitable 
because of the distinct number of momentum states. It is hard to use both methods 
for the same system because of the diffi culty in searching out two sets (local and 
momentum) of coupling constants to produce identical results. However, one can 
always tune the coupling constants of both representations to obtain the current-
voltage (I–V) results that best coincide.     
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 Spin dynamics in nanoelectronic devices  

   Abstract:    This chapter introduces the concept of transporting the spin degrees 
of freedom across the device, beginning with a simple two-current system. An 
introduction is also given to the effect of magnetic fi elds on electron dynamics, 
leading to classical and quantum Hall effects. Readers are then introduced to 
the use of non-equilibrium Green’s functions (NEGFs) to study electron 
transport under magnetic fi elds and spin transport in magnetic systems. The 
second-quantized form of spin orbit coupling is discussed and a complete spin 
current formalism taking into account spin fl ip and spin orbit coupling is 
presented.  

   Key words:    quantum Hall effects, spin transport, magnetic fi elds, spin orbit 
coupling, spin fl ip, non-collinear, spin current, NEGF.   

    4.1  Introduction: spin current and spin transport 

 In the previous chapter, we discussed the construction of the lattice Green’s 
function for discrete nanoelectronic devices. We have turned off global many-
body effects, but turned on inter-site perturbation. The Green’s function formalism 
for one and more geometrical dimensions has also been discussed. The formalism 
for current was introduced using general discrete indices and adapted to discrete 
spatial and momentum states. The fi nal current expressions in momentum and 
spatial representation share the same form. In the spatial adaptation, vertical 
and longitudinal perturbation effects were considered separately to provide 
a pedagogical picture of their origin, which leads to various useful expressions 
suitable for current imaging in nanostructure and consistent with electrical 
circuit law. 

 In modern nanoscale electronic systems (e.g. spintronics, graphene, quantum 
dot, orbital and superconducting electronics, and topological insulating 
electronics), current has an additional degree of freedom (DOF) which can be 
adequately described by the spinor algebra. These currents are sometimes known 
as color currents, which may not conserve due to their relation to the non-Abelian 
charges rather than the familiar scalar electronic charges in conventional metal–
oxide–semiconductor fi eld-effect transistor (MOSFET) electronics. For example 
in spintronics, the electron’s spin plays the role of the color; in graphene, it would 
be the pseudospin as well as the valley degree of freedom; in orbital electronics, 
it is the orbital band. 

 Following the development of increasingly complex forms of nanoscale 
electronics, it is timely to develop a consistent and coherent form of transport 
formalism for the spinor or the color form of electronic current. The formalism 
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here is general and provides for the rotation of spinor as well as its coupling with 
the electron’s momentum. For simplicity and illustration of the importance of 
color electronic in applied physics and engineering, we will take the example of 
spintronics. The spin fl ip and spin orbital effects affect the transport of both charge 
and spin fl uxes in spintronic devices. Understanding these effects goes a long way 
towards resolving many practical problems in technology such as spin transfer 
switching, spin oscillations, spin injection and spin valving. Similarly one can 
conjecture the pseudospin of graphene undergoing analogous effects of pseudospin 
transfer, oscillations and injection for possible future device usage. In fact it is not 
entirely far-fetched to conceive that pseudo-spintronic might become useful in the 
future. The same analogy applies to the valley degree of freedom, which triggers 
novel visions of valley based electronics, as well as the orbital degree of freedom 
which suggests orbital electronics.  

   4.2  Simple two-current system 

 We begin our studies of spin current with the Hamiltonian, which describes a 
system containing the fl ow of two branches of current. A two-current system here 
could refer to any quantum number, e.g. the  s  and  d  orbital bands of magnetic 
materials, the spin up/down bands of spintronic systems, and the pseudo up/down 
and valleys of graphene systems. Let us start with a one-dimensional nearest 
neighbor system at spatial point  i  for a two-band system arbitrarily labeled as  s  
and  d , which when written in second-quantized form is:

   

. [4.1]  

 Alternatively, one can represent the above with the bra-ket operators. For a more 
physical visualization, we write the Hamiltonian to refl ect the site energy operator 
of the two bands at specifi c site (e.g.  i  = 3) as well as the tunneling kinetic operator 
for both bands at the nearest neighboring sites of  x  1  and  x  2  under the tight binding 
approximation:

   

.

 

[4.2]  

 The terms  V    sd   | d ,  x  3 〉 〈 s ,  x  3 | and  V  ds  | s ,  x  3 〉 〈 d ,  x  3  | give the coupling between the two 
bands of  s  and  d  with strength  V  at site  x  3 . Thus, one notes that  〈 s ,  x  3  |  H    v   | d ,  x  3 〉 = 
 V    sd   and  〈 d ,  x  3 |  H    v   |  s ,  x  3 〉 =  V   ds  . The Green’s function expressions can be derived 
by taking note that  H    v   =  H    v   0  +  V    v   and that:
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[4.3]  

 which generates a pair of useful Green’s function expressions (Eq. 4.4 and 
Eq. 4.5). These may apply to any types of two-current systems (e.g. in spintronics, 
graphene, topological insulating, orbital, quantum dot, optical electronics and 
superconducting systems):

    [4.4]  

    [4.5] 

 In general form, the above is ( E  −  H   f  ) G   R   ( xx ′,  E ) =  δ   xx′  . We stick to the labeling 
convention of  G   ab   = ‹ a | ( E  −  H    v  ) −1 | b ›. 

 We draw particular comparison to the spintronic systems where spin relaxation is 
an important research topic. It is not hard to notice that in fact  V   ds   mimics the spin 
fl ip constant. In this context,  V   ds   has the physical outcome of measuring the strength, 
or the likelihood of spin fl ipping. This has far-reaching implications for technological 
applications like spin oscillation and current-induced magnetization switching. The 
above can be represented in matrix form with the off-diagonal sub-matrices 
containing the effects of electron spin fl ip or the electron  s – d  band coupling. 

  Exercise 4.1 

  Show that     

  Solution  

  (EI − H)G = I  
  Bold denotes matrix representation, one thus has:  

  〈 s , 3| ( E  −  H    v  )  G  | s , 3〉 = 1 

  where G  = ( E  −  H    v  ) −1 

 ⇒ 〈 s , 3| (| s , 3〉( E  − 2 t )〈 s , 3| + | s , 3〉 t 〈 s , 4| + | s , 3〉 t 〈 s , 2| 
   − | s , 3〉  V    sd   〈 d , 3|)  G  | s , 3〉 = 1  

 ⇒ ( E  − 2 t ) 〈 s , 3|  G  | s , 3〉 +  t 〈 s , 4|  G  | s , 3〉 +  t 〈 s , 2| G |  s , 3〉 
  +  V    sd   〈 d , 3| G |  s , 3〉 = 1 
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 Below is an explicit matrix representation considering the band effect:

    [4.6]  

 Note that each sub-matrix belonging to a particular band is infi nite in size. The 
number of sub-matrices is, however, fi nite and related directly to the number of 
bands. The matrix in Eq. 4.6 consists of four sub-matrices, namely the ss, ds, sd 
and dd sections. The off-diagonal sections account for coupling between the two 
bands or the two colors. The diagonal sections account for the individual bands. If 
one is interested in only a single-band system, one needs to consider only the top-
left section, i.e. the ss section. The present matrix applies only to a one-dimensional 
system. For a two-dimensional system, one can further develop each matrix 
element into a sub-matrix block.   

   4.3  Spin and magnetic system 

 In nanoscale electronics, the application of magnetic fi elds is common. In metal 
and semiconductor spintronics, single and quantum dot, and graphene electronics, 
magnetic fi elds have been applied for various reasons including inducing Zeeman 
splitting, quantum Hall and band-induced magnetoresistance. 1  Below we give a 
brief introduction to electron dynamics under the effect of magnetic fi elds to help 
readers appreciate the physical pictures when applying non-equilibrium Green’s 
function (NEGF) methods later. 

   4.3.1  Introduction to magnetic fi eld and Hall effects 

 Electrons experience the Lorentz force in the presence of magnetic fi elds. The 
classical Hall effect was discovered more than a century ago by E. H. Hall. A magnetic 

�� �� �� �� �� ��



122 Introduction to the physics of nanoelectronics

©  Woodhead Publishing Limited, 2012

fi eld is applied vertical to the direction of current fl ow, and a voltage known as the 
Hall voltage can be detected across the transverse length. Equilibrium is achieved 
when the force due to the magnetic fi eld is balanced by the countering one due to 
charge accumulation across the transverse length. The simple but illustrative 
mathematical description of this is that two opposing forces balance when:

    [4.7]  

 One defi nes a Hall coeffi cient as follows:

    [4.8]  

 with  j   x   =  nev   x   and  R   H   = 1/ ne . It is well-known that the Hall coeffi cient can be 
measured to determine the carrier density in the material as shown in  Fig. 4.1 . 

 But the physics here is rather different from that of the integer quantum Hall 
effect (IQHE). In the classical case, the magnetic fi eld is not strong enough with 
respect to the sample dimension to create bound cyclotron states. Hall resistance 
here depends on the free carrier density. In IQHE, Hall resistance depends on 
current-carrying edge states. The edge states are a multiple of the number of 
Landau levels below the Fermi energy. Increasing the magnetic fi eld reduces the 
number of Landau levels below the Fermi energy in a discrete manner, resulting 
in quantized IQHE Hall resistance. 

 The application of the B fi eld is a prelude to the interesting integer quantum 
Hall effect. From  R   H   =  E   y  / B   z     j   x   and  j   x   =  nev   x  , one works out  R   H   = 1/ ne . It is 
obvious  R   H   is a measure of carrier density in a sample. This is one of the most well 
known applications of the classical Hall effect. One can also deduce that, since the 
Hall voltage is  V   H   =  I   x    R   xy   , it measures the strength of the applied fi eld if the 
carrier density is known. 

 A picture of the effect of B fi elds on the density of states below the Fermi 
energy is give in  Fig. 4.2 . For illustration, we consider a semiconductor two-
dimensional electron gas (2DEG) with electron density of  n   s   = 5 × 10 11  cm −2 . The 

   4.1     Schematic illustration of the classical Hall effect. Electrons are 

defl ected and accumulate on the two transverse sides of the sample, 

generating an electric fi eld which balances the force of the magnetic 

fi eld.     
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energy states for B fi elds of 2 T and 10 T show a discrete number of Landau levels 
below the Fermi energy. 

    4.3.2  Introduction to quantum Hall effects 

 The quantum Hall effect is most representative of mesoscale systems or nanoscale 
devices because it exists only in two-dimensional (2D) systems, which do not 
normally exist in nature. Advancement in nanotechnologies made possible the 
fabrication of nanostructures only in recent times and the 2D structures turn out to 
host one of the most beautiful physics known to mankind. 

 Quantum Hall effects comprise the integer quantum Hall effect (IQHE) and 
the fractional quantum Hall effect (FQHE). Both have been Nobel-winning 
discoveries. In this book, only the underlying physics of the quantum Hall effects 
are discussed and they are introduced in simple, intuitive pictures. The fractional 
quantum Hall system is a collection of electrons which can no longer be treated as 
a non-interacting electron gas. The interaction is so strong that the fractional 
system can in some sense be regarded as a solid (Wigner crystal). In IQHE, 
semiclassical and conventional fi eld theoretic methods could not fully explain the 
strange but interesting electronic behavior. Observables (e.g. energy levels and 
conductivity) exhibit topological properties. In the language of physics, these 
observables are not easily affected by the presence of impurities or scattering. 
This is unlike the electron gas systems for metals and semiconductors where 
conductivity depends on the scattering between electrons and phonons. 

 It is rather surprising that an elegant physical phenomenon like this exists only 
in systems that are man made. The quantum Hall effect like all others has its root 
in the classical Hall effect, which we have linked to the physical explanations 

   4.2     Illustration of electron states under applied magnetic fi elds. 

(a) B fi eld is weak and electrons are not bound. (b) B fi eld is strong 

and Landau levels are created. (c) Under very strong B fi elds, there 

are fewer energy levels under the Fermi energy, implying higher 

degeneracy for each level.     

�� �� �� �� �� ��



124 Introduction to the physics of nanoelectronics

©  Woodhead Publishing Limited, 2012

based on the Lorentz force. IQHE was fi rst observed by von Klitzing, Dorda and 
Pepper in 1980. 2  The experiment was carried out in a 2DEG formed by an 
inversion layer at a Si/SiO 2  interface. At a temperature of a few degrees Kelvin 
and a B fi eld of a few Tesla, quantized conductivity was observed:

   . [4.9]  

  Degeneracy and fi lling factor 

 When the magnetic fi eld is high, the trajectories of all free carriers curl up to form 
small circulating states in the sample. These circulating states are no longer free 
and technically speaking, the sample becomes an insulator in the bulk. These 
circulating states are equally distributed to each Landau level below  E   F   . On the 
edges, things are different because skipping orbit edge states are formed due to the 
boundary of the edges. In the presence of impurities in the system, these edge 
states are associated with the extended states of the Landau levels. We will not 
venture deep into the physics of localized and extended states. Instead we will 
restrict ourselves to understanding only the few important concepts in pure sample 
under the effect of  B  fi elds. Now we introduce the important quantity of:

    [4.10]  

 known as the degeneracy strength or degeneracy factor of each Landau level per 
unit area of the 2D sample. For a particular Landau level, this is the number of 
available states per unit area. The larger the sample, the more degenerate states a 
Landau level could take.  Figure 4.3  provides a crude schematic illustration of the 
circulating electron states in a 2DEG samples. We will refer to these states as 
cyclotron states for short. 

   4.3     Physical imagination of electron bound states (cyclotron states) and 

their distribution in a two-dimensional system based on the Landau 

gauge under a strong magnetic fi eld.     
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 Quantum mechanically, one could show that the shift of the cyclotron radius from 

a user-defi ned origin of the 2D sample is    leading to the smallest separation 

between two cyclotrons of    For a sample with geometric size of 

 A  =  L   x   L   y  , one arrives at:

   . [4.11]  

 The degeneracy factor would thus be:

   . [4.12]  

 The degeneracy factor per unit area is simply   . When one writes:

    [4.13]  

 it is easy to see that  h/eB  would be the real space area occupied by one circulating 
electron state per Landau level. Thus  h/e  is also known as the fl ux quantum or the 
fl ux associated with one cyclotron electron ( Fig. 4.4 ). 

   4.4     An electron bound state circulates an area containing a fl ux 

quantum.     

 The fl ux quantum can also be written in terms of the area enclosed by the 
circulating electron:

   . [4.14]  

 An electron takes up a certain space depending on the strength of the  B  fi eld in 

order to obey the rule of capturing with it a fl ux of   . 

  Exercise 4.2 

 Deduce in terms of the fl ux quanta and the tiny enclosures inscribed by 

a cyclotron what happens to the size of the cyclotron when B fi eld 

increases. Does the size increase or decrease? This question tests the 

understanding of the qualitative picture given above. 
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 A more rigorous representation of the real space distribution of the cyclotrons 
would require some quantum mechanics and the understanding of the wavefunctions. 
Here we only show the fi nal results without derivations. The wavefunction in the 
spherical coordinates of a 2DEG system under a magnetic fi eld is given by:

    [4.15]  

 where  C   nm   is the normalization constant and  L   nm   is the Laguerre polynomial. The 
quantum numbers are  n  for energy and  m  for angular momentum. We will look at 
the wavefunction of the lowest Landau level, i.e.  n  = 0:

   

 [4.16]  

 Here,    is the magnetic length; ( z  =  x  −  iy ),  z * =  x  +  iy . The magnetic 
length is also the radius of the cyclotron motion for  n  = 0. This wavefunction is 

obtained with the symmetric gauge of    and represents a 
circular distribution of electrons ( Fig. 4.5 ). 

 Since all wavefunctions on the lowest Landau level have the same energy, the 
following wavefunction is also an eigenfunction of the lowest Landau level:

   4.5     Electron bound states and distribution in space can be imagined 

differently when the symmetric gauge is used. Observables are, 

however, invariant irrespective of the gauges used.     
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    [4.17]  

 where  f ( z ) is an arbitrary function. If for a particular B fi eld, the number of Landau 
levels below  E   F   is  v , there will be    electron states below the Fermi energy.  

  Exercise 4.3 

  Show that if  n  s  is the electron density  ( m  −2 )  in the 2D sample: 

     

  where v is known as the fi lling factor.  

 If the B fi eld strength is such that  v  is an integer number,  v  would then indicate the 
number of Landau levels below  E   F  . When  υ  is an integer, the Landau levels are 
completely fi lled. The implication is that the presence of a B fi eld changes the 
density of states from a constant (for a usual 2D system) to a set of delta functions 
as shown in  Fig. 4.6 . 

 One sees that as B fi eld increases, the number of electron states for each Landau 
level increases except for the highest Landau level, which is losing electrons to the 
lower Landau levels. Taking a digression, we note that this can be measured as an 
increase in the longitudinal resistance  ρ   xx  , as there are more empty states at the highest 
Landau level for scattering to take place. Such manifestation is also known as the 
Shubnikov–de Haas (SdH oscillations), which we will describe only briefl y here. As 
the highest Landau level loses all its electrons, it also moves above  E   F  ; the next 
highest Landau level would now take the place of the outgoing one and become the 
highest Landau level below  E   F   and which is fully occupied. The number of electron 
states below the Fermi energy remains a constant. Due to magnetic depopulation, the 
Fermi energy of the 2D system will thus follow a sawtooth shape. Scattering is low if 
the uppermost Landau level is either nearly full or nearly empty, resulting in low 
resistivity. Scattering is high when the uppermost level is half full, resulting in high 
resistivity. This variation with  B  gives rise to SdH oscillations in resistivity. 

   4.6     Density of states in the IQHE system where each energy level 

accommodates a large number of electrons.     
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 The important question to ask in IQHE is: How does quantized Hall resistance 
 ρ   xy   arise? The answer would be simple if one can associate the Hall resistance to 
the number of Landau level below  E   F  . But how then does this relation arise? Here, 
one needs the concept of localized and extended states. Indeed, there is a fi xed 
number (at least one) of these states for each Landau level. We will not explain the 
formation of extended and localized states here. Let us accept the fact that 
the number of extended states to each Landau level is fi xed and depends on the 
temperature and the impurities in the sample. Keeping this idea of the extended 
states in mind (i.e. its association with the Landau level) and recalling that    

which gives the number of Landau level below the Fermi energy, it would be easy 
to deduce that the quantum Hall resistance simply increases with the number of 
Landau levels below the Fermi energy. The relation can be expressed as follows:

    [4.18]  

 ensuring that v takes on an integer number.  

  Exercise 4.4 

  Deduce that    is always the largest integer number smaller 

than    . 

  Show that when      takes on integer value, the quantum Hall 

resistance is equal to the classical Hall resistance, i.e. 

      
.

  Solution  

  When      is an integer number,    But when v is 

not an integer number,      will only be the largest integer 

number smaller than     

 By contrast the classical Hall resistance is:

    [4.19]  

 Note that in two-dimensional systems  I   x   =  j   x   l   y   where  j   x   (Am −1 ) is the current per 
unit of transverse length and  n   s   is the carrier density with dimension of m −2 .    
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   4.3.3  Non-equilibrium electron transport under magnetic 
vector potential 

 The above is a semiclassical depiction of electron dynamics under the magnetic 
fi eld and we have understood the physics which will give rise to IQHE. It is now 
interesting to image the distribution of these electrons under the non-equilibrium 
condition. We will use the simplest one-dimensional system in a 2DEG system 
having translational invariance along the transverse  y  direction, with external 
magnetic fi eld perpendicular to the 2DEG, and electric fi elds applied spatially 
along  x  as shown in  Fig. 4.7 . 

 In the presence of the magnetic and electric fi elds, the Hamiltonian operator is:

    [4.20]  

 where  m * is the electron effective mass,  m  0  is the electron mass in vacuum,  g  is 
the effective Landé  g -factor and  U  is the total potential energy of the electron in 
the semiconductor.  B  z  is the vertical magnetic fi eld at  x  due to the perpendicular 
magnetization of the ferromagnetic gates,  A  is the corresponding vector potential 
chosen in the Landau gauge (0,  A   y  ( x ), 0), and  σ  = + / −1 denotes spin up/down, 
respectively, and where the spin quantization axis is defi ned along the vertical 
magnetic fi elds. The electron conduction path in the  x  direction is discretized into 
 n  lattice points of equal distance  a  apart, i.e. the discrete points are denoted by, 
 x   j  =  ja  , where 1 ≤  j  ≤  n  as shown in  Fig. 4.7 . We can now derive the matrix 
representation of the Hamiltonian by applying the fi nite difference approach in the 
limit of small  a . If  ψ ( x ) is the eigenfunction of the system, which need not be 
solved analytically, then we have:

   

 . [4.21]  

   4.7     Schematic sketch of discrete sites along the electron conduction 

path.     

 For small  a  (i.e.  a  → 0), the fi rst and second derivatives of  ψ ( x ) can be 
approximated as:
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[4.22]

  

 where for brevity,  a  is sometimes omitted from  j  which always implies  ja . With 
the above approximations, we rewrite the energy equation as:

    
[4.23]

  

 or equivalently:

    [4.24]  

 where    

By taking    and    one can show that:

    [4.25]  

 where  P j  = 2t j  + ω j  + Z j  + U j  + E y   and  Q j  = �t j  + iq j     +1/2.  It is worth noting that 

that    is to be obtained by evaluating  A ( x ) at halfway between  x   j   and  x   j  + 1 . Thus 

in matrix form, the Hamiltonian is given by:

    [4.26]  

 Thus in matrix form, the Hamiltonian is given by:
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[4.27]

  

 where  n  is the number of discrete points in the 2DEG. We model our device as a 
fi nite-sized conduction path in the 2DEG, which is connected on either side to 
semi-infi nite leads. Thus, from the discretized Hamiltonian, we can then derive 
the retarded Green’s function matrix for the 2DEG region, following standard 
methods.

    

[4.28]

  

 where  E  represents the total electron energy,  E   x   is the electron energy in the 
propagation ( x )–direction, and    and    are the self-energies of the left and right 
lead, respectively. Note that  G   R   is independent of the kinetic energy in the transverse 
direction    due to the cancellation of the  E   y   component in  E  and  H . 
Since electron transport is constrained to the  x  –  y  plane of the 2DEG, the 
confi nement in the  z  direction will lead to the formation of sub-bands. We do not 
discuss the details concerning the sub-bands and assume that transport occurs only 
within the lowest sub-band. The component    describes the propagation of 
electron between the points  x   i   and  x   j   within the 2DEG channel, while the self-
energy terms of    represent the perturbative effect of the entire semi-
infi nite leads on the electron propagation within the channel.    is related to the 
surface Green’s function of the isolated leads,  g   L,R  , and can be expressed as follows:

    [4.29]  

  Exercise 4.5 

  In a magnetic fi eld system, the Green’s function needs to be modifi ed 
due to the changes in the Hamiltonian. In the following:  
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  (1)  Show that in a system with magnetic fi eld, the discretized Hamiltonian 
can be written as follows: 

      

where  and 

  (2) By taking    and   , show that: 

     

  where P   j   = 2 t   j   +  ω   j   +  Z   j   +  U   j   +  E   y    and Q   j   =   .  It is worth noting that  

    is to be obtained by evaluating A  ( x )  at halfway between x   j    and x   j +1 .   

   4.3.4  Non-collinear electron spin and magnetic fi eld 

 We now inspect a system where the two currents might appear in a linear 
superposition of one another using the Green’s function method. 3,4  The state of 
such system is a rotated spinor, which satisfi es a rotated Hamiltonian and preserves 
the eigenenergies. This description corresponds to the physical case of a magnetic/
spin moment oriented at a particular angle with respect to the laboratory frame 
( Fig. 4.8 ). When an electron spin is not aligned to the magnetic moment, it is not 
a good quantum number and the spin is not a conserved quantity. A classical spin 
moment might precess about the effective fi eld of the moment, relax towards the 
fi eld, shrink in magnitude, or even travel away from the fi eld. 

   4.8     Electron spin is not initially aligned to the magnetic moment. It is 
not a good quantum number.     

  Exercise 4.6 

  The second-quantized Hamiltonian for a spinor system is: 
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  where superscripts indicate the type of quantization (e.g. ‘2’ indicates 

second quantization) and the Pauli matrices in single-particle forms are: 

     

  Show that the Pauli in second-quantized forms are: 

     

 In single-particle form, the spin Hamiltonian in the presence of a non-collinear 
magnetic moment is:

    [4.30]  

 For simplicity, we have taken Ø = 0 and focused on the effect of one angular 
dimension only, i.e.  θ . In second-quantized form and momentum space, Eq. 4.30 is:

   

   . [4.31]  

 Noting the fi rst term    of the Hamiltonian in Eq. 4.31 is related to s-d coupling, 
the second term    is kinetic energy and taking the Fourier transform, one has in 
real space:

    [4.32]  

 or:

    
[4.33]

  

 The second part of the Hamiltonian in real space is:

    
[4.34]
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 where  t    σ   is the strength of spin-dependent site coupling and  U    σ   is the spin-
dependent site potential. Physically  t σ      could mean spin-dependent tunneling 
between electrons in neighboring sites. On the other hand,  U    σ   could be local 
magnetic impurities. It is obvious from Eq. 4.34 that the kinetic energy term has 
angular signifi cance only when the site coupling or site potential are spin-
dependent in strength.  

  Exercise 4.7 

  Show that    in momentum space can be written in real 
space as: 

     
.

  As an aside: 

        

 
.

   4.4  Second-quantized spin orbit coupling 

 In this section, we focus on a predominantly semiconductor effect known as the 
spin orbit coupling 5,6  based on the Green’s function method. An analogous version 
of orbital coupling with pseudospin exists in graphene. For simplicity and 
illustration, we will look specifi cally at the linear conduction band type of spin 
orbit coupling due to Rashba and Dresselhaus. These effects have been studied 
extensively in semiconductors and more recently in metal spintronics. The fi rst-
quantized Hamiltonian of the Rashba and Dresselhaus type is given by:

   . [4.35]  

 For simplicity, below is a discretized Hamiltonian with the Rashba spin orbit 
coupling (SOC), recalling that  H    r   is an operator we defi ned earlier to act on one 
specifi c site only:

    

[4.36]
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 which by rearrangement would lead to:

    

[4.37]

  

 Incorporating the effect of spin, the Hamiltonian can be written in vector space:

    
[4.38]  

 where:

   
 [4.39]

  

 The above is the obvious result of discretizing the linear  k   x   and  k   y   in the SOC 
expression. Note that  σ   μ   is the Pauli matrix, but  σ̂   μ   is not the usual form of Pauli 
matrix. It is the bra-ket operator form, e.g.  σ̂   y   = − i (|↑〉〈↓| − |↓〉〈↑|):

    

[4.40]

  

 In second quantization:

    

[4.41]

  

 In Eq. 4.41, a similar discretization of the linear  k   x   and  k   y   has been performed. 
Equation 4.41 can also be written as:
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[4.42]

  

 Noting that 〈↑ | σ   y  | ↑〉 = 〈↓ | σ   y  |↓〉 = 0, while 〈↑ | σ   y  | ↓〉 = − i  and 〈↓ | σ   y  | ↑〉 =  i ; 
〈↑ | σ   x  | ↑〉 = 〈↓ | σ   x  | ↓〉 = 0 and 〈↑ | σ   x   ↓〉 = 〈↓ | σ   x  | ↑〉 = 1, one could fi nd that:

    
[4.43]

  

 One can now compare Eq. 4.43 to Eq. 4.40. As a matter of taste, one can reshuffl e 
Eq. 4.43 by applying the rule of    We thus 
note that in general:

    
[4.44]

  

 The Green’s function is, by defi nition,   . 
Using the SOC Hamiltonian above, but replacing the running indices of  m  and 
 v  with  a  and  b , respectively, one can derive the matrix equation for the Green’s 
function. The reason for replacing the running indices is because we wish to 
reserve  m  and  v  as a particular fi xed lattice point for the Green’s function below. 
The general Green’s function expression is:

   

 [4.45]

  

 We present two specifi c cases of the above:

    [4.45a]  

    [4.45b] 

 To give an even clearer illustration, we focus on a one-dimensional system, with 
just two horizontal points (i.e.  m  = 1,2), where index  v  is irrelevant, in the central 
region of the device. It can then be worked out that the matrix equation is:

1       2➞ ➞
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.

 

[4.46]

  

 It is not hard to see that, in general, all indices in the Green’s function matrix are 
related to the central region of the device only. This Green’s function matrix can 
be found by applying the inversion technique of the Hamiltonian as described 
previously. Since all spin (color) related effects are present in the Hamiltonian, the 
spin Green’s function below contains all information needed to describe spin 
propagation or spin current:

   

. [4.47]

  

 The dashed lines divide the matrix Green’s function in Eq. 4.47 into spin sub-
spaces. The solid lines divide the spin sub-matrix into the sub-space of longitudinal 
dimension.  

   4.5  Non-equilibrium spin current 

 The general current expression describing the propagation of electron from the 
left part of the device to the right part is given by Caroli  et al.  7  Electron current 
can be described in terms of the discrete parts of the device like the emitter ( e ), 
central region ( d  ) and collector ( c ). The expression for a neutral current crossing 
over from the left lead (emitter) to the central region is:

   . [4.48]  
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 We show below that, in the presence of SOC or spin fl ipping effect, the current 
can still be described with Eq. 4.48 with modifi cations required for the parameters. 
 Figure 4.9  shows a spatial distribution of the electrons. 

 Noting that   , the Γ matrix 
normally written for discrete spatial points only can now be written to refl ect the 
spin, i.e. ( e, e′, d, d′ ) → ( eσ, e′ σ′, ds, d′ s′ ) is followed in Eq. 4.49:

   

. [4.49]

  

 Restricting coupling constant to between the nearest neighbors only, all terms of
   with sites  d  = 2 to 4 would be zero, because site 2 of the central device has 

negligible coupling with any site on the emitter, or any point of  e . The general 
expression for  Γ  is:

   

. [4.50]

  

 The general spin current expression is:

   
.
 

[4.51]
  

 The model above is suitable for computing spin current for systems with tunneling 
spin fl ip and spin fl ip within the dot. In these systems, the coupling constant  t  will 
appear as various coeffi cients in the tunneling part of the Hamiltonian. While  t  can 
be determined in a phenomenological or empirical manner, the lead Green’s 

   4.9     One-dimensional schematic illustrating a nanostructure with 

discrete spatial site and spin states.     
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functions that need to be found are:   . Due to tight binding 
approximation, the device indices  d, d ′ can only take on 1, which is the lattice site 
closest to the emitter and hence  e  = 0,  d  = 1. 

 One now considers the situation where there will not be spin fl ip on the 
electrode, i.e.   . Thus, when lead interaction is ignored,  σ  =  σ ′, and 
the following is obtained for spin current:

    [4.52]  

 In the event of no spin fl ip within the central device,    = 0, and  s  =  s ́ 
while    and    are fi nite. In the event of no tunneling spin fl ip,  σ  =  s . The 
simplest spin current expression is thus:

    [4.53]  

  Table 4.1  summarizes the necessary modifi cations one needs to apply to the spin 
current expressions under the different circumstances of interaction in the leads, 
across the leads, or within the device channel.   

   Table 4.1     Summary of spin current expressions modifi ed by spin interaction in 

electrodes or central device  

Spin interaction Spin current expression

Current in general form (considering the spin only)

In the absence of spin interaction in electrode:

σ = σ′, σ″ = σ′″

Assuming symmetrical electrode coupling to central 

device region:

σ = σ′ = σ″ = σ′″

In the absence of spin interaction in the central 

device:

In the absence of tunneling spin fl ip from electrode to 

central device:

Simple scalar function:

    Note that         
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                 5 
 Spintronics and spin Hall effects in 

nanoelectronics  

   Abstract:    This chapter introduces spintronics as realized in metal and 
semiconductor materials. Particularly in semiconductors, the physics of spin 
orbit coupling and magnetic fi elds on the motion of electron and spin are 
discussed. The concept of gauge is introduced in the form of the spin orbit 
gauge and its relation to spin dynamics is studied heuristically. Spin Hall effects 
in the Rashba system are then discussed in connection with the gauge concept. 
Finally, the spin valve device is introduced alongside spin drift diffusion theory, 
which has been widely used to model spin transport in metal-based devices.  

   Key words:    spin orbit coupling, gauge, Rashba, spin Hall effects, spin drift 
diffusion.   

    5.1  Introduction to spintronics 

 Spintronics 1–3  refers to a new class of electronics that exploits the spin together 
with the charge property of electrons for technological applications. Indeed the 
term ‘spintronics’ was fi rst used in the 1990s to describe the spate of research 
activities focusing on manipulating or utilizing the electron’s spin degree of 
freedom (DOF) to realize electronic functions, e.g. transistor, logic and memory. 
The materials that could be used for realizing spintronic functions include metal, 
carbon, semiconductors or rare earth. Spintronics is closely related to magnetism, 
which studies the collective spin behavior of the bound electrons. But in 
spintronics, emphasis is placed on the itinerant or moving electron whose spin 
coherence or collective transportation is controlled to generate a measurable 
conductance or current modulation. Thus, in general, what is minimally required 
of a spintronic device would be an apparatus to generate a collection of spin-
polarized electrons, an effective channel to transport these ‘spin’ electrons to a 
separate apparatus which then measures the ‘spin’ in the form of resistance 
change. In nanoelectronics, this apparatus would have to be integrated into a 
single device, which is transistor like and nanoscale in size. The bulk of spintronic 
research, particularly metal-based research, has focused on spin asymmetric 
electron transport in magnetoresistive devices. However, semiconductor-based 
spintronics relies on spin orbit induced spin current in a paramagnetic 
semiconductor. Similar studies on magnetoresistance and spin orbit coupling have 
also been carried out in carbon nanotube and graphene based devices. In rare earth 
material where the Rashba effect (normally found in semiconductor two-
dimensional electron gas) is strong, rare earth based spintronics may become a 
promising new fi eld. 
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 Besides spin current, transportation and measurement, of equal signifi cance are 
studies of spin relaxation and semiconductor magnetism. Spin relaxation studies 
are an important subject in semiconductor spintronics, as a long spin coherent 
length is crucial for the successful operation of a spintronic transistor. In magnetic-
based spintronics, studies have focused on a class of materials known as diluted 
magnetic semiconductors (DMS) where emphasis is placed upon inducing real 
magnetism by means of doping semiconductor with magnetic materials. 

 The spin Hall effect (SHE) refers to a special spin orbit coupling means which 
generates spin current in the transverse direction to the applied electric fi eld. The 
SHE conductivity can be topological in nature and bears similarities to the 
quantum Hall effects. In fact in materials known as the topological insulators, spin 
orbit coupling is very strong, and quantum SHE has been shown to exist. 

 Spin torque refers to the transfer of spin angular momentum to the magnetic 
moment causing magnetization to be switched by the spin current instead of the 
magnetic fi eld. This is an important subject in metal-based spintronics where the 
focus is on designing a class of magnetic memory known as the spin transfer 
switching (also known as spin transfer torque, STT) magnetic random access memory 
(MRAM). In the new MRAM, the application of spin transfer switching instead of a 
magnetic fi eld allows memory cells to be packed closer in a magnetic fi eld free 
system. This is an engineering feat that allows future non-volatile computer memory 
density to be scaled to the level which can meet consumer demand. 

 We have introduced a host of physical phenomena particularly relevant to the 
technology of spintronics. In this chapter, we focus on metal spintronics, 
semiconductor spintronics and SHE. We do not discuss DMS and spin relaxation. 
In  Chapter 7 , spin Hall and spin torque are discussed again using the more formal 
physics of quantum gauge theory. 

   5.1.1  Metal-based spintronics 

 It is worth noting that in the early years, research in spintronics was focused on 
metallic 4–6  spin-based devices. In fact in the late 1980s and early 1990s, when 
semiconductor spintronics was still largely at the conceptual stage, research into 
ferromagnetic (FM) metal devices based on the asymmetric scattering of spin 
current had already met with great experimental success. This spin-dependent 
transport and the devices (based on magnetic metal multilayers) are now generally 
known as metal spintronics, although their experimental success predates even the 
coining of ‘spintronics’. Metal spintronics comprise mainly giant magnetoresistance 
(GMR), spin transfer torque and spin valve devices, much of which we introduced 
in  Chapter 2 . In this chapter we focus on the propagation of electron and spin fl ux 
in these devices. Many theoretical and simulation works have been carried out 
to investigate the GMR and spin transfer effects in both the current perpendicular-
to-plane (CPP) and current-in-plane (CIP) (see  Chapter 2 ) confi gurations. We 
introduce the phenomenological spin drift diffusion (SDD) equations, which have 
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been widely used to model spin transport in spin valve and spin torque devices. An 
SDD-based model describes experimental observations very accurately and is the 
language understood by both theorists and experimentalists. Besides the Boltzmann 
phenomenological methods in spin electronics, the non-equilibrium Green’s 
function (NEGF) method is also becoming popular and is increasingly being used 
to compute spin transport in tunneling magnetoresistance (TMR) or magnetic 
tunnel junction (MTJ) devices. Recent developments of spin Hall in platinum and 
Rashba effects in metal and rare earth materials may have great application 
potential, but these topics are not discussed in this book as much research is still 
being carried out at the time of writing.  

   5.1.2  Semiconductor spintronics 

 In semiconductor spintronics, the main idea is to induce magnetic-like behavior in 
non-magnetic semiconductors. It is an established fact that the versatility of 
semiconductors, especially in terms of their transport properties, has been a key 
factor in the astounding success of the metal-oxide-fi eld-effect-transistor (MOSFET) 
technology since its invention. It is thus conceivable that semiconductor spintronics 
can lead to a new generation of spin devices based on the well-established MOSFET 
technologies. The most natural setting for implementing semiconductor-based 
spintronics is a transistor heterostructure consisting of a two-dimensional electron 
gas (2DEG) channel. A typical semiconductor 2DEG has a long mean free path (for 
ballistic transport) and large spin orbit coupling (SOC) effect, both of which are 
crucial requisites for the coherent transport and manipulation of spin current. 
Semiconductors are also much more versatile materials compared to FM metal 
elements and alloys. The physical properties of a semiconductor can be varied rather 
conveniently by changing its carrier concentration via either electrical or optical 
means. For instance, the magnetic properties (such as coercive fi eld and Curie 
temperature) of a DMS 7,8  can be controlled either electrically or optically. Indeed 
the promise of semiconductor spintronics depends greatly on the important fact that 
spin conductivity can be varied over a wide range via numerous techniques, e.g. by 
doping, application of an external electric fi eld or photo-excitation. 

 From the device perspective, it is essential not only to generate or inject spin-
polarized current into the semiconductors, but also to manipulate the transport of 
electron spin electrically, such that some kind of ‘spin transistor’ function can be 
realized. This is certainly helped by the fact that the electron spin is relatively robust 
with respect to coherence in semiconductors. Kikkawa and Awschalom 3  have 
demonstrated that the spin relaxation time can be as long as 100 ns in bulk nGaAs 
with a doping density of 10 16  cm −3 , translating to a macroscopic spin coherence 
length of the order of 100 μm. These remarkable observations lend further credence 
to the belief in the possibility of future spin transistor devices. The spin transistor or 
spin fi eld-effect transistor (spinFET) will be a key element upon which other more 
complicated devices (e.g. logic gates, memories, etc.) can be built; the collection of 
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these devices may thus constitute a whole new class of spin-based MOSFET 
electronic devices. Hence, it is not an understatement to say that semiconductor 
spintronics constitutes the next stage in the development of spintronic technology. Its 
main advantage over ferromagnetic metal-based spintronics is its integrability with 
the extensive semiconductor fabrication technology. That it is feasible to couple the 
spin and charge conductance property to light also opens up the possibility of the 
future convergence of electronics, photonics and spintronics in semiconductors.   

   5.2  Semiconductor spin transport 

 Semiconductor spintronic devices are generally based upon the concepts of 
generation, transportation and detection of spin current. This is the motivation 
behind the extensive review in this chapter on the various physical phenomena we 
can exploit to achieve the above.  Table 5.1  summarizes the three important aspects 
of semiconductor spintronic devices, namely:

   1.   Generation of spin current.  
  2.   Transportation and manipulation of spin current.  
  3.   Detection and measurement of spin current.    

 The table contains details of the numerous well-established techniques to realize 
these three functions which are required for the proper working of spintronic 
devices. More details or variants of these techniques, as well as lesser known 
specialized methods, can be found in literature published in abundance in various 
journals. 

 Exchange coupling 9,10  arises due to the interaction of the s-electron spin with 
the collective presence of the d-electron moment in ferromagnetic materials. The 
exchange effect is a result of many-body physics; in spintronics, it suffi ces to 
understand that the exchange effect is a form of effective magnetic fi eld felt by a 
single-particle spin moment. When the electron spin is aligned with this effective 
fi eld, its energy is lower and vice versa is true. Thus in this context, electron 
transport through a ferromagnetic material can be treated like an electron passing 
through a magnetic fi eld. On the other hand, the exchange energy is also related 
to the asymmetric density of states (DOS) at the Fermi energy. Thus, in the regime 
of drift-diffusive transport, spin current can be resulted from the more dominant 
effect of spin asymmetric scattering due to asymmetric DOS. In fact, most metal-
based spintronic devices (e.g. spin valves, magnetic tunnel junctions) rely on the 
asymmetric scattering effect to generate spin current which is normally detected 
via resistance change. Electron spin interacts with actual magnetic fi elds producing 
Zeeman energy. It is thus natural to conceive that applying external magnetic fi eld 
to a transistor device could generate spin current. In fact it has been shown in 
principle that external magnetic and electric fi elds induce spin polarization in 
various types of devices via wavevector fi ltering. 11–13  There has been a large body 
of work investigating the various possibilities of spin fi ltering using the external 
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fi elds. 14–17  While these are good indications of the possible emergence of future 
spintronic devices, diffi culties remain with many practical issues. 18–20  
The need for a spatially concentrated magnetic fi eld to approximate the delta 
function distribution fi elds in the channel of these devices is itself a formidable 
practical task. 

 On the other hand, there have been a slew of device propositions utilizing spin 
orbit coupling, foremost of which is the Datta–Das 21  transistor that utilizes 
Rashba 22–27  SOC effects to induce spin precession across the 2DEG conduction 
channel. In fact SOC is the only technique that generates spin current without the 
need for any form of magnetism, e.g. magnetic fi elds or magnetic moment. It is a 
purely electrical means of generating spin current. At a more fundamental level, it 
is a fascinating physical effect which has its root in relativistic quantum mechanics. 
Recently, it has even been perceived as related to a profound form of magnetic 
potential also known as the non-Abelian gauge potential, which explains SHE as 
well as longitudinal spin current from the perspectives of symmetry and topology. 

   Table 5.1     Various techniques for the electrical generation of spin current, its 

transportation, detection and measurement  

Generation of spin current Transportation and 

manipulation of spin 

current

Detection of spin 

current

Exchange effects

(1)  Spin-dependent scattering 

in FM bulk/fi lm

(2)  Effective Zeeman effect 

of exchange fi eld

Spin injection

(1)  Spin dependent 

tunneling

(2) Spin drift diffusion

Electrical gate pumping

(1) Multiple gate channel

(2)  Single-electronic 

quantum dots

Non-local diffusion

Induced fl ow of spin 

current in a non-local 

manner

Spin valve

Spin current → 

resistance change

Optical detection

Spin current → optical 

polarization

Inverse spin Hall

Spin current → charge 

current

Spin torque 

oscillations

Spin current → 

precessing moment

External magnetic and 

electric fi elds

(1) Zeeman effect

(2) Landau effect

Spin orbit coupling

(1) Spin-dependent tunneling

(2) Spin Hall current

(3) Persistent spin helix

Ferromagnetic resonance

Precessing moment → spin 

current

Spin seebeck

Temperature gradient → spin 

current

Optical methods

Light polarization → spin 

polarization

 

   Note: This table should be read vertically, but not across the columns. The symbol → 

means ‘translates to’ or ‘results in’.    
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More discussions of SOC are found in the later sections of this chapter. Other 
indirect ways to generate spin current includes the ferromagnetic resonance and 
the spin Seebeck, which generate spin current via a precessing moment and 
temperature gradient, respectively. Optical generation of spin current is also 
well-established. These techniques are mainly employed to generate an imbalance 
spin population for the studies of spin dynamics and spin relaxation. 

 Transporting spin current through a device channel and detecting its presence are 
crucial for the complete functioning of spintronic devices. Spin injection 28–31  refers 
to the coherent transfer of spin-polarized current from a normally ferromagnetic 
contact to the device channel. It is an engineering process that can be achieved via 
the physics of spin-dependent tunneling and spin drift diffusion. This process is, 
however, fraught with diffi culty, ranging from resistance loading due to the high 
resistance semiconductor, to interfacial spin fl ip due to magnetic impurities or SOC. 
Besides spin injection, various techniques of electrical gate pumping, which rely on 
time-coordinated lowering and raising of electrical barriers across the electron 
conduction path to effect a net fl ow of electron or spin fl ux, have been studied. 32  
Further understanding of these subjects requires the knowledge of single-
electronics 33  and quantum dot spintronics. Non-local diffusion 34  is an interesting 
method with which to generate spin accumulation without needing to apply 
electrostatic potential along the spin conduction path. The electrical path for spin 
and charge fl ow is fi rst established via applying an electrical potential along it. Pure 
spin current can be tapped from a pure spin fl ow branching off the electrical path. 

 The detection and measurement of spin current has drawn particularly high 
experimental interest due to its generic applicability to magnetism, optics, metal 
and semiconductor spintronics. This large body of research, which spans various 
disciplines, is not covered in this article beyond that presented in  Table 5.1 . But a 
general tenet remains true, i.e. spin detection can be viewed as the inverse effect 
of spin generation. For example, ferromagnetic resonance 35  has been employed to 
generate spin current via precessing magnetization. Thus when the opposite is 
performed, this technique can also be used to detect spin current. 

 As stated earlier, of particular interest in this chapter is the effect of SOC which 
is the underlying physics for many aspects of spintronics with device prospects, 
e.g. spin current generation, SHE, spin torque, spin oscillations and so forth. 
While the Zeeman and exchange effects require external fi elds and local moments, 
respectively, SOC enables purely electrical generation and manipulation of spin 
current. The following sections discuss in some detail the origin and the physics 
of SOC with respect to generating longitudinal as well as transverse spin current. 

 This chapter is intended to provide a brief review of the various aspects of 
spintronics with special emphasis on the underlying physics of SOC. Explanation 
of these effects is substantiated with basic quantum mechanics accessible to both 
experimentalists and theorists. The equations used here are meant to enhance the 
clarity of concepts discussed, not to amplify their abstractness. Elaborate 
explanations and useful mathematical identities are compiled separately in tables 
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so that readers can focus on the physical pictures, reading the text with minimal 
distractions. The different sections are written in a self-contained manner such 
that they can be read and understood independently. For example, readers who are 
not familiar with relativistic quantum mechanics, which forms the basis of the 
vacuum SOC effect, can proceed to the later sections without much problem. The 
elucidation of the monopole-like magnetic fi eld may, however, require a few other 
abstract concepts. But this should pose little hindrance to understanding its 
relevance to SHE, so long as readers are prepared to accept the existence of these 
effective monopole fi elds.  

   5.3  Spin orbit coupling (SOC) and Zeeman effects 

 Since SOC constitutes a major subject of this review, it makes sense to provide a 
more elaborate description of its physics and origin. We present a brief description 
of vacuum SOC in the context of relativistic quantum mechanics. Simply said, it 
is an effect in which an electric fi eld appears to be an effective magnetic fi eld 
when viewed in the rest frame of a moving electron. Dirac linearization of 
Einstein’s energy equation to a minimally coupled momentum equation provides 
a natural means of deriving the SOC as well as the Zeeman terms. We start from 
the linear Dirac equation of:

   . [5.1]  

 For notational convenience, the  ħ  and  c  accompanying the momenta are set to 1 
and so the single-particle description of massive particle in the presence of 
electromagnetic fi eld,  A   μ  , is written as follows:

    [5.2]  

 where  D   μ   = (∂  μ   +  ieA   μ  ) and { γ     μ  ,  γ     v  } = 2 g    μv   obeys the commutative rule of 
Dirac algebra,  m  is the rest mass,  γ    0  and  α   i   are given in standard representation 

of   , and    and  σ   i   are the 2×2 Pauli matrices. 

Pre-multiplying Eq. 5.2 with ( iγ   v   D   v   +  mc ), one obtains the second-order equation:

   . [5.3]  

 Since:

    
[5.4]
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 one thus has    Note that    

where    and  F   μv   =  ∂   μ   A   v   −  ∂   ν   A   μ   is the 

electromagnetic fi eld tensor. Equation 5.3 can now be expressed as:

    [5.5]  

 where   . The explicit tensor form of  F   μν   is given by:

    [5.6]  

 Readers could verify that the matrix components can be summarized in  Table 5.2  
using compact notations for ease of referencing. 

  Table 5.2  is just the compact expression of    = − σ.B  −  i α   ·  E , which 

leads to the second-order equation of:

   . [5.7]  

 Recall that we had earlier set  ħ ,  c  → 1. For correct dimensions,  D  0  has to be 
accompanied by a  ħ ,  D   μ   by a  cħ , and  mc  implies  mc  2 . One can then obtain:

    [5.8]  

 where  π   μ   =  p   μ   −  eA   μ  . Letting ( ψ  1   ψ  2   ψ  3   ψ  4 ) 
 T   =   , and using Eq. 5.1, one obtains:

    [5.9]  

 From the above, one has:

   . [5.10]  
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 In the non-relativistic limit, the norm of  θ  approaches zero, 

   assuming small values of the vector potential. Careful 

substitution, however, leads to:

   . [5.11]  

 Taking the realistic approximation of ε =  ε  +  mc  2 , in the non-relativistic limit where 
 ε  and  eϕ  are very small, and using the following identities based on the interchangeable 
mix of vector and tensor products as shown in  Table 5.3 , one now has:

   

.

 

[5.12]

  
 In Eq. 5.12, the fi rst term represents the minimal-coupled kinetic momentum, 

the third term represents the Zeeman effects, the fourth represents the SOC and 
the fi fth represents the non-hermitian term that causes negative energy. It is worth 
noting that keeping the exact non-zero term of  θ  in the eigenspinor, the resulting 
 χ  manifest both the Zeeman effect and SOC in the low energy limit. The above 
analysis from Eq. 5.1 to Eq. 5.12 is about the vacuum SOC, which has a small 
coupling constant. In order for this effect to be strong enough without requiring a 
huge electric fi eld, a large effective coupling constant is required. 

   Table 5.3     Useful vector and tensor identities that simplify the 

derivation of SOC effects  

 Simple vector and tensor identities and relations

1. σ
i
σ

j
 = iε

ijk
σ

k
 + δ

ij
l

2. (σ · E ) (σ · π) = σ
i
σ

j
E

i
π

j

3. (σ · E) (σ · π) = iσ
k
 (ε

ijk
E

i
π

j
) + E

i
π

j
δ

ij
 = iσ · (E × π) + E · π

4. σ
i
 and E

j
 commute

   Table 5.2     Matrix components of 

Fμv
 and  Σμv in compact notations  

 Matrix components

1. F
k0

 = Ek

2. F
0k

 = −Ek

3. F
ij
 = − ε

ijk
Bk

4. σ 0k = iαk

5. σ k0 = −iα k
6. σ ij = ε

ijk
σ k
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 In the case of the Rashba SOC, such amplifi cation of the coupling constant is 
found in a 2DEG semiconductor system with inversion asymmetry, 22–27  which 
gives rise to bandstructure that can be associated with a large coupling constant. 
In the case of the Dresselhaus SOC, 36  the effect is enhanced in semiconductors 
due to bulk inversion asymmetry (BIA). In a semiconductor 2DEG, due to the 
so-called structural inversion asymmetry (SIA) and the electric fi eld penetrating 
the 2DEG plane vertically, the Rashba SOC can be described by:

   . [5.13]  

 The eigenstates can be found by explicitly expanding Eq. 5.13. We give in Eq. 5.14 
the eigenstate and the eigenenergy corresponding to the ± Rashba SOC bands:

    [5.14]  

 where    Using the relationship in Eq. 5.14, one can obtain the 
wavevector difference Δ k  between the two Rashba bands at energy  E :

    [5.15]  

 It is worth noting that, in spintronics, wavevector differences at a fi xed energy 
have been commonly exploited to study the differential transmission between two 
spin eigenstates of a spintronic device.  Figure 5.1  shows the band diagram of the 
Rashba SOC system. This diagram is important for device design and engineering, 
e.g. one could determine which portions of the double cone are to contribute to 
device current or conductance. 

 Besides Rashba SOC, there are a few other types of SOC affecting the electrons 
in the conduction band which can be utilized in spintronics, e.g. the Dresselhaus 

   5.1     (a) Dispersion relation for the two Rashba bands. (b) Cross-section 

of the Rashba bands consists of two concentric circles. The arrows 

depict the spin orientations of the spin eigenstates of the two Rashba 

bands, which point tangentially along the band surfaces. (c) Prof. E. I. 

Rashba, 2004.     
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type as mentioned earlier.  Table 5.4  provides a summary of some semiconductor 
materials with known, measured or predicted values of the Dresselhaus SOC 
constant. 

 We now consider the general case of a combined Rashba and Dresselhaus SOC. 
For simplicity, we consider the linear case of Dresselhaus SOC, so the Hamiltonian 
has the simple form of:

    [5.16]  

 The corresponding eigenvalue equation is:

    

[5.17]

  

 where    Taking the determinant of     

where    and tan    the eigenenergy 

is  E  =  E  0  ±  ρ . With simplifi cation, one arrives at:

    [5.18]  

 where tan  ϕ  = ( k   y  / k   x  ). 
 In  Table 5.5  we summarize a few common SOC systems in spintronics. It 

should now be clear by inspecting the relativistic equations of Eq. 5.12 that a SOC 
system can be viewed as some kind of effective momentum-dependent magnetic 
fi elds that the electron spin could ‘feel’. But it is important to note that this fi eld is 
only ‘felt’ by the spin but not the charge of the electron, which means that electron 
spin precesses about this effective fi eld, but one should not reason that the electron 
experiences the corresponding Lorentz force. However, the Lorentz force does 
arise but in a more complex manner in SOC systems, e.g. via adiabatic spin 
relaxation to the momentum-dependent fi elds. Some aspects of this theory are 

   Table 5.4     Dresselhaus SOC constants for some common semiconductor materials  

 GaSb InAs GaAs InP InSb

�C (eV A3) 187 130 24 8 220

mr = m*/m0 0.041 0.023 0.067 0.081 0.013

�C × mr 7.667 2.99 1.608 0.648 2.86

g factor 8  0.44  −50
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presented in Section 5.6 on spin Hall effects. The eigenfunction of the Dresselhaus 
cubic system is:

    
[5.19a]

  

   Table 5.5     SOC systems commonly studied in spintronics 

Spin orbit coupling 

types (material 

system)

Hamiltonian and effective b fi elds Eigenstates

Linear Dresselhaus37

Linear Rashba22

Dresselhaus cubic 

(Bulk III-V)36

See Eq. 5.19a

Dresselhaus–Perel 

(collimated) (kz >> k 
II
), 

non-tunneling 

regime)38

See Eq. 5.19b

Dresselhaus–Perel 

(tunneling electrons 

along z direction)38

where ϕ is contained 

within the plane 

perpendicular to the 

tunneling direction 

along 

   Note: The Hamiltonians and eigenstates for the respective systems are presented 

categorically.    
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 The eigenfunction of the Dresselhaus–Perel system is:

    

[5.19b]

  
 The other important aspect of SOC in spintronics is the interesting fact that a fi nite 
geometric phase can be constructed in the momentum space. Details of the 
geometric phase, also known as the Berry’s phase, are discussed in  Chapter 7 . It 
suffi ces to understand that the assumption of adiabatic evolution of spin eigenstates 
in the SOC system is necessary. Electrons completing a closed trajectory under 
the adiabatic condition in the momentum space will acquire such a geometric 
phase. 

 In the following we present a simple example of how, with the Hamiltonian and 
the eigenstate, spin-dependent transmission can be estimated. What is provided 
below can only be taken to be indicative of possible spin transport and is not 
intended to be conclusive. A conclusive approach would be one that evaluates its 
conductivity with the ballistic Kubo method. To consider the effect of impurity 
scattering, a more elaborate two-particle Green’s function method would be 
required. For a simple, illustrative understanding of SOC effects on spin current 
in devices, we use the Dresselhaus–Perel system as an example and derive the 
electron momentum for a particular energy in terms of the chiral eigenstates. Spin 
current is studied in the context of mesoscopic boundary conditions, which 
increasingly defi ne today’s nanoscale devices. The Hamiltonian in the region of 
SOC and electric barrier  V  0  is:

   . [5.20]  

  Figure 5.2  shows a sketch of the concept device, which consists of three parts like 
most ordinary MOSFET devices. Current is injected from source (Region 1) to 
drain (Region 3), passing through the SOC central part (Region 2). As a result of 
spin-dependent tunneling via the SOC region with electrical barrier, spin current 
can in principle be generated.  Figure 5.3  shows the distribution of electron spin in 
momentum space of the Dresselhaus–Perel SOC region over an equi-energy 
circumference for a particular  k   z  . The cross section taken below is perpendicular 
to the z-axis. 

 Under a normally square potential barrier in the device channel where SOC 
is present, there are four eigenstates for a particular energy  E . Let us choose one 

eigenstate    and let the energy operators act on the 

eigenstate as follows:
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   5.2     Schematic diagram of a device nanostructure (Region 2) where the 

channel contains the square potential electric barrier and the SOC effect. 

The Fermi cross-section sliced at a particular value of k
z
 is superimposed 

on the device structure as a contrast against the real space.     

   5.3     Spin eigenstates of the Dresselhaus–Perel system for the spin chiral 

branch of: (a) sub-band (+) and (b) sub-band (–).     

    
[5.21]
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 where    By inspection,    The solutions 

are    where:

   

.

 

[5.22]

  

 It is now obvious that, for a particular energy level in the SOC region and a fi xed 
 k , there will be four degenerate solutions associated with the traveling wavevectors: 
( k  +   z    , χ  + ),   (− k  +   z    , χ  + ) ,  ( k  −   z   ,  χ  − ) ,  (−  k  −   z   ,  χ  − ). Thus momentum for a particular energy is 
chiral dependent. 

 Another important quantum mechanics method in spintronics is the rotation 
of the laboratory axis. As seen earlier, the linear SOC eigenstate of Rashba or 
Dresselhaus is chiral with respect to the laboratory axis. It has a combination of up 
and down states along the laboratory axis. If one is to view this eigenstate in its own 
frame, the physical picture becomes clearer as now the eigenstate is up or down. This 
can be achieved by rotating the laboratory frame to the eigenstate. We give one 
example below to illustrate the applications of spin rotation in the Rashba or 
Dresselhaus spintronic system. We now show that the above when viewed and solved 
in a rotated frame yield the same measureable results. There is nothing strange here, 
in fact it is something to be expected. Regardless of how one views the system, or 
how a system should be described under different frame or coordinate system, the 
physics remain unchanged. Hence a measurable outcome of any system is invariant 
under coordinate transformation. The above merely states the principle of symmetry. 

  Exercise 5.1 

  Show, using k   z  1 
  and kz     2   to denote k    +   z    and k    −   z  ,  respectively, that rotating the 

z-axis to the spin quantization direction is a change of basis which 

preserves the eigenvalues.  

  Solution 

     
.
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 We will now match the fl ux of two regions, i.e.  v  1  ψ  1  =  v  2  ψ  2 . Region 1 corresponds 
to the non-magnetic contact of the device (source) where the electron fl ux consists 
of a linear combination of a SOC-free incident fl ux and a SOC affected refl ecting 
fl ux. Region 2 is the SOC region as shown in  Fig. 5.2 . The rotated wavefunction 
in Region 2 can be written as:

    [5.23]  

 which is a linear combination of the four degenerate eigenstates, whose amplitudes 
( B  1  ,B  2  ,C  1  ,C  2 ) can be found by performing fl ux matching at the device boundaries 
between Regions 1, 2 and 3. It is important to note that the system has been 
rotated to the quantization axis of the chiral eigenstate, and that the eigenstate of 
(1 0)  T   is with respect to the rotated axis but not the laboratory axis. Region 3 is the 
contact (drain) where detection of spin current can be carried out. 

 In spintronic devices based on wavefunction treatment, fl ux continuity has to 
be observed across the device 39  as has been specifi cally shown above. Generally 
for a three-region device, the standard current operator reads 

   For Region 1, inserting  ψ  1  into the operator yields   

 whilst, for Region 3, the result is    
where  R  and  T  are the refl ection and transmission coeffi cients, respectively, 
related to the wavefunction amplitude ratio. The current is just the product of the 
probability amplitudes of the component wavefunctions and their respective 
velocities. The fl ux operator in Region 2 is thus 

  where  v ′ 2  is the SOC-modifi ed 
velocity operator. Upon obtaining the transport coeffi cients, one can verify that 
the fl ux is conserved across the trilayer structure, i.e.  j  1 ( z ) =  j  2 ( z ) =  j  3 ( z ).  

  Exercise 5.2 

  The expression below has the physical meaning of rotating electron spin 

about a particular axis. Prove this expression: 

     

  The above has the physical meaning of rotating about axis along  a . Show 

that when  a   = − sinϕi  +  cosϕ j, the above can then be written as: 

     

.
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  What is the physical meaning of the  U  matrix? 

 Prove the following 

  σ   μ    σ   ν   =  iε   μνκ    σ   κ   +  Iδ   μν    

  Hint : Use the SU(z) algebra of Pauli matrices in tensor representation. 

 Spin polarization is normally defi ned as  P  = ( T  +  −  T  − )/( T  +  +  T  − ), which can be 
found in terms of the amplitude of the incident and outgoing wave amplitudes 
which are themselves scalar coeffi cients.  Figure 5.4  shows a typical numerical 
result of a Dresselhaus–Perel system, which allows one to determine spin-
polarized current at the Fermi energy. 

 What is discussed above is spin transportation in Regions 1 and 2, which 
correspond to the two important spintronic functions of spin generation and spin 
transportation. The third crucial spintronic function of spin current detection is 
normally carried out in Region 3. We present briefl y below some techniques 
useful for understanding the detection of spin current. Let us take a particular 
eigenstate of the Dresselhaus SOC |  χ    σ′    θ   〉, where  σ′  = ± is the index which denotes 
the chiral eigenstates of the Dresselhaus system. In the frame of the laboratory, the 
Dresselhaus eigenstate is a linear combination of the spin up and down eigenstates. 
The probability amplitude of fi nding an up or down state for |  χ    σ′    θ   〉, where spin up/
down is denoted by the index  σ  = ±, is:

   . [5.24]  

 The probability is simply    In the SOC electron gas 
Fermi system, there is a spectrum of momentum with different chiral states, each 
making a different angle with the laboratory quantization axis. The above 

   5.4     Spin polarization of a Dresselhaus–Perel system along the 

quantization axis of a particular chiral eigenstate. This curve makes 

sense for one transport mode only. Proper spin polarization should be 

one summed over all transport modes.     
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determines the probability to be in a laboratory up/down state |↑/↓〉 denoted by 
quantum number  σ  for a particular chiral state denoted by quantum number  σ ′. 
Thus, the transmission probability for a particular energy of a laboratory up/down 
state over all modes can be estimated as follows:

    [5.25]  

 where  f  ( θ, k   z  ) consists of fl ux amplitude in Regions 1 and 3, which can be found by 
fl ux matching. Note that  f  ( θ, k   z  ) is a function of  θ  due to the effect of  k   x   and  k   y   on  k   z  . 
Readers are probably aware that spin-dependent tunneling discussed above is most 
often discussed in the context of a device system with local boundaries that restrict 
spin transport to a short 2DEG channel. This is because spin current vanishes globally 
in a 2DEG. Nevertheless, actual detection of spin current in semiconductor spintronics 
remains diffi cult. Impurities scattering has been shown to destroy spin current. Even 
in clean, ballistic limit, multi-mode transport could still greatly neutralize the spin 
polarization which arises due to individual mode. Other factors that complicate spin 
current detection include non-uniform SOC strength, interfacial scattering, and spin-
injection mismatch between semiconductor channel and contact detectors. The 
promises brought upon by long spin relaxation length and electrical generation of 
spin polarization cannot be realized due to these reasons. A stable semiconductor 
spinFET working at room temperature has yet to be demonstrated. 

 The following section discusses the effects of magnetic fi elds and spin orbit 
coupling on spin current. Before moving on, we mention again that to make a 
spintronic device work, the coherence of spin transported over a long distance (at least 
100 nm) is crucial. This brings in the important topic of spin relaxation. Nonetheless, 
we will not discuss this topic in detail apart from stating that the underlying physics of 
spin relaxation has various origins. Spin relaxation can be attributed to three 
mechanisms: Dyakonov–Perel (DP), 40  Bir–Aronov–Pikus (BAP) 41  and Elliott–Yafet 
(EY). 42  Readers interested in more details of these mechanisms can refer to the review 
given in reference 43, which discussed these effects in some detail.   

   5.4  Spin current under magnetic fi elds and spin 
orbit coupling 

 We now give a quantum mechanical 44,45  illustration of a spin polarized 
wavefunction distributing spatially in a 2DEG SOC. The following provides an 
early indication of the possible existence of spin current (longitudinal or Hall) in 
a SOC system. The single-electron Hamiltonian of a 2DEG in the presence of 
perpendicular magnetic fi elds and linear SOC effects is given by:

    

[5.26]
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 where the gauge of  A  = (− By , 0, 0) is chosen.  F   z  ,  H   so  ,  H   z    and U  are terms 
corresponding to the 2DEG triangular confi ning potential, the linear spin orbit 
coupling, the Zeeman split and the applied electric potential, respectively. The 
solution to the bound wavefunction  ϕ ( z ) is given by a linear combination of Airy 
functions, i.e.

    

[5.27]

  

 where  C  1 ,  C  2  are constants,   

and  d  =  e F   z  . For the above solution to be a well-behaved function as,  z  → ∞,  C  2  
= 0. To determine the sub-band energies within the 2DEG potential well, one 
imposes the boundary condition of  ϕ ( z  = 0) = 0, where  z  = 0 is taken to be the 
bottom of the 2DEG in the vertical direction. Noting that 

 has roots −2.338, −4.008 . . . . . . . . 

and solving for the Hamiltonian at  z  = 0 results in the lowest energy eigenvalue ( z ) 
of  E  1  =  c  + 2.338 a  1/3   d  2/3 , i.e. the energy of the system is:

    [5.28]  

 In the energy levels above the sub-band of   , electrons defi ne 

a Fermi circle ( x, y ) in the momentum space and the radius of the circle depends 
on the sheet electron density. In the conduction band, an electron in a two-
dimensional system is subject to the linear spin orbit coupling effects of Rashba 
and Dresselhaus, respectively. In explicit spinor form, one has:

    

[5.29]
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 The conduction band wave function of the Landau spin orbit coupling system that 
corresponds to energy eigenvalue  E  is:

    [5.30]  

 where the  y  dimension wavefunction is taken to be a linear combination 
of eigensolutions to a 2DEG with only vertical magnetic fi eld, i.e. without 
the SOC. 

  Exercise 5.3 

  Show that 

     

  Solution 

     

  where  Hence:   

      

.

  Exercise 5.4 

  Show that: 

     
.
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  Solution 

     

  where  Hence:   

     

.

 With the integral equations 46,47  above, refer to Appendix 5.A for details on the 
derivation of the wavefunction. The  x  dimension wavefunction is a non-decaying 
oscillatory traveling function. One can deduce that the fi nal wave function for the 
(+) and (−) branches are:

    

    [5.31]  

 where:

    [5.32]  

 and  ξ  0  = 1/2 ( ħω ) =  gμB . One can now study the distribution of spin current in the 
bulk of the 2DEG. Note that, the choice of gauge might present slightly different 
results for  y  0  whereas    will be true for gauge potentials of ( A   x  , 0,0) 
and (0,  A   y  , 0) as well.  

  Exercise 5.5 

  Show that the current expression for a Rashba system without external 
magnetic fi eld is: 
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  Solution  

  Current expression in the absence of external magnetic–electric fi elds is: 

     

  where v x  is the electron velocity that can be found using the Hamilton 
equation that provides the fi rst momentum derivative of the Hamiltonian 

matrix, i.e.    Explicitly: 

     

  Expanding the above leads to     

 Substituting with the Rashba eigenstates, the current expression is: 

     

  For k   y   = 0,  a common approach taken in the design of spintronic devices, 
the above is: 

     

 Using the current expression:

    [5.33]  

 and substituting the eigenfunctions of the Landau SOC system, one obtains the 
current expression whose spin-dependence arises from coupling constant ≠ 0:

   . [5.34]  
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 It is worth noting that the application of  E   y   provides a base value for the average 

current in the form of    This ensures that there would be an average current 

even when all the SOC effects are absent. We have thus shown analytically, in the 
Rashba SOC 2DEG system with cross electric magnetic fi eld, that current is spin 
polarized. One can now at least have a crude feeling of how SOC distributes spin 
current spatially. The above naturally leads to the idea that Hall effect involving 
spin may be generated from the SOC effect. Indeed, we discuss below the fi nding 
that the so-called spin Hall effect (SHE) is ubiquitous in SOC systems. Various 
theoretical and conceptual methods have been put forth to study the physics of 
SHE and its applications.   

   5.5  Spin dynamics under the spin orbit gauge 

 In nanoscale devices, common measure of electron fl ow in current or voltage can 
be related closely to single-particle electron dynamics. An electron’s precession 
about the Dirac effective magnetic fi eld can be viewed to give rise to a non-
integrable special unitary group of degree 2 (SU(2)) phase factor and a spin orbit 
gauge, which leads to the presence of non-commutative electromagnetism. In the 
language of gauge theory, the spin orbit gauge is simply the gauge invariant 
manifestation of the non-integrable phase factor. In spintronics, one can investigate 
electron dynamics based on such non-commutative electromagnetism, which has 
also been shown to be one of the underlying mechanisms for spin Hall effects. For 
a clearer visualization of the strength of the SOC, we convert specifi c SOC 
systems into the vacuum form, i.e. all different SOC systems take the form of the 
vacuum coupling constant such that the SOC strength (energy) is refl ected in the 
effective electric fi elds. Thus the effective electric fi eld is simply the fi eld that 
would generate the same SOC strength if these specifi c systems were to be 

vacuum. The single-particle form of the Hamiltonian    
is given by:

    [5.35]  

 where    is the spin orbit gauge and  G  is a time 

coupling constant. From the non-trivial curvature of the spin orbit gauge, one can 
construct a magnetic fi eld. The main feature about the spin orbit gauge here is its 
non-trivial curvature, which provides a magnetic fi eld effect on particles. To 
obtain further insights, we will investigate the curvature and its implications to 
electron dynamics in the SOC system. Since the momentum conjugate to  ψ  is 

   one obtains the Hamiltonian density    

after applying the Legendre transformation. 
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   5.5.1  Single-particle electron dynamics in real space 

 By considering the curvature    which can be interpreted 

as the non-commutative magnetic fi eld, one can borrow the classical picture of 
Lorentz to derive the average transverse force that an electron particle will feel in 
this system. In classical physics, the general equation of motion (EOM) is 

   The EOM for the Lorentz force would be    

where  B  is a physical magnetic fi eld. We now replace  B  with  Ω  r , an effective 
magnetic fi eld derived from quantum mechanics. Thus below is an equation based 
on classical EOM but a quantum mechanics effective magnetic fi eld:

    [5.36]  

 The fi rst term on the right-hand-side can be expressed as:

    [5.37]  

 since the gauge is in real space,  A   r   is used to denote the spin orbit gauge. This term 
vanishes when the electric fi eld is spatially uniform, which is assumed in this case 
to simplify our analysis. 

 In spintronics, a uniform electric fi eld implies that the Rashba or Dresselhaus 
coupling parameter is a constant. In the context of device electronics (e.g. 
spintronics based on the Rashba or Dresselhaus effects), the term 〈   f  1 〉 should 
capture the imagination of electronic engineers designing new devices. This term 
gives the heuristic indication that a deliberate engineering of the Rashba or 
Dresselhaus coupling to be inhomogeneous within the electron conduction path, 
such as at the metal–semiconductor interface (where SOC constants emerge 
abruptly in the semiconductors), might result in additional electron dynamics 
driven by forces related to SOC gradient. The second term is:

    [5.38]  

 which can be simplifi ed by using the general identity of  A  × ( B  ×  C ) =  B  ( A.C ) – 
( A.B )  C  with the assignment rules of  E  ×  σ  →  A, E  →  B , and  σ  →  C , and the spin 
algebra of  σ  ×  σ  = 2 iσ . With the above, one can readily derive the expression 

   This expression can be interpreted as a type of 

spin-dependent transverse force. 
 To express 〈   f  2 〉 in a more compact form, a different set of assignment rules 

   p → A   , and    A  r   → B, C    is applied and the following is obtained:

   . [5.39]  
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 Noting,  p.A   r   =  G  σ .( p  ×  E ), one is able to derive, albeit rather tediously a more 
explicit expression for 〈   f  2 〉 that is not discussed here. The above expressions for 
〈   f  1 〉 and 〈   f  2 〉, which describe the forces experienced by the electron due to the 
spin orbit gauge fi eld, have been obtained from semiclassical analysis. 

 We now study the time dependence of the momentum or velocity using the 
operator method. One can compare that identical force expressions can be obtained 
using the operator algebra method. Once again borrowing    and 

treating  v  as an operator in Hilbert space, one could write down the ‘force’ felt by 
an electron treated like a particle with mass  m  but zero volume as:

    [5.40]  

 Note when one starts with a general EOM, the velocity operator of  v  =  p  −  eA  is 
used. Previously, in the Lorentz EOM, the canonical  p  operator is used instead of 
 v . In fact the general EOM will lead to the Lorentz-related terms with the use of = 
 p  −  eA . One can now let these operators obey the expectation formalism in 
quantum mechanics as follows:

    [5.41]  

 The expression for ‘force’ would now be:

    [5.42]  

 where    Bold notations merely refl ect their 

vectorial nature. In the above, only  p, H, A   r  ,  σ  are operators. Referring to the 
Hamiltonian, one can thus deduce that:

    [5.43]  

 where use has been made of the fact that    = 0 and [ p, e  E.r  ] =  eE   v  [ p,r   v  ] = 
 eE   v   δ   iv    n̂   i  . 

 We will now ignore the electron acceleration due to the  E -fi eld since we want 
to focus on the electron dynamics arising due to the spin orbit gauge fi eld but not 
the external electric fi eld. Note that an external electric fi eld in the context of a 
lateral device normally originates from applying source–drain bias across the 
current conduction path. Similarly, assuming no explicit time and spatial 
dependence of  E -fi eld, one would obtain:

   . [5.44]  
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 Since 〈   f  1 〉 and 〈   f  2 〉 are terms that affect the electron’s equation of motion in the 
presence of SOC, we can relate them to the dynamics of spin Hall, spin torque, 
anomalous Hall, etc, which have been experimentally observed in various 
spintronic systems with SOC. For exact quantifi cation of these effects and 
comparison with non-ideal practical systems, the semiclassical treatment given 
above may be extended to include the effects of scattering, either via the 
microscopic Kubo formalism or the semiclassical Boltzmann drift diffusion 
equation. The present approach discussed in this section is general and can be 
used to describe more complicated spin dynamics, e.g. in the presence of magnetic 
fi elds or spatially or temporally varying electric fi elds.  

   5.5.2  Single-particle electron dynamics in 
momentum space 

 We now derive the  k -space equivalent of the above by applying Heisenberg 
algebra methods. The  k -space gauge curvature is particularly useful in elucidating 
the quantum description of anomalous velocity under the infl uence of spin orbit 
coupling, which has been described as a  k -space Lorentz force or Karplus velocity 
term in previous works. The anomalous velocity in the spin orbital system can be 
deduced from    both yield the velocity operator of 

   However, the physical interpretation for    is unclear. We will 

now expand and rearrange the SOC Hamiltonian into the form:

    [5.45]  

 We ignore the higher order  O ( G  2 ) term and defi ne    which has the 

unit of length and can be interpreted as the  k -space gauge fi eld of the SOC system. 
In this way, the spatial coordinates acquire their non-commutativity from the 
 k -space gauge fi eld. The curvature of this  k -space gauge fi eld, which is given by 
 Ω   k   =  ∇ ∇   k   ×  A   k   −  iA   k   ×  A   k  , is reminiscent of its real space counterpart described 
earlier. Expanding the fi rst term of the curvature yields:

    [5.46]  

 A careful inspection shows that this leads to:

   . [5.47]  

 Similarly, for the second term, we can show by using the same relation and 
assignment rules which were applied to 〈   f  2 〉 that:

   . [5.48]  
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 Combining the above leads to the total curvature in  k -space of:

   . [5.49]  

 In the presence of the gauge fi eld, the velocity expression is given by:

   . [5.50]  

 The second velocity term can be formally interpreted as the anomalous velocity  v   a   
or the Karplus term. The anomalous velocity term is related to the SU(2) gauge 
fi eld  A   r   in coordinate space by the relation:

    [5.51]  

 To make a clear comparison between the two pictures, we note that both real and 
momentum analysis yields the identical relation of anomalous velocity effect in 
 mv  =  p  −  eA   r  .   

   5.6  Spin Hall effects (SHE) 

 One of the means to generate spin current in semiconductor spintronics is via the 
spin Hall effect (SHE) as stipulated in  Table 5.1 . The description of SHE has its 
origin in the early work of Russian theoretical physicists M. I. Dyakonov and 
V. I. Perel. 48  Their work was the fi rst time that the notion of spin current was 
introduced. SHE in the form of transverse spin accumulation was predicted and 
equations describing such phenomenon were written. Experimental works 49  were 
later carried out which resulted in the measurement of what is known today as the 
inverse version of the SHE. In 1999, J. E. Hirsch 50  broke a long silence and once 
more raised discussion on the prospects of a SHE-based device. But 
experimentally, 51  SHE was observed in semiconductors only more than 30 years 
after the original prediction. Spin accumulation induces circular polarization of 
the emitted light, as well as the Faraday (Kerr) rotation of the transmitted 
(refl ected) light polarization, which allows one to monitor SHE by optical means. 
There were soon other descriptions 52  relating SHE to classical Hall as well as the 
anomalous Hall effect (AHE). 

 This section is devoted to discussing in greater detail the important physics of 
spin Hall and its possible applications. The crucial elements for realizing SHE are 
the SOC effects and the application of electric fi eld. The electric fi eld is only an 
external means to generate a longitudinal current. The coupling between SHE 
current and longitudinal charge current is most probably due to the physics of spin 
orbit coupling. SHE also refers to the observed transverse separation of opposite 
spin across a nanoscale device system, which results in a net spin accumulation 
but zero Hall voltage across the two edges of the device. SHE is thus reminiscent 
of the classical Hall effect as well as the integer quantum Hall effect (IQHE), 
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where charges accumulate on opposite lateral edges of a rectangular current 
carrying region in the presence of an external magnetic fi eld applied perpendicular 
to the device. However, unlike classical Hall or IQHE, no external magnetic 
fi eld is involved in SHE, which requires only SOC and the longitudinal charge 
current. 

 It is worth mentioning that most experimental observation of SHE is of extrinsic 
nature, or at least not conclusively indicative of intrinsic SHE. The processes of 
skew scattering and side jumping have been attributed to causing the extrinsic 
SHE. One can then think in terms of spin anisotropic scattering of electrons by 
impurities. Spin up electrons will scatter in a direction different from that of spin 
down electrons, hence leading to spin accumulation along the lateral edges. 
Recent works have spawned numerous versions which include SHE of photons, 53,54  
phonons, 55  excitons 56  and in graphene. 57  In this chapter, discussion is restricted to 
the intrinsic SHE which can be observed in an SOC system with an applied 
electric fi eld even in the absence of disorder or impurities scattering. In fact 
intrinsic SHE has been predicted to be several orders of magnitude larger than the 
extrinsic one. It will be intuitive to view the SOC and electric fi eld system as the 
generator of spin-dependent electron motion. 

 In semiconductor spintronics, intrinsic SHE has been studied in different types 
of SOC systems as listed in  Table 5.6 . Specifi cally, we focus on the SHE of 
electron spin in the Rashba 2DEG. The Luttinger bulk system is also discussed 
briefl y. One, however, needs to keep in mind that extrinsic SHE might be more 
promising in terms of device applications because of experimental success and its 
observation at room temperature. 58  In fact this recent spate of experimental 
successes involving the inverse SHE might be related to the extrinsic SHE. 

 Before we move on to the physics of spin Hall, we draw readers’ attention to 
the interesting analogies and connections between the different types of Hall 
effects.  Figure 5.5  classifi es the various Hall systems based on the transverse 
separation of charge and spin current. 

   Table 5.6     SHE in semiconductor spintronics and their respective universal 

conductivity  

 Semiconductor systems Spin Hall conductivity

1. Rashba 2DEG59

2. Luttinger (p-doped bulk)60

(Note: ‘not universal’ because of its k
F
 dependence; H 

and L stand for heavy and light holes, respectively)

3. Cubic Dresselhaus (n-doped bulk)61

(Note: ‘not universal’ because of its k
F
 dependence)

4. Rashba heavy holes62

 

�� �� �� �� �� ��



 Spintronics and spin Hall effects in nanoelectronics 169

©  Woodhead Publishing Limited, 2012

    5.7  SHE in the Rashba 2DEG system 

 We now take a look into a specifi c type of SHE, namely one with vertical spin 
(perpendicular to the two-dimensional system) separated oppositely to the two 
edges of the mesoscopic system. SHE in Rashba 2DEG was fi rst discussed in 
reference 59, which shows the spin Hall conductivity with the Kubo method 
where substituting the eigenstates of the Rashba system into the Kubo conductivity 
equation shows spin dependent conductivity. But the Kubo method lacks 
transparency in terms of the underlying physical effects. We will thus discuss a 
few other more heuristic approaches 63,64  in sub-sections to add physical clarity to 
the results obtained with the Kubo formula. The numerous methods used here 
might partially describe physical effects which could possibly be related to SHE. 
But we would not pretend that these methods fully represent the SHE originally 
described in the work of Dyakonov and Perel in 1971. 48  

 We fi rst consider the velocity operators in the case of Rashba, i.e.

    

[5.52]

  

   5.5     Schematic illustration of three types of Hall effects involving the 

charge and spin degree of freedoms of electrons. The anomalous Hall 

effect (AHE) is both charge and spin Hall effect (SHE). Both AHE and 

SHE need spin orbit coupling.     
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 where the hat sign is used to emphasize its operator nature. Equation 5.52 leads to 
the useful spin current operator of:

    [5.53]  

 Applying the Kubo–Greenwood relation, the direct current (DC) transverse spin 
Hall conductivity is given by:

    [5.54]  

 where  n  refers to the sub-band index and  A  is the area. 
 In the limit of  T  → 0, the Fermi factor simplifi es to ( f  + k   −  f  − k  ) = 1, within the 

annular region in  k -space of  k  −  <  k  <  k  + . With the spin Hall conductivity shown to 

be    and replacing the discrete sum by an 

integral over the annular region, one has:

    

[5.55]  

 But the difference in the wavevector of the two (+) and (−) Rashba sub-bands is 
given by    (see  Fig. 5.1 ). One can thus determine that:

    [5.56]  

 This is a universal spin Hall conductivity value, obtained via linear response theory. 
However, SHE vanishes in the diffusive limit due to impurity scattering, causing a 
steady cancellation of the required acceleration. This effect is consistent with the 

   5.6     Schematic illustration of the vertical SHE in a semiconductor 2DEG 

system under the effect of applied electric fi eld and Rashba SOC.     
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prediction of Inoue  et al. , 65  who showed that the spin Hall conductivity vanishes 
when vertex corrections are introduced to model the effects of impurity scattering. 
The suppression effect is, however, not generally true; for instance, in bulk p-type 
semiconductors and two-dimensional (2D) hole gases, SHE persists in the presence 
of impurities. What is remarkable here is that the SHE conductivity is a universal 
constant independent of material parameters. Nevertheless, the Kubo method lacks 
transparency in terms of physical elucidation. It is unclear how such independent 
conductivity arises, although SOC is accepted to be the underlying reason. There 
are numerous other theories which study the different aspects of SHE, e.g. the edge 
precession effects driving the spin component to be out-of-plane, resulting in 
observable SHE. Since it is hard to make a direct comparison of these methods 
with those described below, we do not discuss these methods in detail. However, 
for completeness, we refer readers to references 66–69 for more details. Of the 
many theories that have been put forward to explain SHE in Rashba 2DEG, we will 
discuss only three theories cast in the context of spin-dependent effects on 
transverse electron motion, where electron motion is described heuristically in 
terms of momentum, Lorentz force, position, or conductivity:

   1.   Electron acceleration and spin precession. 59   
  2.   Time–space gauge theoretic. 63   
  3.   Non-Abelian gauge and zitterbewegung. 64     

   Table 5.7     Theories that explain spin transverse separation of SHE in a 2DEG with 

Rashba SOC and applied electric fi elds  

 Physical elucidation of 

SHE in Rashba 2DEG

Spin polarization Transverse 

effects

Quantifi cation

1. Electron acceleration 

and spin precession

Internal Zeeman 

fi elds

Spin (Zeeman) 

dependent 

transverse 

momentum

Universal 

conductivity

2. Time–space gauge 

theoretic

Internal Zeeman 

fi elds

Spin (Zeeman) 

dependent 

transverse 

momentum

Universal 

conductivity

3. Non-Abelian gauge 

and Zitterbewegung

Cannot predict an 

internal fi eld

External means 

would be required 

to sustain a vertical 

spin polarization

(1) Spin injection

(2)  Chiral magnetic 

fi eld

Spin dependent 

transverse

Lorentz force

Average Lorentz 

force

Average position

   Note: The fi rst two methods yield the same universal conductivity value, while the 

third method gives a heuristic indication.    
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 From  Table 5.7 , method 3 is not able to predict the existence of an internal 
Zeeman fi eld which polarizes the spin in the vertical direction. Thus one may 
conjecture that external means of sustaining vertical spin polarization may 
be needed, e.g. via spin injection or external magnetic fi elds. But physical 
elucidations of types (1) and (2) in  Table 5.7  could indeed predict a natural internal 
Zeeman fi eld, which thus suggests that in SHE one may not need an external 
means to sustain spin polarization. In any case, all three methods predict 
spin-dependent momentum, which means all three methods point to the fact that 
transverse separation of spin can occur whenever vertical spin polarization is 
realized in the Rashba 2DEG system, whether it is via external means or the 
internal Zeeman fi eld. However, transverse separation of spin should not be taken 
as the fi nal proof of SHE. A conclusive indication of SHE should come 
from quantifi cation in the form of conductivity. Methods 1 and 2 are able to 
predict a universal conductivity, while method 3 could only lead to average 
transverse velocity. 

   5.7.1  Electron acceleration and spin precession 

 This rather well-accepted method, which describes SHE as arising due to the spin 
precession and the acceleration of electrons by the electric fi eld in the presence of 
Rashba SOC, was fi rst proposed by Sinova  et al . 59  It was explained that accelerated 
electrons in a Rashba 2DEG with a net left transverse velocity precess in the 
opposite direction to those traveling to the right, resulting in a transverse spin 
separation. Thus the system can be perceived to possess internal Zeeman fi elds as 
a result of electron acceleration under SOC. The ‘special’ Zeeman fi elds sustain 
polarization in the 2DEG. In the above, one can visualize electron spin precession 
as momentum dependent. By reciprocity, one can also say that the transverse 
momentum of electron is spin (Zeeman) dependent. 

 It is purely a matter of taste how one likes to visualize the underlying dynamics 
of SHE. Summing over all momenta over the annular Fermi surface yields a 
remarkable universal SHE conductivity identical to that obtained with the Kubo 
formula. It is imperative that electrons accelerate, i.e. that the momentum is time 
dependent. This imposes the strict requirement for ballistic transport. In the 
presence of impurities, the retardation force on electrons reduces the average 
acceleration to zero. Thus the SHE vanishes in the diffusive limit because the 
impurity scattering causing a steady cancellation of the required acceleration. 
This prediction is also consistent with the method of Inoue  et al. , 65  which shows 
that SHE conductivity vanishes when vertex corrections are introduced to model 
the effects of impurity scattering in Rashba 2DEG. This suppression effect is, 
however, not generally true; for instance, in the bulk p-type semiconductors and 
the 2D-hole gas, SHE persists in the presence of impurities. 

 The electron acceleration and precession approach can essentially be viewed as 
a form of spin-dependent momentum. Below is a mathematical illustration of the 
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spin-dependent momentum description. Electrons traveling in the transverse 
 y -direction are spin-polarized in the vertical  z -direction, i.e.

   , [5.57]  

 where    The physics of spin-dependent momentum transport is 

captured in the vertical polarization term of  n   z  ( k ) whose detailed derivation is not 
shown here, but can be found in references 59 and 70. Converting the above 
summation to an integral over the states within the annular region between the 
two Rashba sub-bands ( Fig. 5.1 ), we have:

    [5.58]  

 and thus, the current density is given by:

    [5.59]  

 Substituting the explicit expression for  κ , we have:

    [5.60]  

 Referring to  Fig. 5.1  once again for  k  +  −  k  − , the transverse spin current is thus:

    [5.61]  

 resulting in the spin Hall conductivity of:

    [5.62]  

  Exercise 5.6 

  Show that 

    (1)        

   (2)        
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   (3)     Spin Hall conductivity is given by:     

    

  Solution  

  (1) We evaluate    〈nk|υ̂ y|n׳ k 〉  for n  = +,  and n׳  = −,

      

  where φ is the in-plane angle subtended by k   x    and k   ||  ,  where     

  (2)     

  (3) Combining both, we obtain: 

      

   Repeating the above calculation for the other combination, i.e. 
n  = −,  and n′  = +,  we fi nd the correlation differs only in signs, i.e. 

      

   Contribution to the conductivity is, however, of the same sign, due 
to an additional  (−)  sign from the Fermi distribution factor  ( f   n′k   −  f   nk  ). 
 Hence, the spin Hall conductivity is given by: 

      

   In the last line of the above, we have made use of the fact that  
( E   −k  −  E  +k  ) = 2 kα .   
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   5.7.2  Time-space gauge theoretic 

 While the acceleration and precession method is plausible, one wonders if a gauge 
theoretic approach will yield similar results. This is in view of the fact that the 
adiabatic spin alignment method has been employed rather convincingly to 
expound hole SHE in p-doped semiconductors. In fact taking a closer look at the 
2DEG system reveals a remarkable connection 63  between the gauge theory and 
the precession approach. The clue lies again in the acceleration of electron and the 
necessary generation of a vertical effective magnetic fi eld, which can be linked to 
those discussed by Aharonov and Stern. 70  Thus a time-dependent momentum is 
required similar to the above method, imposing the need for ballisticity. In fact it 
might have been implicit in the previous method 59  that electron spin eventually 
aligns with the additional vertical magnetic fi eld. 

 In fact, casting the Hamiltonian of the system in the interaction picture and 
treating the SOC term as a perturbation, a local gauge transformation could impart 
an extra term to the Hamiltonian. It was found that this term is like a Zeeman 
magnetic fi eld. For a right moving electron, this Zeeman fi eld is vertical up 
generating spin up current; for a left moving electron, this Zeeman fi eld is vertical 
down generating spin down current. The transverse momentum of electron is thus 
Zeeman (spin polarization) dependent, resulting in SHE, similar to the previous 
theory discussed above. Summing over all momenta over the annular Fermi 
surface yields a remarkable universal SHE conductivity identical to that obtained 
with the Kubo formula. In the following, we provide some details of this theoretical 
method and summarize important results in  Table 5.8 . This provides a summary 
of the Hamiltonian and its transformation in Schrödinger and interaction pictures. 
A local gauge transformation in the interaction picture is required to generate the 
effective magnetic fi eld. 

 In the interaction picture where  V  1  =  γσ . B ( k ) is taken as a perturbation to the 
system, one then has:

   . [5.63]  

   Table 5.8     Hamiltonian in the laboratory and transformed frame under the 
Schrödinger and interaction pictures reveal different additional energy terms  

 Schrödinger picture Interaction picture

Lab frame

Transformed 
frame

 = ih̄  U †∂tU = E = ih̄  U †∂tU = E

 ih̄  U †∂tU = E ih̄  U †∂tU = E − h̄   
0
( t )
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 The term  iħU  †   ∂   t   U  yields  E  in the Schrödinger picture but  E  −  ħ   0 ( t ) in the 
interaction picture because, in the latter, momentum hence  U ( p ( t )) is time-
dependent, resulting in non-vanishing  iħ ( U  †  ∂   t   U ) as shown below:

    ħ    0   [5.64]  

 This need for a time-dependent momentum implies the need for ballistic transport. 
The process of local gauge transformation in the interaction picture has generated 
an extra gauge term of  ħ    0  ( t ), which is also expressible by  ħ    0  ( t ) =  ħσ .( m  ×  ∂t      m ), 

if  U  =  σ.m ( t ). It is not hard to see that as       0   

yields by approximation:

 ħ    0      [5.65]  

 which, when viewed in the lab frame, is simply a Zeeman-like magnetic fi eld. In 
other words, an effective magnetic fi eld has been generated in this system. When 

the local gauge transformation involving    is taken to transform 

the eigenvector of  n ( t ) to  n ( t  +  dt ), it also means rotating the  z  axis from  n ( t ) to 
 n ( t  +  dt ) about  ω . The explicit expression of  U  is not unique; in Eq. 5.66 we give 
two possible unitary matrices that could perform the process described above:

    [5.66]  

 The process of axis rotation can be illustrated by the schematic shown in  Fig. 5.7 . 
 For convenience,  n  1  =  n ( t ),  n  2  =  n ( t  +  dt ). Note that  n  is the unit vector of the 

spin orbit effective magnetic fi eld, i.e.  B  =  Bn . From the above, one can work out 
 ∂   t   n  =  n  ×  ω , which leads naturally to:

    [5.67]  

   5.7     (a) General schematic showing the rotation of an eigenvector about 

the rotation axis ω. (b) For an arbitrary angle θ, schematic illustrating 

the generation of an effective Zeeman fi eld. (c) For θ = 90, the 

Zeeman-like ω is now vertical to the plane containing n.     
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 where when  n  1  and  n  2  are both contained in the 2DEG plane; ( ω.n ) vanishes and 
one is left with  ω  =  n  ×  ∂   t   n  pointing vertical to the 2DEG plane. Thus the term  σ.ω  
can be viewed as a form of internal Zeeman fi elds which sustain the vertical spin 
polarization in the Rashba 2DEG. This is not unlike the picture described in the 
precession–acceleration correlated mechanism discussed earlier. 

 Critical readers might argue that Eq. 5.67 does not pre-determine the orientation 
of  ω . There are many possible solutions of  ω  and  n  that can satisfy this equation, 
depending on how a rotation is performed. Simply put,  ω  and  n  are not unique 
because there is a rotational freedom. Let us begin with an arbitrary axis and 

rotate this axis with    to  n  1  about  ω . Although  n  1  is a vector 

contained within the 2DEG plane, this fact does not predetermine  ω . But now, the 
arbitrary axis is aligned along  n  1 . The next instant is to rotate this axis to  n  2 , which 
is equivalent to rotating  n  1  to  n  2 . The fact that both  n  1  and  n  2  lie in the same 2DEG 
plane allows no other solution for  ω  than to stand perpendicular to the 2DEG 
plane. This leaves ( ω.n )  n  zero, and reduces  ω  =  n  ×  ∂   t    n  + ( ω.n ) n  to  ω  =  n  ×  ∂   t   n . 
This process is clearly illustrated in  Fig. 5.7(c) . Rotation back to the lab frame 
would leave the Hamiltonian with a Zeeman term of  σ.w . Careful examination of 
the term  ω  =  n  ×  ∂   t    n  reveals that an electron’s transverse momenta will take on a 
positive or a negative spin polarization depending on the Rashba band it is 
associated with. Careful selection of the band region, in this case the annular 
region of the Rashba band, is crucial for producing a SHE effect. The above shows 
that spin-dependent transverse separation is heuristically possible. In fact, with 
this modifi ed Hamiltonian, SHE in Rashba 2DEG can be quantifi ed with 
integration over the proper momenta region to yield a defi nitive spin transverse 
conductivity. The process is identical to the semiclassical approach used in the 
previous method. In fact the difference between the present and the former method 
lies in the vertical spin polarization  n . In this method, the vertical polarization 
arises due to symmetry involving the time coordinate. The universal value of 
   can be reproduced.  

   5.7. 3  Non-Abelian gauge SHE 

 In the context of non-Abelian phase in spintronics, 71,72  a form of spin transverse 
separation can be predicted in which an up spin ‘feels’ a vertically up magnetic 
fi eld, while a down spin ‘feels’ the down version. This method predicts two copies 
of effective magnetic fi elds. However, the effective magnetic fi elds here is of 
Lorentz nature and not Zeeman, which means it exerts force on electron but has 
no effect on precessing or locking the electron spin. This system can be viewed as 
generating spin-dependent Lorentz magnetic fi elds. By contrast, the previous two 
methods generate spin-dependent (Zeeman) momenta. One distinct difference is 
that, unlike the previous two methods, the non-Abelian gauge method could not 
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predict a Zeeman fi eld to sustain spin polarization. It is therefore still unclear at 
this point whether this mechanism concurs with the other two in terms of the 
universal SHE conductivity. Non-Abelian gauge effects in nanoscale devices 
were fi rst discussed in the late 1980s. 73–75  Its relation to SHE was discussed only 
in earnest in recent years. 64,76–80  To study SHE under the non-Abelian gauge fi eld, 
one may need a special 2DEG system with external magnetization or magnetic 
fi eld vertical-to-plane. This is because the requisite vertically spin-polarized state 
is not an eigenstate of the system as the vertical Rashba electric fi eld produces the 
spin orbit magnetic fi eld in the in-plane direction. This leads to two effects, both 
detrimental to the spin current:

   1.   The large electric fi eld hastens the relaxation of the initial vertical spins to the 
in-plane direction, thereby suppressing the SU(2) transverse force.  

  2.   For channel lengths longer than the spin coherence length, the spin vector will 
precess about the in-plane relativistic magnetic fi eld, causing a zitterbewegung-
like motion and resulting in zero net transverse spin current.    

 To observe SHE in these systems, the problem of spin relaxation or precession has 
to be circumvented. As is well known, the local magnetization with net chirality 
could in the adiabatic limit generate a topological spin gauge fi eld that separates 
conduction electrons of opposite spins in the transverse direction. Additionally, the 
SOC can be viewed to produce a SU(2) gauge fi eld which reinforces or opposes the 
effect of the spin gauge. This system could thus provide a tunable spin separation 
effect, where an applied gate voltage modulates the transverse spin current. 

 To provide a theoretical description of such an SHE system, we write the 
Hamiltonian of the system as:

    [5.68]  

 where  σ  is the vector of Pauli spin matrices,  A   B   = (0 A   B    y  ,0) is the Landau gauge 
associated with the external  B  fi eld and  għ /4 m  is the Zeeman splitting strength. 
Equation 5.68 can be rewritten as:

    [5.69]  

 after ignoring the higher order terms. If one considers a 2DEG system which 
consists of both the local magnetization and SOC effects, SHE in this system is 
slightly more complex depending on how the system is treated. If one regards the 
SOC as weak and that spin aligns mainly with the local magnetization, then a 
unitary transformation can be performed to rotate the  z -axis to the  B  fi eld:
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   [5.70]  

 Under the adiabatic condition, the 2×2 matrix  U∂   k   U  †  becomes diagonal, hereafter 
represented by matrix  A   M    k   (whose elements are the monopole potential). Taking 
note that the electric fi eld is vertical to the 2DEG plane in the Rashba system, the 
transformation  U ( σ   i   E   j   ε   ijk  ) U  †  is equivalent to rotating the laboratory  z -axis to the   B   
fi eld. Thus, the gauge fi elds comprise the  A   SU (2)  term from the SOC effects, and 

the topological term arising from the net chirality of the   B   fi eld,    

where  a   k   is the  U (1) monopole potential. The diagonal components of the 
monopole gauge matrix (± a   k  ) can be understood by the path-integral method, 
 ψ ( x,t ) = ∫  G ( xt,x  0  t  0 )  ψ ( x  0 , t  0 ) dx  0  for spin parallel/anti-parallel to the   B   fi eld, where 
 G ( xt ,  x  0  t  0 ) is the propagator between times  t  0  and  t , and  x  and  t  are  x   N +1  and  t   N +1 , 
respectively. Explicitly, the evolution is described by:

   

[5.71]  

 where  V ( x   n  ) is the local potential. Equation 5.71 can be written in a simple form:

    [5.72]  

 where    is the action of the system. In the dynamic 

spinor system, neglecting the dynamic phase,  S  would correspond to the 
action    where  n ( t ) refers to the spinor vector at time  t  and 

 z  is the spinor. An expansion of the action leads to:

    [5.73]  

 for spin parallel (+) and anti-parallel (−) to fi eld. Considering the evolution over a 
short time interval, the above integration leads to:
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    [5.74]  

 It is unclear if the non-Abelian method will lead to the universal SHE conductivity, 
but at least we can show indication of SHE by two methods – the force operator 
and the Heisenberg equation of motion method. 

  Spin-dependent Yang–Mills SU(2) force 

 The effect of the gauge fi elds on the electron motion, for spin assuming out-of-
plane eigenstates under the applied   B   fi eld, can be reduced to examining the 
individual effect of  A   SU (2)  and  A   M    k  . As  A   B   acts on both up and down spin species 
in the same transverse direction, assumption of a weak vertical polarization (i.e. 
that there are equal numbers of up and down spin) implies that  A   B   would not 
contribute to the transverse spin separation. We thus focus on the effective 
magnetic fi elds generally prescribed by the Yang–Mills fi eld tensor of:

   . [5.75]  

 Focusing on the spin-dependent part of the curvature, and using the relation 
[ Uλ   ν   U   † , Uλ   μ   U   † ] =  U [ λ   ν  , λ   μ  ] U   †  where  λ   μν   is an arbitrary vector component, an effective 

fi eld for the SU(2) gauge fi eld can be obtained. With    and after 
some algebraic manipulation, one arrives at:

   

[5.76]  

 where the Gaussian wavepacket has been used. Further derivation leads to:

    

[5.77]

  

 The expression in the square brackets evaluates to a simple form, i.e.  k  0 x  . The 
non-Abelian nature of the gauge arises from the non-commutativity of the SU(2) 
spin algebra. The approximation  U ( σ   i   E   j   ε   ijk  ) U  †  ≈  σ   i   E   j   ε   ijk  , which holds for small  θ , 
would lead to a force-like operator of:

    [5.78]   
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  Heisenberg equation of motion 

 In the following, we provide a more defi nitive indication of spin separation by 
deriving the position operator in the Heisenberg picture. In fact a force operator can 
be related to the time derivative of the velocity operator in the non-relativistic limit. 
This force operator is, however, different from the curvature force operator. It is 
remarkable that both force operators yield the same EOM by taking their expectations:

    [5.79]  

 where τ =  it/ħ . Using the Baker–Campbell–Hausdorff relation and summing the 
odd and even terms carefully, the position operator can be found. In fact it is 
interesting to note that the position operator arising due to the force operator, which 
is itself related to the curvature of the Yang–Mills gauge potential, of  ŷ   Y  ( t ) is the 
same as the spin separation part of  ŷ   H  ( t ) upon converting to the Rashba constant 
and removing the chirality strength of cos θ  based on the approximation above. 

 We now calculate the force expectation values for the case of a Gaussian 
wavepacket state with the spin aligned to the applied magnetic fi eld. What is to be 
expected here is that the force expectation values arising from an injected Gaussian 
wavepacket state would have the same form as that would be obtained with the plane 
wavefunction, but with the generic  k   x   of the latter being replaced by  k   x 0 , which 
corresponds to the center of the Gaussian wavepacket along the  k   x   axis. The 
application of the Heisenberg EOM formalism on the Gaussian wavepacket has an 
advantage from the physical point of view. It indicates that the force expectation 
values are dependent on the average net velocity of the Gaussian wavepacket, and 
can thus be related to the average drift velocity of electrons in the presence of a 
longitudinal electric fi eld,  E   x  . The drift velocity in the 2DEG system under 
consideration, which consists of an InAs/InGaAs heterostructure, can typically range 
over a wide range of values depending on the mobility and the applied electric fi eld. 

 To obtain a measurable spin separation, we represent the electron’s probability 
amplitude with a Gaussian wavepacket of width  d  in  k -space, prepared in the spin 

up state, i.e.    Assuming that the 

expectation value of the transverse wavevector is zero, i.e. 〈 ψ  ↑ k  | k   y  | ψ  ↑ k  〉 =  k   y 0  = 0, 
the spin-dependent average transverse separation of electrons is:

   . [5.80]  

 If we look only into the SOC part, it is not hard to see that 
   Both Yang–Mills force and Heisenberg 

EOM methods give the same indication of possible SHE in Rashba 2DEG.  
Table 5.9  summarizes the position and force operators due to SOC as well as local 
magnetization. 
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        5.8  Spin drift diffusion for collinear spin valve 

 Following the discovery of the GMR effect, the theoretical study of spin transport 
in CIP geometry was initiated by Camley and Barnas, 81  based on the Boltzmann 
equation. Subsequently, Valet and Fert 82  simplifi ed the Boltzmann equation to the 
spin diffusion and the two-current models in order to calculate the GMR ratio in 
the CPP geometry. The SDD equations have been used 83,84  to study spin transport 
at interfaces between a ferromagnetic and a non-magnetic layer. It was pointed 
out that, at these interfaces, a spin-dependent split of the electrochemical potential 
 Δμ  =  μ ↑ −  μ ↓ can be observed or measured. The split can be ascribed to an effective 
interfacial resistance. 

 In metal spintronics, the most notable device is the spin valve, which consists of 
a superlattice of thin metallic layers. The ferromagnetic layer with fi xed 
magnetization is known as the pinned layer and plays the role of a spin polarizer. 
The ferromagnetic layer with free magnetization is known as the free layer and 
plays the role of a spin detector. In the CPP confi guration, one can imagine spin-
polarized current travels from the pinned layer to the free layer and the magnetization 
orientation of the free layer determines the resistance of the device.  Figure 5.8  
shows a two-layer basic representation of an otherwise multilayer CPP spin valve. 

 The SDD equations describe the fl ow of spin fl ux in the device:

    [5.81]  

 where  μ  is the electrochemical potential,  σ  is the conductivity,  x  is the spatial 
position and ‘ s ’ refers to the up/down spin orientations. It is not hard to see that 
Eq. 5.81 is a more general description of Ohm’s law for linear potential drop. The 
second-order spin diffusion equation is:

    [5.82]  

   5.8     Two-layer schematic illustration of a typical multilayer spin valve 

comprising a core ferromagnetic–non-magnetic–ferromagnetic part. 

Notations A, B, C, D are spin accumulation amplitude at the different 

layers.     
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 where  λ  is the spin diffusion length (SDL). These equations are to be solved 
subject to the boundary conditions:

   •   continuity of spin accumulation,  Δ  μ   i   =  Δ  μ   i +1   
  •   terminal boundary condition,  Δ  μ  0  = 0;  Δμ   L   = 0 where  L  is the thickness of the 

device.    

 The solutions for the electrochemical potential, and hence the total potential drop 
over the device, are obtained for parallel and anti-parallel confi gurations, from 
which one can derive the magnetoresistance ratio. In the limit of infi nite SDL, the 
drift-diffusion model reduces to the well-known two-current model. Worth 
mentioning here is that boundary condition of (b) is an approximation since the 
zero spin-accumulation condition is strictly valid only at the ends of ferromagnetic 
layers of infi nite thickness. However, one can show that the approximation is 
approached in a practical spin valve device by taking into account the presence of 
long non-magnetic conductive leads adjacent to the ferromagnetic layers, and 
applying zero spin-accumulation condition at the ends of the leads (instead of at 
the ferromagnetic layers). The resulting magnetoresistance at high lead resistance 
will be signifi cantly lower, due to the non-spin-dependent scattering within the 
non-magnetic leads. 

 It has been pointed 85,86  that applying the zero spin accumulation condition at 
the device terminals and not that of the leads is consistent with assuming a metal 
contact with infi nite conductivity. The requisite high lead conductance can be 
achieved by having a lead made of Cu, and increasing its cross-sectional area  A  by 
the same factor, e.g. a hundred times compared with the active spin valve region. 
This requirement is usually realized in a physical device, where the leads have a 
much larger  A  than the submicron-sized spin valve cross section area. For instance, 
reasonable cross-sectional areas of 0.01 μm 2  for the spin valve trilayer and 1 μm 2  
for the contact leads could have achieved the required hundred factor. Thus, it is 
a reasonable assumption to neglect the effect of the leads in our magnetoresistance 
calculations and to apply the zero spin accumulation boundary conditions at the 
terminals.  Table 5.10  summarizes the boundary conditions required to solve for 
the spin accumulation and spin current across the device. The inclusion of 
interfacial 87  resistance and interfacial spin fl ip is important for practical devices 
and their effects on boundary conditions are also provided in  Table 5.10 . 

    5.9  Spin drift diffusion for non-collinear spin valve 

 Spin transfer torque was fi rst studied, independently, by L. Berger and J. C. 
Slonczewski. 88  Spin drift diffusion in the previous section considers only the 
longitudinal component of the spin accumulation, since the spin of the carriers is 
either parallel/anti-parallel to the local magnetization direction   M   in spin valve in 
which the ferromagnetic layers are either parallel or anti-parallel to one another. 
However, it is necessary to extend the collinear spin transport model to the general 
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   Table 5.10     Phenomenological solutions for spin accumulation across a multilayer 

device (e.g. the spin valve)  

 To fi nd parameters: To fi nd parameters:

A, B, C, D, �, js, rs A, B, C, D, �i, �i+1, j
s
i , j

s
i +1, r

s

Given parameters j, R0, Given parameters j, RF , 

R0 = interfacial resistance RF = interfacial spin fl ip

1. Terminal boundary conditions Terminal boundary conditions

∆μ
0
 = ∆μ

L
 = 0 ∆μ

0
 = ∆μ

L
 = 0

2. Continuity of spin accumulation Interfacial spin fl ip breaks continuity of 

spin accumulation

σ
σ σ

σ σ

∆μ
i
 = ∆μ

i+1

Asymmetric interfacial resistance 

breaks continuity of spin accumulation

−(∆μ
i+1

 − ∆μ
i
) = r↑j ↑

i
 − r ↓j ↓

i

3. Asymmetry of spin current Asymmetry of spin current

j↑ = �j   j ↓ = (1 − �)j j ↑ 
i
 = �

i  
j
i
  j↓

i
 = (1 − �

i
) j

i

Interfacial spin fl ip breaks continuity of 

spin current polarization �

j ↑
i+1

 = �
i+1

 j
i+1  

j ↓
i+1

 = (1 − �
i+1

) j
i +1

4. Asymmetry of interfacial resistance Asymmetry of interfacial resistance

r↑ = γR
0   

r ↓ = (1 − γ )R
0

r↑ = γ R
0  

r ↓ = (1 − γ )R
0

1
2
 (∆μi+1

 + ∆ μi
) = R

SF
 (∆j

i
 − ∆ j

i+1
)

   Note:  A, B, C  and  D  are the strength of spin accumulation at different layers.    

case in which the relative magnetization directions of the ferromagnetic layers are 
at some arbitrary angle to one another. There are two motivations for this:

   1.   In practice true parallel/anti-parallel alignment in spin valves can be achieved 
only at high fi elds.  

  2.   One needs to calculate the transverse (i.e. perpendicular to the local   M  ) spin 
accumulation ( m   ), which arises when the magnetization alignment is 
non-collinear, i.e.  θ  ≠ 0. A fi nite  m    is essential to generate a spin transfer 
torque between the conduction electrons and the local magnetic moments, and 
thus forms the basis of the current-induced magnetization switching (CIMS) 
effect.    

 Since CIMS offers a potentially useful method of magnetization switching, it has 
been actively investigated in a variety of experimental magnetic nanostructures, 
including pseudospin valve (PSV) trilayers, 89  exchange-biased spin valves, 90  spin 
valves with synthetic anti-ferromagnets 91,92  and magnetic tunnel junctions. 93,94  

 In this analysis, both the in-plane and out-of-plane components of the transverse 
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accumulation  m    are considered; however the former was neglected by many 
previous models. The effect of mixing between longitudinal  m   ||   and transverse  m    
spin accumulations due to  s−d  coupling between the accumulated spins and local 
moments is also considered. By relating the transverse accumulation  m    to the 
effective torque on the local moments in the free ferromagnetic layer, the non-
collinear model becomes particularly suitable for studying spin transfer torque, an 
increasingly important physical effect in nanoelectronics. One can now imagine 
that both  m||    and  m    are generated by the passage of spin-polarized current into the 
free ferromagnetic layer of a PSV trilayer with non-collinear magnetization 
alignment. At equilibrium, this generation rate is balanced by spin relaxation 
processes which proceed at a faster rate for  m   , compared to  m  || , as a result of 
precessional motion. The charge and spin transport are driven along the potential 
and spin accumulation gradients by  σ  and D, respectively. The coupled equations 95  
for the spin and charge currents are given by:

    

[5.83]

  

 where  D  0  and  σ  0  and are the spin-independent part of the conductivity and 
diffusivity constants, respectively, and  ΔD  and  Δσ  are the difference in 
conductivity/diffusivity experienced by majority and minority spins, respectively. 
Note that the units of charge ‘ e ’ and spin have for simplicity been taken to be 1. 
We now apply the non-collinear SDD model on a PSV trilayer structure ( Fig. 5.9 ), 
consisting of a fi xed ferromagnetic (FM1) layer, a non-magnetic (NM) spacer and 
a free (FM2) layer. The magnetization directions in the PSV are assumed to be 
non-collinear, i.e. with the magnetization  M  1  of the fi xed FM1 layer in the vertical 
( z− ) direction, while that of FM2 ( M  2 ) is rotated by some arbitrary angle in the 
 y−z  plane relative to  M  1 . 

   5.9     Schematic diagram of Co1–Cu–Co2 pseudospin-valve trilayer.     
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 To solve the coupled equations, we express the ansatz for the longitudinal and 
transverse spin accumulations in the three regions ( k  = 1,2,3, corresponding to the 
fi xed FM1, spacer NM, free FM2 layers, respectively) as:

   

. [5.84]

  

 In the above,  L  1,2,3  refer to the position of the right boundary of the three layers, 
while  λ   k    L   and  λ   k    T   are the spin relaxation lengths for the transverse and longitudinal 
spins, respectively. For the NM spacer, the two lengths are identical, i.e.  λ  2   L   =  λ  2   T  , 
but they assume very different values in the FM1 and FM2 layers. In these layers, 
the SDL are summarized in  Table 5.11 , where  λ   sf   is the spin-fl ip length. 

 The SDL  λ   T   for Co is much shorter since the relaxation process involves both 
spin fl ipping and precessional motion of  m    about the local magnetization  M . 
Notation  J   sd   is the  s–d  coupling energy between the conduction electrons and the 
local moments, and is of the order of 10 −20  J, so that  λ   T   is typically 1–2 nm. To 
solve for the coeffi cients  A  ( λ )  1,2  and  B ( λ )  1,2    , we need to apply the boundary conditions. 
The fi rst set of four boundary conditions are applied at the terminals of the PSV, 
i.e. at  x  = 0 and  x  =  L  3 , where both longitudinal and transverse spin accumulations 
vanish, i.e.

   
.
 

[5.85]  

   Table 5.11     Spin diffusion length for Co and Cu  

 SDL of different materials95,96  

1. Longitudinal spin diffusion length λCo
L
 = 60 nm

  σ σ λ
L
Cu = 140 nm

2. Transverse spin diffusion length λ
T
Co = 2 nm(ref. 95)

λ λ
T
Cu = 140 nm

3. Bulk spin polarization of conductivity (∆σ/σ
0
) of Co is 

taken to be 38%.

 Bulk diffusivity (∆D/D
0
) of Co is taken to be 38%.  

   Notes: For calculation, other required numerical values are: Cu and Co conductivity 

 σ  
 Co 

  = 1.6 × 10 7  Ω −1  m  −1  and  σ
   Cu

   = 5.96 × 10 7  Ω −1  m  −1 . Angular deviation of θ = π/4 is 

assumed for M 
Co1

  and M 
Co2

 .    

λ
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 The above ensures that all conduction electrons, regardless of spin orientation, 
experience the same potential drop across the device. Another set of four boundary 
conditions is obtained by considering the continuity of the transverse and 
longitudinal spin accumulations across the FM1–NM and NM–FM2 interfaces, i.e.

    

[5.86]

  

 In the above the reference spin orientation for the NM layer is chosen arbitrarily to 
lie along the  z -direction, similar to that in the FM1 layer. Since the local 
magnetization in the FM2 is pointing in the oblique direction, we have resolved the 
components of the spin accumulation in FM2 along the  y - and  z -direction to obtain 
the last two boundary conditions corresponding to the NM–FM2 interface. We 
have disregarded, for the moment, any interfacial spin-selective scattering events. 

 The fi nal set of four boundary conditions is derived based on the continuity of 
the spin currents  j   m   and  j   m 

  across the two FM–NM interfaces. As charge 

current conserves, and by eliminating    from the equations for  j   m  , the 

longitudinal spin current can then be expressed as:

    [5.87]  

 The continuity relations for the longitudinal and transverse spin currents at the 
two FM–NM interfaces are analogous to those for spin accumulations, i.e.

    

[5.88]  

 where we have again accounted for the rotation in the spin reference axis in the 
last two relations. In the above continuity relations, we have also assumed no spin 
fl ipping at the NM–FM interfaces. However, in practice a fi nite amount of spin 
fl ip may occur at the interfaces, but this can be readily incorporated into the 
current equations by introducing an interfacial discontinuity in  j   m   and  j   m || . The 
spin accumulations  m    and  m  ||  are solved by substituting the ansatz of Eq. 5.84 
into Eq. 5.88 and determining the coeffi cients  A   λ   1,2  and  B   λ   1,2 . One can then use the 
solutions for  m    and  m  ||  to fi nd the various spin current.   
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  Appendix 5.A Spin current under magnetic fi elds and 
spin orbit coupling 

 This appendix contains the steps required to derive the wavefunctions under the 
effect of magnetic fi elds and spin orbit coupling. As described earlier, the purpose 
here is to fi nd the eigensolutions of  H   C   so that we can use these solutions as basis 
solutions for the total Hamiltonian that comprises cross electric magnetic and 
SOC terms. One sees that on gauge (−  By , 0, 0):

   

[5.A.1]  

 where    is the cyclotron frequency,    is the 

cyclotron center and  y   a   =  y  0  −  eE   y  / mω  2  is the cyclotron center in the presence of 
the cross electric fi eld. Note that the cross electric fi eld has been consistently 
denoted by  E   y  , while the energy is denoted by  E .  Table 5.A.1  summarizes the 
Hamiltonian at different levels of sophistication and their solutions. 

  Table 5.A.1     Hamiltonians with their corresponding solutions and harmonic potentials  

 Hamiltonian Ansatz/solution Harmonic potential

1. ϕ
n
 (y − y

0
)

2. H
C
 = H

L
 + eyE

y
ϕ

n
 (y − y

a
)

3. H = H
C
 + H

Z
 + H

SO
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   Multiplying the above equations yields a column vector equation:

   

[5.A.2]  

 where  E  =  ε  −  E   s  . Using the substitutions of    and    where one 

defi nes    one has the following:

   

[5.A.3]  

 where  A   x   = − By . The elements of    are mutually 

orthogonal in a weighted Sobolev space, i.e.

    

[5.A.4]  

 where  x  =    and ∇ = { x | − ∞ <  x  < + ∞},  c   n   = √  π  2  n   n ! It is worth recalling 
that the solutions for  H   C   or  H   L   are given below; the content of  x  depends on the 
harmonic potential:

   . [5.A.5]  

 With the Hamiltonian written in a column vector:

   . [5.A.6]  

 One can next apply the transform:

   . [5.A.7]  
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 With the help of the spectral Hermite identities in  Table 5.A.2 , one can derive two 
important integral equations (refer to Exercise 5.2) which are also shown in the 
table. 

 Making use of the integral equations and ignoring the Dresselhaus effect, 
( β  = 0), one now has:

   . [5.A.8]  

 Substitution of  m  →  s  − 1 and  m  →  s  for the upper and lower row simply means 
selecting, respectively, the ( s  − 1)  th   term of the upper and the  s   th   term of the lower 
row. One has the freedom to select because both upper and lower rows contain 
infi nite sets of equations. In the presence of transverse electric fi eld, one can 
introduce  V  which is explicitly  V ( E   y  ), resulting in:

   . [5.A.9]  

 Let us begin with  s  = 0, and  a   s −1  = 0. One thus obtains:

   . [5.A.10]  

 The fi rst energy band has thus been obtained. Its corresponding wavefunction is:

   . [5.A.11]  

   Table 5.A.2     Hermite spectral identities and the integral 

equations used to derive the eigenfunctions  

 Useful Hermite identities

1. 2xH
n
 (x) = H

n +1
 (x) + 2nH

n−1
 (x)

2

Integral equations

1. � �

2. � �

�� �� �� �� �� ��



 Spintronics and spin Hall effects in nanoelectronics 197

©  Woodhead Publishing Limited, 2012

 One can further deduce that for  s  = 1,2,3, . . . . . . . ., the energy band will be:

    [5.A.12]  

 where  E  0  =  ξ  0  +  V  and  ξ  0  = 12  ħω  −  gμB . The above shows that for each value of  s , 
there are two energy levels: the (+) branch and the (−) branch. With the eigenvalue 
equations found, the eigenfunctions corresponding to  E   ±  s  can be found:

   . [5.A.13]  

 The normalization constant for both spin branches are:

    [5.A.14]  

 where:

   . [5.A.15]  

 The normalization constant is found from:

   . [5.A.16]                            
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                 6 
 Graphene and carbon 

nanostructures for nanoelectronics  

   Abstract:    This chapter introduces electronics based on carbon materials like 
carbon nanotubes and graphene. Monolayer and bilayer graphene are discussed 
and the forms of their Hamiltonian analyzed. The concept of gauge potential 
induced by strain or graphene deformation is introduced. Particular attention is 
paid to the extra degrees of freedom in graphene, namely, pseudospin and 
valley spin, which both share the spinor physics of electron spin. Novel 
graphene behaviors like localization, Klein tunneling, minimal conductivity are 
also discussed. The integer quantum Hall effect (IQHE) in graphene is 
discussed in relation to the semiconductor IQHE.  

   Key words:    monolayer, bilayer, graphene, pseudospin, valley spin, Klein 
tunneling, minimal conductivity, strain, integer quantum Hall effect, IQHE.   

    6.1  Introduction to carbon electronics 

 Carbon, beyond the traditional roles it plays in the steel and chemical industries, 
powering rail and naval transportation and generating electricity, is in this century 
set to shed its past grimy image and take on the gleam of high-technology 
electronics and integrated circuits. Silicon made possible the early human quest 
into nanoscience, and with metal–semiconductor fi eld-effect transistor (MOSFET) 
technologies, set us forth on our long march since the 1960s down the scale of 
electronic channel length. Silicon has given humanity fast and nanoscale 
electronics, the netbook and the cell phone which can store large colorful 
photographs. Human needs are unfortunately also expanded by their very 
fulfi llment. With electronic channel length approaching 20 nm and smaller, the 
post-silicon era becomes ever more real. 

 The spotlight is on carbon, a close cousin of silicon in the periodic table, but one 
which exists in various allotropic forms, e.g.  sp   2   (fullerenes, carbon nanotube and 
graphene) and  sp  3  (diamond) bonding. The focus on carbon follows from the failure 
of molecular electronics to live up to the large-scale fabrication stability required of 
mass production for integrated circuits. Contact resistance as well as contact effect 
on channel property remains the major hurdle. Carbon nanotube (CNT), considered 
a form of molecular electronics based on carbon, possesses quantum confi nement 
and superb electronic properties 1  to succeed silicon (see  Table 6.1 ). However, like 
molecular electronics, contact resistance as well as patterning process diffi culty 
remains a diffi cult challenge to stable, large-scale production.  Table 6.1  provides a 
summary of the advantages of CNT over silicon-based devices. MOSFET devices 
that have been designed and fabricated out of CNT include:
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   Table 6.1     Summary of the superb electronic features of carbon nanotube which have 

led to hopes of CNT replacing silicon in the future  

 Electronic advantages of a carbon nanotube

1. It is a one-dimensional nanostructure and has the properties of:

(a) high speed due to less scattering

(b)  ballistic transport – several µm for metal CNT, hundreds of nm for 

semiconducting CNT

(c) low resistance

(d) low power consumption.

2. Due to its small diameter (1–2 nm), CNT FET enhances gate control of the 

channel, particularly when gates are designed to wrap around the channel.

3. One crucial advantage of a CNT FET over silicon MOSFET is its much lower 

capacitance values (0.05 aF nm−1) which allows fast switching.

4. Because of its covalent bonding – it has large current carrying capacity (109 A 

cm−2) which promises CNT spintronics, e.g. spin transfer switching requires 

large current density. Its geometrical properties are no dangling bonds, 

cylindrical shape and smooth surfaces.

5. CNT possesses small spin orbit coupling, which might translate to large spin 

diffusion length (SDL). However, CNT will be a weak spin polarizer. It shows 

large magnetoresistance, e.g. in La
2/3

Sr
1/3

MnO
3
 (LSMO) CNT and LSMO 

devices.

   1.   Back gate CNT fi eld-effect transistor (FET).  
  2.   Front gate CNT FET. 2   
  3.   CNT ballistic FET. 3   
  4.   CNT vertical FET. 4     

 Possible examples of spintronic devices based on CNT are CNT spinFET 5  or 
CNT spin valve. 6  Other applications include CNT superconductivity, which has 
led to the concept of CNT supercurrent FET. 7  In CNT optoelectronics, a CNT 
light-emitting diode (LED) has been demonstrated. 8  

 The experimental discovery of graphene in 2003 marked the dawn of a new era 
in condensed matter physics, in which scientists could probe the behavior of 
massless Dirac fermions in a laboratory setting. Graphene inherits most superior 
macroscopic electronic features from CNT but largely eludes the patterning and 
contact problems faced by molecular and CNT electronics on the nanoscale. It 
also shows large ON current without the need for a large array of parallel CNT. 
Graphene’s electronic capability is further supported by experiments which show 
that the charge carriers can be tuned continuously between electrons and holes by 
simply adjusting the gate voltage in concentration of  n  = 10 13  cm −2  with mobility 
exceeding 15 000 cm 2  V −1  s −1  at room temperature. Semiconductors like InSb 
exhibit mobility as high as 77 000 cm 2  V −1  s −1 , but such high mobility is 
meaningless if this agility is possible only with a sparse system with a handful 
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electrons. In graphene, high mobility is maintained even for  n  > 10 12  cm −2 , thus 
yielding long mean free path (MFP) approaching 300 nm even at room temperature. 
Recent work even showed a mobility of 230 000 cm 2  V −1  s −1  for a suspended 
graphene layer. 9  

 In addition, graphene has shown interesting quantum properties such as phase 
coherence, 10  integer quantum Hall effects (IQHE) (albeit at high magnetic fi eld) 11  
and spin polarization, 12  all at room temperature. Recent progress with graphene 
on silicon (GOS) 13  and graphene on insulator (GOI) 14  is set to further speed up the 
industrialization of graphene fabrication. Beside superb macroscopic and quantum 
electronic properties, graphene also shows novel quantum behavior due to its 
unique electronic dispersion. The novel features include Klein tunneling, pair 
production, minimal conductivity, topological zero modes, pseudospin and valley 
spin polarization. The novel quantum features of graphene represent a completely 
uncharted territory for nanoelectronics, promising a plethora of romantic 
nanoscientifi c ventures that could potentially revolutionize conventional 
electronics. However, these novel features also pose engineering diffi culties in 
realizing conventional graphene-based electronics. Minimal conductivity results 
in a relatively poor ON/OFF ratio, a feature not favorable for transistor operation. 
The lack of quantum confi nement in graphene compared to CNT arises due to 
Klein tunneling. 

 The lack of bandgap in monolayer graphene has been a major obstacle to 
realizing graphene electronics. Systematic closing of the graphene gap 15  can, 
however, be accomplished by increasing sample thickness. The principle of gap 
opening is based on broken symmetry. Bilayer graphene was epitaxially grown on 
SiC substrate, producing a gap of approximately 0.26 eV. The interaction between 
the carbon atoms and the underlying substrate results in a graphene layer 
confi gured in such a way that one of the carbon atoms in each unit cell has a 
neighboring atom in the atomic layer below but the other one does not, thus 
breaking the symmetry. Bandgap engineering has also been investigated 16  where 
graphene was patterned into a quasi one-dimensional (1D) structure, also known 
as the graphene nanoribbon (GNR). It was found that lateral confi nement gives 
rise to an energy gap near the neutrality point. GNR shows a drop of conductivity 
with decreasing temperature at a much greater magnitude than ordinary graphene, 
suggesting that lateral confi nement could have opened a bandgap. In monolayer 
graphene, applying the gate voltage could alter the position of the Fermi energy 
with respect to the Dirac point or the normal Fermi point. However, a practical 
diffi culty still exists because of transport sensitivity to the edge profi le and 
diffi culty in fabricating edge nanostructures. 

  Exercise 6.1 

  (1) In MOSFET electronics, carriers can exist in the form of negative 

charge or positive charge carriers, which correspond to electron or 
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hole current, respectively. Comment in terms of carrier forms/types 

on what novel types of current one can expect to detect in the fi eld 

of spintronics and graphene.  

  (2) Graphene and CNT have similar electronic properties perceived to 

be superior to those of silicon in MOSFET devices which, at 20 nm 

gate length now, face great fabrication challenges in the near future. 

Describe briefl y the shared electronic advantages of graphene and 

CNT over silicon. Explain why graphene is more promising than 

CNT in terms of substituting silicon as a future channel material for 

nanoscale devices.  

  (3) Despite the many superior properties for electronic applications, 

CNT devices remain largely in the laboratory. In contrast, metal 

spintronics has been more successful in terms of technological 

applications, e.g. spin valve recording head and magnetic tunnel 

junction. 

    (a)     Explain in terms of carrier scattering and mobility why CNTs are 

promising candidates for future electronic devices.   

   (b)     In your view, what is still holding back the development of CNT 

electronics?   

   (c)     What is the prospect of hybrid devices based on CNT spintronics 

and optics?       

   6.2  Monolayer graphene 

 The periodic potential of the monolayer graphene honeycomb lattice is defi ned by 
two sub-lattices shifted relative to one another. A monolayer graphene is held 
together by two types of electronic bonding. The in-plane  σ  bonds are hybridization 
results of the 2 s , 2 p   x  , 2 p   y   orbitals in a  sp  2  confi guration; these bonds give rise to 
its rigid structure. The other type of so-called  π  bonds is formed from the 2 p   z   
orbital, which is perpendicular to the graphene plane. The  π  bonds give rise to the 
valence and conduction band. 

   6.2.1  Electronic structure 

 Graphene 17,18  is a monolayer of carbon atoms packed into a two-dimensional 
(2D) honeycomb lattice. Given its thickness of just one atomic layer, it is the fi rst 
truly 2D system and it is not hard to conceive that such a monolayer 2D system is 
the basic building block of all carbon-based nanostructures in all dimensions. 
 Table 6.2  provides a summary of some useful and well-known carbon-based 
nanostructures. 

 We will study the electronic structure of graphene by fi rst examining its 
honeycomb lattice in real space ( Fig. 6.1a ). The reciprocal space lattice can be 
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   Table 6.2     Graphene sheet can be wrapped and stacked into various carbon 

nanostructures  

 Geometry Carbon nanostructure

1. Wrapped into 0D Fullerene

2. Rolled into 1D Carbon nanotube

3. Stacked into quasi-2D Bilayer or trilayer graphene

4. Stacked into thin fi lm, quasi-2D Few layers (3–10) graphene

5. Stacked into bulk 3D Graphite

   6.1     (a) The honeycomb lattice of graphene comprises two 

interpenetrating triangular sub-lattices A and B. (b) The Brillouin zone of 

graphene is also hexagonal and comprises two non-equivalent corners 

or valleys ( K  and  K ’) at which the energy spectrum is degenerate.     

derived following standard procedures 19  as shown in  Fig. 6.1b . The real space and 
momentum space unit lattice vectors are:

    [6.1]  

 where    and  a  0  ~1.42  A . The tight binding Hamiltonian that 

describes the monolayer graphene energies in real space is:

    [6.2]  
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 where  t  ~ 2.8 eV is the hopping energy for the three nearest neighbors, while 
 t0.1 − 0.01~  ׳ eV is for the six second-nearest neighbors (see  Fig. 6.2 ). 

 The eigenenergy solution is:

    [6.3]  

 where   . Substituting  k  =  K  +  p , 

with |  p | << | K | into the above for Dirac points  K  and  K′  (also known as valleys), one 

obtains the respective energy dispersion of   . 

The nearest neighbor tight binding model can be used to describe the lattice. By 
measuring from the valley point  K , one can arrive at the Hamiltonian of:

    [6.4]  

 where  γ  0  ≈ 2.7  eV ; a Fermi velocity    is introduced. With this, 

one works out the Hamiltonian for the  K  and  K ́ valleys to be

    [6.5]  

 or, in short, the Hamiltonian for the  K  and  K′  valleys are, respectively:

    [6.6]  

   6.2     Nearest and second nearest neighbors in the graphene honeycomb 

lattice.     
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 where  σ  = ( σ   x  ,  σ   y  );  σ     f   = (− σ   x  ,  σ   y  ). The Dirac matrix Hamiltonian combining both 
valleys is:

    [6.7]  

 where  τ   z   is the Pauli matrix for the valley degree of freedom. The solution for the 
Dirac matrix above is:

    [6.8]  

 The solution is thus regarded as the pseudospin for its resemblance to the spinor 
solution of the high-energy vacuum Dirac Hamiltonian. Equation 6.8 clearly 
depicts the additional degree of freedoms in monolayer graphene. 

 For our studies of the pseudospin effect, only one valley is considered unless 
otherwise stated. From the above, one can deduce the wavefunction to be:

    [6.9]  

 where  ϕ  =  arctan ky / kx , whose spinor is also known as the pseudospin because of 
its similar mathematical structure to the real electron spin. The +– in the exponential 
refers to the  K  and  K ′ valleys, respectively. Mathematically,  ψ  ±  can be viewed to be 
rotating in the  x – y  circle plane of the special unitary group of degree 2 (SU(2)) 
Bloch sphere. Physically, such rotation describes the distribution of electrons on 
sub-lattice sites,  A  and  B . 

 It would not be possible to fully comprehend particle behavior or motion in 
nanoscale graphene systems or devices without fi rst understanding the relativistic 
quantum mechanics that governs the behavior of these particles. Thus before 
going into more qualitative descriptions of the dynamic effects in graphene such 
as conductivity and confi nement, we refer readers to Appendix 6.A for a brief 
review of relativistic quantum mechanics. As this is not a formal course in physics, 
the formal interpretations of relativistic physics are not discussed. The purpose of 
this section is to facilitate understanding of the more elaborate descriptions of 
graphene particle dynamics in the later parts of this chapter. For comparison, the 
high-energy massless Dirac Hamiltonian is of the form:

    [6.10]  

 Let us expand our examination of the monolayer graphene Hamiltonian to both 
valleys:  H   K   =  υ   F    σ · p ,  H   K′   =  υ   F   σ    f  · p , where  σ  = ( σ   x  ,  σ   y  ) and  σ    f   = (− σ   x  ,  σ   y  ). One 
realizes instantly their analogies to the Weyl equations where,, in the massless 
limit, particles possess handedness. It is espoused by the high energy physics 
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community that electron exhibits right or left helicity because of mass-related 
mixing. To preserve Lorentz invariance, 20  the electron loses its helicity. 
Decomposition of the right and left helicity would be possible when particles 
become massless. For comparison, the Hamiltonian for massless neutrino can be 
decomposed into  χ   R   and  χ   L   to result in the Weyl equations of:

 

    
[6.11]

 

 which accounts for the positive-energy massless particle and anti-particle, 
respectively. The massless particle acquires a unique helicity, i.e. its spin projection 
is constantly parallel to its momentum direction. A comparison is given in  Table 
6.3 . The above is merely for reference; a more mathematical description of the 
physics of helicity is given in Appendix 6.B. It is hoped that useful applications can 
be discovered by understanding the graphene analogies to the massless neutrino. 

      6.2.2  Pseudospin and valley spin 

  Pseudospin 

 As shown above, carriers in monolayer graphene mimic the massless Dirac 
fermions rather than the usual conduction electrons. 21,22  This is because of the 
peculiar linear bandstructure at the Dirac cones which subjects particles at 
the Dirac points to behave like relativistic particles. One wonders whether the 
monolayer graphene electron should be addressed as an electron after all. But one 
can regard the graphene ‘electron’ as a neutrino which has acquired a charge  e  or 
an electron that has lost its rest mass. 

 For simplicity we will focus on the  K  valley where  H   K   =  υ   F    σ · p . The solution to 
this equation is a column vector spinor ( ψ   A    ψ   B  ) 

 T   which describes the sub-lattice 
degree of freedom (DOF).  Figure 6.1a  shows that graphene’s hexagonal lattice is 
the superposition of two triangular sub-lattices which distinguishes  A  atoms from 
 B  atoms. In exact analogy to the real spin, electrons can reside in one of the two 
sub-lattices (corresponding to up-spin or down-spin) or a superposition of  A  and 
 B  sites, and are represented by the familiar two-component spinor form. In 
quantum mechanics, the state vectors of |↑) and |↓ represent the full distribution 
of electrons in sub-lattices  A  and  B , respectively. The hopping of electrons 
between  A  and  B  can be mathematically described by the rotation of a pseudospin 

  Table 6.3     Analogy of monolayer graphene to the Weyl equations of the neutrino  

 Monolayer graphene Weyl equations

Valley K H
K
 = v

F
(σ

x
p

x
 + σ

y
p

y
) H

R
 = c (σ

x
p

x
 + σ

y
p

y
)

Valley K′ H
K ́
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F
(σ

x 
p

x
 − σ

y 
p
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) H
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 = c (− σ

x
p

x
 − σ

y
p
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vector on a Bloch sphere in exact analogy to the SU(2) physics of the electron’s 
real spin. In fact, the rotation of the pseudospin vector can be regarded as a direct 
result of the rotation of an effective magnetic fi eld induced by the electron 
momentum measured around the Brillouin zone corners, i.e.  p  in our notation. 

 The pseudospin indexes the two non-equivalent lattice sites of graphene on 
which electrons can reside. The pseudospin of massless Dirac fermions in graphene 
possesses an analogous property to the electron spin in metal or semiconductors. 
One interesting fact to note here is that the pseudospin of massless particles is 
irrevocably tied to the momentum direction. Therefore, if the momentum of 
massless particles is confi ned or constrained in motion, such that all massless 
particles have a unique  p , total pseudospin polarization reaching full polarity could 
then be achieved with pseudospin oriented parallel to momentum. One may thus 
conjecture that such a system could be used to supply highly pseudospin-polarized 
current for yet another analogous effect, e.g. pseudospin transfer.  

  Valleyspin 

 The remarkable bandstructure of graphene is due to its unique honeycomb lattice 
structure ( Fig. 6.1a ). From the real lattice, one can readily derive the reciprocal 
space lattice which is also periodic and hexagonal. One can show (e.g. using the 
tight binding approach) that the conduction and valence bands of graphene touch 
each other at Dirac points at the corners of the fi rst Brillouin zone. The Brillouin 
zone of graphene is hexagonal and the energy gap closes at the six corners (see 
 Fig. 6.1b ). The corners are of two non-equivalent and degenerate types, also known 
as valleys, which are labeled  K  and  K ′. Due to its two-valued nature, and the fact that 
the valley DOF is quite robust (inter-valley scattering can typically be ignored – for 
low energy regimes), valleys have been likened to the electron spin and numerous 
proposals of devices which exhibit valley-dependent transport have quickly 
emerged. Since inter-valley scattering is normally well suppressed in graphene, the 
valley DOF might be able to emulate many device functionalities in spintronics 
rather conveniently in the two current fashions. The physics of valley-based 
electronics 23–25  – so called ‘valleytronics’ – in graphene has thus been studied 
intensively in recent times. Indeed, the term ‘valleytronics’ was coined just several 
years after the discovery of graphene to collectively describe the plethora of physical 
effects and potential devices that make use of graphene’s valleys. More recently, the 
idea of valley-qubits in quantum computing applications has also been proposed. 26  

  Exercise 6.2 

  Bandgap engineering of graphene is an essential task for building 

graphene-based nanoelectronic devices. As mentioned, one way of 

inducing a bandgap in graphene is to grow it on a substrate (e.g. SiC) 

such that the two sub-lattices of the graphene interact differently with the 

substrate. This breaks the sub-lattice symmetry, which is modeled by an 
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electrostatic potential U   A    (U   B   ) on the  A  ( B ) sub-lattice, where U   A   ≠  U   B  .
  Thus, we can write the effective Hamiltonian as ( K  valley):  

 

    (1)     Show that the Hamiltonian above can be written as:    

  H   K   =  υ   F    σ · p  + ∆ σ   z   +  γ   l , 

   where:  

    (2)     Derive the eigenvalues for the Hamiltonian and conclude the 
existence of an energy gap of magnitude  2|∆|.  Show that the same 
result occurs at the  K ′ valley.   

   (3)     Compute the Berry curvature of the Hamiltonian, and show that it is 
of equal magnitude but opposite signs in the two valleys.    

   (Refer to  Chapter 7  for more details on the concept of Berry curvature 
in nanoelectronics.)      

   6.3  Carbon nanostructures 

 The electronic structure 27,28  of carbon nanotubes (CNT) is similar to monolayer 
graphene with additional sub-bands. We will look at the momentum space diagram 
of a monolayer graphene with the two valleys as labeled. A CNT is formed by 
rolling up a sheet of monolayer graphene. For an arbitrary direction along the 
circumferential vector  c  (see  Fig. 6.3 ), a quantized sub-band is formed due to 
constraints (periodicity) imposed along that direction. Electron momenta take on 
quantized values along  c  and continuous values along the lines perpendicular to  c . 
The CNT has thus become a one-dimensional electronic system where every line 
corresponds to an integer value  υ  which denotes the number of complete stationary 
wavelength that an electron forms along  c . A dispersion relation can be written for 
every integer value  υ . 

 Vector  c  is also known as the circumferential vector, denoted by  c  =  ma  1  +  na  2 . 
Recalling in  Fig. 6.1  that  a  1  = a i  + b j ,  a  2  = a i  − b j , one has:

    [6.12]  

  Figure 6.4  shows the honeycomb lattice of a graphene sheet. The chiral vector 
which defi nes the folding direction to form a CNT is denoted by  C . The periodic 
boundary condition requires that momentum along the circumferential vector can 
only exist in the multiple of 2 π , i.e.

    [6.13]  
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   6.3     Graphene sheet is wrapped along the circumferential vector and 
momentum becomes quantized along that direction. The electron is 
only free to move along the diagonal lines, exhibiting one-dimensional 
behavior.     

   6.4     Honeycomb lattice of a monolayer graphene before rolling into 
various carbon nanostructures.     

 If these lines pass through one of the valleys ( k   x   a    ,  k   y   b ) = (0   , ± 2 π /3), energy 
 E  = 0 at the valley coincides with the lines, and thus there will be no bandgap in 
these CNTs. One can see that this can only happen for:
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   6.5     (a) Armchair CNT with circumferential vector  c  = 2ami. (b) Zigzag 

CNT with circumferential vector  c  = 2bm j .     

    [6.14]  

 The graphene sheet shown in  Fig. 6.5a  can be wrapped along the  x  axis, such that 
side  A  meets side  B  to form a CNT structure known as the ‘armchair’, refl ecting 
the top and bottom circumferential edges of the cylindrical structure. Similarly, 
 Fig. 6.5b  when wrapped around in the same manner (along the  y  axis) yields a 
cylindrical tube structure with zigzag edges. The allowed momenta for the 
armchair CNT lie along a set of lines parallel to the  y  axis, while those for the 
zigzag CNT lie on lines parallel to the  x  axis as shown in  Fig. 6.6 . 

   6.6     (a) Armchair CNT with circumferential vector  c  = 2am i  showing 

metallic bandstructure at the valleys. (b) Zigzag CNT with circumferential 

vector  c  = 2bm j  can be metallic or semiconductor depending on the 

values of satisfying 2m = 3v. (c) An arbitrary circumferential vector can 

yield metallic or semiconducting CNT for any which satisfi es |m – n| = 3v     .
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  Exercise 6.3 

  Deduce using c  = ( m  +  n ) ai  + ( m  −  n ) bj   that the circumferential vector for 

the armchair and zigzag CNTs are c  = 2 ami ,  c  = 2 bmj ,  respectively. Explain 

with Brillouin zones and sub-band drawings why the armchair graphene 

is always metallic regardless of the value of   m . 

  Solution  

  In armchair CNT, m  =  n ,  and the chiral vector is c  = 2 ami .  One has  2 mak   x   

= 2 πv ,  or   k   x   =      and  L   = 2 ma is the length of the CNT cylindrical 

circumference. The wavelength of the wavevector is k   x   =  .

  The sub-band with v  = 0  will always pass through K  = ( k   x   a ,  k   y   b ) 

=   .   

   6.4  Bilayer graphene 

 Much has been said about the novelty of graphene which promises new electronics 
with applications wild and aplenty. We begin this section with a brief introduction 
to the full bilayer graphene Hamiltonian leading to its reduced form. As is well-
known, the bilayer graphene comprises two monolayer graphene stacked vertically 
and has a more complicated energy structure. The bilayer graphene Hamiltonian 29  
has been expressed as:

    [6.15]  

 where  π  =  p   x   +  ip   y   ,  t  is the interlayer coupling and  ψ  1  is a four-component spinor 
wavefunction. In graphene it is known that interlayer coupling between  A  1  and  B  2  
is strong. Subscripts  A, B  refer to the sub-lattice index, while 1, 2 refer to the layer 
index. Alternatively there are different versions of the Hamiltonian found in 
literatures. The differences arise mainly from symmetry as well as variations due 
to approximations. 
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   6.4.1  Bilayer graphene Hamiltonian 

 The spinor wavefunction of (1) in  Table 6.4  is different from those in (2) and (3). 
A transformation can be performed as follows:

   

 [6.16]  

 Matrix  U  defi ned above has the property of hermicity (i.e.  U  =  U †) and unitary 
(i.e.  UU † =  1 ). The Hamiltonian can then be transformed as  H  3  =  UHU †. 

  Table 6.4     Hamiltonian of the bilayer graphene resembles the massive Dirac 

Hamiltonian  

 Bilayer graphene Hamiltonian Reference

1.
π π

π π

π

π

ψ

�

�

�

�

29

2.

π

ψ

�

�

�

�

π

π

π

30

3.
π

π
ψ

�

�

�

�
π π

π

π
 

    Exercise 6.4 

  Show that after transformation, the Hamiltonian of H  1   is identical 

to H  3  , and is very close to that of H  2   except that v3π and υ  3  π †  have been 

dropped in H  2 . 
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  Solution 

     

 It is interesting to examine whether the above Hamiltonian fi ts the Dirac’s 
equation. In terms of the explicitly covariant form of the Dirac equation, ( iħγ    μ   ∂  μ   
−  mc )  ψ  = 0, one has:

    [6.17]  

 where:

    [6.18]  

 Equation 6.17 can be transformed to:

    [6.19]  

 Equation 6.19 seems a closer fi t with ( E  −  H  1 )  ψ  = 0 which explicitly is:

    [6.20]  

 In the above, magnetic vector and electric scalar potential has been removed. The 
bilayer graphene mimics the massive Dirac systems to some extent. Future 
nanofabrication technologies might be able to produce a graphene-like system 
which mimics the massive Dirac system with less approximation needed.   
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   6.4.2  Reduction of the Hamiltonian 

 In bilayer graphene, the 4×4 Hamiltonian is cumbersome and one often uses a 2×2 
simplifi ed form. In this section we transform the larger bilayer graphene 
Hamiltonian into a simplifi ed form. In  Table 6.4 , the Hamiltonian (3) can be 
written as:

    [6.21]  

 where  u  is the applied electrical voltage between the two layers and  t  is the 
interlayer coupling. Subscripts  A, B  refer to the sub-lattice index, while subscripts 
1, 2 refer to the layer index. Written in this form, one has chosen to show the 
interlayer coupling between  A 2 and  B 1. One assumes the limit of strong interlayer 
coupling, i.e.  t  >>  u . 

  Exercise 6.5 

  Show that in the limit  E  <<  t , the Hamiltonian H  3   can be reduced as follows: 

     

  Solution  

  In the limit  u << t  and  E << t , one can obtain an effective Hamiltonian for 

the lowest energy bands. We can reorder the wave functions according 

to  ( A  1 ,  B  1 ,  A  2 ,  B  2 ) → ( A  1 ,  B  2 ,  A  2 ,  B  1 ) , and in the new basis, the Hamiltonian 

becomes: 
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  where H   ij    is a  2 × 2  block. Use the identity det  ( H  ′ 3  −  E ) =  det  ( H  11  −  H  12  ( H  22  
−  E ) −1   H  21  −  E )  det  ( H  22  −  E ).  For, E << t, the substitution H  22  −  E  →  H  22   reduces 

the computation of the lowest-energy bands to the diagonalization of the  

2 × 2  effective Hamiltonian: 

  H 3
 eff    =  H  11  −  H  12   H   −1  22   H  21   

    

    

 Taking the limit of  u  << t and      , the effective Hamiltonian can now 
be expressed in the basis ( A  1 ,  B  2 ). Thus the Hamiltonian of the reduced bilayer 
graphene is:

    [6.22]  

 This Hamiltonian has been used widely as an approximation type of Hamiltonian for 
bilayer graphene. Future advances in technologies might allow us to engineer the 
various parameters and new approximations might be possible. It will be interesting 
if one can pre-conceive a useful Hamiltonian and use technologies to achieve the 
desired Hamiltonian. The present Hamiltonian above has been used to understand the 
topological properties 31,32  of graphene as well as the Berry’s phase, 33–35  which have 
great implications to the physics of electron dynamics in graphene.    

   6.5  Deformation-induced gauge potential 

 It has been understood that free-standing graphene is not fl at. In fact it is soft and 
membrane-like, and conforms to the substrate, creating ripples which are static 
distortion of the 2D lattice. 36  Because of its fl atness, graphene sheet reacts to 
thermal fl uctuation and thermal stress and becomes warped or fl oppy as a result. 
Free-standing graphene also generates fl exural (out-of-plane) phonons which are 
simply quantized mode of vibration in the crystal (dynamic distortion). Thus 
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graphene sheets can move in the third dimension – in other words behave like a 
‘cantilever’. Lattice deformation in graphene modifi es the nearest neighbor 
hopping strength as well as the on-site potential. 

 We will show that asymmetric hopping strength or site potentials can in fact 
induce a gauge potential 37  in the graphene sheet. We begin with the nearest 
neighbor Hamiltonian of a graphene sheet system:

    [6.23]  

 where  i  runs over all sub-lattice sites  A  and  j  = 1,2,3 are the three nearest neighbors 
surrounding each site  i . Here, we focus on the hopping strength effect. Lattice 
deformation modifi es  t  as  t  →  t  +  δt   j  , generating a perturbation Hamiltonian of:

   . [6.24]  

 Using the Bloch wavefunction for each lattice site:

    

[6.25]

  

 where  N  is the number of unit cells. Considering intra-valley scattering within 
valley  K , one fi nds the matrix elements:

    [6.26]  

 where:

    [6.27]  

 and it is understood that  A   x   and  δt   j   are functions of sub-lattice A site  i . The same 
can be worked out for valley  K′  using similar processes. The full Hamiltonian for 
valleys  K  and  K′  due to lattice deformation modifying the hopping integral are:

   

[6.28]
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 Inter-valley scattering in graphene is well suppressed and we do not discuss its 
effect here. The on-site potential modifi cation due to lattice deformation or 
external imposition is also not discussed. As far as electron motion is concerned, 
it becomes clear that applying strain to graphene is equivalent to applying an 
external magnetic fi eld.  

   6.6  Application of graphene spin 

 Spintronics is one of the richest topics in nanoscale electronics. Spintronics in 
graphene has, however, remained a fairly quiet area of research. This is because 
spin-based effects in graphene, such as spin orbit coupling (SOC) and Zeeman 
interactions, are negligibly small, typically of the order 0.1 K. 38  As an example, in 
2005, Kane and Mele 39  proposed the existence of the remarkable quantum spin-
Hall state in graphene (which led to the launched of a separate and vigorous 
investigation into a new state of matter known as ‘topological insulators’). 
However, due to the invariably small SOC, graphene was soon ruled out as a 
likely candidate for the experimental realization of the effect. We note though that 
recent studies suggest evidence for strong spin orbit coupling in bilayer graphene. 

 One of the most remarkable things about graphene is the immensely rich and 
elegant physics that can be drawn from such a simple structure. Despite the lack 
of interesting spin-based effects, the symmetry of pristine graphene affords us two 
additional spin-like quantities, namely pseudospin and valley spin. Like the real 
spin, the pseudo and valley spins in graphene are two-valued, and in the effective 
Hamiltonian, can be expressed in terms of Pauli matrix-like quantities. 

   6.6.1  Pseudospin electronics 

 Unlike the real spin, the pseudospin cannot be polarized by a real magnetic fi eld. 
This is because the polarizing effect in opposite valleys cancel each another out. 37  
To induce a Zeeman-like term which actually polarizes the pseudospin, one needs 
to break the symmetry between the two sub-lattices. This could be realized by 
applying different electrostatic potentials to the A and B sub-lattice. In the case of 
monolayer graphene, this can be achieved by epitaxial growth on, for example, 
SiC substrates. It is particularly simple for the case of bilayer graphene where one 
need only apply different gate voltages to the two coupled graphene layers (in the 
low energy regime). This opens up a gap in the electronic spectrum which 
is proportional to the energy difference on the two sub-lattices, effectively 
transforming bilayer graphene into a tunable semiconductor. 

  Berry’s phase 

 The pseudospin of graphene has deep and interesting connections with many 
physical effects, e.g. the half/full integer shift in integer quantum Hall effects 
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(IQHE), pseudospin analogies of spin Hall and spin torque, particle localization 
and anti-localization, Klein tunneling, minimum conductivity, zitterbewegung 
and pair production. It is, however, not always apparent how pseudospin is 
linked to these phenomena. But if one understands the connection between 
the pseudospin and the Berry’s phase, the link becomes clearer; one needs only 
to understand the link between the Berry’s phase and the physical phenomena. 
In  Chapter 7 , we discuss the adiabatic evolution of the pseudospin vector and 
how it gives rise to the gauge curvature and to Berry’s phase, which is a 
topological invariant. Prior to that, readers are required to accept that Berry’s 
phase associated with pseudospin of graphene can be derived as summarized in 
 Table 6.5 . 

     Pseudospin analogies of spin Hall and spin torque 

 Spintronics – particularly in semiconductors and magnetic multilayers – has 
represented an engaging fi eld of study and has become all important for 
applications in magnetic storage. In semiconductors, the SOC effect, in which 
carrier spins feel an effective momentum-dependent magnetic fi eld, plays a 
crucial role in how spins are manipulated. For example, it leads to the remarkable 
spin Hall effect (SHE) in which dissipationless transverse spin currents fl ow 
in response to an applied electric fi eld as discussed in  Chapter 5 . Since SHE 
can be linked to the Berry’s phase associated with spin, we remark that a similar 
SHE for the pseudospin might arise in connection with the Berry’s phase 
associated with the pseudospin. Likewise, we comment generally that other 
spintronic phenomena related to spin orbit gauge potential or Berry’s phase (e.g. 
the spin torque and spin current) might have their respective counterparts in the 
pseudospin.  

  Table 6.5     Summary of Berry’s phase in monolayer and bilayer graphene and the 

associated gauge potential  

 Monolayer graphene Bilayer graphene

Wavefunction

ψ
�

�

φ

ψ
�

�

φ

Berry’s phase πφ πφ

Local gauge

ψ ψ
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  Pseudospin orbit coupling 

 Using the Dirac equations, SOC can be derived in vacuum with applied electric 
fi elds. One can thus visualize that a similar effect should arise for the pseudospin 
of graphene particles governed by the Dirac equations. Below, we derive the 
pseudo SOC for a bilayer graphene with the Hamiltonian  H  1  (see  Table 6.4 ):

    [6.29]  

 For brevity, we write ( A  1   B  1   A  2   B  2 ) to denote  φ   A 1   φ   B 1   φ   A 2   φ   B 2 ). The transformation 
performed by  U  determines the type of pseudospin to be investigated; for example, 
by the above method, which results in  χ  = ( A  1   B  2 ) 

 T  , pseudospin is defi ned between 
site  A  1  and  B  2 . In application to particles which mimic Dirac fermions, it would be 
instructive to replace the coupling mass term of  mc  2  for particles in vacuum with 
a coupling term Δ which arises due to material bandstructure but plays the same 
role as the mass term as far as the Dirac matrix is concerned. The coupling term Δ 
gives rise to the energy dispersion where the effective mass of particles in the 
materials can be derived. For monolayer graphene, Δ vanishes and one deduces 
from the energy dispersion relation that particles behave like massless Dirac 
fermions. Following  H  1  in  Table 6.4 , we write the graphene Hamiltonian:

    [6.30]  

 such that it is comparable to Eq. 6.19. In this specifi c case,    and 

  . Multiplying by  γ  0  to the left, one obtains the graphene Hamiltonian:

    [6.31]  

 which is comparable to Eq. 6.17. Note in Eq. 6.31, the electric fi eld has been 
incorporated via  eϕ . Equation 6.31 is now written as:

    [6.32]  

 where 
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 One can now apply the electric fi eld  ε , with electric potential  ϕ . Here we merely 
wish to illustrate the close connection between the bilayer graphene and the 
vacuum Dirac Hamiltonian such that useful analogies between pseudo SOC and 
vacuum SOC can be drawn. Thus, to simplify matters, we temporarily disregard 

the fact that    and    Rather, we modify as follows:

    [6.33]  

 so that one can write Δ 2   a   = Δ 2  I , where Δ =  mc  2 . We make an even more drastic 
assumption that one can write:

    [6.34]  

 Multiplying Eq. 6.32 to the left with  γ   v   D   v   +  R  thus yields:

    [6.35]  

 Equation 6.31 therefore can be reduced to:

    [6.36]  

 where    The relativistic energy equation, which could be 

used to describe the analogous effect of pseudo SOC (i.e. the coupling of 
pseudospin to particle momentum in the presence of electric fi elds) for Dirac 
fermions in graphene-like material systems is thus:

    [6.37]  

 We note again that approximations have been taken to avoid dealing with excessive 
material science, i.e. we have assumed bilayer graphene material could satisfy 
Δ 2   a   = Δ 2   l ; Δ  b   = Δ l .   

   6.6.2  Valleyspin electronics 

 The fi rst valleytronics work 24  proposed a valley fi ltering effect where electrons 
are transmitted through graphene quantum point contacts. In such contacts, right 
and left movers reside in opposite valleys. It was suggested that two such valley 
fi lters could be connected in cascade to form a valley valve; see reference 40 for 
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further insights into the physics of the valley valve effect. A valley fi lter in strain-
engineered graphene has been proposed. 41,42  In bilayer graphene, there has been a 
proposal for a valley fi lter 43  based on irradiation by high intensity light. We have 
mentioned that inducing an asymmetry in the graphene sub-lattices opens up a 
gap due to the Zeeman like splitting of the pseudospin. Moreover, it can be shown 
that this mechanism results in a fi nite Berry curvature in momentum ( k ) space. 
This Berry curvature has opposite signs for the two valley spins and thus affects 
carrier motion in a valley-dependent manner. In fact it leads to the valley Hall 
effect 25  in direct analogy with SHE in p-doped semiconductors. 44  Such an effect 
also arises in the case of inhomogeneous sub-lattice asymmetry, where the 
effective Hamiltonian contains a valley orbit coupling term. 45  

 In fact, the analogy with the electron spin goes much deeper. It has been 
shown 25  that, in graphene with broken inversion symmetry, there is an intrinsic 
magnetic moment associated with the valley DOF exactly like the electron spin. 
The requirement for spatial inversion symmetry breaking comes about from 
symmetry considerations of the effective ‘Bohr magneton’. The (low-energy) 
magnetic moment characterizing monolayer graphene’s valleys is:

       
[6.38]

 

 where  ξ  = ± 1 for the two valleys and the effective mass   . Here, Δ is 

the size of the inversion asymmetry. Unlike the real spin, the magnetic moment 
associated with the valley DOF is an orbital magnetic moment and originates 
from the self-rotation of the wavefunctions about the valley centers. It is found 
that, for typical values,  μ *  B   is an order of magnitude larger than the spin-Bohr 
magneton, implying that in the low-energy regime, the response to a magnetic 
fi eld is dominated by the valley magnetic moment rather than the actual spin. In 
the limit of high magnetic fi elds, quantum Landau levels are formed, and several 
authors have experimentally found that the lowest Landau level ( n  = 0) exhibits a 
broken valley degeneracy. 46  This was later explained as an intrinsic property of 
the symmetry of graphene’s lattice. 47  The above discussion motivates a serious 
discussion about the relevance of the valley spin in graphene-based nanotechnology. 
With this, we proceed to discuss some valleytronics devices proposed in the 
literature, including valley fi lters, valley valves and devices which make use of 
valley-dependent Hall effects. 

  Valley fi ltering 

 In the context of spintronics, one could conceive of a spin fi lter, in which an 
unpolarized input current gives rise to a spin-polarized output current. In direct 
analogy with this concept, valley fi ltering in graphene has been proposed by several 
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authors. The fi rst proposal 24  was based on valley-dependent transmission through 
graphene nanoconstrictions. This idea works on the principle that, in narrow 
graphene nanoribbons with zigzag edges, the lowest energy mode is chiral in the 
sense that left movers and right movers occupy separate valleys. One caveat is that 
the fi ltering property relies on the graphene samples that have well defi ned zigzag 
edges, which are diffi cult to control in experiments. Upon application of a rightward 
moving electric current to the device, only carriers in one valley are able to be 
transmitted, while those in the other valley will be totally refl ected (there are simply 
no states in the central narrow region supporting the other valley). Numerical 
calculations of the transmitted current through such devices reveal that a near 
perfect valley polarization approaching 100% can be achieved. The polarity of the 
fi lter can be changed by applying a suffi ciently large electrostatic potential  U  >  E   F   
to the central nanoconstriction via gating, which pulls up the energy bands and 
switches transport from the conduction to the valence band. When two valley 
fi lters with tunable polarities are connected in series, a valley valve effect can be 
realized in which the electronic conductance can be modulated depending on the 
parallel/anti-parallel confi guration of the two fi lters. We note that the valley fi lter 
seemingly requires zigzag edges in the nanoconstriction to operate perfectly. 
However, it was subsequently shown that there is some robustness of the valley 
polarization with respect to imperfect edge profi les. 

 Valley fi ltering in strained graphene was proposed by Fujita  et al . 41  Graphene 
is unique in that its electronic properties can be modulated simply by applying 
mechanical strain to the bonds. The operation of the valley fi lter can be understood 
most simply by realizing that strain induces a valley-dependent magnetic vector 
potential in the effective Hamiltonian:

    [6.39]  

 where  ξ  is the valley index. It is well-known that, when carriers are transported 
across regions of differing vector potentials (e.g. due to magnetic fi eld barriers), 
wavevector fi ltering takes place; namely, incident carriers with momenta  k  are 
either transmitted or refl ected depending on details such as the magnetic fi eld 
strength and carrier Fermi energy. Since the strain-induced vector potential is 
valley-dependent, so is the wavevector fi ltering and it is possible to tune the strain 
against the Fermi level of carriers such that exactly half of the fi ltered states 
belong to the  K  valley, whilst the other half belong to the  K′  valley. Clearly, the 
transmission of the two valleys is well separated in  ϕ  space. One now only needs 
to employ a standard magnetic barrier to fi lter out either the  K  or  K′  carriers. 
Numerically, perfect valley polarization has been predicted for experimentally 
realizable strain and magnetic fi eld values. Subsequent works have also studied 
other methods of using the valley-dependent magnetic fi eld for valley fi ltering. 

 A valley fi lter making use of the valley-asymmetric trigonal warping in monolayer 
graphene was also proposed. 48  Trigonal warping measures the deviation away from 
the conical Dirac spectrum of the carriers in graphene as the energy increases 
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beyond the neutral point and introduces a small valley degeneracy. It was predicted 
that a valley polarization of ~20% is achievable from this scheme, although the 
large energy scales involved would be likely to excite inter-valley scattering 
processes which would degrade fi ltering performance. On the other hand, there has 
been a proposal of a valley fi lter based on the line defects in graphene. 49   

  Berry curvature and valley Hall effect 

 The Berry curvature plays a crucial role in spintronics, in which it governs the 
topological transport effect, most notably the SHE. Graphene offers a natural 
setting to study such effects. We have seen above that inversion symmetry breaking 
in graphene allows one to consider the valley DOF as an additional orbital magnetic 
moment. In graphene we can break the inversion symmetry by introducing a sub-
lattice asymmetry; applying an energy different electrostatic potentials between the 
 A  and  B  sub-lattices ( U   A   and  U   B  , respectively,  U   A   ≠  U   B  ). In the monolayer 
Hamiltonian, this can be modeled by an additional Zeeman-like term:

    [6.40]  

 where  B   ξ   = ( p    x  ,  ξp   y  ) is the effective pseudospin fi eld,  ξ  = ±1 indexes the valley  K  
(+1) and  K′  (−1), and  U  = 0.5( U   A   −  U   B  ),  V  = 0.5( U   A   +  U   B  ) are pseudospin-
dependent and independent potentials, respectively. The sub-lattice asymmetry 
quantifi ed by  U  opens up an energy gap in the spectrum of magnitude Δ= 2| U |. 
Furthermore, it induces a fi nite Berry curvature as shown below. Applying the 
well-known result for the Berry connection,    we fi nd that 
in graphene:

    [6.41]  

 whose curvature  F   ij   =  ε    ijk   ∂  i   A   j   is calculated to be:

    [6.42]  

 The  k  space Berry curvature is known to result in an anomalous velocity of 
carriers. It is clear that in graphene, the Berry curvature is valley dependent, which 
means that  K  and  K′  carriers will be affected in an equal and opposite manner in 
terms of topological transport. 

 One consequence is that a valley Hall effect will result in a sample upon 
application of an electric fi eld ( Fig. 6.7 ). To see this, we examine the full equations 
of motion of a carrier in the presence of Berry’s curvature is: 50 
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 [6.43]  

 The Berry curvature appears as an additional velocity term, which is perpendicular 
to the applied electric fi eld  E , and which is equal and opposite for the two valleys. 
The same mechanism drives the intrinsic SHE in semiconductors, whereby 
opposite spin species are separated along opposite lateral sides of a sample. 

   Quantum valley Hall effect 

 Below we discuss an analogue of the quantum SHE in valleytronics, returning our 
attention to strained graphene. 51  Strain induces a valley-dependent vector 
potential. The curvature of the vector potential is equivalent to an effective, 
vertical magnetic fi eld which points in opposite directions for the two valleys. For 
spatially uniform strains, the effective fi eld strength is zero. For spatially 
inhomogeneous strain the fi nite vertical magnetic fi elds induce a valley resolved 
quantum Hall effect; namely two copies of the quantum Hall effect for each 
valley, one chiral and the other anti-chiral, placed on top of one another as shown 
in  Fig. 6.8 . The two copies are related by time-reversal symmetry and thus the 
whole system is time-reversal invariant. 

   Valley-orbit coupling 

 In spintronics, in particular semiconductor-based spintronics, the notion of SOC 
is most important as it makes possible the idea of manipulating spins purely by 

   6.7     Illustration of valley Hall effect in which carriers residing in 

opposite valleys are defl ected in opposite transverse directions. The 

defl ection results from the fi nite  k -space Berry curvature in graphene 

with broken spatial inversion symmetry.     
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electric means. It has been proposed that an analogous valley orbit coupling could 
exist in graphene. In particular, the effective conduction band energy in monolayer 
graphene in the presence of spatially varying sub-lattice asymmetry,  U  =  U (r→), 
was found to be: 45 

    [6.44]  

 where    The valley orbit coupling is indicated inside the 
square brackets of Eq. 6.44. The fi rst term depends on the spatial variation of the 
sub-lattice asymmetry and suggests that the lattice distortion can be viewed as an 
effective electric fi eld. The second term is of the same origin as the relativistic 
spin-orbit coupling in the Dirac equation.    

   6.7  Localization and Klein tunneling 

 Klein tunneling 52  is a strictly relativistic behavior, which normally occurs in high 
energy physics. Graphene provides the rare low energy stage in which such high 
energy behavior can be observed. That Klein tunneling could be seen in graphene 
introduces new implications, e.g. new confi nement methods to modulate device 
conductance, as well as harnessing the physics of pair production 53  for device 
applications. In semiconductors one can confi ne electrons quantum mechanically 
using electrostatic barriers, e.g. a quantum well confi nes electrons along one 
dimension as shown in  Fig. 6.9 . 

   6.8     The quantum valley Hall effect in which the two valleys experience 

opposing magnetic fi elds which induce two copies of the quantum Hall 

state. The overall time-reversal symmetry of the system is intact.     
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 In graphene, electrostatic barriers cannot confi ne electrons due to Klein 
tunneling; high transmission occurs for high and wide barriers. It has been shown 
for monolayer graphene that normal incidence of a wave on a potential barrier 
results in unity transmission, while in the case of bilayer graphene, normal 
incidence results in total refl ection. To give readers a foundation of Klein 
tunneling, we refer to Appendix 6.C, which introduces the general concept of 
Klein tunneling in relativistic physics. 

 In the context of nanoscale device, Klein tunneling can be understood by 
examining the band diagram in  Fig. 6.10a , which shows a raised electrostatic 
barrier where the hole band energy in Region (II) overlaps the energy of the 
conduction band in Region (I). This is because the bandgap is small compared to 
the raised electrostatic barrier. Electrons in region I interact with positron (holes) 
in region II, resulting in the escape of particle.  Figure 6.10b  shows a large bandgap 
compared with the raised electrostatic barrier.  Figure 6.10b  illustrates normal low 
energy systems, e.g. semiconductors where electron waves encounter a barrier in 
the conduction band. 

   6.9     A quantum well which normally confi nes electrons, forming 

stationary waves within the well.     

   6.10     (a) Raised barrier is high compared to the small bandgap resulting 

in an overlap as described above. (b) Raised barrier is small compared 

to the large bandgap.     

 We show below the Dirac incident, refl ecting and transmitting wavefunctions 
which explain how fl ux continuity at the boundaries gives rise to the escape of 
particles through high and wide barriers:
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    [6.45]  

 For refl ected wave in Region (I), the solution might be:

    [6.46]  

 For Region (II),  E  is replaced by  E − V , and  leading to:

   

[6.47]  

   6.7.1  Interaction, localization and minimal conductivity 

 In graphene, electron–electron interaction is strong because of the weak screening, 
the vanishing density of states and the much larger coupling constant of  α  =  e  2 /ħ v   F   
compared to  α  =  e  2 / c  in quantum electrodynamics. Moreover electron motion is 

slow in graphene compared with photons as we know that    The model 

that describes the interaction in graphene is also not Lorentz invariant due to the 
great departure of  v   F   from  c . The Dirac particles in graphene are individually 
relativistic particles, but interact in a non-relativistic way because of their slow 
motion. The particles in graphene are also helical, in the sense that the pseudospins 
are aligned (anti-aligned) to the momentum in the conduction (valence) band. One 
deduces from  H  =  v   F    σ·p  that electrons in the conduction band have the opposite 
pseudospin to those in the valence band. Since graphene’s Fermi level coincides 
with the Dirac point, the Fermi sphere shrinks to a point and intra-band electron–
hole pair transition might not be possible. Thus in clean, undoped graphene, 
electron–hole pair is restricted to inter-band excitation. However, as doping 
pushes the Fermi level above the Dirac point, the intra-band transition is recovered, 
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and the many-body effect of graphene begins to resemble those of two-dimensional 
electron gas (2DEG). 

 One interesting but as yet not well-explained observation in graphene is the 
minimum conductivity. 54  Experiments have shown that graphene exhibits a 
minimal conductivity of 4  e  2 / h  at the Dirac point. For ordinary materials, such a 
low conductivity would normally lead to a metal–insulator transition, but graphene 
remains conductive with a small conductivity. Since bilayer graphene also exhibits 
minimum conductivity, one can rule that chirality is perhaps the more important 
reason than the linear dispersion which might be responsible for this. 22  One other 
explanation is based on the fact that graphene electrons, being Dirac particles, are 
not easily confi ned, as they escape easily from electrostatic barriers through Klein 
tunneling. Localization can be observed in metals and semiconductors, but in 
graphene, this well-known phenomenon seems absent. 

 The lack of localization in graphene remains puzzling, although it is possible that 
strong electron–electron interactions at the Dirac point could be the reason. One 
other reason is the short phase relaxation length, within which the effect of localization 
can manifest. It has been anticipated that, at very low temperature, where the phase 
relaxation length becomes longer, it might be possible to observe localization in 
graphene. One could also borrow Mott’s physical elucidation of metal conductivity 
to explain the minimal conductivity of graphene. Under the theory of Boltzmann, 
increased electron scattering implies the continued shrinking of the average distance 
known as the mean free path ( l  ) between two electrons on colliding course. Mott 
hypothesized that downscaling of conductivity (shrinking of  l  ) cannot continue 
indefi nitely. When  l  shrinks to the electron’s Fermi wavelength ( λ ), scattering 
becomes ineffective. The conductance of an electron shall not be lower than:

   . [6.48]  

 A factor of four arising from valley and spin degeneracy needs to be included. 
However, a formal derivation based on the Kubo shows a different result:

   . [6.49]  

 It has been suggested that the difference could be due to sample boundary effects 
and theoretical approximations of scattering processes that previous derivations 
have failed to take into account. Overall, graphene has high mobility, high 
conductivity and weak coupling to phonon scattering. These properties make 
graphene a promising candidate material for device applications.  

   6.7.2  Pseudospin relation 

 It may not be apparent how pseudospin could in any way have an effect on the 
localization of electron. But if one looks from the standpoint of Berry’s phase, the 
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connection becomes clear. Take monolayer graphene, for example, which exhibits 
a  π  shift Berry’s phase. The Berry’s phase imparts an additional phase to the 
propagating wave, transforming an otherwise constructive interference to a 
destructive event. This results in weak anti-localization. However, there are events 
in graphene which destroys the Berry’s phase (e.g. edge scattering), which might 
restore some localization effects. Therefore in graphene, there is a mix of both 
localization and anti-localization in competition. The above is also related to the 
absence of backscattering in graphene by long-range potential impurities. 

 To obtain a clearer understanding, we rewrite the graphene Hamiltonian for 
valley  K :

    [6.50]  

 where  ϕ  is the in-plane angle, ( k   x  ,  k   y  ) ≡ ( k cosϕ ,  k sinϕ ). The solution for the 
conduction band is thus:

    [6.51]  

 For impurity with long range potential, scattering strength is given by:

    [6.52]  

 A backscattered particle going around an impurity in real space inscribes a 2 π  
rotation in momentum space around valley  K . The Berry’s phase of  π  shift acquired 
by the quasiparticle results in  ϕ ( −  k ) =  ϕ ( k ) ±  π . The matrix element above vanishes. 
Physically, the pseudospin components of the backscattered wavefunction interact 
with the oncoming wavefunction such that the probability that an oncoming state 
transits to the backscattered state is zero. 

 Klein tunneling is another direct consequence of the relativistic wavefunction 
of graphene quasiparticles, whose internal dimension is of course the pseudospin. 
It has been shown for monolayer graphene that the normal incidence of a wave on 
a potential barrier results in unity transmission, while in the case of bilayer 
graphene, normal incidence results in total refl ection. Klein tunneling has also 
been attributed to the minimum conductivity of graphene.   

   6.8  Integer quantum Hall effect 

 Quantum Hall effects in graphene 55,56  have been studied intensively. Generally 
speaking, the IQHE in graphene has the same underlying mechanism as that in the 
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semiconductor 2DEG. Readers are referred to  Chapter 4  for the basic concepts of 
quantum Hall effects in semiconductors, e.g. Landau levels, cyclotron frequency, 
degeneracy strength, fl ux quantum, incompressibility, Shubnikov–de Haas (SdH) 
oscillations, integer-shift Hall plateau, edge and localized states, impurities 
effects, and others. Bearing the above in mind, the IQHE in graphene can be 
understood with some modifi cations due to its different Hamiltonian.  Table 6.6  
provides a comparison summarizing the important IQHE physical effects in 
semiconductors and graphene. 

 Pseudospin has a well-known physical consequence to IQHEs in graphene. As 
described earlier, Berry’s phase arises as a result of the rotation of the pseudospin 
in an adiabatic manner. When the graphene quasiparticle’s momentum encircles 
the Dirac point in a closed contour (i.e. 2 π ), the pseudospin for graphene acquires 
a Berry’s phase of  Jπ , where:

    [6.53]  

 and  J  = 1/2 indicates a monolayer/bilayer graphene, respectively. Thus, for a 
monolayer graphene, the quasiparticle gains a  π  Berry’s phase while for the 
bilayer graphene it is 2 π . Berry’s phase affects both the SdH oscillations as well 
as the shift in the fi rst quantum Hall effect plateau. In monolayer graphene, the 
Berry’s phase contributes to the  π -shift in the SdH oscillations and a half-integer 
shift in the Hall conductivity plateau as the Fermi energy ( E   F  ) crosses the  n  = 0 
Landau level. The conductivity shift is ± ge  2 /2 h  depending on electron/hole, 
respectively, and  g  is the degeneracy factor. But as  E   F   crosses higher Landau 

   Table 6.6     Summary of physical quantities relevant to the understanding of IQHE 

in semiconductors, monolayer and bilayer graphene.  

 Semiconductor 2DEG Monolayer graphene Bilayer graphene

Hamiltonian σ
π

π

Energy ω ω ω

Cyclotron 

frequency
ω ω ?

Transverse 

conductivity
σ σ σ

Energy step 

for B = 10 T
ω ω  

   Note: In bilayer graphene  π  = ( p  
 x 
  +  eA  

 x 
 ) +  i ( p  

 y 
  +  eA  

  y 
 ). The factor  g  denotes the spin 

and valley degeneracy. In monolayer and bilayer graphene,  g  = 4.    
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levels, the conductivity shift is ± ge  2 / h . Thus, the effect of Berry’s phase is to yield 
the quantization condition of  σ   xy   = ± g ( n  + 1/2) e  2 / h . For the bilayer graphene with 
 J  = 2, one observes a  Jπ  Berry’s phase which can be associated with the  J -fold 
degeneracy of the zero-energy Landau level. The double-degenerate zero-energy 
Landau level explains the integer shift of the Hall conductivity just across the zero 
energy. The eigenenergies of monolayer and bilayer graphene:

    [6.54]  

 show that a zero energy Landau level exists. For the monolayer graphene, a zero 
Landau level occurs for  n  = 0 and, for bilayer graphene, a zero Landau level 
occurs for  n  = 0 and  n  = 1. An inspection of the Hall conductivity at energy just 
across the zero Landau level shows that it has shifted a half-integer vertically, 
resulting in the fi rst conductivity step in either direction being half the size of 
subsequent steps.  Figure 6.11  provides a pictorial description of IQHE in graphene 
for both the monolayer and the bilayer. 

 The half-integer shift of Hall conductivity can be deduced straightforwardly 
where Hall conductivity for monolayer graphene is ( Table 6.6 ):

    [6.55]  

 The degeneracy factor of  g  = 4 arises due to two contributed by valley and two by 
spin. The underlying physics is related to the particle–hole symmetry and 
electron–hole degeneracy at the zero energy level. Nonetheless, one can imagine 
the zero Landau level to consist of both electrons and holes, and thus at energy 
just across the zero energy in either direction, Hall conductivity due respectively, 
to electrons and holes will be a 1/2 integer shift compared to conductivity due to 
the fi rst Landau level. Thus when the Fermi energy surpasses the fi rst Landau 
level, Hall conductivity contributed by carriers of both zero and fi rst Landau level 
will give a total of 3/2 shift integer shift. In bilayer graphene where the Hall 
conductivity is (for  n  ≥ 1):

    [6.56]  

   6.11     (a) IQHE for monolayer graphene showing half integer shift. 

(b) IQHE for bilayer graphene showing full integer shift.     
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 a full integer shift of conductivity is obtained for  n  = 1. Inspection of 
 shows that at,  n  = 0,1, energy is zero. The double-degenerate 

zero energy Landau level explains the full integer shift of the Hall conductivity. 
Therefore, the main difference between monolayer and bilayer lies in the half shift 
for monolayer and full shift for bilayer at zero Landau level. But in both monolayer 
and bilayer, the fi rst Hall plateau appears just across the zero energy. This is the 
major difference between the IQHE in graphene and conventional semiconductors. 
On the other hand, IQHE in bilayer graphene resembles the semiconductor 2DEG 
in that full integer conductivity shift occurs for the Landau level of all  n . Thus, 
while the physics of half shift in monolayer is related to electron and hole 
degeneracy, the full shift in bilayer graphene is due to the doubling of this effect 
due to the double-degenerate Landau level at zero energy for  n  = 0 and  n  = 1 
explained earlier.   
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  Appendix 6.A Relativistic quantum mechanics 

 In relativistic quantum mechanics, Dirac matrices could have different 
representations, but all obey Dirac algebra.  Table 6.A.1  summarizes the various 
representations. 

  Table 6.A.1     Different representations for the Dirac matrices  

 γ0 αi γi iγ5 = iγ0γ1γ2γ3 γ5 = γ0γ1γ2γ3

Set A standard 

representation (
I  0 

) 0 –I (
0 σ i

) σ i 0 (
0  σ i

) –σ i 0 (
0 I 

) I 0
–i (

0 I 
) I 0

Set B20

(
0 I 

) I 0 (
–σ i 0 

) 0 σ i (
0  σ i

) –σ i 0 (
–I 0  

) 0 I
i (

I  0 
)  0 –I

Set C
(
0 I 

) I 0 (
σ i  0 

) 0 –σ i (
0 –σ i

) σ i 0 (
I  0

) 0 –I

 

   In the position basis, the Schrödinger equation for a free particle (electron) 
isolated from all external force fi elds is:

    [6.A.1]  

    [6.A.2] 

 [6.A.3]

 One could thus surmise that the relativistic energy equation must resemble:

   . [6.A.4]  

 The square of Eq. 6.A.4 leads to the Klein–Gordon equation. Dirac wanted to 
prevent obtaining a second order equation and wanted to give equal treatment to 
space and time. Thus, he reasoned that, since the right side of the equation contains 
a fi rst-order derivative in time, the left side should contain equally simple fi rst-order 
derivatives in space (i.e. in the momentum operators). One way for this to happen 
is if the quantity in the square root is a perfect square, which also has the form of 
 E  ·  I  =  α  0  mc  2  +  c  Σ 3   j =1   α   j    p   j  . One would then obtain the free Dirac equation of:

   . [6.A.5]  

 The coeffi cients  α  0  and  α   j   are to be determined. Since:

    [6.A.6]  
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 one could easily deduce that:

     

    
[6.A.7]

 

 And, by comparing coeffi cients, every term of Eq. 6.A.7 with every term of the 
left-hand side of Eq. 6.A.6, one obtains the relations for the coeffi cients shown in 
 Table 6.A.2 . 

  Table 6.A.2     Some identities involving the  α  

matrices  

1. α
0
2 = I

2. {α
j
, α

0
} = 0

3. {α
j
, α

k
} = 2δ

jk

   Additional properties are that  α   i   is hermitian since it follows from the hermicity 
property of the Hamiltonian:

    [6.A.8]  

 From Eq. 6.A.2,  α   j   α  0  = − α  0  α   j  , it follows that  α   j   = − α  0  α   j   α  0 . This leads one to 
conclude that:

    [6.A.9]  

 One can now determine the dimensionality of  N . Using the relation  α   j   α  0  = − α  0  α   j   
and taking the determinants as follows:

    [6.A.10]  

 One has thus concluded that the dimensionality ( N ) must be even. In fact one can 
deduce further that  N  ≥ 4 since the Pauli matrices ( σ ,  I ) form a complete set of 2×2 
matrices, with the unit matrix  I  always commuting, and they do not satisfy the 
above anti-commutative form. This leaves  N  = 4 as the lowest possibility. It is 
convention to let:

    [6.A.11a]  
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[6.A.11b]  

  Appendix 6.B Helicity and masslessness 

 In the massless limit, we will evaluate  iħα  0 ∂ 0  = [ cα  0  α  ·  p  +  α  0  α  0  mc  2 ] = [ cγ  ·  p  + 
 mc  2 ] using the set B convention of  Table 6.A.1 , which can be written as:

   . [6.B.1]  

 Expanding fully:

    [6.B.2]  

 the solution to Eq. 6.B.1 is:

    [6.B.3]  

 where Δ =  c /( E  +  mc  2 ). But  ψ  is not a solution of the helicity operator. The helicity 
solution can be found by:

    

[6.B.4]  

 where    In the massive limit, a solution to the Dirac equation can 

also be a solution to the helicity operator only when particle is at rest, i.e.  p  = 0. 
In the massless limit, a solution to the Dirac equation is also a solution to the 
helicity operator for the z dimension only, i.e.  σ  3  p  3 . Using the following Dirac 

matrices,    and letting      the 

massless Dirac equation is  Eψ  =  α  ·  p  +  βm  leading to:
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 ( σ  ·  p )  θ  +  mχ  =  Eθ   

 −( σ  ·  p ) χ +  m θ  =  Eχ . 
 

[6.B.5]
 And since  m  = 0 and  E  = | p |:

 ( σ  ·  p )  θ  = | p | θ   

 ( σ  ·  p )  χ  = − | p | χ .  
[6.B.6]

 With the helicity operator,   , we can then write:

    

[6.B.7]

  

 From experimental results, a massless particle (neutrino) has helicity 1 while its 
anti-particle counterpart has helicity −1. Thus, to remove the  θ  components, with 

the matrices of set C, the operator    can be used to 

project the  θ  components, leaving the helicity −1 components. Thus we get the 
chirality operators:

    

[6.B.8]

  

 The chirality of a particle is right-handed if the direction of its spin is the same as 
the direction of its motion. It is left-handed if the directions of spin and motion are 
opposite. By convention for rotation, a standard clock, tossed with its face directed 
forwards, has left-handed chirality. Mathematically, chirality is the sign of the 
projection of the spin vector onto the momentum vector: Left is negative, right is 
positive. Particles with mass have relative chirality, which depends on the 
observer’s reference frame. In the case of these particles, it is possible for an 
observer to change to a reference frame that overtakes the spinning particle, in 
which case the particle will then appear to move backwards and its apparent 
chirality will reverse. Massless particles have absolute chirality (a given massless 
particle appears to spin in the same direction along its axis of motion regardless of 
the point of view of the observer). A massless particle moves with the speed of 
light, so a real observer (who must always travel at less than the speed of light) 
cannot be in any reference frame to see particle reverse its relative direction, 
meaning that all real observers see the same chirality. Because of this, the direction 
of spin of massless particles is not affected by a Lorentz boost (change of 
viewpoint) in the direction of motion of the particle, and the sign of the projection 
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(chirality) is thus considered to have been fi xed for all reference frames, i.e. the 
chirality is absolute. The solution to  γ  5   σ · p  is:

    

[6.B.9]

   

  Appendix 6.C Klein tunneling and paradox 

 Klein tunneling has signifi cance to graphene devices and confi nement. Below we 
provide a general derivation and interpretation of Klein tunneling. Understanding 
the physical effects of electron–hole interaction could assist one’s understanding 
of surprised electron escape for very high potential barriers. 

 In Region I ( Fig. 6.C.1 ), the incident particle acts as a free particle:

    [6.C.1]  

 where      Letting

  one has:  

    [6.C.2] 

 Since the electron wave propagates in the z axis, we have    and:

   

 [6.C.3]  

 which leads straightforwardly to:

    [6.C.4a]  
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   6.C.1     One-dimensional tunneling of particle with wave-like behavior.     

    [6.C.4b] 

 To have non-trivial solutions (linearly dependent), the determinant vanished, i.e. 

    which leads to the energy square equation of:

    [6.C.5]  

 Since  σ   z   ·  σ   z   =  I , one gets  E  2  =  m  2  c  4  +  c  2  p  2  ⇒  pc  =   

    [6.C.6]  

 Note that helicity is the projection of the spin onto the direction of the momentum 
defi ned by    The general solution is:

   . [6.C.7]  

 Noting the Pauli  z  matrix, it is an easy guess that the eigenvectors are  θ  = 

   The more specifi c solutions in Region I would thus be:

   
.
 

[6.C.8a]
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 For refl ected wave in Region I, the solution might be:

   . [6.C.8b]  

 For Region II ( Fig. 6.C.1 ),  E  is replaced by  E  −  V , and  p′c  =    
leading to:

    [6.C.8c]  

 The paradox involves  V  >  E  +  mc  2 ,  E  >  mc  2 . For the wavefunction to be equal at 
the border, z = 0,  ψ  1  +  ψ   R   =  ψ  T , and one has two independent relations as below:

    [6.C.9a]  

    [6.C.9b] 

 which implies ⇒  a  −  b  = −    This would then lead, noting the 

expression for  p  and  p ′, to:

    [6.C.10]  

 which after straightforward steps is:

   . [6.C.11]  

 Since  V  >  E  +  mc  2  and >  mc  2 , it is easily seen that  r  > 1. One also observes under 
the above boundary conditions there are two more independent relations:

    [6.C.12a]  

    [6.C.12b] 

 With  b ′ =  d ′ = 0, it can be deduced straightforwardly that      
or fi nally:
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    [6.C.13]  

 One would now proceed to deduce that the set of current involved in the process 
of Klein tunneling using the relation  j  =  c ψ * α  3  ψ , namely:

    

[6.C.14]

  

 Examining the current carefully, one notes that for  V  >  E  +  mc  2 :

    [6.C.15]  

 and

    [6.C.16]  

 In fact one notes that when  V  →  ∝ ,  j   T   → −2 c  2  but not zero, showing that electron 
cannot be confi ned in the barrier. The above results can be explained with the aid 
of  Fig. 6.C.2 . The ‘negative energy solutions’ in Region II are larger and lies in 
the same range as the solutions of positive energy in Region I. The potential in 

6.C.2 Schematic illustration of physics of Klein tunneling in relativistic 

physics.
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Region II raises the electron energy in Region II suffi ciently until it overlaps with 
the positive continuum in Region I, resulting in electron–positron pair creation at 
the potential barrier. There are incident wave packets coming from the right 
(Region II). Electron and hole interacts in the fi nite potential region to generate 
left-moving electron and right-moving current. This explains why the refl ecting 
current in Region I is larger than the incident current. Electron interaction with 
hole is the physics behind the escape of an electron in a very high potential region.                                     
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                 7 
 Topological dynamics and gauge potential in 

nanoelectronics  

   Abstract:    This chapter introduces the gauge theory of quantum physics and its 
application in nanoscale electronics. The concept of effective magnetic fi elds in 
the magnetic space and the momentum space is introduced. Exemplary systems 
are spintronics, graphene and topological insulators where effective magnetic 
fi elds in this system contribute to the conductivity, which is topologically 
invariant. Anomalous Hall effects (AHE) are introduced and their topological 
versions are studied in both momentum and local space. Spin torque induced by 
the effects of spin orbit coupling will be discussed using gauge theory. Lastly, 
mathematical properties such as the Dirac string and magnetic monopole are 
presented and their physical contribution to the effective magnetic fi elds is 
discussed.  

   Key words:    topology, gauge theory, topological insulators, anomalous Hall 
effects, Dirac string, monopole, Berry’s phase, Berry’s curvature.   

    7.1  Introduction to gauge physics in nanoelectronics 

 The physics of symmetry and gauge fi eld has traditionally been an integral part of 
quantum fi eld theory written mainly for high energy physics. The use of gauge 
theory in condensed matter physics was largely related to superconductivity and 
quantum Hall effects. In recent times, gauge theoretic methods have become 
popular in the various fi elds of nanoelectronics, where curvature of gauge potential 
and Berry’s phase have been related to the physics of electron dynamics in these 
systems. One example is the spin Hall effects (SHE), 1  where gauge potential 
related to spin Hall conductivity can be found. In  Chapter 5  we discussed SHE in 
the Rashba two-dimensional electron gas (2DEG) system, and one of the ways to 
obtain the universal conductivity is via gauge potential in energy space. 

 In this chapter we give a pedagogical introduction of the mathematics and 
physics of gauge theoretic applications in nanoscale electronic systems, e.g. 
spintronics, graphene, magnetic and topological insulator systems. We discuss in 
particular the application to one important aspect of spintronics, namely the 
phenomenon of spin transfer torque, 2,3  which is under intense research for the 
technology of current-induced magnetization switching, so-called CIMS. We also 
discuss the topological Hall effect or conductivity in magnetic systems, where 
micromagnetic studies of magnetization confi gurations have improved the design 
of magnetic media and read-heads for recording purposes. 

 We begin our discussion with the time-reversal symmetric system where:

  THT   −1  =  H  [7.1]  
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 where  T  is the anti-unitary time-reverse operator that satisfi es  TPT   −1  = − P ,  TST   −1  
= − S ,  TQT   −1  =  Q , where  P ,  S ,  Q  are the momentum, spin and position operator, 
respectively. One notable example is the Rashba spin orbit coupling (SOC) 
system 4  in semiconductor or metal spintronics, and topological insulators. SOC 
has direct implication to the spin and the momentum dynamics of electrons:

    [7.2]  

 where  σ  is the Pauli matrix,  p  is the momentum operator and  g  is the SOC strength. 
In fact, SOC is highly relevant to spintronics, ranging from the well-known 
anisotropic magnetoresistance, the anisotropy energy of local moment density, the 
keenly studied spin Hall and spin current in semiconductor spintronics, to more 
subtle implications like spin torque, spin dynamics, spin oscillations and 
zitterbewegung. An SOC system can be viewed as one with an effective Zeeman 
magnetic ( b ) fi eld which varies in the momentum (K) space, e.g. the momentum 
dependent  b  fi eld of the above is  b  =  a ( p  ×  E ), which is perpendicular to the plane 
containing both  p  and  E . One can thus draw an analogy between an SOC system 
and one with locally varying  b  fi elds. The conduction electron experiences the 
varying  b  fi eld in real (R) space. 

 Let us imagine that electron spin evolves and aligns adiabatically to the  b  fi eld 
in their respective K or R spaces. Under the theoretical framework of gauge and 
symmetry, 5,6  the two systems will be analogous in that electron spin evolving 
adiabatically ‘sees’ the gauge potential of a magnetic monopole. In fact the 
magnetic monopole is the curvature (Ω) of this gauge potential in the magnetic 
(B) space. In other words, one can now disregard the Zeeman  b  fi eld and imagine 
that the electron feels only the impact of the monopole magnetic fi eld. In simple 
language, electrons traveling in these systems experience forces due to the 
monopole magnetic fi eld. It is, however, not physically obvious how gauge 
curvature in B space is related to the dynamics of electrons. For better physical 
illustration, it might be necessary to transform the B space curvature to one in the 
more useful spaces of K or R under which equations of motion 7,8  can be constructed 
to describe the electron’s orbital dynamics. 

 The monopole fi eld can be viewed as a mathematical object that can lead to 
instructive description of the electron motion. 9–11  Here we present a thorough 
description of the Dirac gauge potential arising from spinor dynamics (fast 
alignment with  b  fi elds) in the strong fi eld (adiabatic) limit. A strong Zeeman 
effect in momentum space manifests in SOC systems (e.g. semiconductor 
spintronics, topological insulators) in which gauge curvature in K space will be 
derived. In local micromagnetic systems, which have been studied intensively in 
the magnetic media for hard disk drives, or domain wall spintronics, one needs 
instead to investigate the gauge curvature in real spaces. A similar system, which 
resembles the SOC, is the special carbon system of monolayer and bilayer 
graphene. But the spinor of carriers in these systems does not represent the spin 
state of conducting carriers in the carbon system. Instead, the spinor describes the 
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pseudospin which consists of a linear combination of waves due to different 
sub-lattice sites.  

   7.2  Magnetic fi eld in magnetic (B) space – monopole 

 In a nanoscale electronic system with spinor eigenstates, the adiabatic change 
of an eigenstate (e.g. spin or pseudospin in graphene) in parameter space (e.g. 
 b  fi eld) gives rise to a geometric phase also known as Berry’s phase. 12,13  By 
symmetry, the Hamiltonian will be modifi ed by a set of gauge potentials which are 
Abelian by nature:

    [7.3]  

 where  N  indicates the type of space and  n  is the parameter in  N  space. In Eq. 7.3, 
the spin eigenstate at any point in time shares the same spherical coordinates 
( θ, φ ) as those of the parameters (e.g.  n ). In the event where the parameter is 
oriented differently than the evolving state (e.g. spin is perpendicular to the 
parameter of momentum in the SOC at any one time), transformation would be 
required to fi nd the gauge fi eld in the momentum space. Explicitly, Eq. 7.3 is:

    [7.4]  

 To understand the origin of the geometric phase in an adiabatic spinor system, we 
fi rst examine the evolution of an eigenstate from initial to fi nal state as described 
by the path integral of spatial propagators as below:

    [7.5]  

 where  G ( x   n +1   t   n +1 ,  x  0  t  0 ) is the propagator between times  t  0  and  t . The propagator in 
explicit spatial terms is:

    [7.6]  

 where    is the 

propagator between two spatial points. Substituting this into Eq. 7.6 yields:

    [7.7a] 

    [7.7b]  
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 where the infi nitesimal propagators are    and 

    dt  is the action of the system characterizing a spatial 

propagation. Note that    has dimension of    which cancels that 

due to the volume element  dx   n   . . .  dx  1  dx  0 . The infi nitesimal propagator of 

   represents the probability of moving from one 

spatial point at  t  =  t   n   to another at  t  =  t   n +1 ; the subscripts 0,1,2, . . .  n,n  + 1 are time 
stamps. The strength of this probability is higher if  x   n   is closer to  x   n +1 . 

 The above is a general description. In a dynamic spinor system which evolves 
with the changing  b  fi elds, the infi nitesimal propagator corresponding to 

   is:

    [7.8]  

 where  n  and  n  + 1 correspond to interval  t  and  t  +  δt , respectively;  b  =  bn̂  and  n̂  is 
the unit vector of the  b  fi eld. In Eq. 7.8, use has been made of the approximation:

    [7.9]  

 where propagation from | z   n  〉 to | z   n +1 〉 depends on whether | z   n  〉 is parallel or 
anti-parallel to the  b  fi eld. Letting  n̂ .  σ  =  σ   n  , one could deduce that  σ   n  | z   n  〉 = ±| z   n  〉 for 
| z   n  〉 parallel/anti-parallel to  b   n̂ ; note that the direction of spin state | z   n  〉 is ( z   n   |  σ  | z   n  〉 
=  n̂ . It can be deduced simply by inspection that the action of the system due to 
spinor evolution would be:

    [7.10]  

 Neglecting the dynamic phase of  μbT  and expanding the action leads to:

    [7.11]  

 One can derive the above taking different representation of the spin state. It is 
worth noting that, depending on | z   n  〉, the respective expressions for the gauge 
potential in fact correspond to the north and south versions of the potential which 
we discuss later. For any one | z   n  〉 chosen, the sign ± corresponds respectively to 
the parallel/anti-parallel spin alignment with the Zeeman fi eld as the spin evolves 
in time. Here, ( θ, φ ) is understood to be ( θ   B  ,  φ   B  ).  Table 7.1  summarizes the 
descriptions. 

 The term    is a gauge potential defi ned on the S 2  manifold as a 

regular expression except at  θ  =  π . One can thus see that the gauge fi eld in B space 
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for any system under consideration is related to its Berry’s phase. One could have 
also seen by now that taking a curvature of the gauge potential does not produce a 
regular quantity that can be defi ned everywhere on a S 2  manifold parameterized by 
( r, θ, φ ). In fact it has a singularity on the − z  axis (see Appendix 7.A). 

 This problem can be resolved 14,15  by conceiving that the gauge over the S 2  
should be represented by at least two different expressions. Each expression 
covers all parts of the manifold except its own singularity. We defi ne a north/south 
expression, which covers all parts of the manifold except the south/north poles. 
The overlap between the two expressions is the area where transition from one 
expression to the other must be carried out if one intends to cover the entire 
manifold with the two expressions. Thus, the total fl ux  �  (    B   ×  A   B  ). dS  cutting 
through the manifold can be derived using these two expressions. These fl uxes 
can be regarded to have radiated from a monopole charge. 

 In summary, what has been described above is that the spinor dynamic in B 
space under the adiabatic approximation has generated a Dirac potential. The 
curvature of this gauge potential is consequently a Dirac monopole magnetic 
fi eld. We now focus on    which arises due to the spin 

assuming only the lower energy eigenstate of the magnetic fi elds. Let us begin 

with a two-dimensional (2D) surface defi ned by the  b  fi eld. In the adiabatic 
approximation, the spin aligns closely with  b , and the spin and  b  thus share 
the same spherical coordinates, i.e. ( θ   S  ,  φ   S  ) = ( θ   B  ,  φ   B  ). The gauge potential in B 
space is:

    [7.12a]  

 and in the momentum space, ( θ   S  ,  φ   S  ) ≠ ( θ   K  ,  φ   K  ), the gauge potential in K space is:

    [7.12b]  

 A pictorial description of this relationship is shown in  Fig. 7.1 , where the subscript 
‘ s ’ indicates the spin spherical coordinates. 

   Table 7.1     Gauge potentials appear differently depending on the choice 
of the eigenstate representation  

 Spin states Gauge potential i 〈zn (t) | ∂t | zn (t)〉

1. θθ φ θ φ

2. θ θ θ φ
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 In general, a gauge potential in N space can be converted to an arbitrary L 
space by:

    [7.13]  

 We have seen earlier that Eq. 7.11 is a result of adiabatic evolution of a spin up 
particle tracking the  b  fi eld. Alternatively, one could start with a Hamiltonian as 
below:

    [7.14]  

 where  g  is the SOC strength,  b ( k ) is the momentum-dependent spin orbit magnetic 
fi eld, and  V ( r ) is the potential energy. In the presence of an external electric fi eld 
 E , we have  V ( r ) = − eE.r . One can diagonalize the expression above with respect 
to  b ( k ) by parameterizing the SOC fi eld in terms of the spherical angles, i.e. 
 b  =  b (sin θ  cos φ , sin θ  sin φ , cos θ ), where  θ  and  φ  are understood to be spherical 
coordinates of the  b  fi eld. Diagonalization is achieved through the rotation matrix 
 U ( k ) where:

    [7.15]  

 The gauge potential resulting from the above is a 2 × 2 matrix which can be 
written generally as     μ  ( k ) = ( m  × ∂  μ   m ) ·  σ  =  A   μ   ·  σ  where  A   μ   is the scalar gauge 

potential and   . The Hamiltonian under the 

rotated frame of reference is:

    [7.16]  

   7.1     Gauge potential in B and K spaces arising due to fast assumption 
of spinor eigenstates as the Hamiltonian evolves.     
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 where     μ  ( k ) = − iU †∂  k   U  is the 2 × 2 gauge potential, which is also commonly 
known as the special unitary group of degree 2 (SU(2)) gauge fi eld in momentum 
space. The term  H   SOC   =  γσ · b ( k ) can be written as  gσ   θ    

 b  . 
 Performing the unitary transformation in the manner  U † γσ   θ   bU  =  γU † Uσ   z   U † U b  

results in  H   SOC   =  g σ   z   b . In fact in a general form, one can view the SU(2) gauge in 
an arbitrary space of  μ . In the example above,  μ  is the momentum:

    [7.17a]  

 In the usual adiabatic approximation, one considers only the diagonal terms of the 
matrix, decoupling the spin up and down effects. The top left diagonal term is 
associated with the anomalous velocity for the spin up while the bottom right 
diagonal term for the spin down electron:

    [7.17b]  

 The SU(2) gauge can thus be reduced to two versions of Abelian U(1) gauge 
potential, or the scalar potential:

    [7.18]  

 The gauge potential is also known as the connection. The curvature of this 
connection is the Berry curvature. The curvature is gauge invariant and acts like a 
magnetic fi eld. It could thus give rise to the modifi ed equations of motion for the 

electrons. One can thus generalize that a U(1) gauge potential in L space    

constitutes the top left diagonal term of  U ∂  μ   U  †  where  U  is the unitary matrix 
which rotates the laboratory axis to a  n  fi eld where spin is considered to be aligned 
to the fi eld in the adiabatic limit. The above can be summarized by 

   where it is common to write  A   v    mon   =  A ( θ ) 

∂ φ /∂ n   v  , which is also the gauge potential in N space. 
 One of the reasons it is legitimate to ask if the Dirac gauge potential in B space 

has any physical implication to a particle which experiences its presence could be 
because the Dirac potential is not well-defi ned everywhere (e.g. at  θ  =  π ) and its 
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surface integral is vanishing as a consequence. This suggests that the Dirac 
potential derived through the path integral approach might be mathematically 
inadequate to represent the monopole fi eld. To make physical sense of this gauge 
potential, the region described with  δ ( x ) δ ( y ) θ (− z ), which resembles a string, must 
be avoided. This region is also known as the Dirac string. One needs to fi nd ways 
to cover the manifold completely, but avoiding the string if one wants to obtain a 
curvature that resembles a physical magnetic fi eld. This is the method fi rst 
espoused by T.T. Wu and C. N. Yang. 14  One can thus view the Wu–Yang treatment 
as having reasonably affi rmed that the monopole fi eld can be regarded as a 
physical magnetic fi eld. It is hence reasonable to accept that the monopole fi eld 
infl uences the dynamics of charged particle, e.g. the electrons in the same way 
that the externally applied magnetic fi eld causes their motion. 

 The curvature of the gauge potential in B space can be expressed as:

    [7.19]  

 where  μ ,  v ,  κ  are the three space-like dimensions with summation over double 
indices implied by Einstein’s convention. Noting the explicit form of  A   B  , and 
setting ħ/2e to 1, one obtains:

    [7.20]  

 For clarity, the  z  component of the curvature can be deduced directly to be:

    [7.21]  

 The monopole fi eld has been expressed explicitly as a function of the Zeeman  b  
fi eld. In the SU(2) system, it is normally straightforward to deduce an effective 
Zeeman  b  fi eld from the Hamiltonian. The Zeeman  b  fi eld is related to the energy 
which forms the generator of time translations for the spinor part of the 
wavefunction. To derive the curvature in B space explicitly, we note that cos θ  = 
 b   z  / b  and tan φ  =  b   y  / b   x  ; restoring ħ/2e, the curvature reveals their monopole 
signatures:

    [7.22]  

 Note that in the above expressions, the Dirac string has been deliberately ignored; 
more discussion of the Dirac string is found in Appendix 7.A. One could easily 
check that, had the above derivation been carried out in real space (i.e. replacing 
 b  with  r ), the expressions of Eq. 7.22 would have the dimension of the magnetic 
fi elds. However, in application this is only possible for the specifi c case of spin 
aligning with  r , i.e. spin aligned to the  r  coordinates with respect to the spherical 
center. One way of achieving this is by means of technology whereby one creates 
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local magnetic fi elds or moments with orientations in B space that overlaps the r 
coordinates in R space, i.e.  b  =  cr  where  c  is a constant. On the other hand there 
are many natural systems which provide a Zeeman  b  fi eld in the momentum space, 
e.g. in the SOC systems of semiconductors and topological insulators, as well as 
the pseudospin or valley spin systems of graphene.  

   7.3  Magnetic fi eld in momentum (K) space – 
spintronics, graphene, topological insulators 

 Above, we have shown the path integral derivation of the gauge potential and its 
monopole in the B space. As mentioned earlier, the curvature in B space is not 
useful for heuristically elucidating the motion of a particle which ‘sees’ these 
fi elds. In nature, there exist many systems that provide the mimic of Zeeman  b  
fi elds, and these fi elds normally depend on the momentum. It is of interest indeed 
to fi nd a curvature in the K space, which would be more useful for deriving the 
equation of motion and hence for elucidating qualitatively and visually the 
dynamics of electrons which ‘see’ these fi elds. The SOC systems, which have 
been known to exist in atomic physics (hyperfi ne interaction), semiconductors, 
metals and topological insulators, are the most conspicuous systems that provide 
such  k -dependent Zeeman fi elds. The SOC effect manifests in the bandstructure, 
lifting the degeneracy of valence electrons at momentum other than zero. Other 
analogy of  b ( k ) systems include carbon-based systems such as monolayer and 
bilayer graphene, and superconducting systems. In the non-relativistic limit:

    [7.23]  

 In SOC, graphene or superconducting systems, the parameters of interest lie in the 
K space. To fi nd the Dirac gauge potential in K space, one merely needs the Zeeman 
fi eld as a function of momentum. Space conversion for the gauge potential is 
straightforward, but that for the monopole fi eld is slightly more complex. But we 
show below that, to transform the monopole fi eld in B space to a gauge curvature in 
K space, one merely needs  b ( k ). Looking at the  z  component of the curvature only:

    [7.24]  

 Using    it is straightforward to obtain:

    [7.25]  

 which can be re-expressed in:

    [7.26]  
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 The last term written in    clearly vanishes as [∂  x  ,∂  y  ] = 0 in 
general:

    [7.27]  

 Using the identity ( δ   iμ   δ   jv  − δ   iv   δ   jμ  ) =  ε   ijk   ε   μvk   where  ε   ijk   is the fully anti-symmetric 
tensor and  δ   iμ   is the Kronecker delta, one obtains the  z  component of the curvature 
in K space:

    . [7.28]  

 Likewise, the other components of this curvature fi eld can be derived and 
expressed in the more familiar vector calculus form:

    [7.29]  

 where    It has thus been shown that the curvature in K space can be 

developed by substituting the Zeeman  b  fi eld into Eq. 7.29. 
 When the spin of a particle inscribes a path on  S   2   B  , the gauge potential an 

electron carrying that spin ‘sees’ at every point on the path is    

 This potential is directly related to the change of the spin angles with the 

change of the magnetic fi eld over the manifold. Under the theory of adiabatic 
alignment, the spin angles coincide identically with the magnetic fi eld angles, 

resulting in    Likewise, if one were to perform the same 

over the momentum manifold, i.e. when the electron inscribes a path on  S   2   K  , the 

potential the electron ‘sees’ would be   . This gauge 

potential is clearly not equivalent to  A   B  . What one has is:

    [7.30]  

 One can simplify the above descriptions by considering that an electron ‘sees’  A   B   
or  A   K   depending on the type of parameter variation that is being considered. It is 
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worth cautioning that while     B    ×   A   B   is a monopole fi eld,     K    ×   A   K   is not generally 
a monopole fi eld.  

  Exercise 7.1 

  Show that for  b  =  ck , or  b  =  cr , one does not need to perform conversion 

and that the monopole fi elds will, respectively, be    . 

  Solution  

 When  b  =  c k  or  b   =  c r   is obeyed, the spin will share the same polar 

coordinates with  k  or  r . 

 Hence,    

 Below, we study the various nanoelectronic fi elds where the curvature in K space 
can now be viewed as the spin-dependent Lorentz magnetic fi elds.  Table 7.2  
summarizes the curvature fi elds for the cubic Dresselhaus, the linear Dresselhaus, 
the Perel-modifi ed Dresselhaus, the linear Rashba and Dresselhaus in quantum 
well systems, the monolayer Weyl system of massless Dirac fermions in graphene, 
and topological insulators. First the SOC effects and their corresponding effective 
 b  fi elds are presented. These effective Zeeman  b  fi elds can be derived by 
considering the fi rst of  where  μ   B   is the Bohr magneton which has 

the SI unit of a joule/tesla; note that  μ   B   is also equivalent to  IA  where  I  is a 
circulating current and  A  is the area enclosed by the circulating current. The last 
column of  Table 7.2  summarizes the gauge curvature arising in these various 
condensed matter or device channel systems. Heuristically, the curvature denoted 
by  Ω  can be regarded as a type of Lorentz magnetic fi eld that provides Lorentz 
forces to bend electron path. These Lorentz magnetic fi elds can be derived from 
the effective Zeeman fi elds denoted by in  Table 7.2 . 

 The fact that the force experienced by the spin up/down particle is opposite in 
directions arising due to ±(   ×   A ) provides the physical picture of spin transverse 
separation. However, more rigorous quantifi cation of such separation, or the Hall 
conductivity, is related to the Berry’s phase which can be interpreted as a 
summation of the Lorentz forces over all electron momenta. The Berry’s phase in 
K space, which has important relevance to electron transport, can be derived from 
φ =     ∫  A   .   dk  =    ∫ (   ×   A ) .  d   2  k , where it is worth noting that (   ×   A ) can be 

viewed as the magnetic fi eld that the electron ‘feels’. 
 It is not the focus of this paper to conduct an extended analysis of the Berry’s 

phase of all systems. But in view of the modern trend of quantifying system 
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   Table 7.2     Various SOC and other spinor systems, their Hamiltonian, relativistic 

effective fi elds and corresponding K space monopole curvature  

Spin orbit 

coupling type 

(material 

system)

Hamiltonian and effective 

 b  fi eld

 Ω  is the curvature fi eld in K space

Semiconductor systems with linear SOC (GaAs, GaSb, InAs, InSb, GaInAs, GaInSb)

Linear 

Dresselhaus

H = η
D
 (σ

x
k

x
 − σ

y
k

y
)

η




π

δ

Ω

Linear Rashba H = η
R
 (σ

x
k

y
 − σ

y
k

x
)




η

π
Ω

δ

Graphene systems

Monolayer 

graphene

(massless 

Weyl)

(one valley 

only)

H = A(σ
x
k

x
 + σ

y
k

y
)




π
Ω

δ

Bilayer 

graphene

(one valley 

only)




σ σ π
Ω

δ

Graphene with 

sub-lattice 

asymmetry

H = h–v
F
 (k

x
σ

x
 + k

y
σ

y
) + B

z
σ

z

τ

τ
Ω

τ = ± is the sign representing valley 

K/K ′

Semiconductor systems with cubic SOC

Dresselhaus 

cubic 

(bulk III–V)




η σ

η

Ω
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conductivity using the Berry’s phase, we merely provide its derivations for 
common systems only, i.e. linear Rashba, linear Dresselhaus, monolayer and 
bilayer graphene. To derive the Dirac potential for these systems in the intended 
space of K, one needs to recall that    To derive    for the 

systems, one would thus need the effective magnetic fi elds of each system and 
keep in mind that in the B space, cos θ  =  b   z  / b , tan  ϕ  =  b   y  / b   x  . To obtain the Berry’s 

phase, one can then examine the gauge of    which is the 

gauge potential at  θ  =  π /2, i.e. in the plane of the K space two-dimensional system. 
 In monolayer graphene with sub-lattice asymmetry,  B   z  (−  B   z  ) is the strength of 

the electrostatic energy at sub-lattice  A ( B ). It can also be treated like a vertical 
magnetic fi eld acting on the pseudospin of the graphene. Because the effective 
magnetic fi eld of this graphene system contains an explicitly valley-dependent 
constant  τ , a valley Hall effect could be deduced from the valley-dependent 
curvature. Careful examination of the curvature shows that, in the limit that 
 B   z   vanishes, the delta function curvature of monolayer graphene can be recovered 
but with an explicit  τ  constant. Considering just one valley, the normal pseudospin 
Hall effect for monolayer graphene can be recovered. 

 In the optical Magnus system,  p  is the momentum of photon, while  n ( r ) is the 
spatially varying refractive index and  Q   ij   =  p   i    p   j   is a 3 × 3 matrix in the spin-1 
space. In geometric optics, light propagation in a spatially inhomogeneous 
medium is governed, to a good approximation, by the Hamiltonian in  Table 7.2 . 

Dresselhaus 
(high kinetic, 
Perel)

�
η

η σ

σ

σ

Topological insulators

Three-
dimensional 
surface 
topological 
insulators

H = −h–vF (kyσx − kxσy) + 
(α − γk2)σ z

α γ

 α
Ω

γ

α γ

Optics
Optical 
Magnus effect  

Ω

  c = � is the sign representing 
right/left circular polarization

Ω
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This model remains remarkably valid for wavelength of light much smaller than 
the length scales of the spatial inhomogeneity.  

  Exercise 7.2 

  Consider a system in an eigenstate adiabatically transported around a 

closed path in phase space. The eigenstate returns to its original state 

with an additional dynamic phase, and a geometrical phase. For a 2D 

system, the Berry’s phase can be derived with: 

 

  where  C  represents a closed path. Derive the results in  Table 7.3 .   

  Exercise 7.3 

  Berry’s phase can be represented by a solid angle Ω traced out as a 

closed path by the spin vector of an electron. Note that in the adiabatic 

   Table 7.3     Various SOC systems, their gauge and corresponding Berry’s phase 

Spin orbit coupling type 

(material system)

Gauge φ is the Berry’s phase

Linear Dresselhaus nπ

Linear Rashba nπ

Massless Weyl 

(monolayer graphene)

nπ

Massive Dirac (bilayer 

graphene)

2nπ

Combined linear Rashba 

and Dresselhaus α �

α � �α φ

α    
α

�
�

 

π

   Note: φ θ π       
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regime, an electron will align its spin to the magnetic fi eld it experiences. 
That is to say, for an electron in a changing magnetic fi eld (or an electron 
moving through micromagnetic patterns), the spin aligns to the changing 
magnetic fi eld such that a closed path in parameter space is traced out 
and it acquires a Berry’s phase.  

  (1) With    show that the gauge 

potential is: 

     

  (2) The curvature of this gauge potential is: 

     

  (3) Show, using Stoke’s theorem of     , and the 

relation  ,  that the geometric phase is a function of the solid 

angle  .  Note that Ω denotes the solid angle, not gauge curvature.  

  Solution  

 Use     to obtain      

or to obtain    . 

 We have introduced a general approach which allows the derivation of the 
monopole fi eld of a specifi c system in the B space using the Dirac gauge potential 
defi ned in the same B space. But the physical signifi cance of the curvature fi elds 
depends on the space in which the curvature is taken. The usefulness of the general 
approach is that it provides a unifi ed underlying picture for the curvature fi elds in 
any arbitrary spaces (e.g. in K and R) under a common origin, i.e. the Dirac gauge 
potential and its monopole fi eld in B space. One merely requires an effective  b  
fi eld of the form  σ  .  b  in the Hamiltonian of a specifi c system. The gauge curvature 
can be derived in any space outside the B space. 

 The surface integral of the curvature yields a non-vanishing quantized value, 
which is invariant under deformation of the surface of integration. The surface 
integral is hence a topological object. In the context of Dirac monopole, this is 
associated with the quantization of the electric charge. In SOC or graphene 
systems, this quantity is associated with quantized magnetic fl ux or the Berry’s 
phase. It therefore becomes clear that the existence of K space gauge curvature 
(Lorentz magnetic fi eld) can be related heuristically to particle trajectory, and in 
the case of SOC system, spin-dependent separation of charges would be resulted 
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from the spin-dependent curvature fi elds in K space. The summary in  Table 7.2  
provides a unifying picture for the physics of particle motion in various systems.  

   7.4  Introduction to anomalous Hall effects (AHE) 

 AHE was observed shortly after the discovery of the classical Hall effect in 1879. 
In fact, it was found that the Hall resistivity in ferromagnetic materials behaves 
differently than in paramagnetic and diamagnetic substances. While the transverse 
Hall voltage in paramagnetic and diamagnetic substances is directly proportional 
to the  b  fi eld, the Hall voltages in ferromagnetic materials were found to deviate 
from this proportion at external magnetic fi elds, causing the magnetization of the 
material to saturate. 16  This anomaly is evidence that the resistivity also depends 
signifi cantly on the magnetization of the material. The expression for transverse 
resistivity  ρ   H   in a ferromagnetic material is expressed as a function of both the 
magnetic induction and the magnetization of the material. The ordinary Hall 
resistivity is always proportional to the  b  fi eld, and the magnetization dependence 
is taken to be linear in M to a fi rst approximation. Hence we have:

    [7.31]  

 where  b  is the applied magnetic fi eld,  M  is the magnetization of the material,  R   H   
is the ordinary Hall coeffi cient and  R   A   is the anomalous Hall coeffi cient. AHE 
requires the presence of non-coplanar local moments. While classical charge Hall 
causes charge separation, SHE causes both charge and spin separation ( Fig. 7.2 ). 
It can thus be viewed as a combined presence of both charge and spin Hall. 

 The origins of AHE have yet to be fully explained. Many models have been 
proposed in the literature. In 1954, Karplus and Luttinger 17  offered an explanation 
based on the bandstructure and spin orbit interaction. The theory is based on skew 
scattering where electrons of different spins are defl ected differently to the right 
and left. The other mechanism given by Berger  et al.  18  is based on the side jumping 

   7.2     The classical Hall effect is a charge Hall effect which builds up 

transverse charge accumulation. The anomalous Hall effect is a 

combination of charge and spin Hall which builds up transverse charge 

and spin accumulation.     
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of the electron’s trajectory close to the scattering center. In the engineering 
community it is crudely accepted that at low resistivity (e.g. at low temperature in 
pure metals), the dominant effect is skew scattering. In disordered alloys where 
resistivity is large, the dominant mechanism is side jumping. AHE can be detected 
at room temperature. In fact, there has been intense research recently on utilizing 
AHE for sensing magnetic fi elds. In the engineering community, AHE is also 
known as the extraordinary Hall effect (EHE). 19  It has been reported that EHE 
shows high Hall resistance. 

 Large Hall resistivity could generate high Hall voltage for a fi xed current 
density for useful device application. Current density is limited by the damaging 
effect of electromigration to not more than  j  = 10 7  A cm −1 . But in devices, the 
applied longitudinal voltage is normally fi xed (e.g. to 1 V). Since the same current 
density is shared by the longitudinal and the Hall arms, a large Hall angle  ρ   xy  / ρ   xx   
would be most favorable. It is somewhat unfortunate that most materials tested so 
far could not deliver the simultaneous need for high Hall resistivity and Hall 
angle. For example, material 4 in  Table 7.4  shows high Hall resistivity but low 
Hall angle. To keep the longitudinal voltage to 1 V, a small current is used and this 
results in low Hall voltage as well. As recently as 2002, Onoda and Nagaosa 20  
approached the problem of AHE or EHE with gauge theoretic physics. On the 
other hand, there have been studies of topological AHE by the same group and 
others.  

   Table 7.4     Material systems with Hall and longitudinal resistivity  

 Material system ρ
xy

 (μΩ cm) ρ
xx

 (μΩ cm) Hall angle θ
H
 = ρ

xy
/ρ

xx

1. Co/Au, Co/Pt, Co/Cu, Co/Pd   1 41 2.3%

2. MgO/FePt(10 nm)/Pt(1.5 nm) 39 1.5%

3. MgO/Cr (3 nm)/Pt (60 nm)/

FePt (40 nm)/Pt (2 nm)

30   1%

4. Composite materials (e.g. 

Ni:SiO
2
, Co:SiO

2
, 

CoFe:Al
2
O

3
)

200 0.1%

   7.5  Topological anomalous Hall effects 

 We now consider a system where the effective Zeeman  b  fi eld is infi nitely strong, 
whether it is in the momentum space or the real space. In this strong fi eld limit, 
electron spin relaxes to the fi eld. The alignment of the electron spin to the local 
fi eld means that the electron assumes the low-energy spin eigenstate of the system, 
with no admixture from the other spin eigenstate. Such AHE systems correspond 
to material with an intrinsic spin orbit and exchange energy (magnetic moment) 
bandstructure. One can take the spin to align along the vector sum of the spin orbit 
and the exchange magnetic fi eld in momentum space, and derive ( A   k  ,  Ω   k  ) as 
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described earlier. If one is interested in the local space effect, one aligns the spin 
to local moment in real space and derives ( A   r  ,  Ω   r  ). In the momentum space, the 
Kubo conductivity is used; in real space, the semiclassical conductivity is used. 

 It would be interesting to understand how the two conductivities are related or 
whether they provide overlapping information. It is, at least, clear that in the event 
of real space analysis, under specifi c moment confi guration, real space conductivity 
vanishes. But momentum space conductivity continues to exist. Under this particular 
circumstance, one may surmise that the two conductivities may not be the same. 

   7.5.1  Topological anomalous Hall effects 
(momentum space) 

 Previous sections deal with the gauge physics underlying the magnetic fi elds in 
the B and K spaces. Tabulated summaries of the gauge curvature and associated 
Berry’s phase for different nanoelectronic systems are also given. It becomes 
clear that magnetic fi elds in K space could be related to electron dynamics via the 
anomalous velocity method, which is a form of Lorentz force picture in the 
momentum space. However, falling short of deriving the full expression for 
conductivity, electron dynamic remains unquantifi ed. It is also not physically 
clear why the electron dynamic is topological in nature. 

 Answers to these questions lie in the Kubo Hall conductivity given by:

    [7.32]  

 where  f  ( k ) is the occupation function for band ±. Since �� Ω  z    dk   x    dk   y   is a topological 
invariant, one can deduce that in 2D systems, conductivity will be topological in 
the energy region where   f  +  −  f  −  =  C  and  C  is a constant. Thus in bulk insulator with 
a bandgap, topological conductivity can be derived in the gap where (   f  +  −  f  − ) − 1. 
In the following, we discuss the derivation of the conductivity which has the 
physical signifi cance of, upon summing over momentum, the vertical effective 
magnetic fi eld bending the transverse trajectory of electron in a 2D planar system. 
The general expression for Kubo conductivity in an equilibrium system is:

    [7.33]  

 where:

    
[7.34]
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 and  Q   xy  ( iq   m  ) is also known as the Matsubara sum, where  iq   m   is the Matsubara 
bosonic frequency,  ik   n   the fermionic frequency and  A  is the area. Note that 

  .   

  Exercise 7.4 

  Show that for a Hamiltonian system which sees a K space magnetic fi eld 

as given by H = E ( k ) +  g σ . b ( k ),  the Green’s function is: 

     

  where g is the strength of the Zeeman fi eld b, and E  +  =  E   k   +  g ,  E 
 −  =  E   k   −  g . 

 With the Green’s function expressed in terms of the Matsubara discrete frequencies, 
the Matsubara sum can be performed with the prescriptions of:

    [7.35]  

 where  z   j   are poles of  g ( ik   n  ) and  Res  [ g ( z   j  )] are residues at these poles;  f  is the 
distribution function of the electrons. The two poles for the functions are  z  1  =  E   kt   
and  z  2  =  E   ks   −  iq   m  .  

  Exercise 7.5 

  Find the residues at poles z  1  =  E   kt    and z  2  =  E   ks   −  iq   m  . 

  Solution 
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 With careful summation, one can show that:

    

[7.36]
  

 where     Finally, 

the Hall conductivity can be shown to be:

    
[7.37]

  

 noting that  b  2  = 1. It is also worth noting that Ω  z   is the gauge curvature in momentum 
space. The physical signifi cance of the above would be clear if one refers to our 
analysis in previous sections of how the gauge curvature arises in B space and its 
conversion to K space. Here, with the use of Kubo formula, the momentum 
space gauge curvature arises naturally, supporting the earlier prediction that gauge 
curvature in momentum space is closely related to electron dynamics. With proper 
choice of the Fermi surface, e.g. in the region where (  f  −  −  f  + ) = 1, the Hall conductivity 
above would be independent of small fl uctuation in Fermi distribution, as well as 
inhomogeneities in spin orbit constant and other material parameters. Such 
conductivity is said to possess topological property. Topological conductivity has 
great signifi cance in nanoelectronics because the electric current and voltage of such 
system will be stable against the device’s geometrical non-uniformity, inhomogeneous 
fi lm property due to mass fabrication tolerance and impurities scattering. 

 In  Chapter 5  we deduced that in some systems the spin Hall conductivities are 
universal constant. For example, the conductivity of a Rashba 2DEG and a Rashba 
heavy hole system is not a function of any material parameter (e.g. size, fi lm 
property). Conductivity shows exact quantized values. The relation between the 
methods used to derive the expressions in  Table 7.5  may have a subtle relation to 
the method described above. It is believed that, in the case of Rashba, SHE 
conductivity is due to spin polarization of  p   y   by a time-dependent fi eld but not the 
gauge curvature, as gauge curvature in a Rashba system vanishes except at the 
origin in momentum space. Thus in the annular region, there is no contribution 
from the gauge curvature.  

�� �� �� �� �� ��



 Topological dynamics and gauge potential in nanoelectronics 263

©  Woodhead Publishing Limited, 2012

   7.5.2  Topological anomalous Hall effects (local space) 

 We have provided a rather extensive discussion on gauge potential, curvature and 
Berry’s phase in momentum space for numerous systems, e.g. spintronics, 
graphene, topological insulators. In the previous section, we showed the exact 
quantifi cation of the conductivity which shows universal values under some 
conditions. In this section, we discuss a similar phenomenon but in real space. 

 One can reason that the Hall conductivity of the system is proportional to the 
average magnetic fi eld felt by electron traveling in the local magnetic systems 
and thus:

    [7.38]  

 One starts to imagine that, unlike the momentum space system where distribution 
of  b ( k ) was predetermined by nature, in the local magnetic system it is possible to 
engineer distribution of  b ( r ) or ( r ). In full dimension, the curvature in a local 

magnetic system is    One can write the Hall conductivity as 
follows:

    [7.39a] 

    [7.39b]  

 where  n  = (sin  θ  cos  φ , sin  θ  sin  φ , cos  θ ). Instead of the ( x,y ) coordinates, one uses 
the ( r,w ) coordinates to track the magnetic moment where  x  =  r  sin  w  and  y  =  r  cos 
 w . On the other hand, ( θ,φ ) are the spin coordinates of the local moment in spin or 
magnetic space.  

   Table 7.5     SHE in semiconductor spintronics and their respective universal 

conductivity  

 Semiconductor system Spin Hall conductivity

1. Rashba 2DEG
πσ

2. Luttinger (p-doped bulk)

σ
π  

(Note: ‘not universal’ because of its k
F
 dependence; H 

and L stand for heavy and light holes, respectively)

3. Cubic Dresselhaus 

(n-doped bulk)
σ

π

(Note: ‘not universal’ because of its k
F
 dependence)

4. Rashba heavy holes
σ

π
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  Exercise 7.6 

  Show that:  

  (1) ∂  
 r   n  ×  ∂   w   n  =  n sinθ  ( ∂  

 r    θ ∂    w 
  φ  −  ∂   w 

  θ ∂   r   φ ). 
  (2)  ( ∂   r    θ ∂   w 

  φ  −  ∂  
 w 
   θ   ∂   r   φ )  dr  ∧  dw  =  dθ  ∧  dφ . 

 Thus the Hall conductivity is:

    [7.40]  

 The above shows that the Hall conductivity is topological in nature as it depends 
only on the solid angle covered by the range of mapping  n :  R  2  →  S  2 . It measures 
the number of times the mapping wraps around the 2D unite sphere of  S  2  as the 
electron traverses the 2D local magnetic system.  

   7.6  Spin torque induced by spin orbit coupling 

 Spin transport theories, including the phenomenological continuity of spin fl ux as 
well as microscopic approaches, have been developed to study CIMS and spin 
torque oscillations in a variety of structures 21–24  ranging from ferromagnetic spin 
valves and other nanostructures to Coulomb blockade transistors. This has led to 
renewed interest in the dynamics of local moment beyond the conventional 
Landau–Lifshitz–Gilbert (LLG) description. In this section, we describe 
theoretically an additional source of spin torque and local spin oscillations due to 
spin orbit coupling. Particular attention is given to Rashba spin orbit coupling 
(RSOC), which is gaining prominence in non-magnetic metals 25  and ferromagnetic 
metals, 26  as well as rare earth materials. 27  We show in this section that RSOC in 
ferromagnetic materials may lead to a modifi ed LLG equation which physically 
leads to charge current induced spin transfer switching. 28–31  

 In this section, we make use of the spin orbital gauge deployed in  Chapter 5  to 
study SHE in Rashba 2DEG. In the presence of a local moment with smooth 
spatial variation, a separate local gauge transformation is required to describe the 
adiabatic alignment of electron spin along the moment texture. This transformation 
process aligns reference spin axis to the local moment, resulting in the SOC 

related gauge term of  α U E   i   σ   j   ε   ijμ   U  † and the chiral gauge of    The 
transformed Hamiltonian thus becomes:

    [7.41]  

 where in comparison to vacuum SOC,  α  simply takes on   . In 

the Rashba system, the material-dependent constant of 〈 αE 〉 is determined from 
the relation of  e 〈 αE 〉 =  m/ħα   R  , where theoretical and experimental values of  α   R   for 
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various material systems can be found in literatures. Note that superscript  r  
indicates the new reference frame. Physically, the  eα UE   i   σ   j   ε   ijμ   U † term describes 
the momentum of an electron whose spin is aligned along the spin texture in the 
presence of the relativistic magnetic fi eld due to SOC. The last term containing 
 σ    r    z  | M    r    z  | represents the Zeeman energy due to electron spin aligned along the local 
magnetization in the rotated frame where the local magnetization is the  z  axis. 
Alignment of spin to the local moment in the present of SOC in ferromagnetic 
material with Rashba SOC is supported by experimental measurements. 26  Note 

that the line integral of    over the electron’s trajectory is generally 
non-vanishing. It represents the phase acquired by the electron as it passes through 
the local magnetization and is related to the net chirality of the local magnetization 
under the Abelian (adiabatic) approximation,  A   Ch    μ    =  σ   z   a   Ch    μ   , where  a   Ch    μ    is the top left 
diagonal element of the gauge fi eld matrix  A   Ch    μ   . Explicitly:

    [7.42]  

 where it can be shown that  a   y    mon   is a magnetic monopole in the space of local spin. 
The spin orbit potential is:

    [7.43]  

 The requisite conditions for the adiabatic approximation are:

   1.   An electron motion which is suffi ciently slow to allow its spin to relax and 
align along the local spin texture. This condition can be met as the drift 
velocity in the magnetic system is fairly low.  

  2.   The diagonal components of    is 

suffi ciently large in magnitude to ensure a large energy difference between the 
spin up and down eigenstates, and hence little mixing between the two 
eigenstates (i.e. relatively small non-diagonal components). This can be 
satisfi ed in systems with moderately strong magnetization.    

 In the adiabatic system where spin is constantly aligned to the local fi eld, there is 
no probability of the spin assuming its other eigenstate. One can apply a continuous 
unitary transformation to the Hamiltonian such that the spin reference axis ( z ) in 
the rotated frame coincides with the local  b  fi eld direction. From the standpoint of 
electrodynamics, the gauge potentials  A   SO    μ    and  A   Ch    μ    due to SOC and chiral spin 
texture, respectively, give rise to an electromagnetic interaction between the 
current and the local spin, and results in an interaction energy density term:

    [7.44]  
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 where  a   μ   =  a   v    mon    ∂   μ   n   ν  ,  j   μ   is the charge current density and  A   μ   =  A   S    μO    +  A   Ch    μ   . It is worth 

noting that  implies carrying out  =  ∫ ψ † A  .   ψ  − (  ψ †).  A ψ  
 d  3  x  in the adiabatic limit, i.e. considering spin aligned to moment only. In the 
presence of SOC, the gauge and hence the total anomalous velocity admits an 

additional term to become     

 Exercise 7.7 

  Prove the following identities:  

  (1) ε   mkl    ε   qnl   =  δ   mq    δ   kn   −  δ   mn    δ   kq   

  (2)     

  The standard expression of the curvature of a fi eld is: 

     

  Show that the above is reduced to    and thus for any 

integrable function represented by  U , this curvature term vanishes.  

  Solution  

 Make use of ∂   μ   ( U †  U  ) =  U  †  ∂ μ  U  + (∂μ  U   †) U .   

 Since the gauge fi eld derives its form from the electron spin relaxation to the local 
moment texture in the presence of SOC, the corresponding equation of motion 
(EOM) thus describes the above effect on the dynamics of the local magnetic 
moment. Generally, the local moment will adjust its orientation in order to achieve 
minimum energy. Thus, one would expect the local moment dynamics to be 
governed by the energy gradient with respect to a change in the local moment 
orientation. As in conventional LLG physics, we can regard the equilibrium state 
as one in which local moments are aligned along an effective magnetic fi eld, 
which is given by the energy gradient with respect to the local moment, i.e.

   

 [7.45]  

 where  n  =  M/M  and μ 0  = 4 π  × 10 −7  T mA −1 . Note that the derivation applied to the 
gauge potential due to chiral spin texture is a functional derivative. By inspection 
the above shows cyclical nature and can be summarized as follows. 
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  Exercise 7.8 

  Show by      the results of Eq. 7.45.  

  Solution 

     

 If we consider the low-damping limit, the local moment will precess about the 
effective fi eld, so that the general EOM can be written as    where  γ  

is the gyromagnetic ratio (in units of A −1  s −1 ). In fact, the precessional motion is 

analogous to the dynamical expression of    for a spin  S  in the presence 

of an effective magnetic fi eld  H , which arises due to the non-commutative spin 
algebra of [ σ   μ  ,  σ   ν  ] = 2 iσ   κ    ε   μνκ  . In the classical description (of the micromagnetic 
method) where the spin operators  σ  are replaced by magnetic moment vectors  M , 
such non-commutativity disappears. One can, however, use the well-based 
phenomenological approach to write:

    [7.46]  

 To analyze the contribution from the chiral gauge component, one recalls  a   Ch    μ    = 

 a    v    mon    ∂   μ    n   v   and notes the relations of    which merely reiterates that 
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 α   mon   ( n ) is a magnetic monopole in the space of the local magnetization as 

described earlier. Taking note of the fact that    the EOM 
results in:

    

[7.47]

   

  Exercise 7.9 

  Show that the EOM due to both SOC and local spin texture can be written 
in a more compact form of: 

     

  Solution 

     

  where taking   , yields the fi nal form of the EOM.  

 The modifi ed LLG equation in a continuously magnetic medium, taking into 
account the effect of spin-polarized current and SOC, is given by:

    [7.48]  

 where  α   d   is the damping constant,  α   C  ,  b   C   are the usual spin torque constants in a 
magnetic system (e.g. domain wall or magnetic medium with chiral local moment 
texture) and subscript ‘ C ’ denotes a medium with continuous local spin variation. 
For comparison, the corresponding LLG equation for a discrete magnetic medium, 
in which current acquires the spin polarization of one medium (i.e.  M   p  ) and passes 
on to an adjacent medium (i.e.  M   f  ), is as follows:
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[7.49]

  

 where  a   D   and  b   D   are the corresponding spin torque constants and subscript ‘D’ 
denotes a medium with discrete local moment variation. 

 Physically, discrete magnetic systems include magnetic multilayers which are 
widely used in technologically important devices, e.g. spin valve and magnetic 
tunnel junction. In such multilayers, there are discrete changes in the magnetization 
direction across the interfaces. Typically, in such a system, the fi xed magnetization 
layer  M   p   is used to generate spin current which exerts a spin torque on the free 
magnetization layer  M   f  . It is important to note that, notwithstanding the different 
forms of the LLG equations in the continuous and discrete systems, the infl uence 
of spin orbit coupling on local spin dynamics occurs in both systems. It is worth 
noting in the discrete multilayer system that the spin orbit-induced local spin 
dynamics does not depend on the fi xed magnetization of the adjacent layer. In 
short, spin injection is not needed to effect spin transfer in the free magnetization 
layer; thus, from the technological point of view, spin dynamics in magnetic 
system with SOC is suitable for single layer CIMS. 

  Figure 7.3 a is a schematic diagram of a magnetic multilayer structure used 
conventionally in devices such as the spin valve recording head of a hard disk 
drive and the magnetic tunnel junction of magnetic random access memory 
(MRAM), while  Fig. 7.3 b illustrates a diluted magnetic semiconductor (DMS) in 
the form of a 2DEG structure of a III–V high-electron-mobility transistor (HEMT) 
device with large Rashba spin orbit coupling. 

   7.3     (a) Magnetic multilayer with in-plane ( My, Mz ) or out-of-plane ( Mx ) 
local spin, and current passing in a perpendicular-to-plane direction 
through the multilayer. (b) 2DEG of a HEMT made of DMS material 
with in-plane local spin ( My ) and current passing in-plane along the  x  
direction. The electric fi eld due to structural inversion asymmetry aligns 
along the  z  direction, resulting in Rashba SOC.     
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 In the above systems, the  H  fi eld due to spin orbit coupling and  j   x   is:

    
[7.50]

  

 which simplifi es to    The spin orbit 

induced  H    so   can be treated like the externally applied magnetic fi eld that might 
switch the local moment of a magnetic medium. 

 We will compare the strength of  H    
so

   for various SOC systems with fi xed values 
of  j   x   = 10 11  A m −2  and  M  = 5 × 10 13  A m −1 . For a typical InAs/InGaAs Rashba 
2DEG with  α   R   = 10 −12  eVm,  k   F   = 8 × 10 6  m −1 , the vacuum equivalent electric fi eld 
can be worked out to be approximately 10 13  V m −1 . The bare electron mass  m  0  is 
considered in vacuum, but in 2DEG, the effective mass is  m   e   = 0.05 m  0 . The SOC 
energy of a specifi c material system is    and one works out 

〈 αE   z  〉 = 4.3 × 10 −10  T m, which, in turn gives    

The switching fi elds for common ferromagnetic metals are given in  Table 7.6 . 
 Additionally, in some rare earth ferromagnetic metals (e.g. Gd), where the 

Rashba constant could be as high as  α   R   = 10 −10  eVm, one fi nds that correspondingly 
〈 αE   z  〉 = 8.6 × 10 −7  T m. The corresponding  H   so   = 1.3 × 10 7   A m  −1  is large. Thus, 
for magnetic devices made from these rare earth elements, it may be possible to 
utilize the high  H    

so
   to achieve CIMS at a much reduced threshold current density. 

 Table 7.7  gives a summary of the numerical estimates. 
 It is worth noting that the effect of spin transfer switching due to SOC elucidated 

here is in addition to the other previously described sources of spin transfer torque 
such as the  s−d  coupling between local spin and the spin-polarized conduction 
electrons. A low magnetization for the local spin generates a higher  H    

so
  . This is 

because the interaction energy is a function of the magnetization direction but not 
its magnitude. Thus, for a given current density, the resulting fi eld  H    

so
   will be 

more effi cient in switching a magnetic material with a lower magnetization. 
 We have modifi ed the phenomenological LLG equation by incorporating the 

effect of spin orbit coupling. We obtained a general EOM for the local spin by 
formally deriving the SU(2) spin orbit gauge fi eld arising due to spin orbit 
coupling, in addition to the previously derived topological  U (1) ⊗  U (1) chiral 
gauge due to adiabatic relaxation of electron spin to local spin texture. The full 

   Table 7.6     Switching fi elds for a few common ferromagnetic materials 

Fe Ni Co

565 Oe 233 Oe 7429 Oe
45×103 A m−1 18.5×103 A m−1 591×103 A m−1
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LLG equations were presented for both cases of continuous and discrete 
spatial variation of the local spin texture. The EOM in the LLG form will be 
applicable for micromagnetic or spin transport simulation across domain walls 
and in multilayer magnetic devices. We have also discussed the implications 
of our results in various spintronic applications; for example, SOC contribution 
to the spin torque will have direct relevance to CIMS operation in terms of 
the critical current density for switching or magnetization noise. In addition, the 
SOC has a substantial effect on the local spin trajectory and resonant frequency, 
which can be readily modifi ed by voltage or current biasing. This tunability is 
particularly relevant to the generation of microwave oscillation in nanomagnetic 
devices.  

   7.7  Dirac string and monopole properties 

 To determine the vector potential for a regular monopole fi eld is not a trivial task. 
In fact a single vector potential function which is regular everywhere on the  S   2   
manifold probably does not exist. We would like to remind readers that a (  B  × 
 A   B  ) based on one gauge expression (either north or south pole) will necessarily 
yield a vanishing surface integral over the entire  S  2  manifold, due to the Dirac 
string. Whereas in modern understanding where (  B  ×  A   B  ) is based on at least two 
gauge expressions, the curvature is regular everywhere even though the individual 
gauge expression is not, and the surface integral of such regular curvature will be 
a non-vanishing quantity as the string can be avoided. Here we will show using 

   Table 7.7     Numerical estimates of the effective fi eld  H  from the SOC effect and the 
spin precession frequency about the effective fi eld for different SOC sources  

External electric 
fi eld (vacuum)

2DEG with Rashba 
SOC αR = 10−12 eVm

2DEG with Rashba 
SOC αR = 10−10 eVm

α α 3.2 × 10−15

m = m0

4.3 × 10−10

m = 0.05m0

8.6 × 10−7

m = m0

Vacuum equivalent 
electric fi eld (Vm−1) 
 m  =  m 0 α = 3.2 × 10−22 s

107 2.7 × 1013 2.7 × 1015

Effective switching 

fi eld 

0.051 6.5 × 103 1.3 × 107

Simple relation between 
vacuum SOC and 
Rashba SOC

α
α

α

α

   Note: Current density is  j   x   = 10 11  A m −2  and the magnetization of local spin is  M  = 5 × 10 3  
A m −1 .    
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the south pole gauge that the Dirac magnetic fi eld has a string. The vector form of 
the Dirac potential is:

    [7.51]  

 At fi rst sight, the curvature of the above potential may appear to be 
   However, the expression is incomplete because it does not 

fully capture the fact that the Dirac potential is not a regular function; it is singular 
along  θ  = 0 but regular along  θ  =  π . A proper approach is to fi rst regularize the 
Dirac potential by inserting a  ϵ  2  to R so that  θ  = 0 can be negotiated, and derive 
the regularized magnetic fi eld. The regularized potential is:

    [7.52]  

 where  R  2  =  b  2   x   +  b  2   y   +  b  2   z   +  ϵ  2 . The regularized magnetic fi eld can be shown to be:

    [7.53]  

 Lifting regularization, which simply means presenting a modifi ed expression that 
resides in both the regular and the singular regions, one obtains:

    [7.54]  

 Equation 7.54 consists of two parts, the regular magnetic monopole and the 
singular Dirac string. The curvature of Eq. 7.54 vanishes as  �Ω   ·   dS  =  �Ω   r    .   dS  + 
 �Ω   string    .   dS  = 4 πg  − 4 πg  = 0, noting here that the monopole has been separated 
into the regular and the string parts. This clearly shows that the south pole Dirac 
potential used above cannot be a correct representation of the vector potential for 
a magnetic monopole. 

 It is thus necessary to fi nd a correct representation and this task was completed 
with the modern theory of fi ber bundle. In this treatment, it is important to 
understand that there should exist at least two gauge expressions on the  S  2  
manifold in order to provide a non-vanishing  �  (   B   ×   A   B  ). dS  over the manifold. 
In fact by Stokes’ theorem, one sees that the surface integral of the monopole fi eld 
is the line integral of the gauge fi eld. To illustrate this more clearly, one resorts to 
the differential form which is related to the vector quantity as follows:

    [7.55] 

    [7.56]  

�� �� �� �� �� ��



 Topological dynamics and gauge potential in nanoelectronics 273

©  Woodhead Publishing Limited, 2012

 In Eq. 7.55,  Ã  is expressed as a 1-form. Performing an exterior differentiation 
of  Ã  following standard defi nitions in differential geometry will lead naturally to 
Eq. 7.56, which is the dot areal product of the curvature.  b  is the parameter of an 
arbitrary space (e.g. the B space) and  dS  is in the same space too. In fact Eq. 7.56 
is neither unique nor is it a complete form of the gauge potential. The gauge 
should be expressed as one of Eq 7.57, depending on the chart which covers the 
 S  2 b      surface on which  Ã  is defi ned, where  b  is the radius of  S   2   b  . One example set of 
two charts that overlap but completely cover the  S  2 b      manifold is:

    [7.57]  

  dA   N   is defi ned everywhere on  S  2  except the − z  axis, while  dA   S   is defi ned 
everywhere except the + z  axis. Equation 7.29 is the differential form of the Dirac 
gauge potential in the spherical polar coordinates. For comparison in Cartesian 
coordinates, the differential form of the Dirac gauge is:

    [7.58]  

 where  b  is the required coordinates in Cartesian form. Since  A   N   is related to  A   S   by 
 A   N   =  A   S   + dθ, it is obvious that  dA   S   =  dA   N   which shows  dA  is unique. In summary, 
 A  is not globally defi ned throughout  S  2 b     , otherwise  ∫ dA  ≠ 0; in other words, if 
there is a vector  Ã  such that its curvature has no singularity and  Ã  is unique, then 
 ∫ dA  ≠ 0. Now with the Dirac gauge potential defi ned on the north and south 
charts, one can then perform the surface integral of these gauge potentials as:

    [7.59]  

 avoiding the string of each gauge potential.  

   7.8  Conclusion 

 We have provided a modern theoretical syllabus which covers recent developments 
in nanoelectronics, e.g. spintronics, graphene electronics, topological-based 
electronics, single-electronics, and others. Readers are constantly reminded that 
electrons in these systems are not only treated as charged particles but ones with 
internal degree of freedoms, e.g. spin, valley spin and pseudospin. In a nanoscale 
device, electrons propagate in an environment with periodic crystal, random 
impurity and device boundary potentials, subject to inter-particle interaction. Pure 
condensed matter physics focuses on the inter-particle interaction effect on phase 
transition. But nanoelectronics ought to focus on interaction effects on electron 
motion. Although inter-particle interaction has not been discussed in detail, the 
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framework for future inclusion of these effects has been provided under the 
Kubo and the non-equilibrium Green’s function (NEGF) formalisms in Chapters 
3 and 4. The application of external fi elds is crucial for the operation of 
any nanodevice. It is thus important to consider the screening and the non-
equilibrium physics. A large portion of Chapters 3 and 4 is devoted to discussing 
the non-equilibrium electron transport which takes into account its internal degree 
of freedom. 

 In Chapters 5 and 6, we introduce spintronics and graphene electronics 
since both areas are becoming technologically important.  Chapter 7  discusses the 
new and important idea of topological and curvature effect. The current 
descriptions make no distinction between a bulk condensed matter and a nanoscale 
device channel, opening doors for future work. The recent discovery of a 
topological insulator is certain to further underpin the importance of topological 
physics. 

 Many physical phenomena discussed here are solely of nanodevice origin, e.g. 
single-electron transport, Rashba effects, NEGF transport, and monolayer and 
bilayer graphene physics. These physical effects cannot be found in natural 
materials, but exist only in nanoscale devices fabricated to nanometer scale and 
operated with external fi elds. This book should be expanded in the near future to 
include the topological insulators, plasmonics and metamaterials. 

 Lastly we hope this book will bring widespread awareness that there is now a 
need for theoretical physics to be defi ned and written for modern nanoelectronics. 
Nanoelectronics is a highly technologically relevant area. In fact, technological 
need is the only reason for its existence. The physics of nanoelectronics will be 
the prevailing physics of the twenty-fi rst century. May this book prevail upon all 
young, creative individuals of today to participate in the future development of 
this beautiful physics.   
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  Appendix 7.A Mathematical properties of 
monopole fi elds 

 Although  A   N   and  A  S    are by no means unique on their own, they uniquely determine 
a 1-form  ω  on the bundle space P which is a   , where  R  is the radius of the 
3-sphere. Here we provide the mathematical origin, the 1-form  ω  on  R  4  which is 
given by:

    [7.A.1]  

 which is well-defi ned on the        can be defi ned as:
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 [7.A.2]  

 One can re-parametrize such that  

   where  z  1  =  x  1  +  iy  1 ,  z  2  =  x  2  +  iy  2 . It can then be seen that 

( x  1 ,  x  2 ,  y  1 ,  y  2 ) ≡    and the 

constrain:    is obeyed. 

 Every point of ( z  1 ,  z  2 ) =    can then be mapped via:

    [7.A.3]  

 to a point on    where  P   :  S  3  →  S  2 , which is in fact a form of Hopf mapping to 
project the  ω  on    to   . In other words, the Hopf mapping    yields a 
1-form gauge potential regular everywhere on   . 

 One then carries out the operation such that every point of ( z  1 ,  z  2 ) ∈    is 
mapped, i.e.

   

 [7.A.4]  

 The same point of ( z  1 ,  z  2 ) ∈    can be re-expressed in two different forms known 
as the sections, each corresponding to one part of the   . We note that:

 corresponds to UN = S 2b – (0,0,–1)

   .
 [7.A.5]  

 Equation 7.A.4 can also be written in formal mathematics as:

    [7.A.6]  
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 We have established the two sections of a particular point of ( z  1 ,  z  2 ) ∈   , each 
corresponding to a chart on   . We will now work on the inclusion map (ב°)   of 
these points on   . One has   ב°( z  1 ,  z  2 ) = ( x  1 ,  x  2 ,  y  1 ,  y  2 ), which yields:

    
[7.A.7]

  

 The inclusion map performed on    and    yields:

    
[7.A.8]

  

 The above simply means that the  ω  defi ned in terms of ( x  1 ,  y  1 ,  x  2 ,  y  2 ) can be 
re-expressed in terms of ( θ ,  φ ) on a re-parametrized   . In summary, the gauge 
corresponding to the north and south charts can be derived as follows:

    
[7.A.9]

 

    
[7.A.10]
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 Noting the above, the gauge potential in the overlap regions are: 

   The transition functions are:

    [7.A.11]  

 The topological magnetic charge is    It is 

thus apparent that one could avoid the singular part of  A   N   by switching to  A   S   in 
the overlapping region, thus avoiding the conceptual diffi culty of the Dirac string.               
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