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Preface

The central theme of Introduction to Electric Circuits is the concept that electric circuits are part
of the basic fabric of modern technology. Given this theme, we endeavor to show how the
analysis and design of electric circuits are inseparably intertwined with the ability of the engineer
to design complex electronic, communication, computer, and control systems as well as consumer
products.

A p p r o a c h a n d O r g a n i z a t i o n

This book is designed for a one- to three-term course in electric circuits or linear circuit analysis and is
structured for maximum flexibility. The flowchart in Figure 1 demonstrates alternative chapter
organizations that can accommodate different course outlines without disrupting continuity.

The presentation is geared to readers who are being exposed to the basic concepts of electric
circuits for the first time, and the scope of the work is broad. Students should come to the course with the
basic knowledge of differential and integral calculus.

This book endeavors to prepare the reader to solve realistic problems involving electric circuits.
Thus, circuits are shown to be the results of real inventions and the answers to real needs in industry, the
office, and the home. Although the tools of electric circuit analysis may be partially abstract, electric
circuits are the building blocks of modern society. The analysis and design of electric circuits are critical
skills for all engineers.

Wha t ’ s N ew i n t h e 9 t h E d i t i o n

Revisions to Improve Clarity

Chapter 10, covering AC circuits, has been largely rewritten to improve clarity of exposition.
In addition, revisions have been made through the text to improve clarity. Sometimes these revisions
are small, involving sentences or paragraphs. Other larger revisions involved pages or even entire
sections. Often these revisions involve examples. Consequently, the 9th edition contains 36 new
examples.

More Problems

The 9th edition contains 180 new problems, bringing the total number of problems to more than 1,400.
This edition uses a variety of problem types and they range in difficulty from simple to challenging,
including:

� Straightforward analysis problems.
� Analysis of complicated circuits.
� Simple design problems. (For example, given a circuit and the specified response, determine the

required RLC values.)
� Compare and contrast, multipart problems that draw attention to similarities or differences between

two situations.
� MATLAB and PSpice problems.
� Design problems. (Given some specifications, devise a circuit that satisfies those specifications.)
� How Can We Check . . . ? (Verify that a solution is indeed correct.)
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F e a t u r e s R e t a i n e d f r om P r e v i o u s E d i t i o n s

Introduction

Each chapter begins with an introduction that motivates consideration of the material of that chapter.

Examples

Because this book is oriented toward providing expertise in problem solving, we have included more
than 260 illustrative examples. Also, each example has a title that directs the student to exactly what is
being illustrated in that particular example.

Various methods of solving problems are incorporated into select examples. These cases show
students that multiple methods can be used to derive similar solutions or, in some cases, that multiple
solutions can be correct. This helps students build the critical thinking skills necessary to discern the
best choice between multiple outcomes.

Much attention has been given to using PSpice and MATLAB to solve circuits problems. Two
appendices, one introducing PSpice and the other introducing MATLAB, briefly describe the
capabilities of the programs and illustrate the steps needed to get started using them. Next, PSpice
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FIGURE 1 Flow chart showing alternative paths through the topics in this textbook.
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and MATLAB are used throughout the text to solve various circuit analysis and design problems. For
example, PSpice is used in Chapter 5 to find a Th�evenin equivalent circuit and in Chapter 15 to represent
circuit inputs and outputs as Fourier series. MATLAB is frequently used to obtain plots of circuit inputs
and outputs that help us to see what our equations are telling us. MALAB also helps us with some long
and tedious arithmetic. For example, in Chapter 10, MATLAB helps us do the complex arithmetic that
we must do in order to analyze ac circuits, and in Chapter 14, MATLAB helps with the partial fraction
required to find inverse Laplace transforms.
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Of course, there’s more to using PSpice and MATLAB than simply running the programs. We
pay particular attention to interpreting the output of these computer programs and checking it to make
sure that it is correct. Frequently, this is done in the section called “How Can We Check . . . ?” that is
included in every chapter. For example, Section 8.9 shows how to interpret and check a PSpice
“Transient Response,” and Section 13.7 shows how to interpret and check a frequency response
produced using MATLAB or PSpice.

Design Examples, a Problem-Solving Method, and

“How Can We Check . . . ?” Sections

Each chapter concludes with a design example that uses the methods of that chapter to solve a design
problem. A formal five-step problem-solving method is introduced in Chapter 1 and then used in each
of the design examples. An important step in the problem-solving method requires you to check
your results to verify that they are correct. Each chapter includes a section entitled “How Can We
Check . . . ? ” that illustrates how the kind of results obtained in that chapter can be checked to ensure
correctness.

Key Equations and Formulas

You will find that key equations, formulas, and important notes have been called out in a shaded box to
help you pinpoint critical information.

Summarizing Tables and Figures

The procedures and methods developed in this text have been summarized in certain key tables and
figures. Students will find these to be an important problem-solving resource.

� Table 1.5-1. The passive convention.
� Figure 2.7-1 and Table 2.7-1. Dependent sources.
� Table 3.10-1. Series and parallel sources.
� Table 3.10-1. Series and parallel elements. Voltage and current division.
� Figure 4.2-3. Node voltages versus element currents and voltages.
� Figure 4.5-4. Mesh currents versus element currents and voltages.
� Figures 5.4-3 and 5.4-4. Thévenin equivalent circuits.
� Figure 6.3-1. The ideal op amp.
� Figure 6.5-1. A catalog of popular op amp circuits.
� Table 7.8-1. Capacitors and inductors.
� Table 7.13-2. Series and parallel capacitors and inductors.
� Table 8.11-1. First-order circuits.
� Tables 9.13-1, 2, and 3. Second-order circuits.
� Table 10.5-1. Voltage and current division for AC circuits.
� Table 10.16-1. AC circuits in the frequency domain (phasors and impedances).
� Table 11.5-1. Power formulas for AC circuits.
� Tables 11.13-1 and 11.13-2. Coupled inductors and ideal transformers.
� Table 13.4-1. Resonant circuits.
� Tables 14.2-1 and 14.2-2. Laplace transform tables.
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� Table 14.7-1. s-domain models of circuit elements.
� Table 15.4-1. Fourier series of selected periodic waveforms.

Introduction to Signal Processing

Signal processing is an important application of electric circuits. This book introduces signal processing
in two ways. First, two sections (Sections 6.6 and 7.9) describe methods to design electric circuits that
implement algebraic and differential equations. Second, numerous examples and problems throughout
this book illustrate signal processing. The input and output signals of an electric circuit are explicitly
identified in each of these examples and problems. These examples and problems investigate the
relationship between the input and output signals that is imposed by the circuit.

Interactive Examples and Exercises

Numerous examples throughout this book are labeled as interactive examples. This label indicates that
computerized versions of that example are available at the textbook’s companion site, www.wiley.com/
svoboda. Figure 2 illustrates the relationship between the textbook example and the computerized
example available on the Web site. Figure 2a shows an example from Chapter 3. The problem presented
by the interactive example shown in Figure 2b is similar to the textbook example but different in several
ways:

� The values of the circuit parameters have been randomized.
� The independent and dependent sources may be reversed.
� The reference direction of the measured voltage may be reversed.
� A different question is asked. Here, the student is asked to work the textbook problem backward,

using the measured voltage to determine the value of a circuit parameter.

The interactive example poses a problem and then accepts and checks the user’s answer. Students are
provided with immediate feedback regarding the correctness of their work. The interactive example
chooses parameter values somewhat randomly, providing a seemingly endless supply of problems. This
pairing of a solution to a particular problem with an endless supply of similar problems is an effective
aid for learning about electric circuits.

The interactive exercise shown in Figure 2c considers a similar, but different, circuit. Like the
interactive example, the interactive exercise poses a problem and then accepts and checks the user’s
answer. Student learning is further supported by extensive help in the form of worked example
problems, available from within the interactive exercise, using the Worked Example button.

Variations of this problem are obtained using the New Problem button. We can peek at the
answer, using the Show Answer button. The interactive examples and exercises provide hundreds of
additional practice problems with countless variations, all with answers that are checked immediately
by the computer.

S u p p l em e n t s a n d We b S i t e M a t e r i a l

The almost ubiquitous use of computers and the Web have provided an exciting opportunity to rethink
supplementary material. The supplements available have been greatly enhanced.

Book Companion Site

Additional student and instructor resources can be found on the John Wiley & Sons textbook
companion site at www.wiley.com/college/svoboda.
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Student
� Interactive Examples The interactive examples and exercises are powerful support resources

for students. They were created as tools to assist students in mastering skills and building
their confidence. The examples selected from the text and included on the Web give students
options for navigating through the problem. They can immediately request to see the solution or
select a more gradual approach to help. Then they can try their hand at a similar problem by simply
electing to change the values in the problem. By the time students attempt the homework, they have
built the confidence and skills to complete their assignments successfully. It’s a virtual homework
helper.

New Problem

Show Answer

The voltmeter measures a voltage in volts. 
What is the value of the resistance R in Ω?  

Calculator

Worked Examples
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+
–
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+

+

–

1.2 V
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+
–

Voltmeter

(b)

(c)

(a)

3ia
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3ia

ia

vm

vm

–

+
+

–

New Problem

Show Answer

The ammeter measures a current in amps. What 
is the value of the current measured by the ammeter?

Calculator

Worked Examples

12 V

4 Ω 2 Ω

+
–

Ammeter

ia im

FIGURE 2 (a) The circuit considered Example 3.2-5. (b) A corresponding interactive example. (c) A corresponding
interactive exercise.

xvi Preface



� PSpice for Linear Circuits, available for purchase.
� WileyPLUS option.

Instructor
� Solutions manual.
� PowerPoint slides.
� WileyPLUS option.

WileyPLUS

Pspice for Linear Circuits is a student supplement available for purchase. The PSpice for Linear
Circuits manual describes in careful detail how to incorporate this valuable tool in solving problems.
This manual emphasizes the need to verify the correctness of computer output. No example is finished
until the simulation results have been checked to ensure that they are correct.

A c k n ow l e d gm e n t s a n d C omm i tm e n t t o A c c u r a c y

We are grateful to many people whose efforts have gone into the making of this textbook. We are
especially grateful to our Executive Editor Daniel Sayre, Executive Marketing Manager Chris Ruel and
Marketing Assistant Marissa Carroll for their support and enthusiasm. We are grateful to Tim Lindner
and Kevin Holm of Wiley and Bruce Hobart of Laserwords Maine for their efforts in producing this
textbook. We wish to thank Senior Product Designer Jenny Welter, Content Editor Wendy Ashenberg,
and Editorial Assistant Jess Knecht for their significant contributions to this project.

We are particularly grateful to the team of reviewers who checked the problems and solutions to
ensure their accuracy:
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Khalid Al-Olimat, Ohio Northern
University

Lisa Anneberg, Lawrence
Technological University

Horace Gordon, University of South
Florida

Lisimachos Kondi, SUNY, Buffalo
Michael Polis, Oakland University
Sannasi Ramanan, Rochester Institute

of Technology

William Robbins, University of Minnesota
James Rowland, University of Kansas
Mike Shen, Duke University
Thyagarajan Srinivasan, Wilkes

University
Aaron Still, U.S. Naval Academy
Howard Weinert, Johns Hopkins University
Xiao-Bang Xu, Clemson University
Jiann Shiun Yuan, University of
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1.1 I n t r o d u c t i o n

A circuit consists of electrical elements connected together. Engineers use electric circuits to solve
problems that are important to modern society. In particular:

1. Electric circuits are used in the generation, transmission, and consumption of electric power and
energy.

2. Electric circuits are used in the encoding, decoding, storage, retrieval, transmission, and processing
of information.

In this chapter, we will do the following:

� Represent the current and voltage of an electric circuit element, paying particular
attention to the reference direction of the current and to the reference direction or polarity of
the voltage.

� Calculate the power and energy supplied or received by a circuit element.
� Use the passive convention to determine whether the product of the current and

voltage of a circuit element is the power supplied by that element or the power received by
the element.

� Use scientific notation to represent electrical quantities with a wide range of magnitudes.

1.2 E l e c t r i c C i r c u i t s a n d C u r r e n t

The outstanding characteristics of electricity when compared with other power sources are its
mobility and flexibility. Electrical energy can be moved to any point along a couple of wires and,
depending on the user’s requirements, converted to light, heat, or motion.

An electric circuit or electric network is an interconnection of electrical elements linked
together in a closed path so that an electric current may flow continuously.
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Consider a simple circuit consisting of two well-known electrical elements, a battery and a
resistor, as shown in Figure 1.2-1. Each element is represented by the two-terminal element
shown in Figure 1.2-2. Elements are sometimes called devices, and terminals are sometimes called
nodes.

Charge may flow in an electric circuit. Current is the time rate of change of charge past a given
point. Charge is the intrinsic property of matter responsible for electric phenomena. The quantity of
charge q can be expressed in terms of the charge on one electron, which is �1.602� 10�19 coulombs.
Thus, �1 coulomb is the charge on 6.24� 1018 electrons. The current through a specified area is
defined by the electric charge passing through the area per unit of time. Thus, q is defined as the charge
expressed in coulombs (C).

Charge is the quantity of electricity responsible for electric phenomena.

Then we can express current as

i ¼ dq

dt
ð1:2-1Þ

The unit of current is the ampere (A); an ampere is 1 coulomb per second.

Current is the time rate of flow of electric charge past a given point.

Note that throughout this chapter we use a lowercase letter, such as q, to denote a variable that is a
function of time, q(t). We use an uppercase letter, such as Q, to represent a constant.

The flow of current is conventionally represented as a flow of positive charges. This convention
was initiated by Benjamin Franklin, the first great American electrical scientist. Of course, we
now know that charge flow in metal conductors results from electrons with a negative charge.
Nevertheless, we will conceive of current as the flow of positive charge, according to accepted
convention.

Figure 1.2-3 shows the notation that we use to describe a current. There are two parts to
this notation: a value (perhaps represented by a variable name) and an assigned direction. As a
matter of vocabulary, we say that a current exists in or through an element. Figure 1.2-3 shows
that there are two ways to assign the direction of the current through an element. The current i1
is the rate of flow of electric charge from terminal a to terminal b. On the other hand, the
current i2 is the flow of electric charge from terminal b to terminal a. The currents i1 and i2 are

Wire

Wire

ResistorBattery

FIGURE 1.2-1 A simple circuit.

a b

FIGURE 1.2-2 A general two-terminal electrical element
with terminals a and b.

i1

i2

ba

FIGURE 1.2-3 Current
in a circuit element.
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similar but different. They are the same size but have different directions. Therefore, i2 is the negative
of i1 and

i1 ¼ �i2

We always associate an arrow with a current to denote its direction. A complete description of current
requires both a value (which can be positive or negative) and a direction (indicated by an arrow).

If the current flowing through an element is constant, we represent it by the constant I, as shown in
Figure 1.2-4. A constant current is called a direct current (dc).

A direct current (dc) is a current of constant magnitude.

A time-varying current i(t) can take many forms, such as a ramp, a sinusoid, or an exponential, as
shown in Figure 1.2-5. The sinusoidal current is called an alternating current (ac).

(b)(a) (c)

0

1

i
(A)

i
(A) i

(A)

t (s)

M

i = Mt, t � 0

0 t (s)

i = Ie–bt, t � 0

0

–I

I I

t (s)

i = I sin    t, t � 0ω

FIGURE 1.2-5 (a) A ramp with a slope M. (b) A sinusoid. (c) An exponential. I is a constant. The current i is zero for t< 0.

If the charge q is known, the current i is readily found using Eq. 1.2-1. Alternatively, if the current
i is known, the charge q is readily calculated. Note that from Eq. 1.2-1, we obtain

q ¼
Z t

�1
i dt ¼

Z t

0
i dtþ q 0ð Þ ð1:2-2Þ

where q(0) is the charge at t¼ 0.

0

i

I

t FIGURE 1.2-4 A direct current of magnitude I.

E X A M P L E 1 . 2 - 1 Current from Charge

Find the current in an element when the charge entering the element is

q ¼ 12t C

where t is the time in seconds.

Electric Circuits and Current 3



EXERCISE 1.2-1 Find the charge that has entered an element by time t when
i¼ 8t 2 � 4t A, t� 0. Assume q(t)¼ 0 for t< 0.

Answer: q tð Þ ¼ 8
3

t3 � 2t2 C

EXERCISE 1.2-2 The total charge that has entered a circuit element is q(t)¼ 4 sin 3t C when
t � 0, and q(t)¼ 0 when t < 0. Determine the current in this circuit element for t> 0.

Answer: i tð Þ ¼ d

dt
4 sin 3t ¼ 12 cos 3t A

Solution
Recall that the unit of charge is coulombs, C. Then the current, from Eq. 1.2-1, is

i ¼ dq

dt
¼ 12 A

where the unit of current is amperes, A.

E X A M P L E 1 . 2 - 2 Charge from Current

Find the charge that has entered the terminal of an element from t¼ 0 s to t¼ 3 s when the current entering the
element is as shown in Figure 1.2-6.

1

0 1 2 3–1

2

3

4

i (A)

t (s) FIGURE 1.2-6 Current waveform for Example 1.2-2.

Solution
From Figure 1.2-6, we can describe i(t) as

i tð Þ ¼
0 t < 0
1 0 < t � 1
t t > 1

8<
:

Using Eq. 1.2-2, we have

q 3ð Þ � q 0ð Þ ¼
Z 3

0
i tð Þdt ¼

Z 1

0
1 dt þ

Z 3

1
t dt

¼ t

����
1

0

þ t2

2

����
3

1

¼ 1þ 1

2
9� 1ð Þ ¼ 5 C

Alternatively, we note that integration of i(t) from t¼ 0 to t¼ 3 s simply requires the calculation of the area under
the curve shown in Figure 1.2-6. Then, we have

q ¼ 1þ 2� 2 ¼ 5 C

Try it 
yourself 

in WileyPLUS
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1.3 S y s t em s o f U n i t s

In representing a circuit and its elements, we must define a consistent system of units for the quantities
occurring in the circuit. At the 1960 meeting of the General Conference of Weights and Measures, the
representatives modernized the metric system and created the Syst�eme International d’Unites,
commonly called SI units.

SI is Syst�eme International d’Unit�es or the International System of Units.

The fundamental, or base, units of SI are shown in Table 1.3-1. Symbols for units that represent proper
(persons’) names are capitalized; the others are not. Periods are not used after the symbols, and the symbols do
not take on plural forms. The derived units for other physical quantities are obtained by combining the
fundamental units. Table 1.3-2 shows the more common derived units along with their formulas in terms of
the fundamental units or preceding derived units. Symbols are shown for the units that have them.

Table 1.3-1 SI Base Units

SI UNIT

QUANTITY NAME SYMBOL

Length meter m

Mass kilogram kg

Time second s

Electric current ampere A

Thermodynamic temperature kelvin K

Amount of substance mole mol

Luminous intensity candela cd

Table 1.3-2 Derived Units in SI

QUANTITY UNIT NAME FORMULA SYMBOL

Acceleration — linear meter per second per second m/s2

Velocity — linear meter per second m/s

Frequency hertz s�1 Hz

Force newton kg � m/s2 N

Pressure or stress pascal N/m2 Pa

Density kilogram per cubic meter kg/m3

Energy or work joule N � m J

Power watt J/s W

Electric charge coulomb A � s C

Electric potential volt W/A V

Electric resistance ohm V/A V

Electric conductance siemens A/V S

Electric capacitance farad C/V F

Magnetic flux weber V � s Wb

Inductance henry Wb/A H

Systems of Units 5



The basic units such as length in meters (m), time in seconds (s), and current in amperes (A) can
be used to obtain the derived units. Then, for example, we have the unit for charge (C) derived from the
product of current and time (A � s). The fundamental unit for energy is the joule (J), which is force times
distance or N � m.

The great advantage of the SI system is that it incorporates a decimal system for relating larger
or smaller quantities to the basic unit. The powers of 10 are represented by standard prefixes given in
Table 1.3-3. An example of the common use of a prefix is the centimeter (cm), which is 0.01 meter.

The decimal multiplier must always accompany the appropriate units and is never written by itself.
Thus, we may write 2500 W as 2.5 kW. Similarly, we write 0.012 A as 12 mA.

EXERCISE 1.3-1 Which of the three currents, i1¼ 45 mA, i2¼ 0.03 mA, and i3¼ 25 � 10�4 A,
is largest?

Answer: i3 is largest.

Table 1.3-3 SI Prefixes

MULTIPLE PREFIX SYMBOL

1012 tera T

109 giga G

106 mega M

103 kilo k

10�2 centi c

10�3 milli m

10�6 micro m

10�9 nano n

10�12 pico p

10�15 femto f

E X A M P L E 1 . 3 - 1 SI Units

A mass of 150 grams experiences a force of 100 newtons. Find the energy or work expended if the mass moves
10 centimeters. Also, find the power if the mass completes its move in 1 millisecond.

Solution
The energy is found as

energy ¼ force� distance ¼ 100� 0:1 ¼ 10 J

Note that we used the distance in units of meters. The power is found from

power ¼ energy

time period

where the time period is 10�3 s. Thus,

power ¼ 10

10�3 ¼ 104 W ¼ 10 kW

6 1. Electric Circuit Variables



1.4 V o l t a g e

The basic variables in an electrical circuit are current and voltage. These variables
describe the flow of charge through the elements of a circuit and the energy required to
cause charge to flow. Figure 1.4-1 shows the notation we use to describe a voltage.
There are two parts to this notation: a value (perhaps represented by a variable name)
and an assigned direction. The value of a voltage may be positive or negative. The
direction of a voltage is given by its polarities (þ, �). As a matter of vocabulary, we say
that a voltage exists across an element. Figure 1.4-1 shows that there are two ways to
label the voltage across an element. The voltage vba is proportional to the work required to move a
positive charge from terminal a to terminal b. On the other hand, the voltage vab is proportional to the
work required to move a positive charge from terminal b to terminal a. We sometimes read vba as “the
voltage at terminal b with respect to terminal a.” Similarly, vab can be read as “the voltage at terminal a
with respect to terminal b.” Alternatively, we sometimes say that vba is the voltage drop from terminal a
to terminal b. The voltages vab and vba are similar but different. They have the same magnitude but
different polarities. This means that

vab ¼ �vba

When considering vba, terminal b is called the “þ terminal” and terminal a is called the “� terminal.” On
the other hand, when talking about vab, terminal a is called the “þ terminal” and terminal b is called the
“� terminal.”

The voltage across an element is the work (energy) required to move a unit positive charge
from the � terminal to the þ terminal. The unit of voltage is the volt, V.

The equation for the voltage across the element is

v ¼ dw

dq
ð1:4-1Þ

where v is voltage, w is energy (or work), and q is charge. A charge of 1 coulomb delivers an energy of
1 joule as it moves through a voltage of 1 volt.

1.5 P ow e r a n d E n e r g y

The power and energy delivered to an element are of great importance. For example, the useful output
of an electric lightbulb can be expressed in terms of power. We know that a 300-watt bulb delivers more
light than a 100-watt bulb.

Power is the time rate of supplying or receiving power.

Thus, we have the equation

p ¼ dw

dt
ð1:5-1Þ

vba

ba

–

–

+

+ vab

FIGURE 1.4-1 Voltage
across a circuit element.

Power and Energy 7



where p is power in watts, w is energy in joules, and t is time in seconds. The power
associated with the current through an element is

p ¼ dw

dt
¼ dw

dq
� dq

dt
¼ v � i ð1:5-2Þ

From Eq. 1.5-2, we see that the power is simply the product of the voltage across
an element times the current through the element. The power has units of watts.

Two circuit variables are assigned to each element of a circuit: a voltage and a
current. Figure 1.5-1 shows that there are two different ways to arrange the direction
of the current and the polarity of the voltage. In Figure 1.5-1a, the current is directed
from the þ toward the � of the voltage polarity. In contrast, in Figure 1.5-1b, the
current is directed from the � toward the þ of the voltage polarity.

First, consider Figure 1.5-1a. When the current enters the circuit element at the
þ terminal of the voltage and exits at the � terminal, the voltage and current are said to
“adhere to the passive convention.” In the passive convention, the voltage pushes a
positive charge in the direction indicated by the current. Accordingly, the power
calculated by multiplying the element voltage by the element current

p ¼ vi

is the power received by the element. (This power is sometimes called “the power absorbed by the
element” or “the power dissipated by the element.”) The power received by an element can be either
positive or negative. This will depend on the values of the element voltage and current.

Next, consider Figure 1.5-1b. Here the passive convention has not been used. Instead, the current
enters the circuit element at the � terminal of the voltage and exits at the þ terminal. In this case, the
voltage pushes a positive charge in the direction opposite to the direction indicated by the current.
Accordingly, when the element voltage and current do not adhere to the passive convention, the power
calculated by multiplying the element voltage by the element current is the power supplied by the
element. The power supplied by an element can be either positive or negative, depending on the values
of the element voltage and current.

The power received by an element and the power supplied by that same element are related by

power received ¼ �power supplied

The rules for the passive convention are summarized in Table 1.5-1. When the element voltage
and current adhere to the passive convention, the energy received by an element can be determined

+      v (t )     −i (t )

a b

(a)

−      v (t )     +i (t )

a b

(b)

FIGURE 1.5-1 (a) The element
voltage and current adhere to the
passive convention. (b) The
element voltage and current do
not adhere to the passive
convention.

Table 1.5-1 Power Received or Supplied by an Element

POWER RECEIVED BY AN ELEMENT POWER SUPPLIED BY AN ELEMENT

ba

+ –v

i
ba

+– v

i

Because the reference directions of
v and i adhere to the passive
convention, the power

p ¼ vi

is the power received by the

element.

Because the reference directions of
v and i do not adhere to the
passive convention, the power

p ¼ vi

is the power supplied by the

element.
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from Eq. 1.5-1 by rewriting it as

dw ¼ p dt ð1:5-3Þ
On integrating, we have

w ¼
Z t

�1
p dt ð1:5-4Þ

If the element only receives power for t � t0 and we let t0 ¼ 0, then we have

w ¼
Z t

0
p dt ð1:5-5Þ

E X A M P L E 1 . 5 - 1 Electrical Power and Energy

v+ –

i
FIGURE 1.5-2 The element
considered in Example 1.5-1.

Let us consider the element shown in Figure 1.5-2 when v¼ 8 V and i¼ 25 mA. Find the power received by the
element and the energy received during a 10-ms interval.

Solution
In Figure 1.5-2 the current i and voltage v adhere to the passive convention. Consequently the power

p ¼ vi ¼ 8 (0:025) ¼ 0:2 W ¼ 200 mW

is the power received by the circuit element. Next, the energy received by the element is

w ¼
Z t

0
p dt ¼

Z 0:010

0
0:2 dt ¼ 0:2(0:010) ¼ 0:002 J ¼ 2 mJ

E X A M P L E 1 . 5 - 2 Electrical Power and the Passive Convention

+    vab = 4 V   −i = 2 A

−  vba = −4 V   +

a b
FIGURE 1.5-3 The element
considered in Example 1.5-2.

Consider the element shown in Figure 1.5-3. The current i and voltage vab adhere to the passive convention, so

i � vab ¼ 2 � �4ð Þ ¼ �8 W

is the power received by this element. The current i and voltage vba do not adhere to the passive convention, so

i � vba ¼ 2 � 4ð Þ ¼ 8 W

is the power supplied by this element. As expected

power received ¼ �power supplied

Power and Energy 9



EXERCISE 1.5-1 Figure E 1.5-1 shows four circuit elements identified by the letters A, B, C,
and D.

(a) Which of the devices supply 12 W?

(b) Which of the devices absorb 12 W?

E X A M P L E 1 . 5 - 3 Power, Energy, and the Passive Convention

Consider the circuit shown in Figure 1.5-4 with v(t)¼ 12e�8t V and i(t)¼ 5e�8t A for t� 0. Both v(t) and i(t) are
zero for t< 0. Find the power supplied by this element and the energy supplied by the element over the first 100 ms
of operation.

−      v (t )     +i (t )

a b FIGURE 1.5-4 The element considered in Example 1.5-3.

Solution
The power

p(t) ¼ v(i) i(t) ¼ 12e�8t
� �

5e�8t
� � ¼ 60e�16t W

is the power supplied by the element because v(t) and i(t) do not adhere to the passive convention. This element is
supplying power to the charge flowing through it.

The energy supplied during the first 100 ms ¼ 0.1 seconds is

w(0:1) ¼
Z 0:1

0
p dt ¼

Z 0:1

0
60e�16t
� �

dt

¼ 60
e�16t

�16

����
0:1

0

¼ � 60

16
e�1:6 � 1
� � ¼ 3:75 1� e�1:6

� � ¼ 2:99 J

E X A M P L E 1 . 5 - 4 Energy in a Thunderbolt

The average current in a typical lightning thunderbolt is 2� 104 A, and its typical duration is 0.1 s (Williams,
1988). The voltage between the clouds and the ground is 5� 108 V. Determine the total charge transmitted to the
earth and the energy released.

Solution
The total charge is

Q ¼
Z 0:1

0
i tð Þ dt ¼

Z 0:1

0
2� 104 dt ¼ 2� 103 C

The total energy released is

w ¼
Z 0:1

0
i tð Þ � v tð Þ dt ¼

Z 0:1

0
2� 104
� �

5� 108
� �

dt ¼ 1012 J ¼ 1 TJ

Try it 
yourself 

in WileyPLUS
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(c) What is the value of the power received by device B?

(d) What is the value of the power delivered by device B?

(e) What is the value of the power delivered by device D?

(A)

+ 4 V

3 A

–

(B)

– 2 V

6 A

(C)

++ 6 V

2 A

–

(D)

– 3 V

4 A

+

FIGURE E 1.5-1

Answers: (a) B and C, (b) A and D, (c) �12 W, (d) 12 W, (e) �12 W

1.6 C i r c u i t A n a l y s i s a n d D e s i g n

The analysis and design of electric circuits are the primary activities described in this book and are key
skills for an electrical engineer. The analysis of a circuit is concerned with the methodical study of a
given circuit designed to obtain the magnitude and direction of one or more circuit variables, such as a
current or voltage.

The analysis process begins with a statement of the problem and usually includes a given circuit model.
The goal is to determine the magnitude and direction of one or more circuit variables, and the final task is to
verify that the proposed solution is indeed correct. Usually, the engineer first identifies what is known and the
principles that will be used to determine the unknown variable.

The problem-solving method that will be used throughout this book is shown in Figure 1.6-1.
Generally, the problem statement is given. The analysis process then moves sequentially through
the five steps shown in Figure 1.6-1. First, we describe the situation and the assumptions. We also
record or review the circuit model that is provided. Second, we state the goals and requirements, and we

CorrectIncorrect

State the problem.

Describe the situation and
the assumptions.

State the goals and
requirements.

Generate a plan to obtain
a solution of the problem.

Act on the plan.

Communicate the solution.

Verify that the proposed
solution is indeed correct.

Problem

Situation

Goal

Plan

Act

Verify

Solution
FIGURE 1.6-1 The problem-solving method.
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normally record the required circuit variable to be determined. The third step is to create a plan that will
help obtain the solution of the problem. Typically, we record the principles and techniques that pertain
to this problem. The fourth step is to act on the plan and carry out the steps described in the plan. The
final step is to verify that the proposed solution is indeed correct. If it is correct, we communicate this
solution by recording it in writing or by presenting it verbally. If the verification step indicates that the
proposed solution is incorrect or inadequate, then we return to the plan steps, reformulate an improved
plan, and repeat steps 4 and 5.

To illustrate this analytical method, we will consider an example. In Example 1.6-1, we use the
steps described in the problem-solving method of Figure 1.6-1.

E X A M P L E 1 . 6 - 1 The Formal Problem-Solving Method

An experimenter in a lab assumes that an element is absorbing power and uses a voltmeter and ammeter to measure
the voltage and current as shown in Figure 1.6-2. The measurements indicate that the voltage is v¼þ12 V and the
current is i¼�2 A. Determine whether the experimenter’s assumption is correct.

Describe the Situation and the Assumptions: Strictly speaking, the element is absorbing power. The value
of the power absorbed by the element may be positive or zero or negative. When we say that someone “assumes that
an element is absorbing power,” we mean that someone assumes that the power absorbed by the element is positive.

The meters are ideal. These meters have been connected to the element in such a way as to measure the
voltage labeled v and the current labeled i. The values of the voltage and current are given by the meter readings.

State the Goals: Calculate the power absorbed by the element to determine whether the value of the power
absorbed is positive.

Generate a Plan: Verify that the element voltage and current adhere to the passive convention. If so, the
power absorbed by the device is p¼ vi. If not, the power absorbed by the device is p¼�vi.

Act on the Plan: Referring to Table 1.5-1, we see that the element voltage and current do adhere to the
passive convention. Therefore, power absorbed by the element is

p ¼ vi ¼ 12 � �2ð Þ ¼ �24 W

The value of the power absorbed is not positive.
Verify the Proposed Solution: Let’s reverse the ammeter probes as shown in Figure 1.6-3. Now the

ammeter measures the current i1 rather than the current i, so i1¼ 2 A and v¼ 12 V. Because i1 and v do not adhere to
the passive convention, p¼ i1 � v¼ 24 W is the power supplied by the element. Supplying 24 W is equivalent to
absorbing �24 W, thus verifying the proposed solution.

Voltmeter

1 2 . 0

Ammeter

i

v+ –

Element

– 2 . 0

FIGURE 1.6-2 An element with a voltmeter and ammeter.

Voltmeter

1 2 . 0

Ammeter

i1

v+ –

Element

2 . 0 0

FIGURE 1.6-3 The circuit from Figure 1.6-2 with the ammeter
probes reversed.
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Design is a purposeful activity in which a designer visualizes a desired outcome. It is the process
of originating circuits and predicting how these circuits will fulfill objectives. Engineering design is the
process of producing a set of descriptions of a circuit that satisfy a set of performance requirements and
constraints.

The design process may incorporate three phases: analysis, synthesis, and evaluation. The first
task is to diagnose, define, and prepare—that is, to understand the problem and produce an explicit
statement of goals; the second task involves finding plausible solutions; the third concerns judging the
validity of solutions relative to the goals and selecting among alternatives. A cycle is implied in which
the solution is revised and improved by reexamining the analysis. These three phases are part of a
framework for planning, organizing, and evolving design projects.

Design is the process of creating a circuit to satisfy a set of goals.

The problem-solving process shown in Figure 1.6-1 is used in Design Examples included in each
chapter.

1.7 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the specifica-
tions have been satisfied. In addition, computer output must be reviewed to guard against data-entry
errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able quickly to identify
those solutions that need more work.

This text includes some examples that illustrate techniques useful for checking the solutions of
the particular problems discussed in that chapter. At the end of each chapter, some problems are
presented that provide an opportunity to practice these techniques.

E X A M P L E 1 . 7 - 1 How Can We Check Power and the Passive Convention?

A laboratory report states that the measured values of v and i for the circuit element
shown in Figure 1.7-1 are �5 V and 2 A, respectively. The report also states that the
power absorbed by the element is 10 W. How can we check the reported value of the
power absorbed by this element?

Solution
Does the circuit element absorb �10 W or þ10 W? The voltage and current shown in Figure 1.7-1 do not adhere to
the passive sign convention. Referring to Table 1.5-1, we see that the product of this voltage and current is the
power supplied by the element rather than the power absorbed by the element.

Then the power supplied by the element is

p ¼ vi ¼ �5ð Þ 2ð Þ ¼ �10W

The power absorbed and the power supplied by an element have the same magnitude but the opposite sign. Thus,
we have verified that the circuit element is indeed absorbing 10 W.

– +

i

v

FIGURE 1.7-1 A circuit
element with measured
voltage and current.

How Can We Check . . . ? 13



1 . 8 D E S I G N E X A M P L E Jet Valve Controller

A small, experimental space rocket uses a two-
element circuit, as shown in Figure 1.8-1, to
control a jet valve from point of liftoff at t¼ 0
until expiration of the rocket after one minute.
The energy that must be supplied by element 1
for the one-minute period is 40 mJ. Element 1 is a
battery to be selected.

It is known that i(t)¼De�t/60 mA for t� 0,
and the voltage across the second element is v2(t)¼
Be�t/60 V for t� 0. The maximum magnitude
of the current, D, is limited to 1 mA. Determine
the required constants D and B and describe the
required battery.

Describe the Situation and the Assumptions
1. The current enters the plus terminal of the second element.

2. The current leaves the plus terminal of the first element.

3. The wires are perfect and have no effect on the circuit (they do not absorb energy).

4. The model of the circuit, as shown in Figure 1.8-1, assumes that the voltage across the two elements is
equal; that is, v1¼ v2.

5. The battery voltage v1 is v1¼Be�t/60 V where B is the initial voltage of the battery that will
discharge exponentially as it supplies energy to the valve.

6. The circuit operates from t¼ 0 to t¼ 60 s.

7. The current is limited, so D � 1 mA.

State the Goal
Determine the energy supplied by the first element for the one-minute period and then select the constants D and B.
Describe the battery selected.

Generate a Plan
First, find v1(t) and i(t) and then obtain the power, p1(t), supplied by the first element. Next, using p1(t), find the
energy supplied for the first 60 s.

GOAL EQUATION NEED INFORMATION

The energy w1 for the
first 60 s w1 ¼

Z 60

0
p1 tð Þ dt p1(t)

v1 and i known except for
constants D and B

Act on the Plan
First, we need p1(t), so we first calculate

p1 tð Þ ¼ iv1 ¼ De�t/60 � 10�3 A
� �

Be�t/60 V
� �

¼ DBe�t/30 � 10�3 W ¼ DBe�t/30 mW

i

v1 v2

Wire

Wire

Element
1

Element
2

+ +

– –

Jet value
controller

FIGURE 1.8-1 The circuit to control
a jet valve for a space rocket.
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1.9 SUMMARY
Charge is the intrinsic property of matter responsible for
electric phenomena. The current in a circuit element is the
rate of movement of charge through the element. The voltage
across an element indicates the energy available to cause
charge to move through the element.
Given the current, i, and voltage, v, of a circuit element, the
power, p, and energy, w, are given by

p ¼ v � i and w ¼
Z t

0
pdt

Table 1.5-1 summarizes the use of the passive convention
when calculating the power supplied or received by a circuit
element.
The SI units (Table 1.3-1) are used by today’s engineers and
scientists. Using decimal prefixes (Table 1.3-3), we may
simply express electrical quantities with a wide range of
magnitudes.

Second, we need to find w1 for the first 60 s as

w1 ¼
Z 60

0
DBe�t/30 � 10�3
� �

dt ¼ DB � 10�3e�t=30

�1=30

����
60

0

¼ �30DB � 10�3 e�2 � 1ð Þ ¼ 25:9DB � 10�3 J

Because we require w1� 40 mJ,

40 � 25:9DB

Next, select the limiting value, D¼ 1, to get

B � 40

25; :9ð Þ 1ð Þ ¼ 1:54 V

Thus, we select a 2-V battery so that the magnitude of the current is less than 1 mA.

Verify the Proposed Solution
We must verify that at least 40 mJ is supplied using the 2-V battery. Because i¼ e�t/60 mA and v2¼ 2e�t/60 V, the
energy supplied by the battery is

w ¼
Z 60

0
2e�t/60
� �

e�t/60 � 10�3
� �

dt ¼
Z 60

0
2e�t/30 � 10�3 dt ¼ 51:8 mJ

Thus, we have verified the solution, and we communicate it by recording the requirement for a 2-V battery.

PROBLEMS

Section 1.2 Electric Circuits and Current

P 1.2-1 The total charge that has entered a circuit element
is q(t)¼ 1.25(1�e�5t) when t� 0 and q(t)¼ 0 when t< 0.
Determine the current in this circuit element for t� 0.

Answer: i tð Þ ¼ 6:25e�5t A

P 1.2-2 The current in a circuit element is i(t)¼ 4(1�e�5t)
A when t� 0 and i(t)¼ 0 when t< 0. Determine the total
charge that has entered a circuit element for t� 0.

Hint: q 0ð Þ ¼
Z 0

�1
i tð Þ dt ¼

Z 0

�1
0 dt ¼ 0

Answer: q tð Þ ¼ 4t þ 0:8e�5t � 0:8 C for t � 0

P 1.2-3 The current in a circuit element is i(t)¼ 4 sin 5t A
when t� 0 and i(t)¼ 0 when t< 0. Determine the total charge
that has entered a circuit element for t� 0.

Hint: q 0ð Þ ¼
Z 0

�1
i tð Þ dt ¼

Z 0

�1
0 dt ¼ 0

Problem available in WileyPLUS at instructor’s discretion.
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P 1.2-4 The current in a circuit element is

i tð Þ ¼
0 t < 2
2 2 < t < 4
�1 4 < t < 8
0 8 < t

8>><
>>:

where the units of current are A and the units of time are s.
Determine the total charge that has entered a circuit element
for t� 0.

Answer:

q tð Þ ¼
0 t < 2
2t � 4 2 < t < 4
8� t 4 < t < 8
0 8 < t

where the units of

8>><
>>:

charge are C.

P 1.2-5 The total charge q(t), in coulombs, that enters the
terminal of an element is

q tð Þ ¼
0 t < 0
2t 0 � t � 2
3þ e�2 t�2ð Þ t > 2

8<
:

Find the current i(t) and sketch its waveform for t� 0.

P 1.2-6 An electroplating bath, as shown in Figure P 1.2-
6, is used to plate silver uniformly onto objects such as kitchen-
ware and plates. A current of 450 A flows for 20 minutes, and
each coulomb transports 1.118 mg of silver. What is the weight
of silver deposited in grams?

Silver bar
Object to 
be plated

Bath

i i

Figure P 1.2-6 An electroplating bath.

P 1.2-7 Find the charge q(t) and sketch its waveform when the
current entering a terminal of an element is as shown in Figure
P 1.2-7. Assume that q(t)¼ 0 for t< 0.

1

1 2 3

2

3

i (A)

4 t (s)

Figure P 1.2-7

Section 1.3 Systems of Units

P 1.3-1 A constant current of 3.2 mA flows through an
element. What is the charge that has passed through the element
in the first millisecond?

Answer: 3.2 nC

P 1.3-2 A charge of 45 nC passes through a circuit
element during a particular interval of time that is 5 ms in
duration. Determine the average current in this circuit element
during that interval of time.

Answer: i¼ 9 mA

P 1.3-3 Ten billion electrons per second pass through a
particular circuit element. What is the average current in that
circuit element?

Answer: i¼ 1.602 nA

P 1.3-4 Thechargeflowing ina wire isplotted inFigureP1.3-4.
Sketch the corresponding current.

2 4

15

7

q (t), nC

t, ms

Figure P 1.3-4

P 1.3-5 The current in a circuit element is plotted in Figure
P 1.3-5. Sketch the corresponding charge flowing through the
element for t > 0.

80 140

–450

–600

i (t), mA

t, ms

Figure P 1.3-5

P 1.3-6 The current in a circuit element is plotted in Figure
P 1.3-6. Determine the total charge that flows through the
circuit element between 300 and 1200 ms.
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720

–720

400 800 1200

i (t), nA

t, μs

Figure P 1.3-6

Section 1.5 Power and Energy

P 1.5-1 Figure P 1.5-1 shows four circuit elements
identified by the letters A, B, C, and D.

(a) Which of the devices supply 30 mW?
(b) Which of the devices absorb 0.03 W?
(c) What is the value of the power received by device B?
(d) What is the value of the power delivered by device B?
(e) What is the value of the power delivered by device C?

(A)

+ 10 V

3 mA

–

(B)

+ 5 V

6 mA

–

(C)

– 6 V

5 mA

+

(D)

– 15 V

2 mA

+

Figure P 1.5-1

P 1.5-2 An electric range has a constant current of 10 A
entering the positive voltage terminal with a voltage of 110 V. The
range is operated for two hours. (a) Find the charge in coulombs
that passes through the range. (b) Find the power absorbed by the
range. (c) If electric energy costs 12 cents per kilowatt-hour,
determine the cost of operating the range for two hours.

P 1.5-3 A walker’s cassette tape player uses four AA
batteries in series to provide 6 V to the player circuit. The
four alkaline battery cells store a total of 200 watt-seconds of
energy. If the cassette player is drawing a constant 10 mA
from the battery pack, how long will the cassette operate at
normal power?

P 1.5-4 The current through and voltage across an element
vary with time as shown in Figure P 1.5-4. Sketch the power
delivered to the element for t> 0. What is the total energy
delivered to the element between t¼ 0 and t¼ 25 s? The
element voltage and current adhere to the passive convention.

5

30

100 2515 t (s)

v (volts)

(a)

5

30

100 2515 t (s)

i (amp)

(b)

Figure P 1.5-4 (a) Voltage v(t) and (b) current i(t) for an element.

P 1.5-5 An automobile battery is charged with a constant
current of 2 A for five hours. The terminal voltage of the battery
is v¼ 11þ 0.5t V for t> 0, where t is in hours. (a) Find the
energy delivered to the battery during the five hours. (b) If
electric energy costs 15 cents/kWh, find the cost of charging the
battery for five hours.

Answer: (b) 1.84 cents

P 1.5-6 Find the power, p(t), supplied by the element
shown in Figure P 1.5-6 when v(t)¼ 4 cos 3t V and

i tð Þ ¼ sin 3t

12
A. Evaluate p(t) at t¼ 0.5 s and at t¼ 1 s.

Observe that the power supplied by this element has a positive
value at some times and a negative value at other times.

Hint: sin atð Þ cos btð Þ ¼ 1
2

sin a þ bð Þt þ sin a � bð Þtð Þ
Answer:

p tð Þ ¼ 1

6
sin 6t W; p 0:5ð Þ ¼ 0:0235 W; p 1ð Þ ¼ �0:0466 W

i

v

+

–

Figure P 1.5-6 An element.

P 1.5-7 Findthepower,p(t), suppliedbytheelement shown
in Figure P 1.5-6 when v(t)¼ 8 sin 3t V and i(t)¼ 2 sin 3t A.

Hint: sin atð Þ sin btð Þ ¼ 1

2
cos a � bð Þt � cos a þ bð Þtð Þ

Answer: p tð Þ ¼ 8 � 8cos 6t W
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P 1.5-8 Find the power, p(t), supplied by the element
shown in Figure P 1.5-6. The element voltage is represented
as v(t)¼ 4(1�e�2t)V when t� 0 and v(t)¼ 0 when t< 0. The
element current is represented as i(t)¼ 2e�2t A when t� 0
and i(t)¼ 0 when t< 0.

Answer: p tð Þ ¼ 8 1 � e�2tð Þe�2t W

P 1.5-9 The battery of a flashlight develops 3 V, and the
current through the bulb is 200 mA. What power is absorbed by the
bulb? Find the energy absorbed by the bulb in afive-minute period.

P 1.5-10 Medical researchers studying hypertension often use
a technique called “2D gel electrophoresis” to analyze the
protein content of a tissue sample. An image of a typical “gel”
is shown in Figure P1.5-10a.

The procedure for preparing the gel uses the electric circuit
illustrated in Figure 1.5-10b. The sample consists of a gel and a
filter paper containing ionized proteins. A voltage source causes a
large, constant voltage, 500 V, across the sample. The large,
constant voltage moves the ionized proteins from the filter paper
to the gel. The current in the sample is given by

i tð Þ ¼ 2þ 30e�at mA

where t is the time elapsed since the beginning of the procedure
and the value of the constant a is

a ¼ 0:85
1

hr
Determine the energy supplied by the voltage source when the
gel preparation procedure lasts 3 hours.

+ 500 V

500 V

–

sample

i (t)

(b)

(a)
Devon Svoboda, Queen’s University

Figure P 1.5-10 (a) An image of a gel and (b) the electric circuit
used to prepare gel.

Section 1.7 How CanWe Check . . . ?

P 1.7-1 Conservation of energy requires that the sum of
the power received by all of the elements in a circuit be zero.
Figure P 1.7-1 shows a circuit. All of the element voltages and

currents are specified. Are these voltage and currents correct?
Justify your answer.

Hint:Calculate the power received by each element. Add up
all of these powers. If the sum is zero, conservation of energy
is satisfied and the voltages and currents are probably
correct. If the sum is not zero, the element voltages and
currents cannot be correct.

++ –

–

2 A

2 A 3 A 5 A

–5 A

4 V

+– 5 V

3 V

+

–

–2 V

+ –1 V

Figure P 1.7-1

P 1.7-2 Conservation of energy requires that the sum of
the power received by all of the elements in a circuit be zero.
Figure P 1.7-2 shows a circuit. All of the element voltages and
currents are specified. Are these voltage and currents correct?
Justify your answer.

Hint:Calculate the power received by each element. Add up
all of these powers. If the sum is zero, conservation of energy
is satisfied and the voltages and currents are probably
correct. If the sum is not zero, the element voltages and
currents cannot be correct. +

+

–

–

3 A 2 A

2 A

–3 A

–3 A

3 A4 V

3 V

+

–

–3 V

+

–

3 V

+

–

3 V

+ –4 V

Figure P 1.7-2

P 1.7-3 The element currents and voltages shown in
Figure P 1.7-3 are correct with one exception: the reference
direction of exactly one of the element currents is reversed.
Determine which reference direction has been reversed.

a

d

c
b

–5A5V

−2A

–  1V  + –  2V  +

−6V 2A

4A

7A −8V

–3A

+ +

+

+

–

– –

– 3V

Figure P 1.7-3
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Design Problems

DP 1-1 A particular circuit element is available in three grades.
Grade A guarantees that the element can safely absorb 1=2 W
continuously. Similarly, Grade B guarantees that 1=4 W can be
absorbed safely, and Grade C guarantees that 1=8 W can be
absorbed safely. As a rule, elements that can safely absorb more
power are also more expensive and bulkier.

The voltage across an element is expected to be about
20 V, and the current in the element is expected to be about
8 mA. Both estimates are accurate to within 25 percent. The
voltage and current reference adhere to the passive convention.

Specify the grade of this element. Safety is the most
important consideration, but don’t specify an element that is
more expensive than necessary.

DP 1-2 The voltage across a circuit element is v(t)¼ 20 (1�e�8t)
V when t� 0 and v(t)¼ 0 when t< 0. The current in this element is
i(t)¼ 30e�8t mA when t� 0 and i(t)¼ 0 when t< 0. The element
current and voltage adhere to the passive convention. Specify the
power that this device must be able to absorb safely.

Hint: Use MATLAB, or a similar program, to plot the power.

Design Problems 19



CHAPTER 2 Circuit Elements

I N T H I S C H A P T E R
2.1 Introduction
2.2 Engineering and

Linear Models
2.3 Active and Passive

Circuit Elements
2.4 Resistors
2.5 Independent Sources

2.6 Voltmeters and
Ammeters

2.7 Dependent Sources
2.8 Transducers
2.9 Switches

2.10 How Can We
Check . . . ?

2.11 DESIGN
EXAMPLE—
Temperature Sensor

2.12 Summary
Problems
Design Problems

2.1 I n t r o d u c t i o n

Not surprisingly, the behavior of an electric circuit depends on the behaviors of the individual
circuit elements that comprise the circuit. Of course, different types of circuit elements behave
differently. The equations that describe the behaviors of the various types of circuit elements are
called the constitutive equations. Frequently, the constitutive equations describe a relationship
between the current and voltage of the element. Ohm’s law is a well-known example of a constitutive
equation.

In this chapter, we will investigate the behavior of several common types of circuit
element:

� Resistors.
� Independent voltage and current sources.
� Open circuits and short circuits.
� Voltmeters and ammeters.
� Dependent sources.
� Transducers.
� Switches.

2.2 E n g i n e e r i n g a n d L i n e a r M o d e l s

The art of engineering is to take a bright idea and, using money, materials, knowledgeable people,
and a regard for the environment, produce something the buyer wants at an affordable price.

Engineers use models to represent the elements of an electric circuit. A model is a description
of those properties of a device that we think are important. Frequently, the model will consist of
an equation relating the element voltage and current. Though the model is different from the electric
device, the model can be used in pencil-and-paper calculations that will predict how a circuit composed
of actual devices will operate. Engineers frequently face a trade-off when selecting a model for a
device. Simple models are easy to work with but may not be accurate. Accurate models are usually more
complicated and harder to use. The conventional wisdom suggests that simple models be used first. The
results obtained using the models must be checked to verify that use of these simple models is
appropriate. More accurate models are used when necessary.20



The idealized models of electric devices are precisely defined. It is important to distinguish
between actual devices and their idealized models, which we call circuit elements. The goal of circuit
analysis is to predict the quantitative electrical behavior of physical circuits. Its aim is to predict and to
explain the terminal voltages and terminal currents of the circuit elements and thus the overall operation
of the circuit.

Models of circuit elements can be categorized in a variety of ways. For example, it is
important to distinguish linear models from nonlinear models because circuits that consist
entirely of linear circuit elements are easier to analyze than circuits that contain some
nonlinear elements.

An element or circuit is linear if the element’s excitation and response satisfy certain
properties. Consider the element shown in Figure 2.2-1. Suppose that the excitation is the
current i and the response is the voltage v. When the element is subjected to a current i1, it
provides a response v1. Furthermore, when the element is subjected to a current i2, it
provides a response v2. For a linear element, it is necessary that the excitation i1 þ i2 result
in a response v1 þ v2. This is usually called the principle of superposition.

Also, multiplying the input of a linear device by a constant must have the consequence
of multiplying the output by the same constant. For example, doubling the size of the input causes
the size of the output to double. This is called the property of homogeneity. An element is linear if,
and only if, the properties of superposition and homogeneity are satisfied for all excitations
and responses.

A linear element satisfies the properties of both superposition and homogeneity.

Let us restate mathematically the two required properties of a linear circuit, using the arrow
notation to imply the transition from excitation to response:

i ! v

Then we may state the two properties required as follows.
Superposition:

i1 ! v1
i2 ! v2

then i1 þ i2 ! v1 þ v2 ð2:2-1Þ
Homogeneity:

i ! v

then ki ! kv ð2:2-2Þ

A device that does not satisfy either the superposition or the homogeneity principle is said to be
nonlinear.

+
v

i

–

FIGURE 2.2-1
An element with an
excitation current i and a
response v.

E X A M P L E 2 . 2 - 1 A Linear Device

Consider the element represented by the relationship between current and voltage as

v ¼ Ri

Determine whether this device is linear.

Engineering and Linear Models 21



Solution
The response to a current i1 is v1 ¼ Ri1

The response to a current i2 is v2 ¼ Ri2

The sum of these responses is

v1 þ v2 ¼ Ri1 þ Ri2 ¼ R i1 þ i2ð Þ

Because the sum of the responses to i1 and i2 is equal to the response to i1 þ i2, the principle of superposition is
satisfied. Next, consider the principle of homogeneity. Because

v1 ¼ Ri1

we have for an excitation i2 ¼ ki1

v2 ¼ Ri2 ¼ Rki1

Therefore, v2 ¼ kv1

satisfies the principle of homogeneity. Because the element satisfies the properties of both superposition and
homogeneity, it is linear.

E X A M P L E 2 . 2 - 2 A Nonlinear Device

Now let us consider an element represented by the relationship between current and voltage:

v ¼ i 2

Determine whether this device is linear.

Solution
The response to a current i1 is v1 ¼ i 2

1

The response to a current i2 is v2 ¼ i 2
1

The sum of these responses is

v1 þ v2 ¼ i 2
1 þ i 2

1

The response to i1 þ i2 is

i1 þ i2ð Þ2 ¼ i 2
1 þ 2i1i2 þ i 2

1

Because
i1
2 þ i 2

1 6¼ i1 þ i2ð Þ2

the principle of superposition is not satisfied. Therefore, the device is nonlinear.
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2.3 A c t i v e a n d P a s s i v e C i r c u i t E l em e n t s

We may classify circuit elements in two categories, passive and active, by determining whether they absorb
energy or supply energy. An element is said to be passive if the total energy delivered to it from the rest of
the circuit is always nonnegative (zero or positive). Then for a passive element, with the current flowing
into the þ terminal as shown in Figure 2.3-1a, this means that

E X A M P L E 2 . 2 - 3 A Model of a Linear Device

A linear element has voltage v and current i as shown in Figure 2.2-2a. Values of the current i and corresponding
voltage v have been tabulated as shown in Figure 2.2-2b. Represent the element by an equation that expresses v as a
function of i. This equation is a model of the element. Use the model to predict the value of v corresponding to a
current of i ¼ 100 mA and the value of i corresponding to a voltage of v ¼ 18 V.

Solution
Figure 2.2-3 is a plot of the voltage v versus the current i. The points marked by dots represent corresponding values
of v and i from the rows of the table in Figure 2.2-2b. Because the circuit element is linear, we expect these points to
lie on a straight line, and indeed they do. We can represent the straight line by the equation

v ¼ mi þ b

where m is the slope and b is the v-intercept. Noticing that the straight line passes through the origin, v ¼ 0 when
i ¼ 0, we see that b ¼ 0. We are left with

v ¼ mi

The slope m can be calculated from the data in any two rows of the table in Figure 2.2-2b. For example:

11:25� 4:5

25� 10
¼ 0:45

V

mA
;
22:5� 11:25

50� 25
¼ 0:45

V

mA
; and

22:5� 4:5

50� 10
¼ 0:45

V

mA

Consequently,

m ¼ 0:45
V

mA
¼ 450

V

A

and

v ¼ 450i

This equation is a model of the linear element. It predicts that the voltage v ¼ 450 0:1ð Þ ¼ 45 V corresponds to the
current i ¼ 100 mA ¼ 0:1 A and that the current i ¼ 18=450 ¼ 0:04 A ¼ 40 mA corresponds to the voltage
v ¼ 18 V.

v, V i, mA

4.5
11.25
22.5

10
25
50

–

+

v

i

(a) (b)

FIGURE 2.2-2 (a) A linear circuit element and (b) a tabulation
of corresponding values of its voltage and current.

v, V

i, mA

30

20

10

10 25 50

FIGURE 2.2-3 A plot of voltage versus current for the linear
element from Figure 2.2-2.
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w ¼
Z t

�1
vi dt � 0 ð2:3-1Þ

for all values of t.

A passive element absorbs energy.

An element is said to be active if it is capable of delivering energy. Thus, an active element violates
Eq. 2.3-1 when it is represented by Figure 2.3-1a. In other words, an active element is one that is capable of
generating energy. Active elements are potential sources of energy, whereas passive elements are sinks or
absorbers of energy. Examples of active elements include batteries and generators. Consider the element
shown in Figure 2.3-1b. Note that the current flows into the negative terminal and out of the positive
terminal. This element is said to be active if

w ¼
Z t

�1
vi dt � 0 ð2:3-2Þ

for at least one value of t.

An active element is capable of supplying energy.

+

v

+

v

i

i

Exit
node

Exit
node

Entry
node

Entry
node

(b)(a)

– –
FIGURE 2.3-1 (a) The entry node of the current i is the positive node of the voltage v;
(b) the entry node of the current i is the negative node of the voltage v. The current flows from
the entry node to the exit node.

E X A M P L E 2 . 3 - 1 An Active Circuit Element

A circuit has an element represented by Figure 2.3-1b where the current is a constant 5 A and the voltage is a
constant 6 V. Find the energy supplied over the time interval 0 to T.

Solution
Because the current enters the negative terminal, the energy supplied by the element is given by

w ¼
Z T

0
6ð Þ 5ð Þdt ¼ 30T J

Thus, the device is a generator or an active element, in this case a dc battery.
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2.4 R e s i s t o r s

The ability of a material to resist the flow of charge is called its resistivity, r. Materials that are good
electrical insulators have a high value of resistivity. Materials that are good conductors of electric
current have low values of resistivity. Resistivity values for selected materials are given in Table 2.4-1.
Copper is commonly used for wires because it permits current to flow relatively unimpeded. Silicon is
commonly used to provide resistance in semiconductor electric circuits. Polystyrene is used as an
insulator.

Resistance is the physical property of an element or device that impedes the flow of current; it
is represented by the symbol R.

Georg Simon Ohm was able to show that the current in a circuit composed of a battery
and a conducting wire of uniform cross-section could be expressed as

i ¼ Av

rL
ð2:4-1Þ

where A is the cross-sectional area, r the resistivity, L the length, and v the voltage across the
wire element. Ohm, who is shown in Figure 2.4-1, defined the constant resistance R as

R ¼ rL

A
ð2:4-2Þ

Ohm’s law, which related the voltage and current, was published in 1827 as

v ¼ Ri ð2:4-3Þ
The unit of resistance R was named the ohm in honor of Ohm and is usually abbreviated by the
V (capital omega) symbol, where 1 V ¼ 1 V/A. The resistance of a 10-m length of common
TV cable is 2 mV.

An element that has a resistance R is called a resistor. A resistor is represented by the
two-terminal symbol shown in Figure 2.4-2. Ohm’s law, Eq. 2.4-3, requires that the i-versus-v
relationship be linear. As shown in Figure 2.4-3, a resistor may become nonlinear outside its
normal rated range of operation. We will assume that a resistor is linear unless stated
otherwise. Thus, we will use a linear model of the resistor as represented by Ohm’s law.

In Figure 2.4-4, the element current and element voltage of a resistor are labeled. The
relationship between the directions of this current and voltage is important. The voltage
direction marks one resistor terminal þ and the other �. The current ia flows from the terminal
marked þ to the terminal marked �. This relationship between the current and voltage
reference directions is a convention called the passive convention. Ohm’s law states that when
the element voltage and the element current adhere to the passive convention, then

v ¼ Ria ð2:4-4Þ

Table 2.4-1 Resistivities of SelectedMaterials

MATERIAL RESISTIVITY r (OHM.CM)

Polystyrene 1 � 1018

Silicon 2.3 � 105

Carbon 4 � 10�3

Aluminum 2.7 � 10�6

Copper 1.7 � 10�6

FIGURE 2.4-1
Georg Simon Ohm
(1787–1854), who
determined Ohm’s law in
1827. The ohm was
chosen as the unit of
electrical resistance in his
honor.

R

FIGURE 2.4-2 Symbol
for a resistor having a
resistance of R ohms.

Photo by Hulton Archive/
Getty Images
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Consider Figure 2.4-4. The element currents ia and ib are the same except for the assigned direction, so
ia ¼ �ib

The element current ia and the element voltage v adhere to the passive convention,
v ¼ Ria

Replacing ia by �ib gives
v ¼ �Rib

There is a minus sign in this equation because the element current ib and the element voltage v do not
adhere to the passive convention. We must pay attention to the current direction so that we don’t
overlook this minus sign.

Ohm’s law, Eq. 2.4-3, can also be written as

i ¼ Gv ð2:4-5Þ
where G denotes the conductance in siemens (S) and is the reciprocal of R; that is, G ¼ 1=R. Many
engineers denote the units of conductance as mhos with the ℧ symbol, which is an inverted omega (mho is
ohm spelled backward). However, we will use SI units and retain siemens as the units for conductance.

Most discrete resistors fall into one of four basic categories: carbon composition, carbon film,
metal film, or wirewound. Carbon composition resistors have been in use for nearly 100 years and are
still popular. Carbon film resistors have supplanted carbon composition resistors for many general-
purpose uses because of their lower cost and better tolerances. Two wirewound resistors are shown in
Figure 2.4-5.

Carbon composition resistors, as shown in Figure 2.4-6, are used in circuits because of their low
cost and small size. General-purpose resistors are available in standard values for tolerances of 2, 5, 10,
and 20 percent. Carbon composition resistors and some wirewounds have a color code with three to five
bands. A color code is a system of standard colors adopted for identification of the resistance of
resistors. Figure 2.4-7 shows a metal film resistor with its color bands. This is a 1=4-watt resistor,
implying that it should be operated at or below 1=4 watt of power delivered to it. The normal range of
resistors is from less than 1 ohm to 10 megohms. Typical values of some commercially available
resistors are given in Appendix D.

(a) (b)

FIGURE 2.4-5 (a) Wirewound resistor with an
adjustable center tap. (b) Wirewound resistor with a
fixed tap.

0

v

im–
im

FIGURE 2.4-3 A resistor operating
within its specified current range, �
im, can be modeled by Ohm’s law.

–+ v

Ria ib

FIGURE 2.4-4 A resistor with
element current and element
voltage.

Courtesy of Vishay Intertechnology, Inc.
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The power delivered to a resistor (when the passive convention is used) is

p ¼ vi ¼ v
v

R

� �
¼ v2

R
ð2:4-6Þ

Alternatively, because v ¼ iR, we can write the equation for power as

p ¼ vi ¼ iRð Þi ¼ i2R ð2:4-7Þ
Thus, the power is expressed as a nonlinear function of the current i through the resistor or of the voltage
v across it.

E X A M P L E 2 . 4 - 1 Power Dissipated by a Resistor

Let us devise a model for a car battery when the lights are left on and the engine is
off. We have all experienced or seen a car parked with its lights on. If we leave the car
for a period, the battery will run down or go dead. An auto battery is a 12-V constant-
voltage source, and the lightbulb can be modeled by a resistor of 6 ohms. The circuit is
shown in Figure 2.4-8. Let us find the current i, the power p, and the energy supplied by
the battery for a four-hour period.

Solution
According to Ohm’s law, Eq. 2.4-3, we have

v ¼ Ri

Because v ¼ 12 V and R ¼ 6 V, we have i ¼ 2 A.

To find the power delivered by the battery, we use

p ¼ vi ¼ 12 2ð Þ ¼ 24W

Finally, the energy delivered in the four-hour period is

w ¼
Z t

0
pdt ¼ 24t ¼ 24 60� 60� 4ð Þ ¼ 3:46� 105 J

Because the battery has a finite amount of stored energy, it will deliver this energy and eventually be unable to
deliver further energy without recharging. We then say the battery is run down or dead until recharged. A typical
auto battery may store 106 J in a fully charged condition.

R

i

12 V 6 Ω+
–

FIGURE 2.4-8 Model of a
car battery and the headlight
lamp.

FIGURE 2.4-6 Carbon composition resistors.
FIGURE 2.4-7 A 1=4-watt metal film resistor. The body
of the resistor is 6 mm long.

Courtesy of Vishay Intertechnology, Inc.
Courtesy of Hifi Collective.
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EXERCISE 2.4-1 Find the power absorbed by a 100-ohm resistor when it is connected directly
across a constant 10-V source.

Answer: 1-W

EXERCISE 2.4-2 A voltage source v ¼ 10 cos t V is connected across a resistor of 10 ohms. Find
the power delivered to the resistor.

Answer: 10 cos2t W

2.5 I n d e p e n d e n t S o u r c e s

Some devices are intended to supply energy to a circuit. These devices are called sources. Sources are
categorized as being one of two types: voltage sources and current sources. Figure 2.5-1a shows the symbol
that is used to represent a voltage source. The voltage of a voltage source is specified, but the current is
determinedbytherestofthecircuit.Avoltagesourceisdescribedbyspecifyingthefunctionv(t),forexample,

v tð Þ ¼ 12 cos 1000t or v tð Þ ¼ 9 or v tð Þ ¼ 12� 2t

An active two-terminal element that supplies energy to a circuit is a source of energy. An independent
voltage source provides a specified voltage independent of the current through it and is independent of
any other circuit variable.

A source is a voltage or current generator capable of supplying energy to a circuit.

An independent current source provides a current independent of the voltage across the source
element and is independent of any other circuit variable. Thus, when we say a source is independent, we
mean it is independent of any other voltage or current in the circuit.

An independent source is a voltage or current generator not dependent on other circuit
variables.

Suppose the voltage source is a battery and
v tð Þ ¼ 9 volts

The voltage of this battery is known to be 9 volts regardless of the circuit in which the battery is used. In
contrast, the current of the voltage source is not known and depends on the circuit in which the source is
used. The current could be 6 amps when the voltage source is connected to one circuit and 6 milliamps
when the voltage source is connected to another circuit.

Figure 2.5-1b shows the symbol that is used to represent a current source. The current of a current
source is specified, but the voltage is determined by the rest of the circuit. A current source is described
by specifying the function i(t), for example,

i tð Þ ¼ 6 sin 500t or i tð Þ ¼ �0:25 or i tð Þ ¼ t þ 8

A current source specified by i(t) ¼ �0.25 milliamps will have a current of �0.25 milliamps in any
circuit in which it is used. The voltage across this current source will depend on the particular circuit.

The preceding paragraphs have ignored some complexities to give a simple description of the
way sources work. The voltage across a 9-volt battery may not actually be 9 volts. This voltage
depends on the age of the battery, the temperature, variations in manufacturing, and the battery

+

(b)

(a)

+
– v(t)

i(t)

–

v(t) i(t)

FIGURE 2.5-1
(a) Voltage
source.
(b) Current
source.
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current. It is useful to make a distinction between real sources, such as batteries, and the simple
voltage and current sources described in the preceding paragraphs. It would be ideal if the real
sources worked like these simple sources. Indeed, the word ideal is used to make this distinction. The
simple sources described in the previous paragraph are called the ideal voltage source and the ideal
current source.

The voltage of an ideal voltage source is given to be a specified function, say v(t). The
current is determined by the rest of the circuit.

The current of an ideal current source is given to be a specified function, say i(t). The
voltage is determined by the rest of the circuit.

An ideal source is a voltage or a current generator independent of the current through
the voltage source or the voltage across the current source.

Engineers frequently face a trade-off when selecting a model for a device. Simple models are
easy to work with but may not be accurate. Accurate models are usually more complicated and
harder to use. The conventional wisdom suggests that simple models be used first. The results
obtained using the models must be checked to verify that use of these simple models is appropriate.
More accurate models are used when necessary.

E X A M P L E 2 . 5 - 1 A Battery Modeled as a Voltage Source

Consider the plight of the engineer who needs to analyze a circuit containing a 9-volt battery. Is it really necessary
for this engineer to include the dependence of battery voltage on the age of the battery, the temperature, variations
in manufacturing, and the battery current in this analysis? Hopefully not. We expect the battery to act enough like
an ideal 9-volt voltage source that the differences can be ignored. In this case, it is said that the battery is modeled as
an ideal voltage source.

To be specific, consider a battery specified by the plot of voltage versus current shown in Figure 2.5-2a. This
plot indicates that the battery voltage will be v ¼ 9 volts when i � 10 milliamps. As the current increases above 10
milliamps, the voltage decreases from 9 volts. When i � 10 milliamps, the dependence of the battery voltage on the
battery current can be ignored and the battery can be modeled as an ideal voltage source.

+
–

(b)(a)

10 i, mA

9

v, volts

v = 9 V

Battery

i

R

FIGURE 2.5-2 (a) A plot of battery voltage versus
battery current. (b) The battery is modeled as an
independent voltage source.

Suppose a resistor is connected across the terminals of the battery as shown in Figure 2.5-2b. The battery
current will be

i ¼ v

R
ð2:5-1Þ

The relationship between v and i shown in Figure 2.5-2a complicates this equation. This complication can be safely
ignored when i � 10 milliamps. When the battery is modeled as an ideal 9-volt voltage source, the voltage source
current is given by

i ¼ 9

R
ð2:5-2Þ
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The short circuit and open circuit are special cases of ideal sources. A short circuit is
an ideal voltage source having v(t) ¼ 0. The current in a short circuit is determined by the
rest of the circuit. An open circuit is an ideal current source having i(t) ¼ 0. The voltage
across an open circuit is determined by the rest of the circuit. Figure 2.5-3 shows the
symbols used to represent the short circuit and the open circuit. Notice that the power
absorbed by each of these devices is zero.

Open and short circuits can be added to a circuit without disturbing the branch currents
and voltages of all the other devices in the circuit. Figure 2.6-3 shows how this can be done.
Figure 2.6-3a shows an example circuit. In Figure 2.6-3b an open circuit and a short circuit
have been added to this example circuit. The open circuit was connected between two nodes
of the original circuit. In contrast, the short circuit was added by cutting a wire and inserting
the short circuit. Adding open circuits and short circuits to a network in this way does not
change the network.

Open circuits and short circuits can also be described as special cases of resistors.
A resistor with resistance R ¼ 0 (G ¼ 1) is a short circuit. A resistor with conductance
G ¼ 0 (R ¼ 1) is an open circuit.

2.6 V o l tm e t e r s a n d Amme t e r s

Measurements of dc current and voltage are made with direct-reading (analog) or digital meters, as
shown in Figure 2.6-1. A direct-reading meter has an indicating pointer whose angular deflection
depends on the magnitude of the variable it is measuring. A digital meter displays a set of digits
indicating the measured variable value.

To measure a voltage or current, a meter is connected to a circuit, using terminals called probes.
These probes are color coded to indicate the reference direction of the variable being measured.
Frequently, meter probes are colored red and black. An ideal voltmeter measures the voltage from the
red to the black probe. The red terminal is the positive terminal, and the black terminal is the negative
terminal (see Figure 2.6-2b).

An ideal ammeter measures the current flowing through its terminals, as shown in Figure 2.6-2a
and has zero voltage, vm, across its terminals. An ideal voltmeter measures the voltage across
its terminals, as shown in Figure 2.6-2b, and has terminal current, im, equal to zero. Practical measuring

The distinction between these two equations is important. Eq. 2.5-1, involving the v�i relationship
shown in Figure 2.5-2a, is more accurate but also more complicated. Equation 2.5-2 is simpler but may be
inaccurate.

Suppose that R ¼ 1000 ohms. Equation 2.5-2 gives the current of the ideal voltage source:

i ¼ 9

1000
¼ 9 mA ð2:5-3Þ

Because this current is less than 10 milliamps, the ideal voltage source is a good model for the battery, and it is
reasonable to expect that the battery current is 9 milliamps.

Suppose, instead, that R ¼ 600 ohms. Once again, Eq. 2.5-2 gives the current of the ideal voltage source:

i ¼ 9

600
¼ 15 mA ð2:5-4Þ

Because this current is greater than 10 milliamps, the ideal voltage source is not a good model for the battery.
In this case, it is reasonable to expect that the battery current is different from the current for the ideal voltage source.

(b)

(a)

+

+

v(t)
–

i(t)

–

v(t) = 0

i(t) = 0

FIGURE 2.5-3
(a) Open circuit.
(b) Short circuit.
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(a) (b)
FIGURE 2.6-1 (a) A direct-reading (analog) meter.
(b) A digital meter.

Voltmeter

(b)(a)

Ammeter + –

+ –

v

vm = 0

im = 0

iElement

ii Element

FIGURE 2.6-2 (a) Ideal ammeter. (b) Ideal voltmeter.

10 Ω50 Ω
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60 Ω20 Ω

10 Ω50 Ω

60 Ω20 Ω
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–
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Voltmeter Ammeter

(b)(a)

(c)

2 volts

2 volts

2 volts

i

i

+ –v

+ –v
Open circuit

Short
circuit

FIGURE 2.6-3 (a) An example circuit, (b) plus an open circuit and a short circuit. (c) The open circuit is replaced by a
voltmeter, and the short circuit is replaced by an ammeter.
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instruments only approximate the ideal conditions. For a practical ammeter, the voltage across its
terminals is usually negligibly small. Similarly, the current into a voltmeter is usually negligible.

Ideal voltmeters act like open circuits, and ideal ammeters act like short circuits. In other words,
the model of an ideal voltmeter is an open circuit, and the model of an ideal ammeter is a short circuit.
Consider the circuit of Figure 2.6-3a and then add an open circuit with a voltage v and a short circuit
with a current i as shown in Figure 2.6-3b. In Figure 2.6-3c, the open circuit has been replaced by a
voltmeter, and the short circuit has been replaced by an ammeter. The voltmeter will measure the
voltage labeled v in Figure 2.6-3b whereas the ammeter will measure the current labeled i. Notice that
Figure 2.6-3c could be obtained from Figure 2.6-3a by adding a voltmeter and an ammeter. Ideally,
adding the voltmeter and ammeter in this way does not disturb the circuit. One more interpretation of
Figure 2.6-3 is useful. Figure 2.6-3b could be formed from Figure 2.6-3c by replacing the voltmeter and
the ammeter by their (ideal) models.

The reference direction is an important part of an element voltage or element current. Figures 2.6-
4 and 2.6-5 show that attention must be paid to reference directions when measuring an element voltage
or element current. Figure 2.6-4a shows a voltmeter. Voltmeters have two color-coded probes. This
color coding indicates the reference direction of the voltage being measured. In Figures 2.6-4b and
Figure 2.6-4c the voltmeter is used to measure the voltage across the 6-kV resistor. When the voltmeter
is connected to the circuit as shown in Figure 2.6-4b, the voltmeter measures va, with þ on the left, at the
red probe. When the voltmeter probes are interchanged as shown in Figure 2.6-4c, the voltmeter
measures vb, with þ on the right, again at the red probe. Note vb ¼ �va.

+

Voltmeter

(b)(a) (c)

+ –va

Voltmeter

+ –v

12 V

5 kΩ 6 kΩ
4 kΩ10 kΩ+

–

Voltmeter

– vb

12 V

5 kΩ 6 kΩ
4 kΩ10 kΩ+

–

+ 3 . 6 – 3 . 6

FIGURE 2.6-4 (a) The correspondence between the color-coded probes of the voltmeter and the reference direction of the
measured voltage. In (b), the þ sign of va is on the left, whereas in (c), the þ sign of vb is on the right. The colored probe is
shown here in blue. In the laboratory this probe will be red. We will refer to the colored probe as the “red probe.”

(b)(a) (c)

Ammeter

12 V

6 kΩ

4 kΩ+
–

i

Ammeter

+ 1 . 2

ia
12 V

6 kΩ

4 kΩ+
–

Ammeter

– 1 . 2

ib

FIGURE 2.6-5 (a) The correspondence between the color-coded probes of the ammeter and the reference direction of the
measured current. In (b) the current ia is directed to the right, while in (c) the current ib is directed to the left. The colored
probe is shown here in blue. In the laboratory this probe will be red. We will refer to the colored probe as the “red probe.”
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Figure 2.6-5a shows an ammeter. Ammeters have two color-coded probes. This color coding
indicates the reference direction of the current being measured. In Figures 2.6-5b and c, the ammeter is used
to measure the current in the 6-kV resistor. When the ammeter is connected to the circuit as shown in Figure
2.6-5b, the ammeter measures ia, directed from the red probe toward the black probe. When the ammeter
probes are interchanged as shown in Figure 2.6-5c, the ammeter measures ib, again directed from the red
probe toward the black probe. Note ib ¼ �ia.

2.7 D e p e n d e n t S o u r c e s

Dependent sources model the situation in which the voltage or current of one circuit element is
proportional to the voltage or current of the second circuit element. (In contrast, a resistor is a circuit
element in which the voltage of the element is proportional to the current in the same element.)
Dependent sources are used to model electronic devices such as transistors and amplifiers. For example,
the output voltage of an amplifier is proportional to the input voltage of that amplifier, so an amplifier
can be modeled as a dependent source.

Figure 2.7-1a shows a circuit that includes a dependent source. The diamond symbol represents a
dependent source. The plus and minus signs inside the diamond identify the dependent source as a
voltage source and indicate the reference polarity of the element voltage. The label “5i” represents the
voltage of this dependent source. This voltage is a product of two factors, 5 and i. The second factor, i,
indicates that the voltage of this dependent source is controlled by the current, i, in the 18-V resistor.
The first factor, 5, is the gain of this dependent source. The gain of this dependent source is the ratio of
the controlled voltage, 5i, to the controlling current, i. This gain has units of V=A or V. Because this
dependent source is a voltage source and because a current controls the voltage, the dependent source is
called a current-controlled voltage source (CCVS).

Figure 2.7-1b shows the circuit from 2.7-1a, using a different point of view. In Figure 2.7-1b, a
short circuit has been inserted in series with the 18-V resistor. Now we think of the controlling current i
as the current in a short circuit rather than the current in the 18-V resistor itself. In this way, we can

(a)

+ –v

18 Ω

+
– 12 Ω 5 i24 V

i

+
–

(b)

18 Ω

+
– 12 Ω 5 i24 V

i

+
–

(c)

18 Ω

+
– 12 Ω 0.2 v 0.2 v24 V

(d)

18 Ω

+
– 12 Ω24 V

+ –v

FIGURE 2.7-1 The controlling current of a dependent source shown as (a) the current in an element and as (b) the current
in a short circuit in series with that element. The controlling voltage of a dependent source shown as (c) the voltage across
an element and as (d ) the voltage across an open circuit in parallel with that element.
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always treat the controlling current of a dependent source as the current in a short circuit. We will use
this second point of view to categorize dependent sources in this section.

Figure 2.7-1c shows a circuit that includes a dependent source, represented by the diamond
symbol. The arrow inside the diamond identifies the dependent source as a current source and indicates
the reference direction of the element current. The label “0.2v” represents the current of this dependent
source. This current is a product of two factors, 0.2 and v. The second factor, v, indicates that the current
of this dependent source is controlled by the voltage, v, across the 18-V resistor. The first factor, 0.2, is
the gain of this dependent source. The gain of this dependent source is the ratio of the controlled current,
0.2v, to the controlling voltage, v. This gain has units of A/V. Because this dependent source is a current
source and because a voltage controls the current, the dependent source is called a voltage-controlled
current source (VCCS).

Figure2.7-1dshows thecircuit fromFigure2.7-1c, usingadifferentpointofview. InFigure2.7-1d, an
opencircuithasbeenadded inparallelwith the18-V resistor.Nowwethinkof thecontrollingvoltagevas the
voltageacrossanopencircuit Figure 2.7-1, rather than the voltage across the 18-V resistor itself. In thisway,
we can always treat the controlling voltage of a dependent source as the voltage across an open circuit.

We are now ready to categorize dependent source. Each dependent source consists of two parts:
the controlling part and the controlled part. The controlling part is either an open circuit or a short circuit.
The controlled part is either a voltage source or a current source. There are four types of dependent source

Table 2.7-1 Dependent Sources

DESCRIPTION SYMBOL

vc = 0

id

vd = ricic

+

–

+

–

vd = bvc

ic = 0 id

+

–
vc

+

–

id = gvcvd

+

–

ic = 0

+

–
vc

vc = 0 id = dicic

+

–

vd

+

–

Current-Controlled Voltage Source (CCVS)
r is the gain of the CCVS.
r has units of volts/ampere.

Voltage-Controlled Voltage Source (VCVS)
b is the gain of the VCVS.
b has units of volts/volt.

Voltage-Controlled Current Source (VCCS)
g is the gain of the VCCS.
g has units of amperes/volt.

Current-Controlled Current Source (CCCS)
d is the gain of the CCCS.
d has units of amperes/ampere.
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that correspond to the four ways of choosing a controlling part and a controlled part. These four dependent
sources are called the voltage-controlled voltage source (VCVS), current-controlled voltage source
(CCVS), voltage-controlled current source (VCCS), and current-controlled current source (CCCS).
The symbols that represent dependent sources are shown in Table 2.7-1.

Consider the CCVS shown in Table 2.7-1. The controlling element is a short circuit. The element
current and voltage of the controlling element are denoted as ic and vc. The voltage across a short circuit
is zero, so vc ¼ 0. The short-circuit current, ic, is the controlling signal of this dependent source. The
controlled element is a voltage source. The element current and voltage of the controlled element are
denoted as id and vd. The voltage vd is controlled by ic:

vd ¼ ric

The constant r is called the gain of the CCVS. The current id, like the current in any voltage source, is
determined by the rest of the circuit.

Next, consider the VCVS shown in Table 2.7-1. The controlling element is an open circuit. The
current in an open circuit is zero, so ic ¼ 0. The open-circuit voltage, vc, is the controlling signal of this
dependent source. The controlled element is a voltage source. The voltage vd is controlled by vc:

vd ¼ bvc

The constant b is called the gain of the VCVS. The current id is determined by the rest of the circuit.
The controlling element of the VCCS shown in Table 2.7-1 is an open circuit. The current in this

open circuit is ic ¼ 0. The open-circuit voltage, vc, is the controlling signal of this dependent source. The
controlled element is a current source. The current id is controlled by vc:

id ¼ gvc

The constant g is called the gain of the VCCS. The voltage vd, like the voltage across any current source,
is determined by the rest of the circuit.

The controlling element of the CCCS shown in Table 2.7-1 is a short circuit. The voltage across this
short circuit is vc ¼ 0. The short-circuit current, ic, is the controlling signal of this dependent source. The
controlled element is a current source. The current id is controlled by ic:

id ¼ dic

The constant d is called the gain of the CCCS. The voltage vd, like the voltage across any current source,
is determined by the rest of the circuit.

+
– vin

+
– vin

r

RBRB

RC vo

gmvbe

+

–

vbe

+

–

RC vo

+

–

�

r gmvbe

+

–

vbe �

cb

e

c

b

e

(b)(a)

(c) (d)

ic

ic

ib

ib

FIGURE 2.7-2 (a) A symbol for a transistor. (b) A model of the transistor. (c) A transistor amplifier. (d) A model of the
transistor amplifier.
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Figure 2.7-2 illustrates the use of dependent sources to model electronic devices. In certain
circumstances, the behavior of the transistor shown in Figure 2.7-2a can be represented using the
model shown in Figure 2.7-2b. This model consists of a dependent source and a resistor. The
controlling element of the dependent source is an open circuit connected across the resistor.
The controlling voltage is vbe. The gain of the dependent source is gm. The dependent source is
used in this model to represent a property of the transistor, namely, that the current ic is proportional to the
voltage vbe, that is, ic ¼ gmvbe

where gm has units of amperes/volt. Figures 2.7-2c and d illustrate the utility of this model.
Figure 2.7-2d is obtained from Figure 2.7-2c by replacing the transistor by the transistor model.

E X A M P L E 2 . 7 - 1 Power and Dependent Sources

Determine the power absorbed by the VCVS in Figure 2.7-3.

Solution
The VCVS consists of an open circuit and a controlled-voltage source. There is no current in the open circuit, so no
power is absorbed by the open circuit.

The voltage vc across the open circuit is the controlling signal of the VCVS. The voltmeter measures
vc to be

vc ¼ 2 V

The voltage of the controlled voltage source is

vd ¼ 2 vc ¼ 4 V

The ammeter measures the current in the controlled voltage source to be

id ¼ 1:5 A

The element current id and voltage vd adhere to the passive convention. Therefore,

p ¼ idvd ¼ 1:5ð Þ 4ð Þ ¼ 6W

is the power absorbed by the VCVS.

12 V

2 Ω
0.5 A 4 Ω+

–

id

Voltmeter

+ 2. 0 0

Ammeter

+ 1. 5 0

vd = 2vc

+ –

+ vc –

FIGURE 2.7-3 A circuit containing a VCVS. The meters
indicate that the voltage of the controlling element is vc ¼ 2.0
volts and that the current of the controlled element is id ¼ 1.5
amperes.

Try it 
yourself 

in WileyPLUS
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EXERCISE 2.7-1 Find the power absorbed by the CCCS in Figure E 2.7-1.

Voltmeter

12 V

2 Ω 2 Ω

+

4 Ω+
–

ic
vd

Ammeter

– 1. 2 0
+ 2 4. 0

id = 4ic

–

FIGURE E 2.7-1 A circuit containing a CCCS. The meters indicate that the current of the controlling element is
ic ¼ �1.2 amperes and that the voltage of the controlled element is vd ¼ 24 volts.

Hint: The controlling element of this dependent source is a short circuit. The voltage across a short
circuit is zero. Hence, the power absorbed by the controlling element is zero. How much power is
absorbed by the controlled element?

Answer: �115.2 watts are received by the CCCS. (The CCCS supplies þ115.2 watts to the rest of
the circuit.)

2.8 T r a n s d u c e r s

Transducers are devices that convert physical quantities to electrical quantities.
This section describes two transducers: potentiometers and temperature sensors.
Potentiometers convert position to resistance, and temperature sensors convert
temperature to current.

Figure 2.8-1a shows the symbol for the potentiometer. The potentiometer is a
resistor having a third contact, called the wiper, that slides along the resistor. Two
parameters, Rp and a, are needed to describe the potentiometer. The parameter Rp

specifies the potentiometer resistance (Rp > 0). The parameter a represents the
wiper position and takes values in the range 0 � a � 1. The values a ¼ 0 and a ¼ 1
correspond to the extreme positions of the wiper.

Figure 2.8-1b shows a model for the potentiometer that consists of two resistors.
The resistances of these resistors depend on the potentiometer parameters Rp and a.

Frequently, the position of the wiper corresponds to the angular position of a
shaft connected to the potentiometer. Suppose y is the angle in degrees and 0 � y �
360. Then,

a ¼ y
360

Temperature sensors, such as the AD590 manufactured by Analog Devices, are current
sources having current proportional to absolute temperature. Figure 2.8-3a shows the symbol used
to represent the temperature sensor. Figure 2.8-3b shows the circuit model of the temperature
sensor. For the temperature sensor to operate properly, the branch voltage v must satisfy the
condition 4 volts � v � 30 volts

(1 – a)Rp

aRp

Rp

(b)(a)

FIGURE 2.8-1 (a) The symbol
and (b) a model for the
potentiometer.
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When this condition is satisfied, the current, i, in microamps, is numerically equal to
the temperature T, in degrees Kelvin. The phrase numerically equal indicates that the current
and temperature have the same value but different units. This relationship can be expressed as

i ¼ k � T
where k ¼ 1

mA
	K

, a constant associated with the sensor.

EXERCISE 2.8-1 For the potentiometer circuit of Figure 2.8-2, calculate the meter voltage, vm,
when y ¼ 45	, Rp ¼ 20 kV, and I ¼ 2 mA.

Answer: vm ¼ 5 V

EXERCISE 2.8-2 The voltage and current of an AD590 temperature sensor of Figure 2.8-3 are
10 V and 280 mA, respectively. Determine the measured temperature.

Answer: T ¼ 280	K, or approximately 6.85	C

E X A M P L E 2 . 8 - 1 Potentiometer Circuit

Figure 2.8-2a shows a circuit in which the voltage measured by the meter gives an indication of the angular
position of the shaft. In Figure 2.8-2b, the current source, the potentiometer, and the voltmeter have been
replaced by models of these devices. Analysis of Figure 2.8-2b yields

vm ¼ RpIa ¼ RpI

360
y

(1 – a)Rp

aRpRpI

(b)(a)

I

Voltmeter

+ vm –
+

vm

–

FIGURE 2.8-2 (a) A circuit containing a
potentiometer. (b) An equivalent circuit containing a
model of the potentiometer.

Solving for the angle gives y ¼ 360

RpI
vm

Suppose Rp ¼ 10 kV and I ¼ 1 mA. An angle of 163	 would cause an output of vm ¼ 4.53 V. A meter reading of
7.83 V would indicate that y ¼ 282	.

Try it 
yourself 

in WileyPLUS

+

v(t)

i(t)

–

+

v(t) i(t) = kT

–

AD590

(b)(a)
FIGURE 2.8-3 (a) The symbol and (b) a model for the temperature
sensor.
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2.9 Sw i t c h e s

Switches have two distinct states: open and closed. Ideally, a switch acts as a short circuit
when it is closed and as an open circuit when it is open.

Figures 2.9-1 and 2.9-2 show several types of switches. In each case, the time when
the switch changes state is indicated. Consider first the single-pole, single-throw (SPST) switches
shown in Figure 2.9-1. The switch in Figure 2.9-1a is initially open. This switch changes state,
becoming closed, at time t ¼ 0 s. When this switch is modeled as an ideal switch, it is treated like an
open circuit when t < 0 s and like a short circuit when t > 0 s. The ideal switch changes state
instantaneously. The switch in Figure 2.9-1b is initially closed. This switch changes state, becoming
open, at time t ¼ 0 s.

Next, consider the single-pole, double-throw (SPDT) switch shown in Figure 2.9-1a. This SPDT
switch acts like two SPST switches, one between terminals c and a, another between terminals c and b.
Before t ¼ 0 s, the switch between c and a is closed and the switch between c and b is open. At t ¼ 0 s,
both switches change state; that is, the switch between a and c opens, and the switch between c and b
closes. Once again, the ideal switches are modeled as open circuits when they are open and as short
circuits when they are closed.

In some applications, it makes a difference whether the switch between c and b closes before,
or after, the switch between c and a opens. Different symbols are used to represent these two types
of single-pole, double-throw switch. The break-before-make switch is manufactured so that the
switch between c and b closes after the switch between c and a opens. The symbol for the break-
before-make switch is shown in Figure 2.9-2a. The make-before-break switch is manufactured so
that the switch between c and b closes before the switch between c and a opens. The symbol for
the make-before-break switch is shown in Figure 2.9-2b. Remember: the switch transition from
terminal a to terminal b is assumed to take place instantaneously. This instantaneous transition is
an accurate model when the actual make-before-break transition is very fast compared to the circuit
time response.

(b)(a)

t = 0
Initially open

t = 0
Initially closed

FIGURE 2.9-1 SPST switches. (a) Initially open and (b)
initially closed.

(b)(a)

t = 0

Break before make

t = 0

Make before break

a a

b b
cc

FIGURE 2.9-2 SPDT switches. (a) Break before make
and (b) make before break.

E X A M P L E 2 . 9 - 1 Switches

Figure 2.9-3 illustrates the use of open and short circuits for modeling ideal switches. In Figure 2.9-3a, a circuit
containing three switches is shown. In Figure 2.9-3b, the circuit is shown as it would be modeled before t ¼ 0 s. The
two single-pole, single-throw switches change state at time t ¼ 0 s. Figure 2.9-3c shows the circuit as it would be
modeled when the time is between 0 s and 2 s. The single-pole, double-throw switch changes state at time t ¼ 2 s.
Figure 2.9-3d shows the circuit as it would be modeled after 2 s.
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EXERCISE 2.9-1 What is the value of the current i in Figure E 2.9-1 at time t ¼ 4 s?

Answer: i ¼ 0 amperes at t ¼ 4 s (both switches are open).

EXERCISE 2.9-2 What is the value of the voltage v in Figure E 2.9-2 at time t ¼ 4 s? At t ¼ 6 s?

Answer: v ¼ 6 volts at t ¼ 4 s, and v ¼ 0 volts at t ¼ 6 s.

2.10 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the

+
– 3 kΩ12 V +

–6 V

t = 5 s

i

t = 3 s

FIGURE E 2.9-1 A circuit with two SPST switches.

t = 5 s

2 mA

3 kΩ v

i

+

–

FIGURE E 2.9-2 A circuit with a make-before-break
SPDT switch.

Try it 
yourself 

in WileyPLUS
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(a)

+
–

+
–

5 kΩ 4 kΩ

12 kΩ 10 kΩ

8 kΩ12 V 6 V

(c)

+
–

+
–

5 kΩ 4 kΩ

12 kΩ 10 kΩ

8 kΩ12 V 6 V

(b)

+
–

+
–

5 kΩ 4 kΩ

12 kΩ 10 kΩ

8 kΩ12 V 6 V

(d)

FIGURE 2.9-3 (a)
A circuit containing
several switches.
(b) The equivalent
circuit for t � 0 s.
(c) The equivalent
circuit for 0 < t < 2
s. (d ) The
equivalent circuit
for t > 2 s.
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specifications have been satisfied. In addition, computer output must be reviewed to guard against data-
entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able quickly to identify
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

E X A M P L E 2 . 1 0 - 1 How Can We Check Voltage and Current Values?

The meters in the circuit of Figure 2.10-1 indicate that v1 ¼ �4 V, v2 ¼ 8 V and that i ¼ 1 A. How can we
check that the values of v1, v2, and i have been measured correctly? Let’s check the values of v1, v2, and i in
two ways:

(a) Verify that the given values satisfy Ohm’s law for both resistors.

(b) Verify that the power supplied by the voltage source is equal to the power absorbed by the resistors.

Voltmeter

– 4

12 V

. 0

Ammeter

i

v1

v2

+

+

–

–

1 . 0 0

Voltmeter

8 . 0 0

+
–

4 Ω

8 Ω

FIGURE 2.10-1 A circuit with meters.

Solution
(a) Consider the 8-V resistor. The current i flows through this resistor from top to bottom. Thus, the current i and

the voltage v2 adhere to the passive convention. Therefore, Ohm’s law requires that v2 ¼ 8i. The values v2 ¼ 8
V and i ¼ 1 A satisfy this equation.

Next, consider the 4-V resistor. The current i flows through this resistor from left to right. Thus, the
current i and the voltage v1 do not adhere to the passive convention. Therefore, Ohm’s law requires that
v1 ¼ 4(�i). The values v1 ¼ �4 V and i ¼ 1 A satisfy this equation.

Thus, Ohm’s law is satisfied.

(b) The current i flows through the voltage source from bottom to top. Thus the current i and the voltage 12 V do
not adhere to the passive convention. Therefore, 12i ¼ 12(1) ¼ 12 W is the power supplied by the voltage
source. The power absorbed by the 4-V resistor is 4i2 ¼ 4(12) ¼ 4 W, and the power absorbed by the 8-V
resistor is 8i2 ¼ 8(12) ¼ 8 W. The power supplied by the voltage source is indeed equal to the power absorbed
by the resistors.
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2 . 1 1 D E S I G N E X A M P L E Temperature Sensor

Currentscanbemeasuredeasily,using ammeters.A temperaturesensor, suchasAnalogDevices’AD590, canbeused
to measure temperature by converting temperature to current. Figure 2.11-1 shows a symbol used to represent a
temperature sensor. For this sensor to operate properly, the voltage v must satisfy the condition

4 volts � v � 30 volts

When this condition is satisfied, the current i, in mA, is numerically equal to the temperature T, in 	K. The
phrase numerically equal indicates that the two variables have the same value but different units.

i ¼ k � T where k ¼ 1
mA
	K

The goal is to design a circuit using the AD590 to measure the temperature of a container of water. In addition
to the AD590 and an ammeter, several power supplies and an assortment of standard 2 percent resistors are
available. The power supplies are voltage sources. Power supplies having voltages of 10, 12, 15, 18, or 24 volts
are available.

Describe the Situation and the Assumptions
For the temperature transducer to operate properly, its element voltage must be between 4 volts and 30 volts. The
power supplies and resistors will be used to establish this voltage. An ammeter will be used to measure the current
in the temperature transducer.

The circuit must be able to measure temperatures in the range from 0	C to 100	C because water is a liquid at
these temperatures. Recall that the temperature in 	C is equal to the temperature in 	K minus 273	.

State the Goal
Use the power supplies and resistors to cause the voltage v of the temperature transducer to be between 4 volts
and 30 volts.

Use an ammeter to measure the current, i, in the temperature transducer.

Generate a Plan
Model the power supply as an ideal voltage source and the temperature transducer as an ideal current source. The
circuit shown in Figure 2.11-2a causes the voltage across the temperature transducer to be equal to the power
supply voltage. Because all of the available power supplies have voltages between 4 volts and 30 volts, any one of
the power supplies can be used. Notice that the resistors are not needed.

In Figure 2.11-2b, a short circuit has been added in a way that does not disturb the network. In Figure 2.11-2c,
this short circuit has been replaced with an (ideal) ammeter. Because the ammeter will measure the current in the
temperature transducer, the ammeter reading will be numerically equal to the temperature in 	K.

+

v(t)

i(t)

–

AD590

FIGURE 2.11-1
A temperature sensor.
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Although any of the available power supplies is adequate to meet the specifications, there may still be an
advantage to choosing a particular power supply. For example, it is reasonable to choose the power supply that
causes the transducer to absorb as little power as possible.

Act on the Plan
The power absorbed by the transducer is

p ¼ v � i

where v is the power supply voltage. Choosing v as small as possible, 10 volts in this case, makes the power
absorbed by the temperature transducer as small as possible. Figure 2.11-3a shows the final design. Figure 2.11-3b
shows a graph that can be used to find the temperature corresponding to any ammeter current.

Verify the Proposed Solution
Let’s try an example. Suppose the temperature of the water is 80.6	F. This temperature is equal to 27	C or 300	K.
The current in the temperature sensor will be

i ¼ 1
mA
	K

� �
300	K ¼ 300 mA

Next, suppose that the ammeter in Figure 2.11-3a reads 300 mA. A sensor current of 300 mA corresponds to a
temperature of

T ¼ 300 mA

1
mA
	K

¼ 300	K ¼ 27	C ¼ 80:6	F

The graph in Figure 2.11-3b indicates that a sensor current of 300 mA does correspond to a temperature of 27	C.
This example shows that the circuit is working properly.
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i(t)
–
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+
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i(t)
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–

(b)(a) (c)

Ammeter

Short
circuit

FIGURE 2.11-2 (a) Measuring temperature with a temperature sensor. (b) Adding a short circuit.
(c) Replacing the short circuit by an ammeter.

i(t)

10 V +
–

(b)(a)

Ammeter

273 373
Ammeter reading,    A

100

0

Temperature, °C

μ

FIGURE 2.11-3 (a) Final design of a circuit that measures temperature with a temperature sensor. (b) Graph
of temperature versus ammeter current.
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2.12 SUMMARY
The engineer uses models, called circuit elements, to repre-
sent the devices that make up a circuit. In this book, we
consider only linear elements or linear models of devices. A
device is linear if it satisfies the properties of both superpo-
sition and homogeneity.
The relationship between the reference directions of the
current and voltage of a circuit element is important. The
voltage polarity marks one terminal þ and the other �. The
element voltage and current adhere to the passive convention
if the current is directed from the terminal marked þ to the
terminal marked �.
Resistors are widely used as circuit elements. When the
resistor voltage and current adhere to the passive convention,
resistors obey Ohm’s law; the voltage across the terminals of
the resistor is related to the current into the positive terminal
as v ¼ Ri. The power delivered to a resistance is p ¼ i2R ¼
v2=R watts.
An independent source provides a current or a voltage
independent of other circuit variables. The voltage of an
independent voltage source is specified, but the current is
not. Conversely, the current of an independent current source
is specified whereas the voltage is not. The voltages of
independent voltage sources and currents of independent
current sources are frequently used as the inputs to electric
circuits.

A dependent source provides a current (or a voltage) that is
dependent on another variable elsewhere in the circuit. The
constitutive equations of dependent sources are summarized
in Table 2.7-1.
The short circuit and open circuit are special cases of inde-
pendent sources. A short circuit is an ideal voltage source
having v(t) ¼ 0. The current in a short circuit is determined by
the rest of the circuit. An open circuit is an ideal current source
having i(t) ¼ 0. The voltage across an open circuit is determined
by the rest of the circuit. Open circuits and short circuits can also
be described as special cases of resistors. A resistor with
resistance R ¼ 0 (G ¼ 1) is a short circuit. A resistor with
conductance G ¼ 0 (R ¼ 1) is an open circuit.
An ideal ammeter measures the current flowing through its
terminals and has zero voltage across its terminals. An ideal
voltmeter measures the voltage across its terminals and has
terminal current equal to zero. Ideal voltmeters act like open
circuits, and ideal ammeters act like short circuits.
Transducers are devices that convert physical quantities,
such as rotational position, to an electrical quantity such
as voltage. In this chapter, we describe two transducers:
potentiometers and temperature sensors.
Switches are widely used in circuits to connect and disconnect
elements and circuits. An open switch is modeled as an open
circuit and a closed switch is modeled as a short circuit.

PROBLEMS

Section 2.2 Engineering and Linear Models

P 2.2-1 An element has voltage v and current i as shown in
Figure P 2.2-1a. Values of the current i and corresponding
voltage v have been tabulated as shown in Figure P 2.2-1b.
Determine whether the element is linear.

v, V i, A

–3
–4
0

12
32
60

–3
–2
0
2
4
6

–

+

v

i

(a) (b)

Figure P 2.2-1

P 2.2-2 A linear element has voltage v and current i as
shown in Figure P 2.2-2a. Values of the current i and corre-
sponding voltage v have been tabulated as shown in Figure P
2.2-2b. Represent the element by an equation that expresses v as
a function of i. This equation is a model of the element. (a) Verify

that the model is linear. (b) Use the model to predict the value of
v corresponding to a current of i ¼ 40 mA. (c) Use the model to
predict the value of i corresponding to a voltage of v ¼ 3 V.

Hint: Plot the data. We expect the data points to lie on a straight
line. Obtain a linear model of the element by representing that
straight line by an equation.

v, V i, A

–3.6
2.4
6.0

–30
20
50

–

+

v

i

(a) (b)

Figure P 2.2-2

P 2.2-3 A linear element has voltage v and current i as shown
in Figure P 2.2-3a. Values of the current i and corresponding
voltage v have been tabulated as shown in Figure P 2.2-3b.
Represent the element by an equation that expresses v as a

Problem available in WileyPLUS at instructor’s discretion.
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function of i. This equation is a model of the element. (a) Verify
that the model is linear. (b) Use the model to predict the value of
v corresponding to a current of i ¼ 6 mA. (c) Use the model to
predict the value of i corresponding to a voltage of v ¼ 12 V.

Hint: Plot the data. We expect the data points to lie on a straight
line. Obtain a linear model of the element by representing that
straight line by an equation.

v, V i, mA

  3.078
  5.13
12.825

12
20
50

–

+

v

i

(a) (b)

Figure P 2.2-3

P 2.2-4 An element is represented by the relation between
current and voltage as

v ¼ 3i þ 5

Determine whether the element is linear.

P 2.2-5 The circuit shown in Figure P 2.2-5 consists of a
current source, a resistor, and element A. Consider three cases.

10 Ω 

+

−

0.4 A v iA

Figure P 2.2-5

(a) When element A is a 40-V resistor, described by i ¼ v / 40,
then the circuit is represented by

0:4 ¼ v

10
þ v

40

Determine the values of v and i. Notice that the above
equation has a unique solution.

(b) When element A is a nonlinear resistor described by
i ¼ v2=2, then the circuit is represented by

0:4 ¼ v

10
þ v 2

2

Determine the values of v and i. In this case, there are two
solutions of the above equation. Nonlinear circuits exhibit
more complicated behavior than linear circuits.

(c) When element A is a nonlinear resistor described by i ¼
0:8 þ v 2

2 , then the circuit is described by

0:4 ¼ v

10
þ 0:8þ v 2

2

Show that this equation has no solution. This result usually
indicates a modeling problem. At least one of the three
elements in the circuit has not been modeled accurately.

Section 2.4 Resistors

P 2.4-1 A current source and a resistor are connected in
series in the circuit shown in Figure P 2.4-1. Elements con-
nected in series have the same current, so i ¼ is in this circuit.
Suppose that is ¼ 3 A and R ¼ 7 V. Calculate the voltage v
across the resistor and the power absorbed by the resistor.

Answer: v ¼ 21 V and the resistor absorbs 63 W.

+

–

is v

i

R

Figure P 2.4-1

P 2.4-2 A current source and a resistor are connected in
series in the circuit shown in Figure P 2.4-1. Elements con-
nected in series have the same current, so i ¼ is in this circuit.
Suppose that i ¼ 3 mA and v ¼ 48 V. Calculate the resistance R
and the power absorbed by the resistor.

P 2.4-3 A voltage source and a resistor are connected in
parallel in the circuit shown in Figure P 2.4-3. Elements
connected in parallel have the same voltage, so v ¼ vs in
this circuit. Suppose that vs ¼ 10 V and R ¼ 5 V. Calculate the
current i in the resistor and the power absorbed by the resistor.

Answer: i ¼ 2 A and the resistor absorbs 20 W.

+
–

+

–

vs v

i

R

Figure P 2.4-3

P 2.4-4 A voltage source and a resistor are connected in
parallel in the circuit shown in Figure P 2.4-3. Elements
connected in parallel have the same voltage, so v ¼ vs in
this circuit. Suppose that vs ¼ 24 V and i ¼ 3 A. Calculate the
resistance R and the power absorbed by the resistor.

P 2.4-5 A voltage source and two resistors are connected
in parallel in the circuit shown in Figure P 2.4-5. Elements
connected in parallel have the same voltage, so v1 ¼ vs and
v2 ¼ vs in this circuit. Suppose that vs ¼ 150 V, R1 ¼ 50 V, and
R2 ¼ 25 V. Calculate the current in each resistor and the power
absorbed by each resistor.

Hint: Notice the reference directions of the resistor currents.

Answer: i1 ¼ 3 A and i2 ¼ �6 A. R1 absorbs 450 W and R2

absorbs 900 W.

+
–

+

–

vs

+

–

v2v1 R2R1

i2i1

Figure P 2.4-5
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P 2.4-6 A current source and two resistors are connected
in series in the circuit shown in Figure P 2.4-6. Elements
connected in series have the same current, so i1 ¼ is and i2 ¼ is
in this circuit. Suppose that is ¼ 25 mA, R1 ¼ 4 V, and R2 ¼ 8
V. Calculate the voltage across each resistor and the power
absorbed by each resistor.

Hint: Notice the reference directions of the resistor voltages.

+

+–

–

is v2

v1

R1

R2

i2i1

Figure P 2.4-6

P 2.4-7 An electric heater is connected to a constant 250-V
source and absorbs 1000 W. Subsequently, this heater is connected
to a constant 220-V source. What power does it absorb from the
220-V source? What is the resistance of the heater?

Hint: Model the electric heater as a resistor.

P 2.4-8 The portable lighting equipment for a mine is
located 100 meters from its dc supply source. The mine lights
use a total of 5 kW and operate at 120 V dc. Determine the
required cross-sectional area of the copper wires used to
connect the source to the mine lights if we require that the
power lost in the copper wires be less than or equal to 5 percent
of the power required by the mine lights.

Hint: Model both the lighting equipment and the wire as resistors.

P 2.4-9 The resistance of a practical resistor depends on
the nominal resistance and the resistance tolerance as follows:

Rnom 1� t

100

� �
� R � Rnom 1þ t

100

� �

where Rnom is the nominal resistance and t is the resistance
tolerance expressed as a percentage. For example, a 100-V,
2 percent resistor will have a resistance given by

98V � R � 102V

The circuit shown in Figure P 2.4-9 has one input, vs, and one
output, vo. The gain of this circuit is given by

gain ¼ vo
vs

¼ R2

R1 þ R2

Determine the range of possible values of the gain when R1 is
the resistance of a 100-V, 2 percent resistor and R2 is the
resistance of a 400-V, 5 percent resistor. Express the gain in
terms of a nominal gain and a gain tolerance.

R2

R1

vo
+
–

vs

i

+

–

Figure P 2.4-9

P 2.4-10 The voltage source shown in Figure P 2.4-10 is an
adjustable dc voltage source. In other words, the voltage vs is a
constant voltage, but the value of that constant can be adjusted.
The tabulated data were collected as follows. The voltage, vs,
was set to some value, and the voltages across the resistor, va

and vb, were measured and recorded. Next, the value of vs was
changed, and the voltages across the resistors were measured
again and recorded. This procedure was repeated several times.
(The values of vs were not recorded.) Determine the value of the
resistance, R.

+
– vb

+

–

40 Ω

vs

va+ –

R

vb, Vva, V

11.75
7.5

5.625
10

4.375

7.05
4.5

3.375
6

2.625

Figure P 2.4-10

P 2.4-11 Consider the circuit shown in Figure P2.4-11.

(a) Suppose the current source supplies 3.125 W of power.
Determine the value of the resistance R.

(b) Suppose instead the resistance is R = 12 V. Determine
the value of the power supplied by the current source.

R

1.25 A+
– 20 V

Figure P 2.4-11

P 2.4-12 We will encounter “ac circuits” in Chapter 10.
Frequently we analyze ac circuits using “phasors” and “im-
pedances.” Phasors are complex numbers that represent cur-
rents and voltages in an ac circuit. Impedances are complex
numbers that describe ac circuit elements. (See Appendix B for
a discussion of complex numbers.) Figure P 2.4-11 shows a
circuit element in an ac circuit. I and V are complex numbers
representing the element current and voltage. Z is a complex
number describing the element itself. “Ohm’s law for ac
circuits” indicates that

V = Z I

(a) Suppose V = 12 ff 45	 V, I = B ff y A, and Z = 18 + j 8 O.
Determine the values of B and y.
(b) Suppose V = 48 ff 135	 V, I = 3 ff 15	 A, and Z = R + j X O.
Determine the values of R and X.

V+ –

Z
I

Figure P 2.4-12
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Section 2.5 Independent Sources

P 2.5-1 A current source and a voltage source are
connected in parallel with a resistor as shown in Figure P
2.5-1. All of the elements connected in parallel have the same
voltage vs in this circuit. Suppose that vs ¼ 15 V, is ¼ 3 A, and R
¼ 5 V. (a) Calculate the current i in the resistor and the power
absorbed by the resistor. (b) Change the current source current
to is ¼ 5 A and recalculate the current i in the resistor and the
power absorbed by the resistor.

Answer: i ¼ 3 A and the resistor absorbs 45 W both when
is ¼ 3 A and when is ¼ 5 A.

+
–is vs R

i

Figure P 2.5-1

P 2.5-2 A current source and a voltage source are
connected in series with a resistor as shown in Figure P 2.5-
2. All of the elements connected in series have the same current
is in this circuit. Suppose that vs ¼ 10 V, is ¼ 3 A, and R ¼ 5 V.
(a) Calculate the voltage v across the resistor and the power
absorbed by the resistor. (b) Change the voltage source voltage
to vs ¼ 5 V and recalculate the voltage, v, across the resistor and
the power absorbed by the resistor.

+ –

is

vs +

–

vR

Figure P 2.5-2

P 2.5-3 The current source and voltage source in the
circuit shown in Figure P 2.5-3 are connected in parallel so that
they both have the same voltage, vs. The current source and
voltage source are also connected in series so that they both
have the same current, is. Suppose that vs ¼ 12 V and is ¼ 3 A.
Calculate the power supplied by each source.

Answer: The voltage source supplies �36 W, and the current
source supplies 36 W.

+
–

–
is

is

vsvs

+

Figure P 2.5-3

P 2.5-4 The current source and voltage source in the
circuit shown in Figure P 2.5-4 are connected in parallel so that
they both have the same voltage, vs. The current source and
voltage source are also connected in series so that they both
have the same current, is. Suppose that vs ¼ 12 V and is ¼ 2 A.
Calculate the power supplied by each source.

+
–

–
is

is

vsvs

+

Figure P 2.5-4

P 2.5-5

(a) Find the power supplied by the voltage source shown in
Figure P 2.5-5 when for t � 0 we have

v ¼ 2 cos t V

and

i ¼ 10 cos t mA
(b) Determine the energy supplied by this voltage source for

the period 0 � t � 1 s.

+

–

v

i

Figure P 2.5-5

P 2.5-6 Figure P 2.5-6 shows a battery connected to a
load. The load in Figure P 2.5-6 might represent automobile
headlights, a digital camera, or a cell phone. The energy
supplied by the battery to load is given by

w ¼
Z t2

t1

vi dt

When the battery voltage is constant and the load resistance is
fixed, then the battery current will be constant and

w ¼ vi t2 � t1ð Þ
The capacity of a battery is the product of the battery current
and time required to discharge the battery. Consequently, the
energy stored in a battery is equal to the product of the battery
voltage and the battery capacity. The capacity is usually given
with the units of Ampere-hours (Ah). A new 12-V battery
having a capacity of 800 mAh is connected to a load that draws
a current of 25 mA. (a) How long will it take for the load to
discharge the battery? (b) How much energy will be supplied to
the load during the time required to discharge the battery?

battery load

Rv

i

+
–

Figure P 2.5-6
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Section 2.6 Voltmeters and Ammeters

P 2.6-1 For the circuit of Figure P 2.6-1:

(a) What is the value of the resistance R?
(b) How much power is delivered by the voltage source?

+
–

Voltmeter

+ 5 . 0

Ammeter

– . 5 0

R
12 V A1

2

Figure P 2.6-1

P 2.6-2 The current source in Figure P 2.6-2 supplies 40
W. What values do the meters in Figure P 2.6-2 read?

+
–

Ammeter

+ –v

Voltmeter
4 Ω

12 V 2 A
i

Figure P 2.6-2

P 2.6-3 An ideal voltmeter is modeled as an open circuit. A more
realistic model of a voltmeter is a large resistance. Figure P 2.6-3a
shows a circuit with a voltmeter that measures the voltage vm. In
Figure P 2.6-3b, the voltmeter is replaced by the model of an ideal
voltmeter, an open circuit. Ideally, there is no current in the 100-V
resistor, and the voltmeter measures vmi = 12 V, the ideal value of
vm. In Figure P 2.6-3c, the voltmeter is modeled by the resistance
Rm. Now the voltage measured by the voltmeter is

vm ¼ Rm

Rm þ 100

� �
12

Because Rm !1, the voltmeter becomes an ideal voltmeter, and
vm ! vmi ¼ l2 V . When Rm <1, the voltmeter is not ideal, and
vm < vmi. The difference between vm and vmi is a measurement
error caused by the fact that the voltmeter is not ideal.

(a) Express the measurement error that occurs when Rm ¼ 900
V as a percent of vmi.

(b) Determine the minimum value of Rm required to ensure that
the measurement error is smaller than 2 percent of vmi.

12 V

+

−

100 Ω

(a)

vm

Voltmeter

+
–

12 V 12 V
+

−

100 Ω

(b)

vmi =+
–

12 V

+

−

100 Ω

(c)

vmRm+
–

Figure P 2.6-3

P 2.6-4 An ideal ammeter is modeled as a short circuit. A
more realistic model of an ammeter is a small resistance.
Figure P 2.6-4a shows a circuit with an ammeter that measures
the current im. In Figure P 2.6-4b, the ammeter is replaced by the
model of an ideal ammeter, a short circuit. Ideally, there is no
voltage across the 1-kV resistor, and the ammeter measures imi¼ 2
A, the ideal value of im. In Figure P 2.6-4c, the ammeter is modeled
by the resistance Rm. Now the current measured by the ammeter is

im ¼ 1000

1000þ Rm

� �
2

As Rm ! 0, the ammeter becomes an ideal ammeter, and im !
imi ¼ 2 A. When Rm > 0, the ammeter is not ideal, and im < imi.
The difference between im and imi is a measurement error
caused by the fact that the ammeter is not ideal.

(a) Express the measurement error that occurs when Rm ¼
10 V as a percent of imi.

(b) Determine the maximum value of Rm required to ensure
that the measurement error is smaller than 5 percent.

Ammeter

2 A 1 kΩ

im

(a)

48 2. Circuit Elements



2 A 1 kΩ

imi = 2 A

(b)

2 A 1 kΩ

im

Rm

(c)

Figure P 2.6-4

P 2.6-5 The voltmeter in Figure P 2.6-5a measures the
voltage across the current source. Figure P 2.6-5b shows the
circuit after removing the voltmeter and labeling the voltage
measured by the voltmeter as vm. Also, the other element
voltages and currents are labeled in Figure P 2.6-5b.

+
–

25 Ω

2 A12 V

Voltmeter

(a)

+
–

iR

vm

+

–

25 Ω

2 A12 V
is

vR+ –

(b)

Figure P 2.6-5

Given that

12 ¼ vR þ vm and � iR ¼ is ¼ 2 A

and

vR ¼ 25iR

(a) Determine the value of the voltage measured by the meter.
(b) Determine the power supplied by each element.

P 2.6-6 The ammeter in Figure P 2.6-6a measures the
current in the voltage source. Figure P 2.6-6b shows the circuit

after removing the ammeter and labeling the current measured
by the ammeter as im. Also, the other element voltages and
currents are labeled in Figure P 2.6-6b.
Given that

2þ im ¼ iR and vR ¼ vs ¼ 12 V

and
vR ¼ 25iR

(a) Determine the value of the current measured by the meter.
(b) Determine the power supplied by each element.

Ammeter

+
– 25 Ω 2 A12 V

(a)

iR

vs

+

–

im
vR

+
– 25 Ω 2 A12 V

+

–

(b)

Figure P 2.6-6

Section 2.7 Dependent Sources

P 2.7-1 The ammeter in the circuit shown in Figure P 2.7-
1 indicates that ia ¼ 2 A, and the voltmeter indicates that vb ¼
8 V. Determine the value of r, the gain of the CCVS.

Answer: r ¼ 4 V/A

Ammeter

2 . 0 0

Voltmeter

r ia

R

vb

+

–

8 . 0 0

+
–

ia

vs
+

–

Figure P 2.7-1
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P 2.7-2 The ammeter in the circuit shown in Figure P 2.7-
2 indicates that ia ¼ 2 A, and the voltmeter indicates that vb ¼
8 V. Determine the value of g, the gain of the VCCS.

Answer: g ¼ 0.25 A/V

Ammeter

2 . 0 0

Voltmeter

vs vb

+

–

8 . 0 0

+
–

ia

g vb

R1

R2

Figure P 2.7-2

P 2.7-3 The ammeters in the circuit shown in Figure P 2.7-
3 indicate that ia ¼ 32 A and ib ¼ 8 A. Determine the value of d,
the gain of the CCCS.

Answer: d ¼ 4 A/A

Ammeter

3 2 . 0

Ammeter

vs

8 . 0 0

+
–

ia
ib

d ib

R

Figure P 2.7-3

P 2.7-4 The voltmeters in the circuit shown in Figure P
2.7-4 indicate that va ¼ 2 V and vb ¼ 8 V. Determine the value
of b, the gain of the VCVS.

Answer: b ¼ 4 V/V

2 . 0 0

Voltmeter

Voltmeter

vs

8 . 0 0

+
–

va

vbb va

+

+

–

–

R
+

–

Figure P 2.7-4

P 2.7-5 The values of the current and voltage of each
circuit element are shown in Figure P 2.7-5.

Determine the values of the resistance R and of the gain
of the dependent source A.

3.5 A−2 A

12 V

− 2 V +

− 4 V +

−4 A

14 V10 V 1.5 A

2.5 A

R

ia = −0.5 A
A ia = 2 V

+

−

+ –

+
–

+
–

Figure P 2.7-5

P 2.7-6 Find the power supplied by the VCCS in Figure P
2.7-6.

Answer: 17.6 watts are supplied by the VCCS. (�17.6 watts
are absorbed by the VCCS.)

–15.8 V

0.2 Ω
6.9 Ω+

–

Voltmeter

– 2. 0 0

Voltmeter

2 Ω

+

+

vd

vc

+ 2. 2 0

id = 4vc

–

–

Figure P 2.7-6
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P 2.7-7 The circuit shown in Figure P 2.7-7 contains a
dependent source. Determine the value of the gain k of that
dependent source.

240 Ω

10 Ω va k va –10 V250 mA

200 mA 50 mA

+
+

–
–

+

–

Figure P 2.7-7

P 2.7-8 The circuit shown in Figure P 2.7-8 contains a
dependent source. Determine the value of the gain k of that
dependent source.

10 V

20 Ω

200 Ω

k ia 10 V20 V

450 mA

+
+ –

–

+
–

ia

Figure P 2.7-8

P 2.7-9 The circuit shown in Figure P 2.7-9 contains a
dependent source. The gain of that dependent source is

k ¼ 25
V

A

Determine the value of the voltage vb.

120 Ω

5 Ω –1 V k ia vb250 mA

ia 50 mA

+
+

–
–

+

–

Figure P 2.7-9

P 2.7-10 The circuit shown in Figure P 2.7-10 contains a
dependent source. The gain of that dependent source is

k ¼ 90
mA

V
¼ 0:09

A

V
Determine the value of the current ib.

va

10 Ω

100 Ω

k va 5 V10 V

ib

+
+ –

–

+
–

50 mA

Figure P 2.7-10

Section 2.8 Transducers

P 2.8-1 For the potentiometer circuit of Figure 2.8-2, the
current source current and potentiometer resistance are 1.1 mA
and 100 kV, respectively. Calculate the required angle, y, so
that the measured voltage is 23 V.

P 2.8-2 An AD590 sensor has an associated constant k ¼ 1 mA
	 K.

The sensor has a voltage v ¼ 20 V; and the measured current, i
(t), as shown in Figure 2.8-3, is 4 mA < i < 13 mA in a
laboratory setting. Find the range of measured temperature.

Section 2.9 Switches

P 2.9-1 Determine the current i at t ¼ 1 s and at t ¼ 4 s for
the circuit of Figure P 2.9-1.

+
– 5 kΩ15 V +

– 10 V

t = 3 s

i

t = 2 s

Figure P 2.9-1

P 2.9-2 Determine the voltage, v, at t ¼ 1 s and at t ¼ 4 s
for the circuit shown in Figure P 2.9-2.

5 kΩ
1 mA 2 mA

t = 3 s

t = 2 s+

–

v

Figure P 2.9-2

P 2.9-3 Ideally, an open switch is modeled as an open circuit
and a closed switch is modeled as a closed circuit. More
realistically, an open switch is modeled as a large resistance,
and a closed switch is modeled as a small resistance.

Figure P 2.9-3a shows a circuit with a switch. In Figure
P 2.9-3b, the switch has been replaced with a resistance. In Figure
P 2.9-3b, the voltage v is given by

v ¼ 100

Rs þ 100

� �
12

Determine the value of v for each of the following cases.

(a) The switch is closed and Rs ¼ 0 (a short circuit).
(b) The switch is closed and Rs ¼ 5 V.
(c) The switch is open and Rs ¼ 1 (an open circuit).
(d) The switch is open and Rs ¼ 10 kV.
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v100 Ω 100 Ω12 V 12 V

(a) (b)

+
−

+

−

v+
−

+

−

Rs

Figure P 2.9-3

Section 2-10 How CanWe Check . . . ?

P 2.10-1 The circuit shown in Figure P 2.10-1 is used to test
the CCVS. Your lab partner claims that this measurement
shows that the gain of the CCVS is �20 V/A instead of þ20
V/A. Do you agree? Justify your answer.

4 0 . 0

VoltmeterAmmeter

– 2 . 0

vs is vo
vo

is

+

–

R

CCVS

= 20 V
A

+
–

Figure P 2.10-1

P 2.10-2 The circuit of Figure P 2.10-2 is used to measure
the current in the resistor. Once this current is known, the resistance
can be calculated as R ¼ vs

i . The circuit is constructed using a
voltage source with vs ¼ 12 V and a 25-V, 1=2-W resistor.
After a puff of smoke and an unpleasant smell, the ammeter
indicates that i¼ 0 A. The resistor must be bad. You have more 25-
V, 1=2-W resistors. Should you try another resistor? Justify your
answer.

i
Ammeter

vs

0 . 0 0

+
–

R

Figure P 2.10-2

Hint: 1=2-W resistors are able to safely dissipate one 1=2 W
of power. These resistors may fail if required to dissipate
more than 1=2 watt of power.

Design Problems

DP 2-1 Specify the resistance R in Figure DP 2-1 so that
both of the following conditions are satisfied:

1. i > 40 mA.

2. The power absorbed by the resistor is less than 0.5 W.

+
–

i

R10 V

Figure DP 2-1

DP 2-2 Specify the resistance R in Figure DP 2-2 so that both of
the following conditions are satisfied:

1. v > 40 V.

2. The power absorbed by the resistor is less than 15 W.

R2 A v
+

–

Figure DP 2-2

Hint: There is no guarantee that specifications can always be
satisfied.

DP 2-3 Resistors are given a power rating. For example, resis-
tors are available with ratings of 1=8 W, 1=4 W, 1=2 W, and 1 W.
A 1=2-W resistor is able to safely dissipate 1=2 W of
power, indefinitely. Resistors with larger power ratings are
more expensive and bulkier than resistors with lower power
ratings. Good engineering practice requires that resistor power
ratings be specified to be as large as, but not larger than,
necessary.

Consider the circuit shown in Figure DP 2-3. The values
of the resistances are

R1 ¼ 1000 V; R2 ¼ 2000 V; and R3 ¼ 4000 V

The value of the current source current is
is ¼ 30 mA

Specify the power rating for each resistor.

R1 R2 R3

ir = is

is

Figure DP 2-3
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CHAPTER 3 Resistive
Circuits

I N T H I S C H A P T E R
3.1 Introduction
3.2 Kirchhoff’s Laws
3.3 Series Resistors

and Voltage
Division

3.4 Parallel Resistors and
Current Division

3.5 Series Voltage
Sources and

Parallel Current
Sources

3.6 Circuit Analysis
3.7 Analyzing

Resistive Circuits
Using
MATLAB

3.8 How Can We
Check . . . ?

3.9 DESIGN
EXAMPLE—
Adjustable Voltage
Source

3.10 Summary
Problems
Design Problems

3.1 I n t r o d u c t i o n

In this chapter, we will do the following:

� Write equations using Kirchhoff’s laws.
Not surprisingly, the behavior of an electric circuit is determined both by the types of

elements that comprise the circuit and by the way those elements are connected together. The
constitutive equations describe the elements themselves, and Kirchhoff’s laws describe the way the
elements are connected to each other to form the circuit.

� Analyze simple electric circuits, using only Kirchhoff’s laws and the constitutive equations of the
circuit elements.

� Analyze two very common circuit configurations: series resistors and parallel resistors.
We will see that series resistors act like a “voltage divider,” and parallel resistors act like a “current

divider.” Also, series resistors and parallel resistors provide our first examples of an “equivalent circuit.”
Figure 3.1-1 illustrates this important concept. Here, a circuit has been partitioned into two parts, A and B.
Replacing B by an equivalent circuit, Beq, does not change the current or voltage of any circuit element
in part A. It is in this sense that Beq is equivalent to B. We will see how to obtain an equivalent circuit when
part B consists either of series resistors or of parallel resistors.

� Determine equivalent circuits for series voltage sources and parallel current sources.
� Determine the equivalent resistance of a resistive circuit.

Often, circuits consisting entirely of resistors can be reduced to a single equivalent resistor by
repeatedly replacing series and/or parallel resistors by equivalent resistors.

A AB Beq

(b)(a)

FIGURE 3.1-1 Replacing B by
an equivalent circuit Beq does not
change the current or voltage of any
circuit element in A. 53



3.2 K i r c h h o f f ’ s L aw s

An electric circuit consists of circuit elements that are connected together. The places where the
elements are connected to each other are called nodes. Figure 3.2-1a shows an electric circuit
that consists of six elements connected together at four nodes. It is common practice to draw electric
circuits using straight lines and to position the elements horizontally or vertically as shown in Figure
3.2-1b.

The circuit is shown again in Figure 3.2-1c, this time emphasizing the nodes. Notice that
redrawing the circuit, using straight lines and horizontal and vertical elements, has changed the way
that the nodes are represented. In Figure 3.2-1a, nodes are represented as points. In Figures 3.2-1b,c,
nodes are represented using both points and straight-line segments.

The same circuit can be drawn in several ways. One drawing of a circuit might look much
different from another drawing of the same circuit. How can we tell when two circuit drawings represent
the same circuit? Informally, we say that two circuit drawings represent the same circuit if

i1 i2 i3

i6

(a)

(b)

(c)

i5

i4

v1 v2 v3

v4

1 2 3 5

6

4

v6

v5

i1 i2 i3

i6

i5

i4

v1 v2 v3

v4

v6

v5

i1 i2 i3

i6

i5

i4

v1 v2 v3

v4

v6

v5

a

b

c

d

FIGURE 3.2-1 (a) An electric
circuit. (b) The same circuit,
redrawn using straight lines and
horizontal and vertical elements.
(c) The circuit after labeling the
nodes and elements.
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corresponding elements are connected to corresponding nodes. More formally, we say that circuit
drawings A and B represent the same circuit when the following three conditions are met.

1. There is a one-to-one correspondence between the nodes of drawing A and the nodes of drawing B.
(A one-to-one correspondence is a matching. In this one-to-one correspondence, each node in
drawing A is matched to exactly one node of drawing B and vice versa. The position of the nodes is
not important.)

2. There is a one-to-one correspondence between the elements of drawing A and the elements of
drawing B.

3. Corresponding elements are connected to corresponding nodes.

E X A M P L E 3 . 2 - 1 Different Drawings of the Same Circuit

Figure 3.2-2 shows four circuit drawings. Which of these drawings, if any, represent the same circuit as the circuit
drawing in Figure 3.2-1c?

(a)

r

u

d c5

6 4

1

3

2

ab

s t

v d

c

6

5

4

3 2 1

a

b

(b)

(c) (d)

FIGURE 3.2-2 Four circuit drawings.
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In 1847, Gustav Robert Kirchhoff, a professor at the University of Berlin, formulated
two important laws that provide the foundation for analysis of electric circuits. These laws are
referred to as Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law (KVL) in his honor.
Kirchhoff’s laws are a consequence of conservation of charge and conservation of energy.
Gustav Robert Kirchhoff is pictured in Figure 3.2-3.

Kirchhoff’s current law states that the algebraic sum of the currents entering any node is
identically zero for all instants of time.

Kirchhoff’s current law (KCL): The algebraic sum of the currents into a node at
any instant is zero.

The phrase algebraic sum indicates that we must take reference directions into account as
we add up the currents of elements connected to a particular node. One way to take
reference directions into account is to use a plus sign when the current is directed away from
the node and a minus sign when the current is directed toward the node. For example,
consider the circuit shown in Figure 3.2-1c. Four elements of this circuit—elements 1, 2, 3,
and 4—are connected to node a. By Kirchhoff’s current law, the algebraic sum of the
element currents i1, i2, i3, and i4 must be zero. Currents i2 and i3 are directed away from

node a, so we will use a plus sign for i2 and i3. In contrast, currents i1 and i4 are directed toward node
a, so we will use a minus sign for i1 and i4. The KCL equation for node a of Figure 3.2-1c is

�i1 þ i2 þ i3 � i4 ¼ 0 (3.2-1)

An alternate way of obtaining the algebraic sum of the currents into a node is to set the sum of all
the currents directed away from the node equal to the sum of all the currents directed toward that node.
Using this technique, we find that the KCL equation for node a of Figure 3.2-1c is

i2 þ i3 ¼ i1 þ i4 (3.2-2)

Clearly, Eqs. 3.2-1 and 3.2-2 are equivalent.

Solution
The circuit drawing shown in Figure 3.2-2a has five nodes, labeled r, s, t, u, and v. The circuit drawing in Figure
3.2-1c has four nodes. Because the two drawings have different numbers of nodes, there cannot be a one-to-one
correspondence between the nodes of the two drawings. Hence, these drawings represent different circuits.

The circuit drawing shown in Figure 3.2-2b has four nodes and six elements, the same numbers of nodes and
elements as the circuit drawing in Figure 3.2-1c. The nodes in Figure 3.2-2b have been labeled in the same way as the
corresponding nodes in Figure 3.2-1c. For example, node c in Figure 3.2-2b corresponds to node c in Figure 3.2-1c.
The elements in Figure 3.2-2b have been labeled in the same way as the corresponding elements in Figure 3.2-1c. For
example, element 5 in Figure 3.2-2b corresponds to element 5 in Figure 3.2-1c. Corresponding elements are indeed
connected to corresponding nodes. For example, element 2 is connected to nodes a and b, in both Figure 3.2-2b and in
Figure 3.2-1c. Consequently, Figure 3.2-2b and Figure 3.2-1c represent the same circuit.

The circuit drawing shown in Figure 3.2-2c has four nodes and six elements, the same number of nodes and
elements as the circuit drawing in Figure 3.2-1c. The nodes and elements in Figure 3.2-2c have been labeled in the
same way as the corresponding nodes and elements in Figure 3.2-1c. Corresponding elements are indeed connected
to corresponding nodes. Therefore, Figure 3.2-2c and Figure 3.2-1c represent the same circuit.

The circuit drawing shown in Figure 3.2-2d has four nodes and six elements, the same numbers of nodes and
elements as the circuit drawing in Figure 3.2-1c. However, the nodes and elements of Figure 3.2-2d cannot be
labeled so that corresponding elements of Figure 3.2-1c are connected to corresponding nodes. (For example, in
Figure 3.2-1c, three elements are connected between the same pair of nodes, a and b. That does not happen in
Figure 3.2-2d.) Consequently, Figure 3.2-2d and Figure 3.2-1c represent different circuits.

FIGURE 3.2-3 Gustav
Robert Kirchhoff (1824–
1887). Kirchhoff stated two
laws in 1847 regarding the
current and voltage in an
electrical circuit.
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Similarly, the Kirchhoff’s current law equation for node b of Figure 3.2-1c is

i1 ¼ i2 þ i3 þ i6

Before we can state Kirchhoff’s voltage law, we need the definition of a loop. A loop is a closed
path through a circuit that does not encounter any intermediate node more than once. For example,
starting at node a in Figure 3.2-1c, we can move through element 4 to node c, then through element 5 to
node d, through element 6 to node b, and finally through element 3 back to node a. We have a closed
path, and we did not encounter any of the intermediate nodes—b, c, or d—more than once.
Consequently, elements 3, 4, 5, and 6 comprise a loop. Similarly, elements 1, 4, 5, and 6 comprise
a loop of the circuit shown in Figure 3.2-1c. Elements 1 and 3 comprise yet another loop of this circuit.
The circuit has three other loops: elements 1 and 2, elements 2 and 3, and elements 2, 4, 5, and 6.

We are now ready to state Kirchhoff’s voltage law.

Kirchhoff’s voltage law (KVL): The algebraic sum of the voltages around any loop in a
circuit is identically zero for all time.

The phrase algebraic sum indicates that we must take polarity into account as we add up the voltages of
elements that comprise a loop. One way to take polarity into account is to move around the loop in the
clockwise direction while observing the polarities of the element voltages. We write the voltage with a
plus sign when we encounter the þ of the voltage polarity before the �. In contrast, we write the voltage
with a minus sign when we encounter the � of the voltage polarity before the þ. For example, consider
the circuit shown in Figure 3.2-1c. Elements 3, 4, 5, and 6 comprise a loop of the circuit. By Kirchhoff’s
voltage law, the algebraic sum of the element voltages v3, v4, v5, and v6 must be zero. As we move
around the loop in the clockwise direction, we encounter the þ of v4 before the �, the � of v5 before
the þ, the � of v6 before the þ, and the � of v3 before the þ. Consequently, we use a minus sign for
v3, v5, and v6 and a plus sign for v4. The KCL equation for this loop of Figure 3.2-1c is

v4 � v5 � v6 � v3 ¼ 0

Similarly, the Kirchhoff’s voltage law equation for the loop consisting of elements 1, 4, 5, and 6 is

v4 � v5 � v6 þ v1 ¼ 0

The Kirchhoff’s voltage law equation for the loop consisting of elements 1 and 2 is

�v2 þ v1 ¼ 0

E X A M P L E 3 . 2 - 2 Kirchhoff’s Laws INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 3.2-4a. Determine the power supplied by element C and the power received by
element D.

Solution
Figure 3.2-4a provides a value for the current in element C but not for the voltage v across element C. The voltage and
current of element C given in Figure 3.2-4a adhere to the passive convention, so the product of this voltage and current
is the power received by element C. Figure 3.2-4a provides a value for the voltage across element D but not for the
current i in element D. The voltage and current of element D given in Figure 3.2-4a do not adhere to the passive
convention, so the product of this voltage and current is the power supplied by element D.

We need to determine the voltage v across element C and the current i in element D. We will use Kirchhoff’s laws to
determine values of v and i. First, we identify and label the nodes of the circuit as shown in Figure 3.2-4b.

Try it 
yourself 
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Apply Kirchhoff’s voltage law (KVL) to the loop consisting of elements C, D, and B to get

�v � �4ð Þ � 6 ¼ 0 ) v ¼ �2 V

The value of the current in element C in Figure 3.2-4b is 7 A. The voltage and current of element C given in Figure
3.2-4b adhere to the passive convention, so

pC ¼ v 7ð Þ ¼ (� 2)(7) ¼ �14W

is the power received by element C. Therefore, element C supplies 14 W.
Next, apply Kirchhoff’s current law (KCL) at node b to get

7þ �10ð Þ þ i ¼ 0 ) i ¼ 3 A

The value of the voltage across element D in Figure 3.2-4b is �4 V. The voltage and current of element D given in
Figure 3.2-4b do not adhere to the passive convention, so the power supplied by element D is given by

pD ¼ �4Þi ¼ �4ð Þð3ð Þ ¼ �12W

Therefore, element D receives 12 W.
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FIGURE 3.2-4 (a) The circuit considered in Example
3.2-2 and (b) the circuit redrawn to emphasize the
nodes.

E X A M P L E 3 . 2 - 3 Ohm’s and Kirchhoff’s Laws

Consider the circuit shown in Figure 3.2-5. Notice that the passive convention was used to assign reference
directions to the resistor voltages and currents. This anticipates using Ohm’s law. Find each current and each
voltage when R1 ¼ 8 V, v2 ¼�10 V, i3 ¼ 2 A, and R3 ¼ 1 V. Also, determine the resistance R2.

Solution
The sum of the currents entering node a is

i1 � i2 � i3 ¼ 0

Try it 
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Using Ohm’s law for R3, we find that
v3 ¼ R3i3 ¼ 1(2) ¼ 2 V

Kirchhoff’s voltage law for the bottom loop incorporating v1, v3,
and the 10-V source is

�10þ v1 þ v3 ¼ 0

Therefore; v1 ¼ 10� v3 ¼ 8 V

Ohm’s law for the resistor R1 is

v1 ¼ R1i1
or i1 ¼ v1=R1 ¼ 8=8 ¼ 1 A

Next, apply Kirchhoff’s current law at node a to get

i2 ¼ i1 � i3 ¼ 1� 2 ¼ �1 A

We can now find the resistance R2 from
v2 ¼ R2i2

or R2 ¼ v2=i2 ¼ �10=�1 ¼ 10 V

R2

i2

i1

i3

R1

R3

–

12 V

10 V

–

–

+

+a

+
+
–

+
–

v1

v2

v3

FIGURE 3.2-5 Circuit with two
constant-voltage sources.

E X A M P L E 3 . 2 - 4 Ohm’s and
Kirchhoff’s Laws

INTERACT IVE EXAMPLE

Determine the value of the current, in amps, measured by the ammeter in Figure 3.2-6a.

Solution
An ideal ammeter is equivalent to a short circuit. The current measured by the ammeter is the current in the short
circuit. Figure 3.2-6b shows the circuit after replacing the ammeter by the equivalent short circuit.

The circuit has been redrawn in Figure 3.2-7 to label the nodes of the circuit. This circuit consists of a voltage
source, a dependent current source, two resistors, and two short circuits. One of the short circuits is the controlling
element of the CCCS, and the other short circuit is a model of the ammeter.

12 V +
–

+
–12 V

ia
3ia

ia
3ia

im

im

Ammeter
4 Ω 2 Ω

4 Ω 2 Ω

(a)

(b)

FIGURE 3.2-6 (a) A circuit with dependent source and an
ammeter. (b) The equivalent circuit after replacing the ammeter
by a short circuit.

12 V +
– + + –

–
iaia

3ia

2im4ia
im

imia 4 Ω b
a

d
e

c
2 Ω

FIGURE 3.2-7 The circuit of Figure 3.2-6 after labeling the
nodes and some element currents and voltages.
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Applying KCL twice, once at node d and again at node a, shows that the current in the voltage source and the
current in the 4-V resistor are both equal to ia. These currents are labeled in Figure 3.2-7. Applying KCL again, at
node c, shows that the current in the 2-V resistor is equal to im. This current is labeled in Figure 3.2-7.

Next, Ohm’s law tells us that the voltage across the 4-V resistor is equal to 4ia and that the voltage across the
2-V resistor is equal to 2im. Both of these voltages are labeled in Figure 3.2-7.

Applying KCL at node b gives
�ia � 3ia � im ¼ 0

Applying KVL to closed path a-b-c-e-d-a gives

0 ¼ �4ia þ 2im � 12 ¼ �4 � 1

4
im

� �
þ 2im � 12 ¼ 3im � 12

Finally, solving this equation gives
im ¼ 4 A

E X A M P L E 3 . 2 - 5 Ohm’s and
Kirchhoff’s Laws

INTERACT IVE EXAMPLE

Determine the value of the voltage, in volts, measured by the voltmeter in Figure 3.2-8a.

Solution
An ideal voltmeter is equivalent to an open circuit. The voltage measured by the voltmeter is the voltage across the
open circuit. Figure 3.2-8b shows the circuit after replacing the voltmeter by the equivalent open circuit.

The circuit has been redrawn in Figure 3.2-9 to label the nodes of the circuit. This circuit consists of a voltage
source, a dependent voltage source, two resistors, a short circuit, and an open circuit. The short circuit is the
controlling element of the CCVS, and the open circuit is a model of the voltmeter.

Applying KCL twice, once at node d and again at node a, shows that the current in the voltage source and the
current in the 4-V resistor are both equal to ia. These currents are labeled in Figure 3.2-9. Applying KCL again,

12 V +
–

+
–

+
–

+
–

12 V

ia
3ia

ia
3ia

Voltmeter
4 Ω 5 Ω

4 Ω 5 Ω

(a)

(b)

vm

vm

+

–

+

–

FIGURE 3.2-8 (a) A circuit with dependent source
and a voltmeter. (b) The equivalent circuit after replacing
the voltmeter by an open circuit.
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+
–

+
–

iaia

ia

4ia

FIGURE 3.2-9 The circuit of Figure 3.2-8b after labeling the
nodes and some element currents and voltages.
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at node c, shows that the current in the 5-V resistor is equal to the current in the open circuit, that is, zero. This
current is labeled in Figure 3.2-9. Ohm’s law tells us that the voltage across the 5-V resistor is also equal to zero.
Next, applying KVL to the closed path b-c-f-e-b gives vm¼ 3ia.

Applying KVL to the closed path a-b-e-d-a gives

�4ia þ 3ia � 12 ¼ 0

so ia ¼ �12 A

Finally vm ¼ 3ia ¼ 3 �12ð Þ ¼ �36 V

E X A M P L E 3 . 2 - 6 Kirchhoff’s Laws
with Time-Varying
Currents and Voltages

INTERACT IVE EXAMPLE

The circuit shown in Figure 3.2-10 contains a circuit element called a capacitor. We will learn more about
capacitors in Chapter 7. The only thing we will need to know about the capacitor in this example is its voltage, vc(t),
and that will be given.

10 Ω 25 Ω

+
–vs(t ) 0.005 F 15 Ω

+ –vo(t )

i s(t )

+

–
vc(t )

FIGURE 3.2-10 The circuit considered in Example 3.2-6.

In this example we will determine the voltage, vo(t), across the 25-V resistor and the voltage source current,
is(t), for each of the following cases:

(a) The voltage source voltage is vs(t) = 50 V and the capacitor voltage is
vc tð Þ ¼ 40� 40 e�25tV:

(b) The voltage source voltage is vs(t) = 10 cos(8t) V and the capacitor voltage is
vc tð Þ ¼ 7:62 cos 8t � 17:7

�� �
V:

Notice that vs(t) and vc(t) are not constant functions of time.

Solution
Let’s label the circuit as shown in Figure 3.2-11. We’ve labeled the nodes of the circuit in Figure 3.2-11. Also,
we’ve labeled the voltage and current of each circuit element. In anticipation of using Ohm’s Law, we’ve labeled
the current and voltage of each resistor to adhere to the passive convention.

+
–vs(t )

i s(t )
+

–
vc(t )

+ –vo(t )i2(t )

25 Ω

+

–
v3(t )

i3(t )

15 Ω

10 Ω

i1(t ) + –v1(t )

ic(t )

0.005 F

a
b

c

d
FIGURE 3.2-11 The circuit from Figure 3.2-10 after labeling the nodes
and the element voltages and currents.
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Solution
Let’s see what information we can obtain using Ohm’s law and Kirchhoff’s laws. Applying Ohm’s law to each of
the resistors gives

v 1 tð Þ ¼ 10 i 1 tð Þ; v o tð Þ ¼ 25 i2 tð Þ and v 3 tð Þ ¼ 15 i 3 tð Þ (3.2-3)

Apply KCL at node a and also at node c to get

i s tð Þ ¼ i 1 tð Þ and i 2 tð Þ ¼ i 3 tð Þ (3.2-4)

Apply KVL to the loop consisting of the voltage source, 10-V resistor, and the capacitor to get

v s tð Þ ¼ v 1 tð Þ þ v c tð Þ (3.2-5)

Apply KVL to the loop consisting of the capacitor, 25-V resistor, and the 15-V resistor to get

v c tð Þ ¼ v o tð Þ þ v 3 tð Þ (3.2-6)

Doing a little algebra, we get

i s tð Þ ¼ i 1 tð Þ ¼ v 1 tð Þ
10

¼ v s tð Þ � v c tð Þ
10

(3.2-7)

Recalling that i2(t) = i3(t), we do the following algebra

v c tð Þ ¼ v o tð Þ þ v 3 tð Þ ¼ 25 i 2 tð Þ þ 15 i 3 tð Þ ¼ 40 i 2 tð Þ (3.2-8)

Combining Eqs. 3.2-8 and 3.2-3 gives

v o tð Þ ¼ 25 i2 tð Þ ¼ 25
v c tð Þ
40

¼ 5

8
v c tð Þ (3.2-9)

In summary v o tð Þ ¼ 5

8
v c tð Þ and i s tð Þ ¼ v s tð Þ � v c tð Þ

10
(3.2-10)

These equations prepare us to consider case (a) and case (b) of this example.

In case (a) v o tð Þ ¼ 5

8
40� 40e�25t
� � ¼ 25 1� e�25t

� �
V

and i s tð Þ ¼ 50� 40� 40e�25tð Þ
10

¼ 1þ 4e�25t A

In case (b) v o tð Þ ¼ 5

8

� �
7:62 cos 8t � 17:7�ð Þ ¼ 4:76 cos 8t � 17:7�ð ÞV

and i s tð Þ ¼ 10 cos 8tð Þ � 7:62 cos 8t � 17:7�ð Þ
10

A (3.2-11)

We can simplify this expression for is(t) using trigonometric identities, but that process is somewhat tedious.
In Chapter 10 we’ll use complex arithmetic to simplify Eq. 3.2-11. The result is

i s tð Þ ¼ 0:349cos (8t þ 40�) A
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EXERCISE 3.2-1 Determine the values of i3, i4, i6, v2, v4, and v6 in Figure E 3.2-1.

Answer: i3¼�3 A, i4¼ 3 A, i6¼ 4 A, v2¼�3 V, v4¼�6 V, v6¼ 6 V
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i3

i4
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FIGURE E 3.2-1

3.3 S e r i e s R e s i s t o r s a n d V o l t a g e D i v i s i o n

Let us consider a single-loop circuit, as shown in Figure 3.3-1. In anticipation of using Ohm’s
law, the passive convention has been used to assign reference directions to resistor voltages
and currents.

The connection of resistors in Figure 3.3-1 is said to be a series connection because
all the elements carry the same current. To identify a pair of series elements, we look for
two elements connected to a single node that has no other elements connected to it. Notice,
for example, that resistors R1 and R2 are both connected to node b and that no other
circuit elements are connected to node b. Consequently, i1 ¼ i2, so both resistors have the
same current. A similar argument shows that resistors R2 and R3 are also connected in
series. Noticing that R2 is connected in series with both R1 and R3, we say that all three
resistors are connected in series. The order of series resistors is not important. For example,
the voltages and currents of the three resistors in Figure 3.3-1 will not change if we
interchange the positions R2 and R3.

Using KCL at each node of the circuit in Figure 3.3-1, we obtain

a : is ¼ i1
b : i1 ¼ i2
c : i2 ¼ i3
d : i3 ¼ is

Consequently, is ¼ i1 ¼ i2 ¼ i3

To determine i1, we use KVL around the loop to obtain

v1 þ v2 þ v3 � vs ¼ 0

where, for example, v1 is the voltage across the resistor R1. Using Ohm’s law for each resistor,

R1i1 þ R2i2 þ R2i3 � vs ¼ 0 ) R1i1 þ R2i1 þ R2i1 ¼ vs

Solving for i1, we have
i1 ¼ vs

R1 þ R2 þ R3

R2

R1

R3

+
–

a b

d c

vs

v1

v2

i1

is

i3

i2+ −

v3 +−

+

−

FIGURE 3.3-1
Single-loop circuit with a
voltage source vs.
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Thus, the voltage across the nth resistor Rn is vn and can be obtained as

vn ¼ i1Rn ¼ vsRn

R1 þ R2 þ R3

For example, the voltage across resistor R2 is

v2 ¼ R2

R1 þ R2 þ R3
vs

Thus, the voltage across the series combination of resistors is divided up between the individual
resistors in a predictable way. This circuit demonstrates the principle of voltage division, and the circuit
is called a voltage divider.

In general, we may represent the voltage divider principle by the equation

vn ¼ Rn

R1 þ R2 þ � � � þ RN
vs

where vn is the voltage across the nth resistor of N resistors connected in series.
We can replace series resistors by an equivalent resistor. This is illustrated in Figure 3.3-2.

The series resistors R1, R2, and R3 in Figure 3.3-2a are replaced by a single, equivalent resistor
Rs in Figure 3.3-2b. Rs is said to be equivalent to the series resistors R1, R2, and R3 when replacing R1,
R2, and R3 by Rs does not change the current or voltage of any other element of the circuit. In this case,
there is only one other element in the circuit, the voltage source. We must choose the value of the
resistance Rs so that replacing R1, R2, and R3 by Rs will not change the current of the voltage source.
In Figure 3.3-2a, we have

is ¼ vs
R1 þ R2 þ R3

In Figure 3.3-2b, we have

is ¼ vs
Rs

Because the voltage source current must be the same in both circuits, we require that

Rs ¼ R1 þ R2 þ R3

In general, the series connection of N resistors having resistances R1, R2 . . . RN is equivalent to the
single resistor having resistance

Rs ¼ R1 þ R2 þ � � � þ RN

Replacing series resistors by an equivalent resistor does not change the current or voltage of any other
element of the circuit.
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FIGURE 3.3-2
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Next, let’s calculate the power absorbed by the series resistors in Figure 3.3-2a:

p ¼ is
2R1 þ is

2R2 þ is
2R3

Doing a little algebra gives

p ¼ is
2(R1 þ R2 þ R3) ¼ is

2Rs

which is equal to the power absorbed by the equivalent resistor in Figure 3.3-2b. We conclude that
the power absorbed by series resistors is equal to the power absorbed by the equivalent resistor.

E X A M P L E 3 . 3 - 1 Voltage Division

Consider the two similar voltage divider circuits shown in Figure 3.3-3. Use voltage division to determine the
values of the voltage v2 in Figure 3.3-3a and the voltage vb in Figure 3.3-3b.

+
– v2

+

–

400 Ω

300 Ω

100 Ω

12 V

i

+
– vb

+

–

400 Ω

300 Ω

100 Ω

12 V

i

(a) (b) FIGURE 3.3-3 Two similar voltage divider circuits.

Solution
First, consider the circuit shown in Figure 3.3-3a. This circuit is an example of a single loop circuit like the circuit
shown in Figure 3.3-1. The 100, 400, and 300-V resistors are connected in series. The current in the loop is
given by

i ¼ 12

100þ 400þ 300
¼ 0:015 A ¼ 15 mA

We can calculate the value of v2 using voltage division:

v 2 ¼ 400

100þ 400þ 300
12ð Þ ¼ 6 V

As a check, notice that 6 ¼ v 2 ¼ 400 ið Þ ¼ 400 0:015ð Þ

Next, consider the circuit shown in Figure 3.3-3b. This circuit is also an example of a single loop circuit.
Again, the current in the loop is given by

i ¼ 12

100þ 400þ 300
¼ 0:015 A ¼ 15 mA

Notice that the voltage vb in Figure 3.3-3b is the same voltage as the voltage v2 in Figure 3.3-3a, except for
polarity. Consequently

v 2 ¼ �v b

Therefore v b ¼ 400

100þ 400þ 300
12ð Þ ¼ �6 V

Try it 
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(Notice that the voltage v2 in Figure 3.3-3a has the same polarity as the voltage v2 in Figure 3.3-2a, but the voltage
vb in Figure 3.3-3b has the opposite polarity from the voltage v2 in Figure 3.3-2a)

As a check, noticing that the current i and voltage vb in Figure 3.3-3b do not adhere to the passive convention,
we write

�6 ¼ v b ¼ �400 ið Þ ¼ �400 0:015ð Þ
Clearly, we will need to pay attention to voltage polarities when we use voltage division.

E X A M P L E 3 . 3 - 2 Series Resistors

For the circuit of Figure 3.3-4a, find the current measured by the ammeter. Then show that the power absorbed by
the two resistors is equal to that supplied by the source.

15 V

+ – + –

15 V

Ammeter

5 Ω
10 Ω

5 Ω
10 Ω

im

(a) (b)

FIGURE 3.3-4 (a) A circuit containing series resistors. (b) The circuit after the ideal ammeter has been replaced by the equivalent
short circuit, and a label has been added to indicate the current measured by the ammeter im.

Solution
Figure 3.3-4b shows the circuit after the ideal ammeter has been replaced by the equivalent short circuit and a label
has been added to indicate the current measured by the ammeter im. Applying KVL gives

15þ 5im þ 10im ¼ 0

The current measured by the ammeter is

im ¼ � 15

5þ 10
¼ �1 A

(Why is im negative? Why can’t we just divide the source voltage by the equivalent resistance? Recall that when we
use Ohm’s law, the voltage and current must adhere to the passive convention. In this case, the current calculated by
dividing the source voltage by the equivalent resistance does not have the same reference direction as im, so we
need a minus sign.)

The total power absorbed by the two resistors is

pR ¼ 5im
2 þ 10im

2 ¼ 15 12
� � ¼ 15W

The power supplied by the source is

ps ¼ �vs im ¼ �15 �1ð Þ ¼ 15W

Thus, the power supplied by the source is equal to that absorbed by the series connection of resistors.

Try it 
yourself 

in WileyPLUS
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EXERCISE 3.3-1 Determine the voltage measured by the voltmeter in the circuit shown in
Figure E 3.3-1a.

Hint: Figure E 3.3-1b shows the circuit after the ideal voltmeter has been replaced by the equivalent
open circuit and a label has been added to indicate the voltage measured by the voltmeter vm.

Answer: vm¼ 2 V

E X A M P L E 3 . 3 - 3 Voltage Divider Design

The input to the voltage divider in Figure 3.3-5 is the voltage vs of the voltage source. The output is the voltage vo

measured by the voltmeter. Design the voltage divider; that is, specify values of the resistances R1 and R2 to satisfy
both of these specifications.
Specification 1: The input and output voltages are related by vo¼ 0.8 vs.
Specification 2: The voltage source is required to supply no more than 1 mW of power when the input to the
voltage divider is vs¼ 20 V.

Solution
We’ll examine each specification to see what it tells us about the resistor values.
Specification 1: The input and output voltages of the voltage divider are related by

vo ¼ R2

R1 þ R2
vs

So specification 1 requires R2

R1 þ R2
¼ 0:8 ) R2 ¼ 4R1

Specification 2: The power supplied by the voltage source is given by

ps ¼ isvs ¼ vs
R1 þ R2

� �
vs ¼ vs2

R1 þ R2

So specification 2 requires

0:001 � 202

R1 þ R2
) R1 þ R2 � 400� 103 ¼ 400 kV

Combining these results gives
5R1 � 400 kV

The solution is not unique. One solution is
R1 ¼ 100 kV and R2 ¼ 400 kV

R1

R2

is

v0

Voltmeter

Voltage Divider

vs
+
–

+

–

FIGURE 3.3-5 A voltage divider.

Try it 
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EXERCISE 3.3-2 Determine the voltage measured by the voltmeter in the circuit shown in
Figure E 3.3-2a.

vm+
–

(b)(a)

8 V

75 Ω

25 Ω+
– 8 V

75 Ω

25 Ω

Voltmeter
+

–

FIGURE E 3.3-2 (a) A voltage divider. (b) The voltage divider after the ideal voltmeter has been replaced by the
equivalent open circuit and a label has been added to indicate the voltage measured by the voltmeter vm.

Hint: Figure E 3.3-2b shows the circuit after the ideal voltmeter has been replaced by the equivalent
open circuit and a label has been added to indicate the voltage measured by the voltmeter vm.

Answer: vm¼�2 V

3.4 P a r a l l e l R e s i s t o r s a n d C u r r e n t D i v i s i o n

Circuit elements, such as resistors, are connected in parallel when the voltage across each element is
identical. The resistors in Figure 3.4-1 are connected in parallel. Notice, for example, that resistors R1

and R2 are each connected to both node a and node b. Consequently, v1¼ v2, so both resistors have the
same voltage. A similar argument shows that resistors R2 and R3 are also connected in parallel. Noticing
that R2 is connected in parallel with both R1 and R3, we say that all three resistors are connected in
parallel. The order of parallel resistors is not important. For example, the voltages and currents of the
three resistors in Figure 3.4-1 will not change if we interchange the positions R2 and R3.

The defining characteristic of parallel elements is that they have the same voltage. To identify a
pair of parallel elements, we look for two elements connected between the same pair of nodes.

Consider the circuit with two resistors and a current source shown in Figure 3.4-2. Note that
both resistors are connected to terminals a and b and that the voltage v appears across each parallel

vm8 V+
–

+
–

75 Ω

25 Ω

(a) (b)

8 V

75 Ω

25 Ω

Voltmeter
+

–

FIGURE E 3.3-1 (a) A voltage divider. (b) The voltage divider after the ideal voltmeter has been replaced by the
equivalent open circuit and a label has been added to indicate the voltage measured by the voltmeter vm.

R1
vs R2

b

a

+

–

+
–

–

+ +

–

v1 R3
v2 v3

FIGURE 3.4-1 A circuit with parallel resistors.

R1 R2

i2i1

is v

b

a

+

–

FIGURE 3.4-2 Parallel circuit with a current source.
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element. In anticipation of using Ohm’s law, the passive convention is used to assign reference
directions to the resistor voltages and currents. We may write KCL at node a (or at node b) to obtain

is � i1 � i2 ¼ 0

or is ¼ i1 þ i2

Next, from Ohm’s law
i1 ¼ v

R1
and i2 ¼ v

R2

Then
is ¼ v

R1
þ v

R2
(3.4-1)

Recall that we defined conductance G as the inverse of resistance R. We may therefore rewrite
Eq. 3.4-1 as

is ¼ G1v þ G2v ¼ G1 þ G2ð Þv (3.4-2)

Thus, the equivalent circuit for this parallel circuit is a conductance Gp, as shown in
Figure 3.4-3, where

Gp ¼ G1 þ G2

The equivalent resistance for the two-resistor circuit is found from

Gp ¼ 1

R1
þ 1

R2

Because Gp¼ 1=Rp, we have
1

Rp
¼ 1

R1
þ 1

R2

or Rp ¼ R1R2

R1 þ R2
(3.4-3)

Note that the total conductance, Gp, increases as additional parallel elements are added and that the total
resistance, Rp, declines as each resistor is added.

The circuit shown in Figure 3.4-2 is called a current divider circuit because it divides the source
current. Note that

i1 ¼ G1v (3.4-4)

Also, because is¼ (G1 þ G2)v, we solve for v, obtaining

v ¼ is
G1 þ G2

(3.4-5)

Substituting v from Eq. 3.4-5 into Eq. 3.4-4, we obtain

i1 ¼ G1is
G1 þ G2

(3.4-6)

Similarly; i2 ¼ G2is
G1 þ G2

Note that we may use G2¼ 1=R2 and G1¼ 1=R1 to obtain the current i2 in terms of two resistances as
follows:

i2 ¼ R1is
R1 þ R2

is

+

–

v Gp

FIGURE 3.4-3
Equivalent circuit for a
parallel circuit.
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The current of the source divides between conductances G1 and G2 in proportion to their conductance
values.

Let us consider the more general case of current division with a set of N parallel conductors as
shown in Figure 3.4-4. The KCL gives

is ¼ i1 þ i2 þ i3 þ � � � þ iN (3.4-7)

for which
in ¼ Gnv (3.4-8)

for n¼ 1, . . . , N. We may write Eq. 3.4-7 as

is ¼ (G1 þ G2 þ G3 þ � � � þ GN)v (3.4-9)

Therefore,

is ¼ v
XN

n¼1

Gn (3.4-10)

Because in¼Gnv, we may obtain v from Eq. 3.4-10 and substitute it in Eq. 3.4-8, obtaining

in ¼ Gnis
PN
n¼1

Gn

(3.4-11)

Recall that the equivalent circuit, Figure 3.4-3, has an equivalent conductance Gp such that

Gp ¼
XN

n¼1

Gn (3.4-12)

Therefore,

in ¼ Gnis
Gp

(3.4-13)

which is the basic equation for the current divider with N conductances. Of course, Eq. 3.4-12 can be
rewritten as

1

Rp
¼

XN

n¼1

1

Rn
(3.4-14)

is

i1

i2

i3

iN

+ –

GN

G3

G2

G1

v

FIGURE 3.4-4
Set of N parallel
conductances
with a current
source is.

E X A M P L E 3 . 4 - 1 Parallel Resistors

For the circuit in Figure 3.4-5, find (a) the current in each
branch, (b) the equivalent circuit, and (c) the voltage v. The
resistors are

R1 ¼ 1

2
V; R2 ¼ 1

4
V; R3 ¼ 1

8
V

Solution
The current divider follows the equation

in ¼ Gnis
Gp

so it is wise to find the equivalent circuit, as shown in Figure
3.4-6, with its equivalent conductance Gp. We have

Gp ¼
XN

n¼1

Gn ¼ G1 þ G2 þ G3 ¼ 2þ 4þ 8 ¼ 14 S

Try it 
yourself 

in WileyPLUS

28 A Gp

+

–

v

FIGURE 3.4-6 Equivalent circuit for the parallel
circuit of Figure 3.4-5.

i1 i2

28 A

i3

R1 R2 R3v

+

–

FIGURE 3.4-5 Parallel circuit for Example 3.3-2.
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Recall that the units for conductance are siemens (S). Then

i1 ¼ G1is
Gp

¼ 2

14
(28) ¼ 4 A

Similarly, i2 ¼ G2is
Gp

¼ 4(28)

14
¼ 8 A

and i3 ¼ G3is
Gp

¼ 16 A

Because in¼Gnv, we have

v ¼ i1
G1

¼ 4

2
¼ 2 V

E X A M P L E 3 . 4 - 2 Parallel Resistors INTERACT IVE EXAMPLE

For the circuit of Figure 3.4-7a, find the voltage measured by the voltmeter. Then show that the power absorbed by
the two resistors is equal to that supplied by the source.

250 mA

250 mA

Voltmeter

(a)

( b) (c)

40 Ω

40 Ω

8 Ω

10 Ω

10 Ω 250 mAvm

+

–

vm

+

–

FIGURE 3.4-7 (a) A circuit containing parallel resistors.
(b) The circuit after the ideal voltmeter has been replaced
by the equivalent open circuit and a label has been added
to indicate the voltage measured by the voltmeter vm.
(c) The circuit after the parallel resistors have been
replaced by an equivalent resistance.

Solution
Figure 3.4-7b shows the circuit after the ideal voltmeter has been replaced by the equivalent open circuit, and a
label has been added to indicate the voltage measured by the voltmeter vm. The two resistors are connected in
parallel and can be replaced with a single equivalent resistor. The resistance of this equivalent resistor is
calculated as

40 � 10
40þ 10

¼ 8 V

Figure 3.4-7c shows the circuit after the parallel resistors have been replaced by the equivalent resistor. The
current in the equivalent resistor is 250 mA, directed upward. This current and the voltage vm do not adhere to the
passive convention. The current in the equivalent resistance can also be expressed as �250 mA, directed
downward. This current and the voltage vm do adhere to the passive convention. Ohm’s law gives

vm ¼ 8 �0:25ð Þ ¼ �2 V

Try it 
yourself 

in WileyPLUS
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The voltage vm in Figure 3.4-7b is equal to the voltage vm in Figure 3.4-7c. This is a consequence of
the equivalence of the 8-V resistor to the parallel combination of the 40-V and 10-V resistors. Looking at
Figure 3.4-7b, we see that the power absorbed by the resistors is

pR ¼ vm2

40
þ vm2

10
¼ 22

40
þ 22

10
¼ 0:1þ 0:4 ¼ 0:5W

The voltage vm and the current of the current source adhere to the passive convention, so

ps ¼ vm(0:25) ¼ �2ð Þ 0:25ð Þ ¼ �0:5W

is the power received by the current source. The current source supplies 0.5 W.
Thus, the power absorbed by the two resistors is equal to that supplied by the source.

E X A M P L E 3 . 4 - 3 Current Divider Design

The input to the current divider in Figure 3.4-8 is the current is of the current source. The output is the current, io,
measured by the ammeter. Specify values of the resistances R1 and R2 to satisfy both of these specifications:

R1

R2is

io

Ammeter

Current Divider

vs

+

–

FIGURE 3.4-8 A current divider circuit.

Specification 1: The input and output currents are related by io¼ 0.8 is.
Specification 2: The current source is required to supply no more than 10 mW of power when the input to the
current divider is is¼ 2 mA.

Solution
We’ll examine each specification to see what it tells us about the resistor values.
Specification 1: The input and output currents of the current divider are related by

io ¼ R2

R1 þ R2
is

So specification 1 requires
R2

R1 þ R2
¼ 0:8 ) R2 ¼ 4R1

Specification 2: The power supplied by the current source is given by

ps ¼ isvs ¼ is is
R1R2

R1 þ R2

� �� �
¼ is

2 R1R2

R1 þ R2

� �

So specification 2 requires

0:01 � 0:002ð Þ2 R1R2

R1 þ R2

� �
) R1R2

R1 þ R2
� 2500

Try it 
yourself 

in WileyPLUS
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EXERCISE 3.4-1 A resistor network consisting of parallel resistors is shown in a package used
for printed circuit board electronics in Figure E 3.4-1a. This package is only 2 cm � 0.7 cm, and each
resistor is 1 kV. The circuit is connected to use four resistors as shown in Figure E 3.4-1b. Find the
equivalent circuit for this network. Determine the current in each resistor when is ¼ 1 mA.

is R R R R

( b)
(a)

FIGURE E 3.4-1
(a) A parallel
resistor network.
(b) The connected
circuit uses
four resistors where
R¼ 1 kV.

Answer: Rp¼ 250 V

EXERCISE 3.4-2 Determine the current measured by the ammeter in the circuit shown in
Figure E 3.4-2a.

5 A

5 A

Ammeter

10 Ω

10 Ω

40 Ω

40 Ω

im

(a)

( b)

FIGURE E 3.4-2 (a) A current divider. (b) The
current divider after the ideal ammeter has been
replaced by the equivalent short circuit and a label
has been added to indicate the current measured by
the ammeter im.

Hint: Figure E 3.4-2b shows the circuit after the ideal ammeter has been replaced by the equivalent
short circuit, and a label has been added to indicate the current measured by the ammeter im.

Answer: im¼�1 A

Combining these results gives

R1 4R2ð Þ
R1 þ 4R2

� 2500 ) 4

5
R1 � 2500 ) R1 � 3125V

The solution is not unique. One solution is

R1 ¼ 3 kV and R2 ¼ 12 kV

Courtesy of Vishay Intertechnology, Inc.
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3.5 S e r i e s V o l t a g e S o u r c e s a n d P a r a l l e l C u r r e n t
S o u r c e s

Voltage sources connected in series are equivalent to a single voltage source. The voltage of the equivalent
voltage source is equal to the algebraic sum of voltages of the series voltage sources.

Consider the circuit shown in Figure 3.5-1a. Notice that the currents of both voltage sources are
equal. Accordingly, define the current is to be

is ¼ ia ¼ ib (3.5-1)

Next, define the voltage vs to be

vs ¼ va þ vb (3.5-2)

Using KCL, KVL, and Ohm’s law, we can represent the circuit in Figure 3.5-1a by the equations

ic ¼ v1
R1

þ is (3.5-3)

is ¼ v2
R2

þ i3 (3.5-4)

vc ¼ v1 (3.5-5)

v1 ¼ vs þ v2 (3.5-6)

v2 ¼ i3R3 (3.5-7)

where is¼ ia¼ ib and vs¼ va þ vb. These same equations result from applying KCL, KVL,
and Ohm’s law to the circuit in Figure 3.5-1b. If is¼ ia¼ ib and vs¼ va þ vb, then the circuits
shown in Figures 3.5-1a and 3.5-1b are equivalent because they are both represented by the same
equations.

For example, suppose that ic¼ 4 A, R1¼ 2 V, R2¼ 6 V, R3¼ 3 V, va¼ 1 V, and vb¼ 3 V.
The equations describing the circuit in Figure 3.5-1a become

vc v1 v2 v3

vs

i1
ic

i2 i3

R1

( b)

(a)

R2 R3

vc v1 v2 v3

i1 i2 i3

R1

+

–

+

–
R2 R3

is

va

ia

vb

ibic

+

–

+

–

+

–

+

–

+

–

+

–

+ – + –

+ –

FIGURE 3.5-1 (a) A circuit containing
voltage sources connected in series and
(b) an equivalent circuit.
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4 ¼ v1
2
þ is (3.5-8)

is ¼ v2
6
þ i3 (3.5-9)

vc ¼ v1 (3.5-10)

v1 ¼ 4þ v2 (3.5-11)

v2 ¼ 3i3 (3.5-12)

The solution to this set of equations is v1¼ 6 V, is ¼ 1 A, i3¼ 0.66 A, v2¼ 2 V, and vc¼ 6 V.
Eqs. 3.5-8 to 3.5-12 also describe the circuit in Figure 3.5-1b. Thus, v1¼ 6 V, is¼ 1 A,
i3¼ 0.66 A, v2¼ 2 V, and vc¼ 6 V in both circuits. Replacing series voltage sources by a
single, equivalent voltage source does not change the voltage or current of other elements of the
circuit.

Figure 3.5-2a shows a circuit containing parallel current sources. The circuit in Figure
3.5-2b is obtained by replacing these parallel current sources by a single, equivalent current
source. The current of the equivalent current source is equal to the algebraic sum of the currents of
the parallel current sources.

We are not allowed to connect independent current sources in series. Series elements have
the same current. This restriction prevents series current sources from being independent.
Similarly, we are not allowed to connect independent voltage sources in parallel.

Table 3.5-1 summarizes the parallel and series connections of current and voltage sources.

Table 3.5-1 Parallel and Series Voltage and Current Sources

CIRCUIT EQUIVALENT CIRCUIT CIRCUIT EQUIVALENT CIRCUIT

ia

+ – + –

+ – +–

ib

va vb

va vb va + vb

va – vb

+ –

+ –

Not allowed

va vb
+
–

+
–

ia ib

ia ib

Not allowed

ia – ib

ia + ib

vc

vc

ia

ib
R2

R2

R3

R3

R1

(a)

( b)

R1

ia + ib

+
–

+
–

FIGURE 3.5-2
(a) A circuit
containing parallel
current sources and (b)
an equivalent circuit.
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E X A M P L E 3 . 5 - 1 Series and Parallel Sources

Figures 3.5-3a and c show two similar circuits. Both contain series voltage sources and parallel current sources. In
each circuit, replace the series voltage sources with an equivalent voltage source and the parallel current sources
with an equivalent current source.

v2

+

–

40 Ω

20 Ω
i1

2 A 3.5 A

+ –

+
– 32 V

14 V 20 Ω
i1

5.5 A+
– 18 V

20 Ω
i1

2 A 3.5 A

+–

+
– 32 V

14 V 20 Ω
i1

1.5 A+
– 46 V

v2

+

–

40 Ω

v2

+

–

40 Ωv2

+

–

40 Ω

(a) (b)

(c) (d)
FIGURE 3.5-3 The circuits
considered in Example 3.5-1.

Solution
Consider first the circuit in Figure 3.5-3a. Apply KVL to the left mesh to get

14þ v 2 � 32 ¼ 0 ) v 2 � 18 ¼ 0

Next apply KCL at the right node of the 20V to get

i 1 ¼ 2þ 3:5 ) i 1 ¼ 5:5

These equations suggest that we replace the series voltage sources by a single 18-V source and replace the parallel
current sources by a single 5.5-A source. Figure 3.5-3b shows the result.

Notice that v2 � 18 ¼ 0

is the KVL equation corresponding to the left mesh of the circuit in Figure 3.5-3b and

i 1 ¼ 5:5

is the KCL equation corresponding to the right node of the 20V to Figure 3.5-3b.
Next, consider first the circuit in Figure 3.5-3c. Apply KVL to the left mesh to get

�14þ v 2 � 32 ¼ 0 ) v 2 � 46 ¼ 0

Next apply KCL at the right node of the 20V to get

i 1 þ 2 ¼ 3:5 ) i 1 ¼ 1:5

Try it 
yourself 

in WileyPLUS
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3.6 C i r c u i t A n a l y s i s

In this section, we consider the analysis of a circuit by replacing a set of resistors with an equivalent
resistance, thus reducing the network to a form easily analyzed.

Consider the circuit shown in Figure 3.6-1. Note that it includes a set of resistors that is connected
in series and another set of resistors that is connected in parallel. It is desired to find the output voltage
vo, so we wish to reduce the circuit to the equivalent circuit shown in Figure 3.6-2.

We note that the equivalent series resistance is
Rs ¼ R1 þ R2 þ R3

and the equivalent parallel resistance is Rp ¼ 1

Gp

where Gp ¼ G4 þ G5 þ G6

Then, using the voltage divider principle, with Figure 3.6-2, we have

vo ¼ Rp

Rs þ Rp
vs

Replacing the series resistors by the equivalent resistor Rs did not change the current or voltage of
any other circuit element. In particular, the voltage vo did not change. Also, the voltage vo across the
equivalent resistor Rp is equal to the voltage across each of the parallel resistors. Consequently, the
voltage vo in Figure 3.6-2 is equal to the voltage vo in Figure 3.6-1. We can analyze the simple circuit
in Figure 3.6-2 to find the value of the voltage vo and know that the voltage vo in the more
complicated circuit shown in Figure 3.6-1 has the same value.

In general, we may find the equivalent resistance for a portion of a circuit consisting only of
resistors and then replace that portion of the circuit with the equivalent resistance. For example,
consider the circuit shown in Figure 3.6-3. The resistive circuit in (a) is equivalent to the single 56 V
resistor in (b). Let’s denote the equivalent resistance as Req. We say that Req is “the equivalent resistance
seen looking into the circuit of Figure 3.6-3a from terminals a-b.” Figure 3.6-3c shows a notation used
to indicate the equivalent resistance. Equivalent resistance is an important concept that occurs in a
variety of situations and has a variety of names. “Input resistance,” “output resistance,” “Th�evenin
resistance,” and “Norton resistance” are some names used for equivalent resistance.

These equations suggest that we replace the series voltage sources by a single 46-V source and replace the parallel
current sources by a single 1.5-A source. Figure 3.5-3d shows the result.

Notice that v2 � 46 ¼ 0

is the KVL equation corresponding to the left mesh of the circuit in Figure 3.5-3d and
i1 ¼ 1:5

is the KCL equation corresponding to the right node of the 20 V to Figure 3.5-3d.

vs vo

R1 R2 R3

R4 R5 R6
+
–

+

–

FIGURE 3.6-1 Circuit with a set of series resistors and
a set of parallel resistors.

vovs

Rs

RP

+

–

+
–

FIGURE 3.6-2 Equivalent circuit for the circuit of
Figure 3.6-2.
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25 Ω

28 Ω 56 Ω20 Ω

52 Ω15 Ω

25 Ω

28 Ω20 Ω

52 Ω15 Ωa

b

a

b

a

b

(a) (b)

b

Req

(c)

FIGURE 3.6-3 The resistive circuit in (a) is equivalent to the single resistor in (b). The notation used to indicate the
equivalent resistance is shown in (c).

E X A M P L E 3 . 6 - 1 Series and Parallel Resistors

Determine the value of the current i for the circuit shown in Figure 3.6-4.

Solution
The 150- and 600-V resistors are connected in series. These series resistors are equivalent to a single resistor. The
resistance of the equivalent resistance given by

R s ¼ 150þ 600 ¼ 750 V

Figure 3.6-5a shows the circuit after replacing the series resistors by an equivalent resistor. Notice that the current
in the equivalent resistor has been labeled as i because it is known to be equal to the currents in the individual series
resistors.

The 500- and 750-V resistors in Figure 3.6-5a are connected parallel. These parallel resistors are equivalent
to a single resistor. The resistance of the equivalent resistance given by

R p ¼ 500 750ð Þ
500þ 750

¼ 300 V

Figure 3.6-5b shows the circuit after replacing the parallel resistors by an equivalent resistor. Notice that there is no
place in Figure 3.6-5b to label the current i.

The 200- and 300-V resistors in Figure 3.6-5b are connected series. The voltage across the 300-V resistor can
be calculated using voltage division:

v 2 ¼ 300

200þ 300
40ð Þ ¼ 24 V

The current in the series 200- and 300-V resistors in Figure 3.6-5b is

i 1 ¼ 40

200þ 300
¼ 0:08 A ¼ 80 mA

+
– 500 Ω

200 Ω

40 V

i

600 Ω

150 Ω

FIGURE 3.6-4 The circuit considered in Example 3.6-1.

Try it 
yourself 
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Figure 3.6-5c shows the circuit as it was before replacing the parallel 500- and 750-V resistors by an equivalent
resistor. Replacing these parallel resistors by an equivalent resistance did not change the current in the 200-V
resistor so the current in the 200-V in Figure 3.6-5d is labeled as i1. Also, the voltage across the equivalent
300-V resistor is equal to the voltage across the individual 500- and 750-V parallel resistors. Consequently,
the voltage labeled v2 in Figure 3.6-5c is equal to the voltage labeled v2 in Figure 3.6-5b.

The current i in Figure 3.6-5c is related to the current i1 by current division:

i ¼ 500

500þ 750
i 1 ¼ 0:4ð Þ 80ð Þ ¼ 32 mA

As a check, we can also calculate the current i using Ohm’s law:

i ¼ v2
750

¼ 24

750
¼ 32 mA

(As noted earlier, the current i in Figures 3.6-4a and c have the same value as the current i in Figure 3.6-5.)

v2

+

–

+
– 500 Ω

200 Ω

40 V 750 Ω +
– 300 Ω

200 Ω

40 V

i1

+
– 500 Ω

200 Ω

40 V 750 Ωv2

+

–

i1

i

i

(a) (b)

(c)

FIGURE 3.6-5 Analyzing the circuit
in Figure 3.6-4 using equivalent
resistances.

E X A M P L E 3 . 6 - 2 Equivalent Resistance

The circuit in Figure 3.6-6a contains an ohmmeter. An ohmmeter is an instrument that measures resistance in ohms.
The ohmmeter will measure the equivalent resistance of the resistor circuit connected to its terminals. Determine
the resistance measured by the ohmmeter in Figure 3.6-6a.

Solution
Working from left to right, the 30-V resistor is parallel to the 60-V resistor. The equivalent resistance is

60 � 30
60þ 30

¼ 20V

In Figure 3.6-6b, the parallel combination of the 30-V and 60-V resistors has been replaced with the equivalent
20-V resistor. Now the two 20-V resistors are in series.

Try it 
yourself 

in WileyPLUS
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E X A M P L E 3 . 6 - 3 Circuit Analysis Using Equivalent Resistances

Determine the values of i3, v4, i5, and v6 in circuit shown in Figure 3.6-7.

Solution
The circuit shown in Figure 3.6-8 has been obtained from the circuit shown in Figure 3.6-7 by replacing series and
parallel combinations of resistances by equivalent resistances. We can use this equivalent circuit to solve this
problem in three steps:

1. Determine the values of the resistances R1, R2, and R3 in Figure 3.6-8 that make the circuit in Figure 3.6-8
equivalent to the circuit in Figure 3.6-7.

.

The equivalent resistance is

20þ 20 ¼ 40V

In Figure 3.6-6c, the series combination of the two 20-V resistors has been replaced with the equivalent 40-V
resistor. Now the 40-V resistor is parallel to the 10-V resistor. The equivalent resistance is

40 � 10
40þ 10

¼ 8V

In Figure 3.6-6d the parallel combination of the 40-V and 10-V resistors has been replaced with the equivalent
8-V resistor. Thus, the ohmmeter measures a resistance equal to 8 V.

(a) ( b)

(d)(c)

60 Ω 30 Ω 10 Ω 10 Ω

8 Ω10 Ω40 Ω

20 Ω

20 Ω

20 Ω
Ohmmeter Ohmmeter

OhmmeterOhmmeter

FIGURE 3.6-6
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12 Ω

18 Ω6 Ω

8 Ω

12 Ω

8 Ω
d

ba

c

2 Ω 6 Ω

20 Ω 5 Ω
18 V

i5

i3

i
v2

v6

+

+

–

v4 +–

v1+ –

–

+
–

FIGURE 3.6-7 The circuit considered in Example 3.6-3.

2. Determine the values of v1, v2, and i in Figure 3.6-8.

3. Because the circuits are equivalent, the values of v1, v2, and i in Figure 3.6-7 are equal to the values of v1,
v2, and i in Figure 3.6-8. Use voltage and current division to determine the values of i3, v4, i5, and v6 in
Figure 3.6-7.

Step 1: Figure 3.6-9a shows the three resistors at the top of the circuit in Figure 3.6-7. We see that the 6-V
resistor is connected in series with the 18-V resistor. In Figure 3.6-9b, these series resistors have been replaced by
the equivalent 24-V resistor. Now the 24-V resistor is connected in parallel with the 12-V resistor. Replacing series
resistors by an equivalent resistance does not change the voltage or current in any other element of the circuit. In
particular, v1, the voltage across the 12-V resistor, does not change when the series resistors are replaced by the
equivalent resistor. In contrast, v4 is not an element voltage of the circuit shown in Figure 3.6-9b.

In Figure 3.6-9c, the parallel resistors have been replaced by the equivalent 8-V resistor. The voltage across
the equivalent resistor is equal to the voltage across each of the parallel resistors, v1 in this case. In summary, the
resistance R1 in Figure 3.6-8 is given by

R1 ¼ 12 k 6þ 18ð Þ ¼ 8V

Similarly, the resistances R2 and R3 in Figure 3.6-7 are given by

R2 ¼ 12þ 20 k 5ð Þ ¼ 16V

R3 ¼ 8 k 2þ 6ð Þ ¼ 4V

8 Ω

18 V

a

c d

b

v2

i

+–

v1

R1

R2

R3

+ –

+
–

FIGURE 3.6-8 An equivalent circuit for
the circuit in Figure 3.6-7.

v1+ –

v4 +–

v1+ –

v1+ –

12 Ω 12 Ω

24 Ω

8 Ω

18 Ω6 Ω
a b a b a b

(a) (b) (c)

FIGURE 3.6-9
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EXERCISE 3.6-1 Determine the resistance measured by the ohmmeter in Figure E 3.6-1.

30 Ω 30 Ω
Ohmmeter

30 Ω 30 Ω

FIGURE E 3.6-1

Answer:
(30 þ 30) � 30
(30 þ 30) þ 30

þ 30 ¼ 50 V

3.7 A n a l y z i n g R e s i s t i v e C i r c u i t s
U s i n g MAT L AB

We can analyze simple circuits by writing and solving a set of equations. We use Kirchhoff’s law and
the element equations, for instance, Ohm’s law, to write these equations. As the following example
illustrates, MATLAB provides a convenient way to solve the equations describing an electric circuit.

E X A M P L E 3 . 7 - 1 MATLAB for Simple Circuits

Determine the values of the resistor voltages and currents for the circuit shown in Figure 3.7-1.

12 V 0.5 A 32 Ω80 Ω

40 Ω 48 Ω

+
–

FIGURE 3.7-1 The circuit considered in Example 3.7-1.

Step 2: Apply KVL to the circuit of Figure 3.6-7 to get

R1i þ R2i þ R3i þ 8i � 18 ¼ 0 ) i ¼ 18

R1 þ R2 þ R3 þ 8
¼ 18

8þ 16þ 4þ 8
¼ 0:5 A

Next, Ohm’s law gives
v1 ¼ R1i ¼ 8 0:5ð Þ ¼ 4 V and v2 ¼ R3i ¼ 4 0:5ð Þ ¼ 2 V

Step 3: The values of v1, v2, and i in Figure 3.6-7 are equal to the values of v1, v2, and i in Figure 3.6-8.
Returning our attention to Figure 3.6-7, and paying attention to reference directions, we can determine the values of
i3, v4, i5, and v6 using voltage division, current division, and Ohm’s law:

i3 ¼ 8

8þ 2þ 6ð Þ i ¼ 1

2
0:5ð Þ ¼ 0:25 A

v4 ¼ � 18

6þ 18
v1 ¼ � 3

4
4ð Þ ¼ �3 V

i5 ¼ � 5

20þ 5
i ¼ � 1

5

� �
0:5ð Þ ¼ �0:1 A

v6 ¼ 20 k 5ð Þi ¼ 4 0:5ð Þ ¼ 2 V
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12V

+ + +

+

+
–

–

– –

– 0.5A

40 Ω 48 Ω

32 Ω80 Ω

v2

v4

i2 i5

v5

i6i4

v6

FIGURE 3.7-2 The circuit from Figure 3.7-1 after labeling the
resistor voltages and currents.

Solution
Let’s label the resistor voltages and currents. In anticipation of using Ohm’s law, we will label the voltage and
current of each resistor to adhere to the passive convention. (Pick one of the variables—the resistor current or the
resistor voltage—and label the reference direction however you like. Label the reference direction of the other
variable to adhere to the passive convention with the first variable.) Figure 3.7-2 shows the labeled circuit.

Next, we will use Kirchhoff’s laws. First, apply KCL to the node at which the current source and the 40-V,
48-V, and 80-V resistors are connected together to write

i2 þ i5 ¼ 0:5þ i4 (3.7-1)

Next, apply KCL to the node at which the 48-V and 32-V resistors are connected together to write
i5 ¼ i6 (3.7-2)

Apply KVL to the loop consisting of the voltage source and the 40-V and 80-V resistors to write
12 ¼ v2 þ v4 (3.7-3)

Apply KVL to the loop consisting of the 48-V, 32-V, and 80-V resistors to write
v4 þ v5 þ v6 ¼ 0 (3.7-4)

Apply Ohm’s law to the resistors.
v2 ¼ 40 i2; v4 ¼ 80 i4; v5 ¼ 48 i5; v6 ¼ 32 i6 (3.7-5)

We can use the Ohm’s law equations to eliminate the variables representing resistor voltages. Doing so enables us
to rewrite Eq. 3.7-3 as:

12 ¼ 40 i2 þ 80 i4 (3.7-6)

Similarly, we can rewrite Eq. 3.7-4 as
80 i4 þ 48 i5 þ 32 i6 ¼ 0 (3.7-7)

Next, use Eq. 3.7-2 to eliminate i6 from Eq. 3.7-6 as follows

80 i4 þ 48 i5 þ 32 i5 ¼ 0 ) 80 i4 þ 80 i5 ¼ 0 ) i4 ¼ �i5 (3.7-8)

Use Eq. 3.7-8 to eliminate i5 from Eq. 3.7-1.
i2 � i4 ¼ 0:5þ i4 ) i2 ¼ 0:5þ 2 i4 (3.7-9)

Use Eq. 3.7-9 to eliminate i4 from Eq. 3.7-6. Solve the resulting equation to determine the value of i2.

12 ¼ 40 i2 þ 80
i2 � 0:5

2

� �
¼ 80 i2 � 20 ) i2 ¼ 12þ 20

80
¼ 0:4 A (3.7-10)

Now we are ready to calculate the values of the rest of the resistor voltages and currents as follows:

i4 ¼ i2 � 0:5

2
¼ 0:4� 0:5

2
¼ �0:05 A;

i6 ¼ i5 ¼ �i4 ¼ 0:05 A;

v2 ¼ 40 i2 ¼ 40 0:4ð Þ ¼ 16 V;

v4 ¼ 80 i4 ¼ 80 �0:05ð Þ ¼ �4 V;

v5 ¼ 48 i5 ¼ 48 0:05ð Þ ¼ 2:4 V;

and v6 ¼ 32 i6 ¼ 32 0:05ð Þ ¼ 1:6 V:

Analyzing Resistive Circuits Using MATLAB 83



MATLAB Solution 1
The preceding algebra shows that this circuit can be represented by these equations:

12 ¼ 80 i2 � 20; i4 ¼ i2 � 0:5

2
; i6 ¼ i5 ¼ �i4; v2 ¼ 40 i2; v4 ¼ 80 i4;

v5 ¼ 48 i5; and v6 ¼ 32 i6

These equations can be solved consecutively, using MATLAB as shown in Figure 3.7-3.

MATLAB Solution 2
We can avoid some algebra if we are willing to solve simultaneous equations.

After applying Kirchhoff’s laws and then using the Ohm’s law equations to eliminate the variables
representing resistor voltages, we have Eqs. 3.7-1, 2, 6, and 7:

i2 þ i5 ¼ 0:5þ i4; i5 ¼ i6; 12 ¼ 40 i2 þ 80 i4;

and 80 i4 þ 48 i5 þ 32 i6 ¼ 0

FIGURE 3.7-3 Consecutive equations. FIGURE 3.7-4 Simultaneous equations.
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A circuit consisting of n elements has n currents and n voltages. A set of equations representing that
circuit could have as many as 2n unknowns. We can reduce the number of unknowns by labeling the
currents and voltages carefully. For example, suppose two of the circuit elements are connected in series.
We can choose the reference directions for the currents in those elements so that they are equal and use one
variable to represent both currents. Table 3.7-1 presents some guidelines that will help us reduce the
number of unknowns in the set of equations describing a given circuit.

This set of four simultaneous equations in i2, i4, i5, and i6 can be written as a single matrix equation.

1 �1 1 0
0 0 1 �1
40 80 0 0
0 80 48 32

2
664

3
775

i2
i4
i5
i6

2
664

3
775 ¼

0:5
0
12
0

2
664

3
775 (3.7-11)

We can write this equation as

Ai ¼ B (3.7-12)

where

A ¼
1 �1 1 0
0 0 1 �1
40 80 0 0
0 80 48 32

2
664

3
775; i ¼

i2
i4
i5
i6

2
664

3
775 and B ¼

0:5
0
12
0

2
664

3
775

This matrix equation can be solved using MATLAB as shown in Figure 3.7-4. After entering matrices A and B, the
statement

i ¼ AnB

tells MATLAB to calculate i by solving Eq. 3.7-12.

Table 3.7-1 Guidelines for Labeling Circuit Variables

CIRCUIT FEATURE GUIDELINE

Resistors Label the voltage and current of each resistor to adhere to the passive convention. Use Ohm’s
law to eliminate either the current or voltage variable.

Series elements Label the reference directions for series elements so that their currents are equal. Use one
variable to represent the currents of series elements.

Parallel elements Label the reference directions for parallel elements so that their voltages are equal. Use one
variable to represent the voltages of parallel elements.

Ideal Voltmeter Replace each (ideal) voltmeter by an open circuit. Label the voltage across the open circuit to
be equal to the voltmeter voltage.

Ideal Ammeter Replace each (ideal) ammeter by a short circuit. Label the current in the short circuit to be
equal to the ammeter current.
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3.8 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct.
For example, proposed solutions to design problems must be checked to confirm that all of the
specifications have been satisfied. In addition, computer output must be reviewed to guard against
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

E X A M P L E 3 . 8 - 1 How Can We Check Voltage and Current Values?

The circuit shown in Figure 3.8-1a was analyzed by writing and solving a set of simultaneous equations:

12 ¼ v2 þ 4i3; i4 ¼ v2
5
þ i3; v5 ¼ 4i3; and

v5
2
¼ i4 þ 5i4

The computer program Mathcad (Mathcad User’s Guide, 1991) was used to solve the equations as shown in
Figure 3.8-1b. It was determined that

v2 ¼ �60 V; i3 ¼ 18 A; i4 ¼ 6 A; and v5 ¼ 72 V:

How can we check that these currents and voltages are correct?

–

–

–
–

+

+

+

+

c

db

2 Ω

4 Ω

5 Ω

C

A

a

B

v5

v3

v1=12 V

i4

i2

(b)(a)

i3

i6=5i4

v2

FIGURE 3.8-1 (a) An example circuit and (b) computer analysis using Mathcad.
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Solution
The current i2 can be calculated from v2, i3, i4, and v5 in a couple of different ways. First, Ohm’s law gives

i2 ¼ v2
5
¼ �60

5
¼ �12 A

Next, applying KCL at node b gives

i2 ¼ i3 þ i4 ¼ 18þ 6 ¼ 24 A

Clearly, i2 cannot be both �12 and 24 A, so the values calculated for v2, i3, i4, and v5 cannot be correct. Checking
the equations used to calculate v2, i3, i4, and v5, we find a sign error in the KCL equation corresponding to
node b. This equation should be

i4 ¼ v2
5
� i3

After making this correction, v2, i3, i4, and v5 are calculated to be

v2 ¼ 7:5 V; i3 ¼ 1:125 A; i4 ¼ 0:375 A; v5 ¼ 4:5 V

Now i2 ¼ v2
5
¼ 7:5

5
¼ 1:5 A

and i2 ¼ i3 þ i4 ¼ 1:125 þ 0:375 ¼ 1:5A

This checks as we expected.
As an additional check, consider v3. First, Ohm’s law gives

v3 ¼ 4i3 ¼ 4(1:125) ¼ 4:5 V

Next, applying KVL to the loop consisting of the voltage source and the 4-V and 5-V resistors gives

v3 ¼ 12� v2 ¼ 12� 7:5 ¼ 4:5 V

Finally, applying KVL to the loop consisting of the 2-V and 4-V resistors gives

v3 ¼ v5 ¼ 4:5 V

The results of these calculations agree with each other, indicating that

v2 ¼ 7:5 V; i3 ¼ 1:125 A; i4 ¼ 0:375 A; v5 ¼ 4:5 V

are the correct values.
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3 . 9 D E S I G N E X A M P L E Adjustable Voltage Source

A circuit is required to provide an adjustable voltage. The specifications for this circuit are that:

1. It should be possible to adjust the voltage to any value between �5 V and þ5 V. It should not be possible
accidentally to obtain a voltage outside this range.

2. The load current will be negligible.

3. The circuit should use as little power as possible.

The available components are:

1. Potentiometers: resistance values of 10 kV, 20 kV, and 50 kV are in stock.

2. A large assortment of standard 2 percent resistors having values between 10 V and 1 MV (see Appendix D).

3. Two power supplies (voltage sources): one 12-V supply and one �12-V supply, both rated at 100 mA
(maximum).

Describe the Situation and the Assumptions
Figure 3.9-1 shows the situation. The voltage v is the adjustable voltage. The circuit that uses the
output of the circuit being designed is frequently called the load. In this case, the load current is negligible,
so i¼ 0.

Load
circuit

Circuit
being

designed

Load current

–

+

v

i = 0

FIGURE 3.9-1 The circuit being
designed provides an adjustable
voltage, v, to the load circuit.

State the Goal
A circuit providing the adjustable voltage

�5V � v � þ5V

must be designed using the available components.

Generate a Plan
Make the following observations.

1. The adjustability of a potentiometer can be used to obtain an adjustable voltage v.

2. Both power supplies must be used so that the adjustable voltage can have both positive and negative
values.

3. The terminals of the potentiometer cannot be connected directly to the power supplies because the voltage v is
not allowed to be as large as 12 V or �12 V.

These observations suggest the circuit shown in Figure 3.9-2a. The circuit in Figure 3.9-2b is obtained by using the
simplest model for each component in Figure 3.9-2a.
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Rp

a Rp (1 – a)Rp

R1 R1R2 R2

12 V –12 V 12 V –12 V

Load
circuit

0 < a < 1

–

+

v

(a) (b)

i =0 i =0

–

+

–
+

–
+

v

–
+

–
+

FIGURE 3.9-2 (a) A proposed circuit for producing the variable voltage, v, and (b) the equivalent circuit after the potentiometer
is modeled.

To complete the design, values need to be specified for R1, R2, and Rp. Then several results need to be checked
and adjustments made, if necessary.

1. Can the voltage v be adjusted to any value in the range �5 V to þ5V?

2. Are the voltage source currents less than 100 mA? This condition must be satisfied if the power supplies are to
be modeled as ideal voltage sources.

3. Is it possible to reduce the power absorbed by R1, R2, and Rp?

Act on the Plan
It seems likely that R1 and R2 will have the same value, so let R1¼R2¼R. Then it is convenient to redraw Figure
3.9-2b as shown in Figure 3.9-3.

a Rp (1 – a)Rp

RR

12 V –12 V–
+

–
+

iav

+

–

FIGURE 3.9-3 The circuit after setting R1¼R2¼R.

Applying KVL to the outside loop yields

�12þ Ria þ aRp ia þ (1� a)Rp ia þ Ria � 12 ¼ 0

so ia ¼ 24

2R þ Rp

Next, applying KVL to the left loop gives

v ¼ 12� (R þ aRp)ia

Substituting for ia gives

v ¼ 12� 24 R þ aRp

� �
2R þ Rp

When a¼ 0, v must be 5 V, so

5 ¼ 12� 24R

2R þ Rp
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Solving for R gives

R ¼ 0:7Rp

Suppose the potentiometer resistance is selected to be Rp¼ 20 kV, the middle of the three available values.
Then,

R ¼ 14 kV

Verify the Proposed Solution
As a check, notice that when a¼ 1,

v ¼ 12� 14,000þ 20,000

28,000 þ 20,000

� �
24 ¼ �5

as required. The specification that

�5 V � v � 5 V

has been satisfied. The power absorbed by the three resistances is

p ¼ ia
2(2R þ Rp) ¼ 242

2R þ Rp

so p ¼ 12 mW

Notice that this power can be reduced by choosing Rp to be as large as possible, 50 kV in this case. Changing
Rp to 50 kV requires a new value of R:

R ¼ 0:7� Rp ¼ 35 kV

Because

�5 V ¼ 12� 35,000þ 50,000

70,000þ 50,000

� �
24 � v � 12� 35,000

70,000þ 50,000

� �
24 ¼ 5 V

the specification that

�5 V � v � 5 V

has been satisfied. The power absorbed by the three resistances is now

p ¼ 242

50,000þ 70,000
¼ 5 mW

Finally, the power supply current is

ia ¼ 24

50,000þ 70,000
¼ 0:2 mA

which is well below the 100 mA that the voltage sources are able to supply. The design is complete.
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3.10 SUMMARY

Kirchhoff’s current law (KCL) states that the algebraic sum
of the currents entering a node is zero. Kirchhoff’s voltage
law (KVL) states that the algebraic sum of the voltages
around a closed path (loop) is zero.
Simple electric circuits can be analyzed using only Kirchhoff’s
laws and the constitutive equations of the circuit elements.
Series resistors act like a “voltage divider,” and parallel
resistors act like a “current divider.” The first two rows of
Table 3.10-1 summarize the relevant equations.
Series resistors are equivalent to a single “equivalent resis-
tor.” Similarly, parallel resistors are equivalent to a single

“equivalent resistor.” The first two rows of Table 3.10-1
summarize the relevant equations.
Series voltage sources are equivalent to a single
“equivalent voltage source.” Similarly, parallel current
sources are equivalent to a single “equivalent current.”
The last two rows of Table 3.10-1 summarize the relevant
equations.
Often circuits consisting entirely of resistors can be
reduced to a single equivalent resistor by repeatedly
replacing series and/or parallel resistors by equivalent
resistors.

Table 3.10-1 Equivalent Circuits for Series and Parallel Elements

Circuit

Parallel resistors

Series voltage
sources

Parallel current
sources

Series resistors Circuit

–

+

v

–

+

v

v, v

–

– ++

v2

v2

v2

v1

v1

v1

R2

R1

R1 R2

R1 + R2

R2 R1

R1 + R2 R1 + R2

R1

R1 + R2

R1 + R2

R1R2

and

andand

and

and

Rs= R1 + R2

vs= v1+ v2

ip= i1+ i2

Rp=

v = Rsi

v = Rpi

Rs

i1 i

Circuit

–

+

–
+

v Rp

i

Circuit

–

+

v vs

i

i

Circuit

–

+

v ip

i

i2

R2
i2

i2

i1i

i1

i

i

i = i 1= i 2 ,v 1=

v = v1= v2, i1  =

i = i1= i2

i

i = i1+ i2

v = v1+ v2

v1 i1 v2 i2

v = v1= v2

i2=i, i

Circuit

Circuit

Circuit

– – –

+

–

–

+

+

+ +
v

–

+

v

– – –

+ + +
v

 and v2=
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PROBLEMS

Section 3.2 Kirchhoff’s Laws

P 3.2-1 Consider the circuit shown in Figure P 3.2-1.
Determine the values of the power supplied by branch B and the
power supplied by branch F.

+

–

+

–

+

+

+
–

–

–
+

–

–12 V 12 V 12 V 4 A

4 V

1 A

–1 A

1 A

–5 V

2 A iA B C F

D

E

v

Figure P 3.2-1

P 3.2-2 Determine the values of i2, i4, v2, v3, and v6 in Figure
P 3.2-2.

6 V 2 A

+

– +

–

+

–

+

++

–

––

–2 V

6 A

4 V

3 A

–3 Ai2 i4A B D

C E

Fv2

v3

v6

Figure P 3.2-2

P 3.2-3 Consider the circuit shown in Figure P 3.2-3.

(a) Suppose that R1¼ 8 V and R2¼ 4 V. Find the current i and
the voltage v.

(b) Suppose, instead, that i¼ 2.25 A and v¼ 42 V. Determine
the resistances R1 and R2.

(c) Suppose, instead, that the voltage source supplies 24 W of
power and that the current source supplies 9 W of power.
Determine the current i, the voltage v, and the resistances
R1 and R2.

12 V 3 A

+

–

+
–

i

R2

R1 v

Figure P 3.2-3

P 3.2-4 Determine the power absorbed by each of the resistors
in the circuit shown in Figure P 3.2-4.

Answer: The 4-V resistor absorbs 100 W, the 6-V resistor
absorbs 24 W, and the 8-V resistor absorbs 72 W.

12 V 20 V

3 A

6 Ω 4 Ω

8 Ω

+
–

+
–

Figure P 3.2-4

P 3.2-5 Determine the power absorbed by each of the
resistors in the circuit shown in Figure P 3.2-5.

Answer: The 4-V resistor absorbs 16 W, the 6-V resistor
absorbs 24 W, and the 8-V resistor absorbs 8 W.

6 V

8 V

8 V

2 A 12 V

6 Ω 8 Ω

4 Ω

+
–

+
–

+–

+–

Figure P 3.2-5

P 3.2-6 Determine the power supplied by each voltage source
in the circuit of Figure P 3.2-6.

Answer: The 2-V voltage source supplies 2 mW and the 3-V
voltage source supplies �6 mW.

3 mA

5 mA

3 V

+– +–

2 V

2 mA

Figure P 3.2-6

P 3.2-7 What is the value of the resistance R in Figure
P 3.2-7.

Hint: Assume an ideal ammeter. An ideal ammeter is
equivalent to a short circuit.

Answer: R¼ 4 V

12 V 2 A

1 A

Ammeter

R

+
–

Figure P 3.2-7

Problem available in WileyPLUS at instructor’s discretion.
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P 3.2-8 The voltmeter in Figure P 3.2-8 measures the
value of the voltage across the current source to be 56 V.
What is the value of the resistance R?

Hint: Assume an ideal voltmeter. An ideal voltmeter is equiv-
alent to an open circuit.

Answer: R¼ 10 V

24 V 8 A–
+

56 V

Voltmeter

R

Figure P 3.2-8

P 3.2-9 Determine the values of the resistances R1 and R2

in Figure P 3.2-9.

2 Ω 7 Ω

5 Ω

12 V +
–

3.71 V

Voltmeter

5.61 V

Voltmeter

R1

R2

Figure P 3.2-9

P 3.2-10 The circuit shown in Figure P 3.2-10 consists of
five voltage sources and four current sources. Express the
power supplied by each source in terms of the voltage source
voltages and the current source currents.

i4

i1

i2
+

++

–

+ –

+ –+

+

–

–
+
–

–

– +

–

i3

i5 i6

i8 i9

i7v6

v9

v7

v3

v5

v8

v4

v2

v1

Figure P 3.2-10

P 3.2-11 Determine the power received by each of the resis-
tors in the circuit shown in Figure P 3.2-11.

6 Ω

8 Ω 20 Ω

5 Ω10 V

15 V0.3 A

+

–

+

–

+

–

+ –

+ –

+–

+
–

+–+–

0.2 A
0.5 A

i8

i2

i7

i6i9
i5

v2 v3

v9

v7v5v4

v1

Figure P 3.2-11

P 3.2-12 Determine the voltage and current of each of the
circuit elements in the circuit shown in Figure P 3.2-12.

Hint: You’ll need to specify reference directions for the
element voltages and currents. There is more than one way
to do that, and your answers will depend on the reference
directions that you choose.

15 V +
– 0.25 A

0.75 A

60 Ω 20 Ω

10 Ω
Figure P 3.2-12

P 3.2-13 Determine the value of the current that is measured
by the meter in Figure P 3.2-13.

P 3.2-14 Determine the value of the voltage that is measured
by the meter in Figure P 3.2-14.

Voltmeter

5 i124 V+
–

48 Ω

4 Ω

i1

Figure P 3.2-14

i1

20 V+
–

+
–

Ammeter

25i1

50 Ω15 Ω

Figure P 3.2-13
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P 3.2-15 Determine the value of the voltage that is
measured by the meter in Figure P 3.2-15.

Voltmeter
+
–

80i10.25 A

60 Ω

20 Ω

i1

Figure P 3.2-15

P 3.2-16 The voltage source in Figure P 3.2-16 supplies 3.6 W
of power. The current source supplies 4.8 W. Determine the
values of the resistances R1 and R2.

12 V 0.5 A

R1

R2
+
–

Figure P 3.2-16

P 3.2-17 Determine the current i in Figure P 3.2-17.

Answer: i¼ 4 A

2 A24 V+
– i 4 Ω

4 Ω

Figure P 3.2-17

P 3.2-18 Determine the value of the current im in Figure
P 3.2-18a.

im

im

2/5 va

2/5 va3 A

3 A

(a)

( b)
3 A

18 V

12 V
c

a
b

d

6 Ω

4 Ω

6 Ω

4 Ω

3 A

+

–

+ +

+–

–

–

va

va

Figure P 3.2-18 (a) A circuit containing a VCCS. (b) The circuit
after labeling the nodes and some element currents and voltages.

Hint: Apply KVL to the closed path a-b-d-c-a in Figure
P 3.2-18b to determine va. Then apply KCL at node b to find im.

Answer: im¼ 9 A

P 3.2-19 Determine the value of the voltage v6 for the
circuit shown in Figure P 3.2-19.

250 mA

220 mA

v5 = 10 i2

12 V

750 Ω

250 Ω

+

+

–

–

+ –v6i2

Figure P 3.2-19

P 3.2-20 Determine the value of the voltage v6 for the circuit
shown in Figure P 3.2-20.

25 mA

12 V
+ –

+

–
+
–

+ –

15 mA

50 Ω
25 Ω

v6

v2

v5 = 10v2

Figure P 3.2-20

P 3.2-21 Determine the value of the voltage v5 for the
circuit shown in Figure P 3.2-21.

i6 = 0.10v2

12 V 18 V
+ –

+ –
+
–

+
–

250 mA

25 Ω

45 Ω

v2

v5

Figure P 3.2-21

P 3.2-22 Determine the value of the voltage v5 for the circuit
shown in Figure P 3.2-22.

i6 = 1.5v2

250 mA

18 V
+ –

+
–

+
– 12 V

40 Ω48 Ω

v5

i2

Figure P 3.2-22

94 3. Resistive Circuits



P 3.2-23 Determine the value of the voltage v6 for the
circuit shown in Figure P 3.2-23.

i2
10i2

12 V12 V 18 V
50 Ω

25 Ω v6

+

–

+
– +

–

+ –

+
–

Figure P 3.2-23

P 3.2-24 Determine the value of the voltage v5 for the
circuit shown in Figure P 3.2-24.

25 mA

250 mA15 mA

+ – + –

0.5v2

25 Ω250 Ω

v5v2

Figure P 3.2-24

P 3.2-25 The voltage source in the circuit shown in
Figure P 3.2-25 supplies 2 W of power. The value of the
voltage across the 25-V resistor is v2¼ 4 V. Determine
the values of the resistance R1 and of the gain G of the VCCS.

R1

Gv220 V
+

–

+
–

25 Ω v2

Figure P 3.2-25

P 3.2-26 Consider the circuit shown in Figure P 3.2-26.
Determine the values of

(a) The current ia in the 20-V resistor.
(b) The voltage vb across the 10-V resistor.
(c) The current ic in the independent voltage source.

ia

ic25 V

+ –+ –

+ –

4 ia

10 Ω
20 Ω

vb

Figure P 3.2-26

P 3.2-27 Consider the circuit shown in Figure P 3.2-27.

(a) Determine the values of the resistances.
(b) Determine the values of the power supplied by each current

source.
(c) Determine the values of the power received by each

resistor.

3 A

+ –

+

–

Rc

RbRa

4 V

−1.5 A
12 V

2 A

+ –−3 V

Figure P 3.2-27

P 3.2-28 Consider the circuit shown in Figure P 3.2-28.

(a) Determine the value of the power supplied by each
independent source.

(b) Determine the value of the power received by each
resistor.

(c) Is power conserved?

3 mA

2 kΩ
+ –

12 V

3 kΩ2 mA

18 kΩ

Figure P 3.2-28

P 3.2-29 The voltage across the capacitor in Figure
P 3.2-29 is v tð Þ ¼ 24 � 10e�25t V for t � 0. Determine the
voltage source current i(t) for t > 0.

n(t)
i(t)

+

–

+
–

C 80 Ω
20 Ω

30 V

Figure P 3.2-29

P 3.2-30 The current the inductor in Figure P 3.2-30 is given
by i tð Þ ¼ 8 � 6e�25t A for t � 0. Determine the voltage v(t)
across the 80-V resistor for t > 0.
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10 A 80 Ω Lv (t )

+

–

20 Ω
i (t )

Figure P 3.2-30

Section 3.3 Series Resistors and Voltage Division

P 3.3-1 Use voltage division to determine the voltages v1, v2,
v3, and v4 in the circuit shown in Figure P 3.3-1.

6 Ω 3 Ω
4 Ω

5 Ω
+
–12 V v4

–

+

v3 –+v2 –+v1 –+

Figure P 3.3-1

P 3.3-2 Consider the circuits shown in Figure P 3.3-2.

(a) Determine the value of the resistance R in Figure P 3.3-2b
that makes the circuit in Figure P 3.3-2b equivalent to the
circuit in Figure P 3.3-2a.

(b) Determine the current i in Figure P 3.3-2b. Because the
circuits are equivalent, the current i in Figure P 3.3-2a is
equal to the current i in Figure P 3.3-2b.

(c) Determine the power supplied by the voltage source.

+
–28 V

+
–28 V

6 Ω 3 Ω 2 Ω

4 Ω
i

i

(a)

(b)

R

Figure P 3.3-2

P 3.3-3 The ideal voltmeter in the circuit shown in Figure
P 3.3-3 measures the voltage v.

(a) Suppose R2¼ 50 V. Determine the value of R1.
(b) Suppose, instead, R1 ¼ 50 V. Determine the value of

R2.
(c) Suppose, instead, that the voltage source supplies 1.2 W of

power. Determine the values of both R1 and R2.

v

–

+
+
–12 V

R1
8

Voltmeter

. 0 0

R2

Figure P 3.3-3

P 3.3-4 Determine the voltage v in the circuit shown in
Figure P 3.3-4.

+
– 12 V

16 Ω 4 Ω

8 Ω 8 Ω

v –+

Figure P 3.3-4

P 3.3-5 The model of a cable and load resistor connected
to a source is shown in Figure P 3.3-5. Determine the appro-
priate cable resistance R so that the output voltage vo remains
between 9 V and 13 V when the source voltage vs varies
between 20 V and 28 V. The cable resistance can assume
integer values only in the range 20 < R < 100 V.

vovs

R

R

Cable+
–

+

–

100 Ω

Figure P 3.3-5 Circuit with a cable.

P 3.3-6 The input to the circuit shown in Figure P 3.3-6 is
the voltage of the voltage source va. The output of this circuit is
the voltage measured by the voltmeter vb. This circuit produces
an output that is proportional to the input, that is,

vb ¼ k va

where k is the constant of proportionality.

(a) Determine the value of the output, vb, when R¼ 180 V and
va¼ 18 V.

(b) Determine the value of the power supplied by the voltage
source when R¼ 180 V and va¼ 18 V.

(c) Determine the value of the resistance, R, required to cause
the output to be vb¼ 2 V when the input is va¼ 18 V.

(d) Determine the value of the resistance, R, required to cause
vb¼ 0.2va ðthat is, the value of the constant of proportion-
ality is k ¼ 0:2Þ.
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vbva R
Voltmeter+

–

+

–

120 Ω

Figure P 3.3-6

P 3.3-7 Determine the value of voltage v in the circuit
shown in Figure P 3.3-7.

12 V
12 V

18 V

+
–

+

–

+ –

+ –

20 Ω5 Ω

15 Ω

10 Ω v

Figure P 3.3-7

P 3.3-8 Determine the power supplied by the dependent
source in the circuit shown in Figure P 3.3-8.

ia = 0.2 va

10 Ω50 Ω

+ –

+ –

120 V

va

Figure P 3.3-8

P 3.3-9 A potentiometer can be used as a transducer to convert
the rotational position of a dial to an electrical quantity. Figure
P 3.3-9 illustrates this situation. Figure P 3.3-9a shows a
potentiometer having resistance Rp connected to a voltage
source. The potentiometer has three terminals, one at each
end and one connected to a sliding contact called a wiper. A
voltmeter measures the voltage between the wiper and one end
of the potentiometer.

Figure P 3.3-9b shows the circuit after the potentiometer
is replaced by a model of the potentiometer that consists of two
resistors. The parameter a depends on the angle y of the dial.
Here a ¼ y

360�, and y is given in degrees. Also, in Figure
P 3.3-9b, the voltmeter has been replaced by an open circuit,
and the voltage measured by the voltmeter vm has been labeled.
The input to the circuit is the angle y, and the output is the
voltage measured by the meter vm.

(a) Show that the output is proportional to the input.
(b) Let Rp¼ 1 kV and vs¼ 24 V. Express the output as a

function of the input. What is the value of the output when
y¼ 45�? What is the angle when vm¼ 10 V?

Rp

(1 – a) Rp

aRp
+
–

+

–

+
–

Voltmeter

t

t

w

w

b

b

(a)

( b)

vs

vs vm

Figure P 3.3-9

P 3.3-10 Determine the value of the voltage measured by the
meter in Figure P 3.3-10.

4ia

8 Ω 3 Ω

5 Ω
+
–

+
– 24 V

Voltmeter

ia

Figure P 3.3-10

P 3.3-11 For the circuit of Figure P 3.3-11, find the
voltage v3 and the current i and show that the power delivered
to the three resistors is equal to that supplied by the source.

Answer: v3¼ 3 V, i¼ 1 A
i

3 Ω
3 Ω

6 Ω+
–12 V

+

+

–

–

v2

v3

+ –v1

Figure P 3.3-11

P 3.3-12 Consider the voltage divider shown in Figure
P 3.3-12 when R1 ¼ 8 V. It is desired that the output power
absorbed by R1 be 4.5 W. Find the voltage vo and the required
source vs.

R1
2 Ω

2 Ω 4 Ω

+

–

+
–vs vo

Figure P 3.3-12
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P 3.3-13 Consider the voltage divider circuit shown in Figure
P 3.3-13. The resistor R represents a temperature sensor. The
resistance R, in V, is related to the temperature T, in �C, by the
equation

R ¼ 50þ 1

2
T

(a) Determine the meter voltage, vm, corresponding to tem-
peratures 0�C, 75�C, and 100�C.

(b) Determine the temperature T corresponding to the meter
voltages 8 V, 10 V, and 15 V.

R vm

Voltmeter

+
–

+

–

75 Ω

20 Ω

Figure P 3.3-13

P 3.3-14 Consider the circuit shown in Figure P 3.3-14.

(a) Determine the value of the resistance R required to cause
vo ¼ 17:07 V.

(b) Determine the value of the voltage vo when R = 14 V.
(c) Determine the power supplied by the voltage source when

vo ¼ 14:22 V. R

vo32 V+
–

+

–

8 Ω

Figure P 3.3-14

P 3.3-15 Figure P 3.3-15 shows four similar but slightly
different circuits. Determine the values of the voltages v1, v2,
v3, and v4.

+
–

v1

−

+
+
–

v2

−

+

26 V 30 Ω+
–

v3

−

+

70 Ω

+
–

v4

−

+
26 V

26 V 26 V

70 Ω

130 Ω

70 Ω

60 Ω

30 Ω

70 Ω

Figure P 3.3-15

P 3.3-16 Figure P 3.3-16 shows four similar but slightly
different circuits. Determine the values of the voltages v1, v2,
v3, and v4.

v3

−

+
+–

v1

−

+

+ –

60 Ω v2

−

+

40 Ω

+–

 28 V

v4

−

+

+ –

 28 V

 28 V  28 V

60 Ω 20 Ω30 Ω40 Ω

30 Ω20 Ω

Figure P 3.3-16

P 3.3-17 The input to the circuit shown in Figure P 3.3-17 is
the voltage source voltage

v s tð Þ ¼ 12 cos 377 tð Þ mV

The output is the voltage vo(t). Determine vo(t).

10 kΩ +

–

v o (t )

+

–

v a110 kΩ 1000 v a 9.9 kΩ

100 Ω

v s (t )
+
–

+
–

Figure P 3.3-17

Section 3.4 Parallel Resistors and Current Division

P 3.4-1 Use current division to determine the currents i1,
i2, i3, and i4 in the circuit shown in Figure P 3.4-1.

i1 i2 i3 i4

4 A 6 Ω 3 Ω 2 Ω 1 Ω

Figure P 3.4-1

P 3.4-2 Consider the circuits shown in Figure P 3.4-2.

(a) Determine the value of the resistance R in Figure P 3.4-2b
that makes the circuit in Figure P 3.4-2b equivalent to the
circuit in Figure P 3.4-2a.

(b) Determine the voltage v in Figure P 3.4-2b. Because the
circuits are equivalent, the voltage v in Figure P 3.4-2a is
equal to the voltage v in Figure P 3.4-2b.

(c) Determine the power supplied by the current source.

R

(a) ( b)

6 A
6 A

+

–

+

–

6 Ω 12 Ω 4 Ω vv

Figure P 3.4-2
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P 3.4-3 The ideal voltmeter in the circuit shown in Figure
P 3.4-3 measures the voltage v.

(a) Suppose R2¼ 6 V. Determine the value of R1 and of the
current i.

(b) Suppose, instead, R1¼ 6 V. Determine the value of R2 and
of the current i.

(c) Instead, choose R1 and R2 to minimize the power absorbed
by any one resistor.

R1 R2

i

2 A

8 . 0 0

+
Voltmeter

–

v

Figure P 3.4-3

P 3.4-4 Determine the current i in the circuit shown in Figure
P 3.4-4.

16 Ω

8 Ω

8 Ω

8 Ω

i
6 A

Figure P 3.4-4

P 3.4-5 Consider the circuit shown in Figure P 3.4-5 when
4 V � R1 � 6 V and R2¼ 10 V. Select the source is so that
vo remains between 9 V and 13 V.

voR1 R2is

+

–

Figure P 3.4-5

P 3.4-6 Figure P 3.4-6 shows a transistor amplifier. The values
of R1 and R2 are to be selected. Resistances R1 and R2 are used to
bias the transistor, that is, to create useful operating conditions. In
this problem, we want to select R1 and R2 so that vb¼ 5 V. We
expect the value of ib to be approximately 10mA. When i1� 10ib,
it is customary to treat ib as negligible, that is, to assume ib¼ 0.
In that case, R1 and R2 comprise a voltage divider.

(a) Select values for R1 and R2 so that vb¼ 5 V, and the
total power absorbed by R1 and R2 is no more than 5 mW.

(b) An inferior transistor could cause ib to be larger than
expected. Using the values of R1 and R2 from part (a),
determine the value of vb that would result from ib¼ 15 mA.

vo
vb

R1

R2 Re

Rc

ib

i1

15 V
+

–

+
–

+

–

Figure P 3.4-6

P 3.4-7 Determine the value of the current i in the circuit
shown in Figure P 3.4-7.

12 Ω

3 Ω

6 Ω

2 A

0.5 A

1.5 A

i

Figure P 3.4-7

P 3.4-8 Determine the value of the voltage v in Figure P 3.4-8.

v

40 Ω 20 Ω

40 Ω

a

+ –

3 mA

b

Figure P 3.4-8

P 3.4-9 Determine the power supplied by the dependent
source in Figure P 3.4-9.

ia

vb = 50 ia

75 Ω25 Ω

30 mA

+

–

Figure P 3.4-9
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P 3.4-10 Determine the values of the resistances R1 and R2

for the circuit shown in Figure P 3.4-10.
R1

R240 Ω24 V

8 V+

+

–

–
1.6 A

Figure P 3.4-10

P 3.4-11 Determine the values of the resistances R1 and R2

for the circuit shown in Figure P 3.4-11.

R1

R2

+ –

80 Ω24 mA 19.2 mA

0.384 V

Figure P 3.4-11

P 3.4-12 Determine the value of the current measured by the
meter in Figure P 3.4-12.

30 Ω 10 Ω

+

–

10 Ω1.2 A

Ammeter

0.2 va

va

Figure P 3.4-12

P 3.4-13 Consider the combination of resistors shown in
Figure P 3.4-13. Let Rp denote the equivalent resistance.

(a) Suppose 20 V � R � 320 V. Determine the corresponding
range of values of Rp.

(b) Suppose, instead, R ¼ 0 (a short circuit). Determine the
value of Rp.

(c) Suppose, instead, R ¼ 1 (an open circuit). Determine the
value of Rp.

(d) Suppose, instead, the equivalent resistance is Rp ¼ 40 V.
Determine the value of R.

R80 Ω

Figure P 3.4-13

P 3.4-14 Consider the combination of resistors shown in
Figure P 3.4-l4. Let Rp denote the equivalent resistance.

(a) Suppose 40 V � R � 400 V. Determine the corresponding
range of values of Rp.

(b) Suppose, instead, R¼ 0 (a short circuit). Determine the
value of Rp.

(c) Suppose, instead, R ¼ 1 (an open circuit). Determine the
value of Rp.

(d) Suppose, instead, the equivalent resistance is Rp ¼ 80 V.
Determine the value of R.

R

40 Ω

160 Ω

Figure P 3.4-14

P 3.4-15 Consider the combination of resistors shown in
Figure P 3.4-15. Let Rp denote the equivalent resistance.

(a) Suppose 50 V � R � 800 V. Determine the corresponding
range of values of Rp.

(b) Suppose, instead, R ¼ 0 (a short circuit). Determine the
value of Rp.

(c) Suppose, instead, R ¼ 1 (an open circuit). Determine the
value of Rp.

(d) Suppose, instead, the equivalent resistance is Rp ¼ 150 V.
Determine the value of R.

R

50 Ω

200 Ω

Figure P 3.4-15

P 3.4-16 The input to the circuit shown in Figure P 3.4-16 is
the source current is. The output is the current measured by
the meter io. A current divider connects the source to the
meter. Given the following observations:

(a) The input is ¼ 5 A causes the output to be io ¼ 2 A.
(b) When is ¼ 2 A, the source supplies 48 W.
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Determine the values of the resistances R1 and R2.

R1

R2

io

is

Ammeter

Figure P 3.4-16

P 3.4-17 Figure P 3.4-17 shows four similar but slightly
different circuits. Determine the values of the currents i1, i2,
i3, and i4.

45 Ω 90 Ω300 mA

i 2

75 Ω 25 Ω320 mA

i 1

15 Ω 60 Ω500 mA

i 3

120 Ω 30 Ω250 mA

i 4

Figure P 3.4-17

P 3.4-18 Figure P 3.4-18 shows four similar but slightly
different circuits. Determine the values of the currents i1, i2,
i3, and i4.

240 mA i1

i2
240 mA

60 Ω

40 Ω

60 Ω

30 Ω

60 Ω

i4

i3240 mA

240 mA

60 Ω

20 Ω 15 Ω

Figure P 3.4-18

P 3.4-19 The input to the circuit shown in Figure P 3.4-19 is
the current source current Is. The output is the current io. The
output of this circuit is proportion to the input, that is

io ¼ k Is

Determine the value of the constant of proportionality k.
io

Is R R R

R

R

Figure P 3.4-19

P 3.4-20 The input to the circuit shown in Figure P 3.4-20 is
the voltage source voltage Vs. The output is the voltage vo.
The output of this circuit is proportion to the input, that is

vo ¼ k V s

Determine the value of the constant of proportionality k.

Vs R R R

R

R

+
–

R

R

+

–

vo

Figure P 3.4-20

Section 3.5 Series Voltage Sources and Parallel

Current Sources

P 3.5-1 Determine the power supplied by each source in
the circuit shown in Figure P 3.5-1.

2 Ω 2 Ω

3 V

8 V

1.25 A3 A

+ –

+ –

Figure P 3.5-1
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P 3.5-2 Determine the power supplied by each source in the
circuit shown in Figure P 3.5-2.

20 Ω 5 Ω 7 Ω3 A

3 V

2 V 0.5 A

+ –

+–

Figure P 3.5-2

P 3.5-3 Determine the power received by each resistor in the
circuit shown in Figure P 3.5-3.

5 Ω 7 Ω

8 V

2 A 1.25 A0.25 A

3 V

+ –

+ –

Figure P 3.5-3

Section 3.6 Circuit Analysis

P 3.6-1 The circuit shown in Figure P 3.6-1a has been
divided into two parts. In Figure P 3.6-1b, the right-hand part
has been replaced with an equivalent circuit. The left-hand part
of the circuit has not been changed.

(a) Determine the value of the resistance R in Figure P 3.6-1b
that makes the circuit in Figure P 3.6-1b equivalent to the
circuit in Figure P 3.6-1a.

(b) Find the current i and the voltage v shown in Figure
P 3.6-1b. Because of the equivalence, the current i and
the voltage v shown in Figure P 3.6-1a are equal to the
current i and the voltage v shown in Figure P 3.6-1b.

(c) Find the current i2, shown in Figure P 3.6-1a, using current
division.

v

v

R

i

i i2

( b)

(a)

32 Ω

32 Ω 48 Ω 24 Ω

16 Ω

8 Ω

8 Ω

24 V

24 V

+

–

+

–

+
–

+
–

Figure P 3.6-1

P 3.6-2 The circuit shown in Figure P 3.6-2a has been
divided into three parts. In Figure P 3.6-2b, the rightmost part
has been replaced with an equivalent circuit. The rest of the
circuit has not been changed. The circuit is simplified further in
Figure 3.6-2c. Now the middle and rightmost parts have been
replaced by a single equivalent resistance. The leftmost part of
the circuit is still unchanged.

(a) Determine the value of the resistance R1 in Figure P 3.6-2b
that makes the circuit in Figure P 3.6-2b equivalent to
the circuit in Figure P 3.6-2a.

(b) Determine the value of the resistance R2 in Figure P 3.6-2c
that makes the circuit in Figure P 3.6-2c equivalent to the
circuit in Figure P 3.6-2b.

(c) Find the current i1 and the voltage v1 shown in Figure
P 3.6-2c. Because of the equivalence, the current i1 and the
voltage v1 shown in Figure P 3.6-2b are equal to the current
i1 and the voltage v1 shown in Figure P 3.6-2c.

Hint: 24 ¼ 6(i1�2) þ i1R2

(d) Find the current i2 and the voltage v2 shown in Figure
P 3.6-2b. Because of the equivalence, the current i2 and
the voltage v2 shown in Figure P 3.6-2a are equal to the
current i2 and the voltage v2 shown in Figure
P 3.6-2b.

Hint: Use current division to calculate i2 from i1.
(e) Determine the power absorbed by the 3-V resistance

shown at the right of Figure P 3.6-2a.

i1

(a)

i2

v2v1

+

–

+
–

+

–

6 Ω

6 Ω 3 Ω6 Ω12 Ω

8 Ω 4 Ω

2 A24 V

v1 v2 R1

( b)

i2i1

+

–

+
–

+

–

6 Ω 8 Ω

12 Ω 6 Ω24 V 2 A

v1 R2

(c)

i1

+

–

+
–

6 Ω

24 V 2 A

Figure P 3.6-2

P 3.6-3 Find i, using appropriate circuit reductions and the
current divider principle for the circuit of Figure P 3.6-3.

102 3. Resistive Circuits



i

+
– 2 Ω 2 Ω 2 Ω

1 Ω 1 Ω 1 Ω 1 Ω

1 Ω12 V

Figure P 3.6-3

P 3.6-4

(a) Determine values of R1 and R2 in Figure P 3.6-4b that make
the circuit in Figure P 3.6-4b equivalent to the circuit in
Figure P 3.6-4a.

(b) Analyze the circuit in Figure P 3.6-4b to determine the
values of the currents ia and ib.

(c) Because the circuits are equivalent, the currents ia
and ib shown in Figure P 3.6-4b are equal to the currents
ia and ib shown in Figure P 3.6-4a. Use this fact to
determine values of the voltage v1 and current i2 shown in
Figure P 3.6-4a.

+

+

–
+
–

–

10 Ω 8 Ω

8 Ω 12 Ω9 Ω27 V 24 Ω

v1

ia

3ia

ib

i2

(a)

+ +
27 V 3ia

ib

ia

– –

(b)

R1

R2

Figure P 3.6-4

P 3.6-5 The voltmeter in the circuit shown in Figure P 3.6-5
shows that the voltage across the 30-V resistor is 6 volts.
Determine the value of the resistance R1.

Hint: Use the voltage division twice.

Answer: R1¼ 40 V

R1
+
–

10 Ω 10 Ω

30 Ω

Voltmeter

6 0 0

12 V

Figure P 3.6-5

P 3.6-6 Determine the voltages va and vc and the currents ib
and id for the circuit shown in Figure P 3.6-6.

Answer: va¼ �2 V, vc¼ 6 V, ib¼�16 mA, and id¼ 2 mA

+

–

vc
+

–
va

ibid

18 V+
–

10 kΩ 2500 Ω 2 kΩ

1 kΩ
10 mA

Figure P 3.6-6

P 3.6-7 Determine the value of the resistance R in Figure
P 3.6-7.

Answer: R¼ 28 kV

24 V
1 mA

+
–

12 kΩ

21 kΩ R

Figure P 3.6-7

P 3.6-8 Most of us are familiar with the effects of a mild
electric shock. The effects of a severe shock can be devastating
and often fatal. Shock results when current is passed through the
body. A person can be modeled as a network of resistances.
Consider the model circuit shown in Figure P 3.6-8. Determine
the voltage developed across the heart and the current flowing
through the heart of the person when he or she firmly grasps one
end of a voltage source whose other end is connected to the
floor. The heart is represented by Rh. The floor has resistance to
current flow equal to Rf, and the person is standing barefoot on
the floor. This type of accident might occur at a swimming pool
or boat dock. The upper-body resistance Ru and lower-body
resistance RL vary from person to person.

50 V +
– 500 Ω

Ru = 20 Ω

Rf = 200 Ω

Rh = 100 Ω

RL = 30 Ω

Figure P 3.6-8

P 3.6-9 Determine the value of the current i in Figure
P 3.6-9.

Answer: i¼ 0.5 mA

i
12 V +

–

3 kΩ 3 kΩ

6 kΩ 6 kΩ 6 kΩ

Figure P 3.6-9
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P 3.6-10 Determine the values of ia, ib, and vc in Figure
P 3.6-10.

ia

ib
60 V+

+
–

–

15 Ω

20 Ω

10 Ω

vc

Figure P 3.6-10

P 3.6-11 Find i and Req a-b if vab¼ 40 V in the circuit of
Figure P 3.6-11.

Answer: Req a�b¼ 8 V, i¼ 5=6 A

b

a

12 Ω

20 Ω

3 Ω

2 Ω

5 Ω

6 Ω

Req a–b

i

Figure P 3.6-11

P 3.6-12 The ohmmeter in Figure P 3.6-12 measures the
equivalent resistance Req of the resistor circuit. The value of
the equivalent resistance Req depends on the value of the
resistance R.

(a) Determine the value of the equivalent resistance Req when
R¼ 9 V.

(b) Determine the value of the resistance R required to cause
the equivalent resistance to be Req¼ 12 V.

Ohmmeter
9 Ω

10 Ω 17 Ω

R

Req

Figure P 3.6-12

P 3.6-13 Find the Req at terminals a-b in Figure P 3.6-13. Also
determine i, i1, and i2.

Answer: Req¼ 8 V, i¼ 5 A, i1¼ 5=3 A, i2¼ 5=2 A

i1

i2

i

+

12 Ω

1 Ω

6 Ω

2 Ω

2 Ω

2 Ω

40 V

a

b

–

Req

Figure P 3.6-13

P 3.6-14 All of the resistances in the circuit shown in Figure
P 3.6-14 are multiples of R. Determine the value of R.

R
R

R
R
2R

2R

2R

2R

4R

3R

0.1 A

12 V+
–

Figure P 3.6-14

P 3.6-15 The circuit shown in Figure P 3.6-15 contains seven
resistors, each having resistance R. The input to this circuit is the
voltage source voltage vs. The circuit has two outputs, va and vb.
Express each output as a function of the input.

vs va vb

R

R

R

R
R

R

R

+
+

–

–

+

–

Figure P 3.6-15

P 3.6-16 The circuit shown in Figure P 3.6-16 contains
three 10-V, 1=4-W resistors. (Quarter-watt resistors can dissi-
pate 1=4 W safely.) Determine the range of voltage source
voltages vs such that none of the resistors absorbs more than
1=4 W of power.

vovs
+

+

–
–

10 Ω

10 Ω 10 Ω

Figure P 3.6-16

P 3.6-17 The four resistors shown in Figure P 3.6-17 represent
strain gauges. Strain gauges are transducers that measure the strain
that results when a resistor is stretched or compressed. Strain
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gauges are used to measure force, displacement, or pressure. The
four strain gauges in Figure P 3.6-17 each have a nominal
(unstrained) resistance of 200 V and can each absorb 0.5 mW
safely. Determine the range of voltage source voltages vs such that
no strain gauge absorbs more than 0.5 mW of power.

vs

vo

+

−

200 Ω

200 Ω 200 Ω

200 Ω

+ –

Figure P 3.6-17

P 3.6-18 The circuit shown in Figure P 3.6-18b has been
obtained from the circuit shown in Figure P 3.6-18a by
replacing series and parallel combinations of resistances by
equivalent resistances.

(a) Determine the values of the resistances R1, R2, and R3

in Figure P 3.6-18b so that the circuit shown in Figure
P 3.6-18b is equivalent to the circuit shown in Figure
P 3.6-18a.

(b) Determine the values of v1, v2, and i in Figure
P 3.6-18b.

(c) Because the circuits are equivalent, the values of v1, v2, and
i in Figure P 3.6-18a are equal to the values of v1, v2, and i
in Figure P 3.6-18b. Determine the values of v4, i5, i6, and
v7 in Figure P 3.6-18a.

+

+

+

–

–

–

24 V+
– +

–

10 Ω

30 Ω

4 Ω

9 Ω18 Ω

6 Ω

6 Ω6 Ω

4 Ω

a

c

b

d

10 Ω

(a)

v1

i5

i6

i

v2

v7

v4

R1

R3

R2

24 V+
–

4 Ω

a

c

b

d

(b)

i
+– v2

+ –v1

Figure P 3.6-18

P 3.6-19 Determine the values of v1, v2, i3, v4, v5, and i6
in Figure P 3.6-19.

+

+

–

–

24 V +
–

4 Ω

6 Ω

80 Ω20 Ω

30 Ω

4 Ω

c

a

d

b

12 Ω

16 Ω

6 Ω

10 Ω

10 Ω

v1

+– v2

v5

+– v4

i3

i6

Figure P 3.6-19

P 3.6-20 Determine the values of i, v, and Req for the circuit
shown in Figure P 3.6-20, given that vab¼ 18 V.

b

a

10 Ω

6 Ω

36 Ω

30 Ω

9 Ω72 Ω

Req

+

–
v

i

Figure P 3.6-20

P 3.6-21 Determine the value of the resistance R in the circuit
shown in Figure P 3.6-21, given that Req¼ 9 V .

Answer: R¼ 15 V

A

B

12 Ω

5 Ω 30 Ω

24 Ω

4 Ω

8 Ω

Req

R

Figure P 3.6-21

P 3.6-22 Determine the value of the resistance R in the circuit
shown in Figure P 3.6-22, given that Req¼ 40 V.

Problems 105



R

R

R

R R

R

R

R
Req

Figure P 3.6-22

P 3.6-23 Determine the values of r, the gain of the CCVS, and g,
the gain of the VCCS, for the circuit shown in Figure P 3.6-23.

+

+

–

–

+

+

–

–vb
ria

ia

gvb12 V 9.74 V 6.09 V
+
–

8 Ω

8 Ω 8 Ω

Figure P 3.6-23

P 3.6-24 The input to the circuit in Figure P 3.6-24 is the
voltage of the voltage source vs. The output is the voltage
measured by the meter, vo. Show that the output of this circuit is
proportional to the input. Determine the value of the constant of
proportionality.

10 va

+ –vo

+ –va

vs

+ –

20 Ω

8 Ω

20 Ω

20 Ω
12 Ω

Voltmeter

+
–

Figure P 3.6-24

P 3.6-25 The input to the circuit in Figure P 3.6-25 is the
voltage of the voltage source vs. The output is the current
measured by the meter io. Show that the output of this circuit is
proportional to the input. Determine the value of the constant of
proportionality.

vs Ammeter

+ –

2 Ω
20 Ω

40 Ω40 Ω

10 Ω

50 ia

io

iaFigure P 3.6-25

P 3.6-26 Determine the voltage measured by the voltmeter in
the circuit shown in Figure P 3.6-26.

ia

8 ia

24 V

+
–

+
–

10 Ω

40 Ω 10 Ω

4 Ω

Voltmeter

Figure P 3.6-26

P 3.6-27 Determine the current measured by the ammeter
in the circuit shown in Figure P 3.6-27.

+

–

va

8 va

3 A

2 Ω

4 Ω3 Ω

10 Ω

Ammeter

Figure P 3.6-27

P 3.6-28 Determine the value of the resistance R that causes
the voltage measured by the voltmeter in the circuit shown in
Figure P 3.6-28 to be 6 V.

Voltmeter

+
–

ia

5 ia R

3 A

40 Ω

10 Ω

18 Ω

Figure P 3.6-28
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P 3.6-29 The input to the circuit shown in Figure P 3.6-29
is the voltage of the voltage source vs. The output is the current
measured by the meter im.

(a) Suppose vs ¼ 15 V. Determine the value of the resistance R
that causes the value of the current measured by the meter
to be im ¼ 12 A.

(b) Suppose vs¼ 15 V and R¼ 80 V. Determine the current
measured by the ammeter.

(c) Suppose R¼ 24 V. Determine the value of the input
voltage vs that causes the value of the current measured
by the meter to be im¼ 3 A.

5 va

 im

+

–

va
vs

18 Ω

12 Ω

16 Ω Ammeter

+
–

R

Figure P 3.6-29

P 3.6-30 The ohmmeter in Figure P 3.6-30 measures the
equivalent resistance of the resistor circuit connected to the
meter probes.

(a) Determine the value of the resistance R required to cause
the equivalent resistance to be Req¼ 12 V.

(b) Determine the value of the equivalent resistance when
R¼ 14 V.

Req

Ohmmeter
4 Ω 2 Ω

20 ΩR

Figure P 3.6-30

P 3.6-31 The voltmeter in Figure P 3.6-31 measures the
voltage across the current source.

(a) Determine the value of the voltage measured by the meter.
(b) Determine the power supplied by each circuit element.

2 mA12 V
+
–

25 kΩ
Voltmeter

Figure P 3.6-31

P 3.6-32 Determine the resistance measured by the ohmmeter
in Figure P 3.6-32.

Ohmmeter

4 Ω

10 Ω

12 Ω

40 Ω

Figure P 3.6-32

P 3.6-33 Determine the resistance measured by the ohmmeter
in Figure P 3.6-33.

Ohmmeter

60 Ω60 Ω

60 Ω 60 Ω

Figure P 3.6-33

P 3.6-34 Consider the circuit shown in Figure P 3.6-34.
Given the values of the following currents and voltages:

i1 ¼ 0:625 A; v2 ¼ �25 V; i3 ¼ �1:25 A;
and v4 ¼ �18:75 V;

determine the values of R1, R2, R3, and R4.

v2

v2 v4

i3

i6

i1

i5

R2

R4

R3

R1

+ –

40 Ω

5 Ω

+

–

+

–

50 V
a

b

4

Figure P 3.6-34

P 3.6-35 Consider the circuits shown in Figure P 3.6-35. The
equivalent circuit is obtained from the original circuit by replacing
series and parallel combinations of resistors with equivalent
resistors. The value of the current in the equivalent circuit is
is ¼ 0.8 A. Determine the values of R1, R2, R5, v2, and i3.
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a

b

a

b

c

d

c

dv2+ –

– +

– +

40 V

original circuit

equivalent circuit

40 V

18 Ω 32 Ω

28 Ω

10 Ω

32 ΩR1

R2

is

is

i3

R56 Ω

Figure P 3.6-35

P 3.6-36 Consider the circuit shown in Figure P 3.6-36. Given

v2 ¼ 2

3
vs; i3 ¼ 1

5
i1; and v4 ¼ 3

8
v2;

determine the values of R1, R2, and R4.

Hint: Interpret v2 ¼ 2
3 vs; i3 ¼ 1

5 i1; and v4 ¼ 3
8 v2 as current and

voltage division.

+

–

+

–

i1 i3

v4v2vs

R1

R2 R4
+
–

50 Ω

25 Ω

Figure P 3.6-36

P 3.6-37 Consider the circuit shown in Figure P 3.6-37. Given

i2 ¼ 2

5
is; v3 ¼ 2

3
v1; and i4 ¼ 4

5
i2;

determine the values of R1, R2, and R4.

Hint: Interpret i2 ¼ 2
5 is; v3 ¼ 2

3 v1; and i4 ¼ 4
5 i2 as current and

voltage division.

+

–

+

–

is

i2 i4

v1 v3
R1 R4

R2

80 Ω

Figure P 3.6-37

P 3.6-38 Consider the circuit shown in Figure P 3.6-38.

(a) Suppose i3 ¼ 1
3 i1. What is the value of the resistance R?

(b) Suppose, instead, v2 ¼ 4.8 V. What is the value of the
equivalent resistance of the parallel resistors?

(c) Suppose, instead, R ¼ 20 V. What is the value of the
current in the 40-V resistor?

Hint: Interpret i3 ¼ 1
3 i1 as current division.

+

–

i1 i3

v2 R

40 Ω

24 V 20 Ω+
–

Figure P 3.6-38

P 3.6-39 Consider the circuit shown in Figure P 3.6-39.

(a) Suppose v3 ¼ 1
4 v1. What is the value of the resistance R?

(b) Suppose i2 ¼ 1.2 A. What is the value of the resistance R?
(c) Suppose R ¼ 70 V. What is the voltage across the

20-V resistor?
(d) Suppose R ¼ 30 V. What is the value of the current in this

30-V resistor?
Hint: Interpret v3 ¼ 1

4 v1 as voltage division.

+

–

i2

v1

+

–

v3

R

20 Ω 10 Ω2.4 A

Figure P 3.6-39

P 3.6-40 Consider the circuit shown in Figure P 3.6-40.
Given that the voltage of the dependent voltage source is
va ¼ 8 V, determine the values of R1 and vo.

vO

va = 20ib

ib

+ –

+ – +–

8 Ω

40 Ω 30 Ω

20 Ω

4 Ω R1

10 V
Figure P 3.6-40

P 3.6-41 Consider the circuit shown in Figure P 3.6-41.
Given that the current of the dependent current source is
ia ¼ 2 A, determine the values of R1 and io.

+ –vc

R1

io

2 A 10 Ω

45 Ω

15 Ω
25 Ω

ia = 0.2vc

Figure P 3.6-41
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P 3.6-42 Determine the values of ia, ib, i2, and v1 in the circuit
shown in Figure P 3.6-42.

i2

ibia

v1

12 Ω 24 Ω4 ia

2 Ω8 Ω
5 Ω

20 Ω6 V

+ –

+
–

Figure P 3.6-42

P 3.6-43 Determine the values of the resistance R and current
ia in the circuit shown in Figure P 3.6-43.

200 Ω

32 Ω

24 V R

ia

+
–

48 Ω

8 V

+

–

Figure P 3.6-43

P 3.6-44 The input to the circuit shown in Figure P 3.6-44 is
the voltage of the voltage source, 32 V. The output is the
current in the 10-V resistor io. Determine the values of
the resistance R1 and of the gain of the dependent
source G that cause both the value of voltage across the
12 V to be va = 10.38 V and the value of the output current
to be io = 0.4151 A.

+
–

12 Ω va

+

–

32 V

R1

G va 40 Ω 10 Ω
i o

Figure P 3.6-44

P 3.6-45 The equivalent circuit in Figure P 3.6-45 is obtained
from the original circuit by replacing series and parallel
combinations of resistors by equivalent resistors. The values
of the currents in the equivalent circuit are ia = 3.5 A and
ib =�1.5 A. Determine the values of the voltages v1 and v2

in the original circuit.

+
–

+
–

ia ib

+     v1      
_ +     v2      

_

150 V

150 V 5 A

5 A 40 Ω

60 Ω

25 Ω 35 Ω
80 Ω

50 Ω
30 Ω

original circuit

equivalent circuitFigure P 3.6-45

P 3.6-46 Figure P 3.6-46 shows three separate, similar
circuits. In each a 12-V source is connected to a subcircuit
consisting of three resistors. Determine the values of
the voltage source currents i1, i2, and i3. Conclude that
while the voltage source voltage is 12 V in each circuit, the
voltage source current depends on the subcircuit connected to
the voltage source.

12 V

35 Ω

i 1

+
– 20 kΩ 45 kΩ

12 V

2.4 Ω

i 2

+
– 8 kΩ 2 kΩ

12 V

i 3

+
– 9 kΩ 9 kΩ9 kΩ

Figure P 3.6-46

P 3.6-47 Determine the values of the voltages v1 and v2 and of
the current i3 in the circuit shown in Figure P 3.6-47.

4 Ω

40 Ω

50 V

+

–
30i a

80 Ω

80 Ω 20 Ω
i 3

+

–

v1
i a

80 Ω

+

–

v2

+ –

Figure P 3.6-47

Section 3.7 Analyzing Resistive Circuits Using

MATLAB

P 3.7-1 Determine the power supplied by each of the
sources, independent and dependent, in the circuit shown in
Figure P 3.7-1.

Hint: Use the guidelines given in Section 3.7 to label the circuit
diagram. Use MATLAB to solve the equations representing the
circuit.

Problems 109



5 V 8 Ω

2 Ω

4 Ω10 Ω
+

–

v1 2.5 A 1.5 v1

Figure P 3.7-1

P 3.7-2 Determine the power supplied by each of the sources,
independent and dependent, in the circuit shown in Figure
P 3.7-2.

Hint: Use the guidelines given in Section 3.7 to label the circuit
diagram. Use MATLAB to solve the equations representing the
circuit.

i1

5i1

15 V

a
+ –

+

+

–

–4 Ω

8 Ω

8 Ω

4 Ω

6 V 4 Ω

Figure P 3.7-2

P 3.7-3 Determine the power supplied by each of the inde-
pendent sources in the circuit shown in Figure P 3.7-3.

+
–6 Ω 2 A

8 Ω

4 Ω 12 V

12 Ω

Figure P 3.7-3

P 3.7-4 Determine the power supplied by each of the sources
in the circuit shown in Figure P 3.7-4.

30 Ω

40 Ω2.4 A 12 v c

40 Ω

50 Ω

+

–

v c
+
–

Figure P 3.7-4

Section 3.8 How CanWe Check . . . ?

P 3.8-1 A computer analysis program, used for the circuit
of Figure P 3.8-1, provides the following branch currents and
voltages: i1¼�0.833 A, i2¼�0.333 A, i3¼ �1.167 A, and
v¼�2.0 V. Are these answers correct?

Hint: Verify that KCL is satisfied at the center node and
that KVL is satisfied around the outside loop consisting of the
two 6-V resistors and the voltage source.

i1

2i2

i2

i3

12 V+
–

+ –

6 Ω

6 Ω

4 Ω

3 Ω v

Figure P 3.8-1

P 3.8-2 The circuit of Figure P 3.8-2 was assigned as a
homework problem. The answer in the back of the textbook
says the current i is 1.25 A. Verify this answer, using current
division.

i
5 A

5 Ω

5 Ω20 Ω20 Ω

Figure P 3.8-2

P 3.8-3 The circuit of Figure P 3.8-3 was built in the lab, and
vo was measured to be 6.25 V. Verify this measurement, using
the voltage divider principle.

vo24 V

650 Ω

320 Ω

230 Ω

+

–

+
–

Figure P 3.8-3

P 3.8-4 The circuit of Figure P 3.8-4 represents an auto’s
electrical system. A report states that iH¼ 9 A, iB¼�9 A, and
iA¼ 19.1 A. Verify that this result is correct.

Hint: Verify that KCL is satisfied at each node and that KVL is
satisfied around each loop.

iB
iA

iH

Alternator

Battery

12 V

14 V

Headlights

+ –

+ –

1.2 Ω

0.1 Ω

0.05 Ω

Figure P 3.8-4 Electric circuit model of an automobile’s
electrical system.

P 3.8-5 Computer analysis of the circuit in Figure P 3.8-5
shows that ia¼�0.5 mA, and ib¼�2 mA. Was the computer
analysis done correctly?
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Hint: Verify that the KVL equations for all three meshes are
satisfied when ia¼�0.5 mA, and ib¼�2 mA.

4ia

ia

ib

12 VA110 V+

+

–

–

+
–

4 Ω

2 Ω

2

Figure P 3.8-5

P 3.8-6 Computer analysis of the circuit in Figure P 3.8-6
shows that ia¼ 0.5 mA and ib¼ 4.5 mA. Was the computer
analysis done correctly?

Hint: First, verify that the KCL equations for all five nodes
are satisfied when ia ¼ 0.5 mA, and ib ¼ 4.5 mA. Next, verify
that the KVL equation for the lower left mesh (a-e-d-a) is
satisfied. (The KVL equations for the other meshes aren’t
useful because each involves an unknown voltage.)

1 mA 2 mA

e c

d

b

a

4 mA

ia

ib5 Ω

2 Ω

4 Ω

3 Ω

3 Ω

Figure P 3.8-6

P 3.8-7 Verify that the element currents and voltages shown
in Figure P 3.8-7 satisfy Kirchhoff’s laws:

(a) Verify that the given currents satisfy the KCL equations
corresponding to nodes a, b, and c.

(b) Verify that the given voltages satisfy the KVL equations
corresponding to loops a-b-d-c-a and a-b-c-d-a.

+

+

+

–

+

+

+

–

–

––

a c
b

d

3 V

2 V
–3 A

–2 A

–6 V

4 A

7 A –5 A–8 V

–

1 V

5 V 2 A

Figure P 3.8-7

*P 3.8-8 Figure P 3.8-8 shows a circuit and some correspond-
ing data. The tabulated data provide values of the current
i and voltage v corresponding to several values of the
resistance R2.

(a) Use the data in rows 1 and 2 of the table to find the values of
vs and R1.

(b) Use the results of part (a) to verify that the tabulated data
are consistent.

(c) Fill in the missing entries in the table.

R1

R2

R2, Ω

vs

+

–
v+

–

i

i, A

(a)

(b)

30
40

20
10
0

?
0.48

0.8
1.2
2.4

v, V

18
?

16
12
0

Figure P 3.8-8

*P 3.8-9 Figure P 3.8-9 shows a circuit and some correspond-
ing data. The tabulated data provide values of the current i
and voltage v corresponding to several values of the
resistance R2.

(a) Use the data in rows 1 and 2 of the table to find the values of
is and R1.

(b) Use the results of part (a) to verify that the tabulated data
are consistent.

(c) Fill in the missing entries in the table.

R1 R2

R2, Ω

is

+

–

v

i i, A

(a) (b)

80

40

20

10

?

1/2

6/7

4/3

v, V

?

20

120/7

40/3

Figure P 3.8-9
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Design Problems

DP 3-1 The circuit shown in Figure DP 3-1 uses a potenti-
ometer to produce a variable voltage. The voltage vm varies as a
knob connected to the wiper of the potentiometer is turned.
Specify the resistances R1 and R2 so that the following three
requirements are satisfied:

1. The voltage vm varies from 8 V to 12 V as the wiper moves
from one end of the potentiometer to the other end of the
potentiometer.

2. The voltage source supplies less than 0.5 W of power.

3. Each of R1, R2, and RP dissipates less than 0.25 W.

R1

R2

RP24 V

Voltmeter

+
–

vm

+

–

Figure DP 3-1

DP 3-2 The resistance RL in Figure DP 3-2 is the equivalent
resistance of a pressure transducer. This resistance is specified
to be 200 V 	 5 percent. That is, 190 V � RL � 210 V.
The voltage source is a 12 V 	 1 percent source capable of
supplying 5 W. Design this circuit, using 5 percent, 1=8-watt
resistors for R1 and R2, so that the voltage across RL is

vo ¼ 4 V	 10%
(A 5 percent, 1/8-watt 100-V resistor has a resistance between
95 and 105 V and can safely dissipate 1/8-W continuously.)

12 V

+

–

+
– R1 RL

R2

vo

Figure DP 3-2

DP 3-3 A phonograph pickup, stereo amplifier, and speaker
are shown in Figure DP 3-3a and redrawn as a circuit model as
shown in Figure DP 3-3b. Determine the resistance R so that the
voltage v across the speaker is 16 V. Determine the power
delivered to the speaker.

Phonograph Amplifier
Speaker

(a)

vab v

–

+R

120vab

+

–

200 mV +
–

+

–

a

b

Speaker

(b)

Amplifier

1 MΩ 10 Ω

Pickup
500 Ω

Figure DP 3-3 A phonograph stereo system.

DP 3-4 A Christmas tree light set is required that will operate
from a 6-V battery on a tree in a city park. The heavy-duty
battery can provide 9 A for the four-hour period of operation
each night. Design a parallel set of lights (select the maximum
number of lights) when the resistance of each bulb is 12 V.

DP 3-5 The input to the circuit shown in Figure DP 3-5 is
the voltage source voltage vs. The output is the voltage vo. The
output is related to the input by

vo ¼ R2

R1 þ R2
vs ¼ gvs

The output of the voltage divider is proportional to the input.
The constant of proportionality, g, is called the gain of the
voltage divider and is given by

g ¼ R2

R1 þ R2

The power supplied by the voltage source is

p ¼ vsis ¼ vs
vs

R1 þ R2

� �
¼ vs2

R1 þ R2
¼ vs2

Rin

where

Rin ¼ R1 þ R2

is called the input resistance of the voltage divider.

(a) Design a voltage divider to have a gain, g¼ 0.65.
(b) Design a voltage divider to have a gain, g¼ 0.65, and an

input resistance, Rin¼ 2500 V.

R2

R1

vs vo

i

+
–

+

–

Figure DP 3-5

DP 3-6 The input to the circuit shown in Figure DP 3-6 is the
current source current is. The output is the current io. The
output is related to the input by

io ¼ R1

R1 þ R2
is ¼ gis
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The output of the current divider is proportional to the input.
The constant of proportionality g is called the gain of the
current divider and is given by

g ¼ R1

R1 þ R2

The power supplied by the current source is

p ¼ vsis ¼ is
R1R2

R1 þ R2

� �� �
is ¼ R1R2

R1 þ R2
is
2 ¼ Rinis

2

where

Rin ¼ R1R2

R1 þ R2

is called the input resistance of the current divider.

(a) Design a current divider to have a gain, g¼ 0.65.
(b) Design a current divider to have a gain, g¼ 0.65, and an

input resistance, Rin¼ 10000 V.

R2R1vsis

io

+

–

Figure DP 3-6

DP 3-7 Design the circuit shown in Figure DP 3-7 to have an
output vo¼ 8.5 V when the input is vs¼ 12 V. The circuit
should require no more than 1 mW from the voltage source.

R2

R1

vs vo

i

+
–

+

–

Figure DP 3-7

DP 3-8 Design the circuit shown in Figure DP 3-8 to have an
output io¼ 1.8 mA when the input is is¼ 5 mA. The circuit should
require no more than 1 mW from the current source.

R1 R2vsis

io

+

–

Figure DP 3-8

DP 3-9 A thermistor is a temperature dependent resistor. The
thermistor resistance RT is related to the temperature by the
equation

RT ¼ RT e b 1=T�1=Toð Þ

where T has units of �K and R is in Ohms. R0 is resistance at
temperature T0 and the parameter b is in �K. For example,
suppose that a particular thermistor has a resistance R0 = 620 V
at the temperature T0 = 20 �C = 293 �K and b= 3330 �K. At
T = 70 �C = 343 �K the resistance of this thermistor will be

RT ¼ 620e 3330 1=342�1=293ð Þ ¼ 121:68 V

In Figure DP 3-9 this particular thermistor in used in a voltage
divider circuit. Specify the value of the resistor R that will cause
the voltage vT across the thermistor to be 4 V when the
temperature is 100 �C.

+
– 40 V

R

Thermistor

R T v T

+

–

Figure DP 3-9

DP 3-10 The circuit shown in Figure DP 3-10 contains a
thermistor that has a resistance R0 = 620 V at the temperature
T0 = 20 �C = 293 �K and b= 3330 �K. (See problem DP 3-9.)
Design this circuit (that is, specify the values of R and Vs) so
that the thermistor voltage is vT = 4 V when T = 100 �C and
vT = 20 V when T = 0 �C.

+
– Vs

R

Thermistor

R T v T

+

–

Figure DP 3-10

DP 3-11 The circuit shown in Figure DP 3-11 is designed to
help orange growers protect their crops against frost by sounding
an alarm when the temperature falls below freezing. It contains a
thermistor that has a resistance R0 = 620 V at the temperature
T0 = 20 �C = 293 �K and b= 3330 �K. (See problem DP 3-9.)

The alarm will sound when the voltage at the � input of
the comparator is less than the voltage at the + input. Using
voltage division twice, we see that the alarm sounds whenever

R 2

RT þ R 2
<

R 4

R 3 þ R 4

Determine values of R2, R3, and R4 that cause the alarm to
sound whenever the temperature is below freezing.

–

+

12 V

R3

R4R2

RT

Thermistor

12 V

Comparator

Buzzer

Figure DP 3-11
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CHAPTER 4 Methods of Analysis
of Resistive Circuits

I N T H I S C H A P T E R
4.1 Introduction
4.2 Node Voltage Analysis

of Circuits with
Current Sources

4.3 Node Voltage Analysis
of Circuits with
Current and Voltage
Sources

4.4 Node Voltage Analysis
with Dependent
Sources

4.5 Mesh Current Analysis
with Independent
Voltage Sources

4.6 Mesh Current Analysis
with Current and
Voltage Sources

4.7 Mesh Current Analysis
with Dependent
Sources

4.8 The Node Voltage
Method and Mesh
Current Method
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4.9 Circuit Analysis Using
MATLAB

4.10 Using PSpice to
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Voltages and Mesh
Currents

4.11 How Can We
Check . . . ?

4.12 DESIGN
EXAMPLE—
Potentiometer Angle
Display

4.13 Summary
Problems
PSpice Problems
Design Problems

4.1 I n t r o d u c t i o n

To analyze an electric circuit, we write and solve a set of equations. We apply Kirchhoff’s current and
voltage laws to get some of the equations. The constitutive equations of the circuit elements, such as
Ohm’s law, provide the remaining equations. The unknown variables are element currents and voltages.
Solving the equations provides the values of the element current and voltages.

This method works well for small circuits, but the set of equations can get quite large for even
moderate-sized circuits. A circuit with only 6 elements has 6 element currents and 6 element voltages.
We could have 12 equations in 12 unknowns. In this chapter, we consider two methods for writing a
smaller set of simultaneous equations:

� The node voltage method.
� The mesh current method.

The node voltage method uses a new type of variable called the node voltage. The “node voltage
equations” or, more simply, the “node equations,” are a set of simultaneous equations that represent a
given electric circuit. The unknown variables of the node voltage equations are the node voltages. After
solving the node voltage equations, we determine the values of the element currents and voltages from
the values of the node voltages.

It’s easier to write node voltage equations for some types of circuit than for others. Starting with
the easiest case, we will learn how to write node voltage equations for circuits that consist of:

� Resistors and independent current sources.
� Resistors and independent current and voltage sources.
� Resistors and independent and dependent voltage and current sources.

The mesh current method uses a new type of variable called the mesh current. The “mesh current
equations” or, more simply, the “mesh equations,” are a set of simultaneous equations that represent a
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given electric circuit. The unknown variables of the mesh current equations are the mesh currents. After
solving the mesh current equations, we determine the values of the element currents and voltages from
the values of the mesh currents.

It’s easier to write mesh current equations for some types of circuit than for others. Starting with
the easiest case, we will learn how to write mesh current equations for circuits that consist of:

� Resistors and independent voltage sources.
� Resistors and independent current and voltage sources.
� Resistors and independent and dependent voltage and current sources.

4.2 No d e V o l t a g e A n a l y s i s o f C i r c u i t s
w i t h C u r r e n t S o u r c e s

Consider the circuit shown in Figure 4.2-1a. This circuit contains four elements: three resistors and a
current source. The nodes of a circuit are the places where the elements are connected together. The
circuit shown in Figure 4.2-1a has three nodes. It is customary to draw the elements horizontally or
vertically and to connect these elements by horizontal and vertical lines that represent wires. In other
words, nodes are drawn as points or are drawn using horizontal or vertical lines. Figure 4.2-1b shows
the same circuit, redrawn so that all three nodes are drawn as points rather than lines. In Figure 4.2-1b,
the nodes are labeled as node a, node b, and node c.

Analyzing a connected circuit containing n. nodes will require n � 1 KCL equations. One way to
obtain these equations is to apply KCL at each node of the circuit except for one. The node at which
KCL is not applied is called the reference node. Any node of the circuit can be selected to be the
reference node. We will often choose the node at the bottom of the circuit to be the reference node.
(When the circuit contains a grounded power supply, the ground node of the power supply is usually
selected as the reference node.) In Figure 4.2-1b, node c is selected as the reference node and marked
with the symbol used to identify the reference node.

The voltage at any node of the circuit, relative to the reference node, is called a node voltage. In
Figure 4.2-1b, there are two node voltages: the voltage at node a with respect to the reference node, node
c, and the voltage at node b, again with respect to the reference node, node c. In Figure 4.2-1c,
voltmeters are added to measure the node voltages. To measure node voltage at node a, connect the red

(a)

(b)

R1R1

R2R2 R3
is

is

R3

va –+ vb –+

Voltmeter Voltmeter

a
b

c

(c)

R1

R2

is

R3

a
b

c

FIGURE 4.2-1 (a) A circuit with three
nodes. (b) The circuit after the nodes
have been labeled and a reference node
has been selected and marked.
(c) Using voltmeters to measure the
node voltages.
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probe of the voltmeter at node a and connect the black probe at the reference node, node c. To measure
node voltage at node b, connect the red probe of the voltmeter at node b and connect the black probe at
the reference node, node c.

The node voltages in Figure 4.2-1c can be represented as vac and vbc, but it is conventional to drop
the subscript c and refer to these as va and vb. Notice that the node voltage at the reference node is
vcc ¼ vc ¼ 0 V because a voltmeter measuring the node voltage at the reference node would have both
probes connected to the same point.

One of the standard methods for analyzing an electric circuit is to write and solve a set of simultaneous
equations called the node equations. The unknown variables in the node equations are the node voltages of
the circuit. We determine the values of the node voltages by solving the node equations.

To write a set of node equations, we do two things:

1. Express element currents as functions of the node voltages.

2. Apply Kirchhoff’s current law (KCL) at each of the nodes of the circuit except for the
reference node.

Consider the problem of expressing element currents as functions of the node voltages. Although our
goal is to express element currents as functions of the node voltages, we begin by expressing element
voltages as functions of the node voltages. Figure 4.2-2 shows how this is done. The voltmeters in
Figure 4.2-2 measure the node voltages v1 and v2 at the nodes of the circuit element. The element voltage
has been labeled as va. Applying Kirchhoff’s voltage law to the loop shown in Figure 4.2-2 gives

va ¼ v1 � v2

This equation expresses the element voltage va as a function of the node voltages v1 and v2. (There is
an easy way to remember this equation. Notice the reference polarity of the element voltage va. The
element voltage is equal to the node voltage at the node near the þ of the reference polarity minus the
node voltage at the node near the� of the reference polarity.)

Now consider Figure 4.2-3. In Figure 4.2-3a, we use what we have learned to express the voltage
of a circuit element as a function of node voltages. The circuit element in Figure 4.2-3a could be
anything: a resistor, a current source, a dependent voltage source, and so on. In Figures 4.2-3b and c,
we consider specific types of circuit element. In Figure 4.2-3b, the circuit element is a voltage source.
The element voltage has been represented twice, once as the voltage source voltage Vs and once as a
function of the node voltages v1 � v2. Noticing that the reference polarities for Vs and v1 � v2 are the
same (both þ on the left), we write

V s ¼ v1 � v2

This is an important result. Whenever we have a voltage source connected between two nodes of a
circuit, we can express the voltage source voltage Vs as a function of the node voltages v1 and v2.

Voltmeter

v1

va

v2

+

+

–

–

v1

+

–

Voltmeter

v2

FIGURE 4.2-2 Node voltages v1 and v2 and element voltage va of a circuit element.
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Frequently, we know the value of the voltage source voltage. For example, suppose that
Vs ¼ 12 V. Then

12 ¼ v1 � v2

This equation relates the values of two of the node voltages.
Next, consider Figure 4.2-3c. In Figure 4.2-3c, the circuit element is a resistor. We will use Ohm’s

law to express the resistor current i as a function of the node voltages. First, we express the resistor
voltage as a function of the node voltages v1 � v2. Noticing that the resistor voltage v1 � v2 and the
current i adhere to the passive convention, we use Ohm’s law to write

i ¼ v1 � v2
R

Frequently, we know the value of the resistance. For example, when R ¼ 8 V, this equation becomes

i ¼ v1 � v2
8

This equation expresses the resistor current i as a function of the node voltages v1 and v2.
Next, let’s write node equations to represent the circuit shown in Figure 4.2-4a. The input to this circuit

is the current source current is. To write node equations, we will first express the resistor currents as functions
of the node voltages and then apply Kirchhoff’s current law at nodes a and b. The resistor voltages are
expressed as functions of the node voltages in Figure 4.2-4b, and then the resistor currents are expressed as
functions of the node voltages in Figure 4.2-4c.

–+ v1 – v2 v1 – v2 v1 – v2

v1 – v2

v1 v2 v1
Vs v2 v1 v2

(a)

–+

(b)

–+

R

R

i =

(c)

+ –

FIGURE 4.2-3 Node voltages v1

and v2 and element voltage v1 � v2

of a (a) generic circuit element, (b)
voltage source, and (c) resistor.

(a)

R1

R3R2 vb

v1

–

–
+

va
–

+
+

is

a b

(b)

R1

R3R2 vb

(va – vb)

–

–
+

va
–

+
+

(va – vb) –+

is

a b

(c)

R1
R1

R3R2 vb

va – vb

–

+
va
–

+
is

a b

R2

va
R3

vb

FIGURE 4.2-4
(a) A circuit with three
resistors. (b) The
resistor voltages
expressed as functions
of the node voltages.
(c) The resistor currents
expressed as functions
of the node voltages.
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The node equations representing the circuit in Figure 4.2-4 are obtained by applying Kirchhoff’s
current law at nodes a and b. Using KCL at node a gives

is ¼ va
R2

þ va � vb
R1

ð4:2-1Þ

Similarly, the KCL equation at node b is

va � vb
R1

¼ vb
R3

ð4:2-2Þ

If R1 ¼ 1 V; R2 ¼ R3 ¼ 0:5 V, and is ¼ 4 A, and Eqs. 4.2-1 and 4.2-2 may be rewritten as

4 ¼ va � vb
1

þ va
0:5

ð4:2-3Þ

va � vb
1

¼ vb
0:5

ð4:2-4Þ
Solving Eq. 4.2-4 for vb gives

vb ¼ va
3

ð4:2-5Þ
Substituting Eq. 4.2-5 into Eq. 4.2-3 gives

4 ¼ va � va
3
þ 2va ¼ 8

3
va ð4:2-6Þ

Solving Eq. 4.2-6 for va gives
va ¼ 3

2
V

Finally, Eq. 4.2-5 gives

vb ¼ 1

2
V

Thus, the node voltages of this circuit are

va ¼ 3

2
V and vb ¼ 1

2
V

E X A M P L E 4 . 2 - 1 Node Equations

Determine the value of the resistance R in the circuit shown in Figure 4.2-5a.

Solution
Let va denote the node voltage at node a and vb denote the node voltage at node b. The voltmeter in Figure 4.2-5
measures the value of the node voltage at node b, vb. In Figure 4.2-5b, the resistor currents are expressed as
functions of the node voltages. Apply KCL at node a to obtain

4þ va
10

þ va � vb
5

¼ 0

Using vb ¼ 5 V gives

4þ va
10

þ va � 5

5
¼ 0

Solving for va, we get

va ¼ �10 V

Try it 
yourself 

in WileyPLUS
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Next, apply KCL at node b to obtain

� va � vb
5

� �
þ vb

R
� 4 ¼ 0

Using va ¼ �10 V and vb ¼ 5 V gives

� �10� 5

5

� �
þ 5

R
� 4 ¼ 0

Finally, solving for R gives
R ¼ 5V

E X A M P L E 4 . 2 - 2 Node Equations

Obtain the node equations for the circuit in Figure 4.2-6.

Solution
Let va denote the node voltage at node a, vb denote
the node voltage at node b, and vc denote the node
voltage at node c. Apply KCL at node a to obtain

� va � vc
R1

� �
þ i1 � va � vc

R2

� �
þ i2 � va � vb

R5

� �
¼ 0

Separate the terms of this equation that involve va

from the terms that involve vb and the terms that
involve vc to obtain.

1

R1
þ 1

R2
þ 1

R5

� �
va � 1

R5

� �
vb � 1

R1
þ 1

R2

� �
vc ¼ i1 þ i2

There is a pattern in the node equations of circuits that contain only resistors and current sources. In the node equation
at node a, the coefficient of va is the sum of the reciprocals of the resistances of all resistors connected to node a.
The coefficient of vb is minus the sum of the reciprocals of the resistances of all resistors connected between node b and
nodea.Thecoefficientvc isminus thesumof the reciprocalsof the resistancesofall resistorsconnectedbetween nodec
and node a. The right-hand side of this equation is the algebraic sum of current source currents directed into node a.

R2
R4

R3

R6

R5

i2

i3

a

c

b

R1 i1

FIGURE 4.2-6 The circuit for Example 4.2-2.

5 Ω 5 Ω

10 Ω 10 Ω4 A 4 A 4 A 4 A

(a)

Voltmeter

a b

(b)

a b

R R
10

5

R

vbva

va – vb

5 . 0 0

FIGURE 4.2-5 (a) The
circuit for Example 4.2-1.
(b) The circuit after the
resistor currents are
expressed as functions of
the node voltages.
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Apply KCL at node b to obtain

�i2 þ va � vb
R5

� �
� vb � vc

R3

� �
� vb

R4

� �
þ i3 ¼ 0

Separate the terms of this equation that involve va from the terms that involve vb and the terms that involve vc to obtain

� 1

R5

� �
va þ 1

R3
þ 1

R4
þ 1

R5

� �
vb � 1

R3

� �
vc ¼ i3 � i2

As expected, this node equation adheres to the pattern for node equations of circuits that contain only resistors and
current sources. In the node equation at node b, the coefficient of vb is the sum of the reciprocals of the resistances of
all resistors connected to node b. The coefficient of va is minus the sum of the reciprocals of the resistances of all
resistors connected between node a and node b. The coefficient of vc is minus the sum of the reciprocals of the
resistances of all resistors connected between node c and node b. The right-hand side of this equation is the
algebraic sum of current source currents directed into node b.

Finally, use the pattern for the node equations of circuits that contain only resistors and current sources to
obtain the node equation at node c:

� 1

R1
þ 1

R2

� �
va � 1

R3

� �
vb þ 1

R1
þ 1

R2
þ 1

R3
þ 1

R6

� �
vc ¼ � i1

E X A M P L E 4 . 2 - 3 Node Equations

Determine the node voltages for the circuit in Figure 4.2-6 when i1 ¼ 1 A; i2 ¼ 2 A; i3 ¼ 3 A; R1 ¼ 5 V;
R2 ¼ 2V , R3 ¼ 10 V; R4 ¼ 4 V; R5 ¼ 5 V, and R6 ¼ 2 V.

Solution
The node equations are

1

5
þ 1

2
þ 1

5

� �
va � 1

5

� �
vb � 1

5
þ 1

2

� �
vc ¼ 1þ 2

� 1

5

� �
va þ 1

10
þ 1

5
þ 1

4

� �
vb � 1

10

� �
vc ¼�2þ 3

� 1

5
þ 1

2

� �
va � 1

10

� �
vb þ 1

5
þ 1

2
þ 1

10
þ 1

2

� �
vc ¼�1

0:9va � 0:2vb � 0:7vc ¼ 3

�0:2va þ 0:55vb � 0:1vc ¼ 1

�0:7va � 0:1vb þ 1:3vc ¼ �1

The node equations can be written using matrices as

A v ¼ b
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EXERCISE 4.2-1 Determine the node voltages va and vb for the circuit of Figure E 4.2-1.

Answer: va ¼ 3 V and vb ¼ 11 V

EXERCISE 4.2-2 Determine the node voltages va and vb for the circuit of Figure E 4.2-2.

Answer: va ¼ �4=3 V and vb ¼ 4 V

4.3 No d e V o l t a g e A n a l y s i s o f C i r c u i t s w i t h C u r r e n t a n d
V o l t a g e S o u r c e s

In the preceding section, we determined the node voltages of circuits with independent current sources
only. In this section, we consider circuits with both independent current and voltage sources.

First we consider the circuit with a voltage source between ground and one of the other nodes.
Because we are free to select the reference node, this particular arrangement is easily achieved.

2 Ω

3 Ω 1 A

3 A

a b

FIGURE E 4.2-1

2 Ω

3 Ω4 Ω 3 A 4 A

a b

FIGURE E 4.2-2

where

A ¼
0:9 �0:2 �0:7

�0:2 0:55 �0:1
�0:7 0:1 1:3

2
4

3
5; b ¼

3
1

�1

2
4

3
5 and; v ¼

va

vb

vc

2
4

3
5

This matrix equation is solved using MATLAB in Figure 4.2-7.

v ¼
va
vb
vc

2
4

3
5 ¼

7:1579

5:0526

3:4737

2
4

3
5

Consequently, va ¼ 7:1579 V; vb ¼ 5:0526 V, and vc ¼ 3:4737 V

FIGURE 4.2-7 Using MATLAB to solve the
node equation in Example 4.2-3.

Try it 
yourself 
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Such a circuit is shown in Figure 4.3-1. We immediately note that the source is connected between
terminal a and ground and, therefore,

va ¼ vs

Thus, va is known and only vb is unknown. We write the KCL equation at node b to obtain

is ¼ vb
R3

þ vb � va
R2

However, va ¼ vs. Therefore,

is ¼ vb
R3

þ vb � vs
R2

Then, solving for the unknown node voltage vb, we get

vb ¼ R2R3is þ R3vs
R2 þ R3

Next, let us consider the circuit of Figure 4.3-2, which includes a voltage source between two nodes.
Because the source voltage is known, use KVL to obtain

va � vb ¼ vs
or va � vs ¼ vb

To account for the fact that the source voltage is known, we consider both node a and node b as
part of one larger node represented by the shaded ellipse shown in Figure 4.3-2. We require a larger
node because va and vb are dependent. This larger node is often called a supernode or a generalized
node. KCL says that the algebraic sum of the currents entering a supernode is zero. That means that we
apply KCL to a supernode in the same way that we apply KCL to a node.

A supernode consists of two nodes connected by an independent or a dependent voltage source.

We then can write the KCL equation at the supernode as
va
R1

þ vb
R2

¼ is

However, because va ¼ vs þ vb, we have
vs þ vb

R1
þ vb

R2
¼ is

Then, solving for the unknown node voltage vb, we get

vb ¼ R1R2is � R2vs
R1 þ R2

a bR2

R1 R3 isvs
+
–

FIGURE 4.3-1 Circuit with an independent
voltage source and an independent current source.

va vb
vs

R1 R2 is

+ –

Supernode

FIGURE 4.3-2 Circuit with a supernode
that incorporates va and vb.
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E X A M P L E 4 . 3 - 1 Node Equations

Determine the values node voltages, v1 and v2, in the circuit shown in Figure 4.3-3a.

100 mA50 Ω +
–60 V

v2
v1

80 Ω

75 Ω

65 Ω

100 mA50 Ω +
–60 V

v2
v1

80 Ω

75 Ω

65 Ω

v1

50

v1 − v2 

65

v2 − 60 

75

v1 − 60 

80

(a ) (b )

60 V

FIGURE 4.3-3 The circuit considered in Example 4.3-1.

Solution
First, represent the resistor currents in terms of the node voltages as shown in Figure 4.3-3b.
Apply at KCL at node 1 to get

v1
50

þ v1 � v2
65

þ v1 � 60

80
¼ 0 ) 1

50
þ 1

65
þ 1

80

� �
v1 � 1

65

� �
v2 ¼ 60

80

Apply KCL at node 2 to get

0:1 ¼ v2 � v1
65

þ v2 � 60

75
¼ ) � 1

65

� �
v1 þ 1

65
þ 1

75

� �
v2 ¼ 0:1

Organize these equations in matrix form to write
1

50
þ 1

65
þ 1

80
� 1

65

� 1

65

1

65
þ 1

75

2
64

3
75 v1

v2

� �
¼

60

80
0:1

2
4

3
5

Solving, we get v1 ¼ 30:081Vandv2 ¼ 47:990 V

E X A M P L E 4 . 3 - 2 Supernodes

Determine the values of the node voltages va and vb for the
circuit shown in Figure 4.3-4.

Solution
We can write the first node equation by considering the voltage
source. The voltage source voltage is related to the node voltages by

vb � va ¼ 12 ) vb ¼ va þ 12

To write the second node equation, we must decide what to do about the voltage source current. (Notice that there is
no easy way to express the voltage source current in terms of the node voltages.) In this example, we illustrate two
methods of writing the second node equation.

va

+

–

+–

6 Ω 3 Ωvb

+

–

1.5 A 3.5 A

12 Va b

FIGURE 4.3-4 The circuit for Example 4.3-2.

Try it 
yourself 

in WileyPLUS

Try it 
yourself 

in WileyPLUS
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Method 1: Assign a name to the voltage source current. Apply KCL at both of the voltage source nodes.
Eliminate the voltage source current from the KCL equations.

Figure 4.3-5 shows the circuit after labeling the voltage source current. The KCL equation at node a is

1:5þ i ¼ va
6

The KCL equation at node b is i þ 3:5þ vb
3
¼ 0

Combining these two equations gives

1:5� 3:5þ vb
3

� �
¼ va

6
) �2:0 ¼ va

6
þ vb

3

Method 2: Apply KCL to the supernode corresponding to the voltage source. Shown in Figure 4.3-6, this
supernode separates the voltage source and its nodes from the rest of the circuit. (In this small circuit, the rest of the
circuit is just the reference node.)

Apply KCL to the supernode to get

1:5 ¼ va
6
þ 3:5þ vb

3
) �2:0 ¼ va

6
þ vb

3

This is the same equation that was obtained using method 1. Applying KCL to the supernode is a shortcut for
doings three things:

1. Labeling the voltage source current as i.

2. Applying KCL at both nodes of the voltage source.

3. Eliminating i from the KCL equations.

In summary, the node equations are

vb � va ¼ 12

and
va
6
þ vb

3
¼ �2:0

Solving the node equations gives

va ¼ �12 V; and vb ¼ 0 V

(We might be surprised that vb is 0 V, but it is easy to check that these values are correct by substituting them
into the node equations.)

va

+

–

+–

6 Ω 3 Ωvb

+

–

1.5 A 3.5 A

12 Va bi

FIGURE 4.3-5 Method 1 For Example 4.3-2.

va

+

–

+–

6 Ω 3 Ωvb

+

–

1.5  A 3.5  A

12  Va b

FIGURE 4.3-6 Method 2 for Example 4.3-2.
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EXERCISE 4.3-1 Find the node voltages for the circuit of Figure E 4.3-1.

Hint: Write a KCL equation for the supernode corresponding to the 10-V voltage source.

Answer: 2 þ vb þ 10
20

þ vb

30
¼ 5 ) vb ¼ 30 V and va ¼ 40 V

EXERCISE 4.3-2 Find the voltages va and vb for the circuit of Figure E 4.3-2.

Answer:
vb þ 8ð Þ � �12ð Þ

10
þ vb

40
¼ 3 ) vb ¼ 8 V and va ¼ 16 V
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E X A M P L E 4 . 3 - 3 Node Equations for a Circuit Containing
Voltage Sources

Determine the node voltages for the circuit shown in Figure 4.3-7.

Solution
We will calculate the node voltages of this circuit by writing a KCL
equation for the supernode corresponding to the 10-V voltage source.
First notice that

vb ¼ �12 V

and that

va ¼ vc þ 10

Writing a KCL equation for the supernode, we have
va � vb
10

þ 2þ vc � vb
40

¼ 5

or

4 va þ vc � 5 vb ¼ 120

Using va ¼ vc þ 10 and vb ¼ �12 to eliminate va and vb, we have

4 vc þ 10ð Þ þ vc � 5 �12ð Þ ¼ 120

Solving this equation for vc, we get
vc ¼ 4 V

2 A12 V5 A

40 Ω

10 V

10 Ω 

+
–

+ –

a
b

c

FIGURE 4.3-7 The circuit for Example 4.3-3.

20 Ω 30 Ω2 A 5 A

10 V
a b

+ –

FIGURE E 4.3-1

10 Ω

40 Ω12 V 3 A

8 V
a b

+ –

+
–

FIGURE E 4.3-2
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4.4 No d e V o l t a g e A n a l y s i s w i t h D e p e n d e n t S o u r c e s

When a circuit contains a dependent source the controlling current or voltage of that
dependent source must be expressed as a function of the node voltages.

It is then a simple matter to express the controlled current or voltage as a function of the node
voltages. The node equations are then obtained using the techniques described in the previous two
sections.

E X A M P L E 4 . 4 - 1 Node Equations for a Circuit Containing
a Dependent Source

Determine the node voltages for the circuit shown in Figure 4.4-1.

Solution
The controlling current of the dependent source is ix. Our first task
is to express this current as a function of the node voltages:

ix ¼ va � vb
6

The value of the node voltage at node a is set by the 8-V voltage
source to be

va ¼ 8 V

So ix ¼ 8� vb
6

The node voltage at node c is equal to the voltage of the dependent source, so

vc ¼ 3ix ¼ 3
8� vb

6

� �
¼ 4� vb

2
ð4:4-1Þ

Next, apply KCL at node b to get

8� vb
6

þ 2 ¼ vb � vc
3

ð4:4-2Þ

Using Eq. 4.4-1 to eliminate vc from Eq. 4.4-2 gives

8� vb
6

þ 2 ¼
vb � 4� vb

2

� �

3
¼ vb

2
� 4

3

Solving for vb gives

vb ¼ 7 V

Then, vc ¼ 4� vb
2
¼ 1

2
V

6 Ω 3 Ω

8 V 2 A

ba c

+
–

+

–

ix

3ix

FIGURE 4.4-1 A circuit with a CCVS.

Try it 
yourself 

in WileyPLUS
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E X A M P L E 4 . 4 - 2 Node Equations for a Circuit
Containing a Dependent Source

Determine the node voltages for the circuit shown in Figure 4.4-2.

Solution
The controlling voltage of the dependent source is vx. Our first task
is to express this voltage as a function of the node voltages:

vx ¼ �va
The difference between the node voltages at nodes a and b is set
by voltage of the dependent source:

va � vb ¼ 4 vx ¼ 4 �vað Þ ¼ �4 va

Simplifying this equation gives vb ¼ 5 va ð4:4-3Þ
Applying KCL to the supernode corresponding to the dependent voltage source gives

3 ¼ va
4
þ vb
10

ð4:4-4Þ
Using Eq. 4.4-3 to eliminate vb from Eq. 4.4-4 gives

3 ¼ va
4
þ 5va

10
¼ 3

4
va

Solving for va, we get va ¼ 4 V

Finally, vb ¼ 5 va ¼ 20 V

4 Ω 10 Ω3 A

ba
4vx

+ –

vx

+

–

FIGURE 4.4-2 A circuit with a VCVS.

E X A M P L E 4 . 4 - 3 Node Equations for a Circuit
Containing a Dependent Source

Determine the node voltages corresponding to nodes a and b for the circuit
shown in Figure 4.4-3.

Solution
The controlling current of the dependent source is ia. Our first task is to express
this current as a function of the node voltages. Apply KCL at node a to get

6� va
10

¼ ia þ va � vb
20

Node a is connected to the reference node by a short circuit, so va ¼ 0 V.
Substituting this value of va into the preceding equation and simplifying gives

ia ¼ 12þ vb
20

ð4:4-5Þ
Next, apply KCL at node b to get

0� vb
20

¼ 5 ia ð4:4-6Þ
Using Eq. 4.4-5 to eliminate ia from Eq. 4.4-6 gives

0� vb
20

¼ 5
12þ vb

20

� �

Solving for vb gives vb ¼ �10 V

10 Ω 20 Ω

6 V

ba

+
–

ia 5ia

FIGURE 4.4-3 A circuit with a CCCS.
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EXERCISE 4.4-1 Find the node voltage vb for the circuit shown in Figure E 4.4-1.

Hint: Apply KCL at node a to express ia as a function of the node voltages. Substitute the result into
vb ¼ 4ia and solve for vb.

Answer: � 6
8
þ vb

4
� vb

12
¼ 0 ) vb ¼ 4:5 V

EXERCISE 4.4-2 Find the node voltages for the circuit shown in Figure E 4.4-2.

Hint: The controlling voltage of the dependent source is a node voltage, so it is already expressed as a
function of the node voltages. Apply KCL at node a.

Answer:
va � 6

20
þ va � 4va

15
¼ 0 ) va ¼ �2 V

4.5 Me s h C u r r e n t A n a l y s i s w i t h I n d e p e n d e n t
V o l t a g e S o u r c e s

In this and succeeding sections, we consider the analysis of circuits using Kirchhoff’s voltage law
(KVL) around a closed path. A closed path or a loop is drawn by starting at a node and tracing a path
such that we return to the original node without passing an intermediate node more than once.

A mesh is a special case of a loop.

A mesh is a loop that does not contain any other loops within it.

Mesh current analysis is applicable only to planar networks. A planar circuit is one that can be
drawn on a plane, without crossovers. An example of a nonplanar circuit is shown in Figure 4.5-1, in
which the crossover is identified and cannot be removed by redrawing the circuit. For planar networks, the
meshes in the network look like windows. There are four meshes in the circuit shown in Figure 4.5-2.
They are identified as Mi. Mesh 2 contains the elements R3, R4, and R5. Note that the resistor R3 is common
to both mesh 1 and mesh 2.

We define a mesh current as the current through the elements constituting the mesh. Figure 4.5-3a
shows a circuit having two meshes with the mesh currents labeled as i1 and i2. We will use the convention of
a mesh current in the clockwise direction as shown in Figure 4.5-3a. In Figure 4.5-3b, ammeters have been
inserted into the meshes to measure the mesh currents.

One of the standard methods for analyzing an electric circuit is to write and solve a set of
simultaneous equations called the mesh equations. The unknown variables in the mesh equations are the
mesh currents of the circuit. We determine the values of the mesh currents by solving the mesh
equations.

8 Ω 12 Ω

6 V

ba

ia 4ia
+

–
+
–

FIGURE E 4.4-1 A circuit with a CCVS.

20 Ω 15 Ω

6 V

ba

va 4va
+

–
+
–

–

+

FIGURE E 4.4-2 A circuit with a VCVS.
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To write a set of mesh equations, we do two things:

1. Express element voltages as functions of the mesh currents.

2. Apply Kirchhoff’s voltage law (KVL) to each of the meshes of the circuit.

Consider the problem of expressing element voltages as functions of the mesh currents. Although
our goal is to express element voltages as functions of the mesh currents, we begin by expressing element
currents as functions of the mesh currents. Figure 4.5-3b shows how this is done. The ammeters in
Figure 4.5-3b measure the mesh currents, i1 and i2. Elements C and E are in the right mesh but not in the
left mesh. Apply Kirchhoff’s current law at node c and then at node f to see that the currents in elements
C and E are equal to the mesh current of the right mesh, i2, as shown in Figure 4.5-3b. Similarly, elements
A and D are only in the left mesh. The currents in elements A and D are equal to the mesh current of the left
mesh, i1, as shown in Figure 4.5-3b.

Element B is in both meshes. The current of element B has been labeled as ib. Applying
Kirchhoff’s current law at node b in Figure 4.5-3b gives

ib ¼ i1 � i2

This equation expresses the element current ib as a function of the mesh currents i1 and i2.

Ammeter Ammeter

i1 i2

i1 i2

b

e
D E

CBA

a c

d f

i2ib

i2i1

i1

(b)

i1 i2

(a)

FIGURE 4.5-3 (a) A circuit with two meshes. (b) Inserting ammeters to measure the mesh currents.

is

Crossover

FIGURE 4.5-1 Nonplanar circuit with a crossover.

vs
+
–

R1

M1

M2

M3

M4

R3

R5

R4

R2

R6

FIGURE 4.5-2 Circuit with four meshes. Each mesh is
identified by dashed lines.
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Figure 4.5-4a shows a circuit element that is in two meshes. The current of the circuit element
is expressed as a function of the mesh currents of the two meshes. The circuit element in Figure 4.5-4a
could be anything: a resistor, a current source, a dependent voltage source, and so on. In Figures 4.5-4b
and c, we consider specific types of circuit element. In Figure 4.5-4b, the circuit element is a current
source. The element current has been represented twice, once as the current source current 3 A and once
as a function of the mesh currents i1 � i2. Noticing that the reference directions for 3 A and i1 � i2 are
different (one points up, the other points down), we write

�3 ¼ i1 � i2

This equation relates the values of two of the mesh currents.
Next consider Figure 4.5-4c. In Figure 4.5-4c, the circuit element is a resistor. We will use Ohm’s

law to express the resistor voltage v as functions of the mesh currents. First, we express the resistor
current as a function of the mesh currents i1 � i2. Noticing that the resistor current i1 � i2 and the voltage
v adhere to the passive convention, we use Ohm’s law to write

v ¼ R i1 � i2ð Þ
Frequently, we know the value of the resistance. For example, when R ¼ 8 V, this equation becomes

v ¼ 8 i1 � i2ð Þ
This equation expresses the resistor voltage v as a function of the mesh currents i1 and i2.

Next, let’s write mesh equations to represent the circuit shown in Figure 4.5-5a. The input to this
circuit is the voltage source voltage vs. To write mesh equations, we will first express the resistor
voltages as functions of the mesh currents and then apply Kirchhoff’s voltage law to the meshes. The
resistor currents are expressed as functions of the mesh currents in Figure 4.5-5b, and then the resistor
voltages are expressed as functions of the mesh currents in Figure 4.5-5c.

We may use Kirchhoff’s voltage law around each mesh. We will use the following convention for
obtaining the algebraic sum of voltages around a mesh. We will move around the mesh in the clockwise
direction. If we encounter theþ sign of the voltage reference polarity of an element voltage before the �
sign, we add that voltage. Conversely, if we encounter the – of the voltage reference polarity of an
element voltage before the þ sign, we subtract that voltage. Thus, for the circuit of Figure 4.5-5c,
we have

mesh 1: �vs þ R1i1 þ R3 i1 � i2ð Þ ¼ 0 ð4:5-1Þ
mesh 2: �R3 i1 � i2ð Þ þ R2i2 ¼ 0 ð4:5-2Þ

Note that the voltage across R3 in mesh 1 is determined from Ohm’s law, where

v ¼ R3ia ¼ R3 i1 � i2ð Þ
where ia is the actual element current flowing downward through R3.

Equations 4.5-1 and 4.5-2 will enable us to determine the two mesh currents i1 and i2. Rewriting
the two equations, we have

(a)

i1 i2 Rv

+

–

i1 – i2

(b)

i1 i2

i1 – i2

3 A

(c)

i1 i2

i = i1 – i2

FIGURE 4.5-4 Mesh currents i1 and i2 and element current i1 � i2 of a (a) generic circuit element, (b) current source,
and (c) resistor.

130 4. Methods of Analysis of Resistive Circuits



i1 R1 þ R3ð Þ � i2R3 ¼ vs

and �i1R3 þ i2 R3 þ R2ð Þ ¼ 0

If R1 ¼ R2 ¼ R3 ¼ 1 V, we have
2i1 � i2 ¼ vs

and �i1 þ 2i2 ¼ 0

Add twice the first equation to the second equation, obtaining 3i1 ¼ 2vs. Then we have

i1 ¼ 2vs
3

and i2 ¼ vs
3

Thus, we have obtained two independent mesh current equations that are readily solved for the
two unknowns. If we have N meshes and write N mesh equations in terms of N mesh currents, we can
obtain N independent mesh equations. This set of N equations is independent and thus guarantees a
solution for the N mesh currents.

A circuit that contains only independent voltage sources and resistors results in a specific
format of equations that can readily be obtained. Consider a circuit with three meshes, as shown in
Figure 4.5-6. Assign the clockwise direction to all of the mesh currents. Using KVL, we obtain the three
mesh equations

mesh 1: �vs þ R1i1 þ R4 i1 � i2ð Þ ¼ 0
mesh 2: R2i2 þ R5 i2 � i3ð Þ þ R4 i2 � i1ð Þ ¼ 0
mesh 3: R5 i3 � i2ð Þ þ R3i3 þ vg ¼ 0

These three mesh equations can be rewritten by collecting coefficients for each mesh current as

mesh 1: R1 þ R4ð Þi1 � R4i2 ¼ vs
mesh 2: �R4i1 þ R5 þ R4 þ R2 þ R5ð Þi2 � R5i3 ¼ 0
mesh 3: �R5i2 þ R3 þ R5ð Þi3 ¼ �vg

vs vg

R1 R2 R3

R4 R5
+
–

+
–i1 i2 i3 FIGURE 4.5-6 Circuit with three

mesh currents and two voltage sources.

+
–

(c)

i1 i2

i1
i2

R2i2

R2

R3

R1

vs

+

+

–

–

R1i1+ –

R3(i1 – i2)

i1 – i2

+
–

(b)

i1 i2

i1 i2

R2

R3

R1

vs

i1 – i2

+
–

(a)

i1 i2

R2

R3

R1

vs

FIGURE 4.5-5 (a) A circuit. (b) The resistor currents expressed as functions of the mesh currents. (c) The resistor
voltages expressed as functions of the mesh currents.
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Hence, we note that the coefficient of the mesh current i1 for the first mesh is the sum of
resistances in mesh 1, and the coefficient of the second mesh current is the negative of the resistance
common to meshes 1 and 2. In general, we state that for mesh current in, the equation for the nth mesh
with independent voltage sources only is obtained as follows:

�
XQ

q¼1

Rkiq þ
XP

j¼1

Rjin ¼ �
XN

n¼1

vsn ð4:5-3Þ

That is, for mesh n we multiply in by the sum of all resistances Rj around the mesh. Then we add
the terms due to the resistances in common with another mesh as the negative of the connecting
resistance Rk, multiplied by the mesh current in the adjacent mesh iq for all Q adjacent meshes.
Finally, the independent voltage sources around the loop appear on the right side of the equation as
the negative of the voltage sources encountered as we traverse the loop in the direction of the
mesh current. Remember that the preceding result is obtained assuming all mesh currents flow
clockwise.

The general matrix equation for the mesh current analysis for independent voltage sources present
in a circuit is

R i ¼ vs ð4:5-4Þ

where R is a symmetric matrix with a diagonal consisting of the sum of resistances in each mesh and the
off-diagonal elements are the negative of the sum of the resistances common to two meshes. The matrix
i consists of the mesh current as

i ¼

i1
i2
_
_
_

iN

2
6666664

3
7777775

For N mesh currents, the source matrix vs is

vs ¼

vs1

vs2

_
_
_

vsN

2
6666664

3
7777775

where vsj is the algebraic sum of the voltages of the voltage sources in the jth mesh with the
appropriate sign assigned to each voltage.

For the circuit of Figure 4.5-6 and the matrix Eq. 4.5-4, we have

R ¼
R1 þ R4ð Þ �R4 0
�R4 R2 þ R4 þ R5ð Þ �R5

0 �R5 R3 þ R5ð Þ

2
4

3
5

Note that R is a symmetric matrix, as we expected.
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EXERCISE 4.5-1 Determine the value of the voltage measured by the voltmeter in Figure E 4.5-1.

8 V12 V

3 Ω

6 Ω

6 Ω +
–

+
–

Voltmeter

FIGURE E 4.5-1

Answer: �1 V

4.6 Me s h C u r r e n t A n a l y s i s w i t h
C u r r e n t a n d V o l t a g e S o u r c e s

Heretofore, we have considered only circuits with independent voltage sources for analysis by the mesh
current method. If the circuit has an independent current source, as shown in Figure 4.6-1, we recognize
that the second mesh current is equal to the negative of the current source current. We can then write

i2 ¼ �is

and we need only determine the first mesh current i1. Writing KVL for the first mesh, we obtain

R1 þ R2ð Þi1 � R2i2 ¼ vs

Because i2 ¼ �is, we have

i1 ¼ vs � R2is
R1 þ R2

ð4:6-1Þ

where is and vs are sources of known magnitude.
If we encounter a circuit as shown in Figure 4.6-2, we have a current source is that has an

unknown voltage vab across its terminals. We can readily note that

i2 � i1 ¼ is ð4:6-2Þ
by writing KCL at node a. The two mesh equations are

mesh 1: R1i1 þ vab ¼ vs ð4:6-3Þ
mesh 2: R2 þ R3ð Þi2 � vab ¼ 0 ð4:6-4Þ

vs is

R1 R3

R2
+
– i1 i2

FIGURE 4.6-1 Circuit with an independent voltage
source and an independent current source.

vs is

R1 R2

R3
+
– i1 i2

a

b

FIGURE 4.6-2 Circuit with an independent current
source common to both meshes.
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We note that if we add Eqs. 4.6-3 and 4.6-4, we eliminate vab, obtaining

R1i1 þ R2 þ R3ð Þi2 ¼ vs

However, because i2 ¼ is þ i1, we obtain

R1i1 þ R2 þ R3ð Þ is þ i1ð Þ ¼ vs

or i1 ¼ vs � R2 þ R3ð Þis
R1 þ R2 þ R3

ð4:6-5Þ

Thus, we account for independent current sources by recording the relationship between the mesh
currents and the current source current. If the current source influences only one mesh current, we write the
equation that relates that mesh current to the current source current and write the KVL equations for the
remaining meshes. If the current source influences two mesh currents, we write the KVL equation for both
meshes, assuming a voltage vab across the terminals of the current source. Then, adding these two mesh
equations, we obtain an equation independent of vab.

Another technique for the mesh analysis method when a current source is common to two meshes
involves the concept of a supermesh. A supermesh is one mesh created from two meshes that have a
current source in common, as shown in Figure 4.6-4.

E X A M P L E 4 . 6 - 1 Mesh Equations

Consider the circuit of Figure 4.6-3 where R1 ¼ R2 ¼ 1 V and
R3 ¼ 2 V. Find the three mesh currents.

Solution
Because the 4-A source is in mesh 1 only, we note that

i1 ¼ 4

For the 5-A source, we have

i2 � i3 ¼ 5 ð4.6-6Þ
Writing KVL for mesh 2 and mesh 3, we obtain

mesh 2: R1 i2 � i1ð Þ þ vab ¼ 10 ð4.6-7Þ
mesh 3: R2 i3 � i1ð Þ þ R3i3 � vab ¼ 0 ð4.6-8Þ

We substitute i1 ¼ 4 and add Eqs. 4.6-7 and 4.6-8 to obtain

R1 i2 � 4ð Þ þ R2 i3 � 4ð Þ þ R3i3 ¼ 10 ð4.6-9Þ
From Eq. 4.6-6, i2 ¼ 5 þ i3, substituting into Eq. 4.6-9, we have

R1 5þ i3 � 4ð Þ þ R2 i3 � 4ð Þ þ R3i3 ¼ 10

Using the values for the resistors, we obtain

i3 ¼ 13

4
A and i2 ¼ 5þ i3 ¼ 33

4
A

R1 R2

R3
i2

i1

i3

a

b

5 A

4 A

10 V +
–

FIGURE 4.6-3 Circuit with two independent
current sources.

Try it 
yourself 

in WileyPLUS
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A supermesh is one larger mesh created from two meshes that have an independent or
dependent current source in common.

For example, consider the circuit of Figure 4.6-4. The 5-A current source is common to mesh 1
and mesh 2. The supermesh consists of the interior of mesh 1 and mesh 2. Writing KVL around the
periphery of the supermesh shown by the dashed lines, we obtain

�10þ 1 i1 � i3ð Þ þ 3 i2 � i3ð Þ þ 2i2 ¼ 0

For mesh 3, we have

1 i3 � i1ð Þ þ 2i3 þ 3 i3 � i2ð Þ ¼ 0

Finally, the equation that relates the current source current to the mesh currents is

i1 � i2 ¼ 5

Then the three equations may be reduced to

supermesh: 1i1 þ 5i2 � 4i3 ¼ 10
mesh 3: �1i1 � 3i2 þ 6i3 ¼ 0
current source: 1i1 � 1i2 ¼ 5

Therefore, solving the three equations simultaneously, we find that i2 ¼ 2:5A; i1 ¼ 7:5 A, and
i3 ¼ 2:5A.

1 Ω
3 Ω

2 Ω

2 Ω

1 Ω

5 A10 V +
–

i2

i3

i1

Supermesh
FIGURE 4.6-4 Circuit with a supermesh
that incorporates mesh 1 and mesh 2.
The supermesh is indicated by the dashed line.

E X A M P L E 4 . 6 - 2 Supermeshes

Determine the values of the mesh currents i1 and i2 for the circuit shown in Figure 4.6-5.

9 Ω

6 Ω1.5  A12  V i1
+
– i2

3 Ω

FIGURE 4.6-5 The circuit for Example 4.6-2.

9 Ω

6 Ωv

+

–

1.5 A12 V i1
+
– i2

3 Ω

FIGURE 4.6-6 Method 1 of Example 4.6-2.

Try it 
yourself 

in WileyPLUS
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Solution
We can write the first mesh equation by considering the current source. The current source current is related to the
mesh currents by

i1 � i2 ¼ 1:5 ) i1 ¼ i2 þ 1:5

To write the second mesh equation, we must decide what to do about the current source voltage. (Notice that there is
no easy way to express the current source voltage in terms of the mesh currents.) In this example, we illustrate two
methods of writing the second mesh equation.

Method 1: Assign a name to the current source voltage. Apply KVL to both of the meshes. Eliminate the
current source voltage from the KVL equations.

Figure 4.6-6 shows the circuit after labeling the current source voltage. The KVL equation for mesh 1 is

9i1 þ v � 12 ¼ 0

The KVL equation for mesh 2 is 3i2 þ 6i2 � v ¼ 0

Combining these two equations gives

9i1 þ 3i2 þ 6i2ð Þ � 12 ¼ 0 ) 9i1 þ 9i2 ¼ 12

Method 2: Apply KVL to the supermesh corresponding to the current source. Shown in Figure 4.6-7,
this supermesh is the perimeter of the two meshes that each contain the current source. Apply KVL to the
supermesh to get

9i1 þ 3i2 þ 6i2 � 12 ¼ 0 ) 9i1 þ 9i2 ¼ 12

This is the same equation that was obtained using method 1. Applying KVL to the supermesh is a shortcut for doing
three things:

1. Labeling the current source voltage as v.

2. Applying KVL to both meshes that contain the current source.

3. Eliminating v from the KVL equations.

In summary, the mesh equations are

i1 ¼ i2 þ 1:5

and 9i1 þ 9i2 ¼ 12

Solving the node equations gives

i1 ¼ 1:4167A and i2 ¼ �83:3 mA

9 Ω

6 Ω1.5 A12 V i1
+
– i2

3 Ω

FIGURE 4.6-7 Method 2 of Example 4.6-2.
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EXERCISE 4.6-1 Determine the value of the voltage measured by the voltmeter in
Figure E 4.6-1.

A 3 Ω4 Ω

9 V

2 Ω

Voltmeter+ –

3 4

FIGURE E 4.6-1

Hint: Write and solve a single mesh equation to determine the current in the 3-V resistor.

Answer: �4 V

EXERCISE 4.6-2 Determine the value of the current measured by the ammeter in
Figure E 4.6-2.

3 A

15 V

6 Ω
3 Ω

Ammeter+ –

FIGURE E 4.6-2

Hint: Write and solve a single mesh equation.

Answer: �3.67 A

4.7 Me s h C u r r e n t A n a l y s i s
w i t h D e p e n d e n t S o u r c e s

When a circuit contains a dependent source, the controlling current or voltage of that
dependent source must be expressed as a function of the mesh currents.

It is then a simple matter to express the controlled current or voltage as a function of the mesh currents.
The mesh equations can then be obtained by applying Kirchhoff’s voltage law to the meshes of the circuit.
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E X A M P L E 4 . 7 - 1 Mesh Equations and
Dependent Sources

INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 4.7-1a. Find the value of the voltage measured by the voltmeter.

Solution
Figure 4.7-1b shows the circuit after replacing the voltmeter by an equivalent open circuit and labeling the voltage,
vm, measured by the voltmeter. Figure 4.7-lc shows the circuit after numbering the meshes. Let i1 and i2 denote the
mesh currents in meshes 1 and 2, respectively.

The controlling current of the dependent source, ia, is the current in a short circuit. This short circuit is
common to meshes 1 and 2. The short-circuit current can be expressed in terms of the mesh currents as

ia ¼ i1 � i2

Try it 
yourself 

in WileyPLUS

Try it 
yourself 

in WileyPLUS

Try it 
yourself 

in WileyPLUS



The dependent source is in only one mesh, mesh 2. The reference direction of the dependent source current does not
agree with the reference direction of i2. Consequently,

5ia ¼ �i2

Solving for i2 gives i2 ¼ �5ia ¼ �5 i1 � i2ð Þ
Therefore; �4i2 ¼ �5i1 ) i2 ¼ 5

4
i1

Apply KVL to mesh 1 to get 32i1 � 24 ¼ 0 ) i1 ¼ 3

4
A

Consequently, the value of i2 is i2 ¼ 5

4

3

4

� �
¼ 15

16
A

Apply KVL to mesh 2 to get 32i2 � vm ¼ 0 ) vm ¼ 32i2

Finally; vm ¼ 32
15

16

� �
¼ 30 V

E X A M P L E 4 . 7 - 2 Mesh Equations and
Dependent Sources

INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 4.7-2a. Find the value of the gain A of the CCVS.

Solution
Figure 4 7-2b shows the circuit after replacing the voltmeter by an equivalent open circuit and labeling the voltage
measured by the voltmeter. Figure 4.7-2c shows the circuit after numbering the meshes. Let i1 and i2 denote the
mesh currents in meshes 1 and 2, respectively.

The voltage across the dependent source is represented in two ways. It is Aia with the þ of reference direction
at the bottom and �7.2 V with the þ at the top. Consequently,

Aia ¼ � �7:2ð Þ ¼ 7:2 V

The controlling current of the dependent source, ia, is the current in a short circuit. This short circuit is common to
meshes 1 and 2. The short-circuit current can be expressed in terms of the mesh currents as

ia ¼ i1 � i2

Voltmeter+
–

vm

+

–

32 Ω

24 V

+
– 24 V

32 Ω

32 Ω32 Ω

ia 5ia

5iaia

(a)

(b)

vm

+

–

+
–24 V

32 Ω32 Ω

1 2 5iaia

(c)

FIGURE 4.7-1 (a) The circuit
considered in Example 4.7-1.
(b) The circuit after replacing the
voltmeter by an open circuit. (c) The
circuit after labeling the meshes.

Try it 
yourself 

in WileyPLUS
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4.8 T h e N o d e V o l t a g e M e t h o d a n d Me s h C u r r e n t
M e t h o d C omp a r e d

The analysis of a complex circuit can usually be accomplished by either the node voltage or the mesh
current method. The advantage of using these methods is the systematic procedures provided for
obtaining the simultaneous equations.

In some cases, one method is clearly preferred over another. For example, when the circuit contains
only voltage sources, it is probably easier to use the mesh current method. When the circuit contains only
current sources, it will usually be easier to use the node voltage method.

Apply KVL to mesh 1 to get 10i1 � 36 ¼ 0 ) i1 ¼ 3:6 A

Apply KVL to mesh 2 to get 4i2 þ �7:2ð Þ ¼ 0 ) i2 ¼ 1:8 A

Finally; A ¼ Aia
ia

¼ Aia
i1 � i2

¼ 7:2

3:6� 1:8
¼ 4 V/A

Voltmeter+
–

+

–

4 Ω
–7.2 V

36 V

+
– 36 V

10 Ω

4 Ω10 Ω

ia Aia

Aiaia

(a)

(b)

+
–36 V–7.2 V

+

–

–7.2 V

4 Ω10 Ω

1 2 Aiaia

(c)

+
–

+
–

+
–

FIGURE 4.7-2 (a) The circuit considered in Example 4.7-2. (b) The circuit after replacing the voltmeter by an open circuit. (c) The
circuit after labeling the meshes.

E X A M P L E 4 . 8 - 1 Mesh Equations INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 4.8-1. Find the value of the resistance, R.

Ammeter

2 Ω
0.5 A

3 A

2 Ω

12 Ω6 Ω

1 A

R

FIGURE 4.8-1 The circuit considered in Example 4.8-1.

Try it 
yourself 

in WileyPLUS
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Solution
Figure 4.8-2a shows the circuit from Figure 4.8-1 after replacing the ammeter by an equivalent short circuit and
labeling the current measured by the ammeter. This circuit can be analyzed using mesh equations or using node
equations. To decide which will be easier, we first count the nodes and meshes. This circuit has five nodes. Selecting a
reference node and then applying KCL at the other four nodes will produce a set of four node equations. The circuit has

three meshes. Applying KVL to these three meshes will produce a set of three mesh equations. Hence, analyzing this
circuit using mesh equations instead of node equations will produce a smaller set of equations. Further, notice that two
of the three mesh currents can be determined directly from the current source currents. This makes the mesh equations
easier to solve. We will analyze this circuit by writing and solving mesh equations.

Figure 4.8-2b shows the circuit after numbering the meshes. Let i1, i2, and i3 denote the mesh currents in
meshes 1, 2, and 3, respectively. The mesh current i1 is equal to the current in the 1-A current source, so

i1 ¼ 1 A

The mesh current i2 is equal to the current in the 3-A current source, so

i2 ¼ 3 A

The mesh current i3 is equal to the current in the short circuit that replaced the ammeter, so

i3 ¼ 0:5 A

Apply KVL to mesh 3 to get

2 i3 � i1ð Þ þ 12 i3ð Þ þ R i3 � i2ð Þ ¼ 0

Substituting the values of the mesh currents gives

2 0:5� 1ð Þ þ 12 0:5ð Þ þ R 0:5� 3ð Þ ¼ 0 ) R ¼ 2 V

(b)(a)

R3 A 0.5 A

1

2 3

1 A

2 Ω 2 Ω

6 Ω 12 Ω
R3 A 0.5 A

1 A

2 Ω 2 Ω

6 Ω 12 Ω

FIGURE 4.8-2 (a) The
circuit from Figure 4.8-1
after replacing the
ammeter by a short
circuit. (b) The circuit
after labeling the
meshes.

E X A M P L E 4 . 8 - 2 Node Equations INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 4.8-3. Find the value of the resistance, R.

R
Voltmeter

2 Ω

16 V

16 V

18 V

2 Ω

2 A

+ –

+
–

FIGURE 4.8-3 The circuit considered in Example 4.8-2.

Try it 
yourself 

in WileyPLUS
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If a circuit has both current sources and voltage sources, it can be analyzed by either method. One
approach is to compare the number of equations required for each method. If the circuit has fewer nodes
than meshes, it may be wise to select the node voltage method. If the circuit has fewer meshes than
nodes, it may be easier to use the mesh current method.

Another point to consider when choosing between the two methods is what information is
required. If you need to know several currents, it may be wise to proceed directly with mesh current
analysis. Remember, mesh current analysis only works for planar networks.

It is often helpful to determine which method is more appropriate for the problem requirements
and to consider both methods.

Solution
Figure 4.8-4a shows the circuit from Figure 4.8-3 after replacing the voltmeter by an equivalent open circuit
and labeling the voltage measured by the voltmeter. This circuit can be analyzed using mesh equations or node
equations. To decide which will be easier, we first count the nodes and meshes. This circuit has four nodes. Selecting a
reference node and then applying KCL at the other three nodes will produce a set of three node equations. The circuit
has three meshes. Applying KVL to these three meshes will produce a set of three mesh equations. Analyzing
this circuit using mesh equations requires the same number of equations that are required to analyze the circuit using
node equations. Notice that one of the three mesh currents can be determined directly from the current source current,
but two of the three node voltages can be determined directly from the voltage source voltages. This makes the node
equations easier to solve. We will analyze this circuit by writing and solving node equations.

Figure 4.8-4b shows the circuit after selecting a reference node and numbering the other nodes. Let v1, v2, and
v3 denote the node voltages at nodes 1, 2, and 3, respectively. The voltage of the 16-V voltage source can be
expressed in terms of the node voltages as

16 ¼ v1 � 0 ) v1 ¼ 16 V

The voltage of the 18-V voltage source can be expressed in terms of the node voltages as

18 ¼ v1 � v2 ) 18 ¼ 16� v2 ) v2 ¼ �2 V

The voltmeter measures the node voltage at node 3, so

v3 ¼ 16 V

Applying KCL at node 3 to get v1 � v3
2

þ 2 ¼ v3
R

Substituting the values of the node voltages gives
16� 16

2
þ 2 ¼ 16

R
) R ¼ 8V
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(b)(a)

R R16 V16 V

18 V 2 A

16 V

18 V 2 A

2 Ω 2 Ω

2 Ω 2 Ω

+ –

+
–

+ –

+
–

+

–

16 V

+

–

1 32

FIGURE 4.8-4 (a) The
circuit from Figure 4.8-3
after replacing the
voltmeter by an open
circuit. (b) The circuit
after labeling the nodes.



4.9 C i r c u i t A n a l y s i s U s i n g MAT L AB

We have seen that circuits that contain resistors and independent or dependent sources can be analyzed
in the following way:

1. Writing a set of node or mesh equations.

2. Solving those equations simultaneously.

In this section, we will use the MATLAB computer program to solve the equations.
Consider the circuit shown in Figure 4.9-1a. This circuit contains a potentiometer. In Figure

4.9-1b, the potentiometer has been replaced by a model of a potentiometer. Rp is the resistance of

the potentiometer. The parameter a varies from 0 to 1 as the wiper of the potentiometer is moved
from one end of the potentiometer to the other. The resistances R4 and R5 are described by the
equations

R4 ¼ aRp ð4:9-1Þ
and R5 ¼ 1� að ÞRp ð4:9-2Þ

Our objective is to analyze this circuit to determine how the output voltage changes as the position of the
potentiometer wiper is changed.

The circuit in Figure 4.9-1b can be represented by mesh equations as

R1i1 þ R4i1 þ R3 i1 � i2ð Þ � v1 ¼ 0
R5i2 þ R2i2 þ v2 � R3 i1 � i2ð Þ½ � ¼ 0

ð4:9-3Þ

These mesh equations can be rearranged as

R1 þ R4 þ R3ð Þi1 � R3i2 ¼ v1
�R3i1 þ R5 þ R2 þ R3ð Þi2 ¼�v2

ð4:9-4Þ

Substituting Eqs. 4.9-1 and 4.9-2 into Eq. 4.9-4 gives

R1 þ aRp þ R3

� 	
i1 � R3i2 ¼ v1

�R3i1 þ 1� að ÞRp þ R2 þ R3


 �
i2 ¼�v2

ð4:9-5Þ

+
–

+
–

(a)

i2i1v1 v2
R3

R1 Rp R2

vo

+

–

+
–

+
–

(b)

v1 v2
R3

R1 R4 = aRp R5 = (1 – a)Rp R2

vo

+

–

FIGURE 4.9-1 (a) A circuit that contains a potentiometer and (b) an equivalent circuit formed by replacing the
potentiometer with a model of a potentiometer 0 < a < 1Þð .
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Equation 4.9-5 can be written using matrices as

R1 þ aRP þ R3 �R3

�R3 1� að ÞRP þ R2 þ R3

� �
i1
i2

� �
¼ v1

�v2

� �
ð4:9-6Þ
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FIGURE 4.9-2 MATLAB input file used to analyze the circuit shown in Figure 4.9-1.

Circuit Analysis Using MATLAB 143



Next, i1 and i2 are calculated by using MATLAB to solve
the mesh equation, Eq. 4.9-6. Then the output voltage is
calculated as

vo ¼ R3 i1 � i2ð Þ ð4:9-7Þ

Figure 4.9-2 shows the MATLAB input file. The param-
eter a varies from 0 to 1 in increments of 0.05. At each value of
a, MATLAB solves Eq. 4.9-6 and then uses Eq. 4.9-7 to
calculate the output voltage. Finally, MATLAB produces the
plot of vo versus a that is shown in Figure 4.9-3.

4.10 U s i n g P S p i c e t o D e t e rm i n e
N o d e V o l t a g e s a n d M e s h C u r r e n t s

To determine the node voltages of a dc circuit using PSpice, we

1. Draw the circuit in the OrCAD Capture workspace.

2. Specify a “Bias Point” simulation.

3. Run the simulation.

PSpice will label the nodes with the values of the node voltages.

–15

–10

–5

0

5

10

15

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

V
o,

 V

a, dimensionless

FIGURE 4.9-3 Plot of vo versus a for the circuit shown
in Figure 4.9-1.

E X A M P L E 4 . 1 0 - 1 Using PSpice to Find Node Voltages
and Mesh Currents

Use PSpice to determine the values of the node voltages and mesh currents for the circuit shown in Figure 4.10-1.

10 Ω

5 Ω

15 Ω

25 Ω

20 Ω

i2 i3

i1

i4

0.2 A

0.5 A 30 V
v2 v3 v3v1 + –

FIGURE 4.10-1 A circuit having node voltages v1, v2, v3,
and v4 and mesh currents i1, i2, i3, and i4.

0.5A
30V

0V

0

–10.61V

–

+

+

+

–

–

–6.106V –7.660V

22.34V

0.2A10

15
5

20 25

FIGURE 4.10-2 The circuit from Figure 4.10-1 drawn
in the OrCAD workspace. The white numbers shown
on black backgrounds are the values of the node voltages.
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Solution
Figure 4.10-2 shows the result of drawing the circuit in the OrCAD workspace (see Appendix A) and performing a
Bias Point simulation. (Select PSpice\New Simulation Profile from the OrCAD Capture menu bar; then choose
Bias Point from the Analysis Type drop-down list in the Simulation Settings dialog box to specify a Bias Point
simulation. Select PSpice\Run Simulation Profile from the OrCAD Capture menu bar to run the simulation.)
PSpice labels the nodes with the values of the node voltages using white numbers shown on black backgrounds.
Comparing Figures 4.10-1 and 4.10-2, we see that the node voltages are

v1 ¼ �6:106 V; v2 ¼ �10:61 V; v3 ¼ 22:34 V; and v4 ¼ �7:660 V:

Figure 4.10-3 shows the circuit from Figure 4.10-2 after inserting a 0-V current source on the outside of each mesh.
The currents in these 0-V sources will be the mesh currents shown in Figure 4.10-1. In particular, source V2

measures mesh current i1, source V3 measures mesh current i2, source V4 measures mesh current i3, and source V5
measures mesh current i4.

After we rerun the simulation (Select PSpice\Run from the OrCAD Capture menu bar), OrCAD Capture will
open a Schematics window. Select View\Output File from the menu bar in the Schematics window. Scroll down
through the output file to find the currents in the voltage sources:

VOLTAGE SOURCE CURRENTS
NAME CURRENT

V V1 � 6:170E� 01

V V2 3:106E� 01

V V3 � 3:064E� 01

V V4 8:106E� 01

V V5 6:106E� 01

TOTAL POWER DISSIPATION 1:85Eþ 01 WATTS

JOB CONCLUDED

PSpice uses the passive convention for the current and voltage of all circuit elements, including voltage sources.
Noticing the small þ and � signs on the voltage source symbols in Figure 4.10-3, we see that the currents provided
by PSpice are directed form left to right in sources VI and V2 and are directed from right to left in sources V3, V4,
and V5. In particular, the mesh currents are

i1 ¼ 0:3106 A; i2 ¼ 0:6106 A; i3 ¼ 0:8106 A; and i4 ¼ �0:3064 A:

0.5A

30VV1

V2 0Vdc

0

–

+
+

+
–

–

+ –
+–+– +–

0.2A
10

V5 0Vdc V4 0Vdc V3 0Vdc

15
5

20 25

FIGURE 4.10-3 The circuit from Figure 4.10-1 drawn in
the OrCAD workspace with 0-V voltage sources added
to measure the mesh currents.
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An extra step is needed to use PSpice to determine the mesh currents. PSpice does not label the
values of the mesh currents, but it does provide the value of the current in each voltage source. Recall
that a 0-V voltage source is equivalent to a short circuit. Consequently, we can insert 0-V current
sources into the circuit without altering the values of the mesh currents. We will insert those sources into
the circuit in such a way that their currents are also the mesh currents. To determine the mesh currents of
a dc circuit using PSpice, we

1. Draw the circuit in the OrCAD Capture workspace.

2. Add 0-V voltage sources to measure the mesh currents.

3. Specify a Bias Point simulation.

4. Run the simulation.

PSpice will write the voltage source currents in the output file.

4.11 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct.
For example, proposed solutions to design problems must be checked to confirm that all of the
specifications have been satisfied. In addition, computer output must be reviewed to guard against
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able quickly to identify
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

E X A M P L E 4 . 1 1 - 1 How Can We Check Node Voltages?

The circuit shown in Figure 4.11-1a was analyzed using PSpice. The PSpice output file, Figure 4.11-1b, includes
the node voltages of the circuit. How can we check that these node voltages are correct?

Solution
The node equation corresponding to node 2 is

V 2ð Þ � V 1ð Þ
100

þ V 2ð Þ
200

þ V 2ð Þ � V 3ð Þ
100

¼ 0

where, for example, V(2) is the node voltage at node 2. When the node voltages from Figure 4.11-1b are substituted
into the left-hand side of this equation, the result is

7:2727� 12

100
þ 7:2727

200
þ 7:2727� 5:0909

100
¼ 0:011

The right-hand side of this equation should be 0 instead of 0.011. It looks like something is wrong. Is a current of
only 0.011 negligible? Probably not in this case. If the node voltages were correct, then the currents of the 100-V
resistors would be 0.047 A and 0.022 A, respectively. The current of 0.011 A does not seem negligible when
compared to currents of 0.047 A and 0.022 A.
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Is it possible that PSpice would calculate the node voltages incorrectly? Probably not, but the PSpice
input file could easily contain errors. In this case, the value of the resistance connected between nodes 2 and 3
has been mistakenly specified to be 200 V. After changing this resistance to 100 V, PSpice calculates the node
voltages to be

V 1ð Þ ¼ 12:0; V 2ð Þ ¼ 7:0; V 3ð Þ ¼ 5:5; V 4ð Þ ¼ 8:0

Substituting these voltages into the node equation gives

7:0� 12:0

100
þ 7:0

200
þ 7:0� 5:5

100
¼ 0:0

so these node voltages do satisfy the node equation corresponding to node 2.
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FIGURE 4.11-1 (a) A circuit and (b) the node voltages calculated using PSpice. The bottom node has been chosen as the reference
node, which is indicated by the ground symbol and the node number 0. The voltages and resistors have units of voltages
and ohms, respectively.

E X A M P L E 4 . 1 1 - 2 How Can We Check Mesh Currents?

The circuit shown in Figure 4.11-2a was analyzed using PSpice. The PSpice output file, Figure 4.11-2b, includes
the mesh currents of the circuit. How can we check that these mesh currents are correct?

(The PSpice output file will include the currents through the voltage sources. Recall that PSpice uses the
passive convention, so the current in the 8-V source will be –i1 instead of i1. The two 0-V sources have been added
to include mesh currents i2 and i3 in the PSpice output file.)



Solution
The mesh equation corresponding to mesh 2 is

200 i2 � i1ð Þ þ 500i2 þ 250 i2 � i3ð Þ ¼ 0

When the mesh currents from Figure 4.11-2b are substituted into the left-hand side of this equation, the result is

200 �0:004068� 0:01763Þ þ 500 �0:004068ð Þ þ 250 �0:004068� �0:001356ð Þð Þ ¼ 1:629ð

The right-hand side of this equation should be 0 instead of 1.629. It looks like something is wrong. Most likely,
the PSpice input file contains an error. This is indeed the case. The nodes of both 0-V voltage sources
have been entered in the wrong order. Recall that the first node should be the positive node of the voltage
source. After correcting this error, PSpice gives

i1 ¼ 0:01763; i2 ¼ 0:004068; i3 ¼ 0:001356

Using these values in the mesh equation gives

200 0:004068� 0:01763Þ þ 500 0:004068ð Þ þ 250 0:004068� 0:001356ð Þ ¼ 0:0ð

These mesh currents do indeed satisfy the mesh equation corresponding to mesh 2.
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FIGURE 4.11–2 (a) A circuit and (b) the mesh currents calculated using PSpice. The voltages and resistances are given in volts and
ohms, respectively.
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4 . 1 2 D E S I G N E X A M P L E Potentiometer Angle Display

A circuit is needed to measure and display the angular position of a potentiometer shaft. The angular position, y,
will vary from �180� to 180�.

Figure 4.12-1 illustrates a circuit that could do the job. The +15-V and –15-V power supplies, the
potentiometer, and resistors R1 and R2 are used to obtain a voltage, vi, that is proportional to y. The amplifier
is used to change the constant of proportionality to obtain a simple relationship between y and the voltage, vo,
displayed by the voltmeter. In this example, the amplifier will be used to obtain the relationship

vo ¼ k � ywhere k ¼ 0:1
volt

degree
ð4:12-1Þ

so that y can be determined by multiplying the meter reading by 10. For example, a meter reading of �7.32 V
indicates that y ¼ �73:2�.

Describe the Situation and the Assumptions
The circuit diagram in Figure 4.12-2 is obtained by modeling the power supplies as ideal voltage sources, the
voltmeter as an open circuit, and the potentiometer by two resistors. The parameter a in the model of the
potentiometer varies from 0 to 1 as y varies from �180� to 180�. That means

a ¼ y
360�

þ 1

2
ð4:12-2Þ

+

–

R1

Rp

R2

+15 V

–15 V

Amplifier

vi bvi

vo
100 Ω

2 MΩ

+

–

+ –

Voltmeter

FIGURE 4.12-1 Proposed circuit for measuring and displaying the angular position of the potentiometer shaft.

+
–

+
–

R1 R2

vobvivi

+

–

+

–

15 V –15 V

aRp (1 – a)Rp

+

–

100 Ω

2 MΩ
FIGURE 4.12-2 Circuit diagram
containing models of the power supplies,
voltmeter, and potentiometer.
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Solving for y gives

y ¼ a � 1

2

� �
� 360� ð4:12-3Þ

State the Goal
Specify values of resistors R1 and R2, the potentiometer resistance RP, and the amplifier gain b that will cause the
meter voltage vo to be related to the angle y by Eq. 4.12-1.

Generate a Plan
Analyze the circuit shown in Figure 4.12-2 to determine the relationship between vi and y. Select values of R1,
R2, and Rp. Use these values to simplify the relationship between vi and y. If possible, calculate the value of b
that will cause the meter voltage vo to be related to the angle y by Eq. 4.12-1. If this isn’t possible, adjust the
values of R1, R2, and Rp and try again.

Act on the Plan
The circuit has been redrawn in Figure 4.12-3. A single node equation will provide the relationship between
between vi and y:

vi
2 MV

þ vi � 15

R1 þ aRp
þ vi � �15ð Þ

R2 þ 1� að ÞRp
¼ 0

Solving for vi gives

vi ¼
2MV Rp 2a � 1ð Þ þ R1 � R2

� 	
15

R1 þ aRp

� 	
R2 þ 1� að ÞRp

� 	þ 2MV R1 þ R2 þ Rp

� 	 ð4:12-4Þ

This equation is quite complicated. Let’s put some restrictions on R1, R2, and Rp that will make it possible to
simplify this equation. First, let R1= R2= R. Second, require that both R and Rp be much smaller than 2 MV (for
example, R < 20 kV). Then,

R þ aRp

� 	
R þ 1� að ÞRp

� 	 � 2MV 2R þ Rp

� 	

That is, the first term in the denominator of the left side of Eq. 4.12-4 is negligible compared to the second term.
Equation 4.12-4 can be simplified to

vi ¼ Rp 2a � 1ð Þ15
2R þ Rp

+
–

+
–

R1 R2

vo = bvibvi

vi
+

–

+

–15 V –15 V

aRp (1 – a)Rp

+

–

100 Ω2 MΩ

io = 0

FIGURE 4.12-3 The redrawn circuit showing the mode vi.
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Next, using Eq. 4.12-3,
vi ¼ Rp

2R þ Rp

� �
15 V

180�

� �
y

It is time to pick values for R and Rp. Let R ¼ 5 kV and Rp ¼ 10 kV; then

vi ¼ 7:5 V

180�

� �

Referring to Figure 4.12-2, the amplifier output is given by

vo ¼ bvi ð4:12-5Þ

so vo ¼ b
7:5 V

180�

� �
y

Comparing this equation to Eq. 4.12-1 gives

b
7:5 V

180�

� �
¼ 0:1

volt

degree

or b ¼ 180

7:5
0:1ð Þ ¼ 2:4

The final circuit is shown in Figure 4.12-4.

Verify the Proposed Solution
As a check, suppose y ¼ 150�. From Eq. 4.12-2, we see that

a ¼ 150�

360�
þ 1

2
¼ 0:9167

Using Eq. 4.12-4, we calculate

vi ¼ 2MV 10 kV 2� 0:9167� 1ð Þð Þ15
5 kVþ 0:9167� 10 kVð Þ 5 kVþ 1� 0:9167ð Þ10 kVð Þ þ 2MV 2� 5 kVþ 10 kVð Þ ¼ 6:24

Finally, Eq. 4.12-5 indicates that the meter voltage will be

vo � 2:4 � 6:24 ¼ 14:98

This voltage will be interpreted to mean that the angle was

y ¼ 10 � vo ¼ 149:8�

which is correct to three significant digits.

+

–

+

–

+15 V

–15 V

Amplifier

vi 2.4vi

vo
100 Ω

2 MΩ

20 kΩ

10 kΩ

10 kΩ

+

–

+ –

Voltmeter

FIGURE 4.12-4 The final designed circuit.

Design Example 151



4.13 SUMMARY
The node voltage method of circuit analysis identifies the
nodes of a circuit where two or more elements are connected.
When the circuit consists of only resistors and current sources,
the following procedure is used to obtain the node equations.
1. We choose one node as the reference node. Label the

node voltages at the other nodes.
2. Express element currents as functions of the node volt-

ages. Figure 4.13-1a illustrates the relationship between
the current in a resistor and the voltages at the nodes of the
resistor.

3. Apply KCL at all nodes except for the reference node.
Solution of the simultaneous equations results in knowl-
edge of the node voltages. All the voltages and currents in
the circuit can be determined when the node voltages are
known.

When a circuit has voltage sources as well as current sources,
we can still use the node voltage method by using the concept
of a supernode. A supernode is a large node that includes two
nodes connected by a known voltage source. If the voltage
source is directly connected between a node q and the reference
node, we may set vq = vs and write the KCL equations at the
remaining nodes.
If the circuit contains a dependent source, we first express the
controlling voltage or current of the dependent source as a
function of the node voltages. Next, we express the controlled
voltage or current as a function of the node voltages. Finally,
we apply KCL to nodes and supernodes.
Mesh current analysis is accomplished by applying KVL to
the meshes of a planar circuit. When the circuit consists of
only resistors and voltage sources, the following procedure is
used to obtain the mesh equations.

1. Label the mesh currents.
2. Express element voltages as functions of the mesh cur-

rents. Figure 4.13-1b illustrates the relationship between
the voltage across a resistor and the currents of the meshes
that include the resistor.

3. Apply KVL to all meshes.
Solution of the simultaneous equations results in knowl-
edge of the mesh currents. All the voltages and currents in
the circuit can be determined when the mesh currents are
known.

If a current source is common to two adjoining meshes, we
define the interior of the two meshes as a supermesh. We then
write the mesh current equation around the periphery of the
supermesh. If a current source appears at the periphery of
only one mesh, we may define that mesh current as equal to
the current of the source, accounting for the direction of the
current source.
If the circuit contains a dependent source, we first express the
controlling voltage or current of the dependent source as a
function of the mesh currents. Next, we express the controlled
voltage or current as a function of the mesh currents. Finally,
we apply KVL to meshes and supermeshes.
In general, either node voltage or mesh current analysis can
be used to obtain the currents or voltages in a circuit.
However, a circuit with fewer node equations than mesh
current equations may require that we select the node voltage
method. Conversely, mesh current analysis is readily appli-
cable for a circuit with fewer mesh current equations than
node voltage equations.
MATLAB greatly reduces the drudgery of solving node or
mesh equations.

(a) (b)

R1

R1

R1

R3 R3R2

R2

R2i2

vb

(va – vb) (i1 – i2)

R3(i1 – i2)

va – vb

–

–

–

–
+

+

+

R1i1 –+

va
–

+
+

is va vb

a b

R2

va
R3

vb

i2i1

+
–

+
–i1 i2

FIGURE 4.13-1 Expressing resistor currents and voltages in terms of (a) node voltage or (b) mesh currents.

152 4. Methods of Analysis of Resistive Circuits



PROBLEMS

Section 4.2 Node Voltage Analysis of Circuits with

Current Sources

P 4.2-1 The node voltages in the circuit of Figure P 4.2-1
are v1 ¼ �4 V and v2 ¼ 2 V. Determine i, the current of the
current source.

Answer: i ¼ 1.5 A

6 Ω

8 Ω

v1 v2

4 Ω

i

Figure P 4.2-1

P 4.2-2 Determine the node voltages for the circuit of Figure
P 4.2-2.

Answer: v1 ¼ 2 V; v2 ¼ 30 V; and v3 ¼ 24 V

v1

v2
v3

2 A

10 Ω

1 A

20 Ω 

15 Ω5 Ω 

Figure P 4.2-2

P 4.2-3 The encircled numbers in the circuit shown in Figure
P 4.2-3 are node numbers. Determine the values of the corre-
sponding node voltages v1 and v2.

25 mA

25 Ω15 Ω

40 Ω
1 2

Figure P 4.2-3

P 4.2-4 Consider the circuit shown in Figure P 4.2-4. Find
values of the resistances R1 and R2 that cause the voltages v1

and v2 to be v1 ¼ 1V and v2 ¼ 2 V.

R1 R2v1

+

–
v2

+

–

500 Ω

3 mA 5 mA

Figure P 4.2-4

P 4.2-5 Find the voltage v for the circuit shown in
Figure P 4.2-5.

Answer: v ¼ 21.7 mV

1 mA

250 Ω
250 Ω

125 Ω 

v

500 Ω500 Ω 

+ –

Figure P 4.2-5

P 4.2-6 Simplify the circuit shown in Figure P 4.2-6 by
replacing series and parallel resistors with equivalent resistors;
then analyze the simplified circuit by writing and solving node
equations. (a) Determine the power supplied by each current
source. (b) Determine the power received by the 12-V resistor.

3 mA 2 mA

20 Ω

40 Ω
10 Ω12 Ω

10 Ω 60 Ω 120 Ω

Figure P 4.2-6

P 4.2-7 The node voltages in the circuit shown in Figure
P 4.2-7 are va ¼ 7 V and vb ¼ 10 V. Determine values of the
current source current, is, and the resistance, R.

2 Ω

a

4 Ω 8 Ω 8 Ω

b

i sR
2 A

Figure P 4.2-7

P 4.2-8 The encircled numbers in the circuit shown in Figure
P 4.2-8 are node numbers. The corresponding node voltages are
v1 and v2. The node equation representing this circuit is

Problem available in WileyPLUS at instructor’s discretion.
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0:225 �0:125
�0:125 0:125

� �
v 1

v 2

� �
¼ �3

2

� �

(a) Determine the values of R and Is in Figure P 4.2-8.
(b) Determine the value of the power supplied by the 3-A

current source.

1 2

3 A

8 Ω

R I s

Figure P 4.2-8

Section 4.3 Node Voltage Analysis of Circuits

with Current and Voltage Sources

P 4.3-1 The voltmeter in Figure P 4.3-1 measures vc, the
node voltage at node c. Determine the value of vc.

Answer: vc ¼ 2 V

Voltmeter
+
–

10 Ω

8 Ω6 V 2 A

a b c6 Ω

vc

+

–

Figure P 4.3-1

P 4.3-2 The voltages va, vb, vc, and vd inFigure P 4.3-2 are the
node voltages corresponding to nodes a, b, c, and d. The current
i is the current in a short circuit connected between nodes b and c.
Determine the values of va, vb, vc, and vd and of i.

Answer: va ¼ �12 V; vb ¼ vc ¼ 4 V; vd ¼ �4 V; i ¼ 2 mA

+
–

+ –

va

+

–

vd

+

–

vc

+

–

vb

+

–

4 kΩ

4 kΩ

8 V

1 mA2 mA12 V

a b c d
i

Figure P 4.3-2

P 4.3-3 Determine the values of the power supplied by each of
the sources in the circuit shown in Figure P 4.3-3.

0.6 A 40 Ω
10 Ω

40 Ω12 V
+
–

+–

24 V

Figure P 4.3-3

P 4.3-4 Determine the values of the node voltages v1, v2, and
v3 in the circuit shown in Figure P 4.3-4.

10 V

50 Ω25 Ω

40 Ω15 V

v2

+
–+

–

20 Ω

v1

10 Ω

v3

+–

15 V

Figure P 4.3-4

P 4.3-5 The voltages va, vb, and vc in Figure P 4.3-5 are the
node voltages corresponding to nodes a, b, and c. The values of
these voltages are:

va ¼ 12 V; vb ¼ 9:882 V; and vc ¼ 5:294 V
Determine the power supplied by the voltage source.

12 V 1 A

a c
b

6 Ω

4 Ω 3 Ω

2 Ω+
–

+

–

vc

+

–

vb

+

–

va

Figure P 4.3-5

P 4.3-6 The voltmeter in the circuit of Figure P 4.3-6
measures a node voltage. The value of that node voltage
depends on the value of the resistance R.

(a) Determine the value of the resistance R that will cause the
voltage measured by the voltmeter to be 4 V.

(b) Determine the voltage measured by the voltmeter when
R ¼ 1:2 kV ¼ 1200 V.

Answers: (a) 6 kV (b) 2V

+
–

+
–

6 kΩ

12 V 8 V2 mA

3 kΩ

Voltmeter

R

Figure P 4.3-6
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P 4.3-7 Determine the values of the node voltages v1

and v2 in Figure P 4.3-7. Determine the values of the
currents ia and ib.

10 V v1 v2

ib
ia

4 kΩ

5 kΩ

3 kΩ

1 kΩ

2 kΩ

+
–

Figure P 4.3-7

P 4.3-8 The circuit shown in Figure P 4.3-8 has two inputs, v1

and v2, and one output, vo. The output is related to the input by
the equation

vo ¼ av1 þ bv2

where a and b are constants that depend on R1, R2, and R3.

(a) Determine the values of the coefficients a and b when
R1 ¼ 10 V;R2 ¼ 40 V; and R3 ¼ 8 V.

(b) Determine the values of the coefficients a and b when
R1 ¼ R2 and R3 ¼ R1jjR2.

v1 v2
+
–

+
–

R1 R2

R3

+

−

vo

Figure P 4.3-8

P 4.3-9 Determine the values of the node voltages of the
circuit shown in Figure P 4.3-9.

v1 v4

v2

v3

20 Ω

8 Ω

40 Ω

12 Ω

5 V

1.25 A 15 V+
–

+–

Figure P 4.3-9

P 4.3-10 Figure P 4.3-10 shows a measurement made in the
laboratory. Your lab partner forgot to record the values of R1,
R2, and R3. He thinks that the two resistors were 10-kV resistors

and the other was a 5-kV resistor. Is this possible? Which
resistor is the 5-kV resistor?

Voltmeter

6 V12 V

4   .   5  0

R1

R2
R3

+
–

+
–

Figure P 4.3-10

P 4.3-11 Determine the values of the power supplied by each
of the sources in the circuit shown in Figure P 4.3-11.

3 Ω

4 Ω

15 V+
– + –

10 V
8 Ω

6 Ω

Figure P 4.3-11

P 4.3-12 Determine the values of the node voltages of the
circuit shown in Figure P 4.3-12.

8 V

0.25 A12 V

4 Ω

5 Ω

10 Ω

v2v1

v3

+–

+
–

Figure P 4.3-12

P 4.3-13 Determine the values of node voltages v1 and v2

in the circuit shown in Figure P 4.3-13.
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100 mA
+
–60 V

v2
v1

80 Ω

65 Ω

50 Ω

75 Ω

Figure P 4.3-13

P 4.3-14 The voltage source in the circuit shown in Figure
P 4.3-14 supplies 83.802 W. The current source supplies
17.572 W. Determine the values of the node voltages v1 and v2.

250 mA
+
–80 V

v2
v1

50 Ω

20 Ω i3
i1

i6

R4

R2

Figure P 4.3-14

Section 4.4 Node Voltage Analysis with Dependent

Sources

P 4.4-1 The voltages va, vb, and vc in Figure P 4.4-1 are the
node voltages corresponding to nodes a, b, and c. The values of
these voltages are:

va ¼ 8:667 V; vb ¼ 2 V; and vc ¼ 10 V

Determine the value of A, the gain of the dependent source.

vc

+

–
va

+

–

vb

+

–

1 Ω 2 Ω

2 Ω2 Ω

a b

c

3 A

i1

Ai1

i2

Figure P 4.4-1

P 4.4-2 Find ib for the circuit shown in Figure P 4.4-2.

Answer: ib ¼ �12 mA

+

–

1 kΩ 3 kΩ

2 kΩ6 V 4va
+
–

+

–
va

ib

Figure P 4.4-2

P 4.4-3 Determine the node voltage vb for the circuit of
Figure P 4.4-3.

Answer: vb ¼ 1.5 V
ia

+

–

4 kΩ

2 kΩ2 V 5ia
+
–

vb

Figure P 4.4-3

P 4.4-4 The circled numbers in Figure P 4.4-4 are node
numbers. The node voltages of this circuit are v1 ¼ 10 V;
v2 ¼ 14 V; and v3 ¼ 12 V.

(a) Determine the value of the current ib.
(b) Determine the value of r, the gain of the CCVS.

Answers: (a) �2 A (b) 4 V/A

+
–

+
–

ia

ib

ria
2 Ω 

4 Ω 

10 V
12 V

3
2

1 +–

A1 2

Figure P 4.4-4

P 4.4-5 Determine the value of the current ix in the circuit
of Figure P 4.4-5.

Answer: ix ¼ 2.4 A

+
–

ix

3ix
2 Ω 

2 Ω 12 V

+ –

1 A

Figure P 4.4-5
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P 4.4-6 The encircled numbers in the circuit shown in Figure
P 4.4-6 are node numbers. Determine the value of the power
supplied by the CCVS.

5 Ω

20 Ω12 V
+
–

1 2 3

+

–
ia

40 ia

10 Ω

Figure P 4.4-6

P 4.4-7 The encircled numbers in the circuit shown in
Figure P 4.4-7 are node numbers. The corresponding node
voltages are:

v1 ¼ 9:74 V and v2 ¼ 6:09 V

Determine the values of the gains of the dependent sources, r
and g.

+ –

+
– 12 V +

+ –

–

8 Ω
8 Ω 8 Ω

vb+ –

g vb

rib
1 2

ib

Figure P 4.4-7

P 4.4-8 Determine the value of the power supplied by the
dependent source in Figure P 4.4-8.

4 Ω

12 Ω 8 Ω

16 Ωia

8 ia

10 V+
–

+ –

Figure P 4.4-8

P 4.4-9 The node voltages in the circuit shown in Figure
P 4.4-9 are

v1 ¼ 4 V; v2 ¼ 0 V; and v3 ¼ �6 V

Determine the values of the resistance R and of the gain b of the
CCCS.

10 Ω

40 Ω 20 Ω

10 V

bia R

v1

v2
ia

v3

–+

Figure P 4.4-9

P 4.4-10 The value of the node voltage at node b in the
circuit shown in Figure P 4.4-10 is vb ¼ 18 V.

(a) Determine the value of A, the gain of the dependent source.
(b) Determine the power supplied by the dependent source.

100 Ω

200 Ω+
–

9 V

b

A va

va+ −

vb

+

−

Figure P 4.4-10

	P 4.4-11 Determine the power supplied by the dependent
source in the circuit shown in Figure P 4.4-11.

vx

+

–

+

–

+

–

4 A

10 V20 V

10 Ω

x

2 Ω 

0.1vx

Figure P 4.4-11

	P 4.4-12 Determine values of the node voltages v1, v2, v3, v4,
and v5 in the circuit shown in Figure P 4.4-12.

4ix

8 Ω1 A

2 Ω

2 Ω

8 V

16 V

3 Ω 

6 Ω 

+ –

+ –

+

–

 ix

v3

v2

v4
v5

v1

Figure P 4.4-12

	P 4.4-13 Determine values of the node voltages v1, v2, v3, v4,
and v5 in the circuit shown in Figure P 4.4-13.

4ix 8 Ω2 A

2 Ω

10 Ω

16 V

8 V

5 Ω 

4 Ω 

+ –

+ –

+

–

ix

v3

v2

v4

 v1

v5

Figure P 4.4-13
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P 4.4-14 The voltages v1, v2, v3, and v4 are the node voltages
corresponding to nodes 1, 2, 3, and 4 in Figure P 4.4-14.
Determine the values of these node voltages.

+ –

+
–

ib
3ib

5va

va

+

–

3
4

2

1

10 Ω

20 Ω

30 Ω25 V 2 A

Figure P 4.4-14

P 4.4-15 The voltages v1, v2, v3, and v4 in Figure P 4.4-15 are
the node voltages corresponding to nodes 1, 2, 3, and 4. The
values of these voltages are

v1 ¼ 10 V; v2 ¼ 75 V; v3 ¼ �15 V; and v4 ¼ 22:5 V

Determine the values of the gains of the dependent sources, A
and B, and of the resistance R1.

+ –

+
–

ib

va

+

–

3
4

2

1
50 Ω

20 Ω10 V 2.5 A

Bib

R1

Ava

Figure P 4.4-15

P 4.4-16 The voltages v1, v2, and v3 in Figure P 4.4-16 are the
node voltages corresponding to nodes 1, 2, and 3. The values of
these voltages are

v1 ¼ 12 V; v2 ¼ 21 V; and v3 ¼ �3 V

(a) Determine the values of the resistances R1 and R2.
(b) Determine the power supplied by each source.

+
– 12 V

R1

R2

2 A

3
2

1

1.25 A

0.5 A

Figure P 4.4-16

P 4.4-17 The voltages v1, v2, and v3 in Figure P 4.4-17 are
the node voltages corresponding to nodes 1, 2, and 3. The
values of these voltages are

v1 ¼ 12 V; v2 ¼ 9:6 V; and v3 ¼ �1:33 V

(a) Determine the values of the resistances R1 and R2.
(b) Determine the power supplied by each source.

+
– 12 V

R1

R2

2 A

8 Ω

3
2

1

4 Ω

Figure P 4.4-17

P 4.4-18 The voltages v2, v3, and v4 for the circuit shown in
Figure P 4.4-18 are:

v2 ¼ 16 V; v3 ¼ 8 V; and v4 ¼ 6 V

Determine the values of the following:

(a) The gain, A, of the VCVS
(b) The resistance R5

(c) The currents ib and ic
(d) The power received by resistor R4

v4

+

+ –

–
v3

+

–
15 Ω

12 Ω

va

R5

Ava

R4 = 15 Ω

ic

v2

+

–
12 Ω40 V–

+

+ –

ib

Figure P 4.4-18

P 4.4-19 Determine the values of the node voltages v1 and v2

for the circuit shown in Figure P 4.4-19.

v2

v3

4v3

+

+ –

–

4 Ω

6 Ωv1

+

–
28 V–

+

5 Ω

3v1

Figure P 4.4-19

P 4.4-20 The encircled numbers in Figure P 4.4-20 are node
numbers. Determine the values of v1, v2, and v3, the node
voltages corresponding to nodes 1, 2, and 3.
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– +va

10 Ω 10 V

30 Ω

–
+

– +

–

+
5va

10 V 2 Ω
1 2 3

Figure P 4.4-20

P 4.4-21 Determine the values of the node voltages v1, v2, and
v3 for the circuit shown in Figure P 4.4-21.

v3

+

–
v2

+

–
v1

+

–

2 Ω

ia

4ia
2 Ω

2 Ω2 Ω12 V 1 A–
+

+ –

Figure P 4.4-21

P 4.4-22 Determine the values of the node voltages v1, v2, and
v3 for the circuit shown in Figure P 4.4-22.

v3

+

–
v2

+

–
v1

+

–

2 Ω

ia

4ia
2 Ω

2 Ω2 Ω12 V 1 A–
+

Figure P 4.4-22

Section 4.5 Mesh Current Analysis with

Independent Voltage Sources

P 4.5-1 Determine the mesh currents i1, i2, and i3 for the
circuit shown in Figure P 4.5-1.

Answers: i1 ¼ 3 A; i2 ¼ 2 A; and i3 ¼ 4 A

+
–

+
–

3 Ω 

6 Ω 15 V

9 Ω 

2 Ω 

21 Vi3i2

i1

Figure P 4.5-1

P 4.5-2 The values of the mesh currents in the circuit shown
in Figure P 4.5-2 are i1 ¼ 2 A; i2 ¼ 3 A; and i3 ¼ 4 A. Deter-
mine the values of the resistance R and of the voltages v1 and v2 of
the voltage sources.

Answers: R ¼ 12V; v1 ¼ �4 V; and v2 ¼ �28 V

+
–

+
–

4 Ω 

8 Ω 

10 Ω 

i3 v2v1 i2

i1

R

Figure P 4.5-2

P 4.5-3 The currents i1 and i2 in Figure P 4.5-3 are the mesh
currents. Determine the value of the resistance R required to
cause va ¼ �6 V.

Answer: R ¼ 4V

+
–

+
–

va

+

–

18 V

4 Ω

3 V

8 Ωi1

R

i2

Figure P 4.5-3

P 4.5-4 Determine the mesh currents ia and ib in the circuit
shown in Figure P 4.5-4.

75 Ω 100 Ω

25 Ω 200 Ω

vc

+

–

+
–

+
–

+
–

8 V2 V

4 V

100 Ω

100 Ω250 Ω

ibia

Figure P 4.5-4

P 4.5-5 Find the current i for the circuit of Figure P 4.5-5.

Hint: A short circuit can be treated as a 0-V voltage source.

2 Ω 4 Ω

2 Ω 6 Ω10 V

i

+
–

Figure P 4.5-5

P 4.5-6 Simplify the circuit shown in Figure P 4.5-6 by
replacing series and parallel resistors by equivalent resistors.
Next, analyze the simplified circuit by writing and solving
mesh equations.
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(a) Determine the power supplied by each source,
(b) Determine the power absorbed by the 30-V resistor.

100 Ω

60 Ω

40 Ω

300 Ω

8 V

60 Ω

30 Ω

80 Ω 560 Ω

12 V +
–

+
–

Figure P 4.5-6

Section 4.6 Mesh Current Analysis with Current

and Voltage Sources

P 4.6-1 Find ib for the circuit shown in Figure P 4.6-1.

Answer: ib ¼ 0:6 A

75 Ω50 Ω

25 Ω50 Ω

10 V+
–

ibi1 i20.5 A

Figure P 4.6-1

P 4.6-2 Find vc for the circuit shown in Figure P 4.6-2.

Answer: vc ¼ 15 V

75 Ω 100 Ω

25 Ω 200 Ω

vc

+

–

+
–

0.4 A0.25 A

4 V

100 Ω

100 Ω250 Ω 

ibia

Figure P 4.6-2

P 4.6-3 Find v2 for the circuit shown in Figure P 4.6-3.

Answer: v2 ¼ 2 V

20 Ω

30 Ω

60 Ω

30 Ω
10 V

+
–

+ –v2

i1 i2 i3

0.5 A

Figure P 4.6-3

P 4.6-4 Find vc for the circuit shown in Figure P 4.6-4.

vc

+

–

+
– 9 V

20 mA

100 Ω

100 Ω

250 Ω ibia

Figure P 4.6-4

P 4.6-5 Determine the value of the voltage measured by
the voltmeter in Figure P 4.6-5.

Answer: 8 V

12 V

8 V 2 A

+
–

+ –

Voltmeter

6 Ω

3 Ω5 Ω

Figure P 4.6-5

P 4.6-6 Determine the value of the current measured by
the ammeter in Figure P 4.6-6.

Hint: Write and solve a single mesh equation.

Ammeter2 A

3 A
5 Ω 2 Ω

7 Ω 4 Ω

6 Ω

Figure P 4.6-6

P 4.6-7 The mesh currents are labeled in the circuit shown in
Figure P 4.6-7. The values of these mesh currents are:

i1 ¼ �1:1014 A; i2 ¼ 0:8986 A and i3 ¼ �0:2899 A

(a) Determine the values of the resistances R1 and R3.
(b) Determine the value of the current source current.
(c) Determine the value of the power supplied by the 12-V

voltage source.

+
– i1 i2Is 24 Ω

R1 R3

i3
+
–

+ –

12 V

32 V24 V

Figure P 4.6-7
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P 4.6-8 Determine values of the mesh currents i1, i2, and i3 in
the circuit shown in Figure P 4.6-8.

1 kΩ

4 kΩ

2 kΩ

1 kΩ

7 kΩ

2 mA
3 V +

–

i1

i2

i3

Figure P 4.6-8

P 4.6-9 The mesh currents are labeled in the circuit
shown in Figure P 4.6-9. Determine the value of the mesh
currents i1, and i2.

4 A

12 Ω

8 Ω 5 Ωi2i1

Figure P 4.6-9

P 4.6-10 The mesh currents in the circuit shown in Figure
P 4.6-10 are

i1 ¼ �2:2213 A; i2 ¼ 0:7787 A; and i3 ¼ 0:0770 A

(a) Determine the values of the resistances R1 and R3.
(b) Determine the value of the power supplied by the current

source.

24 V

32 V

Is

R1

R3

20 Ω

50 Ω

i2i1

i3

+
–

+
–

Figure P 4.6-10

P 4.6-11 Determine the value of the voltage measured by
the voltmeter in Figure P 4.6-11.

Hint: Apply KVL to a supermesh to determine the current in
the 2-V resistor.

Answer: 4=3 V

A9 V+
– 2 Ω

4 Ω 3 Ω
Voltmeter

3 4

Figure P 4.6-11

P 4.6-12 Determine the value of the current measured by
the ammeter in Figure P 4.6-12.

Hint: Apply KVL to a supermesh.

Answer: �0.333 A

3 A15 V+
–

6 Ω 3 Ω
Ammeter

Figure P 4.6-12

P 4.6-13 Determine the values of the mesh currents i1, i2,
and i3 and the output voltage v0 in the circuit shown in Figure
P 4.6-13.

i1

24 Ω

+
–15 V

2.4 A

i2

i3

1.2 A

18 Ω

16 Ω

12 Ω
+

–

vo

Figure P 4.6-13

P 4.6-14 Determine the values of the power supplied by the
sources in the circuit shown in Figure P 4.6-14.

25 Ω 3 A5 A

15 Ω
10 Ω

Figure P 4.6-14

P 4.6-15 Determine the values of the resistance R and of the
power supplied by the 6-A current source in the circuit shown
in Figure P 4.6-15.
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2.5 A

1 A

6 A5 Ω

5 Ω

10 Ω

4 Ω

R

Figure P 4.6-15

Section 4.7 Mesh Current Analysis with

Dependent Sources

P 4.7-1 Find v2 for the circuit shown in Figure P 4.7-1.

Answer: v2 ¼ 10 V

v2+ –

50 Ω

100 Ω 10 V0.04v2
+
–i1

Figure P 4.7-1

P 4.7-2 Determine the values of the power supplied by the
voltage source and by the CCCS in the circuit shown in Figure
P 4.7-2.

2 kΩ2 V

4 kΩ

ia

5ia
+
–

Figure P 4.7-2

P 4.7-3 Find vo for the circuit shown in Figure P 4.7-3.

Answer: vo ¼ 2.5 V

60 mA 100 Ω 250 Ω

vo = 50ib

 ib ia

+ –

Figure P 4.7-3

P 4.7-4 Determine the mesh current ia for the circuit shown in
Figure P 4.7-4.

Answer: ia ¼ �24 mA

vb

+

–
6 mA 100 Ω 250 Ω

3vb

ia

+ –

Figure P 4.7-4

P 4.7-5 Although scientists continue to debate exactly why
and how it works, the process of using electricity to aid in the
repair and growth of bones—which has been used mainly with
fractures—may soon be extended to an array of other problems,
ranging from osteoporosis and osteoarthritis to spinal fusions
and skin ulcers.

An electric current is applied to bone fractures that have
not healed in the normal period of time. The process seeks to
imitate natural electrical forces within the body. It takes only
a small amount of electric stimulation to accelerate bone
recovery. The direct current method uses an electrode that
is implanted at the bone. This method has a success rate
approaching 80 percent.

The implant is shown in Figure P 4.7-5a, and the circuit
model is shown in Figure P 4.7-5b. Find the energy delivered to
the cathode during a 24-hour period. The cathode is represented
by the dependent voltage source and the 100-kV resistor.

3 V 20 kΩ 100 kΩ

10 kΩ

Micro Connector

5000i1

 i1

+ –

+
–

(b)

(a)

Generator
Anode

Cathode

Figure P 4.7-5 (a) Electric aid to bone repair. (b) Circuit model.

P 4.7-6 Determine the value of the power supplied by the
VCCS in the circuit shown in Figure P 4.7-6.

2 Ω2 A

20 Ω
8 Ω

+ –va

va

2

Figure P 4.7-6
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P 4.7-7 The currents i1, i2, and i3 are the mesh currents of the
circuit shown in Figure P 4.7-7. Determine the values of i1, i2,
and i3.

10 V

5 Ω20 Ω

10 Ω 3 va

20 ib

ib

+

−

va

i3

i2

i1

+
–+–

+
–

Figure P 4.7-7

P 4.7-8 Determine the value of the power supplied by the
dependent source in Figure P 4.7-8.

10 V

40 Ω

80 Ω20 Ω

60 Ω
2 ia

ia

+
–

Figure P 4.7-8

P 4.7-9 Determine the value of the resistance R in the
circuit shown in Figure P 4.7-9.

0.5 mA25 V

5 kΩ 10 kΩ

4 ib
ib R+

–

Figure P 4.7-9

P 4.7-10 The circuit shown in Figure P 4.7-10 is the small signal
model of an amplifier. The input to the amplifier is the voltage
source voltage vs. The output of the amplifier is the voltage vo.

(a) The ratio of the output to the input, vo=vs, is called the gain of
the amplifier. Determine the gain of the amplifier.

(b) The ratio of the current of the input source to the input
voltage ib=vs is called the input resistance of the amplifier.
Determine the input resistance.

1 kΩ

2 kΩ

3 kΩ

300 Ω

40 ibib

vs

+

−

vo
+
–

Figure P 4.7-10

P 4.7-11 Determine the values of the mesh currents of the
circuit shown in Figure P 4.7-11.

4ix

ix

b

a c

0.5 A

5 Ω

10 Ω25 Ω

20 Ω

Figure P 4.7-11

P 4.7-12 The currents i1, i2, and i3 are the mesh currents
corresponding to meshes 1, 2, and 3 in Figure P 4.7-12.
Determine the values of these mesh currents.

+ –

+
–

ib
3ib

5va

va

+

–

30 Ω

20 Ω

10 Ω25 V 2 Ai2i1

i3

Figure P 4.7-12

P 4.7-13 The currents i1, i2, and i3 are the mesh currents
corresponding to meshes 1, 2, and 3 in Figure P 4.7-13. The
values of these currents are

i1 ¼ �1:375 A; i2 ¼ �2:5 A and i3 ¼ �3:25 A

Determine the values of the gains of the dependent sources, A
and B.

+ –

+
–

ib

va

+

–

20 Ω

50 Ω

20 Ω10 V 2.5 Ai2i1

i3

Ava

Bib

Figure P 4.7-13

P 4.7-14 Determine the current i in the circuit shown in Figure
P 4.7-14.
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Answer: i ¼ 3 A

12 A 28 Ω

4 Ω

2i

8 Ω
i

Figure P 4.7-14

P 4.7-15 Determine the values of the mesh currents i1 and i2
for the circuit shown in Figure P 4.7-15.

2 Ω

ia

4ia
2 Ω

2 Ω2 Ω12 V 1 A–
+ i2i1

Figure P 4.7-15

P 4.7-16 Determine the values of the mesh currents i1 and i2
for the circuit shown in Figure P 4.7-16.

2 Ω

ia

4ia
2 Ω

2 Ω2 Ω12 V 1 A–
+ i2i1

+ –

Figure P 4.7-16

Section 4.8 The Node Voltage Method and Mesh

Current Method Compared

P 4.8-1 The circuit shown in Figure P 4.8-1 has two inputs, vs

and is, and one output, vo. The output is related to the inputs by
the equation

vo ¼ ais þ bvs

where a and b are constants to be determined. Determine the
values a and b by (a) writing and solving mesh equations and
(b) writing and solving node equations.

vs

is

120 Ω 30 Ω

32 Ω96 Ω

+

−
vo

+ –

Figure P 4.8-1

P 4.8-2 Determine the power supplied by the dependent
source in the circuit shown in Figure P 4.8-2 by writing and
solving (a) node equations and (b) mesh equations.

120 V

ia = 0.2 va

50 Ω 10 Ω

+ −va

+ –

Figure P 4.8-2

Section 4.9 Circuit Analysis Using MATLAB

P 4.9-1 The encircled numbers in the circuit shown Figure
P 4.9-1 are node numbers. Determine the values of the corre-
sponding node voltages v1, v2, and v3.

3 A

4 Ω1 25 Ω

2 Ω

3

10 Ω5 A

Figure P 4.9-1

P 4.9-2 Determine the values of the node voltages v1 and v2 in
the circuit shown in Figure P 4.9-2.

8 V

40 Ω50 Ω

20 Ω

10 Ω15 V

v2

+
–

+
–

25 Ω

v1

Figure P 4.9-2

P 4.9-3 Determine the values of the node voltages v1, v2, and
v3 in the circuit shown in Figure P 4.9-3.

10 V

40 Ω20 Ω

50 Ω

25 Ω15 V

v2

+
–+

–

25 Ω

v1

10 Ω

v3

Figure P 4.9-3
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P 4.9-4 Determine the node voltages v1 and v2 for the circuit
shown in Figure P 4.9-4.

v1

+

–

v2

+

–

+
–

25 Ω 14 Ω

8 Ω 9 Ω

2 A

24 V

Figure P 4.9-4

P 4.9-5 Determine the mesh currents i1 and i2 for the circuit
shown in Figure P 4.9-5.

+
–

25 Ω 14 Ω

8 Ω 9 Ω

2 A

24 V

i1 i2

Figure P 4.9-5

P 4.9-6 Represent the circuit shown in Figure P 4.9-6 by the
matrix equation

a 11 a 12

a 21 a 22

� �
v 1

v 2

� �
¼ �40

�228

� �

Determine the values of the coefficients a11, a12, a21, and a22.

v1

+

–

v2

+

–

+
–

10 Ω

22 Ω

10 Ω 19 Ω

0.4 A

10 V

Figure P 4.9-6

P 4.9-7 Represent the circuit shown in Figure P 4.9-7 by the
matrix equation

a 11 a 12

a 21 a 22

� �
i 1
i 2

� �
¼ 4

10

� �

Determine the values of the coefficients a11, a12, a21, and a22.

+
–

10 Ω

22 Ω

10 Ω 19 Ω

0.4 A

10 V

i1 i2

Figure P 4.9-7

P 4.9-8 Determine the values of the power supplied by each of
the sources for the circuit shown in Figure P 4.9-8.

40 Ω

24 V +
–2.4 A40 Ω

5 Ω 5 Ω

Figure P 4.9-8

P 4.9-9 The mesh currents are labeled in the circuit shown
in Figure P 4.9-9. Determine the value of the mesh currents i1
and i2.

8 Ω i24 Ω

8 Ω
+

–
i1

4 Ω

+ –

6 V

+ –

15 V

4 Ω

5 i1

i1

Figure P 4.9-9

P 4.9-10 The encircled numbers in the circuit shown in Figure
P 4.9-10 are node numbers. Determine the values of the
corresponding node voltages v1 and v2.

10 Ω 4 Ω2.5 A

2 Ω

1.5 v1
v1

+

–

10 Ω5 A

1 2

Figure P 4.9-10
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Section 4.11 How CanWe Check . . . ?

P 4.11-1 Computer analysis of the circuit shown in Figure
P 4.11-1 indicates that the node voltages are va ¼ 5:2 V;
vb ¼ �4:8 V; and vc ¼ 3:0 V. Is this analysis correct?

Hint: Use the node voltages to calculate all the element
currents. Check to see that KCL is satisfied at each node.

10 V

A

a

3 Ω2 Ω

4 Ω 5 Ω

+ –

b
c

1 2

Figure P 4.11-1

P 4.11-2 An old lab report asserts that the node voltages of
the circuit of Figure P 4.11-2 are va ¼ 4 V; vb ¼ 20 V;
and vc ¼ 12 V. Are these correct?

2 Ω2 Ω

4 Ω

2 Ω

2ix

ix

b

a c

2 A

Figure P 4.11-2

P 4.11-3 Your lab partner forgot to record the values of R1,
R2, and R3. He thinks that two of the resistors in Figure
P 4.11-3 had values of 10 kV and that the other had a
value of 5 kV. Is this possible? Which resistor is the 5-kV
resistor?

7 . 5 0

R1 R2

R312 V 6 V+
–

+
–

Voltmeter

Figure P 4.11-3

P 4.11-4 Computer analysis of the circuit shown in Figure
P 4.11-4 indicates that the mesh currents are i1 ¼ 2 A;
i2 ¼ 4 A, and i3 ¼ 3 A. Verify that this analysis is correct.

Hint: Use the mesh currents to calculate the element voltages.
Verify that KVL is satisfied for each mesh.

+
–

+
–

10 Ω 

8 Ω 

4 Ω 

12 Ω 

i3i2

i1

4 V28 V

Figure P 4.11-4
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PSpice Problems

SP 4-1 Use PSpice to determine the node voltages of the
circuit shown in Figure SP 4-1.

4 i1

i1

a

2 Ω 2 Ω

1 Ω 2 Ω

3 A

b

c

Figure SP 4-1

SP 4-2 Use PSpice to determine the mesh currents of the
circuit shown in Figure SP 4-2 when R ¼ 4 V.

va

+

–
3 V

18 V

4 Ω

8 Ω

i2i1

+
–

+
–

R

Figure SP 4-2

SP 4-3 The voltages va, vb, vc, and vd in Figure SP 4-3 are the
node voltages corresponding to nodes a, b, c, and d. The
current i is the current in a short circuit connected between
nodes b and c. Use PSpice to determine the values of va, vb, vc,
and vd and of i.

vd

+

–
vc

+

–
4 k Ω

4 k Ω

1 mA

8 Vi

vb

+

–
va

+

–
2 mA12 V+

–

+ –

a b c d

Figure SP 4-3

SP 4-4 Determine the current i shown in Figure SP 4-4.

Answer: i ¼ 0.56 A

1 Ω2 Ω

1 Ω 1 Ω

3 Ω

3 Ω 2 Ω

2 Ω

+
–

+–

4 V

4 V

i

Figure SP 4-4

Design Problems

DP 4-1 An electronic instrument incorporates a 15-V power
supply. A digital display is added that requires a 5-V power
supply. Unfortunately, the project is over budget, and you are
instructed to use the existing power supply. Using a voltage
divider, as shown in Figure DP 4-1, you are able to obtain 5 V.
The specification sheet for the digital display shows that the
display will operate properly over a supply voltage range of 4.8 V
to 5.4 V. Furthermore, the display will draw 300 mA (I) when the
display is active and 100 mA when quiescent (no activity).

(a) Select values of R1 and R2 so that the display will be supplied
with 4.8 V to 5.4 V under all conditions of current I.

(b) Calculate the maximum power dissipated by each resistor, R1

and R2, and the maximum current drawn from the 15-V supply.
(c) Is the use of the voltage divider a good engineering solution?

If not, why? What problems might arise?

15-volt
power
supply

Digital
display

R1

I

R2

+

–

Figure DP 4-1

DP 4-2 For the circuit shown in Figure DP 4-2, it is desired to
set the voltage at node a equal to 0 V control an electric motor.
Select voltages v1 and v2 to achieve va ¼ 0 V when v1 and v2 are
less than 20 V and greater than zero and R ¼ 2 V.
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v2+
–

a

+
–

R

v1

R R

+–

8 V R

R

Figure DP 4-2

DP 4-3 A wiring circuit for a special lamp in a home is shown in
Figure DP 4-3. The lamp has a resistance of 2V, and the designer
selects R ¼ 100 V. The lamp will light when I 
 50 mA but will
burn out when I > 75  mA.

(a) Determine the current in the lamp and whether it will light
for R ¼ 100V.

(b) Select R so that the lamp will light but will not burn out if R
changes by �10 percent because of temperature changes in
the home.

5 V +
– I 2 Ω300 Ω

50 Ω R

Lamp

Figure DP 4-3 A lamp circuit.

D P 4-4 To control a device using the circuit shown in Figure
DP 4-4, it is necessary that vab ¼ 10 V. Select the resistors when
it is required that all resistors be greater than 1 V and
R3 þ R4 ¼ 20 V.

R2+
–25 V R4

R3

5 Ω

10 Ω

R1

a

b

Figure DP 4-4

DP 4-5 The current i shown in the circuit of Figure DP 4-5 is
used to measure the stress between two sides of an earth fault
line. Voltage v1 is obtained from one side of the fault, and v2 is
obtained from the other side of the fault. Select the resistances
R1, R2, and R3 so that the magnitude of the current i will remain
in the range between 0.5 mA and 2 mA when v1 and v2 may each
vary independently between þ1 V and þ2 V 1 V � vn � 2 Vð Þ.

v1
+
–

i

R3 v2
+
–

R2R1

Figure DP 4-5 A circuit for earth fault-line stress measurement.
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CHAPTER 5 Circuit Theorems

I N T H I S C H A P T E R
5.1 Introduction
5.2 Source

Transformations
5.3 Superposition
5.4 Th�evenin’s Theorem
5.5 Norton’s Equivalent

Circuit
5.6 Maximum Power

Transfer

5.7 Using MATLAB
to Determine
the Th�evenin
Equivalent
Circuit

5.8 Using PSpice to
Determine the
Th�evenin Equivalent
Circuit

5.9 How Can We
Check . . . ?

5.10 DESIGN
EXAMPLE—Strain
Gauge Bridge

5.11 Summary
Problems
PSpice Problems
Design Problems

5.1 I n t r o d u c t i o n

In this chapter, we consider five circuit theorems:

� A source transformation allows us to replace a voltage source and series resistor by a current source
and parallel resistor. Doing so does not change the element current or voltage of any other element of
the circuit.

� Superposition says that the response of a linear circuit to several inputs working together is equal
to the sum of the responses to each of the inputs working separately.

� Th�evenin’s theorem allows us to replace part of a circuit by a voltage source and series resistor.
Doing so does not change the element current or voltage of any element in the rest of the circuit.

� Norton’s theorem allows us to replace part of a circuit by a current source and parallel resistor.
Doing so does not change the element current or voltage of any element in the rest of the circuit.

� The maximum power transfer theorem describes the condition under which one circuit transfers as
much power as possible to another circuit.

Each of these circuit theorems can be thought of as a shortcut, a way to reduce the complexity of an
electric circuit so that it can be analyzed more easily. More important, these theorems provide insight
into the nature of linear electric circuits.

5.2 S o u r c e T r a n s f o rm a t i o n s

The ideal voltage source is the simplest model of a voltage source, but occasionally we need a more
accurate model. Figure 5.2-1a shows a more accurate but more complicated model of a voltage
source. The circuit shown in Figure 5.2-1 is sometimes called a nonideal voltage source.
(The voltage of a practical voltage source decreases as the voltage source supplies more power.
The nonideal voltage source models this behavior, whereas the ideal voltage source does not. The
nonideal voltage source is a more accurate model of a practical voltage source than the ideal voltage
source, but it is also more complicated. We will usually use ideal voltage sources to model practical
voltage sources but will occasionally need to use a nonideal voltage source.) Figure 5.2-1b shows a
nonideal current source. It is a more accurate but more complicated model of a practical current
source.
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Under certain conditions (Rp ¼ Rs and vs ¼ Rsis), the nonideal voltage source and the nonideal
current source are equivalent to each other. Figure 5.2-1 illustrates the meaning of “equivalent.” In
Figure 5.2-1c, a nonideal voltage source is connected to circuit B. In Figure 5.2-1d, a nonideal
current source is connected to that same circuit B. Perhaps Figure 5.2-1d was obtained from Figure
5.2-1c, by replacing the nonideal voltage source with a nonideal current source. Replacing the
nonideal voltage source by the equivalent nonideal current source does not change the voltage or
current of any element in circuit B. That means that if you looked at a list of the values of the currents
and voltages of all the circuit elements in circuit B, you could not tell whether circuit B was
connected to a nonideal voltage source or to an equivalent nonideal current source. Similarly, we can
imagine that Figure 5.2-1c was obtained from Figure 5.2-1d by replacing the nonideal current source
with a nonideal voltage source. Replacing the nonideal current source by the equivalent nonideal
voltage source does not change the voltage or current of any element in circuit B. The process of
transforming Figure 5.2-1c into Figure 5.2-1d, or vice versa, is called a source transformation.

To see why the source transformation works, we will perform an experiment using the test circuit
shown in Figure 5.2-2. This test circuit contains a device called an “operational amplifier.” We will
learn about operational amplifiers in Chapter 6, so we aren’t ready to analyze this circuit yet. Instead,
imagine building the circuit and making some measurements to learn how it works.

Consider the following experiment. We connect a resistor having resistance R to the terminals of
the test circuit as shown in Figure 5.2-2 and measure the resistor voltage v and resistor current i. Next,
we change the resistor and measure the new values of the resistor voltage and current. After some trial
and error, we collect the following data:

R, kV 0 1 2 5 10 20 50 1
i, mA 3 2.667 2.4 1.846 1.33 0.857 0.414 0

v, V 0 2.667 4.8 9.231 13.33 17.143 20.69 24

Two of these data points deserve special attention. The resistor acts like an open circuit when R = 1 so
we connect an open circuit across the terminals of the test circuit in this case. As expected, i = 0. The
resistor voltage is referred to as the “open circuit voltage,” denoted as voc. We have measured
voc = 24 V. The resistor acts like a short circuit when R = 0, so we connect a short circuit across the
terminals of the test circuit. As expected, v = 0. The resistor current is referred to as the “short-circuit
current,” denoted as isc. We have measured isc = 3 mA.

Circuit B+
– vs

Rs a

b

+
– vs

Rs a

b

(a)

(c)

Circuit Bis

is

a

b

(d)

Rp

a

b

(b)

Rp

FIGURE 5.2-1 (a) A nonideal
voltage source. (b) A nonideal
current source. (c) Circuit B
connected to the nonideal voltage
source. (d) Circuit B connected to
the nonideal current source.
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Figure 5.2-3 shows a plot of the data. All of the data points lie on the straight line segment that
connects the points (i sc,0) and (0,voc)! The slope of the straight line is

slope ¼ � v oc

i sc

This slope has units of V. It’s convenient to define Rt as

R t ¼ v oc

i sc
ð5:2-1Þ

The equation of the straight line representing our data is

v ¼ � v oc

i sc

� �
i þ v oc

or

v ¼ �R t i þ v oc ð5:2-2Þ

Our experiment has worked quite well. Equation 5.2-2 is a concise description of the test circuit.
Now we are ready for a surprise. Consider the circuit shown in Figure 5.2-4

R

R t

+
– v

+

−

voc 

i

Test Circuit #2
FIGURE 5.2-4 Th�evenin equivalent circuit.

i, mA

 v, V

 isc = 3

voc = 24

FIGURE 5.2-3 A plot of the data collected from
the test circuit.

10 kΩ

40 kΩ

40 kΩ

10 kΩ

6 V

A Test Circuit

R
+
– v

+

–

i

–

+

FIGURE 5.2-2 A test circuit.
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The test circuit in Figure 5.2-4 consists of a voltage source connected in series with a resistor.
The voltage of the voltage source in the second test circuit is equal to the open circuit voltage
of the first test circuit. Also, the resistance of the resistor in the second test circuit is the parameter Rt

from the first test circuit, given by Eq. 5.2-1.
Apply KVL in Figure 5.2-4 to get

R t i þ v � v oc ¼ 0 ) v ¼ �R t i þ v oc ð5:2-3Þ

Eq. 5.2-3 is the same equation as Eq. 5.2-2. The circuits in Figures 5.2-2 and 5.2-4 are both described by
the same equation! There’s more. Consider the circuit shown in Figure 5.2-5. The test circuit in
Figure 5.2-5 consists of a current source connected in parallel with a resistor. The current of the current
source in the third test circuit is equal to the short-circuit current of the first test circuit. Also, the
resistance of the resistor in the third test circuit is the parameter Rt from the first test circuit, again given
by Eq. 5.2-1.

v

+

−

RR t isc 

i

Test Circuit #3
FIGURE 5.2-5 Norton equivalent circuit.

Apply KCL in Figure 5.2-5 to get

i sc ¼ v

R t
þ i ¼ 0 ) v ¼ �R t i þ R t i sc ð5:2-4Þ

Equations 5.2-2, 5.2-3, and 5.2-4 are identical. The three test circuits are each represented by the
equation that describes our data. Any one of them could have generated our data! It is in this sense that
we say that the second and third test circuits are equivalent to the first test circuit.

The second and third test circuits have names. They are called the “Th�evenin equivalent circuit”
and “Norton equivalent circuit” of the first test circuit. Also, the parameter Rt given by Eq. 5.2-1 is
called the “Th�evenin resistance” of the first test circuit.

The Th�evenin and Norton equivalent circuits are equivalent to each other. The source transfor-
mation, described earlier in this section and summarized in Figure 5.2-6, may be preformed by
replacing a Th�evenin equivalent circuit with a Norton equivalent circuit or vice versa.

i p
vs

a a

b b

+
–

Rs

Rp

and Rp = Rs i p = 
vs

Rs

vs = Rp i p  and  Rs = Rp 

FIGURE 5.2-6 Source Transformations.
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E X A M P L E 5 . 2 - 1 Source Transformations

First,determinethevaluesof ipandRp thatcausethepartofthecircuitconnectedtothe2-kV resistorinFigure 5.2-7b tobe
equivalent to part of the circuit connected to the 2-kV resistor in Figure 5.2-7a. Next, determine the values of va and vb.

i p

a a

b b

+
– Rp12 V

6 kΩ

2 kΩ v a

+

–

2 kΩ v b

+

–

(a) (b)
FIGURE 5.2-7 The circuit considered in
Example 5.2-1.

Solution
We can use a source transformation to determine the required values of ip and Rp. Referring to Figure 5.2-6 we get

i p ¼ 12

6000
¼ 0:002 A ¼ 2 mA and R p ¼ 6 kV

Using voltage division in Figure 5.2-7a, we calculate

v a ¼ 2000

2000þ 6000
12ð Þ ¼ 3 V

The voltage across the parallel resistors in Figure 5.2-7b is given by

v b ¼ 2000R p

2000þ R p
i p ¼ 2000 6000ð Þ

2000þ 6000
0:002ð Þ ¼ 1500 0:002ð Þ ¼ 3 V

As expected, the source transformation did not change the value of the voltage across the 2-kV resistor.

E X A M P L E 5 . 2 - 2 Source Transformations

First, determine the values of ip and Rp that cause the part of the circuit connected to the 2-kV resistor in
Figure 5.2-8b to be equivalent to part of the circuit connected to the 2-kV resistor in Figure 5.2-8a. Next, determine
the values of va and vb.

i p

a a

b b

+
–

Rp12 V

6 kΩ

2 kΩ v a

+

–

2 kΩ v b

+

–

(a) (b)
FIGURE 5.2-8 The circuit considered in
Example 5.2-2.

Solution
This example is very similar to the previous example. The difference between these examples is the polarity of the
voltage source in part (a) of the figures. Reversing both the polarity of voltage source and the sign of the source
voltage produces an equivalent circuit. Consequently, we can redraw Figure 5.2-8 as shown in Figure 5.2-9.

Source Transformations 173



i p

a a

b b

+
– Rp−12 V

6 kΩ

2 kΩ v a

+

–

2 kΩ v b

+

–

(a) (b)

FIGURE 5.2-9
The circuit from Figure 5.2-8 after changing
the polarity of the voltage source.

Now we are ready use a source transformation to determine the required values of ip and Rp. Comparing Figure 5.2-
9 to Figure 5.2-6, we write

i p ¼ �12

6000
¼ �0:002 A ¼ �2 mA and R p ¼ 6 kV

Using voltage division in Figure 5.2-9a, we calculate

v a ¼ � 2000

2000þ 6000
12ð Þ ¼ �3 V

The voltage across the parallel resistors in Figure 5.2-9b is given by

v b ¼ 2000R p

2000þ R p
i p ¼ 2000 6000ð Þ

2000þ 6000
�0:002ð Þ ¼ 1500 �0:002ð Þ ¼ �3 V

As before, the source transformation did not change the value of the voltage across the 2-kV resistor.

E X A M P L E 5 . 2 - 3 Application of Source Transformations

Use a source transformation to determine a relationship between the resistance R and the resistor current i in
Figure 5.2-10.

+
–

12 V

4 kΩ

i

R2 mA

FIGURE 5.2-10 The circuit considered in Example 5.2-3.

Solution
We can use a source transformation to replace the 12-volt source in series with the 4-kV resistor by the parallel
combination of a current source and resistor. The resulting circuit is shown in Figure 5.2-11.

i

R2 mA3 mA 2 kΩ

FIGURE 5.2-11 The circuit from Figure 5.2-10 after a
source transformation.
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EXERCISE 5.2-1 Determine values of R and is so that the circuits shown in Figures E 5.2-1a,b
are equivalent to each other due to a source transformation.
Answer: R ¼ 10 V and is ¼ 1.2 A

EXERCISE 5.2-2 Determine values of R and is so that the circuits shown in Figures E 5.2-2a,b
are equivalent to each other due to a source transformation.

Hint: Notice that the polarity of the voltage source in Figure E 5.2-2a is not the same as in Figure
E 5.2-1a.

Answer: R ¼ 10 V and is ¼ �1.2 A

EXERCISE 5.2-3 Determine values of R and vs so that the circuits shown in Figures E 5.2-3a,b
are equivalent to each other due to a source transformation.

Rvs 3 A

8 Ω

+
–

(a) (b) FIGURE E 5.2-3

Answer: R ¼ 8 V and vs ¼ 24 V

Now we will replace the parallel current sources by an equivalent current source. The resulting circuit is
shown Figure 5.2-12. Using current division in Figure 5.2-12 gives

i ¼ 2000

2000þ R
0:001ð Þ ¼ 2

2000þ R
ð5:2-5Þ

The source transformation did not change the value of the current in resistor R and neither did replacing parallel
current sources by an equivalent current source. The relationship between resistance R and the resistor current i is
the same in Figure 5.2-10 as it is in Figure 5.2-12. Consequently, Equation 5.2-5 describes the relationship between
resistance R and the resistor current i in Figure 5.2-11.

R

is12 V 10 Ω+
–

(a) (b)

FIGURE E 5.2-1

R

is12 V 10 Ω+
–

(a) (b)

FIGURE E 5.2-2

Try it 
yourself 

in WileyPLUS

Try it 
yourself 

in WileyPLUS

Try it 
yourself 

in WileyPLUS

i

R1 mA 2 kΩ
FIGURE E 5.2-12 The circuit from Figure 5.2-11 replacing parallel current sources
by an equivalent current source.
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EXERCISE 5.2-4 Determine values of R and vs so that the circuits shown in Figures E 5.2-4a,b
are equivalent to each other due to a source transformation.

Rvs 3 A

8 Ω

+
–

(a) (b) FIGURE E 5.2-4

Hint: Notice that the reference direction of the current source in Figure E 5.2-4b is not the same as in
Figure E 5.2-3b.

Answer: R ¼ 8 V and vs ¼ �24 V

5.3 S u p e r p o s i t i o n

The output of a linear circuit can be expressed as a linear combination of its inputs. For example,
consider any circuit having the following three properties:

1. The circuit consists entirely of resistors and dependent and independent sources.

2. The circuit inputs are the voltages of all the independent voltage sources and the currents of all the
independent current sources.

3. The output is the voltage or current of any element of the circuit.

Such a circuit is a linear circuit. Consequently, the circuit output can be expressed as a linear
combination of the circuit inputs. For example,

vo ¼ a1v1 þ a2v2 þ � � � þ anvn ð5:3-1Þ

where v0 is the output of the circuit (it could be a current instead of a voltage) and v1; v2; : : : ; vn are the
inputs to the circuit (any or all the inputs could be currents instead of voltages). The coefficients
a1; a2; : : : ; an of the linear combination are real constants called gains.

Next, consider what would happen if we set all but one input to zero. Let voi denote output when
all inputs except the ith input have been set to zero. For example, suppose we set v2; v3; : : : ; vn to zero.
Then

vo1 ¼ a1v1 ð5:3-2Þ
We can interpret vo1 ¼ a1v1 as the circuit output due to input v1acting separately. In contrast, the vo in
Eq 5.3-1 is the circuit output due to all the inputs working together. We now have the following
important interpretation of Eq. 5.3-1:

The output of a linear circuit due to several inputs working together is equal to the sum of the
outputs due to each input working separately.

The inputs to our circuit are voltages of independent voltage sources and the currents of
independent current sources. When we set all but one input to zero, the other inputs become 0-V

Try it 
yourself 

in WileyPLUS
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voltage sources and 0-A current sources. Because 0-V voltage sources are equivalent to short
circuits and 0-A current sources are equivalent to open circuits, we replace the sources
corresponding to the other inputs by short or open circuits.

Equation 5.3-2 suggests a method for determining the values of the coefficients a1; a2; : : : ; an of
the linear combination. For example, to determine a1, set v2; v3; : : : ; vn to zero. Then, dividing both
sides of Eq. 5.5-2 by v1, we get

a1 ¼ vo1
v1

The other gains are determined similarly.

E X A M P L E 5 . 3 - 1 Superposit ion

The circuit shown in Figure 5.3-1 has one output, vo, and three inputs, v1, i2, and v3. (As expected, the inputs are
voltages of independent voltage sources and the currents of independent current sources.) Express the output as a
linear combination of the inputs.

Solution
Let’s analyze the circuit using node equations. Label the node voltage at the top node of the current source and
identify the supernode corresponding to the horizontal voltage source as shown in Figure 5.3-2.
Apply KCL to the supernode to get

v1 � v3 þ voð Þ
40

þ i2 ¼ vo
10

Multiply both sides of this equation by 40 to eliminate the fractions. Then we have

v1 � v3 þ voð Þ þ 40i2 ¼ 4vo ) v1 þ 40i2 � v3 ¼ 5vo

Dividing both sides by 5 expresses the output as a linear combination of the inputs:

vo ¼ v1
5
þ 8i2 � v3

5

Also, the coefficients of the linear combination can now be determined to be

a1 ¼ vo1
v1

¼ 1

5
V/V; a2 ¼ vo2

i2
¼ 8V/A; and a3 ¼ vo3

v3
¼ � 1

5
V/V

Alternate Solution

Figure 5.3-3 shows the circuit from Figure 5.3-1 when i2 ¼ 0 A and v3 ¼ 0 V. (A zero current source is equivalent to
an open circuit, and a zero voltage source is equivalent to a short circuit.)

v1 i2
+
–

+ –

vo

v3

+

–
10 Ω

40 Ω

FIGURE 5.3-1 The linear circuit for Example 5.3-1.

v1 i2
+
–

+ –

vo

v3v3 + vo

+

–
10 Ω

40 Ω

FIGURE 5.3-2 A supernode.
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v1
+
– vo1

+

–
10 Ω

40 Ω

Zero Voltage Score

Zero Current Source FIGURE 5.3-3 Output due to the first input.

Using voltage division

vo1 ¼ 10

40þ 10
v1 ¼ 1

5
v1

In other words,

a1 ¼ vo1
v1

¼ 1

5
V/V

Next, Figure 5.3-4 shows the circuit when v1 ¼ 0 V and v3 ¼ 0 V. The resistors are connected in parallel. Applying
Ohm’s law to the equivalent resistance gives

vo2 ¼ 40� 10

40þ 10
i2 ¼ 8i2

In other words,

a2 ¼ vo2
i2

¼ 8V/A

Finally, Figure 5.3-5 shows the circuit when v1 ¼ 0 V and i2 ¼ 0 A. Using voltage division,

vo3 ¼ 10

40þ 10
�v3ð Þ ¼ � 1

5
v3

In other words,

a3 ¼ vo3
v3

¼ � 1

5
V/V

Now the output can be expressed as a linear combination of the inputs

vo ¼ a1v1 þ a2i2 þ a3v3 ¼ 1

5
v1 þ 8i2 þ � 1

5

� �
v3

as before.

i2 vo2

+

–
10 Ω

40 Ω

Zero Voltage Score

Another Zero Voltage Source

FIGURE 5.3-4 Output due to the second input.

vo3

v3

+

–
10 Ω

40 Ω
Zero Voltage

Score

Zero Current Source

+ –

FIGURE 5.3-5 Output due to the third input.
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E X A M P L E 5 . 3 - 2 Superposit ion

Find the current i for the circuit of Figure 5.3-6a.

i1

i

(b) (c)

(a)

3i1 3i2

3i

i2

v3

+

–

+
–

+
–

+
–

+
–

+
–

3 Ω 2 Ω 3 Ω

3 Ω

2 Ω

2 Ω

24 V

24 V

7 A

a

7 A

FIGURE 5.3-6 (a) The circuit for Example 5.3-2. (b) The independent voltage source acting alone. (c) The independent current
source acting alone.

Solution
Independent sources provide the inputs to a circuit. The circuit in Figure 5.3-6a has two inputs: the voltage of
the independent voltage source and the current of the independent current source. The current, i, caused by the
two sources acting together is equal to the sum of the currents caused by each independent source acting separately.

Step 1: Figure 5.3-6b shows the circuit used to calculate the current caused by the independent voltage
source acting alone. The current source current is set to zero for this calculation. (A zero current source is equivalent
to an open circuit, so the current source has been replaced by an open circuit.) The current due to the voltage source
alone has been labeled as i1 in Figure 5.3-6b.

Apply Kirchhoff’s voltage law to the loop in Figure 5.3-6b to get

�24þ 3þ 2ð Þi1 þ 3i1 þ 0 ) i1 ¼ 3 A

(Notice that we did not set the dependent source to zero. The inputs to a circuit are provided by the independent
sources, not by the dependent sources. When we find the response to one input acting alone, we set the other
inputs to zero. Hence, we set the other independent sources to zero, but there is no reason to set the dependent
source to zero.)

Step 2: Figure 5.3-6c shows the circuit used to calculate the current caused by the current source acting alone.
The voltage of the independent voltage is set to zero for this calculation. (A zero voltage source is equivalent to a
short circuit, so the independent voltage source has been replaced by a short circuit.) The current due to the voltage
source alone has been labeled as i2 in Figure 5.3-6c.

First, express the controlling current of the dependent source in terms of the node voltage, va, using
Ohm’s law:

i2 ¼ � va
3

) va ¼ �3i2
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5.4 T h �ev e n i n ’ s T h e o r em

In this section, we introduce the Th�evenin equivalent circuit, based on a theorem developed by M. L.
Th�evenin, a French engineer, who first published the principle in 1883. Th�evenin, who is credited with

the theorem, probably based his work on earlier work by Hermann von Helmholtz (see
Figure 5.4-1).

Figure 5.4-2 illustrates the use of the Th�evenin equivalent circuit. In Figure 5.4-2a,
a circuit is partitioned into two parts—circuit A and circuit B—that are connected at a single
pair of terminals. (This is the only connection between circuits A and B. In particular, if
the overall circuit contains a dependent source, then either both parts of that dependent
source must be in circuit A or both parts must be in circuit B.) In Figure 5.4-2b, circuit A is
replaced by its Th�evenin equivalent circuit, which consists of an ideal voltage source in series
with a resistor. Replacing circuit A by its Th�evenin equivalent circuit does not change the
voltageorcurrentofanyelement incircuitB.Thismeans that ifyoulookedata listof thevalues
of the currents and voltages of all the circuit elements in circuit B, you could not tell whether
circuit B was connected to circuit A or connected to its Th�evenin equivalent circuit.

Finding the Th�evenin equivalent circuit of circuit A involves three parameters: the
open-circuit voltage, voc, the short-circuit current, isc, and the Th�evenin resistance, Rt.
Figure 5.4-3 illustrates the meaning of these three parameters. In Figure 5.4-3a, an open
circuit is connected across the terminals of circuit A. The voltage across that open circuit is
the open-circuit voltage, voc. In Figure 5.4-3b, a short circuit is connected across the
terminals of circuit A. The current in that short circuit is the short-circuit current, isc.

Figure 5.4-3c indicates that the Th�evenin resistance, Rt, is the equivalent resistance of circuit A�.
Circuit A� is formed from circuit A by replacing all the independent voltage sources by short circuits
and replacing all the independent current sources by open circuits. (Dependent current and voltage
sources are not replaced with open circuits or short circuits.) Frequently, the Th�evenin resistance, Rt,
can be determined by repeatedly replacing series or parallel resistors by equivalent resistors.
Sometimes, a more formal method is required. Figure 5.4-4 illustrates a formal method for determining
the value of the Th�evenin resistance. A current source having current it is connected across the terminals
of circuit A�. The voltage, vt, across the current source is calculated or measured. The Th�evenin

Next, apply Kirchhoff’s current law at node a to get

i2 þ 7 ¼ va � 3i2
2

) i2 þ 7 ¼ �3i2 � 3i2
2

) i2 ¼ � 7

4
A

Step 3: The current, i, caused by the two independent sources acting together is equal to the sum of the
currents, i1 and i2, caused by each source acting separately:

i ¼ i1 þ i2 ¼ 3� 7

4
¼ 5

4
A

FIGURE 5.4-1 Hermann
von Helmholtz (1821–1894),
who is often credited with
the basic work leading to
Th�evenin’s theorem.

SSPL via Getty Images

Circuit BCircuit A

a

b

a

b

(a)

Circuit B+
– voc

Rt

(b)

FIGURE 5.4-2 (a) A circuit partitioned into two parts: circuit A
and circuit B. (b) Replacing circuit A by its Th�evenin equivalent
circuit.

Circuit A

a

b

(a)

+

–

voc

Rt

Circuit A

a

b

(b)

Circuit A*

a

b

(c)

isc

FIGURE 5.4-3 The Th�evenin equivalent circuit involves three
parameters: (a) the open-circuit voltage, voc, (b) the short-circuit
current, isc, and (c) the Th�evenin resistance, Rt.
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resistance is determined from the values of it and vt, using

Rt ¼ vt
it

ð5:4-1Þ

The open-circuit voltage, voc, the short-circuit current, isc, and the Th�evenin resistance, Rt, are
related by the equation

voc ¼ Rtisc ð5:4-2Þ

Consequently, the Th�evenin resistance can be calculated from the open-circuit voltage and the short-
circuit current.

In summary, the Th�evenin equivalent circuit for circuit A consists of an ideal voltage source,
having voltage voc, in series with a resistor, having resistance Rt. Replacing circuit A by its Th�evenin
equivalent circuit does not change the voltage or current of any element in circuit B.

E X A M P L E 5 . 4 - 1 Th�evenin Equivalent Circuit

Determine the Th�evenin equivalent circuit for the circuit shown in Figure 5.4-5.

+
–

50 Ω

200 Ω125 V 2 A

a

b FIGURE 5.4-5 The circuit considered in Example 5.4-1.

First Solution
Referring to Figure 5.4-2, we see that we can draw a Th�evenin equivalent circuit once we have found the open-
circuit voltage voc and Th�evenin resistance, Rt. Figure 5.4-3 shows how to determine the open-circuit voltage, the
Th�evenin resistance, and also the short-circuit current isc. After we determine the values of voc, Rt, and isc we will
use Eq. 5.4-2 to check that our values are correct.

To determine the open-circuit voltage of the circuit shown in Figure 5.4-5, we connect an open
circuit between terminals a and b as shown in Figure 5.4-6a. As the name suggests, the voltage across that
open circuit is the open-circuit voltage, voc. After taking node b in Figure 5.4-6a to be the reference node, we see
that the node voltage at node a is equal to voc. Applying KCL at node a, we obtain the node equation

Rt

Circuit A*

a

b

(a)

Circuit A*

a

b

(b)

vt it

+

–
FIGURE 5.4-4 (a) The Th�evenin resistance,
Rt, and (b) a method for measuring or
calculating the Th�evenin resistance, Rt.
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125� v oc

50
¼ 2þ v oc

200

Solving for voc gives voc¼ 20 V

To determine the short-circuit current of the circuit shown in Figure 5.4-5, we connect a short circuit between
terminals a and b as shown in Figure 5.4-6b. The current in that short circuit is isc. Due to the short circuit, the
voltage across the 200-V resistor is 0 V. By Ohm’s law, the current in the 200-V resistor is 0 A as shown in
Figure 5.4-6b. Applying KVL to the loop consisting of the voltage source, 50-V resistor, and short circuit, we see
that the voltage across the 50-V resistor is 125 V, also as shown in Figure 5.4-6b. Finally, apply KCL at node a in
Figure 5.4-6b to get

125

50
¼ 2þ 0þ i sc

Solving for isc gives isc¼ 0.5 A

To determine the Th�evenin resistance of the circuit shown in Figure 5.4-5, we set the voltage of the
independent voltage source to zero and the current of the independent current source to zero. (Recall that a zero-volt
voltage source is equivalent to a short circuit and a zero-amp current source is equivalent to an open circuit.) Rt is
the equivalent resistance connected to terminals a-b as shown in Figure 5.4-6c.

R t ¼ 50jj200 ¼ 50 200ð Þ
50þ 200

¼ 40 V

Our values of voc, Rt, and isc satisfy Eq. 5.4-2, so we’re confident that they are correct. Finally, the Th�evenin
equivalent circuit is shown in Figure 5.4-6d.

+
–

40 Ω

20 V

a

b

(d)

+
–

50 Ω

200 Ω125 V 2 A

a

b

isc

50 Ω

200 Ω

a

b
R t

(a) (b)

(c)

+
–

50 Ω

200 Ω125 V 2 A

a

b

+

–

voc

voc

125 V+ – 0 A

FIGURE 5.4-6 Determining the (a) open-circuit voltage, (b) short-circuit current, and (c) Th�evenin resistance of the circuit in
Figure 5.4-5. (d) The Th�evenin equivalent of the circuit in Figure 5.4-5.

Notice the important role of the terminals a-b in this problem. Those terminals are used to identify voc in
Figure 5.4-6a, isc in Figure 5.4-6b, and Rt in Figure 5.4-6c. Importantly, the Th�evenin equivalent circuit in
Figure 5.4-6d is connected to the same pair of terminals as the original circuit in Figure 5.4-5. Finally, notice that
the orientation of voc is the same, + near terminal a, in Figures 5.4-6a and d.

182 5. Circuit Theorems



Second Solution
Often we can simplify a circuit using source transformations and equivalent circuits. In this solution we will
transform a circuit into an equivalent circuit repeatedly. We will start at the left side of the circuit in Figure 5.4-5,
away from terminals a-b. If it is possible to continue these transformations until the equivalent circuit consists of the
series connection of a voltage source and a resistor, connected between terminals a-b, then that series circuit is the
Th�evenin equivalent circuit. Figure 5.4-7 illustrates this procedure.

The circuit in Figure 5.4-6 contains a voltage source connected in series with a 50-V resistor. Using a source
transformation, these circuit elements are replaced by the parallel connection of a 2.5-A current source and 50-V
resistor in Figure 5.4-7a. The circuit in Figure 5.4-7a contains both parallel current sources and parallel resistors. In
Figure 5.4-7b the parallel current sources are replaced by an equivalent current source and the parallel resistors are
replaced by an equivalent resistor. A final source transformation converts the parallel connection of a current source
and resistor in Figure 5.4-7b to the series connection of a voltage source and resistor in Figure 5.4-7c. We recognize
Figure 5.4-7c as a Th�evenin circuit that is equivalent to the circuit shown in Figure 5.4-5 and conclude that
Figure 5.4-7c is the Th�evenin equivalent of the circuit shown in Figure 5.4-5.

+
50 Ω 200 Ω2.5 A 2 A 40 Ω0.5 A

a

b

a

b

(a ) (b )

–

40 Ω

20 V

a

b

(c )

FIGURE 5.4-7 Using source transformations and equivalent circuits to determine the Th�evenin equivalent circuit of the circuit shown
in Figure 5.4-5.

E X A M P L E 5 . 4 - 2 Th�evenin Equivalent Circuit of a Circuit
Containing a Dependent Source

Determine the Th�evenin equivalent circuit for the circuit shown in Figure 5.4-8.

40 Ω

12 V
a

b

i a

+–

10 Ω

5 Ω

4.5 i a

FIGURE 5.4-8 The circuit considered in Example 5.4-2.

Solution
We will determine the values of voc, Rt, and isc and use Eq. 5.4-2 to check that our values are correct.

To determine the open-circuit voltage of the circuit shown in Figure 5.4-8, we connect an open circuit
between terminals a and b and label the voltage across that open circuit as voc. Figure 5.4-9 shows the resulting
circuit after using KCL to label the element currents.
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0 A

+

–

voc40 Ω

12 V

a

b

i a

+–

10 Ω

5 Ω

4.5 i a

i a 

3.5 i a

+

–

voc

FIGURE 5.4-9 The circuit used to find the open-circuit voltage.

The open circuit causes the current in the 5-V resistor to be zero. The voltage across that resistor is also zero, so the
voltage across the 40-V resistor is voc as labeled in Figure 5.4-9.

Using Ohm’s law i a ¼ v oc

40

Applying KVL to the loop consisting the 12-V source, 10-V resistor, and 40-V resistor gives

0 ¼ �12þ voc � 10(3:5ia)

Solving these equations for voc gives voc ¼ 96 V

To determine the short-circuit current of the circuit shown in Figure 5.4-8, we connect a short circuit between
terminals a and b and label the current across that short circuit as isc. Figure 5.4-10 shows the resulting circuit after
using KCL to label the element currents.

isc40 Ω

12 V

a

b

i a

+–

10 Ω

5 Ω

4.5 i a

i a + isc

i b

FIGURE 5.4-10 The circuit used to find the short-circuit current.

Applying KVL to the loop consisting of the 5-V and 40-V resistors gives

5 i sc � 40 i a ¼ 0 ) i a ¼ i sc
8

Apply KCL at the top node of the 10-V resistor to write

4:5 i a ¼ i b þ i a þ i scð Þ ) i b ¼ 3:5 i a � i sc ¼ � 9

16
i sc

Apply KVL to the loop consisting of the voltage source and the 5-V and 10-V resistors to write

�12þ 5 i sc � 10 � 9

16
i sc

� �
¼ 0

Solving this equation for isc gives i sc ¼ 12

5þ 90
16

¼ 1:1294 A

Referring to Figure 5.4-4, we’ll determine the Th�evenin resistance of the circuit by replacing the independent
voltage source by a short circuit and connecting a current source to terminal a-b as shown in Figure 5.4-11. (Circuit
A* in Figure 5.4-4 is obtained from Circuit A by replacing the independent voltage sources by short circuits and the
independent current sources by open circuits.)
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40 Ω

a

b

i a

10 Ω

5 Ω

4.5 i a i t

+

–

v t

i t − ia

i b

FIGURE 5.4-11 The circuit used to find the Th�evenin resistance.

Apply KCL at the top node of the 10-V resistor to write

4:5 i a þ i t � i að Þ ¼ i b ) i b ¼ 3:5 i a þ i t
Applying KVL to the loop consisting of the 10-V and 40-V resistors gives

40 i a ¼ 10 i b ¼ 10 3:5 i a þ i tð Þ ) i a ¼ 2 i t

Applying KVL to the loop consisting of the independent current source and the 10-V and 5-V resistors gives

v t ¼ 5 i t þ 10 i b ¼ 5 i t þ 10 3:5 i a þ i tð Þ ¼ 15 i t þ 35 i a ¼ 15 i t þ 35 2 i tð Þ ¼ 85 i t

The Th�evenin resistance is R t ¼ v t

i t
¼ 85 V

Our values of voc, Rt, and isc satisfy Eq. 5.4-2, so we’re confident that they are correct. Finally, the Th�evenin
equivalent circuit is shown in Figure 5.4-12.

+
–

85 Ω

96 V

a

b
FIGURE 5.4-12 The Th�evenin equivalent circuit
for the circuit shown in Figure 5.4-8.

E X A M P L E 5 . 4 - 3 An Application of the
Th�evenin Equivalent Circuit

Consider the circuit shown in Figure 5.4-13.

(a) Determine the current, i, when R ¼ 2 V.
(b) Determine the value of the resistance R required to cause i = 5 A.
(c) Determine the value of the resistance R required to cause i = 8 A.

v

+

–

+
– 20 Ω

5 Ω 4 Ω

60 V R

i

FIGURE 5.4-13 The circuit considered in Example 5.4-3.
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Solution
The circuit shown in Figure 5.4-13 is an example of the situation shown in Figure 5.4-2a in which Circuit B is the
resistor R and Circuit A is the part of the circuit shown in Figure 5.4-13 that is connected to resistor R. Replacing
the part of the circuit that is connected to resistor R by its Th�evenin equivalent circuit will not change the value
of the current in resistor R.

In Figure 5.4-14 source transformations and equivalent resistances are used to determine the Th�evenin
equivalent of the part of the circuit that is connected to resistor R. That equivalent circuit is shown in Figure 5.4-14e.
In Figure 5.4-15 the part of the circuit that is connected to resistor R has been replaced by its Th�evenin equivalent
circuit. We readily determine that

i ¼ 48

8þ R
ð5:4-3Þ

in Figure 5.4-15. Replacing the part of the circuit that is connected to resistor R by its Th�evenin equivalent circuit
did not change the current in resistor R. Consequently, Eq. 5.4-3 also describes the relationship between i and R in
Figure 5.4-13. We can now easily answer questions (a), (b) and (c).

(a) When R ¼ 2 V the resistor current is i ¼ 48
8þ2 ¼ 4:8 A.

(b) To cause i = 5 A requires R ¼ 48
i � 8 ¼ 48

5 � 8 ¼ 1:6 V.

(c) To cause i = 8 A requires R ¼ 48
i � 8 ¼ 48

8 � 8 ¼ �2 V.

The answer in part (c) is probably not acceptable because we expect 0<R<1. Using Eq. 5.4-3 shows that when
0<R<1 the circuit in Figure 5.4-13 can only produce currents in the range 0< i< 6 A. The current specified in
(c) is outside of this range and cannot be obtained using a positive resistance R.

+
– 20 Ω

5 Ω 4 Ω

60 V 20 Ω

4 Ω

12 A 5 Ω

4 Ω

4 Ω

12 A +
–

4 Ω 4 Ω

48 V +
–

8 Ω

48 V

(a) (b)

(c) (d) (e)

FIGURE 5.4-14 Determining the Th�evenin equivalent circuit using source transformations and equivalent resistance.

+
–

8 Ω

48 V v

+

–

R

i

FIGURE 5.4-15 The circuit obtained by replacing part of the circuit in Figure 5.4-13 by its Thévenin equivalent circuit.
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A laboratory procedure for determining the Th�evenin equivalent of a black box circuit
(see Figure 5.4-16a) is to measure i and v for two or more values of vs and a fixed value of R. For
the circuit of Figure 5.4-16b, we replace the test circuit with its Th�evenin equivalent, obtaining

v ¼ voc þ iRt ð5:4-4Þ
The procedure is to measure v and i for a fixed R and several values of vs. For example, let R ¼ 10 V and
consider the two measurement results

(1) vs ¼ 49 V: i ¼ 0:5 A; v ¼ 44 V

and (2) vs ¼ 76 V: i ¼ 2 A; v ¼ 56 V

Then we have two simultaneous equations (using Eq. 5.4-4):

44 ¼ voc þ 0:5Rt

56 ¼ voc þ 2Rt

Solving these simultaneous equations, we get Rt ¼ 8 V and voc ¼ 40 V, thus obtaining the Th�evenin
equivalent of the black box circuit.

EXERCISE 5.4-1 Determine values of Rt and voc that cause the circuit shown in Figure
E 5.4-1b to be the Th�evenin equivalent circuit of the circuit in Figure E 5.4-1a.

Answer: Rt ¼ 8 V and voc ¼ 2 V

EXERCISE 5.4-2 Determine values of Rt and voc that cause the circuit shown in Figure
E 5.4-2b to be the Th�evenin equivalent circuit of the circuit in Figure E 5.4-2a.

Answer: Rt ¼ 3 V and voc ¼ �6 V

5.5 No r t o n ’ s E q u i v a l e n t C i r c u i t

An American engineer, E. L. Norton at Bell Telephone Laboratories, proposed an equivalent circuit for
circuit A of Figure 5.4-2, using a current source and an equivalent resistance. The Norton equivalent
circuit is related to the Th�evenin equivalent circuit by a source transformation. In other words, a source

Circuit
under
test

i i

v

+

–

+
–

Rt

vs

R

v

+

–

+
–

+
– vsvoc

R

(b)(a)

FIGURE 5.4-16 (a) Circuit under
test with laboratory source vs and
resistor R. (b) Circuit of (a) with
Th�evenin equivalent circuit
replacing the test circuit.
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Rt

3 V

3 Ω 6 Ω

6 Ω +
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b
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b

(a) (b)

FIGURE E 5.4-1

voc

Rt

12 V

6 Ω 3 Ω

+
–

+
–
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b
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b
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–
ia

2ia
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FIGURE E 5.4-2
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transformation converts a Th�evenin equivalent circuit into a Norton equivalent circuit or
vice versa. Norton published his method in 1926, 43 years after Th�evenin.

Norton’s theorem may be stated as follows: Given any linear circuit, divide it into two
circuits, A and B. If either A or B contains a dependent source, its controlling variable must be
in the same circuit. Consider circuit A and determine its short-circuit current isc at its terminals.
Then the equivalent circuit of A is a current source isc in parallel with a resistance Rn, where Rn

is the resistance looking into circuit A with all its independent sources deactivated.
We therefore have the Norton circuit for circuit A as shown in Figure 5.5-1. Finding

the Th�evenin equivalent circuit of the circuit in Figure 5.5-1 shows that Rn ¼ Rt and voc ¼
Rtisc. The Norton equivalent is simply the source transformation of the Th�evenin
equivalent.

a

b

Rn

Rn

isc

FIGURE 5.5-1 Norton
equivalent circuit for a linear
circuit A.

E X A M P L E 5 . 5 - 1 Norton Equivalent Circuit

Determine the Norton equivalent circuit for the circuit shown in Figure 5.5-2.

160 Ω

125 V

2 A

a

b

40 Ω

+–

FIGURE 5.5-2 The circuit considered
in Example 5.5-1.

Solution
In Figure 5.5-3, source transformations and equivalent circuits are used to simplify the circuit in Figure 5.5-2.
These simplifications continue until the simplified circuit in Figure 5.5-3d consists of a single current source in
parallel with a single resistor. The circuit in Figure 5.5-3d is the Norton equivalent circuit of the circuit in
Figure 5.5-2. Consequently

i sc ¼ 1:125 A and R t ¼ R n ¼ 32 V

160 Ω

32 Ω1.125 A

a

b

a

b

(a ) (b )

40 Ω

80 V

(d )

125 V

160 Ω

a

b

–

40 Ω

45 V

160 Ω1.125 A

a

b

(c )

40 Ω

+–

+
–

+

FIGURE 5.5-3 Using source transformations
and equivalent circuits to determine the Norton
equivalent circuit of the circuit shown in Figure 5.5-2.
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E X A M P L E 5 . 5 - 2 Norton Equivalent Circuit of a Circuit
Containing a Dependent Source

Determine the Norton equivalent circuit for the circuit shown in Figure 5.5-4.

40 Ω

12 V
a

b

i a

+–

10 Ω

5 Ω

4.5 i a

FIGURE 5.5-4 The circuit considered in Example 5.5-2.

Solution
We determined the Th�evenin equivalent of the circuit shown in Figure 5.5-4 in Example 5.4-2. The procedure used
to determine the Norton equivalent of a circuit is very similar to the procedure used to determine the Th�evenin
equivalent of that circuit. In particular the values of voc, Rt, and isc for the Norton equivalent are determined
in exactly the same way in which they were determined for the Th�evenin equivalent in Example 5.4-2.
Referring to Example 5.4-2 we have

voc ¼ 96 V, isc ¼ 1:1294 A and Rn ¼ Rt ¼ 85 V

Our values of voc, Rt, and isc satisfy Eq. 5.4-2, so we’re confident that they are correct. Finally, the Norton
equivalent circuit is shown in Figure 5.5-5.

85 Ω1.1294 A

a

b
FIGURE 5.5-5 The Norton equivalent circuit for the
circuit shown in Figure 5.5-4.
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E X A M P L E 5 . 5 - 3 An Application of the Norton
Equivalent Circuit

Consider the circuit shown in Figure 5.5-6.

(a) Determine the voltage, v, when R ¼ 24 V.
(b) Determine the value of the resistance R required to cause v = 40 V.
(c) Determine the value of the resistance R required to cause v = 60 V.

v

+

–

+
– 20 Ω

5 Ω 4 Ω

60 V R

i

FIGURE 5.5-6 The circuit considered in Example 5.5-3.
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EXERCISE 5.5-1 Determine values of Rt and isc that cause the circuit shown in Figure
E 5.5-1b to be the Norton equivalent circuit of the circuit in Figure E 5.5-1a.

isc Rt3 V

3 Ω

6 Ω

6 Ω

+
–

a

b

a

b

(a) (b) FIGURE E 5.5-1

Answer: Rt ¼ 8 V and isc ¼ 0.25 A

Solution
We considered a similar problem in Example 5.4-3. In Example 5.4-3 we replaced the part of the circuit that is
connected to resistor R by its Th�evenin equivalent circuit. In this example we will replace the part of the circuit that
is connected to resistor R by its Norton equivalent circuit. The Norton equivalent circuit can be obtained from the
Th�evenin equivalent using a source transformation. Referring to Figure 5.4-15, we obtain Figure 5.5-7 in which the
part of the circuit that is connected to resistor R has been replaced by its Norton equivalent circuit.

v

+

–

R

i

6 A 8 Ω

FIGURE 5.5-7 The circuit obtained by replacing part of the circuit in
Figure 5.5-6 by its Norton equivalent circuit.

We readily determine that

v ¼ 8R

8þ R
6ð Þ ¼ 48R

8þ R
ð5:5-1Þ

in Figure 5.5-7. Replacing the part of the circuit that is connected to resistor R by its Norton equivalent circuit did
not change the current in resistor R. Consequently Eq. 5.5-1 describes the relationship between v and R in
Figure 5.5-6! We can now easily answer questions (a), (b) and (c).

(a) When R ¼ 24 V the resistor current is v ¼ 48 24ð Þ
8þ24 ¼ 36 V.

(b) To cause v = 40 V requires R ¼ 8 40ð Þ
48�40 ¼ 40 V.

(c) To cause v = 60 V requires R ¼ 8 60ð Þ
48�60 ¼ �40 V.

The answer in part (c) is probably not acceptable because we expect 0<R<1. Using Eq. 5.5-1 shows that the
circuit in Figure 5.5-6 can only produce voltage in the range 0< v< 48 V. The voltage specified in (c) is outside of
this range and cannot be obtained using a positive resistance R.
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5.6 Ma x im um P ow e r T r a n s f e r

Many applications of circuits require the maximum power available from a source to be transferred to a load
resistor RL. Consider the circuit A shown in Figure 5.6-1, terminated with a load RL. As demonstrated in
Section 5.4, circuit A can be reduced to its Th�evenin equivalent, as shown in Figure 5.6-2.

The general problem of power transfer can be discussed in terms of efficiency and effectiveness.
Power utility systems are designed to transport the power to the load with the greatest efficiency by
reducing the losses on the power lines. Thus, the effort is concentrated on reducing Rt, which would
represent the resistance of the source plus the line resistance. Clearly, the idea of using superconducting
lines that would exhibit no line resistance is exciting to power engineers.

In the case of signal transmission, as in the electronics and communications industries, the
problem is to attain the maximum signal strength at the load. Consider the signal received at the antenna
of an FM radio receiver from a distant station. It is the engineer’s goal to design a receiver circuit so that
the maximum power ultimately ends up at the output of the amplifier circuit connected to the antenna of
your FM radio. Thus, we may represent the FM antenna and amplifier by the Th�evenin equivalent
circuit shown in Figure 5.6-2.

Let us consider the general circuit of Figure 5.6-2. We wish to find the value of the load resistance
RL such that maximum power is delivered to it. First, we need to find the power from

p ¼ i 2RL

Because the current i is i ¼ vs
RL þ Rt

we find that the power is p ¼ vs
RL þ Rt

� �2

RL ð5:6-1Þ

Assuming that vs and Rt are fixed for a given source, the maximum power is a function of RL. To find the
value of RL that maximizes the power, we use the differential calculus to find where the derivative
dp=dRL equals zero. Taking the derivative, we obtain

dp

dRL
¼ vs

2 (Rt þ RL)
2 � 2(Rt þ RL)RL

(RL þ Rt)
4

The derivative is zero when

(Rt þ RL)
2 � 2(Rt þ RL)RL ¼ 0 ð5:6-2Þ

or (Rt þ RL)(Rt þ RL � 2RL) ¼ 0 ð5:6-3Þ
Solving Eq. 5.6-3, we obtain

RL ¼ Rt ð5:6-4Þ

RL

Circuit A

FIGURE 5.6-1 Circuit A contains resistors and
independent and dependent sources. The load is the
resistor RL.

Rt

RL

i
+
–

vs

FIGURE 5.6-2 The Th�evenin equivalent is
substituted for circuit A. Here we use vs for the Th�evenin
source voltage.
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To confirm that Eq. 5.6-4 corresponds to a maximum, it should be shown that d2p=dRL
2 < 0. Therefore,

the maximum power is transferred to the load when RL is equal to the Th�evenin equivalent resistance Rt.
The maximum power, when RL ¼ Rt, is then obtained by substituting RL ¼ Rt in Eq. 5.6-1 to yield

pmax ¼
vs2Rt

(2Rt)
2 ¼

vs2

4Rt

The power delivered to the load will differ from the maximum attainable as the load resistance RL

departs from RL ¼ Rt. The power attained as RL varies from Rt is portrayed in Figure 5.6-3.

The maximum power transfer theorem states that the maximum power delivered to a load by
a source is attained when the load resistance, RL, is equal to the Th�evenin resistance, Rt, of the
source.

Rt RL

i

is FIGURE 5.6-4 Norton’s equivalent circuit representing
the source circuit and a load resistor RL. Here we use is
as the Norton source current.

We may also use Norton’s equivalent circuit to represent circuit A in Figure 5.6.1. We then have a
circuit with a load resistor RL as shown in Figure 5.6-4. The current i may be obtained from the current
divider principle to yield

i ¼ Rt

Rt þ RL
is

Therefore, the power p is

p ¼ i 2RL ¼ is2Rt
2RL

(Rt þ RL)
2 ð5:6-5Þ

Using calculus, we can show that the maximum power occurs when

RL ¼ Rt ð5:6-6Þ
Then the maximum power delivered to the load is

pmax ¼
Rtis2

4
ð5:6-7Þ

0

0.25

0.50

0.75

1.0

0 0.5 1 1.5 2.0

pmax

p

Rt

RL FIGURE 5.6-3 Power actually
attained as RL varies in relation to Rt.
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E X A M P L E 5 . 6 - 1 Maximum Power Transfer

Find the load resistance RL that will result in maximum power delivered
to the load for the circuit of Figure 5.6-5. Also, determine the maximum
power delivered to the load resistor.

Solution
First, we determine the Th�evenin equivalent circuit for the circuit to the
left of terminals a–b. Disconnect the load resistor. The Th�evenin voltage
source voc is

voc ¼ 150

180
� 180 ¼ 150 V

The Th�evenin resistance Rt is

Rt ¼ 30� 150

30þ 150
¼ 25V

The Th�evenin circuit connected to the load resistor is shown in Figure 5.6-6.
Maximum power transfer is obtained when RL ¼ Rt ¼ 25 V.

Then the maximum power is

pmax ¼
voc2

4RL
¼ (150)2

4� 25
¼ 225W

30 Ω

150 Ω

a

b

180 V +
– RL

is

FIGURE 5.6-5 Circuit for Example
5.6-1. Resistances in ohms.

25 Ω a

b

150 V+
– RL

i

FIGURE 5.6-6 Th�evenin equivalent
circuit connected to RL for Example
5.6-1.

E X A M P L E 5 . 6 - 2 Maximum Power Transfer

Find the load RL that will result in maximum power delivered to the load of the circuit of Figure 5.6-7a. Also,
determine pmax delivered.

b

a

+
–

+–

b

a

+
–6 V6 V

6 Ω6 Ω

4 Ω4 Ω

+–

2vab2vab

voc = vab

+

–

RL

b

a

+
–voc = 12 V

Rt = 12 Ω

RL

b

a

+
–

+–

6 V

6 Ω

4 Ω

2vab = 0

i

isc

(b)(a)

(c) (d)

FIGURE 5.6-7 Determination
of maximum power transfer to
a load RL.

Try it 
yourself 

in WileyPLUS

Try it 
yourself 

in WileyPLUS
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EXERCISE 5.6-1 Find the maximum power that can be delivered to RL for the circuit of Figure
E 5.6-1, using a Th�evenin equivalent circuit.

3 Ω

6 Ω18 V +
–

2 Ω

RL

FIGURE E 5.6-1

Answer: 9 W when RL ¼ 4 V

5.7 U s i n g MAT LAB t o D e t e rm i n e t h e
T h �ev e n i n E q u i v a l e n t C i r c u i t

MATLAB can be used to reduce the work required to determine the Th�evenin equivalent of a circuit
such as the one shown in Figure 5.7-1a. First, connect a resistor, R, across the terminals of the network,
as shown in Figure 5.7-1b. Next, write node or mesh equations to describe the circuit with the resistor
connected across its terminals. In this case, the circuit in Figure 5.7-1b is represented by the mesh
equations

12 ¼ 28i1 � 10i2 � 8i3
12 ¼ �10i1 þ 28i2 � 8i3
0 ¼ �8i1 � 8i2 þ (16þ R)i3

ð5:7-1Þ

Solution
We will obtain the Th�evenin equivalent circuit for the part of the circuit to the left of terminals a,b in Figure
5.6-7a. First, we find voc as shown in Figure 5.6-7b. The KVL gives

�6þ 10i � 2vab ¼ 0

Also, we note that vab ¼ voc ¼ 4i. Therefore,

10i � 8i ¼ 6

or i ¼ 3 A. Therefore, voc ¼ 4i ¼ 12 V.
To determine the short-circuit current, we add a short circuit as shown in Figure 5.6-7c. The 4-V resistor is

short circuited and can be ignored. Writing KVL, we have

�6þ 6isc ¼ 0

Hence, isc ¼ 1 A.
Therefore, Rt ¼ voc=isc ¼ 12 V. The Th�evenin equivalent circuit is shown in Figure 5.6-7d with the load resistor.
Maximum load power is achieved when RL ¼ Rt ¼ 12V. Then,

pmax ¼
v2oc
4RL

¼ 122

4(12)
¼ 3W

Try it 
yourself 

in WileyPLUS
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The current i in the resistor R is equal to the mesh current in the third mesh, that is,

i ¼ i3 ð5:7-2Þ

The mesh equations can be written using matrices such as

28 �10 �8
�10 28 �8
�8 �8 16þ R

2
4

3
5 i1

i2
i3

2
4

3
5 ¼

12
12
0

2
4

3
5 ð5:7-3Þ

Notice that i ¼ i3 in Figure 5.7-1b.
Figure 5.7-2 shows a MATLAB file named ch5ex.m that solves Eq. 5.7-1. Figure 5.7-3 illustrates

the use of this MATLAB file and shows that when R ¼ 6 V, then i ¼ 0.7164 A, and that when R ¼ 12 V,
then i ¼ 0.5106 A.

Next, consider Figure 5.7-4, which shows a resistor R connected across the terminals of a
Th�evenin equivalent circuit. The circuit in Figure 5.7-4 is represented by the mesh equation

V t ¼ Rti þ Ri ð5:7-4Þ

i
8 Ω

8 Ω

10 Ω

12 V

12 V

10 Ω

10 Ω

+
–

+
– i2

i1

i3 R

8 Ω

8 Ω

10 Ω

12 V

12 V

10 Ω

10 Ω

+
–

+
–

(b)(a)

FIGURE 5.7-1 The circuit in (b) is obtained by connecting a resistor, R, across the terminals of the circuit in (a).
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FIGURE 5.7-2 MATLAB file used to solve the mesh equation representing the circuit shown in Figure 5.7-1b.
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As a matter of notation, let i ¼ ia when R ¼ Ra. Similarly, let i ¼ ib when R ¼ Rb. Equation 5.7-4
indicates that

V t ¼ Rtia þ Raia
V t ¼ Rtib þ Rbib

ð5:7-5Þ

Equation 5.7-5 can be written using matrices as

Raia
Rbib

� �
¼ 1 �ia

1 �ib

� �
V t

Rt

� �
ð5:7-6Þ

Given ia, Ra, ib, and Rb, this matrix equation can be solved for Vt and Rt, the parameters of the Th�evenin
equivalent circuit. Figure 5.7-5 shows a MATLAB file that solves Eq. 5.7-6, using the values ib ¼ 0.7164
A, Rb ¼ 6 V, ia ¼ 0.5106 A, and Ra ¼ 12 V. The resulting values of Vt and Rt are

V t ¼ 10:664 V and Rt ¼ 8:8863V

FIGURE 5.7-3 Computer screen showing the use of MATLAB to analyze the circuit shown in Figure 5.7-1.

+
– R

Rt

Vt
i FIGURE 5.7-4 The circuit obtained by

connecting a resistor, R, across the
terminals of a Th�evenin equivalent circuit.
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FIGURE 5.7-5 MATLAB file used to calculate the open-circuit voltage and Th�evenin resistance.

5.8 U s i n g P S p i c e t o D e t e rm i n e t h e T h �ev e n i n
E q u i v a l e n t C i r c u i t

We can use the computer program PSpice to find the Th�evenin or Norton equivalent circuit
for circuits even though they are quite complicated. Figure 5.8-1 illustrates this method. We
calculate the Th�evenin equivalent of the circuit shown in Figure 5.8-1a by calculating its open-circuit
voltage voc and its short-circuit current isc. To do so, we connect a resistor across its terminals
as shown in Figure 5.8-1b. When the resistance of this resistor is infinite, the resistor voltage will
be equal to the open-circuit voltage voc, as shown m Figure 5.8-1b. On the other hand, when
the resistance of this resistor is zero, the resistor current will be equal to the short-circuit current isc,
as shown in Figure 5.8-1c.

We can’t use either infinite or zero resistances in PSpice, so we will approximate the infinite
resistance by a resistance that is several orders of magnitude larger than the largest resistance in circuit
A. We can check whether our resistance is large enough by doubling it and rerunning the PSpice
simulation. If the computed value of voc does not change, our large resistance is effectively infinite.
Similarly, we can approximate a zero resistance by a resistance that is several orders of magnitude
smaller than the smallest resistance in circuit A. Our small resistance is effectively zero when halving it
does not change the computed value of isc.

voc

(a)

R=�Circuit A

a

b

(b)

Circuit A

a

b

+

–
R=O

(c)

Circuit A

a

b

isc

FIGURE 5.8-1 A method for computing the values of voc and isc, using PSpice.
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E X A M P L E 5 . 8 - 1 Using PSpice to find a Th�evenin
Equivalent Circuit

Use PSpice to determine the values of the open-circuit voltage voc and the short-circuit current isc for the circuit
shown in Figure 5.8-2.

Solution
Following our method, we add a resistor across the terminals of the circuit as shown in Figure 5.8-3. Noticing that
the largest resistance in our circuit is 20V and the smallest is 5V, we will determine voc and isc, using

voc � vR when R � 20 V

and vsc � iR ¼ vR
R

when R 	 5 V

Using PSpice begins with drawing the circuit in the OrCAD Capture workspace as shown in Figure 5.8-4 (see
Appendix A). The VCVS in Figure 5.8-3 is represented by a PSpice “Part E” in Figure 5.8-4. Figure 5.8-5
illustrates the correspondence between the VCVS and the PSpice “Part E.”

To determine the open circuit voltage, we set the resistance R to a very large value and perform a `Bias Point'
simulation (see Appendix A). Figure 5.8-6 shows the simulation results when R ¼ 20 MV. The voltage across the
resistor R is 33.6 V, so voc ¼ 33.6 V. (Doubling the value of R and rerunning the simulation did not change the value
of the voltage across R, so we are confident that voc ¼ 33.6 V.)

20 Ω5 Ω

20 Ω 5 Ω8 Ω

24 V 10 v3
+
–

v3

+

–

+

–

FIGURE 5.8-2 The circuit considered in Example 5.8-1.

20 Ω5 Ω

20 Ω 5 Ω8 Ω

24 V 10 v3
+
–

v3

+

–

vR

+

–

+

– R

iR

FIGURE 5.8-3 The circuit from Figure 5.8-2 after adding
a resistor across its terminals.

FIGURE 5.8-4 The circuit from
Figure 5.8-3 drawn in the OrCAD
Capture workspace.
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To determine the short-circuit current, we set the resistance R to a very small value and perform a `Bias Point'
simulation (see Appendix A). Figure 5.8-7 shows the simulation results when R ¼ 1 mV. The voltage across the
resistor R is 12.6 mV. Using Ohm’s law, the value of the short-circuit current is

isc ¼ 12:6� 10�3

1� 10�3 ¼ 12:6A

(Halving the value of R and rerunning the simulation did not change the value of the voltage across R, so we are
confident that isc ¼ 12.6 A.)

FIGURE 5.8-6 Simulation results for
R ¼ 20 MV.

FIGURE 5.8-7 Simulation results for
R ¼ 1 MV ¼ 0.001V.

1

2

3

1 3

2 4
4

+
–

vc
kvc

+

–

+

–

+

–

(a) (b)
FIGURE 5.8-5 A VCVS (a) and
the corresponding PSpice “Part E” (b).
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5.9 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the specifica-
tions have been satisfied. In addition, computer output must be reviewed to guard against data-entry
errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

E X A M P L E 5 . 9 - 1 How Can We Check Th�evenin
Equivalent Circuits?

Suppose that the circuit shown in Figure 5.9-1a was built in the lab, using R ¼ 2 kV, and that the voltage labeled v
was measured to be v ¼ �1.87 V. Next, the resistor labeled R was changed to R ¼ 5 kV, and the voltage v was
measured to be v ¼ �3.0 V. Finally, the resistor was changed to R ¼ 10 kV, and the voltage was measured to be
v ¼ �3.75 V. How can we check that these measurements are consistent?

(b)

R

R Rt

voc

R, kΩ

+
–

+
–

(a)

v

+

–

v

+

–

v, V

2
5

10

–1.87
–3.0

–3.75

67.5 V −67.5 V

4.788 kΩ 4.788 kΩ

2.8728 kΩ

2.8728 kΩ 3.83 kΩ

3.83 kΩ

+
–

FIGURE 5.9-1 (a) A circuit with data obtained by measuring the voltage across the resistor R, and (b) the circuit obtained by
replacing the part of the circuit connected to R by its Th�evenin equivalent circuit.

Solution
Let’s replace the part of the circuit connected to the resistor R by its Th�evenin equivalent circuit. Figure 5.9-1b
shows the resulting circuit. Applying the voltage division principle to the circuit in Figure 5.9-1b gives

v ¼ R

R þ Rt
voc ð5:9-1Þ

When R ¼ 2 kV, then v ¼ �1.87 V, and Eq. 5.9-1 becomes

�1:87 ¼ 2000

2000þ Rt
voc ð5:9-2Þ

Similarly, when R ¼ 5 kV, then v ¼ �3.0 V, and Eq. 5.9-1 becomes

�3:0 ¼ 5000

5000þ Rt
voc ð5:9-3Þ

Equations 5.9-2 and 5.9-3 constitute a set of two equations in two unknowns, voc and Rt. Solving these equations
gives voc ¼ �5 V and Rt ¼ 3333 V. Substituting these values into Eq. 5.9-1 gives

v ¼ R

R þ 3333
(�5) ð5:9-4Þ
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Equation 5.9-4 can be used to predict the voltage that would be measured if R¼ 10 kV. If the value of v obtained using
Eq.5.9-4agreeswith themeasuredvalueofv, then themeasureddataareconsistent.LettingR¼10kV inEq.5.9-4gives

v ¼ 10,000

10,000þ 3333
(� 5) ¼ �3:75 V ð5:9-5Þ

Because this value agrees with the measured value of v, the measured data are indeed consistent.

5 . 1 0 D E S I G N E X A M P L E Strain Gauge Bridge

Strain gauges are transducers that measure mechanical strain. Electrically, the strain gauges are resistors. The strain
causes a change in resistance that is proportional to the strain.

Figure 5.10-1 shows four strain gauges connected in a configuration called a bridge. Strain gauge bridges
measure force or pressure (Doebelin, 1966).

R + Δ RR – Δ R

R – Δ RR + Δ R

50 Ω

100 kΩ
50 mV +

–

vi

b vi

vo

+

–

+ –

Voltmeter

Strain gauge bridge Amplifier

+ –

FIGURE 5.10-1 Design problem involving a strain gauge bridge.

The bridge output is usually a small voltage. In Figure 5.10-1, an amplifier multiplies the bridge output, vi, by
a gain to obtain a larger voltage, vo, which is displayed by the voltmeter.

Describe the Situation and the Assumptions
A strain gauge bridge is used to measure force. The strain gauges have been positioned so that the force will
increase the resistance of two of the strain gauges while, at the same time, decreasing the resistance of the other two
strain gauges.

The strain gauges used in the bridge have nominal resistances of R ¼ 120 V. (The nominal resistance is the
resistance when the strain is zero.) This resistance is expected to increase or decrease by no more than 2 V due to
strain. This means that

�2V 
 DR 
 2V ð5:10-1Þ
The output voltage vo is required to vary from �10 V to þ10 V as DR varies from �2V to 2V.

State the Goal
Determine the amplifier gain b needed to cause vo to be related to DR by

vo ¼ 5
volt

ohm
� DR ð5:10-2Þ

Generate a Plan
Use Th�evenin’s theorem to analyze the circuit shown in Figure 5.10-1 to determine the relationship between vi and
DR. Calculate the amplifier gain needed to satisfy Eq. 5.10-2.
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Act on the Plan
We begin by finding the Th�evenin equivalent of the strain gauge bridge. This requires two calculations: one to find
the open-circuit voltage, vt, and the other to find the Th�evenin resistance Rt. Figure 5.10-2a shows the circuit used to
calculate vt. Begin by finding the currents i1 and i2.

i1 ¼ 50 mV

(R � DR)þ (R þ DR)
¼ 50 mV

2R

Similarly i2 ¼ 50 mV

R þ DRð Þ þ R � DRð Þ ¼
50 mV

2R

Then vt ¼ R þ DRð Þi1 � R � DRð Þi2
¼ 2DRð Þ 50 mV

2R

¼ DR

R
50 mV ¼ 50 mV

120V
DR ¼ 0:4167� 10�3

� �
DR

ð5:10-3Þ

Figure 5.10-2b shows the circuit used to calculate Rt. This figure shows that Rt is composed of a series
connection of two resistances, each of which is a parallel connection of two strain gauge resistances

(a) (b)

R – ΔR

R – ΔR

R + ΔR

R
ΔR

R + ΔR

vt =

i1

i2

i = 0

i = 0

50 mV

50 mV+ –

+

–

R – ΔR

R – ΔR

R + ΔR

R
R2 – ΔR2

R + ΔR

Rt =

FIGURE 5.10-2 Calculating (a) the open-circuit voltage, and (b) the Th�evenin resistance of the strain gauge bridge.

Rt ¼ R � DRð Þ R þ DRð Þ
R � DRð Þ þ R þ DRð Þ þ

R þ DRð Þ R � DRð Þ
R þ DRð Þ þ R � DRð Þ ¼ 2

R2 � DR2

2R

Because R is much larger than DR, this equation can be simplified to
Rt ¼ R

In Figure 5.10-3 the strain gauge bridge has been replaced by its Th�evenin equivalent circuit.
This simplification allows us to calculate vi using voltage division

vi ¼ 100 kV

100 kVþ Rt
vt ¼ 0:9988vt ¼ 0:4162� 10�3

� �
DR ð5:10-4Þ

Model the voltmeter as an ideal voltmeter. Then the voltmeter current is i ¼ 0 as shown in Figure 5.10-3. Applying
KVL to the right-hand mesh gives

vo þ 50 0ð Þ � bvi ¼ 0

or vo ¼ bvi ¼ b 0:4162� 10�3
� �

DR ð5:10-5Þ
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Comparing Eq. 5.10-5 to Eq. 5.10-2 shows that the amplifier gain b must satisfy

b 0:4162� 10�3
� � ¼ 5

Hence, the amplifier gain is

b ¼ 12,013

Verify the Proposed Solution
Substituting b ¼ 12,013 into Eq. 5.10-5 gives

vo ¼ 12,013ð Þ 0:4162� 10�3
� �

DR ¼ 4:9998 DR ð5:10-6Þ
which agrees with Eq. 5.10-2.

50 Ω

100 kΩ
+

–

vi

Rt

vt b vi

vo

+

– + –

Voltmeter

+
–

i = 0

FIGURE 5.10-3 Solution to the design problem.

5.11 SUMMARY

Source transformations, summarized in Table 5.11-1, are used to
transform a circuit into an equivalent circuit. A voltage source voc

in series with a resistor Rt can be transformed into a current
source isc¼ voc/Rt and a parallel resistor Rt. Conversely, a current
source isc in parallel with a resistor Rt can be transformed into a
voltage source voc ¼ Rtisc in series with a resistor Rt. The circuits
in Table 5.11-1 are equivalent in the sense that the voltage and
current of all circuit elements in circuit B are unchanged by the
source transformation.
The superposition theorem permits us to determine the
total response of a linear circuit to several independent sources
by finding the response to each independent source separately
and then adding the separate responses algebraically.
Th�evenin and Norton equivalent circuits, summarized in
Table 5.11-2, are used to transform a circuit into a smaller,
yet equivalent, circuit. First the circuit is separated into two
parts, circuit A and circuit B, in Table 5.11-2. Circuit A can
be replaced by either its Th�evenin equivalent circuit or its

Norton equivalent circuit. The circuits in Table 5.11-2 are
equivalent in the sense that the voltage and current of all
circuit elements in circuit B are unchanged by replacing
circuit A with either its Th�evenin equivalent circuit or its
Norton equivalent circuit.
Procedures for calculating the parameters voc, isc, and Rt of
the Th�evenin and Norton equivalent circuits are summarized
in Figures 5.4-3 and 5.4-4.
The goal of many electronic and communications circuits is
to deliver maximum power to a load resistor RL. Maximum
power is attained when RL is set equal to the Th�evenin
resistance Rt of the circuit connected to RL. This results in
maximum power at the load when the series resistance Rt

cannot be reduced.
The computer programs MATLAB and SPICE can be used to
reduce the computational burden of calculating the parame-
ters voc, isc, and Rt of the Th�evenin and Norton equivalent
circuits.

Table 5.11-1 Source Transformations

TH�EVENIN CIRCUIT NORTON CIRCUIT

+
–

Circuit
B

+
–

voc

a

b

Circuit
B

Rt
isc

a

b

Circuit
B

Circuit
B

Rt
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PROBLEMS

Section 5.2 Source Transformations

P 5.2-1 The circuit shown in Figure P 5.2-1a has been
divided into two parts. The circuit shown in Figure P 5.2-1b was
obtained by simplifying the part to the right of the terminals using
source transformations. The part of the circuit to the left of the
terminals was not changed.

(a) Determine the values of Rt and vt in Figure P 5.2-1b.
(b) Determine the values of the current i and the voltage v in

Figure P 5.2-1b. The circuit in Figure P 5.2-1b is equiv-
alent to the circuit in Figure P 5.2-1a. Consequently,
the current i and the voltage v in Figure P 5.2-1a have
the same values as do the current i and the voltage v in
Figure P 5.2-1b.

(c) Determine the value of the current ia in Figure P 5.2-1a.

9 V 0.5 A

i

+
–

+–
4 Ω 2 Ω 2 V

4 Ω 2 Ω

(a)

ia

v

+

–

9 V

i

+
–

+
–

4 Ω

(b)

ia

vt

Rt

v

+

–

Figure P 5.2-1

P 5.2-2 Consider the circuit of Figure P 5.2-2. Find ia by
simplifying the circuit (using source transformations) to a
single-loop circuit so that you need to write only one KVL
equation to find ia.

+
–10 V

ia
2 A

6 Ω

3 Ω

8 Ω

4 Ω

Figure P 5.2-2

P 5.2-3 Find vo using source transformations if i ¼ 5=2 A
in the circuit shown in Figure P 5.2-3.

Hint: Reduce the circuit to a single mesh that contains the
voltage source labeled vo.

Answer: vo ¼ 28 V

6 Ω

20 Ω

3 Ω 10 Ω8 V

16 Ω

3 A

2 A 12 Ω 7 Ω

+ –

+ –
i

v0

Figure P 5.2-3

P 5.2-4 Determine the value of the current ia in the circuit
shown in Figure P 5.2-4.

4 kΩ10 V4 kΩ6 kΩ

3 kΩ12 V 6 V4 kΩ

+ –

+
– +

–
ia

Figure P 5.2-4

Table 5.11-2 Th�evenin and Norton Equivalent Circuits

ORIGINAL CIRCUIT TH�EVENIN CIRCUIT NORTON EQUIVALENT CIRCUIT

a

b

Circuit
B

Circuit
A

+
–

voc

Rt
a

b

Circuit
B

isc Rt

a

b

Circuit
B

Problem available in WileyPLUS at instructor’s discretion.
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P 5.2-5 Use source transformations to find the current ia in
the circuit shown in Figure P 5.2-5.

Answer: ia ¼ 1 A

6 Ω 6 V

4 A

1 A12 V 3 Ω

+–

+
– ia

Figure P 5.2-5

P 5.2-6 Use source transformations to find the value of the
voltage va in Figure P 5.2-6.

Answer: va ¼ 7 V

+
–

+ –

va

+

–

100 Ω

100 Ω 100 Ω 30 mA

8 V

10 V

Figure P 5.2-6

P 5.2-7 Theequivalent circuit inFigureP5.2-7 isobtained from
the original circuit using source transformations and equivalent
resistances. (The lower case letters a and b identify the nodes of
the capacitor in both the original and equivalent circuits.)
Determine the values of Ra, Va, Rb, and Ib in the equivalent circuit

2.2 A
36 V2.5 A

18 Ω
9 Ω10 Ω

18 Ω

32 V

Ca b

original circuit

+
–

+–

+
–

equivalent circuit

R a

I bR bVa

Ca b

Figure P 5.2-7

P 5.2-8 The circuit shown in Figure P 5.2-8 contains an
unspecified resistance R.

(a) Determine the value of the current i when R ¼ 4V.
(b) Determine the value of the voltage v when R ¼ 8V.
(c) Determine the value of R that will cause i ¼ 1 A.
(d) Determine the value of R that will cause v ¼ 16 V.

18 Ω

24 Ω

24 Ω

12 Ω12 V 2 A

i R

v

+
–

+ –

Figure P 5.2-8

P 5.2-9 Determine the value of the power supplied by the
current source in the circuit shown in Figure P 5.2-9.

15 Ω

24 Ω

12 Ω

25 Ω24 V

32 V

2 A+
–

+
–

Figure P 5.2-9

Section 5.3 Superposition

P 5.3-1 The inputs to the circuit shown in Figure P 5.3-1
are the voltage source voltages v1 and v2. The output of the
circuit is the voltage vo. The output is related to the inputs by

vo ¼ av1 þ bv2

where a and b are constants. Determine the values of a and b.

20 Ω 5 Ω

20 Ω+
–

+
–vo v2v1

+

–

Figure P 5.3-1

P 5.3-2 A particular linear circuit has two inputs, v1 and v2,
and one output, vo. Three measurements are made. The first
measurement shows that the output is vo ¼ 4 V when the inputs
are v1 ¼ 2 V and v2 ¼ 0. The second measurement shows that the
output is vo ¼ 10 V when the inputs are v1 ¼ 0 and v2 ¼�2.5 V.
In the third measurement, the inputs are v1 ¼ 3 V and v2 ¼ 3 V.
What is the value of the output in the third measurement?

P 5.3-3 The circuit shown in Figure P 5.3-3 has two
inputs, vs and is, and one output, io. The output is related to the
inputs by the equation

io ¼ ais þ bvs
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Given the following two facts:

The output is io ¼ 0:45Awhen the inputs are is ¼ 0:25 A
and vs ¼ 15 V

and

The output is io ¼ 0:30Awhen the inputs are is ¼ 0:50 A
and vs ¼ 0 V

Determine the values of the constants a and b and the values of
the resistances are R1 and R2.

Answers:a¼0.6 A/A, b¼0.02 A/V, R1¼ 30V, and R2¼20V.

+
– vs is

io R2

R1

Figure P 5.3-3

P 5.3-4 Use superposition to find v for the circuit of
Figure P 5.3-4.

20 Ω
15 Ω6 A9 A10 Ω

v+ –

Figure P 5.3-4

P 5.3-5 Determine v(t), the voltage across the vertical resistor
in the circuit in Figure P 5.3-5.

12 cos(5t ) V40 Ω 

10 Ω 

12 V

+

–

v (t )
+
–

+
–

40 Ω 

Figure P 5.3-5

P 5.3-6 Use superposition to find i for the circuit of
Figure P 5.3-6.

Answer: i ¼ 3.5 mA

4 kΩ 15 V

15 mA

12 kΩ 6 kΩ30 mA2 kΩ
i

+ –

Figure P 5.3-6

P 5.3-7 Determine v(t), the voltage across the 40 Ω resistor in
the circuit in Figure P 5.3-7.

1+ sin(5t ) A40 Ω10 Ω

12+15cos(8t ) V

+ –
+

–

v (t )

Figure P 5.3-7

P 5.3-8 Use superposition to find the value of the current
ix in Figure P 5.3-8.

Answer: ix ¼ 1=6 A

ix

3ix

6 Ω 3 Ω

2 A8 V+
–

+

–

Figure P 5.3-8

*P 5.3-9 The input to the circuit shown in Figure P 5.3-9 is the
voltage source voltage vs. The output is the voltage vo. The
current source current ia is used to adjust the relationship
between the input and output. Design the circuit so that input
and output are related by the equation vo ¼ 2vs þ 9.

ix

A ix

vs ia12 Ω

6 Ω

12 Ω
+

−
vo

+ –

+
–

Figure P 5.3-9

Hint: Determine the required values of A and ia.

P 5.3-10 The circuit shown in Figure P 5.3-10 has three
inputs: v1, v2, and i3. The output of the circuit is vo. The output
is related to the inputs by

vo ¼ av1 þ bv2 þ ci3

where a, b, and c are constants. Determine the values of a, b, and c.

i3v1

v2

10 Ω40 Ω

8 Ω

vo
+
–

+ –
+

–

Figure P 5.3-10

P 5.3-11 Determine the voltage vo(t) for the circuit shown in
Figure P 5.3-11.
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4 ix

ix

10 Ω

12 cos 2t V

40 Ω 10 Ω2 V 5 Ω vo(t)

+

–

+
–

+–

Figure P 5.3-11

P 5.3-12 Determine the value of the voltage vo in the
circuit shown in Figure P 5.3-12.

0.3 A

20 V
96 Ω 32 Ω

30 Ω120 Ω
+
vo
–

+ –

Figure P 5.3-12

P 5.3-13 The input to the circuit shown in Figure P 5.3-13
is the current i1. The output is the voltage vo. The current i2 is
used to adjust the relationship between the input and output.
Determine values of the current i2 and the resistance R, that
cause the output to be related to the input by the equation

vo ¼ �0:5i1 þ 4

i1 i2
8 Ω

2 Ω

8 Ω4 ΩR

a bvo +–

Figure P 5.3-13

P 5.3-14 Determine values of the current ia and the
resistance R for the circuit shown in Figure P 5.3-14.

7 mA

20 kΩ

8 V

4 kΩ

5 kΩ

ia

R

2 mA

+ –

Figure P 5.3-14

P 5.3-15 The circuit shown in Figure P 5.3-15 has three
inputs: v1, i2, and v3. The output of the circuit is the current io.
The output of the circuit is related to the inputs by

i1 ¼ avo þ bv2 þ ci3

where a, b, and c are constants. Determine the values of
a, b, and c.

20 Ω

12 Ω

10 Ω

40 Ω

v1

v3

i2
io

+
–

+
–

Figure P 5.3-15

P 5.3-16 Using the superposition principle, find the value
of the current measured by the ammeter in Figure P 5.3-16a.

Hint: Figure P 5.3-16b shows the circuit after the ideal
ammeter has been replaced by the equivalent short circuit
and a label has been added to indicate the current measured
by the ammeter, im.

Answer: im ¼ 25
3 þ 2

� 3
2 þ 3

5 ¼ 5 � 3 ¼ 2 A

5 A

25 V

2 Ω
3 Ω

Ammeter+–

(a)

2 Ω

im5 A

25 V

3 Ω

+–

(b)

Figure P 5.3-16 (a) A circuit containing two independent
sources. (b) The circuit after the ideal ammeter has been replaced
by the equivalent short circuit and a label has been added to
indicate the current measured by the ammeter, im.

Section 5.4 Th�evenin’s Theorem

P 5.4-1 Determine values of Rt and voc that cause the
circuit shown in Figure P 5.4-1b to be the Th�evenin equivalent
circuit of the circuit in Figure P 5.4-1a.

Hint: Use source transformations and equivalent resistances
to reduce the circuit in Figure P 5.4-1a until it is the circuit in
Figure P 5.4-1b.
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Answer: Rt ¼ 5V and voc ¼ 2 V

3 A voc

Rt

12 V

3 Ω 3 Ω

6 Ω +
–

+
–

a

b

a

b

(a) (b)

Figure P 5.4-1

P 5.4-2 The circuit shown in Figure P 5.4-2b is the Th�evenin
equivalent circuit of the circuit shown in Figure P 5.4-2a.
Find the value of the open-circuit voltage voc and Th�evenin
resistance Rt.

Answer: voc ¼ �12 V and Rt ¼ 16V

+
–

(a) (b)

10 Ω

40 Ω15 V

8 Ω

+
–

voc

Rt

Figure P 5.4-2

P 5.4-3 The circuit shown in Figure P 5.4-3b is the Th�evenin
equivalent circuit of the circuit shown in Figure P 5.4-3a. Find the
value of the open-circuit voltage voc and Th�evenin resistance Rt.

Answer: voc ¼ 2 V and Rt ¼ 4V

+–

(a) (b)

6 Ω

6 Ω

6 Ω

12 V

1 A +
–

voc

Rt

Figure P 5.4-3

P 5.4-4 Find the Th�evenin equivalent circuit for the circuit
shown in Figure P 5.4-4.

+
–

12 Ω

6 Ω

3 Ω

a

b

18 V

10 Ω

Figure P 5.4-4

P 5.4-5 Find the Th�evenin equivalent circuit for the circuit
shown in Figure P 5.4-5.

Answer: voc ¼ �2 V and Rt ¼ �8=3V

+
–

8 Ω

4 Ω

a

b

6 V va

0.75va

–

+

Figure P 5.4-5

P 5.4-6 Find the Th�evenin equivalent circuit for the circuit
shown in Figure P 5.4-6.

+

–
va2va 3 A

a

b

+

–

3 Ω

6 Ω

3 Ω

Figure P 5.4-6

P 5.4-7 The equivalent circuit in Figure P 5.4-7 is obtained by
replacing part of the original circuit by its Th�evenin equivalent
circuit. The values of the parameters of the Th�evenin equivalent
circuit are

voc ¼ 15 V and Rt ¼ 60V

Determine the following:

(a) The values of Vs and Ra. (Four resistors in the original
circuit have equal resistance, Ra.)

(b) The value of Rb required to cause i ¼ 0.2 A.
(c) The value of Rb required to cause v ¼ 12 V.

voc

+
–

Ra

Ra

Vs Ra Rbv

+

–

i

+
–

R t

Rb

original circuit

equivalent circuit

Ra

Figure P 5.4-7
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P 5.4-8 Aresistor,R,wasconnectedtoacircuitboxasshown
in Figure P 5.4-8. The voltage v was measured. The resistance was
changed, and the voltage was measured again. The results are
shown in the table. Determine the Th�evenin equivalent of the
circuit within the box and predict the voltage v when R ¼ 8 kV.

2 kΩ
4 kΩ

6 V
2 V

Circuit v

+

–
R

R v

i

Figure P 5.4-8

P 5.4-9 A resistor, R, was connected to a circuit box as
shown in Figure P 5.4-9. The current i was measured. The
resistance was changed, and the current was measured again.
The results are shown in the table.

(a) Specify the value of R required to cause i ¼ 2 mA.
(b) Given that R > 0, determine the maximum possible value

of the current i.

Hint: Use the data in the table to represent the circuit by a
Th�evenin equivalent.

2 kΩ
4 kΩ

4 mA
3 mA

Circuit v

+

–

R

R i

i

Figure P 5.4-9

P 5.4-10 For the circuit of Figure P 5.4-10, specify the
resistance R that will cause current ib to be 2 mA. The current ia
has units of amps.

Hint: Find the Th�evenin equivalent circuit of the circuit
connected to R.

+
–12 V R

6 kΩ

1 kΩ

2000ia

+ –

ia ib

Figure P 5.4-10

P 5.4-11 For the circuit of Figure P 5.4-11, specify the
value of the resistance RL that will cause current iL to be �2 A.

Answer: RL ¼ 12V

10 A 2 Ω

4i
a

b

+ –

i

iL RL

Figure P 5.4-11

P 5.4-12 The circuit shown in Figure P 5.4-12 contains an
adjustable resistor. The resistance R can be set to any value in
the range 0 
 R 
 100 kV.

(a) Determine the maximum value of the current ia that can be
obtained by adjusting R. Determine the corresponding
value of R.

(b) Determine the maximum value of the voltage va that can be
obtained by adjusting R. Determine the corresponding
value of R.

(c) Determine the maximum value of the power supplied to the
adjustable resistor that can be obtained by adjusting R.
Determine the corresponding value of R.

12 V

R

2 mA

24 kΩ

18 kΩ

12 kΩ
ia

+ −va

+
–

Figure P 5.4-12

P 5.4-13 The circuit shown in Figure P 5.4-13 consists of
two parts, the source (to the left of the terminals) and the load.
The load consists of a single adjustable resistor having resist-
ance 0 
 RL 
 20V. The resistance R is fixed but unspecified.
When RL ¼ 4V, the load current is measured to be io ¼ 0.375 A.
When RL ¼ 8V, the value of the load current is io ¼ 0.300 A.

(a) Determine the value of the load current when RL ¼ 10V.
(b) Determine the value of R.

24 V R

48 Ω

source load

RL

io

+
–

Figure P 5.4-13

P 5.4-14 The circuit shown in Figure P 5.4-14 contains an
unspecified resistance, R. Determine the value of R in each of
the following two ways.

(a) Write and solve mesh equations.
(b) Replace the part of the circuit connected to the resistor R by

a Th�evenin equivalent circuit. Analyze the resulting circuit.

R

0.25 A

40 V

20 Ω 40 Ω

10 Ω20 Ω

+
–

Figure P 5.4-14
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P 5.4-15 Consider the circuit shown in Figure P 5.4-15.
Replace the part of the circuit to the left of terminals a–b by
its Th�evenin equivalent circuit. Determine the value of the
current io.

96 Ω 32 Ω

20 V
32 Ω

30 Ω120 Ω

a

b

io

vo

+

–

+ –

Figure P 5.4-15

P 5.4-16 An ideal voltmeter is modeled as an open circuit. A
more realistic model of a voltmeter is a large resistance. Figure
P 5.4-16a shows a circuit with a voltmeter that measures the
voltage vm. In Figure P 5.4-16b, the voltmeter is replaced by the
model of an ideal voltmeter, an open circuit. The voltmeter
measures vmi, the ideal value of vm.

Voltmeter

200 Ω 10 Ω

50 Ω25 V Rm

200 Ω 10 Ω

50 Ω25 V

200 Ω 10 Ω

50 Ω25 V

(a)

(b)

(c)

+
–

+
–

+
– vm

+

–

vm

+

–

vmi

+

–

Figure P 5.4-16

As Rm ! 1, the voltmeter becomes an ideal voltmeter
and vm ! vmi. When Rm < 1, the voltmeter is not ideal and
vm > vmi. The difference between vm and vmi is a measurement
error caused by the fact that the voltmeter is not ideal.

(a) Determine the value of vmi.
(b) Express the measurement error that occurs when Rm ¼

1000V as a percentage of vmi.
(c) Determine the minimum value of Rm required to ensure

that the measurement error is smaller than 2 percent of vmi.

P 5.4-17 Given that 0 
 R 
 1 in the circuit shown in Figure
P 5.4-17, consider these two observations:

Observation 1: When R ¼ 2V then vR ¼ 4 V and iR ¼ 2 A.

Observation 1: When R ¼ 6V then vR ¼ 6 V and iR ¼ 1 A.

Determine the following:

(a) The maximum value of iR and the value of R that causes iR
to be maximal.

(b) The maximum value of vR and the value of R that causes vR

to be maximal.
(c) The maximum value of pR ¼ iRvR and the value of R that

causes pR to be maximal.

vs
+
–

ia iR

Bia vR R

+

–

24 Ω

6 Ω

Figure P 5.4-17

P 5.4-18 Consider the circuit shown in Figure P 5.4-18.
Determine

(a) The value of vR that occurs when R ¼ 9V.
(b) The value of R that causes vR ¼ 5.4 V.
(c) The value of R that causes iR ¼ 300 mA.

+
–

iR

vR R

+

–

20 Ω 6 Ω

30 Ω300 mA9 V

Figure P 5.4-18

P 5.4-19 The circuit shown in Figure P 5.4-19a can be reduced
to the circuit shown in Figure P 5.4-19b using source transfor-
mations and equivalent resistances. Determine the values of the
source voltage voc and the resistance R.

(a)

(b)

42 Ω

R

C18 V+
– 84 Ω

voc
+
–

46 Ω
C

Figure P 5.4-19
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P 5.4-20 The equivalent circuit in Figure P 5.4-20 is obtained
by replacing part of the original circuit by its Th�evenin
equivalent circuit. The values of the parameters of the Th�evenin
equivalent circuit are

voc ¼ 15 V and Rt ¼ 60 V

Determine the following:

(a) The values of Vs and Ra. (Three resistors in the original
circuit have equal resistance, Ra.)

(b) The value of Rb required to cause i ¼ 0.2 A.
(c) The value of Rb required to cause v ¼ 5 V.

voc

+
–

Ra Ra

Vs Ra Rbv

+

–

i

+
–

R t

Rb

original circuit

equivalent circuit

Figure P 5.4-20

Section 5.5 Norton’s Equivalent Circuit

P 5.5-1 The part of the circuit shown in Figure P 5.5-1a
to the left of the terminals can be reduced to its Norton
equivalent circuit using source transformations and equi-
valent resistance. The resulting Norton equivalent circuit,
shown in Figure P 5.5-1b, will be characterized by the
parameters:

isc ¼ 0:5A and Rt ¼ 20V

(a) Determine the values of vS and R1.
(b) Given that 0 
 R2 
 1, determine the maximum values of

the voltage v and of the power p ¼ vi.

Answers: vs ¼ 37:5 V; R1 ¼ 25V; max v ¼ 10 V and max
p ¼ 1.25 W

+ –

i

v
vs

R1 R2

+

–

50 Ω

50 Ω0.25 A

i

vRt R2

+

–

isc

(a)

(b)

Figure P 5.5-1

P 5.5-2 Two black boxes are shown in Figure P 5.5-2. Box
A contains the Th�evenin equivalent of some linear circuit, and
box B contains the Norton equivalent of the same circuit. With
access to just the outsides of the boxes and their terminals, how
can you determine which is which, using only one shorting wire?

1 Ω1 A

a

b

1 V

1 Ω a

b

Box A Box B

+
–

Figure P 5.5-2 Black boxes problem.

P 5.5-3 The circuit shown in Figure P 5.5-3a can be reduced
to the circuit shown in Figure P 5.5-3b using source transfor-
mations and equivalent resistances. Determine the values of the
source current isc and the resistance R.

80 Ω

i sc

L

L

R
160 Ω

48 Ω

4.8 A

(a)

(b)

Figure P 5.5-3
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P 5.5-4 Find the Norton equivalent circuit for the circuit
shown in Figure P 5.5-4.

4 A 5 A

5 Ω3 Ω

8 Ω

a

b

Figure P 5.5-4

P 5.5-5 The circuit shown in Figure P 5.5-5b is the Norton
equivalent circuit of the circuit shown in Figure P 5.5-5a.
Find the value of the short-circuit current isc and Th�evenin
resistance Rt.

Answer: isc ¼ 1.13 A and Rt ¼ 7.57V

+
–

(a) (b)

3 Ω

6 Ω Rt10 V

5 Ω

isc
2ia

+–

ia

Figure P 5.5-5

P 5.5-6 The circuit shown in Figure P 5.5-6b is the Norton
equivalentcircuitof thecircuit showninFigureP5.5-6a.Find the
value of the short-circuit current isc and Th�evenin resistance Rt.

Answer: isc ¼ �24 A and Rt ¼ �3V

–
+

(a) (b)

3 Ω 6 Ω

Rt1.33va24 V iscva

+

–

Figure P 5.5-6

P 5.5-7 Determine the value of the resistance R in the circuit
shown in Figure P 5.5-7 by each of the following methods:

(a) Replace the part of the circuit to the left of terminals a–b by
its Norton equivalent circuit. Use current division to
determine the value of R.

(b) Analyze the circuit shown Figure P 5.5-7 using mesh equa-
tions. Solve the mesh equations to determine the value of R.

5 kΩ 10 kΩ

0.5 mA4 ib
ib

b

R25 V

a

+
–

Figure P 5.5-7

P 5.5-8 Find the Norton equivalent circuit for the circuit
shown in Figure P 5.5-8.

6 Ω

4 Ω 1 Ω

3 Ω2.5 A

2 ix
a

b

ix

+ –

Figure P 5.5-8

P 5.5-9 Find the Norton equivalent circuit for the circuit
shown in Figure P 5.5-9.

a

b

3 Ω
5 Ω

4 Ω

2.5 v1

v1

+

–
1 3 A

Figure P 5.5-9

P 5.5-10 An ideal ammeter is modeled as a short circuit. A
more realistic model of an ammeter is a small resistance. Figure
P 5.5-10a shows a circuit with an ammeter that measures the
current im. In Figure P 5.5-10b, the ammeter is replaced by the
model of an ideal ammeter, a short circuit. The ammeter
measures imi, the ideal value of im.

Ammeter

im

imi

3 mA

4 kΩ

4 kΩ 2 kΩ

im

3 mA 4 kΩ

4 kΩ

4 kΩ

2 kΩ

3 mA 4 kΩ 2 kΩ

Rm

(a)

(b)

(c)

Figure P 5.5-10
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As Rm ! 0, the ammeter becomes an ideal ammeter and
im ! imi. When Rm > 0, the ammeter is not ideal and im < imi.
The difference between im and imi is a measurement error
caused by the fact that the ammeter is not ideal.

(a) Determine the value of imi.
(b) Express the measurement error that occurs when Rm ¼

20V as a percentage of imi.
(c) Determine the maximum value of Rm required to ensure

that the measurement error is smaller than 2 percent of imi.

P 5.5-11 Determine values of Rt and isc that cause the circuit
shown in Figure P 5.5-11b to be the Norton equivalent circuit
of the circuit in Figure P 5.5-11a.

Answer: Rt ¼ 3V and isc ¼ �2 A

isc Rt12 V

6 Ω 3 Ω

+
–

a

b

a

b

+

–
ia

2ia

(a) (b)

Figure P 5.5-11

P 5.5-12 Use Norton’s theorem to formulate a general
expression for the current i in terms of the variable resistance R
shown in Figure P 5.5-12.

Answer: i ¼ 20=(8 þ R) A

30 V +
– i

12 Ω 8 Ω

16 ΩR

a

b

Figure P 5.5-12

Section 5.6 Maximum Power Transfer

P 5.6-1 The circuit shown in Figure P 5.6-1 consists of two
parts separated by a pair of terminals. Consider the part of the
circuit to the left of the terminals. The open circuit voltage is
voc ¼ 8 V, and short-circuit current is isc ¼ 2 A. Determine the
values of (a) the voltage source voltage vs and the resistance R2,
and (b) the resistance R that maximizes the power delivered to
the resistor to the right of the terminals, and the corresponding
maximum power.

vs

8 Ω R2

R+
–

+

–

ia

4 ia

i

v

+

–

Figure P 5.6-1

P 5.6-2 The circuit model for a photovoltaic cell is given
in Figure P 5.6-2 (Edelson, 1992). The current is is proportional
to the solar insolation (kW/m2).

(a) Find the load resistance, RL, for maximum power transfer.
(b) Find the maximum power transferred when is ¼ 1 A.

is RL

1 Ω

100 Ω

Figure P 5.6-2 Circuit model of a photovoltaic cell.

P 5.6-3 For the circuit in Figure P 5.6-3, (a) find R such
that maximum power is dissipated in R, and (b) calculate the
value of maximum power.

Answer: R ¼ 60V and Pmax ¼ 54 mW

R

100 Ω150 Ω

6 V 2 V+
–

+
–

Figure P 5.6-3

P 5.6-4 For the circuit in Figure P 5.6-4, prove that for Rs

variable and RL fixed, the power dissipated in RL is maximum
when Rs ¼ 0.

vs RL

Rs

+
–

source
network

load

Figure P 5.6-4

P 5.6-5 Determine the maximum power that can be
absorbed by a resistor, R, connected to terminals a–b of the
circuit shown in Figure P 5.6-5. Specify the required value of R.

20 A

20 Ω

8 Ω a

10 Ω

120 Ω 50 Ω

b

Figure P 5.6-5 Bridge circuit.
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P 5.6-6 Figure P 5.6-6 shows a source connected to a load
through an amplifier. The load can safely receive up to 15 W of
power. Consider three cases:

(a) A ¼ 20 V/V and Ro ¼ 10V. Determine the value of RL that
maximizes the power delivered to the load and the corre-
sponding maximum load power.

(b) A ¼ 20 V/V and RL ¼ 8V. Determine the value of Ro that
maximizes the power delivered to the load and the corre-
sponding maximum load power.

(c) Ro ¼ 10V and RL ¼ 8V. Determine the value of A that
maximizes the power delivered to the load and the corre-
sponding maximum load power.

500 mV 100 kΩ va

source amplifier load

RL

Ro

Ava
+
–

+

–

+

–

Figure P 5.6-6

P 5.6-7 The circuit in Figure P 5.6-7 contains a variable
resistance, R, implemented using a potentiometer. The resistance
of the variable resistor varies over the range 0 
 R 
 1000V.
The variable resistor can safely receive 1=4 W power. Determine
the maximum power received by the variable resistor. Is the circuit
safe?

180 Ω

150 Ω 470 Ω

120 Ω

10 V 20 V

R

+
–

+
–

Figure P 5.6-7

P 5.6-8 For the circuit of Figure P 5.6-8, find the power
delivered to the load when RL is fixed and Rt may be varied
between 1V and 5V. Select Rt so that maximum power is
delivered to RL.

Answer: 13.9 W

10 V +
– RL = 5 Ω

Rt

Figure P 5.6-8

P 5.6-9 A resistive circuit was connected to a variable resistor,
and the power delivered to the resistor was measured as shown in
Figure P 5.6-9. Determine the Th�evenin equivalent circuit.

Answer: Rt ¼ 20V and voc ¼ 20 V

10 20 30

5

Power
(W)

400 

R (ohms)

Figure P 5.6-9

P 5.6-10 The part circuit shown in Figure P 5.6-10a to left of
the terminals can be reduced to its Norton equivalent circuit
using source transformations and equivalent resistance. The
resulting Norton equivalent circuit, shown in Figure P 5.6-10b,
will be characterized by the parameters:

isc ¼ 1:5A and Rt ¼ 80V

(a) Determine the values of is and R1.
(b) Given that 0 
 R2 
 1, determine the maximum value of

p = vi, the power delivered to R2.

50 Ω +

–

i s vR1

i

R2
25 V +

–

50 Ω
(a)

+

–

v

i

R2Rt
i sc

(b)

Figure P 5.6-10

P 5.6-11 Given that 0 
 R 
 1 in the circuit shown in Figure
P 5.6-11, determine (a) maximum value of ia, (b) the maximum
value of va, and (c) the maximum value of pa = ia va.

+
– v a

+

−
8 Ω R

4 Ω

12 V

i a

Figure P 5.6-11

P 5.6-12 Given that 0 
 R 
 1 in the circuit shown in
Figure P 5.6-12, determine value of R that maximizes the
power pa = ia va and the corresponding maximum value of pa.
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–

v a

+

−

20 Ω R

8 Ω

6 V

i a 2 Ω

Figure P 5.6-12

Section 5.8 Using PSpice to Determine the Th�evenin
Equivalent Circuit

P 5.8-1 The circuit shown in Figure P 5.8-1 is separated into two
parts by a pair of terminals. Call the part of the circuit to the left of
the terminals circuit A and the part of the circuit to the right of the
terminal circuit B. Use PSpice to do the following:

(a) Determine the node voltages for the entire circuit.
(b) Determine the Th�evenin equivalent circuit of circuit A.
(c) Replace circuit A by its Th�evenin equivalent and determine

the node voltages of the modified circuit.
(d) Compare the node voltages of circuit B before and after

replacing circuit A by its Th�evenin equivalent.

+
–

60 Ω

10 Ω 10 Ω

15 Ω10 Ω20 Ω

10 Ω

12 Ω

40 Ω

250 mA15 V

Figure P 5.8-1

Section 5.9 How CanWe Check . . . ?

P 5.9-1 For the circuit of Figure P 5.9-1, the current i has been
measured for three different values of R and is listed in the
table. Are the data consistent?

4 kΩ

4 kΩ1 kΩ

R

10 V

ix

i

5000ix
+
–+ –

R(Ω) i(mA)

5000
500

0

16.5
43.8
97.2

Figure P 5.9-1

P 5.9-2 Your lab partner built the circuit shown in
Figure P 5.9-2 and measured the current i and voltage v
corresponding to several values of the resistance R. The results
are shown in the table in Figure P 5.9-2. Your lab partner says

that RL ¼ 8000V is required to cause i ¼ 1 mA. Do you agree?
Justify your answer.

6 kΩ

18 kΩ2 mA 12 kΩ

24 kΩ

+
–

i

v

R

R vi

+ –

12 V

open
10 kΩ
short

0 mA
0.857 mA

3 mA

12 V
8.57 V

0 V

Figure P 5.9-2

P 5.9-3 In preparation for lab, your lab partner determined the
Th�evenin equivalent of the circuit connected to RL in Figure
P 5.9-3. She says that the Th�evenin resistance is Rt ¼ 6

11 R and

the open-circuit voltage is voc ¼ 60
11 V. In lab, you built the circuit

using R ¼ 110V and RL ¼ 40V and measured that i ¼ 54.5 mA.
Is this measurement consistent with the prelab calculations? Justify
your answers.

+
–

+
–

+
–

Load

3R

2R

R

RL

30 V

20 V

10 V

i

Figure P 5.9-3

P 5.9-4 Your lab partner claims that the current i in Figure
P 5.9-4 will be no greater than 12.0 mA, regardless of the value
of the resistance R. Do you agree?

+
–12 V 3 kΩ 6 kΩ

500 Ω

1500 Ω

i

R

Figure P 5.9-4
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P 5.9-5 Figure P 5.9-5 shows a circuit and some correspond-
ing data. Two resistances, R1 and R, and the current source
current are unspecified. The tabulated data provide values of
the current i and voltage v corresponding to several values of
the resistance R.

(a) Consider replacing the part of the circuit connected to the
resistor R by a Th�evenin equivalent circuit. Use the data in
rows 2 and 3 of the table to find the values of Rt and voc, the
Th�evenin resistance, and the open-circuit voltage.

18 Ω

12 Ω

+
–

i

R

R1

is
12 V 24 Ω

v

+

–

(a)

R, Ω v, Vi, A

0
10
20
40
80

3
1.333
0.857

0.5
?

0
13.33
17.14

?
21.82

(b)

Figure P 5.9-5

(b)
Use the results of part (a) to verify that the tabulated data
are consistent.

(c) Fill in the blanks in the table.
(d) Determine the values of R1 and is.

PSpice Problems

SP 5-1 The circuit in Figure SP 5-1 has three inputs: v1, v2,
and i3. The circuit has one output, vo. The equation

vo ¼ a v1 þ b v2 þ c i3

expresses the output as a function of the inputs. The
coefficients a, b, and c are real constants.

(a) Use PSpice and the principle of superposition to determine
the values of a, b, and c.

(b) Suppose v1 ¼ 10 V and v2 ¼ 8 V, and we want the output to
be vo ¼ 7 V. What is the required value of i3?

Hint: The output is given by vo¼ a when v1¼1 V, v2¼0 V, and
i3 ¼ 0 A.

+
–

+ –

vo

v2

i3v1

+

–

100 Ω

100 Ω 100 Ω

Figure SP 5-1

Answer: (a) vo ¼ 0.3333v1 þ 0.3333v2 þ 33.33i3, (b) i3 ¼ 30
mA

SP 5-2 The pair of terminals a–b partitions the circuit in
Figure SP 5-2 into two parts. Denote the node voltages at
nodes 1 and 2 as v1 and v2. Use PSpice to demonstrate that
performing a source transformation on the part of the circuit to
the left of the terminal does not change anything to the right of
the terminals. In particular, show that the current io and the node
voltages v1 and v2 have the same values after the source
transformation as before the source transformation.

+
–

+ –
100 Ω 8 V

a 1 2

b

10 V 100 Ω 100 Ω 30 mAio

Figure SP 5-2
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SP 5-3 Use PSpice to find the Th�evenin equivalent circuit
for the circuit shown in Figure SP 5-3.

Answer: voc ¼ �2 V and Rt ¼ �8=3V

+
–

8 Ω

4 Ω

a

b

6 V va

0.75va

–

+

Figure SP 5-3

SP 5-4 The circuit shown in Figure SP 5-4b is the Norton
equivalent circuit of the circuit shown in Figure SP 5-4a.
Find the value of the short-circuit current isc and Th�evenin
resistance Rt.

Answer: isc ¼ 1.13 V and Rt ¼ 7.57V

+
–

(a) (b)

3 Ω

6 Ω Rt10 V

5 Ω

isc
2ia

+–

ia

Figure SP 5-4

Design Problems

DP 5-1 The circuit shown in Figure DP 5-1a has four un-
specified circuit parameters: vs, R1, R2, and R3. To design this
circuit, we must specify the values of these four parameters. The
graph shown in Figure DP 5-1b describes a relationship between
the current i and the voltage v.

R2

R3

vs

R1 i

+

–

v+
–

v, V

i, mA

–2

–4

–6

–8

2

4

6

2 4 6 8–2–4–6

(a)

(b)

Figure DP 5-1

Specify values of vs, R1, R2, and R3 that cause the current i
and the voltage v in Figure DP 5-1a to satisfy the relationship
described by the graph in Figure DP 5-1b.

First Hint: The equation representing the straight line in Figure
DP 5-1b is

v ¼ �Rti þ voc
That is, the slope of the line is equal to �1 times the Th�evenin
resistance, and the v-intercept is equal to the open-circuit voltage.

Second Hint: There is more than one correct answer to this
problem. Try setting R1 ¼ R2.

DP 5-2 The circuit shown in Figure DP 5-2a has four un-
specified circuit parameters: is, R1, R2, and R3. To design this
circuit, we must specify the values of these four parameters. The
graph shown in Figure DP 5-2b describes a relationship between
the current i and the voltage v.

Specify values of is, R1, R2, and R3 that cause the current i
and the voltage v in Figure DP 5-2a to satisfy the relationship
described by the graph in Figure DP 5-2b.

First Hint: Calculate the open-circuit voltage voc and the
Th�evenin resistance Rt, of the part of the circuit to the left of
the terminals in Figure DP 5-2a.

Second Hint: The equation representing the straight line in
Figure DP 5-2b is

v ¼ �Rti þ voc
That is, the slope of the line is equal to �1 times the Th�evenin
resistance, and the v-intercept is equal to the open-circuit
voltage.

Third Hint: There is more than one correct answer to this
problem. Try setting both R3 and R1 þ R2 equal to twice the
slope of the graph in Figure DP 5-2b.

R3R1

R2

is

i

+

–

v

(a)
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v, V

i, mA

–2

–4

–6

–8

2

4

6

2 4 6 8–2–4–6

(b)

Figure DP 5-2

DP 5-3 The circuit shown in Figure DP 5-3a has four un-
specified circuit parameters: vs, R1, R2, and R3. To design this
circuit, we must specify the values of these four parameters. The
graph shown in Figure DP 5-3b describes a relationship between
the current i and the voltage v.

R2

R3

vs

R1 i

+

–

v+
–

v, V

i, mA

–2

–4

–6

–8

2

4

6

2 4 6 8–2–4–6

(a)

(b)

Figure DP 5-3

Is it possible to specify values of vs, R1, R2, and R3 that
cause the current i and the voltage v in Figure DP 5-1a to satisfy
the relationship described by the graph in Figure DP 5-3b?
Justify your answer.

DP 5-4 The circuit shown in Figure DP 5-4a has four un-
specified circuit parameters: vs, R1, R2, and d, where d is the gain
of the CCCS. To design this circuit, we must specify the values
of these four parameters. The graph shown in Figure DP 5-4b
describes a relationship between the current i and the voltage v.

Specify values of vs, R1, R2, and d that cause the current i
and the voltage v in Figure DP 5-4a to satisfy the relationship
described by the graph in Figure DP 5-4b.

First Hint: The equation representing the straight line in Figure
DP 5-4b is

v ¼ �Rti þ voc

That is, the slope of the line is equal to �1 times the Th�evenin
resistance and the v-intercept is equal to the open-circuit
voltage.

Second Hint: There is more than one correct answer to this
problem. Try setting R1 ¼ R2.

dia R2

R1

(a)

vs
+
–

ia i

+

–

v

(b)

v, V

i, mA

–2

–4

–6

–8

2

4

6

2 4 6 8–2–4–6

Figure DP 5-4
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6.1 I n t r o d u c t i o n

This chapter introduces another circuit element, the operational amplifier, or op amp. We will learn how
to analyze and design electric circuits that contain op amps. In particular, we will see that:

� Several models, of varying accuracy and complexity, are available for operational amplifiers. Simple
models are easy to use. Accurate models are more complicated. The simplest model of the
operational amplifier is the ideal operational amplifier.

� Circuits that contain ideal operational amplifiers are analyzed by writing and solving node equations.
� Operational amplifiers can be used to build circuits that perform mathematical operations. Many of

these circuits are widely used and have been named. Figure 6.5-1 provides a catalog of some useful
operational amplifier circuits.

� Practical operational amplifiers have properties that are not included in the ideal operational
amplifier. These include the input offset voltage, bias current, dc gain, input resistance, and output
resistance. More complicated models are needed to account for these properties.

6.2 T h e O p e r a t i o n a l Amp l i f i e r

The operational amplifier is an electronic circuit element designed to be used with other circuit
elements to perform a specified signal-processing operation. The mA741 operational amplifier is shown
in Figure 6.2-1a. It has eight pin connections, whose functions are indicated in Figure 6.2-1b.

The operational amplifier shown in Figure 6.2-2 has five terminals. The names of these terminals
are shown in both Figure 6.2-1b and Figure 6.2-2. Notice the plus and minus signs in the triangular part
of the symbol of the operational amplifier. The plus sign identifies the noninverting input, and the minus
sign identifies the inverting input.

The power supplies are used to bias the operational amplifier. In other words, the power supplies
cause certain conditions that are required for the operational amplifier to function properly. It is 219



inconvenient to include the power supplies in drawings of operational amplifier circuits. These power
supplies tend to clutter drawings of operational amplifier circuits, making them harder to read.
Consequently, the power supplies are frequently omitted from drawings that accompany explanations
of the function of operational amplifier circuits, such as the drawings found in textbooks. It is
understood that power supplies are part of the circuit even though they are not shown. (Schematics, the
drawings used to describe how to assemble a circuit, are a different matter.) The power supply voltages
are shown in Figure 6.2-2, denoted as v+ and v�.

Because the power supplies are frequently omitted from the drawing of an operational amplifier
circuit, it is easy to overlook the power supply currents. This mistake is avoided by careful application
of Kirchhoff’s current law (KCL). As a general rule, it is not helpful to apply KCL in a way that involves
any power supply current. Two specific cases are of particular importance. First, the ground node in
Figure 6.2-2 is a terminal of both power supplies. Both power supply currents would be involved if
KCL were applied to the ground node. These currents must not be overlooked. It is best simply to
refrain from applying KCL at the ground node of an operational amplifier circuit. Second, KCL requires
that the sum of all currents into the operational amplifier be zero:

i1 þ i2 þ io þ iþ þ i� ¼ 0

Both power supply currents are involved in this equation. Once again, these currents must not be
overlooked. It is best simply to refrain from applying KCL to sum the currents into an operational
amplifier when the power supplies are omitted from the circuit diagram.

8

7

6

5

1

2

3

4

–

+

741
Top view No connection

v+ (usually
      +15 V)

v– (usually
      –15 V)

Output

Offset null

Noninverting
input

Inverting input

Offset null

  A
741
μ

in.1 4

in.3 8

(a) (b)

FIGURE 6.2-1 (a) A mA741 integrated circuit has eight connecting pins. (b) The correspondence between the circled
pin numbers of the integrated circuit and the nodes of the operational amplifier.

+
–

+
–

–

+

Noninverting
input node

Inverting
input node

+

–

v2

i2

i1

+

–

vo

+

–

v1

Negative
power supply

node

Positive
power supply

node io
Output
node

i+

v+

i–

v–

FIGURE 6.2-2 An op amp, including power supplies v+ and v�.
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6.3 T h e I d e a l O p e r a t i o n a l Amp l i f i e r

Operational amplifiers are complicated devices that exhibit both linear and nonlinear behavior.
The operational amplifier output voltage and current, vo and io, must satisfy three conditions for an
operational amplifier to be linear, that is:

jvoj � vsat
jioj � isat

dvo(t)

dt

����
���� � SR ð6:3-1Þ

The saturation voltage vsat, the saturation current isat, and the slew rate limit SR are all parameters of an
operational amplifier. For example, if a mA741 operational amplifier is biased using þ15-V and �15-V
power supplies, then

vsat ¼ 14 V; isat ¼ 2 mA; and SR ¼ 500,000
V

s
ð6:3-2Þ

These restrictions reflect the fact that operational amplifiers cannot produce arbitrarily large voltages or
arbitrarily large currents or change output voltage arbitrarily quickly.

Figure 6.3-1 describes the ideal operational amplifier. The ideal operational amplifier is a simple
model of an operational amplifier that is linear. The ideal operational amplifier is characterized by
restrictions on its input currents and voltages. The currents into the input terminals of an ideal
operational amplifier are zero. Consequently, in Figure 6.3-1,

i1 ¼ 0 and i2 ¼ 0

The node voltages at the input nodes of an ideal operational amplifier are equal. Consequently, in
Figure 6.3-1,

v2 ¼ v1

The ideal operational amplifier is a model of a linear operational amplifier, so the operational amplifier
output current and voltage must satisfy the restrictions in Eq. 6.3-1. If they do not, then the ideal
operational amplifier is not an appropriate model of the real operational amplifier. The output current
and voltage depend on the circuit in which the operational amplifier is used. The ideal op amp
conditions are summarized in Table 6.3-1.

–

+
Noninverting
input node

Inverting
input node

+

–

v2 = v1

i2 = 0

i1 = 0

+

–

vo

+

–

v1

io
Output
node

FIGURE 6.3-1 The ideal operational amplifier.

Table 6.3-1 Operating Conditions for an Ideal Operational Amplifier

VARIABLE IDEAL CONDITION

Inverting node input current i1 ¼ 0

Noninverting node input current i2 ¼ 0

Voltage difference between inverting node voltage v1 and
noninverting node voltage v2

v2�v1¼ 0
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E X A M P L E 6 . 3 - 1 Ideal Operational Amplifier

Consider the circuit shown in Figure 6.3.2a. Suppose the operational amplifier is a mA741 operational amplifier.
Model the operational amplifier as an ideal operational amplifier. Determine how the output voltage vo is related to
the input voltage vs.

–

+

Noninverting
input node

Inverting
input node

v1 = vo

v2 = v1 = vo
i2 = 0

i1 = 0
io

Output
node

–

+v2

i2

i1

+

–

vo

++

–

– vo

v1 io

+
–

Rs
RL

vs +
–

Rs
RL

vs

(b)(a)

0

FIGURE 6.3-2 (a) The
operational amplifier
circuit for Example 6.3-1
and (b) an equivalent
circuit showing the
consequences of modeling
the operational amplifier
as an ideal operational
amplifier. The voltages v1,
v2, and vo are node
voltages.

Solution
Figure 6.3-2b shows the circuit when the operational amplifier of Figure 6.3-2a is modeled as an ideal operational
amplifier.

1. The inverting input node and output node of the operational amplifier are connected by a short circuit, so the
node voltages at these nodes are equal:

v1 ¼ vo

2. The voltages at the inverting and noninverting nodes of an ideal op amp are equal:

v2 ¼ v1 ¼ vo

3. The currents into the inverting and noninverting nodes of an operational amplifier are zero, so

i1 ¼ 0 and i2 ¼ 0

4. The current in resistor Rs is i2 ¼ 0, so the voltage across Rs is 0 V. The voltage across Rs is vs � v2 ¼ vs � vo;
hence,

vs � vo ¼ 0

or vs ¼ vo

Does this solution satisfy the requirements of Eqs. 6.3-1 and 6.3-2? The output current of the operational amplifier
must be calculated. Apply KCL at the output node of the operational amplifier to get

i1 þ io þ vo
RL

¼ 0
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6.4 No d a l A n a l y s i s o f C i r c u i t s C o n t a i n i n g
I d e a l O p e r a t i o n a l Amp l i f i e r s

It is convenient to use node equations to analyze circuits containing ideal operational
amplifiers.

There are three things to remember.

1. The node voltages at the input nodes of ideal operational amplifiers are equal. Thus, one of these
two node voltages can be eliminated from the node equations. For example, in Figure 6.4-1, the
voltages at the input nodes of the ideal operational amplifier are v1 and v2. Because

v1 ¼ v2

v2 can be eliminated from the node equations.

Because i1 ¼ 0, io ¼ � vo
RL

Now Eqs. 6.3-1 and 6.3-2 require

jvsj � 14 V

vs
RL

����
���� � 2 mA

d

dt
vs

����
���� � 500,000

V

s

For example, when vs ¼ 10 V and RL ¼ 20 kV, then

jvsj ¼ 10 V < 14 V

vs
RL

����
���� ¼ 10

20,000
¼ 1

2
mA < 2 mA

d

dt
vs

����
���� ¼ 0 < 500,000

V

s

This is consistent with the use of the ideal operational amplifier. On the other hand, when vs ¼ 10 V and
RL ¼ 2 kV, then

vs
RL

¼ 5 mA > 2 mA

so it is not appropriate to model the mA741 as an ideal operational amplifier when vs ¼ 10 V and RL ¼ 2 kV.
When vs ¼ 10 V, we require RL > 5 kV to satisfy Eq. 6.3-1.
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2. The currents in the input leads of an ideal operational amplifier are zero. These currents are involved
in the KCL equations at the input nodes of the operational amplifier.

3. The output current of the operational amplifier is not zero. This current is involved in the KCL
equations at the output node of the operational amplifier. Applying KCL at this node adds another
unknown to the node equations. If the output current of the operational amplifier is not to be
determined, then it is not necessary to apply KCL at the output node of the operational amplifier.

E X A M P L E 6 . 4 - 1 Difference Amplifier

The circuit shown in Figure 6.4-1 is called a difference amplifier. The operational amplifier has been modeled as an
ideal operational amplifier. Use node equations to analyze this circuit and determine vo in terms of the two source
voltages va and vb.

–

+

Noninverting
input node

Inverting
input node

v1

 v2 = v1

i2 = 0

i1 = 0
io

Output
node

+

–

vo+
–

+
–

vb

va

30 kΩ
50 kΩ

10 kΩ

10 kΩ

30 kΩ

FIGURE 6.4-1 Circuit of Example 6.4-1.

Solution
The node equation at the noninverting node of the ideal operational amplifier is

v2
30,000

þ v2 � vb
10,000

þ i2 ¼ 0

Because v2 ¼ v1 and i2 ¼ 0, this equation becomes
v1

30,000
þ v1 � vb

10,000
¼ 0

Solving for v1, we have

v1 ¼ 0:75 � vb

The node equation at the inverting node of the ideal operational amplifier is
v1 � va
10,000

þ v1 � vo
30,000

þ i1 ¼ 0

Because v1¼ 0.75vb and i1 ¼ 0, this equation becomes
0:75 � vb � va

10,000
þ 0:75 � vb � vo

30,000
¼ 0

Solving for vo, we have

vo ¼ 3(vb � va)

The difference amplifier takes its name from the fact that the output voltage vo is a function of the difference,
vb � va, of the input voltages.

Try it 
yourself 

in WileyPLUS
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E X A M P L E 6 . 4 - 2 Analysis of a Bridge Amplifier

Next, consider the circuit shown in Figure 6.4-2a. This circuit is called a bridge amplifier. The part of the circuit that is
called a bridge is shown in Figure 6.4-2b. The operational amplifier and resistors R5 and R6 are used to amplify the output
of the bridge. The operational amplifier in Figure 6.4-2a has been modeled as an ideal operational amplifier. As a
consequence, v1 ¼ 0 and i1 ¼ 0, as shown. Determine the output voltage vo in terms of the source voltage vs.

R4R3

R1 R2

R5

R6

vs

+ –

–

+

i1 = 0

v1 = 0 vo

+

–

a

b

R5

Rt R6

voc

–

+

i1 = 0

v1 = 0 vo

+

–

a

b

R4R3

R1 R2

vs

+ –

a

b

+
–

Rt =

voc = vs

a

b

+
–

R1R2 R3R4
R1 + R2 R3 + R4

+

R2 R4
R1 + R2 R3 + R4

–

(b)(a)

(c) (d)

FIGURE 6.4-2 (a) A bridge amplifier, including
the bridge circuit. (b) The bridge circuit and (c) its
Th�evenin equivalent circuit. (d) The bridge
amplifier, including the Th�evenin equivalent of
the bridge.

Solution
Here is an opportunity to use Th�evenin’s theorem. Figure 6.4-2c shows the Th�evenin equivalent of the bridge
circuit. Figure 6.4-2d shows the bridge amplifier after the bridge has been replaced by its Th�evenin equivalent.
Figure 6.4-2d is simpler than Figure 6.4-2a. It is easier to write and solve the node equations representing Figure
6.4-2d than it is to write and solve the node equations representing Figure 6.4-2a. Th�evenin’s theorem assures us
that the voltage vo in Figure 6.4-2d is the same as the voltage vo in Figure 6.4-2a.

Let us write node equations representing the circuit in Figure 6.4-2d. First, notice that the node voltage va is
given by (using KVL)

va ¼ v1 þ voc þ Rti1

Because v1 ¼ 0 and i1 ¼ 0,

va ¼ voc

Try it 
yourself 
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Now, writing the node equation at node a

i1 þ va � vo
R5

þ va
R6

¼ 0

Because va¼ voc and i1 ¼ 0,
voc � vo

R5
þ voc

R6
¼ 0

Solving for vo, we have

vo ¼ 1þ R5

R6

� �
voc ¼ 1þ R5

R6

� �
R2

R1 þ R2
� R4

R3 þ R4

� �
vs

E X A M P L E 6 . 4 - 3 Analysis of an Op Amp Circuit
Using Node Equations

Consider the circuit shown in Figure 6.4-3. Find
the value of the voltage measured by the
voltmeter.

Solution
Figure 6.4-4 shows the circuit from Figure 6.4-3
after replacing the voltmeter by an equivalent open
circuit and labeling the voltage measured by the
voltmeter. We will analyze this circuit by writing
and solving node equations. The nodes of the
circuit are numbered in Figure 6.4-4. Let v1, v2,
v3, and v4 denote the node voltages at nodes 1, 2, 3,
and 4, respectively.

The output of this circuit is the voltage
measured by the voltmeter. The output voltage
is related to the node voltages by

vm ¼ v4 � 0 ¼ v4

The inputs to this circuit are the voltage of
the voltage source and the currents of the current
sources. The voltage of the voltage source is
related to the node voltages at the nodes of the
voltage source by

0� v3 ¼ 2:75 ) v3 ¼ �2:75 V

Apply KCL to node 2 to get

v3 � v2
30,000

¼ 0þ 60� 10�6 ) v3 � v2 ¼ 1:8 V

Using v3 ¼ �2:75 V gives
v2 ¼ �4:55 V

+
–

–

+ Voltmeter

20 Aμ

60 Aμ

30 kΩ

45 kΩ

40 kΩ

2.75 V

FIGURE 6.4-3 The circuit considered in Example 6.4-3.

+
–

–

+

20 Aμ

60 Aμ

30 kΩ

40 kΩ

2.75 V

0 A

0 A

4
3

2

1

vm

+

–

FIGURE 6.4-4 The circuit from Figure 6.4-3 after replacing the
voltmeter by an open circuit and labeling the nodes. (Circled numbers
are node numbers.)
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The noninverting input of the op amp is connected to node 2. The node voltage at the inverting input of an
ideal op amp is equal to the node voltage at the noninverting input. The inverting input of the op amp is connected to
node 1. Consequently,

v1 ¼ v2 ¼ �4:55 V

Apply KCL to node 1 to get

20� 10�6 ¼ 0þ v1 � v4
40,000

) v1 � v4 ¼ 0:8 V

Using vm ¼ v4 and v1 ¼ �4:55 V gives the value of the voltage measured by the voltmeter to be

vm ¼ �4:55� 0:8 ¼ �5:35 V

E X A M P L E 6 . 4 - 4 Analysis of an Op Amp Circuit

Consider the circuit shown in Figure 6.4-5. Find
the value of the voltage measured by the
voltmeter.

Solution
Figure 6.4-6 shows the circuit from Figure 6.4-5
after replacing the voltmeter by an equivalent open
circuit and labeling the voltage measured by the
voltmeter. We will analyze this circuit by writing
and solving node equations. Figure 6.4-6 shows
the circuit after numbering the nodes. Let v1, v2, v3,
and v4 denote the node voltages at nodes 1, 2, 3,
and 4, respectively.

The input to this circuit is the voltage of the
voltage source. This input is related to the node
voltages at the nodes of the voltage source by

0� v1 ¼ 3:35 ) v1 ¼ �3:35 V

The output of this circuit is the voltage measured
by the voltmeter. The output voltage is related to
the node voltages by

vm ¼ v4 � 0 ¼ v4

The noninverting input of the op amp is connected to
the reference node. The node voltage at the inverting
input of an ideal op amp is equal to the node voltage
at the noninverting input. The inverting input of the
op amp is connected to node 2. Consequently,

v2 ¼ 0 V
Apply KCL to node 2 to get

v1 � v2
20,000

¼ 0þ v2 � v3
40,000

) v3 ¼ �2v1 þ 3v2 ¼ �2v1

Voltmeter
–

+
+
–

40 kΩ

20 kΩ

20 kΩ

10 kΩ

8 kΩ

3.35 V

FIGURE 6.4-5 The circuit considered in Example 6.4-4.

–

+

+
–

40 kΩ

20 kΩ

20 kΩ

10 kΩ

8 kΩ

3.35 V
0 A

1
2

3

4

vm

+

–

FIGURE 6.4-6 The circuit from Figure 6.4-5 after replacing the
voltmeter by an open circuit and labeling the nodes. (Circled
numbers are node numbers.)
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6.5 D e s i g n U s i n g O p e r a t i o n a l Amp l i f i e r s

One of the early applications of operational amplifiers was to build circuits that performed mathematical
operations. Indeed, the operational amplifier takes its name from this important application. Many of the
operational amplifier circuits that perform mathematical operations are used so often that they have been
given names. These names are part of an electrical engineer’s vocabulary. Figure 6.5-1 shows several
standard operational amplifier circuits. The next several examples show how to use Figure 6.5-1 to design
simple operational amplifier circuits.

Apply KCL to node 3 to get

v2 � v3
40,000

¼ v3
10,000

þ v3 � v4
8000

) 5v4 ¼ �v2 þ 10v3 ¼ 10v3

Combining these equations gives

v4 ¼ 2v3 ¼ �4v1

Using vm ¼ v4 and v1 ¼ �3:35 V gives the value of the voltage measured by the voltmeter to be

vm ¼ �4 �3:35ð Þ ¼ 13:4 V

FIGURE 6.5-1 A brief catalog of operational amplifier circuits. Note that all node voltages are referenced to the ground node.

+

–

(e) Noninverting summing amplifier

v1

v2

v3

vout = K4(K1v1 + K2v2 + K3v3)

Rb(K4 – 1)

Rb

Ra/K1

Ra/K2

Ra/K3

Ra/(1 – (K1 + K2 + K3))

1 +

–

+

–

+

–

+

+

–

(b) Noninverting amplifier(a) Inverting amplifier (c) Voltage follower (buffer amplifier)

(d) Summing amplifier

vin

vin

vinvout =

Rf

Rf

R1

v2

v1

R2

Rn

vn

R1

Rf

R1

Rf

R1

vout

+ + vnv1 + . . .v2vout = –
Rf

R1

Rf

R2

Rf

Rn

vin vinvout = –
Rf

R1

vinvout = 

. . .
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FIGURE 6.5-1 (Continued )

E X A M P L E 6 . 5 - 1 Preventing Loading Using
a Voltage Follower

This example illustrates the use of a voltage follower to prevent loading. The voltage follower is shown in Figure
6.5-1c. Loading can occur when two circuits are connected. Consider Figure 6.5-2. In Figure 6.5-2a, the output of
circuit 1 is the voltage va. In Figure 6.5-2b, circuit 2 is connected to circuit 1. The output of circuit 1 is used as the
input to circuit 2. Unfortunately, connecting circuit 2 to circuit 1 can change the output of circuit 1. This is called
loading. Referring again to Figure 6.5-2, circuit 2 is said to load circuit 1 if vb 6¼ va. The current ib is called the load
current. Circuit 1 is required to provide this current in Figure 6.5-2b but not in Figure 6.5-2a. This is the cause of the
loading. The load current can be eliminated using a voltage follower as shown in Figure 6.5-2c. The voltage follower
copies voltage va from the output of circuit 1 to the input of circuit 2 without disturbing circuit 1.

Circuit
1

Circuit
2

+

–

+

–
va vc = va

Circuit
1

Circuit
2

+

–
vb

Circuit
1

+

–
va

ia = 0 ia = 0ib ic–

+

(b)(a) (c)

FIGURE 6.5-2 Circuit 1 (a) before and (b) after circuit 2 is connected. (c) Preventing loading, using a voltage follower.

–

+
–

+
–

+

(f) Difference amplifier (g) Current-to-voltage converter (h) Negative resistance convertor

v2

v1 R3

R2R1

R1 R2

R1 R2

iinvout =
–R1R3

R2(v2 – v1)

iin

Rf
vout = 

R2
R1

–Rf iinvout = 

iin

+

–

–

+

(i) Voltage-controlled
current source (VCCS)

(j) Bridge amplifier

vin

R1 R2

R1

RL

R2

R1 + R2

R2R5

R6 R3 + R4

R4

iout = 
vin
R1

R4R3

R1 R2

R5

R6

vs

+ –

–

+
vout = vs1 + –
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+

–

vc = vavb

+

–

va

ia = 0 ib ic–

+

(b)(a) (c)

+
–

120 kΩ

60 kΩvin

+

–

va

ia = 0

+
–

120 kΩ

60 kΩvin

+

–

+
–

120 kΩ

60 kΩ 30 kΩ 30 kΩvin

FIGURE 6.5-3 A voltage divider (a) before and (b) after a 30-kV resistor is added. (c) A voltage follower is added to prevent
loading.

Solution
As a specific example, consider Figure 6.5-3. The voltage divider shown in Figure 6.5-3a can be analyzed by
writing a node equation at node 1:

va � vin
20,000

þ va
60,000

¼ 0

Solving for va, we have va ¼ 3

4
vin

In Figure 6.5-3b, a resistor is connected across the output of the voltage divider. This circuit can be analyzed
by writing a node equation at node 1:

vb � vin
20,000

þ vb
60,000

þ vb
30,000

¼ 0

Solving for vb, we have vb ¼ 1

2
vin

Because vb 6¼ va, connecting the resistor directly to the voltage divider loads the voltage divider. This loading is
caused by the current required by the 30-kV resistor. Without the voltage follower, the voltage divider must provide
this current.

In Figure 6.5-3c, a voltage follower is used to connect the 30-kV resistor to the output of the voltage divider.
Once again, the circuit can be analyzed by writing a node equation at node 1:

vc � vin
20,000

þ vc
60,000

¼ 0

Solving for vc, we have vc ¼ 3

4
vin

Because vc ¼ va, loading is avoided when the voltage follower is used to connect the resistor to the
voltage divider. The voltage follower, not the voltage divider, provides the current required by the 30-kV
resistor.
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E X A M P L E 6 . 5 - 2 Amplifier Design

A common application of operational amplifiers is to scale a voltage, that is, to multiply a voltage by a constant, K, so that

vo ¼ Kvin

This situation is illustrated in Figure 6.5-4a. The input voltage vin is provided by an ideal voltage source. The output
voltage vo is the element voltage of a 100-kV resistor.

Circuits that perform this operation are usually called amplifiers. The constant K is called the gain of the amplifier.
The required value of the constant K will determine which of the circuits is selected from Figure 6.5-1. There

are four cases to consider: K < 0, K > 1, K ¼ 1, and 0 < K < 1.

Solution
Because resistor values are positive, the gain of the inverting amplifier, shown in Figure 6.5-1a, is negative.
Accordingly, when K < 0 is required, an inverting amplifier is used. For example, suppose we require K¼�5.
From Figure 6.5-1a,

�5 ¼ � Rf

R1

so Rf ¼ 5R1

As a rule of thumb, it is a good idea to choose resistors in operational amplifier circuits that have values between
5 kV and 500 kV when possible. Choosing

R1 ¼ 10 kV

gives Rf ¼ 50 kV

The resulting circuit is shown in Figure 6.5-4b.
Next, suppose we require K ¼ 5. The noninverting amplifier, shown in Figure 6.5-1b, is used to obtain gains

greater than 1. From Figure 6.5-1b

5 ¼ 1þ Rf

R1

+

–

vo

–

+

+

–

(b)(a)

+
– 100 kΩ

50 kΩ10 kΩ

+

–

vo100 kΩ
+

–

vo100 kΩ

40 kΩ

10 kΩ

vin

+
–vin

+
–vin

–

+ +

–

vo100 kΩ80 kΩ

20 kΩ

+
–vin

+

–

vo
+
– 100 kΩvin

Operational
amplifier
circuit

–

+

(e)(c) (d)

FIGURE 6.5-4 (a) An amplifier is required to make vo¼Kvin. The choice of amplifier circuit depends on the value of the gain K. Four
cases are shown: (b) K ¼ �5, (c) K ¼ 5, (d) K ¼ 1, and (e) K ¼ 0:8.
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so Rf ¼ 4R1

Choosing R1 ¼ 10 kV gives Rf ¼ 40 kV. The resulting circuit is shown in Figure 6.5-4c.
Consider using the noninverting amplifier of Figure 6.5-1b to obtain a gain K ¼ 1. From Figure 6.5-1b,

1 ¼ 1þ Rf

R1

so
Rf

R1
¼ 0

This can be accomplished by replacing Rf by a short circuit (Rf ¼ 0) or by replacing R1 by an open circuit (R1¼1)
or both. Doing both converts a noninverting amplifier into a voltage follower. The gain of the voltage follower is 1.
In Figure 6.5-4d, a voltage follower is used for the case K ¼ 1.

There is no amplifier in Figure 6.5-1 that has a gain between 0 and 1. Such a circuit can be obtained using a
voltage divider together with a voltage follower. Suppose we require K ¼ 0:8. First, design a voltage divider to
have an attenuation equal to K:

0:8 ¼ R2

R1 þ R2

so R2 ¼ 4 � R1

Choosing R1 ¼ 20 kV gives R2 ¼ 80 kV. Adding a voltage follower gives the circuit shown in Figure 6.5-4e.

E X A M P L E 6 . 5 - 3 Designing a Noninvert ing Summing Amplifier

Design a circuit having one output, vo, and three inputs, v1, v2, and v3. The output must be related to the inputs by

vo ¼ 2v1 þ 3v2 þ 4v3

In addition, the inputs are restricted to having values between �1 V and 1 V, that is,

jvij � 1 V i ¼ 1; 2; 3

Consider using an operational amplifier having isat¼ 2 mA and vsat¼ 15 V and design the circuit.

Solution
The required circuit must multiply each input by a separate positive number and add the results. The noninverting
summer shown in Figure 6.5-1e can do these operations. This circuit is represented by six parameters: K1, K2, K3,
K4, Ra, and Rb. Designing the noninverting summer amounts to choosing values for these six parameters. Notice
that K1 þK2 þK3 < 1 is required to ensure that all of the resistors have positive values. Pick K4 ¼ 10 (a convenient
value that is just a little larger than 2 þ 3 þ 4¼ 9). Then,

vo ¼ 2v1 þ 3v2 þ 4v3 ¼ 10 0:2v1 þ 0:3v2 þ 0:4v3ð Þ
That is, K4 ¼ 10, K1 ¼ 0.2, K2 ¼ 0.3, and K3 ¼ 0.4. Figure 6.5-1e does not provide much guidance in picking
values of Ra and Rb. Try Ra¼Rb¼ 100 V.

Then, for example

Ra

1� K1 þ K2 þ K3ð Þ ¼
100

1� 0:2þ 0:3þ 0:4ð Þ ¼
100

0:1
¼ 1000 V;

Ra

K1
¼ 100

0:2
¼ 500 V

and K4 � 1ð ÞRb ¼ 10� 1ð Þ100 ¼ 900 V
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6.6 Op e r a t i o n a l Amp l i f i e r C i r c u i t s a n d L i n e a r
A l g e b r a i c E q u a t i o n s

This section describes a procedure for designing operational amplifier circuits to implement linear
algebraic equations. Some of the node voltages of the operational amplifier circuit will represent the
variables in the algebraic equation. For example, the equation

z ¼ 4x � 5y þ 2 ð6:6-1Þ
will be represented by an operational amplifier circuit that has node voltages vx, vy, and vz that are
related by the equation

vz ¼ 4vx � 5vy þ 2 ð6:6-2Þ

Figure 6.5-5 shows the resulting circuit. It is necessary to check this circuit
to ensure that it satisfies the specifications. Writing node equations

va � v1
500

þ va � v2
333

þ va � v3
250

þ va
1000

¼ 0

� vo � va
900

þ va
100

¼ 0

and solving these equations yield

vo ¼ 2v1 þ 3v2 þ 4v3 and va ¼ vo
10

The output current of the operational amplifier is given by

ioa ¼ va � vo
900

¼ � vo
1000

ð6:5-1Þ
How large can the output voltage be? We know that

jvoj ¼ j2v1 þ 3v2 þ 4v3j
so jvoj � 2jv1j þ 3jv2j þ 4jv3j � 9 V

The operational amplifier output voltage will always be less than vsat.
That’s good. Now what about the output current? Notice that
jvoj � 9 V. From Eq. 6.5-1,

jioaj ¼ �vo
1000V

���
��� � �9 V

1000V

����
���� ¼ 9 mA

The operational amplifier output current exceeds isat¼ 2 mA. This is not allowed. Increasing Rb will reduce io.
Try Rb¼ 1000 V. Then,

K4 � 1ð ÞRb ¼ 10� 1ð Þ1000 ¼ 9000V

This produces the circuit shown in Figure 6.5-6. Increasing Ra and Rb does not change the operational amplifier
output voltage. As before,

vo ¼ 2v1 þ 3v2 þ 4v3
and jvoj � 2jv1j þ 3jv2j þ 4jv3j � 9 V

Increasing Rb does reduce the operational amplifier output current. Now,

jioaj � �9 V

10,000V

����
���� ¼ 0:9 mA

so ioaj j < 2 mA and voj j < 15 V, as required.

–

+v1

v2

v3

vo900 Ω

100 Ω

500 Ω

333 Ω

250 Ω

1000 Ω

+

–

va Rb

+

 –

ioa

a

FIGURE 6.5-5 The proposed noninverting
summing amplifier.

–

+v1

v2

v3

vo9000 Ω

1000 Ω

500 Ω

333 Ω

250 Ω

1000 Ω

+

–

va

+

–

ioa

FIGURE 6.5-6 The final design of the
noninverting summing amplifier.
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A voltage or current that is used to represent something is called a signal.

That “something” could be a temperature or a position or a force or something else. In this case, vx, vy,
and vz are signals representing the variables x, y, and z.

Equation 6.6-1 shows how the value of z can be obtained from values of x and y. Similarly, Eq.
6.6-2 shows how the value of vz can be obtained from values of vx and vy. The operational amplifier
circuit will have one output, vz, and two inputs, vx and vy.

The design procedure has two steps. First, we represent the equation by a diagram called a block
diagram. Second, we implement each block of the block diagram as an operational amplifier circuit.

We will start with the algebraic equation. Equation 6.6-1 indicates that the value of variable z can
be calculated from the values of the variables x and y using the operations of addition, subtraction, and
multiplication by a constant multiplier. Equation 6.6-1 can be rewritten as

z ¼ 4x þ �5ð Þy þ 2 ð6:6-3Þ

Equation 6.6-3 indicates that z can be obtained from x and y using only addition
and multiplication, though one of the multipliers is now negative.

Figure 6.6-1 shows symbolic representations of the operations of addition and
multiplication by a constant. In Figure 6.6-1a, the operation of multiplication by a
constant multiplier is represented by a rectangle together with two arrows, one
pointing toward and one pointing away from the rectangle. The arrow pointing
toward the rectangle is labeled by a variable representing the input to the operation,
that is, the variable that is to be multiplied by the constant. Similarly, the arrow
pointing away from the rectangle is labeled by a variable representing the output, or
result, of the operation. The rectangle itself is labeled with the value of the multiplier.
The symbol shown in Figure 6.6-1b represents the operation of addition. The
rectangle is labeled with a plus sign. The arrows that point toward the rectangle are
labeled by the variables that are to be added. There are as many of these arrows as
there are variables to be added. One arrow points away from the rectangle. This
arrow is labeled by the variable representing the sum.

The rectangles that represent addition and multiplication by a constant are
called blocks. A diagram composed of such blocks is called a block diagram. Figure
6.6-2 represents Eq. 6.6-3 as a block diagram. Each block in the block diagram
corresponds to an operation in the equation. Notice, in particular, that the product
4x has two roles in Eq. 6.6-3. The product 4x is both the output of one operation,
multiplying x by the constant 4, and one of the inputs to another operation, adding
4x to�5y and 2 to obtain z. This observation is used to construct the block diagram.

Theproduct4x is theoutputofoneblockandthe input toanother. Indeed, thisobservationexplainswhythe
output of the block that multiplies x by 4 is connected to an input of the block that adds 4x to �5y and 2.

Next, consider designing an operational amplifier circuit to implement the block diagram in Figure
6.6-2. The blocks representing multiplication by a constant multiplier can be implemented using either
inverting ornoninvertingamplifiers, depending on the sign of the multiplier.Todoso, design the amplifier
to have a gain that is equal to the multiplier of the corresponding block. (Noninverting amplifiers can be
usedwhentheconstant isbothpositiveandgreater than1.Example6.5-2showsthatacircuitconsistingofa
voltage divider and voltage follower can be used when the constant is positive and less than 1.)

Figures 6.6-3b,d, f show operational amplifier circuits that implement the blocks shown in Figures
6.6-3a,c,e, respectively. The block in Figure 6.6-3a requires multiplication by a positive constant, 4.
Figure 6.6-3b shows the corresponding operational amplifier circuit, a noninverting amplifier having a
gain equal to 4. This noninverting amplifier is designed by referring to Figure 6.5-1b and setting

(a)

4 4xx

(b)

+ z

2
–5y
4x

FIGURE 6.6-1 Symbolic
representations of (a) multiplication by
a constant and (b) addition.

4x

–5y + z

2

–5y

4x

FIGURE 6.6-2 A block
diagram representing Eq. 6.6-3.
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R1 ¼ 20 kV and Rf ¼ 3R1 ¼ 60 kV

(A useful rule of thumb suggests selecting resistors for operational amplifier circuits to have resistances
in the range 5 kV to 500 kV.)

In Figure 6.6-3b, the notation vx¼ x indicates that vx is a voltage that represents x. A voltage or
current that is used to represent something else is called a signal, so vx is the signal representing x.

The block in Figure 6.6-3c requires multiplication by a negative constant, �5. Figure 6.6-3d
shows the corresponding operational amplifier circuit, an inverting amplifier having a gain equal to �5.
Design this inverting amplifier by referring to Figure 6.5-1a and setting

R1 ¼ 20 kV and Rf ¼ 5 R1 ¼ 100 kV

The block in Figure 6.6-3e requires adding three terms. Figure
6.6-3f shows the corresponding operational amplifier circuit, a non-
inverting summer. Design the noninverting summer by referring to
Figure 6.6-4 and setting

R1 ¼ 20 kV; n ¼ 3; and nR ¼ 3 20,000ð Þ ¼ 60 kV

(The noninverting summer is a special case of the noninverting-
summing amplifier shown in Figure 6.5-1e. Take K1¼K2¼K3¼ 1=
(n þ 1), K4¼ n, Rb¼R, and Ra¼R=(n þ 1) in Figure 6.5-1e to get
the circuit shown in Figure 6.6-4.)

Figure 6.6-5 shows the circuit obtained by replacing each block
in Figure 6.6-2 by the corresponding operational amplifier circuit
from Figure 6.6-3. The circuit in Figure 6.6-5 does indeed implement
Eq. 6.6-3, but it’s possible to improve this circuit.

The constant input to the summer has been implemented using a 2-V voltage source. Although
correct, this may be more expensive than necessary. Voltage sources are relatively expensive
devices, considerably more expensive than resistors or operational amplifiers. We can reduce the cost
of this circuit by using a voltage source we already have instead of getting a new one. Recall that we
need power supplies to bias the operational amplifier. Suppose that �15-V voltage sources are used
to bias the operational amplifier. We can reduce costs by using the �15-V voltage source together

(a) (b)

4 4xx

(e)

+ z

2
–5y
4x

4vx

–5vy

2 V

20 kΩ 60 kΩ

–

+vx

vy4vx

(c) (d)

(f)

–5 –5yy

20 kΩ

20 kΩ

20 kΩ

60 kΩ

20 kΩ

100 kΩ

–

+

+

–

–5vy

20 kΩ

20 kΩ

vz

FIGURE 6.6-3 (a), (c), and (e) show the blocks from Figure 6.6-2, whereas (b), (d ), and ( f ) show the corresponding operational amplifier
circuits.
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FIGURE 6.6-4 The noninverting summer.
The integer n indicates the number of inputs to the
circuit.
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with a voltage divider and a voltage follower to obtain the 2-V input for the summer. Figure 6.6-6
illustrates the situation. The voltage divider produces a constant voltage equal to 2 V. The voltage
follower prevents loading (see Example 6.5-1).

Applying the voltage division rule in Figure 6.6-6 requires that

Rb

Ra þ Rb
¼ 2

15
¼ 0:133 ) Ra ¼ 6:5 Rb

The solution to this equation is not unique. One solution is Ra ¼ 130 kV and Rb ¼ 20 kV. Figure 6.6-7
shows the improved operational amplifier circuit. We can verify, perhaps by writing node equations,
that

vz ¼ 4vx � 5vy þ 2

Voltage saturation of the operational amplifiers should be considered when defining the relationship
between the signals vx, vy, and vz and the variables x, y, and z. The output voltage of an operational
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vy
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20 kΩ
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FIGURE 6.6-5 An operational amplifier circuit that implements Eq. 6.6-2.
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FIGURE 6.6-6 Using the operational
amplifier power supply to obtain a 2-V signal.
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FIGURE 6.6-7 An improved
operational amplifier circuit that
implements Eq. 6.6-2.
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Try it 
yourself 

in WileyPLUS

amplifier is restricted by jvoj � vsat. Typically, vsat is approximately equal to the magnitude of the
voltages of the power supplies used to bias the operational amplifier. That is, vsat is approximately 15 V
when �15-V voltage sources are used to bias the operational amplifier. In Figure 6.6.7, vz, 4vx, and
�5vy are each output voltages of one of the operational amplifiers. Consequently,

jvxj � vsat
4

� 15

4
¼ 3:75 V; jvyj � vsat

5
� 15

5
¼ 3 V; and jvzj � vsat � 15 V ð6:6-4Þ

The simple encoding of x, y, and z by vx, vy, and vz is

vx ¼ x; vy ¼ y; and vz ¼ z ð6:6-5Þ
This is convenient because, for example, vz¼ 4.5 V indicates that z¼ 4.5. However, using Eq. 6.6-3 to
replace vx, vy, and vz in Eq. 6.6-4 with x, y, and z gives

jxj � 3:75; jyj � 3:0; and jzj � 15

Should these conditions be too restrictive, consider defining the relationship between the signals vx, vy,
and vz and the variables x, y, and z differently. For example, suppose

vx ¼ x

10
; vy ¼ y

10
; and vz ¼ z

10
ð6:6-6Þ

Now we need to multiply the value of vz by 10 to get the value of z. For example, vz¼ 4.5 V indicates
that z¼ 45. On the other hand, the circuit can accommodate larger values of x, y, and z. Equations 6.6-4
and 6.6-6 imply that

jxj � 37:5; jyj � 30:0; and jzj � 150:0

EXERCISE 6.6-1 Specify the values of R1 and R2 in Figure E 6.6-1 that are required to cause v3 to
be related to v1 and v2 by the equation v3 ¼ 4ð Þv1 � 1

5

� �
v2.

Answer: R1 ¼ 10 kV and R2¼ 2.5 kV

EXERCISE 6.6-2 Specify the values of R1 and R2 in Figure E 6.6-1 that are required to cause v3 to
be related to v1 and v2 by the equation v3 ¼ 6ð Þv1 � 4

5

� �
v2.

Answer: R1 ¼ 20 kV and R2 ¼ 40 kV
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FIGURE E 6.6-1
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6.7 C h a r a c t e r i s t i c s o f P r a c t i c a l O p e r a t i o n a l
Amp l i f i e r s

The ideal operational amplifier is the simplest model of an operational amplifier. This simplicity is obtained
by ignoring some imperfections of practical operational amplifiers. This section considers some of these
imperfections and provides alternate operational amplifier models to account for these imperfections.

Consider the operational amplifier shown in Figure 6.7-1a. If this operational amplifier is
ideal, then

i1 ¼ 0; i2 ¼ 0; and v1 � v2 ¼ 0 ð6:7-1Þ
In contrast, the operational amplifier model shown in Figure 6.7-1d accounts for several nonideal
parameters of practical operational amplifiers, namely:

� Nonzero bias currents.
� Nonzero input offset voltage.
� Finite input resistance.
� Nonzero output resistance.
� Finite voltage gain.

This model more accurately describes practical operational amplifiers than does the ideal operational
amplifier. Unfortunately, the more accurate model of Figure 6.7-1d is much more complicated
and much more difficult to use than the ideal operational amplifier. The models in Figures 6.7-1b and
6.7-1c provide a compromise. These models are more accurate than the ideal operational amplifier but
easier to use than the model in Figure 6.7-1d. It will be convenient to have names for these models.
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+
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–

+
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+
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FIGURE 6.7-1 (a) An operational amplifier and (b) the offsets model of an operational amplifier. (c) The finite gain
model of an operational amplifier. (d) The offsets and finite gain model of an operational amplifier.
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The model in Figure 6.7-1b will be called the offsets model of the operational amplifier. Similarly, the
model in Figure 6.7-1c will be called the finite gain model of the operational amplifier, and the model in
Figure 6.7-1d will be called the offsets and finite gain model of the operational amplifier.

The operational amplifier model shown in Figure 6.7-1b accounts for the nonzero bias current and
nonzero input offset voltage of practical operational amplifiers but not the finite input resistance, the
nonzero output resistance, or the finite voltage gain. This model consists of three independent sources
and an ideal operational amplifier. In contrast to the ideal operational amplifier, the operational
amplifier model that accounts for offsets is represented by the equations

i1 ¼ ib1; i2 ¼ ib2; and v1 � v2 ¼ vos ð6:7-2Þ

The voltage vos is a small, constant voltage called the input offset voltage. The currents ib1 and ib2 are
called the bias currents of the operational amplifier. They are small, constant currents. The difference
between the bias currents is called the input offset current ios of the amplifier:

ios ¼ ib1 � ib2

Notice that when the bias currents and input offset voltage are all zero, Eq. 6.7-2 is the same as
Eq. 6.7-1. In other words, the offsets model reverts to the ideal operational amplifier when the bias
currents and input offset voltage are zero.

Frequently, the bias currents and input offset voltage can be ignored because they are very small.
However, when the input signal to a circuit is itself small, the bias currents and input voltage can
become important.

Manufacturers specify a maximum value for the bias currents, the input offset current, and the
input offset voltage. For the mA741, the maximum bias current is specified to be 500 nA, the maximum
input offset current is specified to be 200 nA, and the maximum input offset voltage is specified to be
5 mV. These specifications guarantee that

jib1j � 500 nA and jib2j � 500 nA

jib1 � ib2j � 200 nA

jvosj � 5 mV

Table 6.7-1 shows the bias currents, offset current, and input offset voltage typical of several types of
operational amplifier.

Table 6.7-1 Selected Parameters of Typical Operational Amplifiers

PARAMETER UNITS mA741 LF351 TL051C OPA101 AM OP-07E

Saturation voltage, vsat V 13 13.5 13.2 13 13

Saturation current, isat mA 2 15 6 30 6

Slew rate, SR V/mS 0.5 13 23.7 6.5 0.17

Bias current, ib nA 80 0.05 0.03 0.012 1.2

Offset current, ios nA 20 0.025 0.025 0.003 0.5

Input offset voltage, vos mV 1 5 0.59 0.1 0.03

Input resistance, Ri MV 2 106 106 106 50

Output resistance, Ro V 75 1000 250 500 60

Differential gain, A V/mV 200 100 105 178 5000

Common mode rejection ratio, CMRR V/mv 31.6 100 44 178 1413

Gain bandwidth product, B MHz 1 4 3.1 20 0.6
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E X A M P L E 6 . 7 - 1 Offset Voltage and Bias Currents

The inverting amplifier shown in Figure 6.7-2a contains a mA741 operational amplifier. This inverting amplifier
designed in Example 6.5-2 has a gain of �5, that is,

vo ¼ �5 � vin

The design of the inverting amplifier is based on the ideal model of an operational amplifier and so did not account
for the bias currents and input offset voltage of the mA741 operational amplifier. In this example, the offsets model
of an operational amplifier will be used to analyze the circuit. This analysis will tell us what effect the bias currents
and input offset voltage have on the performance of this circuit.
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FIGURE 6.7-2 (a) An inverting amplifier and (b) an equivalent circuit that accounts for the input offset voltage and bias currents of
the operational amplifier. (c)–( f ) Analysis using superposition.

Solution
In Figure 6.7-2b, the operational amplifier has been replaced by the offsets model of an operational amplifier.
Notice that the operational amplifier in Figure 6.7-2b is the ideal operational amplifier that is part of the model of
the operational amplifier used to account for the offsets. The circuit in Figure 6.7-2b contains four inputs that
correspond to the four independent sources vin, ib1, ib2, and vos. (The input vin is obtained by connecting a voltage
source to the circuit. In contrast, the “inputs” ib1, ib2, and vos are the results of imperfections of the operational
amplifier. These inputs are part of the operational amplifier model and do not need to be added to the circuit.)
Superposition can be used to good advantage in analyzing this circuit. Figures 6.7-2c–6.7-2f illustrate this process.
In each of these figures, all but one input has been set to zero, and the output due to that one input has been
calculated.

Figure 6.7-2c shows the circuit used to calculate the response to vin alone. The other inputs ib1, ib2, and
vos have all been set to zero. Recall that zero current sources act like open circuits and zero voltage sources
act like short circuits. Figure 6.7-2c is obtained from Figure 6.7-2b by replacing the current sources ib1, ib2

by open circuits and by replacing the voltage source vos by a short circuit. The operational amplifier in
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Figure 6.7-2c is the ideal operational amplifier that is part of the offsets model. Analysis of the inverting amplifier in
Figure 6.7-2c gives

vo ¼ �5 � vin

Next, consider Figure 6.7-2d. This circuit is used to calculate the response to vos alone. The other inputs vin,
ib1, and ib2 have all been set to zero. Figure 6.7-2d is obtained from Figure 6.7-2b by replacing the current sources
ib1 and ib2 by open circuits and by replacing the voltage source vin by a short circuit. Again, the operational amplifier
is the ideal operational amplifier from the offsets model. The circuit in Figure 6.7-2d is one we have seen before; it
is the noninverting amplifier (Figure 6.5-1b). Analysis of this noninverting amplifier gives

vo ¼ 1þ 50,000

10,000

� �
� vos ¼ 6 vos

Next, consider Figure 6.7-2e. This circuit is used to calculate the response to ib1 alone. The other inputs vin,
vos, and ib2 have all been set to zero. Figure 6.7-2e is obtained from Figure 6.7-2b by replacing the current source ib2

by an open circuit and by replacing the voltage sources vin and vos by short circuits. Notice that the voltage across
the 10-kV resistor is zero because this resistor is connected between the input nodes of the ideal operational
amplifier. Ohm’s law says that the current in the 10-kV resistor must be zero. The current in the
50-kV resistor is ib1. Finally, paying attention to the reference directions,

vo ¼ 50,000 � ib1

Figure 6.7-2f is used to calculate the response to ib2 alone. The other inputs vin, vos, and ib1 have all been set to
zero. Figure 6.7-2f is obtained from Figure 6.7-2b by replacing the current source ib1 by an open circuit and by
replacing the voltage sources vin and vos by short circuits. Replacing vos by a short circuit inserts a short circuit
across the current source ib2. Again, the voltage across the 10-kV resistor is zero, so the current in the 10-kV
resistor must be zero. Kirchhoff’s current law shows that the current in the 50-kV resistor is also zero. Finally,

vo ¼ 0

The output caused by all four inputs working together is the sum of the outputs caused by each input working
alone. Therefore,

vo ¼ �5 � vin þ 6 � vos þ 50,000ð Þib1
When the input of the inverting amplifier vin is zero, the output vo also should be zero. However, vo is nonzero when
we have a finite vos or ib1. Let

output offset voltage ¼ 6 � vos þ 50,000ð Þib1
Then vo ¼ �5 � vin þ output offset voltage

Recall that when the operational amplifier is modeled as an ideal operational amplifier, analysis of this inverting
amplifier gives

vo ¼ �5 � vin

Comparing these last two equations shows that bias currents and input offset voltage cause the output offset
voltage. Modeling the operational amplifier as an ideal operational amplifier amounts to assuming that the output
offset voltage is not important and thus ignoring it. Using the operational amplifier model that accounts for offsets
is more accurate but also more complicated.

How large is the output offset voltage of this inverting amplifier? The input offset voltage of a mA741
operational amplifier will be at most 5 mV, and the bias current will be at most 500 nA, so

output offset voltage � 6 0:005ð Þ þ 50�103
� �

500�10�9
� � ¼ 55 mV

We note that we can ignore the effect of the offset voltage only when j5 vinj > 500 mV or jvinj > 100 mV. The
output offset error can be reduced by using a better operational amplifier, that is, one that guarantees smaller bias
currents and input offset voltage.

Characteristics of Practical Operational Amplifiers 241



Now, let us turn our attention to different parameters of practical operational amplifiers. The
operational amplifier model shown in Figure 6.7-1c accounts for the finite input resistance, the nonzero
output resistance, and the finite voltage gain of practical operational amplifiers but not the nonzero bias
current and nonzero input offset voltage. This model consists of two resistors and a VCVS.

The finite gain model reverts to an ideal operational amplifier when the gain A becomes infinite.
To see that this is so, notice that in Figure 6.7-1c

vo ¼ A v2 � v1ð Þ þ Roio

so v2 � v1 ¼ vo � Roio
A

The models in Figure 6.7-1, as well as the model of the ideal operational amplifier, are valid only when
vo and io satisfy Eq. 6.3-1. Therefore,

jvoj � vsat and jioj � isat

Then jv2 � v1j � vsat þ Roisat
A

Therefore; lim
A!1

v2 � v1ð Þ ¼ 0

Next, because

i1 ¼ � v2 � v1
Ri

and i2 ¼ v2 � v1
Ri

we conclude that

lim
A!1

i1 ¼ 0 and lim
A!1

i2 ¼ 0

Thus, i1, i2, and v2 � v1 satisfy Eq. 6.7-1. In other words, the finite gain model of the operational
amplifier reverts to the ideal operational amplifier as the gain becomes infinite. The gain for practical
op amps ranges from 100,000 to 107.

E X A M P L E 6 . 7 - 2 Finite Gain

In Figure 6.7-3, a voltage follower is used as a buffer amplifier. Analysis based on the ideal operational amplifier
shows that the gain of the buffer amplifier is

vo
vs

¼ 1

What effects will the input resistance, output resistance, and finite voltage gain of a practical operational amplifier
have on the performance of this circuit? To answer this question, replace the operational amplifier by the
operational amplifier model that accounts for finite voltage gain. This gives the circuit shown in Figure 6.7-3b.
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FIGURE 6.7-3 (a) A voltage
follower used as a buffer amplifier
and (b) an equivalent circuit with the
operational amplifier model that
accounts for finite voltage gain.
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Solution
To be specific, suppose R1 ¼ 1 kV; RL ¼ 10 kV; and the parameters of the practical operational amplifier are
Ri ¼ 100 kV, Ro ¼ 100V, and A ¼ 105V/V.

Suppose that vo ¼ 10 V. We can find the current iL in the output resistor as

iL ¼ vo
RL

¼ 10

104
¼ 10�3 A

Apply KCL at the top node of RL to get

i1 þ io þ iL ¼ 0

It will turn out that i1 will be much smaller than both io and iL. It is useful to make the approximation that i1 ¼ 0.
(We will check this assumption later in this example.) Then,

io ¼ �iL

Next, apply KVL to the mesh consisting of the VCVS, Ro, and RL to get

�A v2 � v1ð Þ � ioRo þ iLRL ¼ 0

Combining the last two equations and solving for (v2 � v1) gives

v2 � v1 ¼ iL Ro þ RLð Þ
A

¼ 10�3 100þ 10,000ð Þ
105

¼ 1:01� 10�4 V

Now i1 can be calculated using Ohm’s law:

i1 ¼ v1 � v2
Ri

¼ �1:01� 10�4 V

100,000
¼ �1:01� 10�9 A

This justifies our earlier assumption that i1 is negligible compared with io and iL.
Applying KVL to the outside loop gives

�vs � i1R1 � i1Ri þ vo ¼ 0

Now, let us do some algebra to determine vs:

vs ¼ vo � i1 R1 þ Rið Þ ¼ vo þ i2 R1 þ Rið Þ
¼ vo þ v2 � v1

Ri
� R1 þ Rið Þ

¼ vo þ iL Ro þ RLð Þ
A

� R1 þ Rið Þ
Ri

¼ vo þ vo
RL

� Ro þ RLð Þ
A

� R1 þ Rið Þ
Ri

The gain of this circuit is
vo
vs

¼ 1

1þ 1

A
� Ro þ RL

RL
� Ri þ R1

Ri

This equation shows that the gain will be approximately 1 when A is very large, Ro 	 RL, and R1 	 Ri. In this
example, for the specified A, Ro, and Ri, we have

vo
vs

¼ 1

1� 1

105
� 100þ 10,000

10,000
� 105 þ 1000

105

¼ 1

1:00001
¼ 0:99999

Thus, the input resistance, output resistance, and voltage gain of the practical operational amplifier have only a
small, essentially negligible, combined effect on the performance of the buffer amplifier.
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Table 6.7-1 lists two other parameters of practical operational amplifiers that have not yet been
mentioned. They are the common mode rejection ratio (CMRR) and the gain bandwidth product.
Consider first the common mode rejection ratio. In the finite gain model, the voltage of the dependent
source is

A v2 � v1ð Þ
In practice, we find that dependent source voltage is more accurately expressed as

A v2 � v1ð Þ þ Acm
v1 þ v2

2

� �

where v2 � v1 is called the differential input voltage;

v1 þ v2
2

is called the common mode input voltage;

and Acm is called the common mode gain:

The gain A is sometimes called the differential gain to distinguish it from Acm. The common mode
rejection ratio is defined to be the ratio of A to Acm

CMRR ¼ A

Acm

The dependent source voltage can be expressed using A and CMRR as

A v2 � v1ð Þ þ Acm
v1 þ v2

2
¼ A v2 � v1ð Þ þ A

CMRR

v1 þ v2
2

¼ A 1þ 1

2 CMRR

� �
v2 � 1� 1

2 CMRR

� �
v1

	 


CMRR can be added to the finite gain model by changing the voltage of the dependent source. The
appropriate change is

replace A v2 � v1ð Þ by A 1þ 1

2 CMRR

� �
v2 � 1� 1

2 CMRR

� �
v1

	 


This change will make the model more accurate but also more complicated. Table 6.7-1 shows
that CMRR is typically very large. Forexample, a typical LF351operational amplifierhasA¼ 100V/mV
and CMRR¼ 100 V/mV. This means that

A 1þ 1

2 CMRR

� �
v2 � 1� 1

2 CMRR

� �
v1

	 

¼ 100; 000:5v2 � 99; 999:5v1

compared to A v2 � v1ð Þ ¼ 100,000v2 � 100,000v1

In most cases, negligible error is caused by ignoring the CMRR of the operational amplifier. The CMRR
does not need to be considered unless accurate measurements of very small differential voltages must be
made in the presence of very large common mode voltages.

Next, we consider the gain bandwidth product of the operational amplifier. The finite gain model
indicates that the gain A of the operational amplifier is a constant. Suppose

v1 ¼ 0 and v2 ¼ M sin ot

so that v2 � v1 ¼ M sin ot

The voltage of the dependent source in the finite gain model will be

A v2 � v1ð Þ ¼ A � M sin ot
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The amplitude A �M of this sinusoidal voltage does not depend on the frequency o. Practical
operational amplifiers do not work this way. The gain of a practical amplifier is a function of
frequency, say A(o). For many practical amplifiers, A(o) can be adequately represented as

A oð Þ ¼ B

jo

It is not necessary to know now how this function behaves. Functions of this sort will be discussed in
Chapter 13. For now, it is enough to realize that the parameter B is used to describe the dependence of
the operational amplifier gain on frequency. The parameter B is called the gain bandwidth product of the
operational amplifier.

EXERCISE 6.7-1 The input offset voltage of a typical mA741 operational amplifier is 1 mV, and
the bias current is 80 nA. Suppose the operational amplifier in Figure 6.7-2a is a typical mA741. Show
that the output offset voltage of the inverting amplifier will be at most 10 mV.

EXERCISE 6.7-2 Suppose the 10-kV resistor in Figure 6.7-2a is changed to 2 kV and the 50-kV
resistor is changed to 10 kV. (These changes will not change the gain of the inverting amplifier. It will
still be �5.) Show that the maximum output offset voltage is reduced to 35 mV. (Use ib ¼ 500 nA and
vos¼ 5 mV to calculate the maximum output offset voltage that could be caused by the mA741 amplifier.)

EXERCISE 6.7-3 Suppose the mA741 operational amplifier in Figure 6.7-2a is
replaced with a typical OPA101AM operational amplifier. Show that the output offset
voltage of the inverting amplifier will be at most 0.6 mV.

EXERCISE 6.7-4
a. Determine the voltage ratio vo=vs for the op amp circuit shown in Figure E 6.7-4.

b. Calculate vo=vs for a practical op amp with A¼ 105, Ro¼ 100 �, and Ri ¼ 500 kV. The
circuit resistors are Rs ¼ 10 kV, Rf ¼ 50 kV, and Ra ¼ 25 kV.

Answer: (b) vo=vs¼�2

6.8 A n a l y s i s o f O p Amp C i r c u i t s U s i n g MAT L AB

Figure 6.8-1 shows an inverting amplifier. Model the operational amplifier as an ideal op amp. Then the
output voltage of the inverting amplifier is related to the input voltage by

vo tð Þ ¼ �R2

R1
vs tð Þ ð6:8-1Þ

Suppose that R1 ¼ 2 kV, R2 ¼ 50 kV, and vs¼�4 cos
(2000 pt) V. Using these values in Eq. 6.8-1 gives vo(t)¼
100 cos(2000 pt) V. This is not a practical answer. It’s likely
that the operational amplifier saturates, and, therefore, the ideal
op amp is not an appropriate model of the operational amplifier.
When voltage saturation is included in the model of the
operational amplifier, the inverting amplifier is described by
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FIGURE E 6.7-4
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FIGURE 6.8-1 An inverting amplifier.
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vo tð Þ ¼

vsat when � R2

R1
vs tð Þ > vsat

�R2

R1
vs tð Þ when �vsat < �R2

R1
vs tð Þ < vsat

�vsat when� R2

R1
vs tð Þ < �vsat

8>>>>><
>>>>>:

ð6:8-2Þ

where vsat denotes the saturation voltage of the operational amplifier. Equation 6.8-2 is a more accurate,
but more complicated, model of the inverting amplifier than Eq. 6.8-1. Of course, we prefer the simpler
model, and we use the more complicated model only when we have reason to believe that answers based
on the simpler model are not accurate.

Figures 6.8-2 and 6.8-3 illustrate the use of MATLAB to analyze the inverting amplifier when the
operational amplifier model includes voltage saturation. Figure 6.8-2 shows the MATLAB input file, and
Figure 6.8-3 shows the resulting plot of the input and output voltages of the inverting amplifier.
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FIGURE 6.8-2 MATLAB
input file corresponding
to the circuit shown in
Figure 6.8-1.

246 6. The Operational Amplifier



6.9 U s i n g P S p i c e t o A n a l y z e O p Amp C i r c u i t s

Consider an op amp circuit having one input, vi, and one output, vo. Let’s plot the output voltage as a
function of the input voltage using PSpice. We need to do the following:

1. Draw the circuit in the OrCAD Capture workspace.

2. Specify a DC Sweep simulation.

3. Run the simulation.

4. Plot the simulation results.

The DC Sweep simulation provides a way to vary the input of a circuit and then plot the output as
a function of the input.

–20

–15

–10

–5

0

Input

Output

5

10

15

20

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

V
o(

t)
, 
V

Time, s × 10–3

FIGURE 6.8-3 Plots of the input
and output voltages of the circuit
shown in Figure 6.8-1.

E X A M P L E 6 . 9 - 1 Using PSpice to Analyze an Op Amp Circuit

The input to the circuit shown in Figure 6.9-1 is the voltage source voltage vi.
The response is the voltage vo. Use PSpice to plot the output voltage as a
function of the input voltage.

Solution
We begin by drawing the circuit in the OrCAD workspace as shown in
Figure 6.9-2 (see Appendix A). The op amp in Figure 6.9-2 is represented by
the PSpice part named OPAMP from the ANALOG library. The circuit output
is a node voltage. It’s convenient to give the output voltage a PSpice name. In
Figure 6.9-2, a PSpice part called an off-page connector is used to label the
output node as “o.” Labeling the output node in this way gives the circuit
output the PSpice name V(o).

We will perform a DC Sweep simulation. (Select PSpice\New Simulation Profile from the OrCAD Capture menu
bar, then DC Sweep from the Analysis Type drop-down list. Specify the Sweep variable to be the input voltage by
selecting Voltage Source and identifying the voltage source as Vi. Specify a linear sweep and the desired range of input
voltages.) Select PSpice\Run Simulation Profile from the OrCAD Capture menu bar to ran the simulation.

After a successful DC Sweep simulation, OrCAD Capture will automatically open a Schematics window.
Select Trace/Add Trace from the Schematics menus to pop up the Add Traces dialog box. Select V(o) from the

+

–

+
–

vb = –40.816 mV

R1 = 2 kΩ

R2 = 98 kΩ

+
–

vi

vo

FIGURE 6.9-1 The circuit considered in
Example 6.9-1.
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6.10 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the specifica-
tions have been satisfied. In addition, computer output must be reviewed to guard against data-entry
errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of
problems discussed in this chapter.

Simulation Output Variables list. Close the Add Traces dialog box. Figure 6.9-3 shows the resulting plot after
removing the grid and labeling some points. The plot is a straight line. Consequently, the circuit output is related to
the circuit input by an equation of the form

vo ¼ mvi þ b

where the values of the slope m and intercept b can be determined from the points labeled in Figure 6.9-3. In particular,

m ¼ 6:9996� 4:4998

0:100� 0:050
¼ 49:996 � 50

V

V

and 1:9999 ¼ 59:996 0ð Þ þ b ) b ¼ 1:9999 � 2 V

The circuit output is related to the circuit input by the equation

vo ¼ 50vi þ 2

Vb

Vi
1V

+

–

+

–

+

–

R1 R2 98k

OPAMP

OUT o

–40.816mV

2k

0

0

FIGURE 6.9-2 The circuit of Figure 6.9-1 as
drawn in the OrCAD workspace.

12 V

10 V

5 V
(0.000, 1.9999)

(50.000 m, 4.4998)

(100.000 m, 6.9996)

(150.000 m, 9.4995)

0 V

v (o)
–50 mV 0 mV 50 mV

v_v i

100 mV 150 mV 200 mV

FIGURE 6.9-3 The plot of the output voltage as a function of the input voltage.

E X A M P L E 6 . 1 0 - 1 How Can We Check Op Amp Circuits?

The circuit in Figure 6.10-1a was analyzed by writing and solving the following set of simultaneous equations
v6
10

þ i5 ¼ 0

10i5 ¼ v4
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v4
10

þ i3 ¼ i2

3 ¼ 5i2 þ 10i3
20i3 ¼ v6

(These equations use units of volts, milliamps, and kohms.) A computer and the program Mathcad were used to
solve these equations as shown in Figure 6.10-1b. The solution of these equations indicates that

i2 ¼ �0:6 mA; i3 ¼ 0:6 mA; v4 ¼ �12 V;
i5 ¼ �1:2 mA; and v6 ¼ 12 V

How can we check that these voltage and current values are correct?

Solution
Consider the voltage v3. Using Ohm’s law,

v3 ¼ 20i3 ¼ 20 0:6ð Þ ¼ 12 V

Remember that resistances are in kV and currents in milliamps. Applying KVL to the mesh consisting of the
voltage source and the 5-kV and 20-kV resistors gives

v3 ¼ 3� 5i2 ¼ 3� 5 �0:6ð Þ ¼ 6 V

Clearly, v3 cannot be both 12 and 6, so the values obtained for i2, i3, v4, i5, and v6 cannot all be correct. Checking the
simultaneous equations, we find that a resistor value has been entered incorrectly. The KVL equation correspond-
ing to the mesh consisting of the voltage source and the 5-kV and 20-kV resistors should be

3 ¼ 5i2 þ 20i3
Note that 10i3 was incorrectly used in the fourth line of the Mathcad program of Figure 6.10-1. After making this
correction, i2, i3, v4, i5, and v6 are calculated to be

i2 ¼ �0:2 mA; i3 ¼ 0:2 mA; v4 ¼ �4 V;
i5 ¼ 0:4 mA; and v6 ¼ 4 V

Now v3 ¼ 20i3 ¼ 20 0:2ð Þ ¼ 4
and v3 ¼ 3� 5i2 ¼ 3� 5 �0:2ð Þ ¼ 4

This agreement suggests that the new values of i2, i3, v4, i5, and v6 are correct. As an additional check, consider v5.
First, Ohm’s law gives

v5 ¼ 10i5 ¼ 10 �0:4ð Þ ¼ �4

Next, applying KVL to the loop consisting of the two 10-kV resistors and the input of the operational amplifier gives
v5 ¼ 0þ v4 ¼ 0þ �4ð Þ ¼ �4

This increases our confidence that the new values of i2, i3, v4, i5, and v6 are correct.

�� �� �� �� �� �� �� �� �� �� �� �� �	 �� �


����

�
�



	

�
� � �� � �� � � �� � ��� �

�



�

�
� � �� � ��

� � � � �� � � � �� �� � �� � �	

�

���� ���� ��� ��� ��� �	� �

⎤
⎥
⎥
⎥
⎦

���	
��	
��

���
�

⎡
⎢
⎢
⎢
⎣

(b)

–

+

v6

i3

i2

i5

10 kΩ

5 kΩ 10 kΩ

10 kΩ

20 kΩ

– +

v4

v3

+ + –

–

+
–v1 = 3 V

(a)

FIGURE 6.10-1 (a) An example circuit and (b) computer analysis using Mathcad.
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6 . 1 1 D E S I G N E X A M P L E Transducer Interface Circuit

A customer wants to automate a pressure measurement, which requires converting the output of the pressure
transducer to a computer input. This conversion can be done using a standard integrated circuit called an analog-to-
digital converter (ADC). The ADC requires an input voltage between 0 V and 10 V, whereas the pressure
transducer output varies between �250 mV and 250 mV. Design a circuit to interface the pressure transducer with
the ADC. That is, design a circuit that translates the range �250 mV to 250 mV to the range 0 V to 10 V.

Describe the Situation and the Assumptions
The situation is shown in Figure 6.11-1.

Pressure
transducer

ADC

Interface
circuit

+

–

+

–
v1 v2

FIGURE 6.11-1 Interfacing a pressure transducer with an analog-to-digital converter (ADC).

The specifications state that

�250 mV � v1 � 250 mV

0 V � v2 � 10 V

A simple relationship between v2 and v1 is needed so that information about the pressure is not obscured. Consider

v2 ¼ a � v1 þ b

The coefficients, a and b, can be calculated by requiring that v2 ¼ 0 when v1¼�250 mV and that v2¼ 10 V when
v1¼ 250 mV, that is,

0 V ¼ a �250 mVð Þ þ b

10 V ¼ a 250 mVð Þ þ b

Solving these simultaneous equations gives a¼ 20 V/V and b¼ 5 V.

State the Goal
Design a circuit having input voltage v1 and output voltage v2. These voltages should be related by

v2 ¼ 20 v1 þ 5 V ð6:11-1Þ

Generate a Plan
Figure 6.11-2 shows a plan (or a structure) for designing the interface circuit. The operational amplifiers are biased
using þ15-V and �15-V power supplies. The constant 5-V input is generated from the 15-V power supply by
multiplying by a gain of 1=3. The input voltage, v1, is multiplied by a gain of 20. The summer (adder) adds the
outputs of the two amplifiers to obtain v2.
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× 20

× 

+

1 3

v2 = 20v1 + 5 Vv1

15 V

FIGURE 6.11-2 A structure (or plan) for the interface circuit.

Each block in Figure 6.11-2 will be implemented using an operational amplifier circuit.

Act on the Plan
Figure 6.11-3 shows one proposed interface circuit. Some adjustments have been made to the plan. The
summer is implemented using the inverting summing amplifier from Figure 6.5-1d. The inputs to this
inverting summing amplifier must be �20vi and �5 V instead of 20vi and 5 V. Consequently, an inverting
amplifier is used to multiply v1 by �20. A voltage follower prevents the summing amplifier from loading the
voltage divider. To make the signs work out correctly, the �15-V power supply provides the input to the
voltage divider.

–

+

–

+

–

+

2.5 kΩ 50 kΩ

10 kΩ

5 kΩ

10 kΩ 10 kΩ

10 kΩ

Inverting amplifier

v1

–20 v1

–5 V

–15 V

v2 = 20 v1 + 5 V

Summing amplifier
Voltage
followerVoltage

divider

FIGURE 6.11-3 One implementation of the interface circuit.

The circuit shown in Figure 6.11-3 is not the only circuit that solves this design challenge. There are
several circuits that implement

v2 ¼ 20v1 þ 5 V

We will be satisfied with having found one circuit that does the job.

Verify the Proposed Solution
The circuit shown in Figure 6.11-3 was simulated using PSpice. The result of this simulation is the plot of the v2

versus v1 shown in Figure 6.11-4. Because this plot shows a straight line, v2 is related to v1 by the equation of a
straight line

v2 ¼ mv1 þ b
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6.12 SUMMARY

Several models are available for operational amplifiers.
Simple models are easy to use. Accurate models are more
complicated. The simplest model of the operational amplifier
is the ideal operational amplifier.
The currents into the input terminals of an ideal operational
amplifier are zero, and the voltages at the input nodes of an
ideal operational amplifier are equal.
It is convenient to use node equations to analyze circuits that
contain ideal operational amplifiers.
Operational amplifiers are used to build circuits that perform
mathematical operations. Many of these circuits have been
used so often that they have been given names. The inverting
amplifier gives a response of the form vo¼�Kvi where K is a
positive constant. The noninverting amplifier gives a re-
sponse of the form vo¼Kvi where K is a positive constant.

Another useful operational amplifier circuit is the noninvert-
ing amplifier with a gain of K ¼ 1, often called a voltage
follower or buffer. The output of the voltage follower
faithfully follows the input voltage. The voltage follower
reduces loading by isolating its output terminal from its input
terminal.
Figure 6.5-1 is a catalog of some frequently used operational
amplifier circuits.
Practical operational amplifiers have properties that are not
included in the ideal operational amplifier. These include the
input offset voltage, bias current, dc gain, input resistance,
and output resistance. More complicated models are needed
to account for these properties.
PSpice can be used to reduce the drudgery of analyzing
operational amplifier circuits with complicated models.

–5 V

0 V

5 V

10 V

15 V

(–250.000 m, 4.7506 m)

(250.000 m, 10.002)

–400 mV –200 mV 0 V 200 mV 400 mV

v 2
, 
V

v1, V
FIGURE 6.11-4 PSpice simulation of
the circuit shown in Figure 6.11-3.

where m is the slope of the line and b is the intercept of the line with the vertical axis. Two points on the line have
been labeled to show that v2¼ 10.002 V when v1¼ 0.250 V and that v2¼ 0.0047506 V when v1 ¼ �0:250 V. The
slope m and intercept b can be calculated from these points. The slope is given by

m ¼ 10:002� 0:0047506ð Þ
0:250� �0:250ð Þ ¼ 19:994

The intercept is given by

b ¼ 10:002� 19:994� 0:0250 ¼ 5:003

Thus,

v2 ¼ 19:994v1 þ 5:003 ð6:11-2Þ
Comparing Eqs. 6.11-1 and 6.11-2 verifies that the proposed solution is indeed correct.
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PROBLEMS

Section 6.3 The Ideal Operational Amplifier

P 6.3-1 Determine the value of voltage measured by the
voltmeter in Figure P 6.3-1.

Answer: �4 V

+

–

50 kΩ
20 kΩ

20 kΩ

+
– 4 V

Voltmeter

Figure P 6.3-1

P 6.3-2 Find vo and io for the circuit of Figure P 6.3-2.

12 V

1 kΩ

3 kΩ

2 kΩ

4 kΩ

–

+
+

–

vo

+
–

R

io

Figure P 6.3-2

P 6.3-3 Find vo and io for the circuit of Figure P 6.3-3.

Answer: vo ¼ �30 V and io¼ 3.5 mA

12 V

2 V 20 kΩ

4 kΩ 8 kΩ

–

+
+

–

vo

+
–

+
–

io

Figure P 6.3-3

P 6.3-4 Find v and i for the circuit of Figure P 6.3-4.

i

v
+
–

–

+

10 kΩ

20 kΩ0.1 mA
5 V

+

–

Figure P 6.3-4

P 6.3-5 Find vo and io for the circuit of Figure P 6.3-5.

Answer: vo ¼ �15 V and io¼ 7.5 mA

io

vo
+
–

–

+

3 kΩ

4 kΩ

6 kΩ2 mA12 V
+

–

Figure P 6.3-5

P 6.3-6 Determine the value of voltage measured by the
voltmeter in Figure P 6.3-6.

Answer: 7.5 V

+

–

8 kΩ

6 kΩ

6 kΩ

4 kΩ

+
– 2.5 V

Voltmeter

Figure P 6.3-6

Problem available in WileyPLUS at instructor’s discretion.
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P 6.3-7 Find vo and io for the circuit of Figure P 6.3-7.

vs

R1 R2 R3 R4

R5

–

+ +

–

vo

+
–

–

+

io

Figure P 6.3-7

P 6.3-8 Determine the current io for the circuit shown in
Figure P 6.3-8.

Answer: io¼ 2.5 mA

io

+

–

+

–

4 kΩ

8 kΩ

8 kΩ

6 kΩ

6 kΩ

6 kΩ

6 kΩ

4 kΩ+
–

+
–

2 V

5.8 V

Figure P 6.3-8

P 6.3-9 Determine the voltage vo for the circuit shown in
Figure P 6.3-9.

Answer: vo ¼ �8 V

a
b

–

+ +

–

vo8 kΩ8 kΩ

4 kΩ
4 kΩ

+
–

18 V

Figure P 6.3-9

P 6.3-10 The circuit shown in Figure P 6.3-10 has one
input, is, and one output, vo. Show that the output is proportional
to the input. Design the circuit so that the gain is vo

is
¼ 20 V

mA.

–

+
+

–
voR2

is

R1

R3

Figure P 6.3-10

P 6.3-11 The circuit shown in Figure P 6.3-11 has one
input, vs, and one output, vo. Show that the output is propor-
tional to the input. Design the circuit so that vo¼ 5 vs.

–

+

vo

R3

R1

R2
+
–

vs

R4

Figure P 6.3-11

P 6.3-12 The input to the circuit shown in Figure P 6.3-12
is the voltage vs. The output is the voltage vo. The output is
related to the input by the equation vo ¼ mvs þ b where m and b
are constants. Determine the values of m and b.

–

+

+
–

+
–

vs

1.5 V 10 kΩ

20 kΩ5 kΩ

vo

+

–

Figure P 6.3-12

P 6.3-13 The output of the circuit shown in Figure P 6.3-13 is
vo ¼ 3:5 V. Determine the value of (a) the resistance R, (b) the
power supplied be each independent source, and (c) the power
poa ¼ ioa � vo supplied by the op amp.

–

+

R

+
–1.5 V

10 kΩ

20 kΩ

25 kΩ

0.2 mA

vo

+

–

ioa

Figure P 6.3-13
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P 6.3-14 Determine the node voltages at nodes a, b, c, and
d of the circuit shown in Figure P 6.3-14.

–

+

–

+

10 kΩ5 kΩ5 kΩ

5 kΩ

2.5 mA

20 kΩ
25 kΩ

15 kΩ
c

b
a d

Figure P 6.3-14

P 6.3-15 Determine the node voltages at nodes a, b, c,
and d of the circuit shown in Figure P 6.3-15.

–

+
–

+

40 kΩ
40 kΩ

10 kΩ
10 kΩ60 kΩ

10 kΩ

5 V

10 kΩ
20 kΩ

40 kΩ

cb
a d

–
+

Figure P 6.3-15

P 6.3-16 Figure P 6.3-16 shows four similar circuits. The
outputs of the circuits are the voltages v1, v2, v3, and v4.
Determine the values of these four outputs.

v2

+

–

v1

+

–

25 kΩ

v4

+

–

v3

+

–

25 kΩ

25 kΩ

25 kΩ

80 kΩ

80 kΩ

80 kΩ

80 kΩ

200 kΩ

200 kΩ

200 kΩ

200 kΩ

+
–

+
–

+
–

+
–

–

+

–

+

–

+

–

+

2.1 V 2.1 V

2.1 V2.1 V

Figure P 6.3-16

P 6.3-17 Figure P 6.3-17 shows four similar circuits. The
outputs of the circuits are the voltages v1, v2, v3, and v4.
Determine the values of these four outputs.

–

+

–

+

+
–

2.1 V+
– 2.1 V

–

+

–

+

+
–

2.1 V+
– 2.1 V

25 kΩ80 kΩ

25 kΩ80 kΩ 25 kΩ 80 kΩ

25 kΩ 80 kΩ

v1

+

–

v3

+

–

v2

+

–

v4

+

–

200 kΩ

200 kΩ

200 kΩ

200 kΩ

Figure P 6.3-17

Section 6.4 Nodal Analysis of Circuits Containing

Ideal Operational Amplifiers

P 6.4-1 Determine the node voltages for the circuit shown
in Figure P 6.4-1.

Answer: va ¼ 2 V, vb ¼ �0:25 V, vc ¼ �5 V, vd ¼ �2:5 V,
and ve ¼ �0:25 V

+

–

40 kΩ

40 kΩ

20 kΩ

9 kΩ

1 kΩ+
–

+
–

a b

d

e
c

2 V

5 V

Figure P 6.4-1

P 6.4-2 Find vo and io for the circuit of Figure P 6.4-2.

Answer: vo ¼ �4 V and io¼ 1.33 mA

12 V

6 kΩ

6 kΩ

6 kΩ

6 kΩ 6 kΩ

–

+ +

–

vo

+
–

io

Figure P 6.4-2
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P 6.4-3 Determine the values of the node voltages, va and
vo, of the circuit shown in Figure P 6.4-3.

+
–

+

−
vo

va

20 kΩ

40 kΩ

10 kΩ

20 kΩ

8 kΩ

2.25 V –

+

Figure P 6.4-3

P 6.4-4 The output of the circuit shown in Figure P 6.4-4
is vo. The inputs are v1 and v2. Express the output as a function
of the inputs and the resistor resistances.

+
–

+
–

–

+

–

+

R3

R2

R1

v1

v2

vo

+

–

Figure P 6.4-4

P 6.4-5 The outputs of the circuit shown in Figure P 6.4-5
are vo and io. The inputs are v1 and v2. Express the outputs as
functions of the inputs and the resistor resistances.

+
–

+
–

–

+

–

+

–

+

R3 R5

R6R4

R2

R7

R1

v1

v2

vo

io

+

–

Figure P 6.4-5

P 6.4-6 Determine the node voltages for the circuit shown
in Figure P 6.4-6.

Answer: va ¼ �0:75 V, vb ¼ 0 V, and vc ¼ �0:9375 V

+

–

10 kΩ

15 kΩ40 kΩ

40 kΩ 20 kΩ 25 kΩ

+
–

c
ba

12 V

Figure P 6.4-6

P 6.4-7 Find vo and io for the circuit shown in Figure P 6.4-7.

–

+ +

–

vo

io

30 kΩ

30 kΩ

10 kΩ

10 kΩ

10 kΩ

30 kΩ

30 kΩ

6 V

+ –

Figure P 6.4-7

P 6.4-8 Findvo and io for thecircuit showninFigureP6.4-8.

–

+

+

–

vo

5 V+
–

io

10 kΩ 20 kΩ

20 kΩ

10 kΩ

Figure P 6.4-8

P 6.4-9 Determine the node voltages for the circuit shown
in Figure P 6.4-9.

Answer: va ¼ �12 V, vb ¼ �4 V, vc ¼ �4 V, vd ¼ �4 V,
ve ¼ �3:2 V, vf ¼ �4:8 V, and vg ¼ �3:2 V
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+

–
+

–

20 kΩ 40 kΩ

20 kΩ

40 kΩ
20 kΩ

20 kΩ10 kΩ

+
–

a b
f

g

edc

12 V
40 kΩ

Figure P 6.4-9

P 6.4-10 The circuit shown in Figure P 6.4-10 includes a
simple strain gauge. The resistor R changes its value by DR
when it is twisted or bent. Derive a relation for the voltage gain
vo/vs and show that it is proportional to the fractional change in
R, namely, DR=Ro.

Answer: vo ¼ Ro

Ro þ R1

D R

Ro

–

+

R = Ro + ΔR

R1

R1
Ro

vs vo

+

–

+

–

Ideal

Figure P 6.4-10 A strain gauge circuit.

P 6.4-11 Find vo for the circuit shown in Figure P 6.4-11.

1.5 V 8 kΩ

10 kΩ

20 kΩ

–

+

vo

+
–

io

20 kΩ

+

–

Figure P 6.4-11

P 6.4-12 The circuit shown in Figure P 6.4-12 has one output,
vo, and two inputs, v1 and v2. Show that when R3

R4
¼ R6

R5
, the

output is proportional to the difference of the inputs, v1 � v2.
Specify resistance values to cause vo ¼ 5 (v1 � v2).

–

+
vo

v1 R3

R2

R1

R4

–

+

v2 R5

R6

+
–

+
–

Figure P 6.4-12

P 6.4-13 The circuit shown in Figure P 6.4-13 has one output,
vo, and one input, vi. Show that the output is proportional to the
input. Specify resistance values to cause vo¼ 20vi.

–

+

R1
vi

vo

R2 R3

R4

–

+

Figure P 6.4-13

P 6.4-14 The circuit shown in Figure P 6.4-14 has one input,
vs, and one output, vo. Show that the output is proportional to
the input. Design the circuit so that vo ¼ 20vs.

vs

R1

R2 R4

R3

R5 vo

–+

+

–

+
–

Figure P 6.4-14

P 6.4-15 The circuit shown in Figure P 6.4-15 has one input,
vs, and one output, vo. The circuit contains seven resistors
having equal resistance R. Express the gain of the circuit
vo/vs in terms of the resistance R.
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–

+ +

–

vo

vs

RR
R R R

R

R

+
–

Figure P 6.4-15

P 6.4-16 The circuit shown in Figure P 6.4-16 has one input,
vs, and one output, vo. Express the gain vo=vs in terms of the
resistances R1, R2, R3, R4, and R5. Design the circuit so that
vo¼�20 vs.

vo

+
– vs

R1 R2

R3

R4

R5

–

+ +

–

Figure P 6.4-16

P 6.4-17 The circuit shown in Figure P 6.4-17 has one input,
vs, and one output, vo. Express the gain of the circuit vo=vs in
terms of the resistances R1, R2, R3, R4, R5, and R6. Design the
circuit so that vo¼�20vs.

–

+

+

–
vo

+
– vs

R1 R2

R3

R5
R6

–

+

R4

Figure P 6.4-17

P 6.4-18 The circuit shown in Figure P 6.4-18 has one input,
vs, and one output, io. Express the gain of the circuit io=vs in
terms of the resistances R1, R2, R3, and Ro. (This circuit contains
a pair of resistors having resistance R1 and another pair having
resistance R2.) Design the circuit so that io¼ 0.02vs.

–

+

R1 R2

R1

Ro

R2

io 

+
–

vs

–

+

R3

Figure P 6.4-18

P 6.4-19 The circuit shown in Figure P 6.4-19 has one input,
vs, and one output, vo. The circuit contains one unspecified
resistance, R.

(a) Express the gain of the circuit vo=vs in terms of the
resistance R.

(b) Determine the range of values of the gain that can be
obtained by specifying a value for the resistance R.

(c) Design the circuit so that vo¼�3vs.

50 kΩ10 kΩ

vovs
–

+

+
–

–

+

40 kΩ

10 kΩ

R

+

–

Figure P 6.4-19

P 6.4-20 The circuit shown in Figure P 6.4-20 has one input,
vs, and one output, vo. The circuit contains one unspecified
resistance, R.

(a) Express the gain of the circuit vo=vs in terms of the
resistance R.

(b) Determine the range of values of the gain that can be
obtained by specifying a value for the resistance R.

(c) Design the circuit so that vo¼�5vs.
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30 kΩ10 kΩ

vo

vs
–

+

+
–

–

+

10 kΩ
20 kΩ

R

+

–

Figure P 6.4-20

P 6.4-21 The circuit shown in Figure P 6.4-21 has three
inputs: v1, v2, and v3. The output of the circuit is vo. The output
is related to the inputs by

vo ¼ av1 þ bv2 þ cv3

where a, b, and c are constants. Determine the values of a, b,
and c.

20 kΩ20 kΩ

vo

v1
–

+

+
–

20 kΩ20 kΩ

v2

–

+

+
–

120 kΩ120 kΩ

–

+

–

+

20 kΩ

20 kΩ

v3

+
–

30 kΩ

40 kΩ

+

–

Figure P 6.4-21

P 6.4-22 The circuit shown in Figure P 6.4-22 has two
inputs: v1 and v2. The output of the circuit is vo. The output is
related to the inputs by

vo ¼ av1 þ bv2

where a and b are constants. Determine the values of a and b.

20 kΩ

20 kΩ

vo

v1

–

+

+
–

20 kΩ20 kΩ

v2
–

+

20 kΩ

+
–

20 kΩ

40 kΩ

–

+ +

–

Figure P 6.4-22

P 6.4-23 The input to the circuit shown in Figure P 6.4-
23 is the voltage source voltage vs. The output is the node
voltage vo The output is related to the input by the equation

vo ¼ kvs where k ¼ vo

vs
is called the gain of the circuit.

Determine the value of the gain k.

+

–+
–

vs

20 kΩ

20 kΩ30 kΩ
80 kΩ

vo

Figure P 6.4-23

P 6.4-24 The input to thecircuit showninFigureP6.4-24 is
the current source current is. The output is the node voltage vo.
The output is related to the input by the equation vo ¼ mis þ b
where m and b are constants. Determine the values of m and b.

–

+

+
–

25 kΩ

25 kΩ

6 V

50 kΩ

vo
is

Figure P 6.4-24

P 6.4-25 The input to the circuit shown in Figure P 6.4-25 is the
node voltage vs. The output is the node voltage vo. The output is

related to the input by the equation vo ¼ kvs where k ¼ vo

vs
is

called the gain of the circuit. Determine the value of the gain k.
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+

–

25 kΩ

50 kΩ

50 kΩ5 kΩ

5 kΩ
250 kΩ

vo

vs

–

+

Figure P 6.4-25

P 6.4-26 The values of the node voltages v1, v2, and vo in
Figure P 6.4-26 are v1 ¼ 6:25 V, v2 ¼ 3:75 V, and vo ¼ �15 V.
Determine the value of the resistances R1, R2, and R3.

v1

v2

vo

–

+

–

+

–

+

R1

R3

R2

+
–2.5 V 20 kΩ

20 kΩ

20 kΩ

Figure P 6.4-26

P 6.4-27 The input to the circuit shown in Figure P 6.4-27
is the voltage source voltage vi. The output is the node voltage
vo. The output is related to the input by the equation vo ¼ kvi

where k ¼ vo

vi
is called the gain of the circuit. Determine the

value of the gain k.

–

+

10 kΩ

4 kΩ

vo

vi

24 kΩ

12 kΩ

40 kΩ

10 kΩ

+
–

Figure P 6.4-27

Section 6.5 Design Using Operational Amplifiers

P 6.5-1 Design the operational amplifier circuit in Figure
P 6.5-1 so that

vout ¼ r � iin

where r ¼ 20
V

mA

+

–

vout20 kΩiin
Operational
amplifier
circuit

Figure P 6.5-1

P 6.5-2 Design the operational amplifier circuit in Figure
P 6.5-2 so that

iout ¼ g � vin

where g ¼ 2
mA

V

iout

5 kΩvin

Operational
amplifier
circuit

+
–

Figure P 6.5-2

P 6.5-3 Design the operational amplifier circuit in Figure
P 6.5-3 so that

vout ¼ 5 � v1 þ 2 � v2

vout20 kΩ

v1

v2

Operational
amplifier
circuit

+
–

+
–

+

–

Figure P 6.5-3

P 6.5-4 Design the operational amplifier circuit in Figure
P 6.5-3 so that

vout ¼ 5 � v1 � v2ð Þ
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P 6.5-5 Design the operational amplifier circuit in Figure
P 6.5-3 so that

vout ¼ 5 � v1 � 2 � v2

P 6.5-6 The voltage divider shown in Figure P 6.5-6 has a
gain of

vout
vin

¼ �10 kV

5 kVþ �10 kVð Þ ¼ 2

Design an operational amplifier circuit to implement the
�10-kV resistor.

+
–vin vout–10 kΩ

5 kΩ

+

–

Figure P 6.5-6 A circuit with a negative resistor.

P 6.5-7 Design the operational amplifier circuit in Figure
P 6.5-7 so that

iin ¼ 0 and vout ¼ 3 � vin

vout20 kΩ10 kΩ
–5 V5 V

Operational
amplifier
circuit

+
–

+
–

+

–

vin

iin

+

–

Figure P 6.5-7

P 6.5-8 Design an operational amplifier circuit with output
vo¼ 6 v1 þ 2 v2, where v1 and v2 are input voltages.

P 6.5-9 Determine the voltage vo for the circuit shown in
Figure P 6.5-9.

Hint: Use superposition.

Answer: vo¼ (�3)(3) þ (4)(�4) þ ( 4)(8)¼ 7 V

+

–

8 kΩ 24 kΩ

4 kΩ

10 kΩ

+

–

vo+
–

+
–3 V

4 V 2 mA

Figure P 6.5-9

P 6.5-10 For the op amp circuit shown in Figure P 6.5-10, find
and list all the possible voltage gains that can be achieved by
connecting the resistor terminals to either the input or the
output voltage terminals.

+

–
vo

vs

2412126

–

++
–

Figure P 6.5-10 Resistances in kV.

P 6.5-11 The circuit shown in Figure P 6.5-11 is called a
Howland current source. It has one input, vin, and one output,
iout. Show that when the resistances are chosen so that
R2R3¼R1R4, the output is related to the input by the equation

iout ¼ vin
R1

–

+

R3 R4

R1

RL

R2

iout 
+
–vin

Figure P 6.5-11

P 6.5-12 The input to the circuit shown in Figure P 6.5-12a is
the voltage vs. The output is the voltage vo. The voltage vb is
used to adjust the relationship between the input and output.

(a) Show that the output of this circuit is related to the input by
the equation

vo ¼ avs þ b

where a and b are constants that depend on R1, R2, R3, R4,
R5, and vb.

(b) Design the circuit so that its input and output have the
relationshipspecifiedbythegraphshowninFigureP6.5-12b.

+

–

+
–

+
–

R1

R2

R3

R4

R5

vs

vb

vo

+

−

(a)
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vo, V

vs, V

–2

–4

2

4

6

2 4–2

–4

–6

8

(b)

Figure P 6.5-12

P 6.5-13 The input to the circuit shown in Figure P 6.5-13a
is the voltage vs. The output is the voltage vo. The voltage vb is
used to adjust the relationship between the input and output.

(a) Show that the output of this circuit is related to the input by
the equation

vo ¼ avs þ b

where a and b are constants that depend on R1, R2, R3, R4,
and vb.

(b) Design the circuit so that its input and output have the
relationshipspecifiedbythegraphshowninFigureP6.5-13b.

vo, V

vs, V

–2

–4

2

4

6

2

4–2–4–6

8

+

–

vo+
–

+
–

R1

R2

R3

R4

vs

vb

(a)

(b)

+

–

Figure P 6.5-13

P 6.5-14 The input to the circuit shown in Figure P 6.5-14
is the voltage source voltage vs. The output is the node voltage
vo. The output is related to the input by the equation vo ¼
mvs þ b where m and b are constants. (a) Specify values of R3

and va that cause the output to be related to the input by the
equation vo ¼ 4vs þ 7. (b) Determine the values of m and b
when R3 ¼ 20 kV, and va ¼ 2:5 V.

–

+

–

+

R3+
– vs

+
–

va

10 kΩ 30 kΩ 20 kΩ

vo

+

–

Figure P 6.5-14

P 6.5-15 The circuit shown in Figure P 6.5-15 uses a potenti-
ometer to implement a variable resistor having a resistance R
that varies over the range

0 < R < 200 kV

The gain of this circuit is G ¼ vo
vs

. Varying the resistance R over

it’s range causes the value of the gain G to vary over the range

Gmin � vo
vs

� Gmax

Determine the minimum and maximum values of the gains
Gmin and Gmax.

–

+

+
–vs

50 kΩ
R

25 kΩ 25 kΩ

vo

+

–

Figure P 6.5-15

P 6.5-16 Theinput to thecircuit showninFigureP6.5-16a is the
voltage vs. The output is the voltage vo. The voltage vb is used to
adjust the relationship between the input and output. Determine
values of R4 and vb that cause the circuit input and output to have
therelationshipspecifiedbythegraphshowninFigureP6.5-16b.

Answer: vb ¼ 1:62 V and R4 ¼ 62:5 kV

R4

–

+ –

++
– vs

vb

5 kΩ

30 kΩ

20 kΩ

vo

+

–

+
–

(a)
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vo,  V

vs,  V

5

3

(b)

Figure P 6.5-16

P 6.5-17 Figure P 6.5-17 shows three similar circuits. The
outputs of the circuits are the voltages v1, v2, and v3. Determine
the values of these three outputs.

–

+

–

+

–

+

+
–

+
–

+
– 1.8 V

v1

1.8 V

80 kΩ

v2

1.8 V 80 kΩ

25 kΩ

25 kΩ

v3

80 kΩ25 kΩ

Figure P 6.5-17

P 6.5-18 The input to the circuit shown in Figure P 6.5-18 is the
source voltage vs. The output is the voltage across the 25-kΩ
resistor, vo. The output is related to the input by the equation vo =
(g) vi where g is the gain of the circuit. Determine the value of g.

–

+

vo

+

–

vs
+
–

15 kΩ

45 kΩ 64 kΩ
30 kΩ

80 kΩ

25 kΩ

20 kΩ

Figure P 6.5-18

Section 6.6 Operational Amplifier Circuits and

Linear Algebraic Equations

P 6.6-1 Design a circuit to implement the equation

z ¼ 4w þ x

4
� 3y

The circuit should have one output corresponding to z and three

inputs corresponding to w, x, and y.

P 6.6-2 Design a circuit to implement the equation

0 ¼ 4w þ x þ 10� 6y þ 2zð Þ
The output of the circuit should correspond to z.

Section 6.7 Characteristics of Practical Operational

Amplifiers

P 6.7-1 Consider the inverting amplifier shown in Figure
P 6.7-1. The operational amplifier is a typical OP-07E (Table
6.7-1). Use the offsets model of the operational amplifier to
calculate the output offset voltage. (Recall that the input vin is
set to zero when calculating the output offset voltage.)

Answer: 0.45 mV

vo

+

–

vin
+
–

–

+

100 kΩ10 kΩ

Figure P 6.7-1

P 6.7-2 Consider the noninverting amplifier shown in
Figure P 6.7-2. The operational amplifier is a typical LF351
(Table 6.7-1). Use the offsets model of the operational
amplifier to calculate the output offset voltage. (Recall that
the input vin is set to zero when calculating the output offset
voltage.)

+
–

90 kΩ

10 kΩ

vin vo

+

–

–

+

Figure P 6.7-2

P 6.7-3 Consider the inverting amplifier shown in Figure
P 6.7-3. Use the finite gain model of the operational amplifier
(Figure 6.7-1c) to calculate the gain of the inverting amplifier.
Show that

vo
vin

¼ Rin Ro � AR2ð Þ
R1 þ Rinð Þ Ro þ R2ð Þ þ R1Rin 1þ Að Þ
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vo

+

–

vin
+
–

–

+

R1 R2

Figure P 6.7-3

P 6.7-4 Consider the inverting amplifier shown in Figure P
6.7-3. Suppose the operational amplifier is ideal, R1 ¼ 5 kV,
and R2 ¼ 50 kV. The gain of the inverting amplifier will be

vo
vin

¼ �10

Use the results of Problem P 6.7-3 to find the gain of the
inverting amplifier in each of the following cases:

(a) The operational amplifier is ideal, but 2 percent resistors
are used and R1¼ 5.1 kV and R2 ¼ 49 kV.

(b) The operational amplifier is represented using the finite
gain model with A¼ 200,000, Ri ¼ 2 MV, and Ro¼ 75 V;
R1 ¼ 5 kV and R2 ¼ 50 kV.

(c) The operational amplifier is represented using the finite
gain model with A¼ 200,000, Ri ¼ 2 MV, and Ro¼ 75 V;
R1¼ 5.1 kV and R2 ¼ 49 kV.

P 6.7-5 The circuit in Figure P 6.7-5 is called a difference
amplifier and is used for instrumentation circuits. The output of
a measuring element is represented by the common mode
signal vcm and the differential signal (vn þ vp). Using an ideal
operational amplifier, show that

vo ¼ �R4

R1
vn þ vp
� �

when
R4

R1
¼ R3

R2

–

+ +

–

vo

vn

vp

vcm

+
–

+
–

+
–

R1

R2

R3

R4

Figure P 6.7-5

Section 6.10 How CanWe Check . . . ?

P 6.10-1 Analysis of the circuit in Figure P 6.10-1 shows that
io¼�1 mA and vo ¼ 7 V. Is this analysis correct?

Hint: Is KCL satisfied at the output node of the op amp?

6 kΩ 4 kΩ

10 kΩ

io–

+
+

–

vo

+
–

+
–

5 V

2 V

Figure P 6.10-1

P 6.10-2 Your lab partner measured the output voltage of the
circuit shown in Figure P 6.10-2 to be vo ¼ 9.6 V. Is this the
correct output voltage for this circuit?

Hint: Ask your lab partner to check the polarity of the voltage
that he or she measured.

4 kΩ

2 mA

10 kΩ 12 kΩ

–

+

–

+

+

–

vo

Figure P 6.10-2

P 6.10-3 Nodal analysis of the circuit shown in Figure P 6.10-
3 indicates that vo ¼ �12 V. Is this analysis correct?

Hint: Redraw the circuit to identify an inverting amplifier and a
noninverting amplifier.

+

–

vo

2 kΩ

6 kΩ

2 kΩ

4 kΩ

+
–

–

+
–

+

3 V 2 V+
–

Figure P 6.10-3
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P 6.10-4 Computeranalysisof thecircuit inFigureP6.10-4
indicates that the node voltages are va ¼ �5 V, vb ¼ 0 V,
vc ¼ 2 V, vd ¼ 5 V, ve ¼ 2 V, vf ¼ 2 V, and vg ¼ 11 V. Is
this analysis correct? Justify your answer. Assume that the
operational amplifier is ideal.

Hint: Verify that the resistor currents indicated by these node
voltages satisfy KCL at nodes b, c, d, and f.

+
–

+
–

+

–

40 kΩ

10 kΩ

4 kΩ 6 kΩ 4 kΩ10 kΩ

e f g

cba

5 V

2 V 10 kΩ

5 kΩ

d

Figure P 6.10-4

P 6.10-5 Computer analysis of the noninverting summing
amplifier shown in Figure P 6.10-5 indicates that the node
voltages are va ¼ 2 V, vb ¼ �0:25 V, vc ¼ �5 V, vd ¼
�2:5 V, and ve ¼ �0:25 V.

(a) Is this analysis correct?
(b) Does this analysis verify that the circuit is a noninverting

summing amplifier? Justify your answers. Assume that the
operational amplifier is ideal.

1st Hint: Verify that the resistor currents indicated by these
node voltages satisfy KCL at nodes b and e.

2nd Hint: Compare to Figure 6.5-1e to see that Ra ¼ 10 kV
and Rb ¼ 1 kV. Determine K1, K2, and K4 from the resistance
values. Verify that vd¼K4(K1va þ K2vc).

+

–

40 kΩ

40 kΩ

20 kΩ

9 kΩ

1 kΩ+
–

+
–

a b

d

e
c

2 V

5 V

Figure P 6.10-5

PSpice Problems

SP 6-1 The circuit in Figure SP 6-1 has three inputs: vw, vx,
and vy. The circuit has one output, vz. The equation

vz ¼ avw þ bvx þ cvy

vw

20 kΩ

20 kΩ

60 kΩ

20 kΩ

+

–
20 kΩ

20 kΩ

vz

+
–

20 kΩ 60 kΩ

–

+

20 kΩ 100 kΩ

–

+

vy
+
–

vx
+
–

Figure SP 6-1
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expresses the output as a function of the inputs. The
coefficients a, b, and c are real constants.

(a) Use PSpice and the principle of superposition to determine
the values of a, b, and c.

(b) Suppose vw ¼ 2 V, vx¼ x, vy¼ y and we want the output to
be vz¼ z. Express z as a function of x and y.

Hint: The output is given by vz¼ a when vw ¼ 1 V, vx ¼ 0 V,
and vy ¼ 0 V.
Answer: (a) vz¼ vw + 4 vx�5 vy (b) z¼ 4 x � 5 y þ 2

SP 6-2 The input to the circuit in Figure SP 6-2 is vs, and the
output is vo. (a) Use superposition to express vo as a function of
vs. (b) Use the DC Sweep feature of PSpice to plot vo as a
function of vs. (c) Verify that the results of parts (a) and (b)
agree with each other.

–

+

+
–

+
–

vo

vs
+

–2 V

25 kΩ 80 kΩ

Figure SP 6-2

SP 6-3 A circuit with its nodes identified is shown in Figure
SP 6-3. Determine v34, v23, v50, and io.

–

+

vo

io +

–

10 kΩ
10 kΩ

30 kΩ

30 kΩ

10 kΩ30 kΩ

30 kΩ

6 V

5

1

32

4

+ –

Figure SP 6-3 Bridge circuit.

SP 6-4 Use PSpice to analyze the VCCS shown in Figure
SP 6-4. Consider two cases:

(a) The operational amplifier is ideal.
(b) The operational amplifier is a typical mA741 represented

by the offsets and finite gain model.

–

+

iout

10 kΩ

2 kΩ 10 kΩ

2 kΩ

50 kΩ+
–20 mV

Figure SP 6-4 A VCCS.
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Design Problems

DP 6-1 Design the operational amplifier circuit in Figure
DP 6-1 so that

iout ¼ 1

4
� iin

iout

5 kΩiin
Operational
Amplifier
Circuit

Figure DP 6-1

DP 6-2 Figure DP 6-2a shows a circuit that has one input, vi,
and one output, vo. Figure DP 6-2b shows a graph that specifies a
relationship between vo and vi. Design a circuit having input vi

and output vo that have the relationship specified by the graph in
Figure DP 6-2b.

Hint: A constant input is required. Assume that a 5-V source is
available.

vi vo

vo, V

vi, V

(a) (b)

–2

–4

–6

–8

2

4

6

8

2 4 6 8–2–4–6

Figure DP 6-2

DP 6-3 Design a circuit having input vi and output vo that are
related by the equations (a) vo¼ 12vi + 6, (b) vo¼ 12vi�6,
(c) vo¼�12vi + 6, and (d) vo¼�12vi � 6.

Hint: A constant input is required. Assume that a 5-V source is
available.

DP 6-4 Design a circuit having three inputs, v1, v2, v3, and two
outputs, va, vb, that are related by the equation

va

vb

	 

¼ 12 3 �2

8 �6 0

	 
 v1
v2
v3

2
4

3
5þ 2

�4

	 


Hint: A constant input is required. Assume that a 5-V source is
available.

DP 6-5 A microphone has an unloaded voltage vs ¼ 20 mV, as
shown in Figure DP 6-5a. An op amp is available as shown in
Figure DP 6-5b. It is desired to provide an output voltage of 4 V.
Design an inverting circuit and a noninverting circuit and
contrast the input resistance at terminals x–y seen by the
microphone. Which configuration would you recommend to
achieve good performance in spite of changes in the microphone
resistance Rs?

Hint: We plan to connect terminal a to terminal x and terminal b
to terminal y or vice versa.

+

vo

–

R1

R2

a

b +

–

+
–vs

10 kΩ

x

y

Microphone

(b)

(a)

Rs

Figure DP 6-5 Microphone and op amp circuit.
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CHAPTER 7 Energy Storage
Elements

I N T H I S C H A P T E R
7.1 Introduction
7.2 Capacitors
7.3 Energy Storage in a

Capacitor
7.4 Series and Parallel

Capacitors
7.5 Inductors
7.6 Energy Storage in an

Inductor
7.7 Series and Parallel

Inductors

7.8 Initial Conditions
of Switched
Circuits

7.9 Operational
Amplifier Circuits and
Linear Differential
Equations

7.10 Using MATLAB to
Plot Capacitor or
Inductor Voltage and
Current

7.11 How Can We
Check . . . ?

7.12 DESIGN
EXAMPLE—
Integrator and
Switch

7.13 Summary
Problems
Design Problems

7.1 I n t r o d u c t i o n

This chapter introduces two more circuit elements, the capacitor and the inductor. The constitutive
equations for the devices involve either integration or differentiation. Consequently:

� Electric circuits that contain capacitors and/or inductors are represented by differential equations.
Circuits that do not contain capacitors or inductors are represented by algebraic equations. We say
that circuits containing capacitors and/or inductors are dynamic circuits, whereas circuits that do not
contain capacitors or inductors are static circuits.

� Circuits that contain capacitors and/or inductors are able to store energy.
� Circuits that contain capacitors and/or inductors have memory. The voltages and currents at a

particular time depend not only on other voltages at currents at that same instant of time but also on
previous values of those currents and voltages.

In addition, we will see that:

� In the absence of unbounded currents or voltages, capacitor voltages and inductor currents are
continuous functions of time.

� In a dc circuit, capacitors act like open circuits, and inductors act like short circuits.
� Series or parallel capacitors can be reduced to an equivalent capacitor. Series or parallel inductors

can be reduced to an equivalent inductor. Doing so does not change the element current or voltage of
any other circuit element.

� An op amp and a capacitor can be used to make circuits that perform the mathematical operations of
integration or differentiation. Appropriately, these important circuits are called the integrator and the
differentiator.

� The element voltages and currents in a circuit containing capacitors and inductors can be
complicated functions of time. MATLAB is useful for plotting these functions.
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7.2 C a p a c i t o r s

A capacitor is a circuit element that stores energy in an electric field. A capacitor can
be constructed using two parallel conducting plates separated by distance d as shown
in Figure 7.2-1. Electric charge is stored on the plates, and a uniform electric field
exists between the conducting plates whenever there is a voltage across the capacitor.
The space between the plates is filled with a dielectric material. Some capacitors use
impregnated paper for a dielectric, whereas others use mica sheets, ceramics, metal
films, or just air. A property of the dielectric material, called the dielectric constant,
describes the relationship between the electric field strength and the capacitor
voltage. Capacitors are represented by a parameter called the capacitance. The
capacitance of a capacitor is proportional to the dielectric constant and surface area of
the plates and is inversely proportional to the distance between the plates. In other
words, the capacitance C of a capacitor is given by

C ¼ 2 A

d

where 2 is the dielectric constant, A the area of the plates, and d the distance between
plates. The unit of capacitance is coulomb per volt and is called farad (F) in honor of
Michael Faraday.

A capacitor voltage v(t) deposits a charge þq(t) on one plate and a charge �q(t) on the other plate.
We say that the charge q(t) is stored by the capacitor. The charge stored by a capacitor is proportional to
the capacitor voltage v(t). Thus, we write

q tð Þ ¼ Cv tð Þ ð7:2-1Þ
where the constant of proportionality C is the capacitance of the capacitor.

Capacitance is a measure of the ability of a device to store energy in the form of a separated
charge or an electric field.

In general, the capacitor voltage v(t) varies as a function of time. Consequently, q(t), the charge
stored by the capacitor, also varies as a function of time. The variation of the capacitor charge with
respect to time implies a capacitor current i(t), given by

i tð Þ ¼ d

dt
q tð Þ

We differentiate Eq. 7.2-1 to obtain

i tð Þ ¼ C
d

dt
v tð Þ ð7:2-2Þ

Equation 7.2-2 is the current–voltage relationship of a capacitor. The current and voltage in Eq. 7.7-2
adhere to the passive convention. Figure 7.2-2 shows two alternative symbols to represent capacitors in
circuit diagrams. In both Figure 7.2-2a and b, the capacitor current and voltage adhere to the passive
sign convention and are related by Eq. 7.2-2.

Now consider the waveform shown in Figure 7.2-3, in which the voltage changes from a constant
voltage of zero to another constant voltage of 1 over an increment of time, Dt. Using Eq. 7.2-2, we
obtain

+

+
+

+
+

+

–

–
–

––
–

–
–

–q(t)+q(t)

i(t)

v(t)

d

+ –

FIGURE 7.2-1 A capacitor
connected to a voltage source.
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i tð Þ ¼
0 t < 0
C

Dt
0 < t < Dt

0 t > Dt

8><
>:

Thus, we obtain a pulse of height equal to C=Dt. As Dt decreases, the current will increase.
Clearly, Dt cannot decline to zero or we would experience an infinite current. An infinite current is an
impossibility because it would require infinite power. Thus, an instantaneous Dt ¼ 0ð Þ change of
voltage across the capacitor is not possible. In other words, we cannot have a discontinuity in v(t).

The voltage across a capacitor cannot change instantaneously.

Now, let us find the voltage v(t) in terms of the current i(t) by integrating both sides of Eq. 7.2-2.
We obtain

v tð Þ ¼ 1

C

Z t

�1
i tð Þdt ð7:2-3Þ

This equation says that the capacitor voltage v(t) can be found by integrating the capacitor current from
time �1 until time t. To do so requires that we know the value of the capacitor current from time
t ¼ �1 until time t ¼ t. Often, we don’t know the value of the current all the way back to t ¼ �1.
Instead, we break the integral up into two parts:

v tð Þ ¼ 1

C

Z t

t0

i tð Þdtþ 1

C

Z t0

�1
i tð Þdt ¼ 1

C

Z t

t0

i tð Þdtþ v t0ð Þ ð7:2-4Þ

This equation says that the capacitor voltage v(t) can be found by integrating the capacitor current
from some convenient time t ¼ t0 until time t ¼ t, provided that we also know the capacitor voltage
at time t0. Now we are required to know only the capacitor current from time t ¼ t0 until time t ¼ t.
The time t0 is called the initial time, and the capacitor voltage v(t0) is called the initial condition.
Frequently, it is convenient to select t0 ¼ 0 as the initial time.

Capacitors are commercially available in a variety of types and capacitance values. Capacitor
types are described in terms of the dielectric material and the construction technique. Miniature metal
film capacitors are shown in Figure 7.2-4. Miniature hermetically sealed polycarbonate capacitors are
shown in Figure 7.2-5. Capacitance values typically range from picofarads (pF) to microfarads (mF).

C C

++

i(t) i(t)

v(t) v(t)

_ _

FIGURE 7.2-2 Circuit symbols
of a capacitor.

1

0 Δt

v (V)

t (s)

FIGURE 7.2-3 Voltage waveform in which
the change in voltage occurs over an increment
of time, Dt.
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Two pieces of insulated wire about an inch long when twisted together will have a capacitance of about
1 pF. On the other hand, a power supply capacitor about an inch in diameter and a few inches long may
have a capacitance of 0.01 F.

Actual capacitors have some resistance associated with them. Fortunately, it is easy to include
approximate resistive effects in the circuit models. In capacitors, the dielectric material between the
plates is not a perfect insulator and has some small conductivity. This can be represented by a very high
resistance in parallel with the capacitor. Ordinary capacitors can hold a charge for hours, and the parallel
resistance is then hundreds of megaohms. For this reason, the resistance associated with a capacitor is
usually ignored.

FIGURE 7.2-4 Miniature metal film capacitors ranging
from 1 mF to 50 mF.

FIGURE 7.2-5 Miniature hermetically sealed
polycarbonate capacitors ranging from 1 mF to 50 mF.

E X A M P L E 7 . 2 - 1 Capacitor Current and Voltage

Find the current for a capacitor C ¼ 1 mF when the voltage across
the capacitor is represented by the signal shown in Figure 7.2-6.

Solution
The voltage (with units of volts) is given by

v tð Þ ¼
0 t � 0

10t 0 � t � 1

20� 10t 1 � t � 2

0 t � 2

8>>><
>>>:

Then, because i ¼ C dv=dt, where C ¼ 10�3 F, we obtain

i tð Þ ¼
0 t < 0

10�2 0 < t < 1

�10�2 1 < t < 2

0 t > 2

8>>><
>>>:

Therefore, the resulting current is a series of two pulses of
magnitudes 10�2 A and �10�2 A, respectively, as shown in Figure
7.2-7.

10

0 1 2

v (V)

t (s)

FIGURE 7.2-6 Waveform of the
voltage across a capacitor for Example
7.2-1. The units are volts and seconds.

10

–10

0 1 2

i (mA)

t (s)

FIGURE 7.2-7 Current for Example
7.2-1.

Try it 
yourself 

in WileyPLUS

Courtesy of Electronic Concepts Inc. Courtesy of Electronic Concepts Inc.
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E X A M P L E 7 . 2 - 2 Capacitor Current and Voltage

Find the voltage v(t) for a capacitor C ¼ 1=2 F when the current is as
shown in Figure 7.2-8 and v tð Þ ¼ 0 for t � 0.

Solution
First, we write the equation for i(t) as

i tð Þ ¼
0 t � 0

t 0 � t � 1

1 1 � t � 2

0 2 < t

8>>><
>>>:

Then, because v(0) ¼ 0

v tð Þ ¼ 1

C

Z t

0
i tð Þdtþ v 0ð Þ ¼ 1

C

Z t

0
i tð Þdt

and C ¼ 1=2, we have

v tð Þ ¼

0 t � 0

2

Z t

0
tdt 0 � t � 1

2

Z t

1
1ð Þdtþ v 1ð Þ 1 � t � 2

v 2ð Þ 2 � t

8>>>>>>><
>>>>>>>:

with units of volts. Therefore, for 0 < t � 1, we have

v tð Þ ¼ t 2

For the period 1 � t � 2, we note that v 1ð Þ ¼ 1 and, therefore, we have

v tð Þ ¼ 2 t � 1ð Þ þ 1 ¼ 2t � 1ð ÞV
The resulting voltage waveform is shown in Figure 7.2-9. The voltage
changes with t 2 during the first 1 s, changes linearly with t during the
period from 1 to 2 s, and stays constant equal to 3 V after t ¼ 2 s.

1

0 1 2

i (A)

t

FIGURE 7.2-8 Circuit waveform for Example
7.2-2. The units are in amperes and seconds.

0 1 2 3

1

2

3

v(t)
(volts)

t (s)

FIGURE 7.2-9 Voltage waveform for Example
7.2-2.

E X A M P L E 7 . 2 - 3 Capacitor Current and Voltage

Figure 7.2-10 shows a circuit together with two plots. The plots represent the current and voltage of the capacitor in
the circuit. Determine the value of the capacitance of the capacitor.

v(t)
+

–

t (s)1 2 3

v(t), V

t (s)1 2 3

–1

–2

–3

Ci(t)

50

i(t), mA

FIGURE 7.2-10 The circuit and plots
considered in Example 7.2-3.

Try it 
yourself 

in WileyPLUS

Try it 
yourself 

in WileyPLUS
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Solution
The current and voltage of the capacitor are related by

v tð Þ ¼ 1

C

Z t

t0

i tð Þ dtþ v t0ð Þ ð7:2-5Þ

or v tð Þ � v t0ð Þ ¼ 1

C

Z t

t0

i tð Þ dt ð7:2-6Þ

Because i(t) and v(t) are represented graphically by plots rather than equations, it is useful to interpret Eq. 7.2-6
using

v tð Þ � v t0ð Þ ¼ the difference between the values of voltage at times t and t0

and

Z t

t0

i tð Þ dt ¼ the area under the plot of i tð Þ versus t for times between t0 and t

Pick convenient values t and t0, for example, t0 ¼ 1 s and t ¼ 3 s. Then,

v tð Þ � v t0ð Þ ¼ �1� �3ð Þ ¼ 2 V

and

Z t

t0

i tð Þ dt ¼
Z 3

1
0:05 dt ¼ 0:05ð Þ 3� 1ð Þ ¼ 0:1 A � s

Using Eq. 7.2-6 gives

2 ¼ 1

C
0:1ð Þ ) C ¼ 0:05

A � s
V

¼ 0:05 F ¼ 50 mF

E X A M P L E 7 . 2 - 4 Capacitor Current
and Voltage

INTERACT IVE EXAMPLE

Figure 7.2-11 shows a circuit together with two plots. The plots represent the current and voltage of the capacitor in
the circuit. Determine the values of the constants a and b used to label the plot of the capacitor current.

24

v(t), V

t (ms)2 5 7

2 5 7

i(t), mA

t (ms)

a

b

v(t) 5 Fμ

i(t)

+
–

FIGURE 7.2-11 The circuit and plots considered in Example 7.2-4.

Solution
The current and voltage of the capacitor are related by

i tð Þ ¼ C
d

dt
v tð Þ ð7:2-7Þ

Try it 
yourself 

in WileyPLUS
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Because i(t) and v(t) are represented graphically, by plots rather than equations, it is useful to interpret Eq. 7.2-7 as

the value of i tð Þ ¼ C � the slope of v tð Þ
To determine the value of a, pick a time when i tð Þ ¼ a and the slope of v(t) is easily determined. For example, at
time t ¼ 3 ms,

d

dt
v 0:003ð Þ ¼ 0� 24

0:002� 0:005
¼ 8000

V

s

(The notation
d

dt
v 0:003ð Þ indicates that the derivative

d

dt
v tð Þ is evaluated at time t ¼ 0:003 s.) Using Eq. 7.2-7

gives

a ¼ 5� 10�6
� �

8000ð Þ ¼ 40 mA

To determine the value of b, pick t ¼ 6 ms;

d

dt
v 0:006ð Þ ¼ 24� 0

0:005� 0:007
¼ 12� 103

V

s

Using Eq. 7.2-7 gives

b ¼ 5� 10�6
� �

12� 103
� � ¼ 60 mA

E X A M P L E 7 . 2 - 5 Capacitor Current and Voltage

The input to the circuit shown in Figure 7.2-12 is the current

i tð Þ ¼ 3:75e�1:2t A for t > 0

The output is the capacitor voltage

v tð Þ ¼ 4� 1:25e�1:2t V for t > 0

Find the value of the capacitance C.

Solution
The capacitor voltage is related to the capacitor current by

v tð Þ ¼ 1

C

Z t

0
i tð Þdtþ v 0ð Þ

That is,

4� 1:25e�1:2t ¼ 1

C

Z t

0
3:75e�1:2tdtþ v 0ð Þ ¼ 3:75

C �1:2ð Þ e�1:2t

����
t

0

þv 0ð Þ ¼ �3:125

C
e�1:2t � 1
� �þ v 0ð Þ

Equating the coefficients of e�1.2t gives

1:25 ¼ 3:125

C
) C ¼ 3:125

1:25
¼ 2:5 F

i(t)

C

v(t)+ –

FIGURE 7.2-12
The circuit
considered in
Example 7.2-5.

Try it 
yourself 

in WileyPLUS
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EXERCISE 7.2-1 Determine the current i(t) for t > 0 for the circuit of Figure E 7.2-1b when vs(t)
is the voltage shown in Figure E 7.2-1a.

1 Ωvs(t)

iC(t) iR(t)

(b)(a)

+
–

i(t)

1 F

vs(t)(V)

1

2

3

4

5

1 2 3 4 5 6 7 8 9 t (s)

FIGURE E 7.2-1 (a) The voltage source voltage. (b) The circuit.

Hint: Determine iC(t) and iR(t) separately, then use KCL.

Answer: v tð Þ ¼
2t � 2 2 < t < 4
7 � t 4 < t < 8

0 otherwise

8<
:

7.3 E n e r g y S t o r a g e i n a C a p a c i t o r

Consider a capacitor that has been connected to a battery of voltage v. A current flows and a charge is
stored on the plates of the capacitor, as shown in Figure 7.3-1. Eventually, the voltage across the
capacitor is a constant, and the current through the capacitor is zero. The capacitor has stored energy by
virtue of the separation of charges between the capacitor plates. These charges have an electrical force
acting on them.

The forces acting on the charges stored in a capacitor are said to result from an electric field. An
electric field is defined as the force acting on a unit positive charge in a specified region. Because the
charges have a force acting on them along a direction x, we recognize that the energy required originally
to separate the charges is now stored by the capacitor in the electric field.

The energy stored in a capacitor is

wc tð Þ ¼
Z t

�1
vi dt

Remember that v and i are both functions of time and could be written as v(t) and i(t). Because

i ¼ C
dv

dt
we have

wc ¼
Z t

�1
vC

dv

dt
dt ¼ C

Z v tð Þ

v �1ð Þ
v dv ¼ 1

2
Cv2
����
v tð Þ

v �1ð Þ

R

C
+
– vc

+

–

Switch
closed

10 V

R
t = 0

C
+
– vc

+

–
10 V

FIGURE 7.3-1 A circuit
(a) where the capacitor is charged
and vc ¼ 10 V and (b) the switch
is opened at t ¼ 0.

Energy Storage in a Capacitor 275



Because the capacitor was uncharged at t ¼ �1, set v �1ð Þ ¼ 0. Therefore,

wc tð Þ ¼ 1

2
Cv2 tð Þ J ð7:3-1Þ

Therefore, as a capacitor is being charged and v(t) is changing, the energy stored, wc, is changing.
Note that wc tð Þ > 0 for all v(t), so the element is said to be passive.

Because q ¼ Cv, we may rewrite Eq. 7.3-1 as

wc ¼ 1

2C
q2 tð Þ J ð7:3-2Þ

The capacitor is a storage element that stores but does not dissipate energy. For example, consider a
100-mF capacitor that has a voltage of 100 V across it. The energy stored is

wc ¼ 1

2
Cv2 ¼ 1

2
0:1ð Þ 100ð Þ2 ¼ 500 J

As long as the capacitor is not connected to any other element, the energy of 500 J remains stored. Now
if we connect the capacitor to the terminals of a resistor, we expect a current to flow until all the energy is
dissipated as heat by the resistor. After all the energy dissipates, the current is zero and the voltage
across the capacitor is zero.

As noted in the previous section, the requirement of conservation of charge implies that the
voltage on a capacitor is continuous. Thus, the voltage and charge on a capacitor cannot change
instantaneously. This statement is summarized by the equation

v 0þð Þ ¼ v 0�ð Þ
where the time just prior to t ¼ 0 is called t ¼ 0� and the time immediately after t ¼ 0 is called t ¼ 0þ.
The time between t ¼ 0� and t ¼ 0þ is infinitely small. Nevertheless, the voltage will not change
abruptly.

To illustrate the continuity of voltage for a capacitor, consider the circuit shown in Figure 7.3-1.
For the circuit shown in Figure 7.3-1a, the switch has been closed for a long time and the capacitor
voltage has become vc ¼ 10 V. At time t ¼ 0, we open the switch, as shown in Figure 7.3-1b. Because
the voltage on the capacitor is continuous,

vc 0þð Þ ¼ vc 0�ð Þ ¼ 10 V

E X A M P L E 7 . 3 - 1 Energy Stored by a Capacitor

A 10-mF capacitor is charged to 100 V, as shown in the circuit of Figure
7.3-2. Find the energy stored by the capacitor and the voltage of the
capacitor at t ¼ 0þ after the switch is opened.

Solution
The voltage of the capacitor is v ¼ 100 V at t ¼ 0�. Because the voltage at
t ¼ 0þ cannot change from the voltage at t ¼ 0�, we have

v 0þð Þ ¼ v 0�ð Þ ¼ 100 V

The energy stored by the capacitor at t ¼ 0þ is

wc ¼ 1

2
Cv2 ¼ 1

2
10�2
� �

100ð Þ2 ¼ 50 J

R
t = 0

C
+
– v

+

–
100 V

FIGURE 7.3-2 Circuit of
Example 7.3-1 with C ¼ 10 mF.

Try it 
yourself 

in WileyPLUS
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E X A M P L E 7 . 3 - 2 Power and Energy for a Capacitor

The voltage across a 5-mF capacitor varies as shown in
Figure 7.3-3. Determine and plot the capacitor current,
power, and energy.

Solution
The current is determined from ic ¼ C dv=dt and is shown
in Figure 7.3-4a. The power is v(t)i(t)—the product of the
current plot (Figure 7.3-4a) and the voltage plot (Figure
7.3-3)—and is shown in Figure 7.3-4b. The capacitor
receives energy during the first two seconds and then
delivers energy for the period 2 < t < 3.

The energy is o ¼ R p dt and can be found as the area under the p(t) plot. The plot for the energy is shown in
Figure 7.3-4c. Note that the capacitor increasingly stores energy from t ¼ 0 s to t ¼ 2 s, reaching a maximum
energy of 25 J. Then the capacitor delivers a total energy of 18.75 J to the external circuit from t ¼ 2 s to t ¼ 3 s.
Finally, the capacitor holds a constant energy of 6.25 J after t ¼ 3 s.

0

–0.25

0.25

ic(t)
(A)

p(t)
(W)

w(t)
(J)

0

–25.0

25.0

t (s)
0

25.0

–12.5

Storing energy

Delivering energy

Delivering energy

Holding energy constant

Storing energy

1 2 3 4 5

(a)

(b)

(c)

t (s)

t (s)

6.25

FIGURE 7.3-4 The current, power, and
energy of the capacitor of Example 7.3-2.

0 1 2 3

100

t (s)

50

4 5

vc(t)
(V)

FIGURE 7.3-3 The voltage across a capacitor.
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EXERCISE 7.3-1 A 200-mF capacitor has been charged to 100 V. Find the energy stored by the
capacitor. Find the capacitor voltage at t ¼ 0þ if v 0�ð Þ ¼ 100 V.

Answer: w 1ð Þ ¼ 1 J and v 0þð Þ ¼ 100 V

EXERCISE 7.3-2 A constant current i ¼ 2 A flows into a capacitor of 100mF after
a switch is closed at t ¼ 0. The voltage of the capacitor was equal to zero at t ¼ 0�. Find the
energy stored at (a) t ¼ 1 s and (b) t ¼ 100 s.

Answer: w 1ð Þ ¼ 20 kJ and w 100ð Þ ¼ 200 MJ

7.4 S e r i e s a n d P a r a l l e l C a p a c i t o r s

First, let us consider the parallel connection of N capacitors as shown in
Figure 7.4-1. We wish to determine the equivalent circuit for the N
parallel capacitors as shown in Figure 7.4-2.

Using KCL, we have

i ¼ i1 þ i2 þ i3 þ � � � þ iN

Because in ¼ Cn
dv

dt

and v appears across each capacitor, we obtain

i ¼ C1
dv

dt
þ C2

dv

dt
þ C3

dv

dt
þ � � � þ CN

dv

dt

¼ C1 þ C2 þ C3 þ � � � þ CNð Þ dv

dt

¼
XN

n¼1

Cn

 !
dv

dt

ð7:4-1Þ

For the equivalent circuit shown in Figure 7.4-2,

i ¼ Cp
dv

dt
ð7:4-2Þ

Comparing Eqs. 7.4-1 and 7.4-2, it is clear that

Cp ¼ C1 þ C2 þ C3 þ � � � þ CN ¼
XN

n¼1

Cn

Thus, the equivalent capacitance of a set of N parallel capacitors is
simply the sum of the individual capacitances. It must be noted that all
the parallel capacitors will have the same initial condition v(0).

Now let us determine the equivalent capacitance Cs of a set of N
series-connected capacitances, as shown in Figure 7.4-3. The equivalent
circuit for the series of capacitors is shown in Figure 7.4-4.

Using KVL for the loop of Figure 7.4-3, we have

v ¼ v1 þ v2 þ v3 þ � � � þ vN ð7:4-3Þ

v
+

–
C1 C2

i1 i2 iN

i CN

FIGURE 7.4-1 Parallel connection of
N capacitors.

v
+

–
i Cp

FIGURE 7.4-2 Equivalent circuit for N parallel
capacitors.

v1

+

+ –

v CN vN

C1

v2
+ –

C2

v3
+ –

–

C3

i

+
–

FIGURE 7.4-3 Series connection of
N capacitors.

v
+

–
v Cs

i

+
–

FIGURE 7.4-4 Equivalent circuit for N
series capacitors.
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Because, in general,

vn tð Þ ¼ 1

Cn

Z t

t0

i dtþ vn t0ð Þ

where i is common to all capacitors, we obtain

v ¼ 1

C1

Z t

t0

i dtþ v1 t0ð Þ þ � � � þ 1

CN

Z t

t0

i dtþ vN t0ð Þ

¼ 1

C1
þ 1

C2
þ � � � þ 1

CN

� � Z t

t0

i dtþ
XN

n¼1

vn t0ð Þ

¼
XN

n¼1

1

Cn

 !Z t

t0

i dtþ
XN

n¼1

vn t0ð Þ

ð7:4-4Þ

From Eq. 7.4-3, we note that at t ¼ t0,

v t0ð Þ ¼ v1 t0ð Þ þ v2 t0ð Þ þ � � � þ vN t0ð Þ ¼
XN

n¼1

vn t0ð Þ ð7:4-5Þ

Substituting Eq. 7.4-5 into Eq. 7.4-4, we obtain

v ¼
XN

n¼1

1

Cn

 !Z t

t0

i dtþ v t0ð Þ ð7:4-6Þ

Using KVL for the loop of the equivalent circuit of Figure 7.4-4 yields

v ¼ 1

Cs

Z t

t0

i dtþ v t0ð Þ ð7:4-7Þ

Comparing Eqs. 7.4-6 and 7.4-7, we find that

1

Cs
¼
XN

n¼1

1

Cn
ð7:4-8Þ

For the case of two series capacitors, Eq. 7.4-8 becomes
1

Cs
¼ 1

C1
þ 1

C2

or Cs ¼ C1C2

C1 þ C2
ð7:4-9Þ

E X A M P L E 7 . 4 - 1 Parallel and Series Capacitors

Find the equivalent capacitance for the circuit of Figure 7.4-5 when
C1 ¼ C2 ¼ C3 ¼ 2 mF, v1 0ð Þ ¼ 10 V, and v2 0ð Þ ¼ v3 0ð Þ ¼ 20 V.

Solution
Because C2 and C3 are in parallel, we replace them with Cp, where

Cp ¼ C2 þ C3 ¼ 4 mF

The voltage at t ¼ 0 across the equivalent capacitance Cp is equal to the
voltage across C2 or C3, which is v2 0ð Þ ¼ v3 0ð Þ ¼ 20 V. As a result of
replacing C2 and C3 with Cp, we obtain the circuit shown in Figure 7.4-6.

i

+
+

–

–

C1

C2 C3

v1

v2
+

–
v3vs

+
–

FIGURE 7.4-5 Circuit for Example
7.4-1.

Try it 
yourself 

in WileyPLUS
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EXERCISE 7.4-1 Find the equivalent capacitance for the circuit of Figure E 7.4-1

Answer: Ceq ¼ 4 mF

EXERCISE 7.4-2 Determine the equivalent capacitance Ceq for the circuit shown in
Figure E 7.4-2.

Answer: 10=19 mF

7.5 I n d u c t o r s

An inductor is a circuit element that stores energy in a magnetic field. An inductor can be constructed by
winding a coil of wire around a magnetic core as shown in Figure 7.5-1. Inductors are represented by a
parameter called the inductance. The inductance of an inductor depends on its size, materials, and
method of construction. For example, the inductance of the inductor shown in Figure 7.5-1 is given by

L ¼ mN2A

l
where N is the number of turns—that is, the number of times that the wire is wound around the
core—A is the cross-sectional area of the core in square meters; l the length of the winding in meters;
and m is a property of the magnetic core known as the permeability. The unit of inductance is called

We now want to replace the series of two capacitors C1 and Cp with one
equivalent capacitor. Using the relationship of Eq. 7.4-9, we obtain

Cs ¼ C1Cp

C1 þ Cp
¼ 2� 10�3

� �
4� 10�3
� �

2� 10�3
� �þ 4� 10�3

� � ¼ 8

6
mF

The voltage at t ¼ 0 across Cs is

v 0ð Þ ¼ v1 0ð Þ þ vp 0ð Þ

where vp 0ð Þ ¼ 20 V, the voltage across the capacitance Cp at t ¼ 0. Therefore, we
obtain

v 0ð Þ ¼ 10þ 20 ¼ 30 V

Thus, we obtain the equivalent circuit shown in Figure 7.4-7.

+
+

–

–

Cp

C1

v2

v1

vs
+
–

FIGURE 7.4-6
Circuit resulting from
Figure 7.4-5 by replacing
C2 and C3 with Cp.

i

+

–
Csvvs

+
–

FIGURE 7.4-7
Equivalent circuit for the
circuit of Example 7.4-1.

Ceq

4 mF9 mF

6 mF 12 mF

FIGURE E 7.4-1
Ceq

2 mF  mF

2 mF  mF

1 mF  mF

1 3

1 3

1 3

FIGURE E 7.4-2

Try it 
yourself 

in WileyPLUS
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henry (H) in honor of the American physicist Joseph Henry.
Practical inductors have inductances ranging from 1 mH to 10 H.
Inductors are wound in various forms, as shown in Figure 7.5-2.

Inductance is a measure of the ability of a device to
store energy in the form of a magnetic field.

In Figure 7.5-1, a current source is used to cause a coil
current i(t). We find that the voltage v(t) across the coil is
proportional to the rate of change of the coil current. That is,

v tð Þ ¼ L
d

dt
i tð Þ ð7:5-1Þ

where the constant of proportionality is L, the inductance of the
inductor.

Integrating both sides of Eq. 7.5-1, we obtain

i tð Þ ¼ 1

L

Z t

�1
v tð Þdt ð7:5-2Þ

This equation says that the inductor current i(t) can be found by
integrating the inductor voltage from time �1 until time t. To do
so requires that we know the value of the inductor voltage from
time t ¼ �1 until time t ¼ t. Often, we don’t know the value of
the voltage all the way back to t ¼ �1. Instead, we break the
integral up into two parts:

i tð Þ ¼ 1

L

Z t0

�1
v tð Þdtþ 1

L

Z t

t0

v tð Þdt ¼ i t0ð Þ þ 1

L

Z t

t0

v tð Þdt

ð7:5-3Þ
This equation says that the inductor current i(t) can be found by
integrating the inductor voltage from some convenient time t ¼ t0

until time t ¼ t, provided that we also know the inductor current at
time t0.Nowweare required toknowonly the inductorvoltage from
timet ¼ t0 until timet ¼ t.The time t0 is called the initial time, and
the inductor current i(t0) is called the initial condition. Frequently,
it is convenient to select t0 ¼ 0 as the initial time.

Equations 7.5-1 and 7.5-3 describe the current–voltage
relationship of an inductor. The current and voltage in these
equations adhere to the passive convention. The circuit symbol for an inductor is shown in Figure 7.5-3.
The inductor current and voltage in Figure 7.5-3 adhere to the passive sign convention and are related
by Eqs. 7.5-1 and 7.5-3.

Consider the voltage of an inductor when the current changes at t ¼ 0 from zero to a constantly
increasing current and eventually levels off as shown in Figure 7.5-4. Let us determine the voltage of the
inductor. We may describe the current (in amperes) by

i tð Þ ¼
0 t � 0
10t

t1
0 � t � t1

10 t � t1

8>><
>>:

N turns of wire

Area A

Length lMagnetic Core

+ –v(t)

i(t)

FIGURE 7.5-1 An inductor connected to a current
source.

FIGURE 7.5-2 Elements with inductances arranged in
various forms of coils.

Lv

+

–

i

FIGURE 7.5-3 Circuit symbol for an inductor.

Courtesy of Vishay Intertechnology, Inc.
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Let us consider a 0.1-H inductor and find the voltage waveform. Because v ¼ L di=dtð Þ, we have (in volts)

v tð Þ ¼
0 t < 0
1

t1
0 < t < t1

0 t > t1

8><
>:

The resulting voltage pulse waveform is shown in Figure 7.5-5. Note that as t1 decreases, the
magnitude of the voltage increases. Clearly, we cannot let t1 ¼ 0 because the voltage required would
then become infinite, and we would require infinite power at the terminals of the inductor. Thus,
instantaneous changes in the current through an inductor are not possible.

The current in an inductance cannot change instantaneously.

An ideal inductor is a coil wound with resistanceless wire. Practical inductors include the actual
resistance of the copper wire used in the coil. For this reason, practical inductors are far from ideal
elements and are typically modeled by an ideal inductance in series with a small resistance.

10

0

i (A)

t (s)t1

FIGURE 7.5-4 A current waveform. The current is in
amperes.

1

0

v (V)

t (s)t1

t1

FIGURE 7.5-5 Voltage response for the current
waveform of Figure 7.5-4 when L = 0.1 H.

E X A M P L E 7 . 5 - 1 Inductor Current and Voltage

Find the voltage across an inductor, L ¼ 0:1 H, when the current in the inductor is

i tð Þ ¼ 20te�2t A

for t > 0 and i 0ð Þ ¼ 0.

Solution
The voltage for t < 0 is

v tð Þ ¼ L
di

dt
¼ 0:1ð Þ d

dt
20te�2t
� � ¼ 2 �2te�2t þ e�2t

� � ¼ 2e�2t 1� 2tð Þ V
The voltage is equal to 2 V when t ¼ 0, as shown in Figure 7.5-6b. The current waveform is shown in Figure

7.5-6a.
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3.68

2

0

i (A)

v (V)

t (s)

(a)

(b)

t (s)

0.5 1.0 1.5

0 0.5 1.5 FIGURE 7.5-6 Voltage and current waveforms for Example 7.5-1.

E X A M P L E 7 . 5 - 2 Inductor Current
and Voltage

INTERACT IVE EXAMPLE

Figure 7.5-7 shows a circuit together with two plots. The plots represent the current and voltage of the inductor in
the circuit. Determine the value of the inductance of the inductor.

30

v(t), V

t (ms)2 6

i(t), A

L t (ms)2 6

1

–2

v(t)

i(t)

+
–

FIGURE 7.5-7 The circuit and plots
considered in Example 7.5-2.

Solution
The current and voltage of the inductor are related by

i tð Þ ¼ 1

L

Z t

t0

v tð Þ dtþ i t0ð Þ ð7:5-4Þ

or i tð Þ � i t0ð Þ ¼ 1

L

Z t

t0

v tð Þ dt ð7:5-5Þ

Because i(t) and v(t) are represented graphically, by plots rather than equations, it is useful to interpret Eq. 7.5-5
using

i tð Þ � i t0ð Þ ¼ the difference between the values of current at times t and t0

and

Z t

t0

v tð Þdt ¼ the area under the plot of v tð Þ versus t for times between t0 and t

Pick convenient values t and t0, for example, t0 ¼ 2 ms and t ¼ 6 ms. Then,
i tð Þ � i t0ð Þ ¼ 1� �2ð Þ ¼ 3 A

and

Z t

t0

v tð Þ dt ¼
Z 0:006

0:002
30 dt ¼ 30ð Þ 0:006� 0:002ð Þ ¼ 0:12 V � s

Using Eq. 7.5-5 gives

3 ¼ 1

L
0:12ð Þ ) L ¼ 0:040

V � s
A

¼ 0:040 H ¼ 40 mH
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EXERCISE 7.5-1 Determine the voltage v(t) for t > 0 for the circuit of Figure E 7.5-1b when is(t)
is the current shown in Figure E 7.5-1a.

vL(t)

is(t)

(b)(a)

+ – vR(t)+ –

v(t)+ –

1 H 1 Ω

is(t)(V)

1

2

3

4

5

1 2 3 4 5 6 7 8 9 t (s)

FIGURE E 7.5-1 (a) The current source current. (b) The circuit.

Hint: Determine vL(t) and vR(t) separately, then use KVL.

Answer: v tð Þ ¼
2t � 2 2 < t < 4
7 � t 4 < t < 8

0 otherwise

8<
:

E X A M P L E 7 . 5 - 3 Inductor Current and Voltage

The input to the circuit shown in Figure 7.5-8 is the voltage

v tð Þ ¼ 4e�20t V for t > 0

The output is the current

i tð Þ ¼ �1:2e�20t � 1:5 A for t > 0

The initial inductor current is iL 0ð Þ ¼ �3:5 A. Determine the values of the inductance
L and resistance R.

Solution
Apply KCL at either node to get

i tð Þ ¼ v tð Þ
R

þ iL tð Þ ¼ v tð Þ
R

þ 1

L

Z t

0
v tð Þdtþ i 0ð Þ

� �

That is

�1:2e�20t � 1:5 ¼ 4e�20t

R
þ 1

L

Z t

0
4e�20tdt� 3:5 ¼ 4e�20t

R
þ 4

L �20ð Þ e�20t�1ð Þ � 3:5

¼ 4

R
� 1

5L

� �
e�20t þ 1

5L
� 3:5

Equating coefficients gives

�1:5 ¼ 1

5L
� 3:5 ) L ¼ 0:1 H

and � 1:2 ¼ 4

R
� 1

5L
¼ 4

R
� 1

5 0:1ð Þ ¼
4

R
� 2 ) R ¼ 5V

iL(t)

i(t)

L

R

v(t)

+ –

FIGURE 7.5-8 The
circuit considered in
Example 7.5-3.

Try it 
yourself 

in WileyPLUS
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7.6 E n e r g y S t o r a g e i n a n I n d u c t o r

The power in an inductor is

p ¼ vi ¼ L
di

dt

� �
i ð7:6-1Þ

The energy stored in the inductor is stored in its magnetic field. The energy stored in the inductor during
the interval t0 to t is given by

w ¼
Z t

t0

p dt ¼ L

Z i tð Þ

i t0ð Þ
i di

Integrating the current between i(t0) and i(t), we obtain

w ¼ L

2
i 2 tð Þ	 
i tð Þ

i t0ð Þ ¼
L

2
i 2 tð Þ � L

2
i 2 t0ð Þ ð7:6-2Þ

Usually, we select t0 ¼ �1 for the inductor and then the current i �1ð Þ ¼ 0. Then we have

w ¼ 1

2
Li 2 ð7:6-3Þ

Note that w tð Þ � 0 for all i(t), so the inductor is a passive element. The inductor does not
generate or dissipate energy but only stores energy. It is important to note that inductors and
capacitors are fundamentally different from other devices considered in earlier chapters in that they
have memory.

E X A M P L E 7 . 6 - 1 Inductor Voltage and Current

Find the current in an inductor, L ¼ 0:1 H, when the voltage
across the inductor is

v ¼ 10te�5t V

Assume that the current is zero for t � 0.

Solution
The voltage as a function of time is shown in Figure 7.6-1a.
Note that the voltage reaches a maximum at t ¼ 0:2 s. The
current is

i ¼ 1

L

Z t

0
v dtþ i t0ð Þ

Because the voltage is zero for t < 0, the current in the inductor at t ¼ 0 is i 0ð Þ ¼ 0. Then we have

i ¼ 10

Z t

0
10 te�5t dt ¼ 100

�e�5t

25
1þ 5tð Þ

� �t

0

¼ 4 1� e�5t 1þ 5tð Þ� �
A

The current as a function of time is shown in Figure 7.6-1b.

4

0.736

2

0

v (V)

i (A)

t (s)

(a)

(b)

t (s)

0.2 0.4 0.6

0.2 0.4 0.6

FIGURE 7.6-1 Voltage and current for Example 7.6-1.
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E X A M P L E 7 . 6 - 2 Power and Energy for an Inductor

Find the power and energy for an inductor of 0.1 H
when the current and voltage are as shown in
Figures 7.6-2a,b.

Solution
First, we write the expression for the current and
the voltage. The current is

i ¼ 0 t < 0

¼ 20t 0 � t � 1

¼ 20 1 � t

The voltage is expressed as

v ¼ 0 t < 0

¼ 2 0 < t < 1

¼ 0 1 < t

You can verify the voltage by using v ¼ L di=dtð Þ.
Then the power is

p ¼ vi ¼ 40t W

for 0 � t < 1 and zero for all other time.
The energy, in joules, is then

w ¼ 1

2
Li 2

¼ 0:05 20tð Þ2 0 � t � 1

¼ 0:05 20ð Þ2 1 < t

and zero for all t < 0.
The power and energy are shown in Figures 7.6-2c,d.

20

40

2

20

w (J)

p (W)

v (V)

i (A)

0 1 2 t (s)

(b)

(a)

(c)

(d)

FIGURE 7.6-2 Current, voltage, power, and energy for Example
7.6-2.

E X A M P L E 7 . 6 - 3 Power and Energy for an Inductor

Find the power and the energy stored in a 0.1-H inductor when
i ¼ 20te�2t A and v ¼ 2e�2t 1 � 2tð Þ V for t � 0 and i ¼ 0 for
t < 0. (See Example 7.5-1.)

Solution
The power is

p ¼ iv ¼ 20te�2tð Þ 2e�2t 1� 2tð Þ½ � ¼ 40te�4t 1� 2tð ÞW t > 0

The energy is then

w ¼ 1

2
Li 2 ¼ 0:05 20te�2t

� �2 ¼ 20t 2e�4t J t > 0

Note that w is positive for all values of t > 0. The energy stored in the inductor is shown in Figure 7.6-3.

0.5

1.0

0 0.5 1.0 1.5

w (J)

t (s)

FIGURE 7.6-3 Energy stored in the
inductor of Example 7.6-3.
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7.7 S e r i e s a n d P a r a l l e l I n d u c t o r s

A series and parallel connection of inductors can be reduced to an equivalent simple inductor. Consider
a series connection of N inductors as shown in Figure 7.7-1. The voltage across the series connection is

v ¼ v1 þ v2 þ � � � þ vN

¼ L1
di

dt
þ L2

di

dt
þ � � � þ LN

di

dt

¼
XN

n¼1

LN

 !
di

dt

Because the equivalent series inductor Ls, as shown in Figure 7.7-2, is represented by

v ¼ Ls
di

dt
we require that

Ls ¼
XN

n¼1

Ln ð7:7-1Þ

Thus, an equivalent inductor for a series of inductors is the sum of the N
inductors.

Now, consider the set of N inductors in parallel, as shown in Figure
7.7-3. The current i is equal to the sum of the currents in the N inductors:

i ¼
XN

n¼1

in

However, because

in ¼ 1

Ln

Z t

t0

v dtþ in t0ð Þ

we may obtain the expression

i ¼
XN

n¼1

1

Ln

 !Z t

t0

v dtþ
XN

n¼1

in t0ð Þ ð7:7-2Þ

The equivalent inductor Lp, as shown in Figure 7.7-4, is represented by the
equation

i ¼ 1

Lp

Z t

t0

v dtþ i t0ð Þ ð7:7-3Þ

When Eqs. 7.7-2 and 7.7-3 are set equal to each other, we have

1

Lp
¼
XN

n¼1

1

Ln
ð7:7-4Þ

Lsv

+

–

ia

b

FIGURE 7.7-2 Equivalent inductor Ls

for N series inductors.

L1v

+

–

i

L2 LN

iNi1 i2

FIGURE 7.7-3 Connection of N parallel
inductors.

Lpv

+

–

i

FIGURE 7.7-4 Equivalent inductor Lp

for the connection of N parallel inductors.

L1

v1

v

+ +

–

–

i L2

v2
+ –

LN

vN
+ –

a

b FIGURE 7.7-1 Series of N inductors.
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and i t0ð Þ ¼
XN

n¼1

in t0ð Þ ð7:7-5Þ

EXERCISE 7.7-1 Find the equivalent inductance of the circuit of Figure E 7.7-1.

Answer: Leq ¼ 14 mH

EXERCISE 7.7-2 Find the equivalent inductance of the circuit of Figure E 7.7-2.

Answer: Leq ¼ 4 mH

7.8 I n i t i a l C o n d i t i o n s o f Sw i t c h e d C i r c u i t s

In this section, we consider switched circuits. These circuits have the following characteristics:

1. All of the circuit inputs, that is, the independent voltage source voltages and independent current
source currents, are constant functions of time.

E X A M P L E 7 . 7 - 1 Series and Parallel Inductors

Find the equivalent inductance for the circuit of Figure 7.7-5. All the
inductor currents are zero at t0.

Solution
First, we find the equivalent inductance for the 5-mH and 20-mH inductors
in parallel.

From Eq. 7.7-4, we obtain

1

Lp
¼ 1

L1
þ 1

L2

or Lp ¼ L1L2

L1 þ L2
¼ 5� 20

5þ 20
¼ 4 mH

This equivalent inductor is in series with the 2-mH and 3-mH inductors. Therefore, using Eq. 7.7-1, we obtain

Leq ¼
XN

n¼1

Ln ¼ 2þ 3þ 4 ¼ 9 mH

2 mH

3 mH

5 mH 20 mH

i

v

+

–

FIGURE 7.7-5 The circuit of Example
7.7-1.

3 mH

5 mH 4 mH

42 mH 3 mH

FIGURE E 7.7-1

2 mH

20 mH 12 mH4 mH

FIGURE E 7.7-2
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2. The circuit includes one or more switches that open or close at time t0. We denote the time
immediately before the switch opens or closes as t�0 and the time immediately after the switch opens
or closes as tþ0 . Often, we will assume that t0 ¼ 0.

3. The circuit includes at least one capacitor or inductor.

4. We will assume that the switches in a circuit have been in position for a long time at t ¼ t0, the
switching time. We will say that such a circuit is at steady state immediately before the time of
switching. A circuit that contains only constant sources and is at steady state is called a dc circuit.
All the element currents and voltages in a dc circuit are constant functions of time.

We are particularly interested in the current and voltage of energy storage elements after the switch
opens or closes. (Recall from Section 2.9 that open switches act like open circuits and closed switches act
like short circuits.) In Table 7.8-1, we summarize the important characteristics of the behavior of an
inductor and a capacitor. In particular, notice that neither a capacitor voltage nor an inductor current can
change instantaneously. (Recall from Sections 7.2 and 7.5 that such changes would require infinite power,
something that is not physically possible.) However, instantaneous changes to an inductor voltage or a
capacitor current are quite possible.

Suppose that a dc circuit contains an inductor. The inductor current, like every other voltage and
current in the dc circuit, will be a constant function of time. The inductor voltage is proportional to the
derivative of the inductor current, v ¼ L di=dtð Þ, so the inductor voltage is zero. Consequently, the
inductor acts like a short circuit.

An inductor in a dc circuit behaves as a short circuit.

Similarly, the voltage of a capacitor in a dc circuit will be a constant function of time. The capacitor
current is proportional to the derivative of the capacitor voltage i ¼ C (dv=dt), so the capacitor current is
zero. Consequently, the capacitor acts like a open circuit.

Table 7.8-1 Characteristics of Energy Storage Elements

VARIABLE INDUCTORS CAPACITORS

Passive sign convention
i

v

L

+ –

i

v+ –

C

Voltage
v ¼ L

di

dt
v ¼ 1

C

Z t

0
idtþ v 0ð Þ

Current
i ¼ 1

L

Z t

0
vdtþ i 0ð Þ i ¼ C

dv

dt

Power
i ¼ Li

di

dt
p ¼ Cv

dv

dt

Energy
w ¼ 1

2
Li2 w ¼ 1

2
Cv2

An instantaneous change is not permitted for the
element’s

Current Voltage

Will permit an instantaneous change in the
element’s

Voltage Current

This element acts as a (see note below) Short circuit to a constant current into its
terminals

Open circuit to a constant voltage across its
terminals

______________________________________________________________________________
Note: Assumes that the element is in a circuit with steady-state condition.
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A capacitor in a dc circuit behaves as an open circuit.

Our plan to analyze switched circuits has two steps:

1. Analyze the dc circuit that exists before time t0 to determine the capacitor voltages and inductor
currents. In doing this analysis, wewill takeadvantage of the fact that capacitors behave as opencircuits
and inductors behave as short circuits when they are in dc circuits.

2. Recognize that capacitor voltages and inductor currents cannot change instantaneously, so
the capacitor voltages and inductor currents at time tþ0 have the same values that they had at
time t�0 .

The following examples illustrate this plan.

E X A M P L E 7 . 8 - 1 Init ial Conditions in a Switched Circuit

Consider the circuit Figure 7.8-1. Prior to t ¼ 0, the switch has been closed for a long time. Determine the values of
the capacitor voltage and inductor current immediately after the switch opens at time t ¼ 0.

Solution
1. To find vc 0�ð Þ and iL 0�ð Þ, we consider the circuit before the switch opens, that is for t < 0. The circuit input,

the voltage source voltage, is constant. Also, before the switch opens, the circuit is at steady state. Because the
circuit is a dc circuit, the capacitor will act like an open circuit, and the inductor will act like a short circuit. In
Figure 7.8-2, we replace the capacitor by an open circuit having voltage vc 0�ð Þ and the inductor by a short
circuit having current iL 0�ð Þ. First, we notice that

iL 0�ð Þ ¼ 10

5
¼ 2 A

Next, using the voltage divider principle, we see that

vc 0�ð Þ ¼ 3

5

� �
10 ¼ 6 V

2. The capacitor voltage and inductor current cannot change instantaneously, so

vc 0þð Þ ¼ vc 0�ð Þ ¼ 6 V

and iL 0þð Þ ¼ iL 0�ð Þ ¼ 2 A

+

–
vc

iL
t = 0

10 V 1 H+
–

1/2 F

2 Ω 3 Ω

FIGURE 7.8-1 Circuit with an inductor and a capacitor. The
switch is closed for a long time prior to opening at t ¼ 0.

+

–
vc

+
–

iL10 V

2 Ω 3 Ω

FIGURE 7.8-2 Circuit of Figure 7.8-1 for t < 0.
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E X A M P L E 7 . 8 - 2 Init ial Condit ions in a Switched Circuit

Find iL 0þð Þ; vc 0þð Þ; dvc 0þð Þ=dt, and diL 0þð Þ=dt for the circuit of Figure 7.8-3. We will use dvc 0þð Þ=dt to denote
dvc tð Þ=dtjt¼0þ .

+
–10 V

2 Ω
Switch 1

vc

1 Ω

F 1 H

iL

t = 0

Switch 2

2 A

1 2
+

–

t = 0

FIGURE 7.8-3 Circuit for Example 7.8-2. Switch 1 closes
at t ¼ 0 and switch 2 opens at t ¼ 0.

Assume that switch 1 has been open and switch 2 has been closed for a long time and steady-state conditions
prevail at t ¼ 0�.

Solution
First, we redraw the circuit for t ¼ 0� by replacing the inductor with a short
circuit and the capacitor with an open circuit, as shown in Figure
7.8-4. Then we note that

iL 0�ð Þ ¼ 0

and vc 0�ð Þ ¼ �2 V

Therefore, we have

iL 0þð Þ ¼ iL 0�ð Þ ¼ 0

and vc 0þð Þ ¼ vc 0�ð Þ ¼ �2 V

To find dvc 0þð Þ=dt and diL 0þð Þ=dt, we throw the switch at t ¼ 0 and
redraw the circuit of Figure 7.8-3, as shown in Figure 7.8-5. (We did not
draw the current source because its switch is open.)

Because we wish to find dvc 0þð Þ=dt, we recall that

ic ¼ C
dvc
dt

so
dvc 0þð Þ

dt
¼ ic 0þð Þ

C
Similarly, because for the inductor

vL ¼ L
diL
dt

we may obtain diL 0þð Þ=dt as

diL 0þð Þ
dt

¼ vL 0þð Þ
L

Using KVL for the right-hand mesh of Figure 7.8-5, we obtain

vL � vc þ 1iL ¼ 0

Therefore, at t ¼ 0þ,

vL 0þð Þ ¼ vc 0þð Þ � iL 0þð Þ ¼ �2� 0 ¼ �2 V

+

–
vc

iL

1 Ω

2 A

FIGURE 7.8-4 Circuit of Figure 7.8-3
at t ¼ 0�.

+
+

–

–

vc vL
+
–

iL

ic

10 V

2 Ω 1 Ωa

FIGURE 7.8-5 Circuit of Figure 7.8-3
at t ¼ 0þ with the switch closed and the
current source disconnected.

Initial Conditions of Switched Circuits 291



7.9 Op e r a t i o n a l Amp l i f i e r C i r c u i t s a n d L i n e a r
D i f f e r e n t i a l E q u a t i o n s

This section describes a procedure for designing operational amplifier circuits that implement linear
differential equations such as

2
d3

dt3
y tð Þ þ 5

d2

dt2
y tð Þ þ 4

d

dt
y tð Þ þ 3y tð Þ ¼ 6x tð Þ ð7:9-1Þ

The solution of this equation is a function y(t) that depends both on the function x(t) and on a set of
initial conditions. It is convenient to use the initial conditions:

d2

dt2
y tð Þ ¼ 0;

d

dt
y tð Þ ¼ 0; and y tð Þ ¼ 0 ð7:9-2Þ

Having specified these initial conditions, we expect a unique function y(t) to correspond to any given
function x(t). Consequently, we will treat x(t) as the input to the differential equation and y(t) as the
output.

Section 6.6 introduced the notion of diagramming operations as blocks and equations as block
diagrams. Section 6.6 also introduced blocks to represent addition and multiplication by a constant.
Figure 7.9-1 illustrates two additional blocks, representing integration and differentiation.

Suppose that we were somehow to obtain
d3

dt3
y tð Þ. We could then integrate three times to obtain

d2

dt2
y tð Þ, d

dt
y tð Þ, and y(t), as illustrated in Figure 7.9-2.

Hence, we obtain

diL 0þð Þ
dt

¼ �2 A/s

Similarly, to find ic, we write KCL at node a to obtain

ic þ iL þ vc � 10

2
¼ 0

Consequently, at t ¼ 0þ,

ic 0þð Þ ¼ 10� vc 0þð Þ
2

� iL 0þð Þ ¼ 6� 0 ¼ 6 A

Accordingly;
dvc 0þð Þ

dt
¼ ic 0þð Þ

C
¼ 6

1=2
¼ 12 V/s

Thus, we found that at the switching time t ¼ 0, the current in the inductor and the voltage of the capacitor
remained constant. However, the inductor voltage did change instantaneously from vL 0�ð Þ ¼ 0 to vL 0þð Þ ¼ �2 V,
and we determined that diL 0þð Þ=dt ¼ �2 A/s. Also, the capacitor current changed instantaneously from ic 0�ð Þ ¼
0 to ic 0þð Þ ¼ 6 A, and we found that dvc 0þð Þ=dt ¼ 12 V/s.

(a)

x(t) x(t)d
dt

d
dt

(b)

x(t)
t

0∫ x( ) dτ τ∫

FIGURE 7.9-1 Block diagram representations of (a) differentiation and (b) integration.
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Now we must obtain
d3

dt3
y tð Þ. To do so, solve Eq. 7.9-1 for

d3

dt3
y tð Þ to get

d3

dt3
y tð Þ ¼ 3x tð Þ � 2:5

d2

dt2
y tð Þ þ 2

d

dt
y tð Þ þ 1:5y tð Þ

� �
ð7:9-3Þ

Next, represent Eq. 7.9-3 by a block diagram such as the diagram shown in Figure 7.9-3. Finally, the
block diagrams in Figures 7.9-2 and 7.9-3 can be combined as shown in Figure 7.9-4 to obtain the block
diagram of Eq. 7.9-1.

Our next task is to implement the block diagram as an operational amplifier circuit. Figure 7.9-5
provides operational amplifier circuits to implement both differentiation and integration. To see how the
integrator works, consider Figure 7.9-6. The nodes of the integrator in Figure 7.9-6 have been labeled in
anticipation of writing node equations. Let v1, v2, and v3 denote the node voltages at nodes 1, 2, and 3,
respectively.

y(t)d3

dt3

y(t)d2

dt2
y(t)

y(t)

d
dt

∫ ∫ ∫

FIGURE 7.9-2 The first partial block diagram.

y(t)d2

dt2

y(t)d3

dt3

y(t)

x(t)

y(t)

d
dt

–1.5

–2

–2.5

3

+

FIGURE 7.9-3 A block diagram that represents Eq. 7.9-3.

y(t)d2

dt2

y(t)d3

dt3

y(t)

x(t)

d
dt

–1.5

–2

–2.5

3

+

y(t)d3

dt3
y(t)d2

dt2

y(t)

y(t)

y(t)

d
dt

∫ ∫ ∫

FIGURE 7.9-4 A block diagram
that represents Eq. 7.9-1.

(d)

1 MΩ 1 μF

–

+

(a)

x(t) x(t)d
dt

x(t)– d
dt

d
dt

(c)

x(t)

x(t)

t

0∫ x( ) dτ τ

t

0
∫ x(– ) dτ τ

∫

(b)

1 MΩ

–

+

x(t)

1 μF

FIGURE 7.9-5 Block diagram representations of (a) differentiation and (c) integration. Corresponding operational
amplifier circuits that (b) differentiate and (d) integrate.
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The input to the integrator is x(t), the node voltage at node 1. Thus, v1 ¼ x tð Þ. The output of the
integrator is y(t), the node voltage at node 3. Thus, v3 ¼ y tð Þ. The noninverting input of the ideal
operational amplifier is attached to the reference node, and the inverting input is connected to node 2.
The node voltages at these two nodes must be equal, so v2 ¼ 0.

The voltage across the resistor is related to the node voltages at the resistor nodes by

vR tð Þ ¼ v1 tð Þ � v2 tð Þ ¼ x tð Þ � 0 ¼ x tð Þ
The resistor current is calculated, using Ohm’s law, to be

iR tð Þ ¼ vR tð Þ
R

¼ x tð Þ
R

The value of the current flowing into an input of an ideal operational amplifier is zero, so applying KCL
at node 2 gives

iC tð Þ ¼ iR tð Þ ¼ x tð Þ
R

The voltage across the capacitor is related to the node voltages at the capacitor nodes by

vC tð Þ ¼ v2 tð Þ � v3 tð Þ ¼ 0� y tð Þ ¼ �y tð Þ ð7:9-4Þ
The capacitor voltage is related to the capacitor current by

vC tð Þ ¼ 1

C

Z t

0
iC tð Þ dtþ vC 0ð Þ

Recall that y 0ð Þ ¼ 0. Thus, vC 0ð Þ ¼ 0, and

vC tð Þ ¼ 1

C

Z t

0
iC tð Þ dt ¼ 1

C

Z t

0

x tð Þ
R

dt ¼ 1

RC

Z t

0
x tð Þ dt

Finally, using Eq. 7.9-4 gives

y tð Þ ¼ � 1

RC

Z t

0
x tð Þ dt ¼ �k

Z t

0
x tð Þ dt ð7:9-5Þ

where k ¼ 1
RC

.

Equation 7.9-5 indicates that the integrator does two things. First, the input is integrated. Second,
the integral is multiplied by a negative constant k. In Figure 7.9-5d, values of R and C have been selected
to make k ¼ �1. Multiplying a function by �1 reflects the graph of the function across the time axis.
This reflection is called an inversion, and the circuit is said to be an inverting circuit. Consequently, the
integrator shown in Figure 7.9-5d is sometimes called an inverting integrator. We will call this circuit an
integrator unless we want to call attention to the inversion, in which case, we will call the circuit an
inverting integrator.

Analysis of the summing integrator shown in Figure 7.9-7 is similar to the analysis of the
integrator. The inputs to the summing integrator are x1(t), the node voltage at node 1, and x2(t), the node

R

C

–

+

x(t) y(t)

iR(t)

iC(t)vR(t)+ –

vC(t)+ –

1 2 3

FIGURE 7.9-6 The integrator.
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voltage at node 2. The output of the integrator is y(t), the node voltage at node 4. The ideal operational
amplifier causes the voltage at node 3 to be zero. Hence,

v1 tð Þ ¼ x1 tð Þ; v2 tð Þ ¼ x2 tð Þ; v3 tð Þ ¼ 0; and v4 tð Þ ¼ y tð Þ
Using Ohm’s law shows the currents in the resistors to be

i1 tð Þ ¼ v1 tð Þ
R1

¼ x1 tð Þ
R1

and i2 tð Þ ¼ v2 tð Þ
R2

¼ x2 tð Þ
R2

The value of the current flowing into an input of an ideal operational amplifier is zero, so applying KCL
at node 3 gives

iC tð Þ ¼ i1 tð Þ þ i2 tð Þ ¼ x1 tð Þ
R1

þ x2 tð Þ
R2

The voltage across the capacitor is related to the node voltages at the capacitor nodes by

vC tð Þ ¼ v3 tð Þ � v4 tð Þ ¼ 0� y tð Þ ¼ �y tð Þ ð7:9-6Þ
The capacitor voltage is related to the capacitor current by

vC tð Þ ¼ 1

C

Z t

0
iC tð Þ dtþ vC 0ð Þ

Recall that y 0ð Þ ¼ 0. Thus, vC 0ð Þ ¼ 0, and

vC tð Þ ¼ 1

C

Z t

0
iC tð Þ dt ¼ 1

C

Z t

0

x1 tð Þ
R1

þ x2 tð Þ
R2

� �
dt ¼

Z t

0

x1 tð Þ
R1C

þ x2 tð Þ
R2C

� �
dt

Finally, using Eq. 7.9-6 gives

y tð Þ ¼ �
Z t

0

x1 tð Þ
R1C

þ x2 tð Þ
R2C

� �
dt ¼ �

Z t

0
k1x1 tð Þ þ k2x2 tð Þð Þ dt ð7:9-7Þ

where k1 ¼ 1
R1C

and k2 ¼ 1
R2C

.

Equation 7.9-7 indicates that the summing integrator does four things. First, each input is
multiplied by a separate constant: x1 is multiplied by k1, and x2 is multiplied by k2. Second, the products
are summed. Third, the sum is integrated. Fourth, the integral is multiplied by �1. (Like the inverting
integrator, this circuit inverts its output. It is sometimes called an inverting summing integrator.
Fortunately, we don’t need to use that long name very often.)

The summing amplifier in Figure 7.9-7 accommodates two inputs. To accommodate additional
inputs, we add more input resistors, each connected between an input node and the inverting input node
of the operational amplifier. (The operational amplifier circuit that implements Eq. 7.9-1 will require a
four-input summing integrator.)

We will design an operational amplifier circuit to implement Eq. 7.9-1 by replacing the blocks
in the block diagram of Eq. 7.9-1 by operational amplifier circuits. This process will be easier if we
first modify the block diagram to accommodate inverting integrators. Figures 7.9-8 and 7.9-9 show

R1

C

–

+

x1(t)

x2(t)

y(t)

i1 (t)

i2(t)

iC(t)v1(t)+ –

vC(t)+ –

R2

v2(t)+ –

1 3 4

2

FIGURE 7.9-7 The summing integrator.
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modified versions of the block diagrams from Figures 7.9-2 and 7.9-3. Replace all the integrators in
Figure 7.9-2 by inverting integrators to get Figure 7.9-8. It’s necessary to set the input equal to

� d3

dt3
y tð Þ instead of

d3

dt3
y tð Þ to cause the output to be equal to y(t) instead of �y(t).

The block diagram in Figure 7.9-9 produces � d3

dt3
y tð Þ from

d2

dt2
y tð Þ, � d

dt
y tð Þ, and y(t). The block

diagrams in Figures 7.9-8 and 7.9-9 can be combined as shown in Figure 7.9-10 to obtain the block
diagram of Eq. 7.9-1.

A summing integrator can multiply each of its inputs by a separate constant, add the products, and
integrate the sum. The block diagram shown in Figure 7.9-11 emphasizes the blocks that can be
implemented by a single four-input summing integrator.

y(t)–

–
d3

dt3

y(t)d2

dt2
y(t)

y(t)

d
dt

–∫ –∫ –∫

FIGURE 7.9-8 The block diagram
from Figure 7.9-2, adjusted to
accommodate inverting integrators.

y(t)d2

dt2

y(t)–1

–1
y(t)–

–d3

dt3

y(t)d
dt

–1.5

–2

–2.5

3 –1 x(t)

+

FIGURE 7.9-9 The block
diagram from Figure 7.9-3,
adjusted to accommodate
the consequences of using
inverting integrators.

x(t)

1.5

2

2.5

3

–1

–1

+

y(t)–

–
d3

dt3

y(t)d2

dt2
y(t)

y(t)

d
dt

–∫ –∫ –∫

FIGURE 7.9-10 The block diagram representing Eq. 7.9-1, adjusted to accommodate inverting integrators.

x(t)

1.5

2

2.5

3

–1

–1

+

y(t)–

–
d3

dt3

y(t)d2

dt2
y(t)

y(t)

d
dt

–∫ –∫ –∫

FIGURE 7.9-11 The block diagram representing Eq. 7.9-1, emphasizing the part implemented by the summing
integrator.
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Figure 7.9-12 shows the four-input summing integrator. The signal � d2

dt2
y tð Þ is the output of this

circuit and is also one of the inputs to the circuit. The resistor R2 is connected between this input and the
node connected to the inverting input of the operational amplifier. The summing integrator is
represented by the equation

d2

dt2
y tð Þ ¼ �

Z t

0

1

R1C
�x tð Þ½ � þ 1

R2C

d2

dt2
y tð Þ þ 1

R3C

d

dt
y tð Þ

� �
þ 1

R4C
y tð Þ

� �
dt ð7:9-8Þ

Integrating both sides of Eq. 7.9-3 gives

d2

dt2
y tð Þ ¼ �

Z t

0
3 �x tð Þ½ � þ 2:5

d2

dt2
y tð Þ þ 2

d

dt
y tð Þ

� �
þ 1:5 y tð Þ

� �
dt ð7:9-9Þ

For convenience, pick C ¼ 1 mF. Comparing Eqs. 7.9-8 and 7.9-9 gives

R1 ¼ 333 kV; R2 ¼ 400 kV; R3 ¼ 500 kV; and R4 ¼ 667 kV

The summing integrator implements most of the block diagram, leaving only four other blocks to
be implemented. Those four blocks are implemented using two inverting integrators and two inverting
amplifiers. The finished circuit is shown in Figure 7.9-13.

–

+

y(t)d2

dt2

R3
y(t)

y(t)

–x(t)

d
dt

R1

R4 R2

C

FIGURE 7.9-12 The summing integrator.

–

+
–

+

–

+

20 kΩ 20 kΩ 333 kΩ

400 kΩ

1 MΩ 1 MΩ

500 kΩ

667 kΩ

20 kΩ 20 kΩ

–

+

1 μF 1 μF

–

+

1 μF

x(t)

y(t)

FIGURE 7.9-13 An operational amplifier circuit that implements Eq. 7.9-1.
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7.10 U s i n g MAT L A B t o P l o t C a p a c i t o r o r I n d u c t o r
V o l t a g e a n d C u r r e n t

Suppose that the current in a 2-F capacitor is

i tð Þ ¼
4

t þ 2

20� 2t

�8

t � 2

2 � t � 6

6 � t � 14

t � 4

8>>><
>>>:

ð7:10-1Þ

where the units of current are A and the units of time are s. When the initial capacitor voltage is
v 0ð Þ ¼ �5 V, the capacitor voltage can be calculated using

v tð Þ ¼ 1

2

Z t

0
i tð Þdt� 5 ð7:10-2Þ

Equation 7.10-1 indicates that i tð Þ ¼ 4 A, when t < 2 s. Using this current in Eq. 7.10-2 gives

v tð Þ ¼ 1

2

Z t

0
4dt� 5 ¼ 2t � 5 ð7:10-3Þ

when t < 2 s. Next, Eq. 7.10-1 indicates that i tð Þ ¼ t þ 2 A, when 2 < t < 6 s. Using this current in Eq.
7.10-2 gives

v tð Þ ¼ 1

2

Z t

2
t þ 2ð Þdtþ

Z 2

0
4 dt

� �
� 5 ¼ 1

2

Z t

2
t þ 2ð Þdt� 1 ¼ t2

4
þ t � 4 ð7:10-4Þ

when 2 < t < 6 s. Continuing in this way, we calculate

v tð Þ ¼ 1

2

Z t

6
20� 2tð Þ dtþ

Z 6

2
t þ 2ð Þ dtþ

Z 2

0
4 dt

� �
� 5

¼ 1

2

Z t

6
20� 2tð Þ dtþ 11 ¼ � t2

2
þ 10t � 31

ð7:10-5Þ

when 6 < t < 14 s, and

v tð Þ ¼ 1

2

Z t

14
�8 dtþ

Z 14

6
20� 2tð Þ dtþ

Z 6

2
t þ 2ð Þ dtþ

Z 2

0
4 dt

� �
� 5

¼ 1

2

Z t

14
�8 dtþ 11 ¼ 67� 4t

ð7:10-6Þ

when t > 14 s.
Equations 7.10-3 through 7.10-6 can be summarized as

v tð Þ ¼

2t � 5 t � 2

t2

4
þ t � 4 2 � t � 6

� t2

2
þ 10t � 31 6 � t � 14

67� 4t t � 14

8>>>>>><
>>>>>>:

ð7:10-7Þ
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Equations 7.10-1 and 7.10-7 provide an analytic representation of the capacitor current and voltage.
MATLAB provides a convenient way to obtain graphical representation of these functions. Figures
7.10-1a,b show MATLAB input files that represent the capacitor current and voltage. Notice that the
MATLAB input file representing the current, Figure 7.10-1a, is very similar to Eq. 7.10-1, whereas the
MATLAB input file representing the voltage, Figure 7.10-1b, is very similar to Eq. 7.10-7. Figure 7.10-
1c shows the MATLAB input file used to plot the capacitor current and voltage. Figure 7.10-2 shows
the resulting plots of the capacitor current and voltage.

function i�CapCur(t)
if t�2

i=4;
elseif t�6

i=t�2;
elseif t�14

i=20�2*t;
else

i� �8;
end

function v�CapVol(t)
if t�2

v�2*t�5;
elseif t�6

v�0.25*t*t�t�4;
elseif t�14

v� �.5*t*t�10*t�31;
else

v�67�4*t;
end

t�0�1�20;
for k�1�1�length(t)

i(k)�CapCur(k�l);
v(k)�CapVol(k�l);

end

(a) (b)

(c)

plot(t,i,t,v)
text(12,10,’v(t), V’)

5,’i(t), A’)
title(‘Capacitor Voltage and Current’)
xlabel(‘time, s’)
text(10,�

FIGURE 7.10-1 MATLAB input files representing (a) the capacitor current and (b) the capacitor voltage; (c) the
MATLAB input file used to plot the capacitor current and voltage.

–15

–10
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0
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15

20
Capacitor voltage and current

0 2 4 6 8 10 12 14 16 18 20

i(t), A

v(t), V

Time, s

FIGURE 7.10-2 A plot of the voltage
and current of a capacitor.
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7.11 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the specifica-
tions have been satisfied. In addition, computer output must be reviewed to guard against data-entry
errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of
problems discussed in this chapter.

E X A M P L E 7 . 1 1 - 1 How Can We Check the Voltage and
Current of a Capacitor?

A homework solution indicates that the current and voltage of a 2-F capacitor are

i tð Þ ¼
4 t < 2

t þ 2 2 < t < 6
20� 2t 6 < t < 14
�8 t > 14

8>><
>>:

ð7:11-1Þ

and

v tð Þ ¼

2t � 5 t < 2
t2

4
þ t � 4 2 < t < 6

� t2

2
þ 10t � 21 6 < t < 14

67� 4t t > 14

8>>>>>><
>>>>>>:

ð7:11-2Þ

where the units of current are A, the units of voltage are V, and the units of time are s. How can we check this
homework solution to see whether it is correct?

Solution
The capacitor voltage cannot change instantaneously. The capacitor voltage is given by

v tð Þ ¼ 2t � 5 ð7:11-3Þ
when t < 2 s and by

v tð Þ ¼ t2

4
þ t � 4 ð7:11-4Þ

when 2 < t < 6 s. Because the capacitor voltage cannot change instantaneously, Eqs. 7.11-3 and 7.11-4 must both
give the same value for v(2), the capacitor voltage at time t ¼ 2 s. Solving Eq. 7.11-3 gives

v 2ð Þ ¼ 2 2ð Þ � 5 ¼ �1 V
Also, solving Eq. 7.11-4 gives

v 2ð Þ ¼ 22

4
þ 2� 4 ¼ �1 V

300 7. Energy Storage Elements



These values agree, so we haven’t found an error. Next, let’s check v(6), the capacitor voltage at time t ¼ 6 s. The
capacitor voltage is given by

v tð Þ ¼ � t2

2
þ 10t � 21 ð7:11-5Þ

when 6 < t < 14 s. Equations 7.11-4 and 7.11-5 must both give the same value for v(6). Solving Eq. 7.11-4 gives

v 6ð Þ ¼ 62

4
þ 6� 4 ¼ 11 V

whereas solving Eq. 7.11-5 gives

v 6ð Þ ¼ � 62

2
þ 10 6ð Þ � 21 ¼ 21 V

These values don’t agree. That means that v(t) changes instantaneously at t ¼ 6 s, so v(t) cannot be the voltage
across the capacitor. The homework solution is not correct.

7 . 1 2 D E S I G N E X A M P L E Integrator and Switch

This design challenge involves an integrator and a voltage-controlled switch.
An integrator is a circuit that performs the mathematical operation of integration. The output of an integrator,

say, vo(t), is related to the input of the integrator, say, vs(t), by the equation

vo t2ð Þ ¼ K �
Z t2

t1

vs tð Þdt þ vo t1ð Þ ð7:12-1Þ

The constant K is called the gain of the integrator.
Integrators have many applications. One application of an integrator is to measure an interval of time.

Suppose vs(t) is a constant voltage Vs. Then,

vo t2ð Þ ¼ K � t2 � t1ð Þ � V s þ vo t1ð Þ ð7:12-2Þ
This equation indicates that the output of the integrator at time t2 is a measure of the time interval t2 � t1.

Switches can be controlled electronically. Figure 7.12-1 illustrates an electronically controlled SPST
switch. The symbol shown in Figure 7.12-1a is sometimes used to emphasize that a switch is controlled
electronically. The node voltage vc(t) is called the control voltage. Figure 7.12-1b shows a typical control
voltage. This voltage-controlled switch is closed when vc tð Þ ¼ vH and open when vc tð Þ ¼ vL. The switch shown
in Figure 7.12-1 is open before time t1. It closes at time t1 and stays closed until time t2. The switch opens at time
t2 and remains open.

Consider Figure 7.12-2. The voltage vc(t) controls the switch. The integrator converts the time interval
t2 � t1 to a voltage that is displayed using the voltmeter. The time interval to be measured could be as small as
5 ms or as large as 200 ms. The challenge is to design the integrator. The available components include:
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� Standard 2 percent resistors (see Appendix D).
� 1-mF, 0.2-mF, and 0.1-mF capacitors.
� Operational amplifiers.
� þ15-V and � 15-V power supplies.
� 1-kV; 10-kV; and 100-kV potentiometers.
� Voltage-controlled SPST switches.

Describe the Situation and the Assumptions
It is convenient to set the integrator output to zero at time t1. The relationship between the integrator output voltage
and the time interval should be simple. Accordingly, let

vo t2ð Þ ¼ 10 V

200 ms
� t2 � t1ð Þ ð7:12-3Þ

Figure 7.12-2 indicates that V s ¼ 5 V. Comparing Eqs. 7.12-2 and 7.12-3 yields

K � V s ¼ 10 V

200 ms
and; therefore; K ¼ 10

1

s
ð7:12-4Þ

(b)(a)

vH

vL

t1 t2

vc(t) (V)

t (ms)

vin(t)

vc(t)

vo(t)

Control
voltage

FIGURE 7.12-1 The voltage-controlled switch. (a) Switch symbol. (b) Typical control voltage.

vH

vL

t1 t2

vc(t) (V)

vc(t)

t (ms)

Integrator
+
–Vs = 5 V

Voltmeter

FIGURE 7.12-2 Using an integrator to measure an interval of time.
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State the Goal
Design an integrator satisfying both

K ¼ 10
1

s
and vo t1ð Þ ¼ 0 ð7:12-5Þ

Generate a Plan
Let us use the integrator described in Section 7.9. Adding a switch as shown in Figure 7.12-3 satisfies the condition
vo t1ð Þ ¼ 0. The analysis performed in Section 7.9 showed that

vo t2ð Þ ¼ � 1

RC
�
Z t2

t1

vs tð Þ dt ð7:12-6Þ

so R and C must be selected to satisfy

1

RC
¼ K ¼ 10

1

s
ð7:12-7Þ

–

+

CR
vs(t)

vo(t)

t = t1

FIGURE 7.12-3 An integrator using
an operational amplifier.

Act on the Plan
Any of the available capacitors would work. Select C ¼ 1 mF. Then,

R ¼ 1

10
V

s
� 1 mF

¼ 100 kV ð7:12-8Þ

The final design is shown in Figure 7.12-4.

Verify the Proposed Solution
The output voltage of the integrator is given by

vo tð Þ ¼ � 1

RC

Z t

t1

vs tð Þ dtþ vo 0ð Þ ¼ �1

100 � 103� �
10�6
� �

Z t

t1

5 dt ¼ �50 t � t1ð Þ

where the units of voltage are V and the units of time are s. The interval of time can be calculated from the output
voltage, using

� t � t1ð Þ ¼ vo tð Þ
50

For example, an output voltage of �4 V indicates a time interval of
4

50
s ¼ 80 ms.
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7.13 SUMMARY

Table 7.13-1 summarizes the element equations for capaci-
tors and inductors. (Notice that the voltage and current
referred to in these equations adhere to the passive conven-
tion.) Unlike the circuit elements we encountered in previous
chapters, the element equations for capacitors and inductors
involve derivatives and integrals.
Circuits that contain capacitors and/or inductors are able to
store energy. The energy stored in the electric field of a
capacitor is equal to 1

2 Cv2 tð Þ, where v(t) is the voltage across
the capacitor. The energy stored in the magnetic field of a
inductor is equal to 1

2 Li2 tð Þ, where i(t) is the current in the
inductor.

Circuits that contain capacitors and/or inductors have mem-
ory. The voltages and currents in that circuit at a particular
time depend not only on other voltages and currents at that
same instant of time but also on previous values of
those currents and voltages. For example, the voltage across
a capacitor at time t1 depends on the voltage across that
capacitor at an earlier time t0 and on the value of the capacitor
current between t0 and t1.
A set of series or parallel capacitors can be reduced to an
equivalent capacitor. A set of series or parallel inductors can
readily be reduced to an equivalent inductor. Table 7.13-2
summarizes the equations required to do so.

Table 7.13-1 Element Equations for Capacitors and Inductors

CAPACITOR INDUCTOR

C

v(t)+ –

i(t)
L

v(t)+ –

i(t)

i tð Þ ¼ C
d

dt
v tð Þ i tð Þ ¼ 1

L

Z t

t0

v tð Þdtþ i t0ð Þ

v tð Þ ¼ 1
C

Z t

t0

i tð Þdtþ v t0ð Þ v tð Þ ¼ L
d

dt
i tð Þ

vH

vL

t1 t2

vc(t) (V)

vc(t)

t (ms)

+
–Vs = 5 V

Voltmeter

–

+

CR

t = t1

+ –vo

FIGURE 7.12-4 Using an operational amplifier integrator to measure an interval of time.
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In the absence of unbounded currents, the voltage across a
capacitor cannot change instantaneously. Similarly, in the
absence of unbounded voltages, the current in an inductor
cannot change instantaneously. In contrast, the current in a
capacitor and voltage across an inductor are both able to
change instantaneously.
We sometimes consider circuits that contain capacitors and
inductors and have only constant inputs. (The voltages of the
independent voltage sources and currents of the independent
current sources are all constant.) When such a circuit is at
steady state, all the currents and voltages in that circuit will
be constant. In particular, the voltage across any capacitor
will be constant. The current in that capacitor will be zero due

to the derivative in the equation for the capacitor current.
Similarly, the current through any inductor will be constant
and the voltage across any inductor will be zero. Conse-
quently, the capacitors will act like open circuits and the
inductors will act like short circuits. Notice that this situation
occurs only when all of the inputs to the circuit are constant.
An op amp and a capacitor can be used to make circuits that
perform the mathematical operations of integration and
differentiation. Appropriately, these important circuits are
called the integrator and the differentiator.
The element voltages and currents in a circuit containing
capacitors and inductors can be complicated functions of
time. MATLAB is useful for plotting these functions.

Table 7.13-2 Parallel and Series Capacitors and Inductors

SERIES OR
PARALLEL CIRCUIT

EQUIVALENT
CIRCUIT EQUATION

L1

L2

v(t)+ –

i(t)

C1

C2

v(t)+ –

i(t)

L1 L2

v(t)+ –

i(t)

v(t)+ –

i(t) C2C1

Leq

v(t)+ –

i(t)

Ceq

Ceq

v(t)+ –

i(t)

Leq

v(t)+ –

i(t)

v(t)+ –

i(t)

Leq ¼ 1
1
L1

þ 1
L2

Leq ¼ L1 þ L2

Ceq ¼ C1 þ C2

Ceq ¼ 1
1

C1
þ 1

C2

PROBLEMS

Section 7.2 Capacitors

P 7.2-1 A 15-mF capacitor has a voltage of 5 V across it at
t ¼ 0. If a constant current of 25 mA flows through the capacitor,
how long will it take for the capacitor to charge up to 150 mC?

Answer: t ¼ 3 ms

P 7.2-2 The voltage v(t) across a capacitor and current i(t) in
that capacitor adhere to the passive convention. Determine the
current i(t) when the capacitance is C ¼ 0:125 F, and the
voltage is v tð Þ ¼ 12 cos 2t þ 30	ð Þ V.

Hint: d

dt
A cos ot þ yð Þ ¼ �A sin ot þ yð Þ � d

dt
ot þ yð Þ

¼ �Ao sin ot þ yð Þ
¼ Ao cos ot þ yþ p

2

� �� �

Answer: i tð Þ ¼ 3 cos 2t þ 120	ð Þ A

P 7.2-3 The voltage v(t) across a capacitor and current i(t) in
that capacitor adhere to the passive convention. Determine the
capacitance when the voltage is v tð Þ ¼ 12 cos 500t � 45	ð Þ V and
the current is i tð Þ ¼ 3 cos 500t þ 45	ð Þ mA.

Answer: C ¼ 0:5 mF

Problem available in WileyPLUS at instructor’s discretion.
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P 7.2-4 Determine v(t) for the circuit shown in Figure
P 7.2-4a(t) when the is(t) is as shown in Figure P 7.2-4b
and vo 0�ð Þ ¼ �1 mV.

(b)(a)

1 2 3 4 5 6

–2

0

4

is v

+

–

2 pF

t (ns)

is (  A)μ

Figure P 7.2-4 (a) Circuit and (b) waveform of current source.

P 7.2-5 The voltage v(t) and current i(t) of a 1-F capacitor
adhere to the passive convention. Also, v 0ð Þ ¼ 0 V and
i 0ð Þ ¼ 0 A. (a) Determine v(t) when i tð Þ ¼ x tð Þ, where x(t)
is shown in Figure P 7.2-5 and i(t) has units of A. (b) Determine
i(t) when v tð Þ ¼ x tð Þ, where x(t) is shown in Figure P 7.2-5 and
v(t) has units of V.

Hint:x tð Þ ¼ 4t � 4when1 < t < 2,andx tð Þ ¼ �4t þ 12when
2 < t < 3.

x

1

0

2

3

4

5

10 2 3 4 t (s)

Figure P 7.2-5

P 7.2-6 The voltage v(t) and current i(t) of a 0.5-F capacitor
adhere to the passive convention. Also, v 0ð Þ ¼ 0 V and
i 0ð Þ ¼ 0 A. (a) Determine v(t) when i tð Þ ¼ x tð Þ, where x(t)
is shown in Figure P 7.2-6 and i(t) has units of A. (b) Determine
i(t) when v tð Þ ¼ x tð Þ, where x(t) is shown in Figure P 7.2-6 and
v(t) has units of V.

Hint: x tð Þ ¼ 0:2t � 0:4 when 2 < t < 6.

x

0.2

0.0

0.4

0.6

0.8

1.0

20 4 6 8 t (s)

Figure P 7.2-6

P 7.2-7 The voltage across a 40-mF capacitor is 25 V at
t0 ¼ 0. If the current through the capacitor as a function of time is
given by i tð Þ ¼ 6e�6t mA for t < 0, find v(t) for t > 0.

Answer: v tð Þ ¼ 50 � 25e�6t V

P 7.2-8 Find i for the circuit of Figure P 7.2-8 if v ¼
5 1 � 2e�2tð Þ V.

+

–
vi 200 kΩ10 μF

Figure P 7.2-8

P 7.2-9 Determine v(t) for t � 0 for the circuit of Figure
P 7.2-9a when is(t) is the current shown in Figure P 7.2-9b and
v 0ð Þ ¼ 1 V.

is (A)

t (s)

(b)

2

–2

1 2 3

4

is (t) v(t)

(a)

0.5 F
+

–

Figure P 7.2-9

P 7.2-10 Determine v(t) for t � 0 for the circuit of Figure
P 7.2-10a when v 0ð Þ ¼ �4 V and is(t) is the current shown in
Figure P 7.2-10b.
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is (A)

2

0.25 0.5

t (s)

(b)

is (t)

2 Ω

0.1 F v(t)

(a)

+

–

Figure P 7.2-10

P 7.2-11 Determine i(t) for t � 0 for the circuit of Figure
P 7.2-11a when vs(t) is the voltage shown in Figure P 7.2-11b.

t (s)

vs (V)

2.01.51.00.50

(b)

20

5 F

(a)

5 Ω

i(t)

vs(t) +
–

Figure P 7.2-11

P 7.2-12 The capacitor voltage in the circuit shown in Figure
P 7.2-12 is given by

v tð Þ ¼ 12� 10e�2t V for t � 0

Determine i(t) for t > 0.

i(t)4 Ω

6 Ω

2 A

v(t)
1

20
F

+

–

Figure P 7.2-12

P 7.2-13 The capacitor voltage in the circuit shown in
Figure P 7.2-13 is given by

v tð Þ ¼ 2:4þ 5:6e�5t V for t � 0

Determine i(t) for t > 0.

v(t) i(t)2 mF 12 V100 Ω

20 Ω 400 Ω

+

–

+
–

Figure P 7.2-13

P 7.2-14 The capacitor voltage in the circuit shown in
Figure P 7.2-14 is given by

v tð Þ ¼ 10� 8e�5t V for t � 0

Determine i(t) for t > 0.

v(t)

i(t)

20 mF 12 V60 Ω
12 Ω+

–

+
–

Figure P 7.2-14

P 7.2-15 Determine the voltage v(t) for t > 0 for the circuit
of Figure P 7.2-15b when is(t) is the current shown in Figure
P 7.2-15a. The capacitor voltage at time t ¼ 0 is v 0ð Þ ¼ �12 V.

(a)

–2

2

4

108642–2–4 t (s)

is(t)(A)

(b)

v(t)is(t) F

+

–

1 3

Figure P 7.2-15 (a) The voltage source voltage. (b) The circuit.

P 7.2-16 The input to the circuit shown in Figure P 7.2-16
is the current

i tð Þ ¼ 3:75e�1:2t A for t > 0

The output is the capacitor voltage

v tð Þ ¼ 4� 1:25e�1:2t V for t > 0

Find the value of the capacitance C.
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C

v(t)

i (t)

+ _

Figure P 7.2-16

P 7.2-17 The input to the circuit shown in Figure P 7.2-17
is the current

i tð Þ ¼ 3e�25t A for t > 0

The initial capacitor voltage is vC 0ð Þ ¼ �2 V. Determine the
current source voltage v(t) for t > 0.

i(t)

v(t)+ _

vC(t)+ _

4 Ω 0.05 F

Figure P 7.2-17

P 7.2-18 The input to the circuit shown in Figure P 7.2-18
is the current

i tð Þ ¼ 3e�25t A for t > 0

The output is the voltage

v tð Þ ¼ 9:6e�25t þ 0:4 V for t > 0

The initial capacitor voltage is vC 0ð Þ ¼ �2 V. Determine the
values of the capacitance C and resistance R.

C

v(t)+ _

vC(t)+ _

i (t)

R

Figure P 7.2-18

P 7.2-19 The input to the circuit shown in Figure P 7.2-19 is
the voltage

v tð Þ ¼ 8þ 5e�10t V for t > 0

Determine the current i(t) for t > 0.

0.05 F

v(t)

4 Ω

+ –

i(t)

Figure P 7.2-19

P 7.2-20 The input to the circuit shown in Figure P 7.2-20
is the voltage:

v tð Þ ¼ 3þ 4e�2t A for t > 0

The output is the current i tð Þ ¼ 0:3 � 1:6e�2t V for t > 0
Determine the values of the resistance and capacitance.

Answers: R ¼ 10 V and C ¼ 0:25 F

C

v(t)

+ –

i(t)

R

Figure P 7.2-20

P 7.2-21 Consider the capacitor shown in Figure P 7.2-21.
The current and voltage are given by

i tð Þ ¼
0:5 0 < t < 0:5

2 0:5 < t < 1:5

0 t > 1:5

8<
:

and v tð Þ ¼
2t þ 8:6 0 � t � 0:5

at þ b 0:5 � t � 1:5

c t � 1:5

8<
:

where a, b, and c are real constants. (The current is given in
amps, the voltage in volts, and the time in seconds.) Determine
the values of a, b, and c.

Answers: a ¼ 8 V/s; b ¼ 5:6 V, and c ¼ 17:6 V

C = 0.25 F

+
i(t)

v(t)

_

Figure P 7.2-21
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P 7.2-22 At time t ¼ 0, the voltage across the capacitor
shown in Figure P 7.2-22 is v 0ð Þ ¼ �20 V. Determine the
values of the capacitor voltage at times 1 ms, 3 ms, and 7 ms.

i (t)

i (t), mA

v(t)

+

–

2 4 7

2.5 µF
t, (ms)

40

Figure P 7.2-22

Section 7.3 Energy Storage in a Capacitor

P 7.3-1 The current i through a capacitor is shown in Figure
P 7.3-1. When v 0ð Þ ¼ 0 and C ¼ 0:5 F, determine and plot
v(t), p(t), and w(t) for 0 s < t < 6 s.

i(A)

0.2

0.0

0.4

0.6

0.8

1.0

20 4 6 8 t (s)

Figure P 7.3-1

P 7.3-2 In a pulse power circuit, the voltage of a 10-mF
capacitor is zero for t < 0 and

v ¼ 5 1� e�4000t
� �

V t � 0

Determine the capacitor current and the energy stored in the
capacitor at t ¼ 0 ms and t ¼ 10 ms.

P 7.3-3 If vc(t) is given by the waveform shown in Figure
P 7.3-3, sketch the capacitor current for �1 s < t < 2 s. Sketch
the power and the energy for the capacitor over the same time
interval when C ¼ 1 mF.

20

–20

0–1

vc (V)

t (s)1 2

Figure P 7.3-3

P 7.3-4 The current through a 2-mF capacitor is 50 cos(10tþ
p/6) mA for all time. The average voltage across the capacitor is
zero. What is the maximum value of the energy stored in the
capacitor? What is the first nonnegative value of t at which
the maximum energy is stored?

P 7.3-5 A capacitor is used in the electronic flash unit of a
camera. A small battery with a constant voltage of 6 V is used to
charge a capacitor with a constant current of 10 mA. How long
does it take to charge the capacitor when C ¼ 10 mF? What is
the stored energy?

P 7.3-6 The initial capacitor voltage of the circuit shown in
Figure P 7.3-6 is vc 0�ð Þ ¼ 3 V. Determine (a) the voltage
v(t) and (b) the energy stored in the capacitor at t ¼ 0:2 s
and t ¼ 0:8 s when

i tð Þ ¼ 3e5t A 0 < t < 1

0 t � 1 s

(

Answers:

(a) 18e5t V; 0 � t < 1
(b) w 0:2ð Þ ¼ 6:65 J and w 0:8ð Þ ¼ 2:68 kJ

5 Ω

t = 0

+

–
vc

+

–

v

0.2 F

i(t)

Figure P 7.3-6

P 7.3-7 (a) Determine the energy stored in the capacitor in
the circuit shown in Figure P 7.3-7 when the switch is closed
and the circuit is at steady state. (b) Determine the energy stored
in the capacitor when the switch is open and the circuit is at
steady state.

+

+
–

–

v (t )2.2 mF

75 kΩ

75 kΩ12 V

Figure P 7.3-7

Section 7.4 Series and Parallel Capacitors

P 7.4-1 Find the current i(t) for the circuit of Figure P 7.4-1.

Answer: i tð Þ ¼ �1:2 sin 100t mA
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6 cos 100t V 2   F
3   Fμ

μ μ4   F

i(t)

+
–

Figure P 7.4-1

P 7.4-2 Find the current i(t) for the circuit of Figure P 7.4-2.

Answer: i tð Þ ¼ �1:5e�250t mA

4   F5 + 3e–250t V 2   F
4   Fμ μ

μμ
4   F

i(t)

+
–

Figure P 7.4-2

P 7.4-3 The circuit of Figure P 7.4-3 contains five
identical capacitors. Find the value of the capacitance C.

Answer: C ¼ 10 mF

14 sin 250t V

i(t) = 25 cos 250t mA

+
–

C
C C C

C

Figure P 7.4-3

P 7.4-4 The circuit shown in Figure P 7.4-4 contains seven
capacitors, each having capacitance C. The source voltage is
given by

v tð Þ ¼ 4 cos 3tð ÞV
Find the current i(t) when C ¼ 1 F.

i(t)

v(t)

C C

C

C
C

C

C

+
–

Figure P 7.4-4

P 7.4-5 Determine the value of the capacitance C in the
circuit shown in Figure P 7.4-5, given that Ceq ¼ 8 F.

Answer: C ¼ 20 F

A

C

B

12 F 4 F

10 F 30 F

12 F

16 F

Ceq

Figure P 7.4-5

P 7.4-6 Determine the value of the equivalent capacitance Ceq,
in the circuit shown in Figure P 7.4-6.

Answer: Ceq ¼ 10 F

a

b

Ceq

60 F 30 F

15 F

10 F

40 F

60 F

Figure P 7.4-6

P 7.4-7 The circuit shown in Figure P 7.4-7 consists of
nine capacitors having equal capacitance C. Determine the
value of the capacitance C, given that Ceq ¼ 50 mF.

Answer: C ¼ 90 mF

C

C

Ceq

CC

C

C

C

CC

Figure P 7.4-7

P 7.4-8 The circuit shown in Figure P 7.4-8 is at steady
state before the switch opens at time t ¼ 0. The voltage v(t) is
given by
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v tð Þ ¼ 3:6 V

3:6e�2:5t V

for t � 0

for t � 0



(a) Determine the energy stored by each capacitor before the
switch opens.

(b) Determine the energy stored by each capacitor 1 s after the
switch opens.

The parallel capacitors can be replaced by an equivalent
capacitor.

(c) Determine the energy stored by the equivalent capacitor
before the switch opens.

(d) Determine the energy stored by the equivalent capacitor 1 s
after the switch opens.

18 V

t = 0

20 Ω
5 Ω 60 mF 20 mFv(t)+

–

+

–

Figure P 7.4-8

P 7.4-9 The circuit shown in Figure P 7.4-9 is at steady state
before the switch closes. The capacitor voltages are both zero
before the switch closes v1 0ð Þ ¼ v2 0ð Þ ¼ 0ð Þ. The current i(t) is
given by

i tð Þ ¼ 0 A
2:4e�30t A

for t < 0
for t > 0



(a) Determine the capacitor voltages v1(t) and v2(t) for t � 0.
(b) Determine the energy stored by each capacitor 20 ms after

the switch closes.

The series capacitors can be replaced by an equivalent
capacitor.

(c) Determine the voltage across the equivalent capacitor,
þ on top, for t � 0.

(d) Determine the energy stored by the equivalent capacitor
20 ms after the switch closes.

5 Ω

25 Ω12 V

10 mF

40 mF

t = 0

i(t)

v1 (t)

v2 (t)

+

–

+

–
+
–

Figure P 7.4-9

P 7.4-10 Find the relationship for the division of current
between two parallel capacitors as shown in Figure P 7.4-10.

Answer: in ¼ iCn= C1 þ C2ð Þ; n ¼ 1; 2

C1 C2

i

i1 i2

Figure P 7.4-10

Section 7.5 Inductors

P 7.5-1 Nikola Tesla (1857–1943) was an American electrical
engineer who experimented with electric induction. Tesla
built a large coil with a very large inductance, shown in Figure
P 7.5-1. The coil was connected to a source current

is ¼ 100 sin 400t A

so that the inductor current iL ¼ is. Find the voltage across the
inductor and explain the discharge in the air shown in the
figure. Assume that L¼ 200H and the average discharge
distance is 2 m. Note that the dielectric strength of air is
3� 106 V/m.

Figure P 7.5-1 Nikola Tesla sits impassively as alternating current
induction coils discharge millions of volts with a roar audible 10
miles away (about 1910).

P 7.5-2 The model of an electric motor consists of a series
combination of a resistor and inductor. A current i tð Þ ¼ 4te�t A
flows through the series combination of a 10-V resistor and 0.1-H
inductor. Find the voltage across the combination.

Answer: v tð Þ ¼ 0:4e�t þ 39:6te�t V

P 7.5-3 The voltage v(t) and current i(t) of a 1-H inductor
adhere to the passive convention. Also, v 0ð Þ ¼ 0 V and
i 0ð Þ ¼ 0 A.

(a) Determine v(t) when i tð Þ ¼ x tð Þ, where x(t) is shown in
Figure P 7.5-3 and i(t) has units of A.

(b) Determine i(t) when v tð Þ ¼ x tð Þ, where x(t) is shown in
Figure P 7.5-3, and v(t) has units of V.

# Everett Collection Historical/Alamy
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x

1

0

2

3

4

5

10 2 3 4 t(s)

Figure P 7.5-3

Hint:x tð Þ ¼ 4t � 4when1 < t < 2,andx tð Þ ¼ �4t þ 12when
2 < t < 3.

P 7.5-4 The voltage v(t) across an inductor and current i(t) in
that inductor adhere to the passive convention. Determine the
voltage v(t) when the inductance is L ¼ 250 mH, and the
current is i tð Þ ¼ 120 sin 500t � 30	ð Þ mA.

Hint: d

dt
A sin ot þ yð Þ ¼ A cos ot þ yð Þ � d

dt
ot þ yð Þ

¼ Ao cos ot þ yð Þ
¼ Ao sin ot þ yþ p

2

� �� �

Answer: v tð Þ ¼ 15 sin 500t þ 60	ð Þ V

P 7.5-5 Determine iL tð Þ for t > 0 when iL 0ð Þ ¼ �2 mA for
the circuit of Figure P 7.5-5a when vs(t) is as shown in Figure
P 7.5-5b.

(b)(a)

1 2 3

–1

4

vs

iL

5 mH

vs (mV)

t (  s)μ

+
–

Figure P 7.5-5

P 7.5-6 Determine v(t) for t > 0 for the circuit of Figure
P 7.5-6a when iL 0ð Þ ¼ 0 and is is as shown in Figure P 7.5-6b.

(a)

iL

4 mHis
v

2 kΩ +

–

(b)
0 83 5 7

0

–1

1

is (mA)

t (ms)

1

Figure P 7.5-6

P 7.5-7 The voltage v(t) and current i(t) of a 0.5-H inductor
adhere to the passive convention. Also, v 0ð Þ ¼ 0 V, and
i 0ð Þ ¼ 0 A.

(a) Determine v(t) when i tð Þ ¼ x tð Þ, where x(t) is shown in
Figure P 7.5-7 and i(t) has units of A.

(b) Determine i(t) when v tð Þ ¼ x tð Þ, where x(t) is shown in
Figure P 7.5-7 and v(t) has units of V.

Hint: x tð Þ ¼ 0:2t � 0:4 when 2 < t < 6.

x

0.2

0.0

0.4

0.6

0.8

1.0

20 4 6 8 t (s)

Figure P 7.5-7

P 7.5-8 Determine i(t) for t � 0 for the current of Figure
P 7.5-8a when i 0ð Þ ¼ 25 mA and vs(t) is the voltage shown in
Figure P 7.5-8b.

vs (t)

vs (V)

100 H

i(t) t(s)

(a) (b)

2

1

2 4 6 8 9

−2

−4

+
–

Figure P 7.5-8

P 7.5-9 Determine i(t) for t � 0 for the current of Figure
P 7.5-9a when i 0ð Þ ¼ �2 A and vs(t) is the voltage shown in
Figure P 7.5-9b.
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vs (t)

vs (V)

5 H

i(t)

t(s)

(a) (b)

1 2 3
−1

2

4

+
–

Figure P 7.5-9

P 7.5-10 Determine i(t) for t � 0 for the current of Figure
P 7.5-10a when i 0ð Þ ¼ 1 A and vs(t) is the voltage shown in
Figure P 7.5-10b.

vs(t)

vs (V)

2 H

i(t)

t(s)

(a) (b)

2 4 6

−1

2

+
–

Figure P 7.5-10

P 7.5-11 Determine i(t) for t � 0 for the circuit of Figure
P 7.5-11a when i 0ð Þ ¼ 25 mA and vs(t) is the voltage shown in
Figure P 7.5-11b.

vs(t)

vs (V)

200 H

i(t) t(s)

(a) (b)

1

1 2 3 5 6 7 8 9

−1

−2

+
–

Figure P 7.5-11

P 7.5-12 The inductor current in the circuit shown in
Figure P 7.5-12 is given by

i tð Þ ¼ 6þ 4e�8t A for t � 0

Determine v(t) for t > 0.

12 V
2 Ω

8 Ω 0.2 H

i(t)v(t)+ –

+
–

Figure P 7.5-12

P 7.5-13 The inductor current in the circuit shown in
Figure P 7.5-13 is given by

i tð Þ ¼ 5� 3e�4t A for t � 0

Determine v(t) for t > 0.

10 A 24 Ω 24 Ω
24 Ω

4 H

v(t) i(t)+ –

Figure P 7.5-13

P 7.5-14 The inductor current in the circuit shown in
Figure P 7.5-14 is given by

i tð Þ ¼ 3þ 2e�3t A for t � 0

Determine v(t) for t > 0.

5 A

6 Ω

9 Ω 5 Hv(t)
i(t)+

–

Figure P 7.5-14

P 7.5-15 Determine the current i(t) for t > 0 for the circuit of
Figure P 7.5-15b when vs(t) is the voltage shown in Figure
P 7.5-15a. The inductor current at time t ¼ 0 is i 0ð Þ ¼ �12 A.

(a)

–2

2

4

108642–2–4 t (s)

(V)

vs(t)

(b)

i(t)

H+
–

1 3

vs(t)

Figure P 7.5-15 (a) The voltage source voltage. (b) The circuit.

P 7.5-16 The input to the circuit shown in Figure P 7.5-16
is the voltage

v tð Þ ¼ 15e�4t V for t > 0
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The initial current in the inductor is i 0ð Þ ¼ 2 A. Determine the
inductor current i(t) for t > 0.

2.5 H

v (t)

i(t)
+ –

Figure P 7.5-16

P 7.5-17 The input to the circuit shown in Figure P 7.5-17
is the voltage

v tð Þ ¼ 4e�20t V for t > 0

The output is the current

i tð Þ ¼ �1:2e�20t � 1:5 A for t > 0

The initial inductor current is iL 0ð Þ ¼ �3:5 A. Determine the
values of the inductance L and resistance R.

R

L

v (t)

iL(t)

i (t)

+ –

Figure P 7.5-17

P 7.5-18 The source voltage the circuit shown in Figure
P 7.5-18 is v(t) = 8 e� 400 t V after time t = 0. The initial inductor
current is iL(0) = 210 mA. Determine the source current i(t)
for t> 0.

Answer: i(t) = 360 e� 400t� 190 mA  for t> 0.

i L(t )

i (t )

+ –

200 Ω

50 mH

v (t )

Figure P 7.5-18

P 7.5-19 The input to the circuit shown in Figure P 7.5-19 is
the current

i(t) ¼ 5þ 2e�7t A for t > 0

The output is the voltage : v(t) ¼ 75� 82e�7t V for t > 0

Determine the values of the resistance and inductance.

v (t )+ –

R L

i (t )

Figure P 7.5-19

P 7.5-20 Consider the inductor shown in Figure P 7.5-20.
The current and voltage are given by

i tð Þ ¼
5t � 4:6 0 � t � 0:2
at þ b 0:2 � t � 0:5

c t � 0:5

8<
:

and v tð Þ ¼
12:5 0 < t < 0:2
25 0:2 < t < 0:5
0 t > 0:5

8<
:

where a, b, and c are real constants. (The current is given
in amps, the voltage in volts, and the time in seconds.)
Determine the values of a, b, and c.

Answers: a ¼ 10 A/s; b ¼ �5:6 A, and c ¼ �0:6 A

v (t)

i (t)

L = 2.5 H

+

–

Figure P 7.5-20

P 7.5-21 At time t ¼ 0, the current in the inductor shown
in Figure P 7.5-21 is i 0ð Þ ¼ 45 mA. Determine the values of the
inductor current at times 1 ms, 4 ms, and 6 ms.

v (t)

v (t), V

i (t)

2 4

250 mH

t, (ms)

20

+
–

Figure P 7.5-21

P 7.5-22 One of the three elements shown in Figure P 7.5-
22 is a resistor, one is a capacitor, and one is an inductor. Given
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i tð Þ ¼ 0:25cos 2tð Þ A;
and va(t) ¼ � 10 sin(2t) V, vb(t) ¼ 10 sin(2t) V, and vc(t) ¼
10 cos(2t) V, determine the resistance of the resistor, the
capacitance of the capacitor, and the inductance of the
inductor. (We require positive values of resistance,
capacitance, and inductance.)

Answers: resistance ¼ 40 V, capacitance ¼ 0.0125 F, and
inductance ¼ 20 H

va(t)

i (t)

+ – vb(t)

i (t)

+ –

vc(t)

i (t)

+ –

Figure P 7.5-22

P 7.5-23 One of the three elements shown in Figure P 7.5-
23 is a resistor, one is a capacitor, and one is an inductor. Given

v tð Þ ¼ 24cos 5tð Þ V;
and ia tð Þ ¼ 3 cos 5tð Þ A; ib tð Þ ¼ 12 sin 5tð Þ A and ic tð Þ ¼
�1:8 sin 5tð Þ A; determine the resistance of the resistor,
the capacitance of the capacitor, and the inductance of
the inductor. (We require positive values of resistance,
capacitance, and inductance.)

v (t)

ia (t)

+ – v (t)

ib(t)

+ –

v (t)

i c(t)

+ –

Figure P 7.5-23

Section 7.6 Energy Storage in an Inductor

P 7.6-1 The current i(t) in a 100-mH inductor connected
in a telephone circuit changes according to

i tð Þ ¼
0 t � 0

4t 0 � t � 1

4 t � 1

8<
:

where the units of time are seconds and the units of current are
amperes. Determine the power p(t) absorbed by the inductor
and the energy w(t) stored in the inductor.

Answers: p tð Þ ¼
0 t � 0

1:6t 0 < t < 1

0 t � 1

8<
: and

w tð Þ ¼
0 t � 0

0:8t2 0 < t < 1

0:8 t � 1

8<
:

The units of p(t) are W and the units of w(t) are J.

P 7.6-2 The current i(t) in a 5-H inductor is

i tð Þ ¼ 0 t � 0

4 sin 2t t � 0



where the units of time are s and the units of current are A.
Determine the power p(t) absorbed by the inductor and the
energy w(t) stored in the inductor.

Hint: 2 cos Að Þ sin Bð Þ ¼ sin A þ Bð Þ þ sin A � Bð Þ

P 7.6-3 The voltage v(t) across a 25-mH inductor used in a
fusion power experiment is

v tð Þ ¼ 0 t � 0

6 cos 100t t � 0



where the units of time are s and the units of voltage are V.
The current in this inductor is zero before the voltage changes
at t ¼ 0. Determine the power p(t) absorbed by the inductor
and the energy w(t) stored in the inductor.

Hint: 2 cos Að Þ sin Bð Þ ¼ sin A þ Bð Þ þ sin A � Bð Þ

Answer: p tð Þ ¼ 7:2sin200t W and w tð Þ ¼ 3:6 1 � cos 200t½ � mJ

P 7.6-4 The current in an inductor, L ¼ 1=4 H, is i ¼ 4te�t A
for t � 0 and i ¼ 0 for t < 0. Find the voltage, power, and
energy in this inductor.

Partial Answer: w ¼ 2t2e�2t J

P 7.6-5 The current through the inductor of a television
tube deflection circuit is shown in Figure P 7.6-5 when
L ¼ 1=2 H. Find the voltage, power, and energy in the
inductor.

Partial Answer:
p ¼ 2t for 0 � t < 1

¼ 2 t � 2ð Þ for 1 < t < 2
¼ 0 for other t

2

0 1 2

i (A)

t (s)

Figure P 7.6-5
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Section 7.7 Series and Parallel Inductors

P 7.7-1 Find the current i(t) for the circuit of Figure P 7.7-1.

Answer: i tð Þ ¼ 15 sin 100t mA

6 cos 100t V +
–

2 H

6 H 3 H

i(t)

Figure P 7.7-1

P 7.7-2 Find thevoltagev(t) for thecircuitofFigureP7.7-2.

Answer: v tð Þ ¼ �6e�250t mV

5 + 3e–250t A
+

–

4 mH 4 mH

4 mH8 mHv(t)

Figure P 7.7-2

P 7.7-3 The circuit of Figure P 7.7-3 contains four identical
inductors. Find the value of the inductance L.

Answer: L ¼ 2:86 H

25 cos 250t V +
–

L

L

L L

i(t) = 14 sin 250t mA

Figure P 7.7-3

P 7.7-4 The circuit shown in Figure P 7.7-4 contains seven
inductors, each having inductance L. The source voltage is
given by

v tð Þ ¼ 4 cos 3tð ÞV
Find the current i(t) when L ¼ 4 H.

L L

LL

L

L

L

i(t)

v(t)+
–

Figure P 7.7-4

P 7.7-5 Determine the value of the inductance L in the circuit
shown in Figure P 7.7-5, given that Leq ¼ 18 H.

Answer: L ¼ 20 H

A

B

20 H

25 H

20 H

60 H

10 H 30 H

L

Leq

Figure P 7.7-5

P 7.7-6 Determine the value of the equivalent inductance Leq

for the circuit shown in Figure P 7.7-6.

Answer: Leq ¼ 120 H

60 H

60 H

40 H

10 H

15 H 30 Ha

b

Leq

Figure P 7.7-6

P 7.7-7 The circuit shown in Figure P 7.7-7 consists of 10
inductors having equal inductance L. Determine the value of
the inductance L, given that Leq ¼ 12 mH.

Answer: L ¼ 35 mH

L

L

L L

L

L

L

L

L L

Leq

Figure P 7.7-7

P 7.7-8 The circuit shown in Figure P 7.7-8 is at steady
state before the switch closes. The inductor currents are both
zero before the switch closes i1 0ð Þ ¼ i2 0ð Þ ¼ 0ð Þ.

The voltage v(t) is given by

v tð Þ ¼ 0 V for t < 0
4e�5t V for t > 0



(a) Determine the inductor currents i1(t) and i2(t) for t � 0.
(b) Determine the energy stored by each inductor 200 ms after

the switch closes.

316 7. Energy Storage Elements



The parallel inductors can be replaced by an equivalent
inductor.

(c) Determine the current in the equivalent inductor, directed
downward, for t � 0.

(d) Determine the energy stored by the equivalent inductor
200 ms after the switch closes.

24 Ω

12 Ω12 V

8 H 2 H
+

−

i2(t)i1(t)

v(t)

t = 0

+
–

Figure P 7.7-8

P 7.7-9 The circuit shown in Figure P 7.7-9 is at steady
state before the switch opens at time t ¼ 0. The current i(t) is
given by

i tð Þ ¼ 0:8 A for t � 0
0:8e�2t A for t � 0



(a) Determine the energy stored by each inductor before the
switch opens.

(b) Determine the energy stored by each inductor 200 ms after
the switch opens.

0.5 H

2 H

i(t) 5 Ω

15 Ω

12 V

t = 0

+
–

Figure P 7.7-9

The series inductors can be replaced by an equivalent
inductor.

(c) Determine the energy stored by the equivalent inductor
before the switch opens.

(d) Determine the energy stored by the equivalent inductor
200 ms after the switch opens.

P 7.7-10 Determine the current ratio i1/i for the circuit
shown in Figure P 7.7-10. Assume that the initial currents
are zero at t0.

Answer:
i1
i
¼ L1

L1 þ L2

i1

i2

L1

L2

i

Figure P 7.7-10

P 7.7-11 Consider the combination of circuit elements
shown in Figure P 7.7-11.

(a) Suppose element A is a 20-mF capacitor, element B is a
5-mF capacitor, and element C is a 20-mF capacitor.
Determine the equivalent capacitance.

(b) Suppose element A is a 50-mH inductor, element B is a
30-mH inductor, and element C is a 20-mH inductor.
Determine the equivalent inductance.

(c) Suppose element A is a 9-kV resistor, element B is a 6-kV
resistor and element C is a 10-kV resistor. Determine the
equivalent resistance.

Answers: (a) Ceq = 20 mF, (b) Leq = 16 mH, and (c) Req = 6 kV

A

B

b

C

a

Figure P 7.7-11

P 7.7-12 Consider the combination of circuit elements
shown in Figure P 7.7-12.

(a) Suppose element A is a 8-mF capacitor, element B is a
16-mF capacitor, and element C is a 12-mF capacitor.
Determine the equivalent capacitance.

(b) Suppose element A is a 20-mH inductor, element B is a
5-mH inductor, and element C is an 8-mH inductor.
Determine the equivalent inductance.

(c) Suppose element A is a 20-kV resistor, element B is a
30-kV resistor, and element C is a 16-kV resistor. Deter-
mine the equivalent resistance.

Answers: (a) Ceq = 8 mF, (b) Leq = 12 mH, and (c) Req = 28 kV
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b

a

BA

C

Figure P 7.7-12

Section 7.8 Initial Conditions of Switched Circuits

P 7.8-1 Theswitch inFigureP7.8-1hasbeenopenfora long
time before closing at time t ¼ 0. Find vc(0

+) and iL(0+), the
values of the capacitor voltage and inductor current immediately
after the switch closes. Let vc(1) and iL(1) denote the values of
the capacitor voltage and inductor current after the switch has
been closed for a long time. Find vc(1) and iL(1).

Answers: vc 0þð Þ ¼ 12 V, iL 0þð Þ ¼ 0, vc 1ð Þ ¼ 4 V, and
iL 1ð Þ ¼ 1 mA

12 V

8 kΩ

4 kΩ2   Fμ

25 mH
+
– vc(t)

iL(t) t = 0

+

–

Figure P 7.8-1

P 7.8-2 The switch in Figure P 7.8-2 has been open for a long
time before closing at time t ¼ 0. Find vc 0þð Þ and iL 0þð Þ, the
values of the capacitor voltage and inductor current immedi-
ately after the switch closes. Let vc(1) and iL(1) denote the
values of the capacitor voltage and inductor current after the
switch has been closed for a long time. Find vc(1) and iL(1).

Answer: vc 0þð Þ ¼ 6 V, iL 0þð Þ ¼ 1 mA, vc 1ð Þ ¼ 3 V, and
iL 1ð Þ ¼ 1:5 mA

12 V

6 kΩ

3 kΩ

25 mH
+
– 6 kΩ

iL(t)
t = 0

2   Fμ vc(t)
+

–

Figure P 7.8-2

P 7.8-3 Theswitch inFigureP7.8-3hasbeenopenfora long
time before closing at time t ¼ 0. Find vc 0þð Þ and iL 0þð Þ, the
values of the capacitor voltage and inductor current immediately

after the switch closes. Let vc(1) and iL(1) denote the values
of the capacitor voltage and inductor current after the switch
has been closed for a long time. Find vc(1) and iL(1).

Answers: vc 0þð Þ ¼ 0 V, iL 0þð Þ ¼ 0, vc 1ð Þ ¼ 8 V, and
iL 1ð Þ ¼ 0:5 mA

12 V

8 kΩ

16 kΩ

25 mH
+
–

iL(t)
t = 0

2   Fμ vc(t)
+

–

Figure P 7.8-3

P 7.8-4 The switch in the circuit shown in Figure P 7.8-4 has
beenclosedfora long timebefore itopensat time t = 0.Determine
the values of vR(0-) and vL(0-), the voltage across the 4-V resistor
and the inductor immediately before the switch opens, and the
values of vR(0+) and vL(0+), the voltage across the 4-V resistor
and the inductor immediately after the switch opens.

+
–

v L(t )

+

–

80 Ω 20 Ω

4 Ω

24  V

2.4  mH

+ –v R (t )

t = 0

Figure P 7.8-4

P 7.8-5 The switch in the circuit shown in Figure P 7.8-5 has
been open for a long time before it closes at time t = 0. Determine
the values of iR(0-) and iC(0-), the current in one of the 20-V
resistorsandin thecapacitor immediatelybefore theswitchcloses,
and thevaluesof iR(0+)and iC(0+), thecurrent in that20-V resistor
and in the capacitor immediately after the switch closes.

i C (t )

2.2  mF

t = 0
20 Ω

20 Ω

20 Ω

i R (t )

120  mA

Figure P 7.8-5
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P 7.8-6 The switch in the circuit shown in Figure P 7.8-6
has been open for a long time before it closes at time
t = 0. Determine the values of vL(0-), the voltage across the
inductor immediately before the switch closes, and vL(0+),
the voltage across the inductor immediately after the switch
closes.

v L(t )+ –

t = 0
20 Ω

18  mH

120  mA

20 Ω

Figure P 7.8-6

P 7.8-7 The switch in the circuit shown in Figure P 7.8-7 has
been closed for a long time before it opens at time t = 0.
Determine the values of iC(0-), the current in the capacitor
immediately before the switch opens, and iC(0+), the current in
the capacitor immediately after the switch opens.

i C (t ) 2.2  μF

t = 0

20 Ω20  V +
–

Figure P 7.8-7

P 7.8-8 The circuit shown in Figure P 7.8-8 is at steady state
when the switch opens at time t ¼ 0. Determine v1(0�),
v1(0þ), i2(0�), i2(0þ), i3(0�), i3(0þ), v4(0�), and v4(0þ).

3 Ω

6 Ω
50 mF

+

+

−

−

i3(t)
v1(t)

6 H

12 V

v4(t)

t = 0
i2(t)

+
–

Figure P 7.8-8

*P 7.8-9 The circuit shown in Figure P 7.8-9 is at steady state
when the switch opens at time t ¼ 0. Determine v1(0�),
v1(0þ), i2(0�), and i2(0þ).

Hint: Modeling the open switch as an open circuit leads us to
conclude that the inductor current changes instantaneously,
which would require an infinite voltage. We can use a more
accurate model of the open switch, a large resistance, to avoid the
infinite voltage.

i2(t)

50 mF

3 Ω 6 Ω

6 Ω

6 H

12 V

+

−

v1(t)

t = 0

+
–

Figure P 7.8-9

P 7.8-10 The circuit shown in Figure P 7.8-10 is at steady
state when the switch closes at time t ¼ 0. Determine v1(0�),
v1(0þ), i2(0�), and i2(0þ).

30 Ω

15 Ω

10 Ω 15 Ω24 V

50 mF
+

−

v1(t)

i2(t)

3.5 H

t = 0

+
–

Figure P 7.8-10

P 7.8-11 The circuit shown in Figure P 7.8-11 has reached
steady state before the switch opens at time t ¼ 0. Determine the
values of iL(t), vC(t), and vR(t) immediately before the switch opens
and the value of vR(t) immediately after the switch opens.

Answers: iL 0�ð Þ ¼ 1:25 A; vC 0�ð Þ ¼ 20 V; vR 0�ð Þ ¼ �5 V;
and vR 0þð Þ ¼ �4 V

iL(t)

vR(t)
80 Ω

20 Ω

t = 0

+
–

2 mF

0.125 H

25 V

+

–

+

–

vC(t)

4 Ω

Figure P 7.8-11

P 7.8-12 The circuit shown in Figure P 7.8-12 has reached
steady state before the switch closes at time t = 0.

(a) Determine the values of iL(t), vC(t), and vR(t) immediately
before the switch closes.

Problems 319



(b) Determine the value of vR(t) immediately after the switch
closes.

30 Ω

t = 0

iL(t)

+

–

2 μF

0.125 H

35 V vC(t) vR(t)

+

–

40 Ω 40 Ω+
–

Figure P 7.8-12

P 7.8-13 The circuit shown in Figure P 7.8-13 has reached
steady state before the switch opens at time t¼ 0. Determine the
values of iL(t), vC(t), and vR(t) immediately before the switch
opens and the value of vR(t) immediately after the switch opens.

Answers: iL 0�ð Þ ¼ 0:4 A; vC 0�ð Þ ¼ 16 V; vR 0�ð Þ ¼ 0 V;
and vR 0þð Þ ¼ �12 V

iL(t)

+

–

30 Ω

2 mF

20 Ω

40 Ω24 V

125 mH
vC(t)

t = 0

vR(t)+
–

+

–

Figure P 7.8-13

Section 7.9 Operational Amplifier Circuits and

Linear Differential Equations

P 7.9-1 Design a circuit with one input, x(t), and one output,
y(t), that are related by this differential equation:

1

2

d2

dt2
y tð Þ þ 4

d

dt
y tð Þ þ y tð Þ ¼ 5

2
x tð Þ

P 7.9-2 Design a circuit with one input, x(t), and one output,
y(t), that are related by this differential equation:

1

2

d2

dt2
y tð Þ þ y tð Þ ¼ � 5

2
x tð Þ

P 7.9-3 Design a circuit with one input, x(t), and one output,
y(t), that are related by this differential equation:

2
d3

dt3
y tð Þ þ 16

d2

dt2
y tð Þ þ 8

d

dt
y tð Þ þ 10y tð Þ ¼ �4x tð Þ

P 7.9-4 Design a circuit with one input, x(t), and one output,
y(t), that are related by this differential equation:

d3

dt3
y tð Þ þ 16

d2

dt2
y tð Þ þ 8

d

dt
y tð Þ þ 10y tð Þ ¼ 4x tð Þ

Section 7.11 How CanWe Check . . . ?

P 7.11-1 A homework solution indicates that the current and
voltage of a 100-H inductor are

i tð Þ ¼

0:025 t < 1

� t

25
þ 0:065 1 < t < 3

t

50
� 0:115 3 < t < 9

0:065 t < 9

8>>>>><
>>>>>:

and

v tð Þ ¼

0 t < 1

�4 1 < t < 3

2 3 < t < 9

0 t > 9

8>>><
>>>:

where the units of current are A, the units of voltage are V, and
the units of time are s. Verify that the inductor current does not
change instantaneously.

P 7.11-2 A homework solution indicates that the current and
voltage of a 100-H inductor are

i tð Þ ¼

� t

200
þ 0:025 t < 1

� t

100
þ 0:03 1 < t < 4

t

100
� 0:03 4 < t < 9

0:015 t < 9

8>>>>>>><
>>>>>>>:

and

v tð Þ ¼

�1 t < 1

�2 1 < t < 4

1 4 < t < 9

0 t > 9

8>>><
>>>:

where the units of current are A, the units of voltage are V, and
the units of time are s. Is this homework solution correct?
Justify your answer.
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Design Problems

DP 7-1 Consider a single-circuit element, that is, a single
resistor, capacitor, or inductor. The voltage v(t) and current
i(t) of the circuit element adhere to the passive convention.
Consider the following cases:

(a) v tð Þ ¼ 4 þ 2e�3t V and i tð Þ ¼ �3e�3t A for t > 0
(b) v tð Þ ¼ �3e�3t V and i tð Þ ¼ 4 þ 2e�3t A for t > 0
(c) v tð Þ ¼ 4 þ 2e�3t V and i tð Þ ¼ 2 þ e�3t A for t > 0

For each case, specify the circuit element to be a capacitor,
resistor, or inductor and give the value of its capacitance,
resistance, or inductance.

DP 7-2 Figure DP 7-2 shows a voltage source and unspecified
circuit elements. Each circuit element is a single resistor,
capacitor, or inductor. Consider the following cases:

(a) i tð Þ ¼ 1:131 cos 2t þ 45	ð Þ A
(b) i tð Þ ¼ 1:131 cos 2t � 45	ð Þ A

For each case, specify each circuit element to be a capacitor,
resistor, or inductor and give the value of its capacitance,
resistance, or inductance.

Hint: cos yþ fð Þ ¼ cos y cos f � sin y sin f

i(t)

4 cos 2t V

+ –

Figure DP 7-2

DP 7-3 Figure DP 7-3 shows a voltage source and unspecified
circuit elements. Each circuit element is a single resistor, capac-
itor, or inductor. Consider the following cases:

(a) v tð Þ ¼ 11:31 cos 2t þ 45	ð Þ V
(b) v tð Þ ¼ 11:31 cos 2t � 45	ð Þ V

For each case, specify each circuit element to be a capacitor,
resistor, or inductor and give the value of its capacitance,
resistance, or inductance.

Hint: cos yþ fð Þ ¼ cos y cos f� sin y sin f

v(t)+ –

4 cos 2t A

Figure DP 7-3

DP 7-4 A high-speed flash unit for sports photography requires
a flash voltage v 0þð Þ ¼ 3 V and

dv tð Þ
dt

����
t¼0

¼ 24 V/s

The flash unit uses the circuit shown in Figure DP 7-4. Switch 1
has been closed a long time, and switch 2 has been open a long
time at t ¼ 0. Actually, the long time in this case is 3 s.
Determine the required battery voltage VB when C ¼ 1=8 F.

+

–
v

1 Ω

t = 0

H
C

Flash
voltage

+–

VB

Switch 2

t = 0

Switch 1

3 Ω

+
– VB1 2

3Ω

Figure DP 7-4

DP 7-5 For the circuit shown in Figure DP 7-5, select a value of
R so that the energy stored in the inductor is equal to the energy
stored in the capacitor at steady state.

10 V

20 Ω

+
–

R

1   Fμ

10 mH

Figure DP 7-5
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8.4 Sequential Switching
8.5 Stability of First-Order

Circuits
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Computer and Printer

8.12 Summary
Problems
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Design Problems

8.1 I n t r o d u c t i o n

In this chapter, we consider the response of RL and RC circuits to abrupt changes. The abrupt change
might be a change to the circuit, as when a switch opens or closes. Alternately, the abrupt change might
be a change to the input to the circuit, as when the voltage of a voltage source is a discontinuous function
of time.

RL and RC circuits are called first-order circuits. In this chapter, we will do the following:

� Develop vocabulary that will help us talk about the response of a first-order circuit.
� Analyze first-order circuits with inputs that are constant after some particular time, t0.
� Introduce the notion of a stable circuit and use it to identify stable first-order circuits.
� Analyze first-order circuits that experience more than one abrupt change.
� Introduce the step function and use it to determine the step response of a first-order circuit.
� Analyze first-order circuits with inputs that are not constant.

8.2 F i r s t - O r d e r C i r c u i t s

Circuits that contain capacitors and inductors can be represented by differential equations. The order
of the differential equation is usually equal to the number of capacitors plus the number of inductors in
the circuit.

Circuits that contain only one inductor and no capacitors or only one capacitor and no
inductors can be represented by a first-order differential equation. These circuits are called
first-order circuits.
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Th�evenin and Norton equivalent circuits simplify the analysis of first-order circuits by showing
that all first-order circuits are equivalent to one of two simple first-order circuits. Figure 8.2-1 shows
how this is accomplished. In Figure 8.2-1a, a first-order circuit is partitioned into two parts. One part is
the single capacitor or inductor that we expect to find in a first-order circuit. The other part is the rest of
the circuit—everything except that capacitor or inductor. The next step, shown in Figure 8.2-1b,
depends on whether the energy storage element is a capacitor or an inductor. If it is a capacitor, then the
rest of the circuit is replaced by its Th�evenin equivalent circuit. The result is a simple first-order
circuit—a series circuit consisting of a voltage source, a resistor, and a capacitor. On the other hand, if
the energy storage element is an inductor, then the rest of the circuit is replaced by its Norton equivalent
circuit. The result is another simple first-order circuit—a parallel circuit consisting of a current source, a
resistor, and an inductor. Indeed, all first-order circuits are equivalent to one of these two simple first-
order circuits.

Consider the first-order circuit shown in Figure 8.2-2a. The input to this circuit is the voltage vs(t).
The output, or response, of this circuit is the voltage across the capacitor. This circuit is at steady state
before the switch is closed at time t ¼ 0. Closing the switch disturbs this circuit. Eventually, the
disturbance dies out and the circuit is again at steady state. The steady-state condition with the switch
closed will probably be different from the steady-state condition with the switch open. Figure 8.2-2b
shows a plot of the capacitor voltage versus time.

Resistors,
Op amps, and

sources

One energy storage
element:

a capacitor or inductor

(a)

Thevenin
equivalent

circuit
A capacitor

Norton
equivalent

circuit
An inductor

(b)

OR

'

FIGURE 8.2-1 A plan for analyzing first-order circuits.
(a) First, separate the energy storage element from the
rest of the circuit. (b) Next, replace the circuit connected
to a capacitor by its Th�evenin equivalent circuit or
replace the circuit connected to an inductor by its Norton
equivalent circuit.

+
–

(b)

(a)

–3

–2

–1

0

1

2

3

–20 –10 0 10 20 30 40 50

v 
(t

),
 V

R1 R2

v(t)Cvs(t) = A cos (1000t + �)

t = 0

t, ms

Complete Response

+

–

FIGURE 8.2-2 (a) A circuit and (b) its complete response.
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When the input to a circuit is sinusoidal, the steady-state response is also sinusoidal. Furthermore,
the frequency of the response sinusoid must be the same as the frequency of the input sinusoid. The
circuit shown in Figure 8.2-2a is at steady state before the switch is closed. The steady-state capacitor
voltage will be

v tð Þ ¼ B cos 1000t þ fð Þ; t < 0 ð8:2-1Þ
The switch closes at time t ¼ 0. The value of the capacitor voltage at the time the switch closes is

v 0ð Þ ¼ B cos fð Þ; t ¼ 0 ð8:2-2Þ
After the switch closes, the response will consist of two parts: a transient part that eventually dies out
and a steady-state part. The steady-state part of the response will be sinusoidal and will have the
frequency of the input. For a first-order circuit, the transient part of the response is exponential. Indeed,
we consider first-order circuits separately to take advantage of the simple form of the transient response
of these circuits. After the switch is closed, the capacitor voltage is

v tð Þ ¼ Ke�t=t þ M cos 1000t þ dð Þ ð8:2-3Þ
Notice that Ke�t/t goes to zero as t becomes large. This is the transient part of the response, which dies
out, leaving the steady-state response, M cos(1000tþ d).

As a matter of vocabulary, the “transient part of the response” is frequently shortened to the
transient response, and the “steady-state part of the response” is shortened to the “steady-state
response.” The response, v(t), given by Eq. 8.2-3, is called the complete response to contrast it with the
transient and steady-state responses.

complete response ¼ transient responseþ steady-state response

(The term transient response is used in two different ways by electrical engineers. Sometimes it
refers to the “transient part of the complete response,” and at other times, it refers to a complete
response, which includes a transient part. In particular, PSpice uses the term transient response to
refer to the complete response. This can be confusing, so the term transient response must be used
carefully.)

In general, the complete response of a first-order circuit can be represented as the sum of two
parts, the natural response and the forced response:

complete response ¼ natural responseþ forced response

The natural response is the general solution of the differential equation representing the first-order
circuit, when the input is set to zero. The forced response is a particular solution of the differential
equation representing the circuit.

The complete response of a first-order circuit will depend on an initial condition, usually a
capacitor voltage or an inductor current at a particular time. Let t0 denote the time at which the initial
condition is given. The natural response of a first-order circuit will be of the form

natural response ¼ Ke� t�t0ð Þ=t

When t0 ¼ 0, then

natural response ¼ Ke�t=t

The constant K in the natural response depends on the initial condition, for example, the capacitor
voltage at time t0.

In this chapter, we will consider three cases. In these cases, the input to the circuit after the
disturbance will be (1) a constant, for example,

vs tð Þ ¼ V0
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or (2) an exponential, for example,

vs tð Þ ¼ V0e
�t=t

or (3) a sinusoid, for example,

vs tð Þ ¼ V0 cos ot þ yð Þ
These three cases are special because the forced response will have the same form as the input. For
example, in Figure 8.2-2, both the forced response and the input are sinusoidal, and the frequency of the
forced response is the same as the frequency of the input. For other inputs, the forced response may not
have the same form as the input. For example, when the input is a square wave, the forced response is
not a square wave.

When the input is a constant or a sinusoid, the forced response is also called the steady-state
response, and the natural response is called the transient response.

Here is our plan for finding the complete response of first-order circuits:

Step 1: Find the forced response before the disturbance. Evaluate this response at time t ¼ t0 to obtain
the initial condition of the energy storage element.

Step 2: Find the forced response after the disturbance.

Step 3: Add the natural response¼Ke�t/t to the forced response to get the complete response. Use the
initial condition to evaluate the constant K.

8.3 T h e R e s p o n s e o f a F i r s t - O r d e r C i r c u i t
t o a C o n s t a n t I n p u t

In this section, we find the complete response of a first-order circuit when the input to the circuit is
constant after time t0. Figure 8.3-1 illustrates this situation. In Figure 8.3-1a, we find a first-order circuit
that contains a single capacitor and no inductors. This circuit is at steady state before the switch closes,
disturbing the steady state. The time at which steady state is disturbed is denoted as t0. In Figure 8.3-1a,
t0 ¼ 0. Closing the switch removes the resistor R1 from the circuit. (A closed switch is modeled by a
short circuit. A short circuit in parallel with a resistor is equivalent to a short circuit.) After the switch
closes, the circuit can be represented as shown in Figure 8.3-1b. In Figure 8.3-1b, the part of the circuit
that is connected to the capacitor has been replaced by its Th�evenin equivalent circuit. Therefore,

Voc ¼ R3

R2 þ R3
V s and Rt ¼ R2R3

R2 þ R3

Let’s represent the circuit in Figure 8.3-1b by a differential equation. The capacitor current is
given by

i tð Þ ¼ C
d

dt
v tð Þ

(a)

+
–

R1

t = 0

Vs

R2
R3 v(t)C

+

–

(b)

+
–

Rt

Voc v(t)

i(t)

C
+

–

FIGURE 8.3-1
(a) A first-order circuit
containing a capacitor.
(b) After the switch
closes, the circuit
connected to the
capacitor is replaced by
its Th�evenin equivalent
circuit.
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The same current, i(t), passes through the resistor. Apply KVL to Figure 8.3-1b to get

Voc ¼ Rti tð Þ þ v tð Þ ¼ Rt C
d

dt
v tð Þ

� �
þ v tð Þ

Therefore;
d

dt
v tð Þ þ v tð Þ

RtC
¼ Voc

RtC
ð8:3-1Þ

The highest-order derivative in this equation is first order, so this is a first-order differential equation.
Next, let’s turn our attention to the circuit shown in Figure 8.3-2a. This circuit contains a single

inductor and no capacitors. This circuit is at steady state before the switch closes at time t0 ¼ 0,
disturbing the steady state. After the switch closes, the circuit can be represented as shown in Figure
8.3-2b. In Figure 8.3-2b, the part of the circuit that is connected to the inductor has been replaced by its
Norton equivalent circuit. We calculate

Isc ¼ V s

R2
and Rt ¼ R2R3

R2 þ R3

Let’s represent the circuit in Figure 8.3-2b by a differential equation. The inductor voltage is
given by

v tð Þ ¼ L
d

dt
i tð Þ

The voltage v(t) appears across the resistor. Apply KCL to the top node in Figure 8.3-2b to get

Isc ¼ v tð Þ
Rt

þ i tð Þ ¼
L

d

dt
i tð Þ

Rt
þ i tð Þ

Therefore;
d

dt
i tð Þ þ Rt

L
i tð Þ ¼ Rt

L
Isc ð8:3-2Þ

As before, this is a first-order differential equation.
Equations 8.3-1 and 8.3-2 have the same form. That is,

d

dt
x tð Þ þ x tð Þ

t
¼ K ð8:3-3Þ

The parameter t is called the time constant. We will solve this differential equation by separating the
variables and integrating. Then we will use the solution of Eq. 8.3-3 to obtain solutions of Eqs. 8.3-1
and 8.3-2.

We may rewrite Eq. 8.3-3 as
dx

dt
¼ Kt� x

t

or, separating the variables,

dx

x � Kt
¼ � dt

t

(a)

+
–

R1

t = 0

Vs

R2
R3

i(t)

L

(b)

RtIsc v(t)

+

–

i(t)

L

FIGURE 8.3-2 (a) A
first-order circuit
containing an inductor.
(b) After the switch
closes, the circuit
connected to the
inductor is replaced by
its Norton equivalent
circuit.
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Forming the indefinite integral, we haveZ
dx

x � Kt
¼ � 1

t

Z
dt þ D

where D is a constant of integration. Performing the integration, we have

ln x � Ktð Þ ¼ � t

t
þ D

Solving for x gives x tð Þ ¼ Ktþ Ae�t=t

where A ¼ e D, which is determined from the initial condition, x(0). To find A, let t ¼ 0. Then

x 0ð Þ ¼ Ktþ Ae�0=t ¼ Ktþ A
or A ¼ x 0ð Þ � Kt

Therefore, we obtain x tð Þ ¼ Ktþ x 0ð Þ � Kt½ �e�t=t ð8:3-4Þ
Because x 1ð Þ ¼ lim

t!1 x tð Þ ¼ Kt

Equation 8.3-4 can be written as

x tð Þ ¼ x 1ð Þ þ x 0ð Þ � x 1ð Þ½ �e�t=t

Taking the derivative of x(t) with respect to t leads to a procedure for measuring or calculating the
time constant:

d

dt
x tð Þ ¼ � 1

t
x 0ð Þ � x 1ð Þ½ �e�t=t

Now let t ¼ 0 to get

d

dt
x tð Þ

����
t¼0

¼ � 1

t
x 0ð Þ � x 1ð Þ½ �

or
t ¼ x 1ð Þ � x 0ð Þ

d

dt
x tð Þ

����
t¼0

ð8:3-5Þ

Figure 8.3-3 shows a plot of x(t) versus t. We can determine the
values of (1) the slope of the plot at time t¼ 0, (2) the initial value of x
(t), and (3) the final value of x(t) from this plot. Equation 8.3-5 can be
used to calculate the time constant from these values. Equivalently,
Figure 8.3-3 shows how to measure the time constant from a plot of x
(t) versus t.

Next, we apply these results to the RC circuit in Figure 8.3-1.
Comparing Eqs. 8.3-1 and 8.3-3, we see that

x tð Þ ¼ v tð Þ; t ¼ RtC; and K ¼ Voc

RtC

Making these substitutions in Eq. 8.3-4 gives

v tð Þ ¼ Voc þ v 0ð Þ � Vocð Þe�t= RtCð Þ ð8:3-6Þ

0 τ

τ

τ2 τ3 τ4 τ5

x(∞)

x(0)

x(t)

t

Tangent to x(t) at t = 0

FIGURE 8.3-3 A graphical technique for
measuring the time constant of a first-order circuit.
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The second term on the right-hand side of Eq. 8.3-6 dies out as t increases. This is the transient
or natural response. At t ¼ 0, e�0 ¼ 1. Letting t ¼ 0 in Eq. 8.3-6 gives v(0) ¼ v(0), as required. When
t ¼ 5t, e�5 ¼ 0.0067� 0, so at time t ¼ 5t, the capacitor voltage will be

v 5tð Þ ¼ 0:9933 Voc þ 0:0067 v 0ð Þ � Voc

This is the steady-state or forced response. The forced response is of the same form, a constant, as the
input to the circuit. The sum of the natural and forced responses is the complete response:

complete response ¼ v tð Þ; forced response ¼ Voc

and natural response ¼ v 0ð Þ � Vocð Þe�t= RtCð Þ

Next, compare Eqs. 8.3-2 and 8.3-3 to find the solution of the RL circuit in Figure 8.3-2. We see
that

x tð Þ ¼ i tð Þ; t ¼ L

Rt
; and K ¼ L

Rt
Isc

Making these substitutions in Eq. 8.3-4 gives

i tð Þ ¼ Isc þ i 0ð Þ � Iscð Þe� Rt=Lð Þt ð8:3-7Þ
Again, the complete response is the sum of the forced (steady-state) response and the transient (natural)
response:

complete response ¼ i tð Þ; forced response ¼ Isc

and natural response ¼ i 0ð Þ � Iscð Þe� Rt=Lð Þt

E X A M P L E 8 . 3 - 1 First-Order Circuit with a Capacitor

Find the capacitor voltage after the switch opens in the circuit shown in Figure 8.3-4a. What is the value of the
capacitor voltage 50 ms after the switch opens?

Solution
The 2-volt voltage source forces the capacitor voltage to be 2 volts until the switch opens. Because the capacitor
voltage cannot change instantaneously, the capacitor voltage will be 2 volts immediately after the switch opens.
Therefore, the initial condition is

v 0ð Þ ¼ 2 V

Figure 8.3-4b shows the circuit after the switch opens. Comparing this circuit to the RC circuit in Figure 8.3-1b, we
see that

Rt ¼ 10 kV and Voc ¼ 8 V

The time constant for this first-order circuit containing a capacitor is

t ¼ RtC ¼ 10� 103
� �

2� 10�6
� � ¼ 20� 10�3 ¼ 20 ms

Substituting these values into Eq. 8.3-6 gives

v tð Þ ¼ 8� 6e�t=20 V ð8:3-8Þ
where t has units of ms. To find the voltage 50 ms after the switch opens, let t ¼ 50. Then,

v 50ð Þ ¼ 8� 6e�50=20 ¼ 7:51 V

Try it 
yourself 

in WileyPLUS
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Figure 8.3-4c shows a plot of the capacitor voltage as a function of time.

v(
t)
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t = 0

(a)

(c)
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–
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–

+
–

+

–

μ2   F v(t)
+

–

FIGURE 8.3-4 (a) A first-order circuit and (b) an equivalent circuit that is valid after the switch opens. (c) A plot of the complete
response, v(t), given in Eq. 8.3-8.

E X A M P L E 8 . 3 - 2 First-Order Circuit with an Inductor

Find the inductor current after the switch closes in the circuit shown in Figure 8.3-5a. How long will it take for the
inductor current to reach 2 mA?

5 mH

i(t)

1000 Ω4 mA

t = 0

(a)

5 mH

i(t)

1000 Ω4 mA

(b) –1

0

1

2

3

4

5

–5 0 5 10 15 20 25 30 35
t, µs

Complete response

(c)

i(
t)

, 
m

A

FIGURE 8.3-5 (a) A first-order circuit and (b) an equivalent circuit that is valid after the switch closes. (c) A plot of the complete
response, i(t), given by Eq. 8.3-9.

Try it 
yourself 

in WileyPLUS
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Solution
The inductor current will be 0 A until the switch closes. Because the inductor current cannot change instantaneously,
it will be 0 A immediately after the switch closes. Therefore, the initial condition is

i 0ð Þ ¼ 0

Figure 8.3-5b shows the circuit after the switch closes. Comparing this circuit to the RL circuit in Figure 8.3-2b, we
see that

Rt ¼ 1000 V and Isc ¼ 4 mA

The time constant for this first-order circuit containing an inductor is

t ¼ L

Rt
¼ 5� 10�3

1000
¼ 5� 10�6 ¼ 5 ms

Substituting these values into Eq. 8.3-7 gives

i tð Þ ¼ 4� 4e�t=5 mA ð8:3-9Þ
where t has units of microseconds. To find the time when the current reaches 2 mA, substitute i(t) ¼ 2 mA. Then

2 ¼ 4� 4e�t=5 mA

Solving for t gives

t ¼ �5� ln
2� 4

�4

� �
¼ 3:47 ms

Figure 8.3-5c shows a plot of the inductor current as a function of time.

E X A M P L E 8 . 3 - 3 First-Order Circuit INTERACT IVE EXAMPLE

The switch in Figure 8.3-6a has been open for a long time, and the circuit has reached steady state before the switch
closes at time t ¼ 0. Find the capacitor voltage for t � 0.

Solution
The switch has been open for a long time before it closes at time t ¼ 0. The circuit will have reached steady state
before the switch closes. Because the input to this circuit is a constant, all the element currents and voltages will be
constant when the circuit is at steady state. In particular, the capacitor voltage will be constant. The capacitor
current will be

i tð Þ ¼ C
d

dt
v tð Þ ¼ C

d

dt
a constantð Þ ¼ 0

(a)

+
–

t = 0

v(t)

+

–
v(0)

+

–

(b) (c)

10 kΩ 40 kΩ 20 kΩ

60 kΩ

30 kΩ

60 kΩ12 V +
–

12 V +
– 8 V2   Fμ μ v(t)

+

–
2   F

FIGURE 8.3-6 (a) A first-order circuit. The equivalent circuit for (b) t < 0 and (c) t > 0.

Try it 
yourself 

in WileyPLUS
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The capacitor voltage is unknown, but the capacitor current is zero. In other words, the capacitor acts like an open
circuit when the input is constant and the circuit is at steady state. (By a similar argument, inductors act like short
circuits when the input is constant and the circuit is at steady state.)

Figure 8.3-6b shows the appropriate equivalent circuit while the switch is open. An open switch acts like an
open circuit; thus, the 10-kV and 30-kV resistors are in series. They have been replaced by an equivalent
40-kV resistor. The input to the circuit is a constant (12 volts), and the circuit is at steady state; therefore, the
capacitor acts like an open circuit. The voltage across this open circuit is the capacitor voltage. Because we
are interested in the initial condition, the capacitor voltage has been labeled as v(0). Analyzing the circuit in Figure
8.3-6b using voltage division gives

v 0ð Þ ¼ 60� 103

40� 103 þ 60� 103
12 ¼ 7:2 V

Figure 8.3-6c shows the appropriate equivalent circuit after the switch closes. Closing the switch shorts out the
10-kV resistor, removing it from the circuit. (A short circuit in parallel with any resistor is equivalent to a short
circuit.) The part of the circuit that is connected to the capacitor has been replaced by its Th�evenin equivalent
circuit. After the switch is closed,

Voc ¼ 60� 103

30� 103 þ 60� 103
12 ¼ 8 V

and Rt ¼ 30� 103 � 60� 103

30� 103 þ 60� 103
¼ 20� 103 ¼ 20 kV

and the time constant is

t ¼ Rt � C ¼ 20� 103
� �� 2� 10�6

� � ¼ 40� 10�3 ¼ 40 ms

Substituting these values into Eq. 8.3-6 gives

v tð Þ ¼ 8� 0:8e�t=40 V

where t has units of ms.

E X A M P L E 8 . 3 - 4 First-Order Circuit INTERACT IVE EXAMPLE

The switch in Figure 8.3-7a has been open for a long time, and the circuit has reached steady state before the switch
closes at time t ¼ 0. Find the inductor current for t � 0.

(a)

+
–

t = 0

i(t)

(b) (c)

100 Ω 300 Ω

200 Ω

200 Ω

12 V +
–12 V 60 mA5 mH i(t)5 mHi(0)

FIGURE 8.3-7 (a) A first-order circuit. The equivalent circuit for (b) t < 0 and (c) t > 0.

Try it 
yourself 

in WileyPLUS
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Solution
Figure 8.3-7b shows the appropriate equivalent circuit while the switch is open. The 100-V and 200-V resistors are
in series and have been replaced by an equivalent 300-V resistor. The input to the circuit is a constant (12 volts),
and the circuit is at steady state; therefore, the inductor acts like a short circuit. The current in this short circuit is the
inductor current. Because we are interested in the initial condition, the initial inductor current has been labeled as
i(0). This current can be calculated using Ohm’s law:

i 0ð Þ ¼ 12

300
¼ 40 mA

Figure 8.3-7c shows the appropriate equivalent circuit after the switch closes. Closing the switch shorts out the
100-V resistor, removing it from the circuit. The part of the circuit that is connected to the inductor has been
replaced by its Norton equivalent circuit. After the switch is closed,

Isc ¼ 12

200
¼ 60 mA and Rt ¼ 200 V

and the time constant is

t ¼ L

Rt
¼ 5� 10�3

200
¼ 25� 10�6 ¼ 25 ms

Substituting these values into Eq. 8.3-7 gives

i tð Þ ¼ 60� 20e�t=25 mA

where t has units of microseconds.

E X A M P L E 8 . 3 - 5 First-Order Circuit

The circuit in Figure 8.3-8a is at steady state before the switch opens. Find the current i(t) for t > 0.

(a)

+
–

+
–

t = 0

i(t)

(c)(b)

60 kΩ
60 kΩ

60 kΩ

60 kΩ

60 kΩ

30 kΩ
30 kΩ

8 V

+
–8 V

2 V

+
–4 V

2   Fμ
2   Fμ 2   Fμ

i(t)

va(t)

v(t)

+

–v(t)

+

–

v(t)

+

–

FIGURE 8.3-8 (a) A first-order circuit, (b) the circuit after the switch opens, and (c) the equivalent circuit after the switch opens.

Solution
The response or output of a circuit can be any element current or voltage. Frequently, the response is not the
capacitor voltage or inductor current. In Figure 8.3-8a, the response is the current i(t) in a resistor rather than
the capacitor voltage. In this case, two steps are required to solve the problem. First, find the capacitor voltage using
the methods already described in this chapter. Once the capacitor voltage is known, write node or mesh equations to
express the response in terms of the input and the capacitor voltage.

First we find the capacitor voltage. Before the switch opens, the capacitor voltage is equal to the voltage of the
2-volt source. The initial condition is

v 0ð Þ ¼ 2 V

Figure 8.3-8b shows the circuit as it will be after the switch is opened. The part of the circuit connected to the
capacitor has been replaced by its Th�evenin equivalent circuit in Figure 8.3-8c. The parameters of the Th�evenin

Try it 
yourself 

in WileyPLUS
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equivalent circuit are

Voc ¼ 60� 103

60� 103 þ 60� 103
8 ¼ 4 V

and Rt ¼ 30� 103 þ 60� 103 � 60� 103

60� 103 þ 60� 103
¼ 60� 103 ¼ 60 kV

The time constant is

t ¼ Rt � C ¼ 60� 103
� �� 2� 10�6

� � ¼ 120� 10�3 ¼ 120 ms

Substituting these values into Eq. 8.3-6 gives

v tð Þ ¼ 4� 2e�t=120 V

where t has units of ms.
Now that the capacitor voltage is known, we return to the circuit in Figure 8.3-8b. Notice that the node

voltage at the middle node at the top of the circuit has been labeled as va(t). The node equation corresponding to this
node is

va tð Þ � 8

60� 103
þ va tð Þ
60� 103

þ va tð Þ � v tð Þ
30� 103

¼ 0

Substituting the expression for the capacitor voltage gives

va tð Þ � 8

60� 103
þ va tð Þ
60� 103

þ va tð Þ � 4� 2e�t=120
� �
30� 103

¼ 0

or va tð Þ � 8þ va tð Þ þ 2 va tð Þ � 4� 2e�t=120
� �h i

¼ 0

Solving for va(t), we get

va tð Þ ¼ 8þ 2 4� 2e�t=120
� �

4
¼ 4� e�t=120 V

Finally, we calculate i(t) using Ohm’s law:

i tð Þ ¼ va tð Þ
60� 103

¼ 4� e�t=120

60� 103
¼ 66:7� 16:7e�t=120 mA

where t has units of ms.

E X A M P L E 8 . 3 - 6 First-Order Circuit with t0 6¼ 0

Find the capacitor voltage after the switch opens in the circuit shown in Figure 8.3-9a. What is the value of the
capacitor voltage 50 ms after the switch opens?

Solution
This example is similar to Example 8.3-1. The difference between the two examples is the time at which the switch
opens. The switch opens at time t ¼ 0 in Example 8.3-1 and at time t ¼ 50 ms ¼ 0.05 s in this example.

The 2-volt voltage source forces the capacitor voltage to be 2 volts until the switch opens. Consequently,
v tð Þ ¼ 2 V for t � 0:05 s

In particular, the initial condition is
v 0:05ð Þ ¼ 2 V

Figure 8.3-9b shows the circuit after the switch opens. Comparing this circuit to the RC circuit in Figure 8.3-1b,
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we see that
Rt ¼ 10 kV and Voc ¼ 8 V

The time constant for this first-order circuit containing a capacitor is

t ¼ RtC ¼ 0:020 s
A plot of the capacitor voltage in this example will have the same shape as did the plot of the capacitor voltage in
Example 8.3-1, but the capacitor voltage in this example will be delayed by 50 ms because the switch opened 50 ms
later. To account for this delay, we replace t by t � 50 ms in the equation that represents the capacitor voltage.
Consequently, the voltage of the capacitor in this example is given by

v tð Þ ¼ 8� 6e� t�50ð Þ=20 V ð8:3-10Þ
where t has units of ms. (Compare Eq. 8.3-8 and 8.3-10.) To find the voltage 50 ms after the switch opens, let
t ¼ 100 ms. Then,

v 100ð Þ ¼ 8� 6e� 100�50ð Þ=20 ¼ 7:51 V

The value of the capacitor voltage 50 ms after the switch opens is the same here as it was in Example 8.3-1. Figure
8.3-9c shows a plot of the capacitor voltage as a function of time. As expected, this plot is a delayed copy of the plot
shown in Figure 8.3-4c.

v(
t)

, 
V

0

1

2

3

4

5

6

7

8

9

10

–50 0 50 100 150
t, ms

Complete response

μ2   F v(t)8 V 2 V

t = 50 ms

(a)

(c)

10 kΩ

10 kΩ

(b)

+
–

8 V +
–

+
–

+

–

μ2   F v(t)
+

–

FIGURE 8.3-9 (a) A first-order circuit and (b) an equivalent circuit that is valid after the switch opens. (c) A plot of the complete
response, v(t), given by Eq. 8.3-10.

E X A M P L E 8 . 3 - 7 First-Order Circuit with t0 6¼ 0

Find the inductor current after the switch closes in the circuit shown in Figure 8.3-10a. How long will it take for the
inductor current to reach 2 mA?

Solution
This example is similar to Example 8.3-2. The difference between the two examples is the time at which the switch
closes. The switch closes at time t ¼ 0 in Example 8.3-2 and at time t ¼ 10 ms in this example.
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The inductor current will be 0 A until the switch closes. Because the inductor current cannot change
instantaneously, it will be 0 A immediately after the switch closes. Therefore, the initial condition is

i 10 msð Þ ¼ 0 A

Figure 8.3-10b shows the circuit after the switch closes. Comparing this circuit to the RL circuit in Figure
8.3-2b, we see that

Rt ¼ 1000 V and Isc ¼ 4 mA

The time constant for this first-order circuit containing an inductor is

t ¼ L

Rt
¼ 5� 10�3

1000
¼ 5� 10�6 ¼ 5 ms

A plot of the inductor current in this example will have the same shape as did the plot of the inductor current in
Example 8.3-2, but the inductor current in this example will be delayed by 10 ms because the switch closed 10 ms
later. To account for this delay, we replace t by t�10 ms in the equation that represents the inductor current.
Consequently, the current of the inductor in this example is given by

i tð Þ ¼ 4� 4e� t�10ð Þ=5 mA ð8:3-11Þ
where t has units of microseconds. (Compare Eq. 8.3-9 and 8.3-11.) To find the time when the current reaches
2 mA, substitute i(t) ¼ 2 mA. Then

2 ¼ 4� 4e� t�10ð Þ=5 mA

Solving for t gives
t ¼ �5� ln

2� 4

�4

� �
þ 10 ¼ 13:47 ms

Because the switch closes at time 10 ms, an additional time of 3.47 ms after the switch closes is required for the value
of the current to reach 2 mA. Figure 8.3-10c shows a plot of the inductor current as a function of time. As expected,
this plot is a delayed copy of the plot shown in Figure 8.3-5c.

5 mH

t = 10ms

i(t)

5 mH

i(t)

1000 Ω4 mA

1000 Ω4 mA

(a)

(b) –1

0

1

2

3

4

5

–5 0 5 10 15 20 25 30 35
i(

t)
, 
m

A
t, ms

Complete response

(c)

FIGURE 8.3-10 (a) A first-order circuit and (b) an equivalent circuit that is valid after the switch closes. (c) A plot of the complete
response, i(t), given by Eq. 8.3-11.
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E X A M P L E 8 . 3 - 8 Exponential Response of a First-Order Circuit

Figure 8.3-11a shows a plot of the voltage across the inductor in Figure 8.3-11b.

t = 0
R

(a) (b)

t, s

v(t)
v(

t)
, 

V

i(t)

+
+

+

–
–

+
– 6 V12 V 4 H

0

0 0.2 0.4 0.6

2
(0.14, 2)

4

5 Ω

FIGURE 8.3-11 (a) A first-order circuit
and (b) a plot of the inductor voltage.

(a) Determine the equation that represents the inductor voltage as a function of time.
(b) Determine the value of the resistance R.
(c) Determine the equation that represents the inductor current as a function of time.

Solution
(a) The inductor voltage is represented by an equation of the form

v tð Þ ¼ D for t < 0

E þ F e�at for t � 0

	

where D, E, F, and a are unknown constants. The constants D, E, and F are described by

D ¼ v tð Þ when t < 0; E ¼ lim
t!1 v tð Þ; and E þ F ¼ lim

t!0þ
v tð Þ

From the plot, we see that

D ¼ 0; E ¼ 0; and E þ F ¼ 4 V

Consequently, v tð Þ ¼ 0 for t < 0

4e�at for t � 0

	

To determine the value of a, we pick a time when the circuit is not at steady state. One such point is labeled on
the plot in Figure 8.3-11. We see v (0.14) ¼ 2 V; that is, the value of the voltage is 2 volts at time 0.14 seconds.
Substituting these into the equation for v(t) gives

2 ¼ 4e�a 0:14ð Þ ) a ¼ ln 0:5ð Þ
�0:14

¼ 5

Consequently, v tð Þ ¼ 0 for t < 0

4e�5t for t � 0

	

(b) Figure 8.3-12a shows the circuit immediately after the switch opens. In Figure 8.3-12b, the part of the circuit
connected to the inductor has been replaced by its Th�evenin equivalent circuit.
The time constant of the circuit is given by

t ¼ L

Rt
¼ 4

R þ 5
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EXERCISE 8.3-1 The circuit shown in Figure E 8.3-1 is at steady state before the switch closes at time t ¼ 0.
Determine the capacitor voltage v(t) for t � 0.

6 Ω

3 Ω 6 Ω

v(t)

+

–

+
– 0.05 F

t = 0

3 V

FIGURE E 8.3-1

Answer: v(t) ¼ 2 þ e�2.5t V for t > 0

Also, the time constant is related to the exponent in v(t) by �5t ¼ � t

t
. Consequently,

5 ¼ 1

t
¼ R þ 5

4
) R ¼ 15V

(c) The inductor current is related to the inductor voltage by

i tð Þ ¼ 1

L

Z t

0
v tð Þdtþ i 0ð Þ

Figure 8.3-13 shows the circuit before the switch opens. The closed switch is represented by a short circuit.
The circuit is at steady state, and the voltage sources have constant voltages, so the inductor acts like a short
circuit. The inductor current is given by

i tð Þ ¼ 6

15
¼ 0:4 A

In particular, i(0�) ¼ 0.4 A. The current in an inductor is continuous, so i(0þ) ¼ i(0�). Consequently,

i 0ð Þ ¼ 0:4 A

Returning to the equation for the inductor current, after the switch opens, we have

i tð Þ ¼ 1

4

Z t

0
4e�5tdtþ 0:4 ¼ 1

�5
e�5t � 1
� �þ 0:4 ¼ 0:6� 0:2e�5t

In summary, i tð Þ ¼ 0:4 for t < 0
0:6� 0:2e�5t for t � 0

	

R Rt = R +5

i(t) i(t)
+
–

+
–

+
–6 V12 V 4 H 4 H

5 Ω

v(t) voc = 12 V

+

–

v(t)

+

–

(a) (b)

FIGURE 8.3-12 (a) The first-order circuit after the switch opens.
(b) An equivalent circuit.

5 Ω

12 V 6 V

R = 15 Ω

i(t)

+
–

+
–

FIGURE 8.3-13 The first-order circuit before the
switch opens.
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EXERCISE 8.3-2 The circuit shown in Figure E 8.3-2 is at steady state before the switch closes at
time t ¼ 0. Determine the inductor current i(t) for t > 0.

6 Ω

3 Ω 6 Ω

+
– 6 H

t = 0

3 V

i(t)

FIGURE E 8.3-2

Answer: i tð Þ ¼ 1
4
þ 1

12
e�1:33t A for t > 0

8.4 S e q u e n t i a l Sw i t c h i n g

Often, circuits contain several switches that are not switched at the same time. For example, a circuit
may have two switches where the first switch changes state at time t ¼ 0 and the second switch closes at
t ¼ 1 ms.

Sequential switching occurs when a circuit contains two or more switches that change state at
different instants.

Circuits with sequential switching can be solved using the methods described in the previous sections,
based on the fact that inductor currents and capacitor voltages do not change instantaneously.

As an example of sequential switching, consider the circuit shown in Figure 8.4-1a. This circuit
contains two switches—one that changes state at time t ¼ 0 and a second that closes at t ¼ 1 ms.
Suppose this circuit has reached steady state before the switch changes state at time t ¼ 0. Figure
8.4-1b shows the equivalent circuit that is appropriate for t < 0. Because the circuit is at steady state and
the input is constant, the inductor acts like a short circuit and the current in this short circuit is the

(a)

(c)

(b)

i(t) i(t)2 mH

i(t)2 mH

2 Ω 2 Ω

2 Ω

2 Ω10 A10 A

(d)

i(t)2 mH 1 Ω

t = 0 t = 1 ms

FIGURE 8.4-1 (a) A circuit with sequential switching. (b) The equivalent circuit before t ¼ 0. (c) The equivalent circuit
for 0 < t < 1 ms. (d ) The equivalent circuit after t ¼ 1 ms.
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inductor current. The short circuit forces the voltage across the resistor to be zero, so the current in the
resistor is also zero. As a result, all of the source current flows in the short circuit and

i tð Þ ¼ 10 A t < 0

The inductor current will be 10 A immediately before the switch changes state at time t ¼ 0. We express
this as

i 0�ð Þ ¼ 10 A

Because the inductor current does not change instantaneously, the inductor current will also be 10 A
immediately after the switch changes state. That is,

i 0þð Þ ¼ 10 A

This is the initial condition that is used to calculate the inductor current after t ¼ 0. Figure
8.4-1c shows the equivalent circuit that is appropriate after one switch changes state at time t ¼ 0
and before the other switch closes at time t ¼ 1 ms. We see that the Norton equivalent of the part of the
circuit connected to the inductor has the parameters

Isc ¼ 0 A and Rt ¼ 2 V

The time constant of this first-order circuit is

t ¼ L

Rt
¼ 2� 10�3

2
¼ 1� 10�3 ¼ 1 ms

The inductor current is

i tð Þ ¼ i 0ð Þe�t=t ¼ 10e�t A

for 0 < t < 1 ms. Notice that t has units of ms. Immediately before the other switch closes at time t ¼ 1
ms, the inductor current will be

i 1�ð Þ ¼ 10e�1 ¼ 3:68 A

Because the inductor current does not change instantaneously, the inductor current will also be 3.68 A
immediately after the switch changes state. That is,

i 1þð Þ ¼ 3:68 A

This is the initial condition that is used to calculate the inductor current after the switch closes at time
t ¼ 1 ms. Figure 8.4-1d shows the appropriate equivalent circuit. We see that the Norton equivalent of
the part of the circuit connected to the inductor has the parameters

Isc ¼ 0 A and Rt ¼ 1 V

The time constant of this first-order circuit is

t ¼ L

Rt
¼ 2� 10�3

1
¼ 2� 10�3 ¼ 2 ms

The inductor current is

i tð Þ ¼ i t0ð Þe� t�t0ð Þ=t ¼ 3:68e� t�1ð Þ=2 A

for 1 ms < t. Once again, t has units of ms. Also, t0 denotes the time
when the switch changes state—1 ms in this example.

Figure 8.4-2 shows a plot of the inductor current. The time
constant changes when the second switch closes. As a result, the slope
of the plot changes at t ¼ 1 ms. Immediately before the switch closes,
the slope is �3.68 A/ms. Immediately after the switch closes, the slope
becomes �3.68=2 A/ms.

5
3.68

0

10

1 2 3 4

i(A)

t (ms)

FIGURE 8.4-2 Current waveform for t � 0. The
exponential has a different time constant for 0 � t < t1
and for t � t1 where t1 ¼ 1 ms.
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8.5 S t a b i l i t y o f F i r s t - O r d e r C i r c u i t s

We have shown that the natural response of a first-order circuit is

xn tð Þ ¼ Ke�t=t

and that the complete response is the sum of the natural and forced responses:

x tð Þ ¼ xn tð Þ þ xf tð Þ

When t> 0, the natural response vanishes as t ! 0, leaving the forced response. In this case, the circuit is
said to be stable. When t < 0, the natural response grows without bound as t ! 0. The forced response
becomes negligible, compared to the natural response. The circuit is said to be unstable. When a circuit is
stable, the forced response depends on the input to the circuit. That means that the forced response contains
information about the input. When the circuit is unstable, the forced response is negligible, and this
information is lost. In practice, the natural response of an unstable circuit is not unbounded. This response
will grow until something happens to change the circuit. Perhaps that change will be saturation of an
op amp or of a dependent source. Perhaps that change will be the destruction of a circuit element. In most
applications, the behavior of unstable circuits is undesirable and is to be avoided.

How can we design first-order circuits to be stable? Recalling that t ¼ RtC or t ¼ L=Rt, we see that

Rt > 0 is required to make a first-order circuit stable.

This condition will always be satisfied whenever the part of the circuit connected to the capacitor or
inductor consists of only resistors and independent sources. Such circuits are guaranteed to be stable. In
contrast, a first-order circuit that contains op amps or dependent sources may be unstable.

E X A M P L E 8 . 5 - 1 Response of an Unstable First-Order Circuit

The first-order circuit shown in Figure 8.5-1a is at steady state before the switch closes at t ¼ 0. This circuit
contains a dependent source and so may be unstable. Find the capacitor voltage v(t) for t > 0.

(b)

(d)

(a)

(c)

IT

10 kΩ

10 kΩ

5 kΩ

i(t)

2i(t)

2i(t)

+
–12 V

+
–12 V

5 kΩ

i(t)

t = 0

2i(t)+
–12 V

5 kΩ

i(t)

5 kΩ

i(t)

2i(t)

v(t)
+

–

voc

+

–

VT

+

–

v(0)

+

–

2   Fμ

10 kΩ

FIGURE 8.5-1 (a) A first-
order circuit containing a
dependent source. (b) The
circuit used to calculate the
initial condition. (c) The
circuit used to calculate
Voc. (d ) The circuit used to
calculate Rt.
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Solution
The input to the circuit is a constant, so the capacitor acts like an open circuit at steady state. We calculate the initial
condition from the circuit in Figure 8.5-1b. Applying KCL to the top node of the dependent current source, we get

�i þ 2i ¼ 0

Therefore, i ¼ 0. Consequently, there is no voltage drop across the resistor, and

v 0ð Þ ¼ 12 V

Next, we determine the Th�evenin equivalent circuit for the part of the circuit connected to the capacitor. This
requires two calculations. First, calculate the open-circuit voltage, using the circuit in Figure 8.5-1c. Writing a KVL
equation for the loop consisting of the two resistors and the voltage source, we get

12 ¼ 5� 103
� �� i þ 10� 103

� �� i � 2ið Þ
Solving for the current, we find

i ¼ �2:4 mA

Applying Ohm’s law to the 10-kV resistor, we get

Voc ¼ 10� 103
� �� i � 2ið Þ ¼ 24 V

Now calculate the Th�evenin resistance using the circuit shown in Figure 8.5-1d. Apply KVL to the loop consisting
of the two resistors to get

0 ¼ 5� 103
� �� i þ 10� 103

� �� IT þ i � 2ið Þ
Solving for the current,

i ¼ 2IT

Applying Ohm’s law to the 10-kV resistor, we get

VT ¼ 10� 103 � IT þ i � 2ið Þ ¼ �10� 103 � IT

The Th�evenin resistance is given by

Rt ¼ VT

IT
¼ �10 kV

The time constant is

t ¼ RtC ¼ �20 ms

This circuit is unstable. The complete response is

v tð Þ ¼ 24� 12 e t=20

The capacitor voltage decreases from v(0) ¼ 12 V rather than increasing toward vf ¼ 24 V. Notice that

v 1ð Þ ¼ lim
t!1 v tð Þ ¼ �1

It’s not appropriate to refer to the forced response as a steady-state response when the circuit is unstable.

E X A M P L E 8 . 5 - 2 Designing First-Order Circuits to be Stable

The circuit considered in Example 8.5-1 has been redrawn in Figure 8.5-2a, with the gain of the dependent
source represented by the variable B. What restrictions must be placed on the gain of the dependent source to
ensure that it is stable? Design this circuit to have a time constant of +20 ms.
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8.6 T h e U n i t S t e p S o u r c e

The unit step function provides a convenient way to represent an
abrupt change in a voltage or current.

We define the unit step function as a function of time that is zero
for t < t0 and unity for t > t0. At t ¼ t0, the value changes from zero to
one. We represent the unit step function by u t � t0ð Þ, where

u t � t0ð Þ ¼ 0 t < t0
1 t > t0

	
ð8:6-1Þ

The value of u(t � t0) is not defined at t ¼ t0, where it switches instantaneously from a value of zero to
one. The unit step function is shown in Figure 8.6-1. We will often consider t0 ¼ 0.

The unit step function is dimensionless. To represent a voltage that changes abruptly from one
constant value to another constant value at time t ¼ t0, we can write

v tð Þ ¼ A þ B u t � t0ð Þ

Solution
Figure 8.5-2b shows the circuit used to calculate Rt. Applying
KVL to the loop consisting of the two resistors,

5� 103 � i þ VT ¼ 0

Solving for the current gives

i ¼ � VT

5� 103

Applying KCL to the top node of the dependent source, we get

�i þ Bi þ VT

10� 103
� IT ¼ 0

Combining these equations, we get

1� B

5� 103
þ 1

10� 103

� �
VT � IT ¼ 0

The Th�evenin resistance is given by

Rt ¼ VT

IT
¼ � 10� 103

2B � 3

The condition B < 3=2 is required to ensure that Rt is positive and
the circuit is stable.

To obtain a time constant of þ20 ms requires

Rt ¼ t
C
¼ 20� 10�3

2� 10�6 ¼ 10� 103 ¼ 10 kV

which in turn requires

10� 103 ¼ � 10� 103

2B � 3
Therefore B ¼ 1. This suggests that we can fix the unstable circuit by decreasing the gain of the dependent source
from 2 A/A to 1 A/A.

(a)

(b)

IT

10 kΩ

5 kΩ

i(t)

Bi(t)+
–12 V

t = 0

5 kΩ

i(t)

Bi(t)

v(t)
+

–

VT

+

–

2 mF

10 kΩ

FIGURE 8.5-2 (a) A first-order circuit containing a
dependent source. (b) The circuit used to calculate
the Th�evenin resistance of the part of the circuit
connected to the capacitor.

1

0

u(t – t0)

t0 t

FIGURE 8.6-1 Unit step forcing function, u(t � t0).
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which indicates that v tð Þ ¼ A t < t0
A þ B t > t0

	

where A and B have units of Volt. Figure 8.6-2 shows a voltage source having this voltage.
It is worth noting that u(�t) indicates that we have a value of 1 for t < 0, so that

u �tð Þ ¼ 1 t < 0
0 t > 0

	

Let us consider the pulse source

v tð Þ ¼
0 t < t0
V0 t0 < t < t1
0 t1 < t

8<
:

which is shown in Figure 8.6-3a. As shown in Figure 8.6-3b, the pulse can be obtained from
two-step voltage sources, the first of value V0 occurring at t ¼ t0 and the second equal to �V0

occurring at t ¼ t1. Thus, the two-step sources of magnitude V0 shown in Figure 8.6-4 will
yield the desired pulse. We have v(t) ¼ V0u(t � t0)�V0u(t � t1) to provide the pulse. Notice
how easy it is to use two-step function symbols to represent this pulse source. The pulse is said
to have a duration of (t1�t0) s.

A pulse signal has a constant nonzero value for a time duration of Dt ¼ t1�t0.

We recognize that the unit step function is an ideal model. No real element can switch
instantaneously. However, if the switching time is very short compared to the time constant of the
circuit, we can approximate the switching as instantaneous.

+
–A+Bu(t – t0) v(t)

+

–

FIGURE 8.6-2 Symbol
for a voltage source
having a voltage that
changes abruptly at time
t = t0.

+
–

v

+

–

V0u(t – t0)

+
–

V0u(t – t1)

FIGURE 8.6-4
Two-step voltage sources
that yield a rectangular
voltage pulse v(t) with a
magnitude of V0 and a
duration of (t1 � t0)
where t0 < t1.

E X A M P L E 8 . 6 - 1 First-Order Circuit INTERACT IVE EXAMPLE

Figure 8.6-5 shows a first-order circuit. The input to the circuit is the voltage of
the voltage source, vs(t). The output is the current of the inductor, io(t). Determine
the output of this circuit when the input is vs(t) ¼ 4 � 8u(t) V.

io(t)vs(t) 10 H+
–

20 Ω

FIGURE 8.6-5 The circuit
considered in Example 8.6-1.

t0

(b)(a)

v

V0

t0 t1 t

v

V0

–V0

t1

t

FIGURE 8.6-3 (a)
Rectangular voltage pulse.
(b) Two-step voltage
waveforms that yield the
voltage pulse.

Try it 
yourself 

in WileyPLUS
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Solution
The value of the input is one constant, 4 V, before time t ¼ 0 and a different constant, �4 V, after time t ¼ 0. The
response of the first-order circuit to the change in the value of the input will be

io tð Þ ¼ A þ Be�at for t > 0 ð8:6-2Þ
where the values of the three constants A, B, and a are to be determined.

The values of A and B are determined from the steady-state responses of this circuit before and after the input
changes value. Figures 8.6-6a,b show the circuits used to calculate those steady-state responses. Figures
8.6-6a,b require some explanation.

Inductors act like short circuits when the input is constant and the circuit is at steady state. Consequently, the
inductor is replaced by a short circuit in Figure 8.6-6a and in Figure 8.6-6b.

The value of the inductor current at time t ¼ 0 will be equal to the steady-state inductor current before the
input changes. At time t ¼ 0, the output current is

io 0ð Þ ¼ A þ Be�a 0ð Þ ¼ A þ B

Consequently, the inductor current is labeled as A þ B in Figure 8.6-6a.
The value of the inductor current at time t ¼ 1 will be equal to the steady-state inductor current after the

input changes. At time t ¼ 1, the output current is

io 1ð Þ ¼ A þ Be�a 1ð Þ ¼ A

Consequently, the inductor current is labeled as A in Figure 8.6-6b.
Analysis of the circuit in Figure 8.6-6a gives

A þ B ¼ 0:2 A

Analysis of the circuit in Figure 8.6-6b gives

A ¼ �0:2 A

Therefore, B ¼ 0:4 A

The value of the constant a in Eq. 8.6-2 is determined from the time constant, t, which in turn is calculated from the
values of the inductance L and of the Th�evenin resistance, Rt, of the circuit connected to the inductor.

1

a
¼ t ¼ L

Rt

Figure 8.6-7 shows the circuit used to calculate Rt. It is seen from Figure 8.6-7 that

Rt ¼ 20V

Therefore, a ¼ 20

10
¼ 2

1

s

(The time constant is t ¼ 10=20 ¼ 0.5 s.) Substituting the values of A, B, and a into Eq. 8.6-2 gives

io tð Þ ¼ 0:2 A for t � 0
�0:2þ 0:4 e�2t A for t � 0

	

A + B4 V +
–

20 Ω

(a)

A–4 V +
–

20 Ω

(b)

FIGURE 8.6-6 Circuits used to calculate the steady-state
response (a) before t ¼ 0 and (b) after t ¼ 0.

Rt

20 Ω

FIGURE 8.6-7 The circuit used to calculate Rt.
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E X A M P L E 8 . 6 - 2 First-Order Circuit INTERACT IVE EXAMPLE

Figure 8.6-8 shows a first-order circuit. The input to the circuit is the
voltage of the voltage source, vs(t). The output is the voltage across
the capacitor, vo(t). Determine the output of this circuit when the input is
vs(t) ¼ 7�14u(t) V.

Solution
The value of the input is one constant, 7 V, before time t ¼ 0 and a
different constant, �7 V, after time t ¼ 0. The response of the first-order
circuit to the change in the value of the input will be

vo tð Þ ¼ A þ Be�at for t > 0 ð8:6-3Þ
where the values of the three constants A, B, and a are to be determined.

The values of A and B are determined from the steady-state responses of this circuit before and after the input
changes value. Figures 8.6-9a, b show the circuits used to calculate those steady-state responses. Figures 8.6-9a, b
require some explanation.

Capacitors act like open circuits when the input is constant and the circuit is at steady state. Consequently, the
capacitor is replaced by an open circuit in Figure 8.6-9a and in Figure 8.6-9b.

The value of the capacitor voltage at time t ¼ 0 will be equal to the steady-state capacitor voltage before the
input changes. At time t ¼ 0, the output voltage is

vo 0ð Þ ¼ A þ Be�a 0ð Þ ¼ A þ B

Consequently, the capacitor voltage is labeled as A þ B in Figure 8.6-9a.
The value of the capacitor voltage at time t ¼ 1 will be equal to the steady-state capacitor voltage after the

input changes. At time t ¼ 1, the output voltage is

vo 1ð Þ ¼ A þ Be�a 1ð Þ ¼ A

Consequently, the capacitor voltage is labeled as A in Figure 8.6-9b.
Apply the voltage division rule to the circuit in Figure 8.6-9a to get

A þ B ¼ 5

3þ 5
� 7 ¼ 4:38 V

Apply the voltage division rule to the circuit in Figure 8.6-9b to get

A ¼ 5

3þ 5
� �7ð Þ ¼ �4:38 V

Therefore; B ¼ 8:76 V

The value of the constant a in Eq. 8.6-3 is determined from the time constant t, which in turn is
calculated from the values of the capacitance C and of the Th�evenin resistance Rt of the circuit connected to
the capacitor:

+
–

vo(t)vs(t) 460 mF

+

–
5 Ω

3 Ω

FIGURE 8.6-8 The circuit considered in
Example 8.6-2.

+
– A + B7 V

+

–

5 Ω

3 Ω

(a)

+
– A–7 V

+

–

5 Ω

3 Ω

(b)

FIGURE 8.6-9 Circuits used to calculate the steady-state
response (a) before t ¼ 0 and (b) after t ¼ 0.

5 Ω

3 Ω

Rt

FIGURE 8.6-10 The circuit used to calculate Rt.

Try it 
yourself 

in WileyPLUS
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8.7 T h e R e s p o n s e o f a F i r s t - O r d e r C i r c u i t t o
a N o n c o n s t a n t S o u r c e

In the previous sections, we wisely used the fact that the forced response to a constant source will be a
constant itself. It now remains to determine what the response will be when the forcing function is not
a constant.

The differential equation described by an RL or RC circuit is represented by the general form

dx tð Þ
dt

þ ax tð Þ ¼ y tð Þ ð8:7-1Þ
where y(t) is a constant only when we have a constant-current or constant-voltage source and where
a ¼ 1=t is the reciprocal of the time constant.

In this section, we introduce the integrating factor method, which consists of multiplying Eq. 8.7-1
by a factor that makes the left-hand side a perfect derivative, and then integrating both sides.

Consider the derivative of a product of two terms such that

d

dt
xeatð Þ ¼ dx

dt
eat þ axeat ¼ dx

dt
þ ax

� �
eat ð8:7-2Þ

The term within the parentheses on the right-hand side of Eq. 8.7-2 is exactly the form on the left-
hand side of Eq. 8.7-1.

Therefore, if we multiply both sides of Eq. 8.7-1 by eat, the left-hand side of the equation can be
represented by the perfect derivative, d(xeat)=dt. Carrying out these steps, we show that

dx

dt
þ ax

� �
eat ¼ yeat

or
d

dt
xeatð Þ ¼ yeat

Integrating both sides of the second equation, we have

xeat ¼
Z

yeatdt þ K

where K is a constant of integration. Therefore, solving for x(t), we multiply by e�at to obtain

x ¼ e�at
Z

yeatdt þ Ke�at ð8:7-3Þ

1

a
¼ t ¼ RtC

Figure 8.6-10 shows the circuit used to calculate Rt. It is seen from Figure 8.6-10 that

Rt ¼ 5ð Þ 3ð Þ
5þ 3

¼ 1:875 V

Therefore; a ¼ 1

1:875ð Þ 460� 10�3
� � ¼ 1:16

1

s

(The time constant is t¼ (1.875)(460 � 10�3) ¼ 0.86 s.) Substituting the values of A, B, and a into Eq. 8.6-3 gives

vo tð Þ ¼ �4:38 V for t � 0

�4:38þ 8:76 e�1:16 t V for t � 0

(
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When the source is a constant so that y(t) ¼ M, we have

x ¼ e�atM

Z
eatdt þ Ke�at ¼ M

a
þ Ke�at ¼ xf þ xn

where the natural response is xn ¼ Ke�at and the forced response is xf ¼ M=a, a constant.
Now consider the case in which y(t), the forcing function, is not a constant. Considering Eq. 8.7-3,

we see that the natural response remains xn ¼ Ke�at. However, the forced response is

xf ¼ e�at
Z

y tð Þeat dt

Thus, the forced response will be dictated by the form of y(t). Let us consider the case in which y(t) is
an exponential function so that y(t) ¼ ebt. We assume that (a þ b) is not equal to zero. Then we have

xf ¼ e�at
Z

ebteatdt ¼ e�at
Z

e aþbð Þtdt ¼ 1

a þ b
e�ate aþbð Þ ¼ ebt

a þ b
ð8:7-4Þ

Therefore, the forced response of an RL or RC circuit to an exponential forcing function is of the
same form as the forcing function itself. When a þ b is not equal to zero, we assume that the forced
response will be of the same form as the forcing function itself, and we try to obtain the relationship
that will be satisfied under those conditions.

E X A M P L E 8 . 7 - 1 First-Order Circuit with Nonconstant Source

Find the current i for the circuit of Figure 8.7-1a for t > 0 when

vs ¼ 10e�2tu tð ÞV
Assume the circuit is in steady state at t ¼ 0�.

(a)

i(t)

5 Ω

1 H

4 Ω

+
–

+
–

+
–10 V

(c)(b)

i(t)

5 Ω 4 Ω

10 V

t = 0

i(t) 1 H 4 Ω
4

vs(t)
vs(t)

FIGURE 8.7-1 (a) A circuit with a nonconstant source, (b) the appropriate equivalent circuit after the switch opens, and (c) the
appropriate equivalent circuit before the switch opens.

Solution
Because the forcing function is an exponential, we expect an exponential for the forced response if. Therefore, we
expect if to be

if ¼ Be�2t

for t � 0. Writing KVL around the right-hand mesh, we have

L
di

dt
þ Ri ¼ vs

or
di

dt
þ 4i ¼ 10e�2t
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The voltage source of Example 8.7-1 is a decaying exponential of the form

vs ¼ 10e�2tu tð ÞV
This source is said to be aperiodic (nonperiodic). A periodic source is one that repeats itself exactly after a
fixed length of time. Thus, the signal f(t) is periodic if there is a number T such that for all t

f t þ Tð Þ ¼ f tð Þ ð8:7-5Þ
The smallest positive number T that satisfies Eq. 8.7-5 is called the period. The period defines the
duration of one complete cycle of f(t). Thus, any source for which there is no value of T satisfying Eq.
8.7-5 is said to be aperiodic. An example of a periodic source is 10 sin 2t, which we consider in Example
8.7-2. The period of this sinusoidal source is p s.

for t > 0. Substituting if ¼ Be�2t, we have

�2Be�2t þ 4Be�2t ¼ 10e�2t

or �2B þ 4Bð Þe�2t ¼ 10e�2t

Hence, B ¼ 5 and if ¼ 5e�2t

The natural response can be obtained by considering the circuit shown in Figure 8.7-1b. This is the equivalent
circuit that is appropriate after the switch has opened. The part of the circuit that is connected to the inductor has
been replaced by its Norton equivalent circuit. The natural response is

in ¼ Ae� Rt=Lð Þt ¼ Ae�4t

The complete response is

i ¼ in þ if ¼ Ae�4t þ 5e�2t

The constant A can be determined from the value of the inductor current at time t ¼ 0. The initial inductor current
i(0) can be obtained by considering the circuit shown in Figure 8.7-1c. This is the equivalent circuit that is appropriate
before the switch opens. Because vs(t) ¼ 0 for t < 0 and a zero voltage source is a short circuit, the voltage source
at the right side of the circuit has been replaced by a short circuit. Also, because the circuit is at steady state before
the switch opens and the only input is the constant 10-volt source, the inductor acts like a short circuit. The current
in the short circuit that replaces the inductor is the initial condition i(0). From Figure 8.7-1c,

i 0ð Þ ¼ 10

5
¼ 2 A

Therefore, at t ¼ 0,

i 0ð Þ ¼ Ae�4�0 þ 5e�2�0 ¼ A þ 5

or 2 ¼ A þ 5

or A ¼ �3. Therefore, i ¼ �3e�4t þ 5e�2t
� �

A t > 0
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E X A M P L E 8 . 7 - 2 First-Order Circuit with Nonconstant Source

Find the response v(t) for t > 0 for the circuit of Figure 8.7-2a. The initial voltage v(0) ¼ 0, and the current source
is is ¼ (10 sin 2t)u(t) A.

+
–

(b)(a)

4 Ω

4 Ω

a

is(t) 4is(t)v(t)

+

–
F

1

2
v(t)

+

–
F

1

2

FIGURE 8.7-2 (a) A circuit with a nonconstant source.
(b) The equivalent circuit for t > 0.

Solution
Because the forcing function is a sinusoidal function, we expect that vf is of the same form. Writing KCL at node a,
we obtain

C
dv

dt
þ v

R
¼ is

or 0:5
dv

dt
þ v

4
¼ 10 sin 2t ð8:7-6Þ

for t > 0. We assume that vf will consist of the sinusoidal function sin 2t and its derivatives.
Examining Eq. 8.7-6, vf=4 plus 0.5 dvf=dt must equal 10 sin 2t. However, d(sin 2t)=dt ¼ 2 cos 2t. Therefore,

the trial vf needs to contain both sin 2t and cos 2t terms. Thus, we try the proposed solution

vf ¼ A sin 2t þ B cos 2t

The derivative of vf is then

dvf
dt

¼ 2A cos 2t � 2B sin 2t

Substituting vf and dvf=dt into Eq. 8.7-6, we obtain

A cos 2t � B sin 2tð Þ þ 1

4
A sin 2t þ B cos 2tð Þ ¼ 10 sin 2t

Therefore, equating sin 2t terms and cos 2t terms, we obtain

A

4
� B

� �
¼ 10 and A þ B

4

� �
¼ 0

Solving for A and B, we obtain

A ¼ 40

17
and B ¼ �160

17

Consequently; vf ¼ 40

17
sin 2t � 160

17
cos 2t

It is necessary that vf be made up of sin 2t and cos 2t because the solution has to satisfy the differential equation.
Of course, the derivative of sin ot is o cos ot.

The natural response can be obtained by considering the circuit shown in Figure 8.7-2b. This is the equivalent
circuit that is appropriate for t > 0. The part of the circuit connected to the capacitor has been replaced by its
Th�evenin equivalent circuit. The natural response is

vn ¼ De�t= RtCð Þ ¼ De�t=2
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A special case for the forced response of a circuit may occur when the forcing function is a damped
exponential when we have y(t) ¼ e�bt. Referring back to Eq. 8.7-4, we can show that

xf ¼ e�bt

a � b

when y(t) ¼ e�bt. Note that here we have e�bt whereas we used ebt for Eq. 8.7-4. For the special case
when a ¼ b, we have a � b ¼ 0, and this form of the response is indeterminate. For the special case,
we must use xf ¼ te�bt as the forced response. The solution xf for the forced response when a ¼ b
will satisfy the original differential Eq. (8.7-1). Thus, when the natural response already contains a
term of the same form as the forcing function, we need to multiply the assumed form of the forced
response by t.

The forced response to selected forcing functions is summarized in Table 8.7-1. We note that if
a circuit is linear, at steady state, and excited by a single sinusoidal source having frequency o, then
all the element currents and voltages are sinusoids having frequency o.

EXERCISE 8.7-1 The electrical power plant for the orbiting space station shown in Figure
E 8.7-1a uses photovoltaic cells to store energy in batteries. The charging circuit is modeled by the
circuit shown in Figure E 8.7-1b, where vs ¼ 10 sin 20t V. If v(0�) ¼ 0, find v(t) for t > 0.

The complete response is then

v ¼ vn þ vf ¼ De�t=2 þ 40

17
sin 2t � 160

17
cos 2t

Because v(0) ¼ 0, we obtain at t ¼ 0

0 ¼ D � 160

17

or D ¼ 160

17

Then the complete response is

v ¼ 160

17
e�t=2 þ 40

17
sin 2t � 160

17
cos 2t

� �
V

Table 8.7-1 Forced Response to a Forcing Function

FORCING FUNCTION, y(t) FORCED RESPONSE, xf(t)

1. Constant

y(t) ¼ M xf ¼ N, a constant

2. Exponential

y(t) ¼ Me�bt xf ¼ Ne�bt

3. Sinusoid

y(t) ¼ M sin (ot+u) xf ¼ A sin ot þ B cos ot
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Answer: v ¼ 4 e�10t � 4 cos 20t þ 2 sin 20t V

8.8 D i f f e r e n t i a l O p e r a t o r s

In this section, we introduce the differential operator s.
An operator is a symbol that represents a mathematical operation. We can define a differential

operator s such that
sx ¼ dx

dt
and s2x ¼ d2x

dt2

Thus, the operator s denotes differentiation of the variable with respect to time. The utility of the
operator s is that it can be treated as an algebraic quantity. This permits the replacement of differential
equations with algebraic equations, which are easily handled.

Use of the s operator is particularly attractive when higher-order differential equations are
involved. Then we use the s operator, so that

snx ¼ dnx

dtn
for n � 0

We assume that n ¼ 0 represents no differentiation, so that

s0 ¼ 1

which implies s0x ¼ x.
Because integration is the inverse of differentiation, we define

1

s
x ¼

Z t

�1
x dt ð8:8-1Þ

The operator 1=s must be shown to satisfy the usual rules of algebraic manipulations. Of these rules,
the commutative multiplication property presents the only difficulty. Thus, we require

s 	 1
s
¼ 1

s
	 s ¼ 1 ð8:8-2Þ

Is this true for the operator s? First, we examine Eq. 8.8-1. Multiplying Eq. 8.8-1 by s yields

s 	 1
s

x ¼ d

dt

Z t

�1
x dt

or x ¼ x

as required. Now we try the reverse order by multiplying sx by the integration operator to obtain

1

s
sx ¼

Z t

�1

dx

dt
dt ¼ x tð Þ � x �1ð Þ

10 mF+
–

(b)(a)

10 Ω

vs v
+

–

FIGURE E 8.7-1 (a) The NASA
space station design shows the
longer habitable modules that
would house an orbiting scientific
laboratory. (b) The circuit for
energy storage for the laboratories.

Courtesy of the National Aeronautics and Space Administration
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Therefore;
1

s
sx ¼ x

only when x(�1) ¼ 0. From a physical point of view, we require that all capacitor voltages and
inductor currents be zero at t ¼ �1. Then the operator 1=s can be said to satisfy Eq. 8.8-2 and can be
manipulated as an ordinary algebraic quantity.

Differential operators can be used to find the natural solution of a differential equation. For
example, consider the first-order differential equation

d

dt
x tð Þ þ ax tð Þ ¼ by tð Þ ð8:8-3Þ

The natural solution of this differential equation is
xn tð Þ ¼ Kest ð8:8-4Þ

The homogeneous form of a differential equation is obtained by setting the forcing function equal to
zero. The forcing function in Eq. 8.8-3 is y(t). The homogeneous form of this equation is

d

dt
x tð Þ þ ax tð Þ ¼ 0 ð8:8-5Þ

To see that xn(t) is a solution of the homogeneous form of the differential equation, we substitute
Eq. 8.8-4 into Eq. 8.8-5.

d

dt
Kestð Þ þ a Kestð Þ ¼ sKest þ aKest ¼ 0

To obtain the parameter s in Eq. 8.8-4, replace d=dt in Eq. 8.8-5 by the differential operator s. This
results in

sx þ ax ¼ s þ að Þx ¼ 0 ð8:8-6Þ
This equation has two solutions: x ¼ 0 and s ¼ �a. The solution x ¼ 0 isn’t useful, so we use the
solution s ¼ �a. Substituting this solution into Eq. 8.8-4 gives

xn tð Þ ¼ Ke�at

This is the same expression for the natural response that we obtained earlier in this chapter by other
methods. That’s reassuring but not new. Differential operators will be quite useful when we analyze
circuits that are represented by second- and higher-order differential equations.

8.9 U s i n g P S p i c e t o A n a l y z e F i r s t - O r d e r C i r c u i t s

To use PSpice to analyze a first-order circuit, we do the following:

1. Draw the circuit in the OrCAD Capture workspace.

2. Specify a Time Domain (Transient) simulation.

3. Run the simulation.

4. Plot the simulation results.

Time domain analysis is most interesting for circuits that contain capacitors or inductors or both.
PSpice provides parts representing capacitors and inductors in the ANALOG parts library. The part
name for the capacitor is C. The part properties that are of the most interest are the capacitance and the
initial condition, both of which are specified using the OrCAD Capture property editor. (The initial
condition of a capacitor is the value of the capacitor voltage at time t¼ 0.) The part name for the inductor
is L. The inductance and the initial condition of the inductor are specified using the property editor.
(The initial condition of an inductor is the value of the inductor current at time t ¼ 0.)

352 8. The Complete Response of RL and RC Circuits



Table 8.9-1 PSpice Voltage Sources for Transient Response Simulations

NAME SYMBOL VOLTAGEWAVEFORM

VEXP

+

–

V?V1 =
V2 =
TD1 =
TC1 =
TD2 =
TC2 =

v2

v1

0 td1

tc1 tc2

td2 t

VPULSE

V1 =
V2 =
TD =
TR =
TF =
PW =
PER =

+

–

V?

v2

v1

0 td tr pw rf
per t

VPWL
+

–

V?

t1, v1

t3, v3

t2, v2

t4, v4

t

VSIN

VOFF =
VAMPL =
FREQ =

+

–

V?

td

df

freq

0

1

vo + va

vo

t
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The voltage and current sources that represent time-varying inputs are provided in the SOURCE
parts library. Table 8.9-1 summarizes these voltage sources. The voltage waveform describes the
shape of the voltage source voltage as a function of time. Each voltage waveform is described using a
series of parameters. For example, the voltage of an exponential source VEXP is described using vl,
v2, tdl, td2, tc1, and tc2. The parameters of the voltage sources in Table 8.9-1 are specified using the
property editor.

E X A M P L E 8 . 9 - 1 Using PSpice to Analyze First-Order Circuits

The input to the circuit shown in Figure 8.9-1a is the voltage source voltage, vi(t), shown in Figure 8.9-la. The
output, or response, of the circuit is the voltage across the capacitor, vo(t). Use PSpice to plot the response of this
circuit.

vo(t)
+

–

4

t, ms2 10 12 20 22

–1
vi(t)

vi(t), V

+
–

1 kΩ

1 mF

(a) (b)
FIGURE 8.9-1 An RC circuit
(b) with a pulse input (a).

Solution
We begin by drawing the circuit in the OrCAD
workspace as shown in Figure 8.9-2 (see
Appendix A). The voltage source is a VPULSE
part (see the second row of Table 8.9-1). Figure
8.9-la shows vi(t) making the transition from
�1 V to 4 V instantaneously. Zero is not an
acceptable value for the parameters tr or tf.
Choosing a very small value for tr and tf will
make the transitions appear to be instantaneous
when using a time scale that shows a period of
the input waveform. In this example, the period
of the input waveform is 10 ms, so 1 ns is a
reasonable choice for the values of tr and tf.

It’s convenient to set td, the delay before the periodic part of the waveform, to zero. Then the values of vl and
v2 are �1 and 4, respectively. The value of pw is the length of time that vi(t) = v2 = 4 V, so pw = 2 ms in this
example. The pulse input is a periodic function of time. The value of per is the period of the pulse function, 10 ms.

The circuit shown in Figure 8.9-1b does not have a ground node. PSpice requires that all circuits have a
ground node, so it is necessary to select a ground node. Figure 8.9-2 shows that the bottom node has been selected
to be the ground node.

We will perform a Time Domain (Transient) simulation. (Select PSpice\New Simulation Profile from the
OrCAD Capture menu bar; then choose Time Domain (Transient) from the Analysis Type drop-down list. The
simulation starts at time zero and ends at the Run to Time. Specify the Run to Time as 20 ms to run the simulation
for two full periods of the input waveform. Select the Skip The Initial Transient Bias Point Calculation (SKJPBP)
check box.) Select PSpice\Run from the OrCAD Capture menu bar to run the simulation.

After a successful Time Domain (Transient) simulation, OrCAD Capture will automatically open a Schematics
window. Select Trace/Add Trace to pop up the Add Traces dialog box. Add the traces V(OUTPUT) and V(INPUT).
Figure 8.9-3 shows the resulting plot after removing the grid and labeling some points.

R1 1k

V1
+

–

V1 = –1
V2 = 4
TD = 0
TR = 1ns
TF = 1ns
PW = 2ms
PER = 10ms

C1

Input

Output

1uF

0

FIGURE 8.9-2 The circuit of Figure 8.9-1 as drawn in the OrCAD
workspace.
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8.10 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the specifica-
tions have been satisfied. In addition, computer output must be reviewed to guard against data-entry
errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions of the sort of
problems discussed in this chapter.

5.0 V

2.5 V

0 V

–2.0 V
0 s 5 ms 10 ms

(1.9912 m, 3.4638)

(2.7876 m, 1.0551)

15 ms 20 ms

TimeV (OUTPUT) V (INPUT)

(12.757 m, 1.0506)

(12.000 m, 3.3385)

FIGURE 8.9-3 The response of the RC circuit to the pulse input.

E X A M P L E 8 . 1 0 - 1 How Can We Check the Response of
a First-Order Circuit?

Consider the circuit and corresponding transient response shown in Figure 8.10-1. How can we check whether the
transient response is correct? Three things need to be verified: the initial voltage, vo(t0); the final voltage, vo(1);
and the time constant, t.

Solution
Consider first the initial voltage, vo(t0). (In this example, t0 ¼ 10 ms.) Before time t0 ¼ 10 ms, the switch is closed and
has been closed long enough for the circuit to reach steady state, that is, for any transients to have died out. To
calculate vo(t0), we simplify the circuit in two ways. First, replace the switch with a short circuit because the switch
is closed. Second, replace the inductor with a short circuit because inductors act like short circuits when all the
inputs are constants and the circuit is at steady state. The resulting circuit is shown in Figure 8.10-2a. After
replacing the parallel 300-V and 600-V resistors by the equivalent 200-V resistor, the initial voltage is calculated
using voltage division as

vo t0ð Þ ¼ 200

200þ 200
8 ¼ 4 V
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Next consider the final voltage, vo(1). In this case, the switch is open and the circuit has reached steady state.
Again, the circuit is simplified in two ways. The switch is replaced with an open circuit because the switch is open.
The inductor is replaced by a short circuit because inductors act like short circuits when all the inputs are constants
and the circuit is at steady state. The simplified circuit is shown in Figure 8.10-2b. The final voltage is calculated
using voltage division as

vo 1ð Þ ¼ 600

200þ 600
8 ¼ 6 V

The time constant is calculated from the circuit shown in Figure 8.10-2c. This circuit has been simplified by
setting the input to zero (a zero voltage source acts like a short circuit) and replacing the switch by an open circuit.
The time constant is

t ¼ L

Rt
¼ 4� 10�3

200þ 600
¼ 5� 10�6 ¼ 5 ms

+
–

200 Ω 4 mH

t = 10 ms

8 V

300 Ω

600 Ω

+

–

vo(t)

(b)(a)

vo(t) (V)

6

5

4

3

5 10 15 20 25 30 35 40 t (  s)μ

FIGURE 8.10-1 (a) A transient response and (b) the corresponding circuit.

(a)

+
–

200 Ω

8 V

300 Ω

600 Ω

+

–

vo(t0) +
–

200 Ω

8 V

300 Ω

600 Ω

+

–

vo(∞)

(b)

200 Ω 4 mH

300 Ω

600 Ω

+

–

vo(t)

(c)

FIGURE 8.10-2 Circuits used to calculate the (a) initial voltage, (b) final voltage, and (c) time constant.
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Figure 8.10-3 shows how the initial voltage, final voltage, and time constant can be determined from the plot of
the transient response. (Recall that a procedure for determining the time constant graphically was illustrated in Figure
8.3-3.) Because the values of vo(t0), vo(1), and t obtained from the transient response are the same as the values
obtained by analyzing the circuit, we conclude that the transient response is indeed correct.

vo(t) (V)

vo(∞) = 6

5

vo(0) = 4

3

5 10 15 20 25 30 35 40 t (  s)μ

τ = 5 ms

FIGURE 8.10-3 Interpretation of the transient response.

E X A M P L E 8 . 1 0 - 2 How Can We Check the Response of
a First-Order Circuit?

Consider the circuit and corresponding tran-
sient response shown in Figure 8.10-4. How
can we check whether the transient response
is correct? Four things need to be verified:
the steady-state capacitor voltage when the
switch is open, the steady-state capacitor
voltage when the switch is closed, the time
constant when the switch is open, and the
time constant when the switch is closed.

Solution
Figure 8.10-5a shows the circuit used to calcu-
late the steady-state capacitor voltage when the
switch is open. The circuit has been simplified
in two ways. First, the switch has been replaced
with an open circuit. Second, the capacitor has
been replaced with an open circuit because
capacitors act like open circuits when all the
inputs are constants and the circuit is at steady
state. The steady-state capacitor voltage is
calculated using voltage division as

vc 1ð Þ ¼ 60

60þ 30þ 150
12 ¼ 3 V

Figure 8.10-5b shows the circuit used
to calculate the steady-state capacitor voltage

+
–

30 kΩ 150 kΩ

60 kΩ

t = 90 ms

t = 20 ms

0.5 mF vc(t)12 V

+

–

(b)

(a)

vc(t) (V)

8

6

4

2

20 40 60 80 100 120 140 160 180 t (ms)

FIGURE 8.10-4 (a) A transient response and (b) the corresponding circuit.
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when the switch is closed. Again, this circuit has been simplified in two ways. First, the switch has been replaced with a
short circuit. Second, the capacitor has been replaced with an open circuit. The steady-state capacitor voltage is
calculated using voltage division as

vc 1ð Þ ¼ 60

60þ 30
12 ¼ 8 V

Figure 8.10-5c shows the circuit used to calculate the time constant when the switch is open. This circuit has
been simplified in two ways. First, the switch has been replaced with an open circuit. Second, the input has been set
to zero (a zero voltage source acts like a short circuit). Notice that 180 kV in parallel with 60 kV is equivalent to
45 kV. The time constant is

t ¼ 45� 103
� � 	 0:5� 10�6

� � ¼ 22:5� 10�3 ¼ 22:5 ms

Figure 8.10-5d shows the circuit used to calculate the time constant when the switch is closed. The switch has
been replaced with a short circuit, and the input has been set to zero. Notice that 30 kV in parallel with 60 kV is
equivalent to 20 kV. The time constant is

t ¼ 20� 103
� � 	 0:5� 10�6

� � ¼ 10�2 ¼ 10 ms

Having done these calculations, we
expect the capacitor voltage to be 3 V until
the switch closes at t ¼ 20 ms. The capacitor
voltage will then increase exponentially
to 8 V, with a time constant equal to 10 ms.
The capacitor voltage will remain 8 V until
the switch opens at t ¼ 90 ms. The capacitor
voltage will then decrease exponentially to
3 V, with a time constant equal to 22.5 ms.
Figure 8.10-6 shows that the transient
response satisfies this description. We con-
clude that the transient response is correct.

30 kΩ 150 kΩ

60 kΩ 0.5 mF

(c)

+
–

30 kΩ 150 kΩ

60 kΩ vc(∞)12 V

+

–

vc

+

–

vc

+

–

(a)

30 kΩ 150 kΩ

60 kΩ 0.5 μF

(d)

+
–

30 kΩ 150 kΩ

60 kΩ vc(∞)12 V

+

–

(b)

FIGURE 8.10-5 Circuits used to calculate (a) the steady-state voltage when the switch is open, (b) the steady-state voltage when the
switch is closed, (c) the time constant when the switch is open, and (d) the time constant when the switch is closed.

vc(t) (V)

8

6

4

2

20 40 60 80 100 120 140 160 180 t (ms)

τ = 10 ms
τ = 22.5 ms

FIGURE 8.10-6 Interpretation of the transient response.
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8 . 1 1 D E S I G N E X A M P L E A Computer and Printer

It is frequently necessary to connect two pieces of electronic equipment together so that the output from one
device can be used as the input to another device. For example, this situation occurs when a printer
is connected to a computer, as shown in Figure 8.11-1a. This situation is represented more generally by
the circuit shown in Figure 8.11-1b. The driver sends a signal through the cable to the receiver. Let us replace
the driver, cable, and receiver with simple models. Model the driver as a voltage source, the cable as an
RC circuit, and the receiver as an open circuit. The values of resistance and capacitance used to model
the cable will depend on the length of the cable. For example, when RG58 coaxial cable is used,

R ¼ r 	 ‘ where r ¼ 0:54
V

m

and C ¼ c 	 ‘ where c ¼ 88
pF

m

and ‘ is the length of the cable in meters, Figure 8.11-1c shows the equivalent circuit.
Suppose that the circuits connected by the cable are digital circuits. The driver will send 1’s and 0’s to the

receiver. These 1’s and 0’s will be represented by voltages. The output of the driver will be one voltage, VOH, to
represent logic 1 and another voltage, VOL, to represent a logic 0. For example, one popular type of logic, called
TTL logic, uses VOH ¼ 2.4 V and VOL ¼ 0.4 V. (TTL stands for transistor–transistor logic.) The receiver uses
two different voltages, VIH and VIL, to represent 1’s and 0’s. (This is done to provide noise immunity, but that is
another story.) The receiver will interpret its input, vb, to be a logic 1 whenever vb > VIH and to be a logic 0
whenever vb < VIL. (Voltages between VIH and VIL will occur only during transitions between logic 1
and logic 0. These voltages will sometimes be interpreted as logic 1 and other times as logic 0.) TTL logic uses
VIH ¼ 2.0 V and VIL ¼ 0.8 V.

Circuit 1
driver

Circuit 2
receiver

Cable
+

–

+

–
va vb

+
–va vb

R
C

+

–

(b)

(a)

�

FIGURE 8.11-1 (a) Two circuits connected by a cable. (b) An equivalent circuit.
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va(t)
v(t)

vb(t)

VOH

VIH

VIL

VOL

t0 t1 t

FIGURE 8.11-2 Voltages that occur during a transition from a logic 0 to a logic 1.

Figure 8.11-2 shows what happens when the driver output changes from logic 0 to logic 1. Before time t0,

va ¼ VOL and vb < V IL for t < t0

In words, a logic 0 is sent and received. The driver output switches to VOH at time t0. The receiver input vb makes
this transition more slowly. Not until time t1 does the receiver input become large enough to be interpreted as a
logic 1. That is,

vb > V IH for t > t1

The time that it takes for the receiver to recognize the transition from logic 0 to logic 1

Dt ¼ t1 � t0

is called the delay. This delay is important because it puts a limit on how fast 1’s and 0’s can be sent from the driver
to the receiver. To ensure that the 1’s and 0’s are received reliably, each 1 and each 0 must last at least Dt. The rate at
which 1’s and 0’s are sent from the driver to the receiver is inversely proportional to the delay.

Suppose two TTL circuits are connected using RG58 coaxial cable. What restriction must be placed on the
length of the cable to ensure that the delay, Dt, is less than 2 ns?

Describe the Situation and the Assumptions
The voltage vb(t) is the capacitor voltage of an RC circuit. The RC circuit is at steady state just before time t0.

The input to the RC circuit is va(t). Before time t0, va(t) ¼ VOL ¼ 0.4 V. At time t0, va(t) changes abruptly.
After time t0, va(t) ¼ VOH ¼ 2.4 V.

Before time t0, vb(t) ¼ VOL ¼ 0.4 V. After time t0, vb(t) increases exponentially. Eventually, vb(t) ¼
VOH ¼ 2.4 V.

The time constant of the RC circuit is

t ¼ R 	 C ¼ rc‘ 2 ¼ 47:52� 10�2 	 ‘ 2

where ‘ is the cable length in meters.

State the Goal
Calculate the maximum value of the cable length ‘ for which vb > VIH ¼ 2.0 V by time t ¼ t0 þ Dt, where
Dt ¼ 2 ns.
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Generate a Plan
Calculate the voltage vb(t) in Figure 8.11-1b. The voltage vb(t) will depend on the length of the cable, ‘,
because the time constant of the RC circuit is a function of ‘. Set vb ¼ VIH at time t ¼ t0 þ Dt. Solve the
resulting equation for the length of the cable.

Act on the Plan
Using the notation introduced in this chapter,

vb 0ð Þ ¼ VOL ¼ 0:4 V

vb 1ð Þ ¼ VOH ¼ 2:4 V

and t ¼ 47:52� 10�12 	 ‘ 2

Using Eq. 8.3-6, we express the voltage vb(t) as

vb tð Þ ¼ VOH þ VOL � VOHð Þe� t�t0ð Þ=t

The capacitor voltage vb will be equal to VIH at time t1 ¼ t0 þ Dt, so

V IH ¼ VOH þ VOL � VOHð Þe�Dt=t

Solving for the delay, Dt, gives

Dt ¼ �t ln
V IH � VOH

VOL � VOH


 �
¼ �47:52� 10�12 	 ‘ 2 	 ln V IH � VOH

VOL � VOH


 �

In this case,

‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�Dt

47:52� 10�12 	 ln V IH � VOH

VOL � VOH


 �
vuuut

and, therefore,

‘ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 	 10�9

47:52� 10�12 	 ln 2:0� 2:4

0:4� 2:4


 �
vuuut ¼ 5:11 m ¼ 16:8 ft

Verify the Proposed Solution
When ‘ ¼ 5.11 m, then

R ¼ 0:54� 5:11 ¼ 2:76 V

and C ¼ 88� 10�12
� �� 5:11 ¼ 450 pF

so t ¼ 2:76� 450� 10�12
� � ¼ 1:24 ns

Finally; Dt ¼ �1:24� 10�9 � ln
2:0� 2:4

0:4� 2:4


 �
¼ 1:995 ns

Because Dt < 2 ns, the specifications have been satisfied but with no margin for error.

Design Example 361



8.12 SUMMARY
Voltages and currents can be used to encode, store, and
process information. When a voltage or current is used to
represent information, that voltage or current is called a
signal. Electric circuits that process that information are
called signal-processing circuits.
Circuits that contain energy-storing elements, that is,
capacitors and inductors, are represented by differential
equations rather than by algebraic equations. Analysis of
these circuits requires the solution of differential equations.
In this chapter, we restricted our attention to first-order
circuits. First-order circuits contain one energy storage ele-
ment and are represented by first-order differential equations,
which are reasonably easy to solve. We solved first-order
differential equations, using the method called separation of
variables.
The complete response of a circuit is the sum of the natural
response and the forced response. The natural response is the
general solution of the differential equation that represents
the circuit when the input is set to zero. The forced response
is the particular solution of the differential equation repre-
senting the circuit.
The complete response can be separated into the transient
response and the steady-state response. The transient re-
sponse vanishes with time, leaving the steady-state
response. When the input to the circuit is either a constant
or a sinusoid, the steady-state response can be used as the
forced response.

The term transient response sometimes refers to the
“transient part of the complete response” and other times
to a complete response that includes a transient part. In
particular, PSpice uses the term transient response to refer
to the complete response. Because this can be confusing, the
term must be used carefully.
The step response of a circuit is the response when the input
is equal to a unit step function and all the initial conditions of
the circuit are equal to zero.
We used Th�evenin and Norton equivalent circuits to reduce
the problem of analyzing any first-order circuit to the prob-
lem of analyzing one of two simple first-order circuits. One
of the simple first-order circuits is a series circuit consisting
of a voltage source, a resistor, and a capacitor. The other is a
parallel circuit consisting of a current source, a resistor, and
an inductor. Table 8.12-1 summarizes the equations used
to determine the complete response of a first-order circuit.
The parameter t in the first-order differential equation
d

dt
x tð Þ þ x tð Þ

t
¼ K is called the time constant. The time

constant t is the time for the response of a first-order circuit
to complete 63 percent of the transition from initial value to
final value.
Stability is a property of well-behaved circuits. It is easy to
tell whether a first-order circuit is stable. A first-order circuit
is stable if, and only if, its time constant is not negative, that
is, t � 0.

Table 8.12-1 Summary of First-Order Circuits

FIRST-ORDER CIRCUIT CONTAINING A CAPACITOR FIRST-ORDER CIRCUIT CONTAINING AN INDUCTOR

v(t)C
+

–

Op amps,
resistors,

and
sources

L

i(t)Op amps,
resistors,

and
sources

Replace the circuit consisting of op amps, resistors, and sources
by its Th�evenin equivalent circuit:

Replace the circuit consisting of op amps, resistors, and sources
by its Norton equivalent circuit:

v(t)Voc

Rt

C
+

–

+
–

Isc Rt L

i(t)

The capacitor voltage is:

v tð Þ ¼ Voc þ v 0ð Þ � Vocð Þe�t=t

where the time constant t is

t ¼ RtC

and the initial condition v(0) is the capacitor voltage at time
t ¼ 0.

The inductor current is

i tð Þ ¼ Isc þ i 0ð Þ � Iscð Þe�t=t

where the time constant t is

t ¼ L

Rt

and the initial condition i(0) is the inductor current at time
t ¼ 0.
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PROBLEMS

Section 8.3 The Response of a First-Order Circuit to

a Constant Input

P 8.3-1 The circuit shown in Figure P 8.3-1 is at steady
state before the switch closes at time t ¼ 0. The input to the
circuit is the voltage of the voltage source, 12 V. The output of
this circuit is the voltage across the capacitor, v(t). Determine
v(t) for t > 0.

Answer: v tð Þ ¼ 6 � 2e�1:33t V for t > 0

+
– v(t)

+

–

6 Ω

6 Ω
12 V 6 Ω

t = 0

250 mF

Figure P 8.3-1

P 8.3-2 The circuit shown in Figure P 8.3-2 is at steady
state before the switch opens at time t¼ 0. The input to the circuit
is the voltage of the voltage source, 12 V. The output of this
circuit is the current in the inductor, i(t). Determine i(t) for t > 0.

Answer: i tð Þ ¼ 1 þ e�0:5tA for t > 0

+
–

6 Ω

6 Ω
12 V 6 Ω 8 H

t = 0

i(t)

Figure P 8.3-2

P 8.3-3 The circuit shown in Figure P 8.3-3 is at steady
state before the switch closes at time t ¼ 0. Determine the
capacitor voltage v(t) for t > 0.

Answer: v tð Þ ¼ �6 þ 18e�6:67t V for t > 0

6 Ω 3 Ω

ia

v(t)

+

–

+
– 0.05 F

t = 0

12 V
+

–
2ia

Figure P 8.3-3

P 8.3-4 The circuit shown in Figure P 8.3-4 is at steady
state before the switch closes at time t ¼ 0. Determine the
inductor current i(t) for t > 0.

Answer: i tð Þ ¼ �2 þ 10
3

e�0:5t A for t > 0

6 Ω 3 Ω

ia
i(t)

+
– 6 H

t = 0

12 V
+

–
2ia

Figure P 8.3-4

P 8.3-5 The circuit shown in Figure P 8.3-5 is at steady
state before the switch opens at time t ¼ 0. Determine the
voltage vo(t) for t > 0.

Answer: vo tð Þ ¼ 10 � 5e�12:5t V for t > 0

+

–

+

–

+
–

vo(t)

t = 0

20 kΩ

20 kΩ

4 mF

20 kΩ

5 V

Figure P 8.3-5

P 8.3-6 The circuit shown in Figure P 8.3-6 is at steady state
before the switch opens at time t ¼ 0. Determine the voltage
vo(t) for t > 0.

Answer: vo tð Þ ¼ 5e�4000t V for t > 0

+

–

+

–

+
–

vo(t)

iL(t)

t = 0

20 kΩ

20 kΩ

20 kΩ

5 V 5 H

Figure P 8.3-6

Problem available in WileyPLUS at instructor’s discretion.
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P 8.3-7 Figure P 8.3-7a shows astronaut Dale Gardner using
the manned maneuvering unit to dock with the spinning Westar
VI satellite on November 14, 1984. Gardner used a large tool
called the apogee capture device (ACD) to stabilize the satellite
and capture it for recovery, as shown in Figure P 8.3-7a. The
ACD can be modeled by the circuit of Figure P 8.3-7b. Find the
inductor current iL for t > 0.

Answer: iL(t) ¼ 6e�20t A

1 5 H4 Ω
t = 0

6 A

a

b

iL

(b)

(a)

Figure P 8.3-7 (a) Astronaut Dale Gardner using the manned
maneuvering unit to dock with the Westar VI satellite. (b) Model
of the apogee capture device. Assume that the switch has been
in position for a long time at t ¼ 0�.

P 8.3-8 The circuit shown in Figure P 8.3-8 is at steady
state before the switch opens at time t ¼ 0. The input to the
circuit is the voltage of the voltage source, Vs. This voltage
source is a dc voltage source; that is, Vs is a constant. The output
of this circuit is the voltage across the capacitor, vo(t). The
output voltage is given by

vo tð Þ ¼ 2þ 8e�0:5t V for t > 0

Determine the values of the input voltage Vs, the capacitance C,
and the resistance R.

+
–

R
Vs 10 Ω

10 Ω

t = 0

C vo(t)

+

–

Figure P 8.3-8

P 8.3-9 The circuit shown in Figure P 8.3-9 is at steady
state before the switch closes at time t ¼ 0. The input to the
circuit is the voltage of the voltage source, 24 V. The output of
this circuit, the voltage across the 3-V resistor, is given by

vo tð Þ ¼ 6� 3e�0:35t V when t > 0

Determine the value of the inductance L and of the resistances
R1 and R2.

+
–

R1

L

R2

t = 0

vo(t)

+

–

3 Ω24 V
i(t)

Figure P 8.3-9

P 8.3-10 A security alarm for an office building door is
modeled by the circuit of Figure P 8.3-10. The switch repre-
sents the door interlock, and v is the alarm indicator voltage.
Find v(t) for t > 0 for the circuit of Figure P 8.3-10. The switch
has been closed for a long time at t ¼ 0�.

v+ –

1/2 H

4 Ω 9 Ω

12 Ω 3 Ω+
–20 V 9 A

t = 0

Figure P 8.3-10 A security alarm circuit.

P 8.3-11 The voltage v(t) in the circuit shown in Figure
P 8.3-11 is given by

v tð Þ ¼ 8þ 4e�2t V for t > 0

Determine the values of R1, R2, and C.

t = 0

24 V 4 Ω v(t)

C

R1

R2

+
–

+

–

Figure P 8.3-11

Courtesy of NASA
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P 8.3-12 The circuit shown in Figure P 8.3-12 is at steady
state when the switch opens at time t ¼ 0. Determine i(t) for
t � 0.

3 kΩ

2 kΩ6 kΩ9 V 5 H 5 mAi(t)

t = 0

+
–

Figure P 8.3-12

P 8.3-13 The circuit shown in Figure P 8.3-13 is at steady
state when the switch opens at time t ¼ 0. Determine v(t) for
t � 0.

30 kΩ 60 kΩ

60 kΩ6 V 36 V5 mF

t = 0

+
–

+
–

+

–

v(t)

Figure P 8.3-13

P 8.3-14 The circuit shown in Figure P 8.3-14 is at steady
state when the switch closes at time t ¼ 0. Determine i(t) for
t � 0.

20 V

2 H

2 A

20 Ω

5 Ω

18 Ω

5 Ω
t = 0 i(t)

+
–

Figure P 8.3-14

P 8.3-15 The circuit in Figure P 8.3-15 is at steady state
before the switch closes. Find the inductor current after the
switch closes.

Hint: i(0) ¼ 0.1 A, Isc ¼ 0.3 A, Rt ¼ 40 V

Answer: i(t) ¼ 0.3 � 0.2e�2t A t � 0

i(t)

16 Ω

10 Ω

40 Ω

+
–12 V 20 H

t = 0

Figure P 8.3-15

P 8.3-16 Consider the circuit shown in Figure P 8.3-16.
(a) Determine the time constant t and the steady-state capacitor
voltage when the switch is open. (b) Determine the time
constant t and the steady-state capacitor voltage when the
switch is closed.

+
–

+

–

v (t)

60 Ω 

60 Ω 
120 Ω 24 V 20 mF

Figure P 8.3-16

P 8.3-17 The circuit shown in Figure P 8.3-17 is at steady
state before the switch closes. The response of the circuit is the
voltage v(t). Find v(t) for t > 0.

Hint: After the switch closes, the inductor current is i(t) ¼
0.2 (1 � e�1.8t) A

Answer: v(t) ¼ 8 þ e�1.8t V

i(t)10 Ω 25 Hv(t)

+

–

10 Ω 40 Ω

+
–18 V

t = 0

Figure P 8.3-17

P 8.3-18 The circuit shown in Figure P 8.3-18 is at steady
state before the switch closes. The response of the circuit is the
voltage v(t). Find v(t) for t > 0.

Answer: v(t) ¼ 37.5 � 97.5e�6400t V

i(t)600 Ω 0.1 Hv(t)

+

–

400 Ω 400 Ω

+
– 100 V 0.5 A

t = 0
t = 0

Figure P 8.3-18

P 8.3-19 The circuit shown in Figure P 8.3-19 is at steady
state before the switch closes. Find v(t) for t � 0.

+
–

12 Ω

6 Ω

3 Ω

a

b

18 V

10 Ω

v (t)

+

–

1/24 F

t = 0

Figure P 8.3-19
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P 8.3-20 The circuit shown in Figure P 8.3-20 is at steady
state before the switch closes. Determine i(t) for t � 0.

5 Ω 20 Ω

20 Ω20 Ω

3.5 H

+
– 24 V

i(t)

t = 0

Figure P 8.3-20

P 8.3-21 The circuit in Figure P 8.3-21 is at steady state before
the switch closes. Determine an equation that represents the
capacitor voltage after the switch closes.

+
– 18 V

+

–

25 mF

10 Ω

40 Ω

t = 0

v (t)

Figure P 8.3-21

P 8.3-22 The circuit shown in Figure P 8.3-22 is at steady state
when the switch closes at time t ¼ 0. Determine i(t) for t � 0.

2 A 4 A

5 Ω

3 Ω

8 Ω

a

b

i(t)2 H

t = 0

Figure P 8.3-22

P 8.3-23 The circuit in Figure P 8.3-23 is at steady state before
the switch closes. Determine an equation that represents the
inductor current after the switch closes.

7 A

2.5 Ht = 0 i (t)

60 Ω20 Ω

Figure P 8.3-23

P 8.3-24 Consider the circuit shown in Figure P 8.3-24a and
corresponding plot of the inductor current shown in Figure
P 8.3-24b. Determine the values of L, R1, and R2.

Hint: Use the plot to determine values of D, E, F, and a such
that the inductor current can be represented as

i tð Þ ¼ D for t � 0

E þ Fe�at for t � 0

	

Answers: L ¼ 4.8 H, R1 ¼ 200 V, and R2 ¼ 300 V

i (t)

i(
t),

 m
A

t, ms

t = 0

24 V

200

(27.725, 160)

160

0 40 80 120

120

160

R1 R2

L

+
–

(b)

(a)

Figure P 8.3-24

P 8.3-25 Consider the circuit shown in Figure P 8.3-25a and
corresponding plot of the voltage across the 40-V resistor
shown in Figure P 8.3-25b. Determine the values of L and R2.

Hint: Use the plot to determine values of D, E, F, and a such
that the voltage can be represented as

v tð Þ ¼ D for t < 0

E þ Fe�at for t > 0

	

Answers: L ¼ 8 H and R2 ¼ 10 V.

40 Ω20 V

L

–
+ v(t)

+

t = 0

–

(a)

(b)

0

v(
t),

 V

100

60

0.80.5

(0.14, 60)

0.40.2

t, ms

20

Figure P 8.3-25
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P 8.3-26 Determine vo(t) for t> 0 for the circuit shown in
Figure P 8.3-26.

18 Ω
18 Ω

2.4  mA 18 Ω

0.8 H

0.7 H

v o (t )

+

–

Figure P 8.3-26

P 8.3-27 The circuit shown in Figure P 8.3-27 is at steady
state before the switch closes at time t ¼ 0. After the switch
closes, the inductor current is given by

i tð Þ ¼ 0:6� 0:2e�5t A for t � 0

Determine the values of R1, R2, and L.

Answers: R1 ¼ 20 V, R2 ¼ 10 V, and L ¼ 4 H

i(t)+
–

t = 0

L

R2

R1

12 V

Figure P 8.3-27

P 8.3-28 After time t ¼ 0, a given circuit is represented by
the circuit diagram shown in Figure P 8.3-28.

(a) Suppose that the inductor current is

i tð Þ ¼ 21:6þ 28:4e�4t mA for t � 0

Determine the values of R1 and R3.
(b) Suppose instead that R1 ¼ 16 V, R3 ¼ 20 V, and the initial

condition is i(0) ¼ 10 mA.
Determine the inductor current for t � 0.

36 mA 2 HR1

4 Ω

R3

i(t)

Figure P 8.3-28

P 8.3-29 Consider the circuit shown in Figure P 8.3-29.

(a) Determine the time constant t and the steady-state
capacitor voltage v(1) when the switch is open.

(b) Determine the time constant t and the steady-state capaci-
tor voltage v(1) when the switch is closed.

Answers: (a) t ¼ 3 s, and v(1) ¼ 24 V; (b) t ¼ 2.25 s, and
v(1) ¼ l2 V

50 Ω 50 Ω
50 Ω

v(t)

+

–

+
– 24 V 90 mF

Figure P 8.3-29

Section 8.4 Sequential Switching

P 8.4-1 The circuit shown in Figure P 8.4-1 is at steady
state before the switch closes at time t ¼ 0. The switch remains
closed for 1.5 s and then opens. Determine the capacitor voltage
v(t) for t > 0.

Hint: Determine v(t) when the switch is closed. Evaluate v(t) at
time t ¼ 1.5 s to get v(1.5). Use v(1.5) as the initial condition to
determine v(t) after the switch opens again.

Answer: v tð Þ ¼ 5 þ 5e�5t V for 0 < t < 1:5 s
10 � 2:64e�2:5 t�1:5ð Þ V for 1:5 s < t

	

8 Ω

8 Ω

v(t)

+

–

+
– 0.05 F

t = 0 t = 1.5 s

10 V

Figure P 8.4-1

P 8.4-2 The circuit shown in Figure P 8.4-2 is at steady
state before the switch closes at time t ¼ 0. The switch remains
closed for 1.5 s and then opens. Determine the inductor current
i(t) for t > 0.

Answer: v tð Þ ¼ 2 þ e�0:5t A for 0 < t < 1:5 s

3 � 0:53e�0:667 t�1:5ð Þ A for 1:5 s < t

(

4 Ω 4 Ω

4 Ω

12 H

t = 0 t = 1.5 s

24 V i(t)+
–

Figure P 8.4-2

P 8.4-3 Cardiac pacemakers are used by people to maintain
regular heart rhythm when they have a damaged heart. The
circuit of a pacemaker can be represented as shown in Figure
P 8.4-3. The resistance of the wires, R, can be neglected because
R < 1 mV. The heart’s load resistance RL is 1 kV. The first
switch is activated at t¼ t0, and the second switch is activated at t1
¼ t0 þ 10 ms. This cycle is repeated every second. Find v(t) for t0
� t � 1. Note that it is easiest to consider t0 ¼ 0 for this
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calculation. The cycle repeats by switch 1 returning to position a
and switch 2 returning to its open position.

Hint: Use q ¼ Cv to determine v(0�) for the 100-mF capacitor.

+
–

R R

t = t0
t = t1

v
RL

Switch 1

+

–

a

Switch 2

The heart

100 mF
400 mF3 V

Figure P 8.4-3

P 8.4-4 An electronic flash on a camera uses the circuit
shown in Figure P 8.4-4. Harold E. Edgerton invented the
electronic flash in 1930. A capacitor builds a steady-state
voltage and then discharges it as the shutter switch is pressed.
The discharge produces a very brief light discharge. Determine
the elapsed time t1 to reduce the capacitor voltage to one-half of
its initial voltage. Find the current i(t) at t ¼ t1.

5 V 100 kΩ+
–

t = 0

1 mF

Figure P 8.4-4 Electronic flash circuit.

P 8.4-5 The circuit shown in Figure P 8.4-5 is at steady
state before the switch opens at t ¼ 0. The switch remains open
for 0.5 second and then closes. Determine v(t) for t � 0.

24 V 50 mF

40 Ω

40 Ω 10 Ωv(t)

t = 0.5 s

t = 0 s+
–

+

–

Figure P 8.4-5

Section 8.5 Stability of First-Order Circuits

P 8.5-1 The circuit in Figure P 8.5-1 contains a current
controlled voltage source. What restriction must be placed on
the gain R of this dependent source to guarantee stability?

Answer: R < 400 V

5 mH

100 Ω

400 Ω+
–

iL(t)

Ri(t)

i(t)4 + 8u(t) V

+ –

Figure P 8.5-1

P 8.5-2 The circuit in Figure P 8.5-2 contains a current-
controlled current source. What restriction must be
placed on the gain B of this dependent source to guarantee
stability?

5 mH
6 kΩ

3 kΩ+
–

iL(t)Bi(t)

i(t)

4 + 8u(t) V

Figure P 8.5-2

Section 8.6 The Unit Step Source

P 8.6-1 The input to the circuit shown in Figure P 8.6-1 is
the voltage of the voltage source, vs(t). The output is the voltage
across the capacitor, vo(t). Determine the output of this circuit
when the input is vs(t) ¼ 8 � 15 u(t) V.

vs(t)
+
–

6 Ω

vo(t)
+

–
66.7 μF

Figure P 8.6-1

P 8.6-2 The input to the circuit shown in Figure P 8.6-2
is the voltage of the voltage source, vs(t). The output is the
voltage across the capacitor, vo(t). Determine the output of this
circuit when the input is vs(t) ¼ 3 þ 3 u(t) V.

vs(t)
+
–

3 Ω

6 Ω vo(t)
+

–
500 mF

Figure P 8.6-2

P 8.6-3 The input to the circuit shown in Figure P 8.6-3 is
the voltage of the voltage source, vs(t). The output is the current
in the inductor, io(t). Determine the output of this circuit when
the input is vs(t) ¼ �7 þ 13 u(t) V.

vs(t)
+
–

5 Ω

4 Ω 1.2 Hio(t)

Figure P 8.6-3
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P 8.6-4 Determine vo(t) for t> 0 for the circuit shown in
Figure P 8.6-4.

–

+

30 kΩ 45 kΩ

v o (t )2.4 + 1.2 u (t )  V

20 kΩ

+
–

+

–

5 mF

Figure P 8.6-4

P 8.6-5 The initial voltage of the capacitor of the circuit
shown in Figure P 8.6-5 is zero. Determine the voltage v(t)
when the source is a pulse, described by

vs ¼
0 t < 1 s

4 V 1 < t < 2 s

0 t > 2 s

8><
>:

v
+

–
vs

Ω500 k

2  F+
–

Figure P 8.6-5

P 8.6-6 Studies of an artificial insect are being used to
understand the nervous system of animals. A model neuron
in the nervous system of the artificial insect is shown in Figure
P 8.6-6. A series of pulses, called synapses, is required.
The switch generates a pulse by opening at t ¼ 0 and closing
at t ¼ 0.5 s. Assume that the circuit is in steady state and
that v(0�) ¼ 10 V. Determine the voltage v(t) for 0 < t < 2 s.

+
– v

+

–

Ω6

Ω3

Switch

30 V F1 6

Figure P 8.6-6 Neuron circuit model.

P 8.6-7 Determine the voltage vo(t) in the circuit shown in
Figure P 8.6-7.

+
–

25 Ωi L

v o

+

_

15 Ω10 Ω2 − 8u (t ) V

4 H

Figure P 8.6-7

P 8.6-8 Determine vc(t) for t > 0 for the circuit of Figure
P 8.6-8.

+
–

4 kΩ

3 kΩ

4 kΩ

vc
12u(t) V

+

–

–

+
2 mA 50   Fμ

Figure P 8.6-8

P 8.6-9 The voltage source voltage in the circuit shown in
Figure P 8.6-9 is

vs tð Þ ¼ 7� 14u tð Þ V

Determine v(t) for t > 0.

–

–

+
+

5 Ω
3 Ω v(t)vS(t)

0.46 F

Figure P 8.6-9

P 8.6-10 Determine the voltage v(t) for t� 0 for the circuit
shown in Figure P 8.6-10.

–

+

a

b

30 Ω120 Ω

96 Ω 32 Ω

5 + 15u(t)

–+ 12.5 mF v(t)

Figure P 8.6-10

P 8.6-11 The voltage source voltage in the circuit shown in
Figure P 8.6-11 is

vs tð Þ ¼ 5þ 20u tð Þ
Determine i(t) for t � 0.

i(t)vs(t)
ib 4 ib 25 H

a

b

10 kΩ5 kΩ

+
–

Figure P 8.6-11
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P 8.6-12 The voltage source voltage in the circuit shown in
Figure P 8.6-12 is

vs tð Þ ¼ 12� 6u tð ÞV

Determine v(t) for t � 0.

+
–

8 Ω

4 Ω

a

b

va

0.75va

–

–+

+

v(t)3/40 Fvs(t)

Figure P 8.6-12

P 8.6-13 Determine i(t) for t � 0 for the circuit shown in
Figure P 8.6-13.

3 Ω2.5 u(t)  A6 Ω

4 Ω 1 Ω
2ix

a

b

+ –

ix i(t)5 H

Figure P 8.6-13

P 8.6-14 Determine i(t) for t � 0 for the circuit shown in
Figure P 8.6-14.

100 Ω150 Ω

2 V+
–

+
–i(t)2 H6u(t) V

Figure P 8.6-14

P 8.6-15 Determine v(t) for t � 0 for the circuit shown in
Figure P 8.6-15.

20 Ω

8 Ω a

10 Ω

120 Ω 50 Ω

b

20u(t)A
v(t)1 mF

+

–

Figure P 8.6-15

P 8.6-16 Determine v(t) for t � 0 for the circuit shown in
Figure P 8.6-16.

20 mF20 V

2 u(t) A

20 Ω

5 Ω5 Ω 4 Ω

b

a

18 Ω

–

+

v(t)–
+

Figure P 8.6-16

P 8.6-17 Determine i(t) for t � 0 for the circuit shown in
Figure P 8.6-17.

2 H

i(t)

24 Ω

18 Ω12 u(t) V

24 Ω

12 Ω2 A+
–

Figure P 8.6-17

P 8.6-18 The voltage source voltage in the circuit shown in
Figure P 8.6-18 is

vs tð Þ ¼ 8þ 12u tð ÞV
Determine v(t) for t � 0.

vs(t) v(t)160 Ω
40 Ω 18 Ω

3 mF 5 mF+
–

+

–

Figure P 8.6-18

P 8.6-19 Determine the current io(t) in the circuit shown in
Figure P 8.6-19.

3 Ω

10 Ω 1 Ω
2 i x

+ –

i x
+
–

1
12

F v c

+

_

i o

5 + 10u (t ) V

Figure P 8.6-19

P 8.6-20 The voltage source voltage in the circuit shown
in Figure P 8.6-20 is

vs tð Þ ¼ 25u tð Þ � 10 V
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Determine i(t) for t � 0.

100 Ω
40 Ω150 Ω

12 H

8 H

i(t)vs(t)
+
–

Figure P 8.6-20

P 8.6-21 The voltage source voltage in the circuit shown in
Figure P 8.6-21 is

vs tð Þ ¼ 30� 24u tð ÞV
Determine i(t) for t � 0.

100 Ω

100 Ω

50 Ω

20 H 5 H

i(t)

vs(t) +
–

Figure P 8.6-21

P 8.6-22 The voltage source voltage in the circuit shown in
Figure P 8.6-22 is

vs tð Þ ¼ 10þ 40u tð ÞV

Determine v(t) for t � 0.

5 Ω

5 Ω
40 Ωvs(t)

100 mF

150 mFv(t)+
–

+

–

Figure P 8.6-22

P 8.6-23 Determine v(t) for t > 0 for the circuit shown in
Figure P 8.6-23.

12 u(t)

6 Ω

2 Ω

3 Ω

12 Ω

3 H

v(t)+
–

+

–

Figure P 8.6-23

P 8.6-24 The input to the circuit shown in Figure P 8.6-24
is the current source current

is tð Þ ¼ 2þ 4u tð ÞA
The output is the voltage v(t). Determine v(t) for t > 0.

is(t) v(t) 3 Ω

3 Ω

3 Ω 0.25 H

+

–

Figure P 8.6-24

P 8.6-25 The input to the circuit shown in Figure P 8.6-25
is the voltage source voltage

vs ¼ 6þ 6u tð Þ
The output is the voltage vo(t). Determine vo(t) for t > 0.

0.125 F 10 Ω

6 Ω 2 Ωvs(t) vo(t)
+
–

+

–

Figure P 8.6-25

P 8.6-26 Determine v(t) for t > 0 for the circuit shown in
Figure P 8.6-26.

0.5 H

3 Ω

4 Ω2 Ω v(t)

12 u(t) +
–

+

–

Figure P 8.6-26

P 8.6-27 When the input to the circuit shown in Figure
P 8.6-27 is the voltage source voltage

vs tð Þ ¼ 3� u tð ÞV
The output is the voltage

vo tð Þ ¼ 10þ 5 e�50t V for t � 0

Determine the values of R1 and R2.

+
– vs(t)

vo(t)

+

–

+

–

R1

R2

–

+

v(t)C = 1 mF 1 kΩ

Figure P 8.6-27
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P 8.6-28 The time constant of a particular circuit is t¼ 0.25 s.
In response to a step input, a capacitor voltage changes
from �2.5 V to 4.2 V. How long did it take for the capacitor
voltage to increase from �2.0 V to þ2.0 V?

Section 8.7 The Response of a First-Order Circuit to

a Nonconstant Source

P 8.7-1 Find vc(t) for t > 0 for the circuit shown in Figure
P 8.7-1 when v1 ¼ 8e�5tu(t) V. Assume the circuit is in steady
state at t ¼ 0�.

Answer: vc(t) ¼ 4e�9t þ 18e�5t V

–
vc

+
+
–

+–
3 Ω

1/36 F2ix

ix
v1

12 Ω 38.5 V

t = 0

Figure P 8.7-1

P 8.7-2 Find v(t) for t > 0 for the circuit shown in Figure
P 8.7-2. Assume steady state at t ¼ 0�.

Answer: v(t) ¼ 20e�10t/3 � 12e�2t V

+
–

4 Ω

12 V 2/5 H v

+

–

2 Ω 6 e–2t u(t) A

Figure P 8.7-2

P 8.7-3 Find vc(t) for t > 0 for the circuit shown in Figure
P 8.7-3 when is ¼ [2 cos 2t] u(t) mA.

vc

+

–
1/30 mF

10 kΩ

5 kΩis

Figure P 8.7-3

P 8.7-4 Many have witnessed the use of an electrical mega-
phone for amplification of speech to a crowd. A model of a
microphone and speaker is shown in Figure P 8.7-4a, and the
circuit model is shown in Figure P 8.7-4b. Find v(t) for vs ¼ 10
(sin 100t)u(t), which could represent a person whistling or
singing a pure tone.

(b)

(a)

8 Ω

1 Ω

+

+

–
–

Carbon granule
packet

0.5 H

Speaker

Sound
(pressure waves)

Diaphragm

vvs

Figure P 8.7-4 Megaphone circuit.

P 8.7-5 A lossy integrator is shown in Figure P 8.7-5.
The lossless capacitor of the ideal integrator circuit has
been replaced with a model for the lossy capacitor, namely,
a lossless capacitor in parallel with a 1-kV resistor. If vs ¼
15e�2tu(t) V and vo(0) ¼ 10 V, find vo(t) for t > 0.

C =

R = 1 kΩ

μF1 4

–

+

15 kΩ

vs vo

+

+ –

–

+
–

Figure P 8.7-5 Integrator circuit.

P 8.7-6 Determine v(t) for the circuit shown in Figure
P 8.7-6.

4 Ω

+
– 30 V +

–

+

–
v(t)

5 Ω 2 Ω

F e–3tu(t) V1 2

Figure P 8.7-6
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P 8.7-7 Determine v(t) for the circuit shown in Figure
P 8.7-7a when vs varies as shown in Figure P 8.7-7b. The
initial capacitor voltage is vc(0) ¼ 0.

vs Ω2

2 Ω

+
– v

+

–

Vs

+

–

1 F

(a)

(b)

(V)

t (s)

10

0 2

ix ix

vs

Figure P 8.7-7

P 8.7-8 The electron beam, which is used to draw signals on
an oscilloscope, is moved across the face of a cathode-ray tube
(CRT) by a force exerted on electrons in the beam. The basic
system is shown in Figure P 8.7-8a. The force is created from a
time-varying, ramp-type voltage applied across the vertical or
the horizontal plates. As an example, consider the simple circuit
of Figure P 8.7-8b for horizontal deflection in which the
capacitance between the plates is C.

Intensity

Focus

Trace
rotation

Beam
finder

CRT control

Horizontal
section

Trigger
section

Vertical
section

(b)

(a)

(V)

0

vc(t)

+

–

Rs
C

S+
– v(t) = kt

v(t)

t (ms)

Figure P 8.7-8 Cathode-ray tube beam circuit.

Derive an expression for the voltage across the capaci-
tance. If v(t) ¼ kt and Rs ¼ 625 kV, k ¼ 1000, and C ¼ 2000 pF,
compute vc as a function of time. Sketch v(t) and vc(t) on the
same graph for time less than 10 ms. Does the voltage across
the plates track the input voltage?

Section 8.10 How CanWe Check . . . ?

P 8.10-1 Figure P 8.10-1 shows the transient response of a
first-order circuit. This transient response was obtained using the
computer program, PSpice. A point on this transient response has
been labeled. The label indicates a time and the capacitor voltage at
that time. Placing the circuit diagram on the plot suggests that the
plot corresponds to the circuit. Verify that the plot does indeed
represent the voltage of the capacitor in this circuit.

4.0 V
0 s 1.0 ms 2.0 ms 3.0 ms

Time

(1.3333m, 4.5398)

6 V

vc(0) = 8 volts

4.0 ms 5.0 ms

5.0 V

6.0 V

7.0 V

8.0 V

+
–

+

–
vc(t)4 kΩ

2 kΩ

0.5 mF

Figure P 8.10-1

P 8.10-2 Figure P 8.10-2 shows the transient response of
a first-order circuit. This transient response was obtained
using the computer program, PSpice. A point on this transient
response has been labeled. The label indicates a time and the
inductor current at that time. Placing the circuit diagram on
the plot suggests that the plot corresponds to the circuit.
Verify that the plot does indeed represent the current of the
inductor in this circuit.

2 kΩ

5 H

3.0 mA

3.5 mA

4.0 mA 

4.5 mA

5.0 mA

0 s 2 ms 4 ms 6 ms 8 ms 10 ms
Time

(3.7500m, 4.7294m)

4 kΩ10 V

iL(0) = 3 mA

+
–

iL(t)

Figure P 8.10-2
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P 8.10-3 Figure P 8.10-3 shows the transient response of a
first-order circuit. This transient response was obtained using
the computer program, PSpice. A point on this transient
response has been labeled. The label indicates a time and
the inductor current at that time. Placing the circuit diagram
on the plot suggests that the plot corresponds to the circuit.
Specify that value of the inductance L required to cause the
current of the inductor in this circuit to be accurately repre-
sented by this plot.

2 kΩ

L

3.0 mA

3.5 mA

4.0 mA

4.5 mA

5.0 mA

0 s 2 ms 4 ms 6 ms 8 ms 10 ms
Time

(3.7500 m, 4.8360 m)

4 kΩ10 V

iL(0) = 3 mA

+
–

iL(t)

Figure P 8.10-3

P 8.10-4 Figure P 8.10-4 shows the transient response of a
first-order circuit. This transient response was obtained using
the computer program, PSpice. A point on this transient
response has been labeled. The label indicates a time and
the capacitor voltage at that time. Assume that this circuit
has reached steady state before time t ¼ 0. Placing the circuit
diagram on the plot suggests that the plot corresponds to the
circuit. Specify values of A, B, R1, R2, and C that cause the
voltage across the capacitor in this circuit to be accurately
represented by this plot.

C

–2.0 V

0 V

–1.0 V

1.0 V

2.0 V

3.0 V

4.0 V

0 s 1.0 ms 2.0 ms 3.0 ms 4.0 ms 5.0 ms
Time

(1.3304m, 3.1874)

A+
Bu(t)

+
–

R1

R2 vc(t)
+

–

Figure P 8.10-4

PSpice Problems

SP 8-1 The input to the circuit shown in Figure SP 8-1 is the
voltage of the voltage source, vi(t). The output is the voltage
across the capacitor, vo(t). The input is the pulse signal speci-
fied graphically by the plot. Use PSpice to plot the output vo(t)
as a function of t.

Hint: Represent the voltage source, using the PSpice part
named VPULSE.

vo(t)
+

–

4

vi(V)

t (ms)4 20 24

–1
vi(t)

+
–

2 kΩ

1 μF

Figure SP 8-1

SP 8-2 The input to the circuit shown in Figure SP 8-2 is the
voltage of the voltage source, vi(t). The output is the current in
the inductor, io(t). The input is the pulse signal specified

graphically by the plot. Use PSpice to plot the output io(t)
as a function of t.

Hint: Represent the voltage source, using the PSpice part
named VPULSE.

3

vi(V)

t (s)5 10 15

–2
vi(t)

+
–

2 Ω

8 H

io(t)

Figure SP 8-2

SP 8-3 The circuit shown in Figure SP 8-3 is at steady state
before the switch closes at time t ¼ 0. The input to the circuit is
the voltage of the voltage source, 12 V. The output of this
circuit is the voltage across the capacitor, v(t). Use PSpice to
plot the output v(t) as a function of t. Use the plot to obtain an
analytic representation of v(t) for t > 0.
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Hint: We expect v(t) ¼ A þ Be�t/t for t > 0, where A, B, and t
are constants to be determined.

+
– v(t)

+

–

10 kΩ

30 kΩ

12 V 60 kΩ

t = 0

2 μF

Figure SP 8-3

SP 8-4 The circuit shown in Figure SP 8-4 is at steady state
before the switch closes at time t ¼ 0. The input to the circuit is

the current of the current source, 4 mA. The output of this
circuit is the current in the inductor, i(t). Use PSpice to plot the
output i(t) as a function of t. Use the plot to obtain an analytic
representation of i(t) for t > 0.

Hint: We expect i(t) ¼ A þ Be�t/t for t > 0, where A, B, and t
are constants to be determined.

1 kΩ4 mA 5 mH

i(t)

t = 0

Figure SP 8-4

Design Problems

DP 8-1 Design the circuit in Figure DP 8-1 so that v(t) makes
the transition from v(t) ¼ 6 V to v(t) ¼ 10 V in 10 ms after the
switch is closed. Assume that the circuit is at steady state before
the switch is closed. Also assume that the transition will be
complete after 5 time constants.

+
– v(t)

+

–

t = 0

CR3

R2R1

12 V

Figure DP 8-1

DP 8-2 Design the circuit in Figure DP 8-2 so that i(t) makes the
transition from i(t) ¼ 1 mA to i(t) ¼ 4 mA in 10 ms after the
switch is closed. Assume that the circuit is at steady state before
the switch is closed. Also assume that the transition will be
complete after 5 time constants.

i(t)+
–

t = 0

L

R2R1

12 V

Figure DP 8-2

DP 8-3 The switch in Figure DP 8-3 closes at time 0, 2Dt, 4Dt,
. . . 2kDt and opens at times Dt, 3Dt, 5Dt, . . . . (2k þ 1)Dt. When
the switch closes, v(t) makes the transition from v(t) ¼ 0 V to v(t) ¼
5 V. Conversely, when the switch opens, v(t) makes the transition
from v(t) ¼ 5 V to v(t) ¼ 0 V. Suppose we require that Dt ¼ 5t
so that one transition is complete before the next one begins.
(a) Determine the value of C required so that Dt ¼ 1 ms. (b) How
large must Dt be when C ¼ 2 mF?

Answer: (a) C ¼ 4 pF; (b) Dt ¼ 0.5s

49 kΩ

1 kΩ+
– v(t)

+

–

t = (2k + 1)Δt

t = 2k Δt
C5 V

Figure DP 8-3

DP 8-4 The switch in Figure DP 8-3 closes at time 0, 2Dt, 4Dt,
. . . 2kDt and opens at times Dt, 3Dt, 5Dt, . . . . (2k þ 1)Dt.
When the switch closes, v(t) makes the transition from v(t) ¼ 0 V
to v(t) ¼ 5 V. Conversely, when the switch opens, v(t) makes the
transition from v(t) ¼ 5 V to v(t) ¼ 0 V. Suppose we require that
one transition be 95 percent complete before the next one begins.
(a) Determine the value of C required so that Dt ¼ 1 ms. (b) How
large must Dt be when C ¼ 2 mF?

Hint: Show that Dt ¼ �t ln(1 � k) is required for the transition
to be 100 k percent complete.

Answer: (a) C ¼ 6.67 pF; (b) Dt ¼ 0.3 s
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DP 8-5 A laser trigger circuit is shown in Figure DP 8-5. To
trigger the laser, we require 60 mA < jij < 180 mA for 0 < t <
200 ms. Determine a suitable value for R1 and R2.

+
–

t = 0

20 V

i

Ω40

R1
R2

Ω40

10 mH Laser
trigger

Figure DP 8-5 Laser trigger circuit.

DP 8-6 Fuses are used to open a circuit when excessive current
flows (Wright, 1990). One fuse is designed to open when the
power absorbed by R exceeds 10 W for 0.5 s. Consider the circuit
shown in Figure DP 8-6. The input is given by vs ¼ A[u(t) � u(t �
0.75)] V. Assume that iL(0�) ¼ 0. Determine the largest value of A
that will not cause the fuse to open.

vs(t)

R

0.2 H

2 Ω

Fuse

1 Ω

+
– Load

Figure DP 8-6 Fuse circuit.

DP 8-7 Design the circuit in Figure DP 8-7(a) to have the
response in Figure DP 8-7(b) by specifying the values of C, R1,

and R2.

80 Ωv(t)

+

–

(a)

C

+ –

25 V

R1

R2
t = 0

20
v(t), V

t, s

(b)

18

10

0 3.22

Figure DP 8-7

DP 8-8 Design the circuit in Figure DP 8-8(a) to have the
response in Figure DP 8-8(b) by specifying the values of L, R1,

and R2.

8
v(t), V

t, ms

(b)

7

2

0 358

(a)

8 Ω

v(t)+ –

L

12 V

R1

R2
t = 0

+
–

Figure DP 8-8
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DP 8-9 Design the circuit in Figure DP 8-9(a) to have the
response in Figure DP 8-9(b) by specifying the values of C, R1,

and R2.

9
v(t), V

t, s

(b)

6

5

0 0.173

240 Ω

v(t)

+

–

(a)

C 15 VR1 R2

t = 0

+
–

Figure DP 8-9

DP 8-10 Design the circuit in Figure DP 8-10(a) to have the
response in Figure DP 8-10(b) by specifying the values of L, R1,

and R2.

120
i (t), mA

t, ms

(b)

70
60

0 119.5

i (t)

(a)

L

180 mA

R1

R2
t = 0

28 Ω

Figure DP 8-10
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9.1 I n t r o d u c t i o n

In this chapter, we consider second-order circuits. A second-order circuit is a circuit that is represented
by a second-order differential equation. As a rule of thumb, the order of the differential equation that
represents a circuit is equal to the number of capacitors in the circuit plus the number of inductors.
For example, a second-order circuit might contain one capacitor and one inductor, or it might contain
two capacitors and no inductors.

For example, a second-order circuit could be represented by the equation

d2

dt2
x tð Þ þ 2a

d

dt
x tð Þ þ o2

0 x tð Þ ¼ f tð Þ

where x(t) is the output of the circuit, and f ðtÞ is the input to the circuit. The output of the circuit, also
called the response of the circuit, can be the current or voltage of any device in the circuit. The output is
frequently chosen to be the current of an inductor or the voltage of a capacitor. The voltages of
independent voltage sources and/or currents of independent current sources provide the input to the
circuit. The coefficients of this differential equation have names: a is called the damping coefficient, and
o0 is called the resonant frequency.

To find the response of the second-order circuit, we:

� Represent the circuit by a second-order differential equation.
� Find the general solution of the homogeneous differential equation. This solution is the natural

response xn(t). The natural response will contain two unknown constants that will be evaluated later.378



� Find a particular solution of the differential equation. This solution is the forced response xf(t).
� Represent the response of the second-order circuit as x(t) ¼ xn(t) þ xf(t).
� Use the initial conditions, for example, the initial values of the currents in inductors and the voltages

across capacitors, to evaluate the unknown constants.

9.2 D i f f e r e n t i a l E q u a t i o n f o r C i r c u i t s w i t h Tw o E n e r g y
S t o r a g e E l em e n t s

In Chapter 8, we considered circuits that contained only one energy storage element, and these could be
described by a first-order differential equation. In this section, we consider the description of circuits with
two irreducible energy storage elements that are described by a second-order differential equation. Later, we
will consider circuits with three or more irreducible energy storage elements that are described by a third-
order (or higher) differential equation. We use the term irreducible to indicate that all parallel or series
connections or other reducible combinations of like storage elements have been
reduced to their irreducible form. Thus, for example, any parallel capacitors have
been reduced to an equivalent capacitor Cp.

In the following paragraphs, we use two methods to obtain the second-order
differential equation for circuits with two energy storage elements. Then, in the next
section, we obtain the solution to these second-order differential equations.

First, let us consider the circuit shown in Figure 9.2-1, which consists of a
parallel combination of a resistor, an inductor, and a capacitor. Writing the nodal
equation at the top node, we have

v

R
þ i þ C

dv

dt
¼ is ð9:2-1Þ

Then we write the equation for the inductor as

v ¼ L
di

dt
ð9:2-2Þ

Substitute Eq. 9.2-2 into Eq. 9.2-1, obtaining

L

R

di

dt
þ i þ CL

d2i

dt2
¼ is ð9:2-3Þ

which is the second-order differential equation we seek. Solve this equation for i(t). If v(t) is required,
use Eq. 9.2-2 to obtain it.

This method of obtaining the second-order differential equation may be called the direct method
and is summarized in Table 9.2-1.

In Table 9.2-1, the circuit variables are called x1 and x2. In any example, x1 and x2 will be specific
element currents or voltages. When we analyzed the circuit of Figure 9.2-1, we used x1 ¼ v and x2 ¼ i.
In contrast, to analyze the circuit of Figure 9.2-2, we will use x1 ¼ i and x2 ¼ v, where i is the inductor
current and v is the capacitor voltage.

Now let us consider the RLC series circuit shown in Figure 9.2-2 and use the direct method to
obtain the second-order differential equation. We chose x1 ¼ i and x2 ¼ v. First, we seek an equation for
dx1=dt ¼ di=dt. Writing KVL around the loop, we have

L
di

dt
þ v þ Ri ¼ vs ð9:2-4Þ

where v is the capacitor voltage. This equation may be written as

di

dt
þ v

L
þ R

L
i ¼ vs

L
ð9:2-5Þ

i

is

v

R L C

Ground

FIGURE 9.2-1 A parallel RLC circuit.
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Recall v ¼ x2 and obtain an equation in terms of
dx2

dt
. Because

C
dv

dt
¼ i ð9:2-6Þ

or C
dx2
dt

¼ x1 ð9:2-7Þ
substitute Eq. 9.2-6 into Eq. 9.2-5 to obtain the desired second-order differential equation:

C
d2v

dt2
þ v

L
þ RC

L

dv

dt
¼ vs

L
ð9:2-8Þ

Equation 9.2-8 may be rewritten as

d2v

dt2
þ R

L

dv

dt
þ 1

LC
v ¼ vs

LC
ð9:2-9Þ

Another method of obtaining the second-order differential equation describing a circuit is called
the operator method. First, we obtain differential equations describing node voltages or mesh currents
and use operators to obtain the differential equation for the circuit.

As a more complicated example of a circuit with two energy storage elements, consider the circuit
shown in Figure 9.2-3. This circuit has two inductors and can be described by the mesh currents as
shown in Figure 9.2-3. The mesh equations are

L1
di1
dt

þ R i1 � i2ð Þ ¼ vs ð9:2-10Þ

and R i2 � i1ð Þ þ L2
di2
dt

¼ 0 ð9:2-11Þ

Now, let us use R ¼ 1 V, L1 ¼ 1 H, and L2 ¼ 2 H. Then we have

di1
dt

þ i1 � i2 ¼ vs

Table 9.2-1 The Direct Method for Obtaining the Second-Order Differential Equation

of a Circuit

Step 1 Identify the first and second variables, x1 and x2. These variables are capacitor voltages and/or inductor
currents.

Step 2 Write one first-order differential equation, obtaining
dx1

dt
¼ f x1; x2ð Þ.

Step 3 Obtain an additional first-order differential equation in terms of the second variable so that
dx2

dt
¼ Kx1 or

x1 ¼ 1
K

dx2

dt
.

Step 4 Substitute the equation of step 3 into the equation of step 2, thus obtaining a second-order differential
equation in terms of x2.

vs

L C

R

v
+ –

i
+
–

FIGURE 9.2-2 A series RLC circuit.

i1 i2vs

L1

L2R+
–

FIGURE 9.2-3 Circuit with two
inductors.
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and i2 � i1 þ 2
di2
dt

¼ 0 ð9:2-12Þ

In terms of i1 and i2, we may rearrange these equations as

di1
dt

þ i1 � i2 ¼ vs ð9:2-13Þ

and � i1 þ i2 þ 2
di2
dt

¼ 0 ð9:2-14Þ

It remains to obtain one second-order differential equation. This is done in the second step of the operator
method. The differential operator s, where s ¼ d=dt, is used to transform differential equations into
algebraic equations. Upon replacing d=dt by s, Eqs. 9.2-13 and 9.2-14 become

si1 þ i1 � i2 ¼ vs

and � i1 þ i2 þ 2si2 ¼ 0

These two equations may be rewritten as

s þ 1ð Þi1 � i2 ¼ vs

and � i1 þ 2s þ 1ð Þi2 ¼ 0

We may solve for i2, obtaining

i2 ¼ 1vs
s þ 1ð Þ 2s þ 1ð Þ � 1

¼ vs
2s2 þ 3s

Therefore; 2s2 þ 3s
� �

i2 ¼ vs

Now, replacing s2 by
d2

dt2
and s by

d

dt
, we obtain the differential equation

2
d2i2
dt2

þ 3
di2
dt

¼ vs ð9:2-15Þ

The operator method for obtaining the second-order differential equation is summarized in
Table 9.2-2.

Table 9.2-2 Operator Method for Obtaining the Second-Order Differential Equation

of a Circuit

Step 1 Identify the variable x1 for which the solution is desired.

Step 2 Write one differential equation in terms of the desired variable x1 and a second variable, x2.

Step 3 Obtain an additional equation in terms of the second variable and the first variable.

Step 4 Use the operator s ¼ d=dt and 1=s ¼ R
dt to obtain two algebraic equations in terms of s and the two

variables x1 and x2.

Step 5 Using Cramer’s rule, solve for the desired variable so that x1¼ f (s, sources) ¼ P(s)=Q(s), where P(s)
and Q(s) are polynomials in s.

Step 6 Rearrange the equation of step 5 so that Q(s)x1 ¼ P(s).

Step 7 Convert the operators back to derivatives for the equation of step 6 to obtain the second-order differential
equation.
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E X A M P L E 9 . 2 - 1 Representing a Circuit by a
Differential Equation

Find the differential equation for the current i2 for the circuit of
Figure 9.2-4.

Solution
Write the two mesh equations, using KVL to obtain

2i1 þ di1
dt

� di2
dt

¼ vs

� di1
dt

þ 3 i2 þ 2
di2
dt

¼ 0

Using the operator s ¼ d=dt, we have
2þ sð Þi1 � si2 ¼ vs

and � si1 þ 3þ 2sð Þi2 ¼ 0

Using Cramer’s rule to solve for i2, we obtain

i2 ¼ svs
2þ sð Þ 3þ 2sð Þ � s2

¼ svs
s2 þ 7s þ 6

ð9:2-16Þ

Rearranging Eq. 9.2-16, we obtain
s2 þ 7s þ 6
� �

i2 ¼ svs ð9:2-17Þ
Therefore, the differential equation for i2 is

d2i2
dt2

þ 7
di2
dt

þ 6i2 ¼ dvs
dt

ð9:2-18Þ

i1vs i2+
–

2 Ω

3 Ω

1 H

1 H

FIGURE 9.2-4 Circuit for Example 9.2-1.

E X A M P L E 9 . 2 - 2 Representing a Circuit by a
Differential Equation

Find the differential equation for the voltage v for the circuit of Figure 9.2-5.

Solution
The KCL node equation at the upper node is

v � vs
R1

þ i þ C
dv

dt
¼ 0 ð9:2-19Þ

Because we wish to determine the equation in terms of v, we need a second
equation in terms of the current i. Write the equation for the current through
the branch containing the inductor as

Ri þ L
di

dt
¼ v ð9:2-20Þ

+
–

1 kΩ
1 Ω

1 mH

Ground

1 mF

i

vR1

vs

R

C

L

FIGURE 9.2-5 The RLC circuit for
Example 9.2-2.

Try it 
yourself 

in WileyPLUS

Try it 
yourself 

in WileyPLUS
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EXERCISE 9.2-1 Find the second-order differential equation for the circuit
shown in Figure E 9.2-1 in terms of i, using the direct method.

Answer:
d2i

dt2
þ 1

2
di

dt
þ i ¼ 1

2
dis
dt

EXERCISE 9.2-2 Find the second-order differential equation for the circuit
shown in Figure E 9.2-2 in terms of v using the operator method.

Answer:
d2v

dt2
þ 2

dv

dt
þ 2v ¼ 2

dis
dt

9.3 S o l u t i o n o f t h e S e c o n d - O r d e r D i f f e r e n t i a l E q u a t i o n—

T h e N a t u r a l R e s p o n s e

In the preceding section, we found that a circuit with two irreducible energy storage elements can be
represented by a second-order differential equation of the form

a2
d2x

dt2
þ a1

dx

dt
þ a0x ¼ f tð Þ

where the constants a2, a1, a0 are known and the forcing function f ðtÞ is specified.
The complete response x(t) is given by

x ¼ xn þ xf ð9:3-1Þ
where xn is the natural response and xf is a forced response. The natural response satisfies the unforced
differential equation when f ðtÞ ¼ 0. The forced response xf satisfies the differential equation with the
forcing function present.

Using the operator s ¼ d=dt, we have the two equations
v

R1
þ Csv þ i ¼ vs

R1

and � v þ Ri þ Lsi ¼ 0

Substituting the parameter values and rearranging, we have

10�3 þ 10�3s
� �

v þ i ¼ 10�3vs

and � v þ 10�3s þ 1
� �

i ¼ 0

Using Cramer’s rule, solve for v to obtain

v ¼ s þ 1000ð Þvs
s þ 1ð Þ s þ 1000ð Þ þ 106

¼ s þ 1000ð Þvs
s2 þ 1001s þ 1001� 103

Therefore, we have
s2 þ 1001s þ 1001� 103
� �

v ¼ s þ 1000ð Þvs
or the differential equation we seek is

d2v

dt2
þ 1001

dv

dt
þ 1001� 103v ¼ dvs

dt
þ 1000vs

1 21 Ω

2 H

F
i

is

FIGURE E 9.2-1

1 21 Ω 1 H Fis

v

Ground

FIGURE E 9.2-2
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The natural response of a circuit xn will satisfy the equation

a2
d2xn
dt2

þ a1
dxn
dt

þ a0xn ¼ 0 ð9:3-2Þ
Because xn and its derivatives must satisfy the equation, we postulate the exponential solution

xn ¼ Aest ð9:3-3Þ
where A and s are to be determined. The exponential is the only function that is proportional to all of its
derivatives and integrals and, therefore, is the natural choice for the solution of a differential equation
with constant coefficients. Substituting Eq. 9.3-3 in Eq. 9.3-2 and differentiating where required, we
have

a2As2est þ a1Asest þ a0Aest ¼ 0 ð9:3-4Þ
Because xn ¼ Aest, we may rewrite Eq. 9.3-4 as

a2s2xn þ a1sxn þ a0xn ¼ 0

or a2s2 þ a1s þ a0

� �
xn ¼ 0

Because we do not accept the trivial solution, xn ¼ 0, it is required that

a2s2 þ a1s þ a0

� � ¼ 0 ð9:3-5Þ
This equation, in terms of s, is called a characteristic equation. It is readily obtained by replacing the
derivative by s and the second derivative by s2. Clearly, we have returned to the familiar operator

sn ¼ dn

dtn

The characteristic equation is derived from the governing differential equation for a circuit
by setting all independent sources to zero value and assuming an exponential solution.

Oliver Heaviside (1850–1925), shown in Figure 9.3-1, advanced the theory of operators for
the solution of differential equations.

The solution of the quadratic equation (9.3-5) has two roots, s1 and s2, where

s1 ¼ �a1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1 � 4a2a0

p
2a2

ð9:3-6Þ

and s2 ¼ �a1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
1 � 4a2a0

p
2a2

ð9:3-7Þ

When there are two distinct roots, the natural response is of the form

xn ¼ A1e
s1t þ A2e

s2t ð9:3-8Þ
where A1 and A2 are unknown constants that will be evaluated later. We will delay
considering the special case when s1 ¼ s2.

The roots of the characteristic equation contain all the information necessary for determining
the character of the natural response.

FIGURE 9.3-1 Oliver
Heaviside (1850–1925).

# Photograph courtesy of
the Institution of Electrical
Engineers
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EXERCISE 9.3-1 Find the characteristic equation and the natural frequencies for the circuit
shown in Figure E 9.3-1.

is

v

4 Ω

6 Ω

F

1 H

Ground

1 4

FIGURE E 9.3-1

Answer: s2 þ 7s þ 10 ¼ 0
s1 ¼ �2
s2 ¼ �5

E X A M P L E 9 . 3 - 1 Natural Response of a
Second-Order Circuit

Find the natural response of the circuit current i2 shown in
Figure 9.3-2. Use operators to formulate the differential equation
and obtain the response in terms of two arbitrary constants.

Solution
Writing the two mesh equations, we have

12i1 þ 2
di1
dt

� 4 i2 ¼ vs

and � 4 i1 þ 4 i2 þ 1
di2
dt

¼ 0

Using the operator s¼d=dt, we obtain
12þ 2sð Þi1 � 4i2 ¼ vs ð9:3-9Þ
�4i1 þ 4þ sð Þi2 ¼ 0 ð9:3-10Þ

Solving for i2, we have

i2 ¼ 4 vs
12þ 2sð Þ 4þ sð Þ � 16

¼ 4 vs
2s2 þ 20s þ 32

¼ 2 vs
s2 þ 10s þ 16

Therefore; s2 þ 10s þ 16
� �

i2 ¼ 2vs

Note that (s2 þ 10s þ 16) ¼ 0 is the characteristic equation. Thus, the roots of the characteristic equation are
s1 ¼ �2 and s2 ¼ �8. Therefore, the natural response is

xn ¼ A1e
�2t þ A2e

�8t

where x ¼ i2. The roots s1 and s2 are the characteristic roots and are often called the natural frequencies. The
reciprocals of the magnitude of the real characteristic roots are the time constants. The time constants of this circuit
are 1=2 s and 1=8 s.

i1 i2vs

2 H

1 H

8 Ω

+
– 4 Ω

FIGURE 9.3-2 Circuit of Example 9.3-1.
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9.4 N a t u r a l R e s p o n s e o f t h e U n f o r c e d
P a r a l l e l R L C C i r c u i t

In this section, we consider the (unforced) natural response of the parallel RLC circuit shown
in Figure 9.4-1. We choose to examine the parallel RLC circuit to illustrate the three forms of
the natural response. An analogous discussion of the series RLC circuit could be presented,
but it is omitted because the purpose is not to obtain the solution to specific circuits but rather
to illustrate the general method.

A circuit that contains one capacitor and one inductor is represented by a second-order
differential equation,

d2

dt2
x tð Þ þ 2a

d

dt
x tð Þ þ o2

0 x tð Þ ¼ f tð Þ
where x(t) is the output of the circuit and f ðtÞ is the input to the circuit. The output of the circuit, also
called the response of the circuit, can be the current or voltage of any device in the circuit. The output is
frequently chosen to be the current of an inductor or the voltage of a capacitor. The voltages of
independent voltage sources and/or currents of independent current sources provide the input to the
circuit. The coefficients of this differential equation have names: a is called the damping coefficient, and
o0 is called the resonant frequency.

The circuit shown in Figure 9.4-1 does not contain any independent sources, so the input f ðtÞ is
zero. The differential equation with f ðtÞ ¼ 0 is called a homogeneous differential equation. We will take
the output to be the voltage v(t) at the top node of the circuit. Consequently, we will represent the circuit
in Figure 9.4-1 by a homogeneous differential equation of the form

d2

dt2
v tð Þ þ 2a

d

dt
v tð Þ þ o2

0 v tð Þ ¼ 0

Write the KCL at the top node to obtain

v

R
þ 1

L

Z t

0
v dtþ i 0ð Þ þ C

dv

dt
¼ 0 ð9:4-1Þ

Taking the derivative of Eq. 9.4-1, we have

C
d2v

dt2
þ 1

R

dv

dt
þ 1

L
v ¼ 0 ð9:4-2Þ

Dividing both sides of Eq. 9.4-2 by C, we have

d2v

dt2
þ 1

RC

dv

dt
þ 1

LC
v ¼ 0 ð9:4-3Þ

Using the operator s, we obtain the characteristic equation

s2 þ 1

RC
s þ 1

LC
¼ 0 ð9:4-4Þ

Comparing Eq. 9.4-4 to Eq. 9.4-1, we see

a ¼ 1

2RC
and o2

0 ¼
1

LC
ð9:4-5Þ

The two roots of the characteristic equation are

s1 ¼ � 1

2RC
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2RC

� �2

� 1

LC

s
and s2 ¼ � 1

2RC
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2RC

� �2

� 1

LC

s
ð9:4-6Þ

i

v

L R C

FIGURE 9.4-1 Parallel
RLC circuit.
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When s1 is not equal to s2, the solution to the second-order differential Eq. 9.4-3 for t > 0 is

vn ¼ A1es1t þ A2es2t ð9:4-7Þ
The roots of the characteristic equation may be rewritten as

s1 ¼ �aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � o2

0

p
and s2 ¼ �a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � o2

0

p ð9:4-8Þ
The damped resonant frequency, od, is defined to be

od ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 � a2
q

When o0 > a, the roots of the characteristic equation are complex and can be expressed as

s1 ¼ �aþ jod and s2 ¼ �a� jod

The roots of the characteristic equation assume three possible conditions:

1. Two real and distinct roots when a2 > o2
0.

2. Two real equal roots when a2 ¼ o2
0.

3. Two complex roots when a2 < o2
0.

When the two roots are real and distinct, the circuit is said to be overdamped. When the roots
are both real and equal, the circuit is critically damped. When the two roots are complex
conjugates, the circuit is said to be underdamped.

Let us determine the natural response for the overdamped RLC circuit of Figure 9.4-1 when the
initial conditions are v(0) and i(0) for the capacitor and the inductor, respectively. Notice that because
the circuit in Figure 9.4-1 has no input, vn(0) and v(0) are both names for the same voltage. Then, at t ¼ 0
for Eq. 9.4-7, we have

vn 0ð Þ ¼ A1 þ A2 ð9:4-9Þ
Because A1 and A2 are both unknown, we need one more equation at t ¼ 0. Rewriting Eq. 9.4-1 at t ¼ 0,
we have1

v 0ð Þ
R

þ i 0ð Þ þ C
dv 0ð Þ

dt
¼ 0

Because i(0) and v(0) are known, we have

dv 0ð Þ
dt

¼ � v 0ð Þ
RC

� i 0ð Þ
C

ð9:4-10Þ

Thus, we now know the initial value of the derivative of v in terms of the initial conditions. Taking the
derivative of Eq. 9.4-7 and setting t ¼ 0, we obtain

dvn 0ð Þ
dt

¼ s1A1 þ s2A2 ð9:4-11Þ

Using Eqs. 9.4-10 and 9.4-11, we obtain a second equation in terms of the two constants as

s1A1 þ s2A2 ¼ � v 0ð Þ
RC

� i 0ð Þ
C

ð9:4-12Þ

Using Eqs. 9.4-9 and 9.4-12, we may obtain A1 and A2.

1 Note:
dv 0ð Þ

dt
means

dv tð Þ
dt

����
t¼0
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EXERCISE 9.4-1 Find the natural response of the RLC circuit of Figure 9.4-1 when R ¼ 6 V,
L ¼ 7 H, and C¼ 1=42 F. The initial conditions are v(0) ¼ 0 and i(0) ¼ 10 A.

Answer: vn tð Þ ¼ �84 e�t � e�6t
� �

V

E X A M P L E 9 . 4 - 1 Natural Response of an Overdamped
Second-Order Circuit

Find the natural response of v(t) for t > 0 for the parallel RLC circuit shown in Figure 9.4-1 when R ¼ 2=3 V,
L ¼ 1 H, C ¼ 1=2 F, v(0) ¼ 10 V, and i(0) ¼ 2 A.

Solution
Using Eq. 9.4-4, the characteristic equation is

s2 þ 1

RC
s þ 1

LC
¼ 0

or s2 þ 3s þ 2 ¼ 0

Therefore, the roots of the characteristic equation are
s1 ¼ �1 and s2 ¼ �2

Then the natural response is
vn ¼ A1e�t þ A2e

�2t ð9:4-13Þ
The initial capacitor voltage is v(0) ¼ 10, so we have

vn 0ð Þ ¼ A1 þ A2

or 10 ¼ A1 þ A2 ð9:4-14Þ
We use Eq. 9.4-12 to obtain the second equation
for the unknown constants. Then

s1A1 þ s2A2 ¼ � v 0ð Þ
RC

� i 0ð Þ
C

or � A1 � 2A2 ¼ � 10

1=3
� 2

1=2

Therefore, we have

�A1 � 2A2 ¼ �34 ð9:4-15Þ
Solving Eqs. 9.4-14 and 9.4-15 simultaneously,
we obtain A2 ¼ 24 and A1 ¼ �14. Therefore, the
natural response is

vn ¼ �14e�t þ 24e�2t
� �

V

The natural response of the circuit is shown in
Figure 9.4-2.

t (s)

10

5

0

–5

vn(t)
(V)

1 2

3

FIGURE 9.4-2 Response of the RLC circuit of Example 9.4-1.
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9.5 N a t u r a l R e s p o n s e o f t h e C r i t i c a l l y D amp e d U n f o r c e d
P a r a l l e l R L C C i r c u i t

Again we consider the parallel RLC circuit, and here we will determine the special case when the
characteristic equation has two equal real roots. Two real, equal roots occur when a2 ¼ o2

0, where

a ¼ 1

2RC
and o2

0 ¼
1

LC

Let us assume that s1 ¼ s2 and proceed to find vn(t). We write the natural response as the sum of two
exponentials as

vn ¼ A1e
s1t þ A2e

s1t ¼ A3e
s1t ð9:5-1Þ

where A3 ¼ A1 þ A2. Because the two roots are equal, we have only one undetermined constant, but we
still have two initial conditions to satisfy. Clearly, Eq. 9.5-1 is not the total solution for the natural
response of a critically damped circuit. We need the solution that will contain two arbitrary constants, so
with some foreknowledge, we try the solution

vn ¼ es1t A1t þ A2ð Þ ð9:5-2Þ
Let us consider a parallel RLC circuit in which L ¼ 1 H, R ¼ 1 V, C ¼ 1/4 F, v(0) ¼ 5 V, and

i(0) ¼ �6 A. The characteristic equation for the circuit is

s2 þ 1

RC
s þ 1

LC
¼ 0

or s2 þ 4s þ 4 ¼ 0

The two roots are then s1 ¼ s2 ¼ �2. Using Eq. 9.5-2 for the natural response, we have

vn ¼ e�2t A1t þ A2ð Þ ð9:5-3Þ
Because vn(0) ¼ 5, we have at t ¼ 0

5 ¼ A2

Now, to obtain A1, we proceed to find the derivative of vn and evaluate it at t ¼ 0. The derivative of vn is
found by differentiating Eq. 9.5-3 to obtain

dv

dt
¼ �2A1te

�2t þ A1e
�2t � 2A2e�2t ð9:5-4Þ

Evaluating Eq. 9.5-4 at t ¼ 0, we have

dv 0ð Þ
dt

¼ A1 � 2A2

Again, we may use Eq. 9.4-10 so that

dv 0ð Þ
dt

¼ � v 0ð Þ
RC

� i 0ð Þ
C

or A1 � 2A2 ¼ �5

1/4
��6

1/4
¼ 4

Therefore, A1 ¼ 14 and the natural response is

vn ¼ e�2t 14t þ 5ð Þ V

The critically damped natural response of this RLC circuit is shown
in Figure 9.5-1.

0

2.5

5

0 1 2

vn (V)

t (s)

FIGURE 9.5-1 Critically damped response of the
parallel RLC circuit.
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EXERCISE 9.5-1 A parallel RLC circuit has R ¼ 10 V, C ¼ 1 mF, L ¼ 0.4 H, v(0) ¼ 8 V, and
i(0) ¼ 0. Find the natural response vn(t) for t < 0.

Answer: vn tð Þ ¼ e�50t 8 � 400tð Þ V

9.6 N a t u r a l R e s p o n s e o f a n U n d e r d amp e d U n f o r c e d
P a r a l l e l R L C C i r c u i t

The characteristic equation of the parallel RLC circuit will have two complex conjugate roots when
a2 < o2

0. This condition is met when
LC < 2RCð Þ2

or when
L < 4R2C

Recall that

vn ¼ A1es1t þ A2es2t ð9:6-1Þ

where s1;2 ¼ �a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � o2

0

q

When o2
0 > a2

we have

s1;2 ¼ �a� j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 � a20

q

where j ¼
ffiffiffiffiffiffiffi
�1

p

See Appendix B for a review of complex numbers.
The complex roots lead to an oscillatory-type response. We define the square root

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 � a2
p

as
od, which we will call the damped resonant frequency. The factor a, called the damping coefficient,
determines how quickly the oscillations subside. Then the roots are

s1;2 ¼ �a� jod

Therefore, the natural response is

vn ¼ A1e
�ate jodt þ A2e

�ate�jodt

or vn ¼ e�at A1e jodt þ A2e�jodt
� � ð9:6-2Þ

Let us use the Euler identity2

e�jot ¼ cosot � j sinot ð9:6-3Þ
Let o ¼ od in Eq. 9.6-3 and substitute into Eq. 9.6-2 to obtain

vn ¼ e�at A1 cosodt þ jA1 sinodt þ A2 cosodt � jA2 sinodtð Þ
¼ e�at A1 þ A2ð Þ cosodt þ j A1 � A2ð Þ sinodt½ � ð9:6-4Þ

Because the unknown constants A1 and A2 remain arbitrary, we replace (A1 þ A2) and j(A1 � A2) with
new arbitrary (yet unknown) constants B1 and B2. A1 and A2 must be complex conjugates so that B1 and
B2 are real numbers. Therefore, Eq. 9.6-4 becomes

vn ¼ e�at B1 cosodt þ B2 sinodtð Þ ð9:6-5Þ
where B1 and B2 will be determined by the initial conditions v(0) and i(0).

2 See Appendix B for a discussion of Euler’s identity.
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The natural underdamped response is oscillatory with a decaying magnitude. The rapidity of
decay depends on a, and the frequency of oscillation depends on od.

Let us find the general form of the solution for B1 and B2 in terms of the initial conditions when the
circuit is unforced. Then, at t ¼ 0, we have

vn 0ð Þ ¼ B1

To find B2, we evaluate the first derivative of vn and then let t ¼ 0. The derivative is
dvn
dt

¼ e�at odB2 � aB1ð Þ cosodt � odB1 þ aB2ð Þ sinodt½ �
and, at t ¼ 0, we obtain

dvn 0ð Þ
dt

¼ odB2 � aB1 ð9:6-6Þ
Recall that we found earlier that Eq. 9.4-10 provides dv(0)=dt for the parallel RLC circuit as

dvn 0ð Þ
dt

¼ � v 0ð Þ
RC

� i 0ð Þ
C

ð9:6-7Þ
Therefore, we use Eqs. 9.6-6 and 9.6-7 to obtain

odB2 ¼ aB1 � v 0ð Þ
RC

� i 0ð Þ
C

ð9:6-8Þ

E X A M P L E 9 . 6 - 1 Natural Response of an Underdamped
Second-Order Circuit

Consider the parallel RLC circuit when R¼ 25=3 V, L ¼ 0.1 H, C ¼ 1 mF, v(0) ¼ 10 V, and i(0) ¼�0.6 A. Find the
natural response vn(t) for t > 0.

Solution
First, we determine a2 and o2

0 to determine the form of the response. Consequently, we obtain

a ¼ 1

2RC
¼ 60 and o2

0 ¼
1

LC
¼ 104

Therefore, o2
0 > a2, and the natural response is underdamped. We proceed to determine the damped resonant

frequency od as

od ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 � a2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
104 � 3:6� 103

p
¼ 80 rad/s

Hence, the characteristic roots are

s1 ¼ �aþ jod ¼ �60þ j80 and s2 ¼ �a� jod ¼ �60� j80

Consequently, the natural response is obtained from Eq. 9.6-5 as

vn tð Þ ¼ B1e
�60t cos 80t þ B2e

�60t sin 80t

Because v(0) ¼ 10, we have

B1 ¼ v 0ð Þ ¼ 10
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The period of the damped oscillation is the time interval, denoted as Td, expressed as

Td ¼ 2p
od

ð9:6-9Þ

The natural response of an underdamped circuit is not a pure oscillatory response, but it does
exhibit the form of an oscillatory response. Thus, we may approximate Td by the period between the
first and third zero-crossings, as shown in Figure 9.6-1. Therefore, the frequency in hertz is

f d ¼
1

Td

The period of the oscillation of the circuit of Example 9.6-1 is

Td ¼ 2p
80

¼ 79 ms

EXERCISE 9.6-1 A parallel RLC circuit has R ¼ 62.5 V, L ¼ 10 mH, C ¼ 1 mF,
v(0) ¼ 10 V, and i(0) ¼ 80 mA. Find the natural response vn(t) for t > 0.

Answer: vn tð Þ ¼ e�8000t 10 cos 6000t � 26:7 sin 6000t½ � V

9.7 F o r c e d R e s p o n s e o f a n R L C C i r c u i t

The forced response of an RLC circuit described by a second-order differential equation must satisfy the
differential equation and contain no arbitrary constants. As we noted earlier, the response to a forcing
function will often be of the same form as the forcing function. Again, we consider the differential

We can use Eq. 9.6-8 to obtain B2 as

B2 ¼ a
od

B1 � v 0ð Þ
odRC

� i 0ð Þ
odC

¼ 60� 10

80
� 10

80� 25/3000
� �0:6

80� 10�3 ¼ 7:5� 15:0þ 7:5 ¼ 0

Therefore, the natural response is

vn tð Þ ¼ 10e�60t cos 80 t V

A sketch of this response is shown in Figure 9.6-1. Although the response is oscillatory in form because of the
cosine function, it is damped by the exponential function, e�60t.

0

10

vn (t)
(V)

t (ms)
20 40 60 80 100 120

Td

FIGURE 9.6-1 Natural response of the underdamped
parallel RLC circuit.
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equation for the second-order circuit as

d2x

dt2
þ a1

dx

dt
þ a0x ¼ f tð Þ ð9:7-1Þ

The forced response xf must satisfy Eq. 9.7-1. Therefore, substituting xf, we have

d2xf
dt2

þ a1
dxf
dt

þ a0xf ¼ f tð Þ ð9:7-2Þ
We need to determine xf so that xf and its first and second derivatives all satisfy Eq. 9.7-2.

If the forcing function is a constant, we expect the forced response also to be a constant because
the derivatives of a constant are zero. If the forcing function is of the form f ðtÞ ¼ Be�at, then the
derivatives of f ðtÞ are all exponentials of the form Qe�at, and we expect

xf ¼ De�at

If the forcing function is a sinusoidal function, we can expect the forced response to be a
sinusoidal function. If f ðtÞ ¼ A sin o0t, we will try

xf ¼ M sino0t þ N coso0t ¼ Q sin o0t þ yð Þ
Table 9.7-1 summarizes selected forcing functions and their associated assumed solutions.

Table 9.7-1 Forced Responses

FORCING FUNCTION ASSUMED RESPONSE

K A

Kt AtþB

Kt 2 At 2þBtþC

K sin ot A sin otþB cos ot

Ke�at Ae�at

E X A M P L E 9 . 7 - 1 Forced Response to an Exponential Input

Find the forced response for the inductor current if for the parallel RLC
circuit shown in Figure 9.7-1 when is ¼ 8e�2t A. Let R ¼ 6 V, L ¼ 7 H, and
C ¼ 1=42 F.

Solution
The source current is applied at t ¼ 0 as indicated by the unit step function
u(t). After t ¼ 0, the KCL equation at the upper node is

i þ v

R
þ C

dv

dt
¼ is ð9:7-3Þ

We note that

v ¼ L
di

dt
ð9:7-4Þ

so
dv

dt
¼ L

d2i

dt2
ð9:7-5Þ

i

is u(t)

v

R L C

Ground

FIGURE 9.7-1 Circuit for Examples
9.7-1 and 9.7-2.
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Substituting Eqs. 9.7-4 and 9.7-5 into Eq. 9.7-3, we have

i þ L

R

di

dt
þ CL

di2

dt2
¼ is

Then we divide by LC and rearrange to obtain the familiar second-order differential equation

d2i

dt2
þ 1

RC

di

dt
þ 1

LC
i ¼ is

LC
ð9:7-6Þ

Substituting the component values and the source is, we obtain

d2i

dt2
þ 7

di

dt
þ 6 i ¼ 48e�2t ð9:7-7Þ

We wish to obtain the forced response, so we assume that the response will be

if ¼ Be�2t ð9:7-8Þ
where B is to be determined. Substituting the assumed solution, Eq. 9.7-8, into the differential equation, we have

4Be�2t þ 7 �2Be�2t
� �þ 6 Be�2t ¼ 48e�2t

or 4� 14þ 6ð ÞBe�2t ¼ 48e�2t

Therefore, B ¼ �12 and

if ¼ �12e�2t A

E X A M P L E 9 . 7 - 2 Forced Response to a Constant Input

Find the forced response if of the circuit of Example 9.7-1 when is ¼ I0, where I0 is a constant.

Solution
Because the source is a constant applied at t ¼ 0, we expect the forced response to be a constant also. As a first
method, we will use the differential equation to find the forced response. Second, we will demonstrate the
alternative method that uses the steady-state behavior of the circuit to find if.

The differential equation with the constant source is obtained from Eq. 9.7-6 as

d2i

dt2
þ 7

di

dt
þ 6i ¼ 6I0

Again, we assume that the forced response is if ¼ D, a constant. Because the first and second derivatives of the
assumed forced response are zero, we have

6D ¼ 6I0

or D ¼ I0

Therefore; if ¼ I0

Another approach is to determine the steady-state response if of the circuit of
Figure 9.7-1 by drawing the steady-state circuit model. The inductor acts like
a short circuit, and the capacitor acts like an open circuit, as shown in Figure
9.7-2. Clearly, because the steady-state model of the inductor is a short circuit,
all the source current flows through the inductor at steady state, and

if ¼ I0

is = I0 A R i

FIGURE 9.7-2 Parallel RLC circuit at
steady state for a constant input.

394 9. The Complete Response of Circuits with Two Energy Storage Elements



The two previous examples showed that it is relatively easy to obtain the response of the circuit to
a forcing function. However, we are sometimes confronted with a special case where the form of the
forcing function is the same as the form of one of the components of the natural response.

Again, consider the circuit of Examples 9.7-1 and 9.7-2 (Figure 9.7-1) when the differential
equation is

d2i

dt2
þ 7

di

dt
þ 6 i ¼ 6 is ð9:7-9Þ

Suppose is ¼ 3 e�6t

Substituting this input into Eq. 9.7-9, we have

d2i

dt2
þ 7

di

di
þ 6i ¼ 18 e�6t ð9:7-10Þ

The characteristic equation of the circuit is

s2 þ 7s þ 6 ¼ 0

or s þ 1ð Þ s þ 6ð Þ ¼ 0

Thus, the natural response is

in ¼ A1e�t þ A2e
�6t

Then at first, we, expect the forced response to be

if ¼ Be�6t ð9:7-11Þ
However, the forced response and one component of the natural response would then both have the
form De�6t. Will this work? Let’s try substituting Eq. 9.7-11 into the differential equation (9.7-10). We
then obtain

36Be�6t � 42Be�6t þ 6Be�6t ¼ 18e�6t

or 0 ¼ 18e�6t

which is an impossible solution. Therefore, we need another form of the forced response when one of
the natural response terms has the same form as the forcing function.

Let us try the forced response

if ¼ Bte�6t ð9:7-12Þ
Then, substituting Eq. 9.7-12 into Eq. 9.7-10, we have

B �6e�6t � 6e�6t þ 36t e�6t
� �þ 7B e�6t � 6t e�6t

� �þ 6Bt e�6t ¼ 18 e�6t ð9:7-13Þ
Simplifying Eq. 9.7-13, we have

B ¼ � 18

5

Therefore; if ¼ � 18

5
te�6t

In general, if the forcing function is of the same form as one of the components of the natural
response xn1, we will use

xf ¼ t p xn1

where the integer p is selected so that the xf is not duplicated in the natural response. Use the lowest
power p of t that is not duplicated in the natural response.
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EXERCISE 9.7-1 A circuit is described for t > 0 by the equation

d2i

dt2
þ 9

di

dt
þ 20i ¼ 6is

where is ¼ 6 þ 2t A. Find the forced response if for t > 0.

Answer: if ¼ 1:53 þ 0:6t A

9.8 C omp l e t e R e s p o n s e o f a n R L C C i r c u i t

We have succeeded in finding the natural response and the forced response of a circuit described by a
second-order differential equation. We wish to proceed to determine the complete response for the
circuit.

The complete response is the sum of the natural response and the forced response; thus,

x ¼ xn þ xf

Let us consider the series RLC circuit of Figure 9.2-2 with a differential equation (9.2-8) as

LC
d2v

dt2
þ RC

dv

dt
þ v ¼ vs

When L ¼ 1 H, C ¼ 1/6 F, and R ¼ 5 V, we obtain
d2v

dt2
þ 5

dv

dt
þ 6v ¼ 6 vs ð9:8-1Þ

We let vs ¼ 2e�t

3
V, v(0) ¼ 10 V, and dv(0)=dt ¼ �2 V/s.

We will first determine the form of the natural response and then determine the forced response.
Adding these responses, we have the complete response with two unspecified constants. We will then
use the initial conditions to specify these constants to obtain the complete response.

To obtain the natural response, we write the characteristic equation, using operators as

s2 þ 5s þ 6 ¼ 0

or s þ 2ð Þ s þ 3ð Þ ¼ 0

Therefore, the natural response is

vn ¼ A1e
�2t þ A2e�3t

The forced response is obtained by examining the forcing function and noting that its exponential
response has a different time constant than the natural response, so we may write

vf ¼ Be�t ð9:8-2Þ
We can determine B by substituting Eq. 9.8-2 into Eq. 9.8-1. Then we have

Be�t þ 5 �Be�tð Þ þ 6 Be�tð Þ ¼ 4e�t

or B ¼ 2

The complete response is then

v ¼ vn þ vf ¼ A1e
�2t þ A2e�3t þ 2e�t
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To find A1 and A2, we use the initial conditions. At t ¼ 0, we have v(0) ¼ 10, so we obtain
10 ¼ A1 þ A2 þ 2 ð9:8-3Þ

From the fact that dv/dt ¼ �2 at t ¼ 0, we have
�2A1 � 3A2 � 2 ¼ �2 ð9:8-4Þ

Solving Eqs. 9.8-3 and 9.8-4, we have A1 ¼ 24 and A2 ¼ �16. Therefore,
v ¼ 24 e�2t � 16 e�3t þ 2 e�t V

E X A M P L E 9 . 8 - 1 Complete Response of a Second-Order Circuit

Find the complete response v(t) for t > 0 for the circuit of
Figure 9.8-1. Assume the circuit is at steady state at t ¼ 0�.

Solution
First, we determine the initial conditions of the circuit. At
t ¼ 0�, we have the circuit model shown in Figure 9.8-2,
where we replace the capacitor with an open circuit and the
inductor with a short circuit. Then the voltage is

v 0�ð Þ ¼ 6 V

and the inductor current is

i 0�ð Þ ¼ 1 A

After the switch is thrown, we can write the KVL for the
right-hand mesh of Figure 9.8-1 to obtain

�v þ di

dt
þ 6i ¼ 0 ð9:8-5Þ

The KCL equation at node a will provide a second equation in terms of v and i as
v � vs
4

þ i þ 1

4

dv

dt
¼ 0 ð9:8-6Þ

Equations 9.8-5 and 9.8-6 may be rearranged as

di

dt
þ 6i

� �
� v ¼ 0 ð9:8-7Þ

i þ v

4
þ 1

4

dv

dt

� �
=

vs
4

ð9:8-8Þ

We will use operators so that s ¼ d=dt, s2 ¼ d2/dt2, and 1=s ¼ R
dt. Then we obtain

s þ 6ð Þi � v ¼ 0 ð9:8-9Þ
i þ 1

4
s þ 1ð Þv ¼ vs=4 ð9:8-10Þ

Solving Eq. 9.8-10 for i and substituting the result into Eq. 9.8-9, we get

s þ 6ð Þ s þ 1ð Þ þ 4ð Þv ¼ s þ 6ð Þvs
Or; equivalently; s2 þ 7s þ 10

� �
v ¼ s þ 6ð Þvs

Hence, the second-order differential equation is

d2v

dt2
þ 7

dv

dt
þ 10v ¼ dvs

dt
þ 6vs ð9:8-11Þ

+
– +

–

v
+

–
1 4 F

1 H

10 V

a

6 Ω

4 Ωt = 0

vs = 6 e–3tu(t) V

i

FIGURE 9.8-1 Circuit of Example 9.8-1.

v
+

–i

+
– 6 Ω

4 Ω

10 V

FIGURE 9.8-2 Circuit of Example 9.8-1 at t ¼ 0�.
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The characteristic equation is

s2 þ 7s þ 10 ¼ 0

Therefore, the roots of the characteristic equation are

s1 ¼ �2 and s2 ¼ �5

The natural response vn is

vn ¼ A1e�2t þ A2e
�5t

The forced response is assumed to be of the form

vf ¼ Be�3t ð9:8-12Þ
Substituting vf into the differential equation, we have

9Be�3t � 21Be�3t þ 10Be�3t ¼ �18e�3t þ 36e�3t

Therefore; B ¼ �9

and vf ¼ �9e�3t

The complete response is then

v ¼ vn þ vf ¼ A1e
�2t þ A2e

�5t � 9e�3t ð9:8-13Þ
Because v(0) ¼ 6, we have

v 0ð Þ ¼ 6 ¼ A1 þ A2 � 9

or A1 þ A2 ¼ 15 ð9:8-14Þ
We also know that i(0) ¼ 1 A. We can use Eq. 9.8-8 to determine dv(0)=dt and then evaluate the derivative of
Eq. 9.8-13 at t ¼ 0. Equation 9.8-8 states that

dv

dt
¼ �4 i � v þ vs

At t ¼ 0, we have

dv 0ð Þ
dt

¼ �4 i 0ð Þ � v 0ð Þ þ vs 0ð Þ ¼ �4� 6þ 6 ¼ �4

Let us take the derivative of Eq. 9.8-13 to obtain

dv

dt
¼ �2A1e

�2t � 5A2e�5t þ 27e�3t

At t ¼ 0, we obtain

dv 0ð Þ
dt

¼ �2A1 � 5A2 þ 27

Because dv(0)=dt ¼ �4, we have

2A1 þ 5A2 ¼ 31 ð9:8-15Þ
Solving Eqs. 9.8-15 and 9.8-14 simultaneously, we obtain

A1 ¼ 44

3
and A2 ¼ 1

3

Therefore; v ¼ 44

3
e�2t þ 1

3
e�5t � 9e�3t V
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Note that we used the capacitor voltage and the inductor current as the unknowns. This is very
convenient because you will normally have the initial conditions of these variables. These variables, vc

and iL, are known as the state variables. We will consider this approach more fully in the next section.

9.9 S t a t e V a r i a b l e A p p r o a c h t o C i r c u i t
A n a l y s i s

The state variables of a circuit are a set of variables associated with the energy of the energy storage
elements of the circuit. Thus, they describe the complete response of a circuit to a forcing function and
the circuit’s initial conditions. Here the word state means “condition,” as in state of the union. We will
choose as the state variables those variables that describe the energy storage of the circuit. Thus, we will
use the independent capacitor voltages and the independent inductor currents.

Consider the circuit shown in Figure 9.9-1. The two
energy storage elements are C1 and C2, and the two capacitors
cannot be reduced to one. We expect the circuit to be described
by a second-order differential equation. However, let us first
obtain the two first-order differential equations that describe
the response for v1(t) and v2(t), which are the state variables
of the circuit. If we know the value of the state variables at one
time and the value of the input variables thereafter, we can find
the value of any state variable for any subsequent time.

Writing the KCL at nodes 1 and 2, we have

node 1 : C1
dv1
dt

¼ va � v1
R1

þ v2 � v1
R2

ð9:9-1Þ

node 2 : C2
dv2
dt

¼ vb � v2
R3

þ v1 � v2
R2

ð9:9-2Þ
Equations 9.9-1 and 9.9-2 can be rewritten as

dv1
dt

þ v1
C1R1

þ v1
C1R2

� v2
C1R2

¼ va
C1R1

ð9:9-3Þ

dv2
dt

þ v2
C2R3

þ v2
C2R2

� v1
C2R2

¼ vb
C2R3

ð9:9-4Þ
Assume that C1R1 ¼ 1, C1R2 ¼ 1, C2R3 ¼ 1, and C2R2 ¼ 1=2. Then we have

dv1
dt

þ 2v1 � v2 ¼ va ð9:9-5Þ

and � 2v1 þ dv2
dt

þ 3v2 ¼ vb ð9:9-6Þ
Using operators, we have

s þ 2ð Þv1 � v2 ¼ va
�2v1 þ s þ 3ð Þv2 ¼ vb

solve for v1, to obtain

v1 ¼ s þ 3ð Þva þ vb
s þ 2ð Þ s þ 3ð Þ � 2

ð9:9-7Þ

The characteristic equation is obtained from the denominator and has the form

s2 þ 5s þ 4 ¼ 0

v1

R1

C1

R2 R3

vau(t) vbu(t)
+

–
v2C2

+

–
+
–

+
–

1 2

Ground

FIGURE 9.9-1 Circuit with two energy storage
elements.
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The characteristic roots are s ¼�4 and s ¼�1. The second-order differential equation can be obtained
by rewriting Eq. 9.9-7 as

s2 þ 5s þ 4
� �

v1 ¼ s þ 3ð Þva þ vb

Then the differential equation for v1 is

d2v1
dt2

þ 5
dv1
dt

þ 4v1 ¼ dva
dt

þ 3va þ vb ð9:9-8Þ
We now proceed to obtain the natural response

vln ¼ A1e�t þ A2e
�4t

and the forced response, which depends on the form of the forcing function. For example, if
va ¼ 10 V and vb ¼ 6 V, v1f will be a constant (see Table 9.7-1). We obtain v1f by substituting
into Eq. 9.9-8, obtaining

4vlf ¼ 3va þ vb

or 4vlf ¼ 30þ 6 ¼ 36

Therefore; vlf ¼ 9

Then v1 ¼ vln þ vlf ¼ A1e
�t þ A2e�4t þ 9 ð9:9-9Þ

We will usually know the initial conditions of the energy storage elements. For example, if we know
that v1(0) ¼ 5 V and v2(0) ¼ 10 V, we first use v1(0) ¼ 5 along with Eq. 9.9-9 to obtain

v1 0ð Þ ¼ A1 þ A2 þ 9

and, therefore,

A1 þ A2 ¼ �4 ð9:9-10Þ
Now we need the value of dv1=dt at t ¼ 0. Referring back to Eq. 9.9-5, we have

dv1
dt

¼ va þ v2 � 2 v1

Therefore, at t ¼ 0, we have

dv1 0ð Þ
dt

¼ va 0ð Þ þ v2 0ð Þ � 2v1 0ð Þ ¼ 10þ 10� 2 5ð Þ ¼ 10

The derivative of the complete solution, Eq. 9.9-9, at t ¼ 0 is

dv1 0ð Þ
dt

¼ �A1 � 4 A2

Therefore; A1 þ 4 A2 ¼ �10 ð9:9-11Þ
Solving Eqs. 9.9-10 and 9.9-11, we have

A1 ¼ �2 and A2 ¼ �2

Therefore; v1 tð Þ ¼ �2e�t � 2e�4t þ 9 V

As you encounter circuits with two or more energy storage elements, you should consider
using the state variable method of describing a set of first-order differential equations.

The state variable method uses a first-order differential equation for each state variable to
determine the complete response of a circuit.

A summary of the state variable method is given in Table 9.9-1. We will use this method in
Example 9.9-1.
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Table 9.9-1 State Variable Method of Circuit Analysis

1. Identify the state variables as the independent capacitor voltages and inductor currents.

2. Determine the initial conditions at t ¼ 0 for the capacitor voltages and the inductor currents.

3. Obtain a first-order differential equation for each state variable, using KCL or KVL.

4. Use the operator s to substitute for d=dt.

5. Obtain the characteristic equation of the circuit by noting that it can be obtained by setting the determinant of Cramer’s
rule equal to zero.

6. Determine the roots of the characteristic equation, which then determine the form of the natural response.

7. Obtain the second-order (or higher-order) differential equation for the selected variable x by Cramer’s rule.

8. Determine the forced response xf by assuming an appropriate form of xf and determining the constant by substituting
the assumed solution in the second-order differential equation.

9. Obtain the complete solution x ¼ xn þ xf.

10. Use the initial conditions on the state variables along with the set of first-order differential equations (step 3) to obtain
dx(0)=dt.

11. Using x(0) and dx(0)=dt for each state variable, find the arbitrary constants A1, A2, . . . An to obtain the complete
solution x(t).

E X A M P L E 9 . 9 - 1 Complete Response of a Second-Order Circuit

Find i(t) for t > 0 for the circuit shown in Figure 9.9-2 when
R ¼ 3 V, L ¼ 1 H, C ¼ 1=2 F, and is ¼ 2e�3t A. Assume steady
state at t ¼ 0�.

Solution
First, we identify the state variables as i and v. The initial
conditions at t ¼ 0 are obtained by considering the circuit with
the 10-V source connected for a long time at t ¼ 0�. At t ¼ 0,
the voltage source is disconnected and the current source is
connected. Then v(0) ¼ 10 V and i(0) ¼ 0 A.

Consider the circuit after time t ¼ 0. The first differential equation is obtained by using KVL around the RLC
mesh to obtain

L
di

dt
þ Ri ¼ v

The second differential equation is obtained by using KCL at the node at the top of the capacitor to get

C
dv

dt
þ i ¼ is

We may rewrite these two first-order differential equations as
di

dt
þ R

L
i � v

L
¼ 0

and
dv

dt
þ i

C
¼ is

C
Substituting the component values, we have

di

dt
þ 3i � v ¼ 0 ð9:9-12Þ

is +
–RC

L

10 V

t = 0

t = 0

v

i

+

–

FIGURE 9.9-2 Circuit of Example 9.9-1.

State Variable Approach to Circuit Analysis 401



and
dv

dt
þ 2i ¼ 2is ð9:9-13Þ

Using the operator s ¼ d=dt, we have

s þ 3ð Þi � v ¼ 0 ð9:9-14Þ
2i þ sv ¼ 2is ð9:9-15Þ

Therefore, the characteristic equation obtained from the determinant is

s þ 3ð Þs þ 2 ¼ 0

or s2 þ 3s þ 2 ¼ 0

Thus, the roots of the characteristic equation are
s1 ¼ �2 and s2 ¼ �1

Because we wish to solve for i(t) for t > 0, we use Cramer’s rule to solve Eqs. 9.9-14 and 9.9-15 for i, obtaining

i ¼ 2is
s2 þ 3s þ 2

Therefore, the differential equation is
d2i

dt2
þ 3

di

dt
þ 2i ¼ 2is ð9:9-16Þ

The natural response is

in ¼ A1e
�t þ A2e�2t

We assume the forced response is of the form

if ¼ Be�3t

Substituting if into Eq. 9.9-16, we have

9Be�3t
� �þ 3 �3Be�3t

� �þ 2 Be�3t ¼ 2 2e�3t
� �

or 9B � 9B þ 2B ¼ 4

Therefore, B ¼ 2 and

if ¼ 2e�3t

The complete response is

i ¼ A1e
�t þ A2e�2t þ 2e�3t

Because i(0) ¼ 0,

0 ¼ A1 þ A2 þ 2 ð9:9-17Þ
We need to obtain di(0)=dt from Eq 9.9-12, which we repeat here as

di

dt
þ 3i � v ¼ 0

Therefore, at t ¼ 0, we have

di 0ð Þ
dt

¼ �3i 0ð Þ þ v 0ð Þ ¼ 10

The derivative of the complete response at t ¼ 0 is

di 0ð Þ
dt

¼ �A1 � 2A2 � 6
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We recognize that the state variable method is particularly powerful for
finding the response of energy storage elements in a circuit. This is also true
if we encounter higher-order circuits with three or more energy storage
elements. For example, consider the circuit shown in Figure 9.9-3. The state
variables are v1, v2, and i. Two first-order differential equations are obtained
by writing the KCL equations at node a and node b. Then a third first-order
differential equation is obtained by writing the KVL around the middle mesh
containing i. The solution for one or more of these variables can then
be obtained by proceeding with the state variable method summarized in
Table 9.9-1.

EXERCISE 9.9-1 Find v2(t) for t > 0 for the circuit of Figure E 9.9-1. Assume there is no initial
stored energy.

3 10

1 Ω v1 v2 5 61 12 F F

H

10u(t) A
+

–

i

+

–

FIGURE E 9.9-1

Answer: v2 tð Þ ¼ �15e�2t þ 6e�4t � e�6t þ 10 V

9.10 R o o t s i n t h e C omp l e x P l a n e

We have observed that the character of the natural response of a second-order system is determined by
the roots of the characteristic equation. Let us consider the roots of a parallel RLC circuit. The
characteristic equation (9.4-3) is

s2 þ s

RC
þ 1

LC
¼ 0

and the roots are given by Eq. 9.4-8 to be

s ¼ �a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � o2

0

q

Because di(0)=dt ¼ 10, we have

�A1 � 2A2 ¼ 16

and, repeating Eq. 9.9-17, we have

A1 þ A2 ¼ �2

Adding these two equations, we determine that A1 ¼ 12 and A2 ¼ �14. Then we have the complete solution for i as

i ¼ 12e�t � 14e�2t þ 2e�3t A

i

v1C1isu(t)

L

+

–
v2 C2 R

+

–

a b

FIGURE 9.9-3 Circuit with three energy
storage elements.
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where a ¼ 1= 2 RCð Þ and o2
0 ¼ 1= LCð Þ. When o0 > a, the roots are

complex and

s ¼ �a� j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 � a2
q

¼ �a� jod ð9:10-1Þ

In general, roots are located in the complex plane, the location being
defined by coordinates measured along the real or �-axis and the imagi-
nary or jo-axis. This is referred to as the s-plane or, because s has the units
of frequency, as the complex frequency plane. When the roots are real,
negative, and distinct, the response is the sum of two decaying expo-
nentials and is said to be overdamped. When the roots are complex
conjugates, the natural response is an exponentially decaying sinusoid
and is said to be underdamped or oscillatory.

Now, let us show the location of the roots of the characteristic equation
for the four conditions: (a) undamped, a ¼ 0; (b) underdamped, a < o0;

(c) critically damped, a ¼ o0; and (d) overdamped, a>o0. These four
conditions lead to root locations on the s-plane as shown in Figure 9.10-1.
When a ¼ 0, the two complex roots are �jo0. When a<o0, the roots are
s¼�a � jod. When a ¼ o0, there are two roots at s ¼ �a. Finally, when
a>o0, there are two real roots, s ¼ �a�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � o2

0

p
.

A summary of the root locations, the type of response, and the form
of the response is presented in Table 9.10-1.

EXERCISE 9.10-1 A parallel RLC circuit has L ¼ 0.1 H and C ¼ 100 mF. Determine
the roots of the characteristic equation and plot them on the s-plane when (a) R ¼ 0.4 V and
(b) R ¼ 1.0 V.
Answer: (a) s ¼ �5, �20 (Figure E 9.10-1)

0
σ

jω

–20 –5
××

FIGURE E 9.10-1

9.11 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the
specifications have been satisfied. In addition, computer output must be reviewed to guard against
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

Underdamped
   <   0

Overdamped
   >   0

Critically
damped
   =   0

(two identical
roots)

σ

j  

j   0

j   d

–j   d

–j   0

α ω
ω

ω

ω

ω

ω

α ω

α ω

Undamped
   = 0α

×

×

××××

×

×

FIGURE 9.10-1 The complete s-plane showing
the location of the two roots s1 and s2 of the
characteristic equation in the left-hand portion of
the s-plane. The roots are designated by the �
symbol.
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Table 9.10-1 The Natural Response of a Parallel RLC Circuit�

TYPE OF RESPONSE ROOT LOCATION FORM OF RESPONSE

Overdamped σ

jω

××

1
i(t), A

t, s

Critically damped σ

jω

××

1
i(t), A

t, s

Underdamped σ

jω
×

×

1
i(t), A

t, s

Undamped σ

jω
×

×

1
i(t), A

t, s

______________________________________________________________________________
�The iðtÞ is the inductor current in the circuit shown in Figure 9.4-1 for the initial conditions i 0ð Þ ¼ 1 and v 0ð Þ ¼ 0.

E X A M P L E 9 . 1 1 - 1 How Can We Check an Underdamped Response?

Figure 9.11-1b shows an RLC circuit. The voltage vs(t) of the voltage source is the square wave shown in Figure
9.11-1a. Figure 9.11-2 shows a plot of the inductor current i(t), which was obtained by simulating this circuit using
PSpice. How can we check that the plot of i(t) is correct?

Solution
Several features of the plot can be checked. The plot indicates that steady-state values of the inductor current are
i(1) ¼ 0 and i(1) ¼ 200 mA and that the circuit is underdamped. In addition, some points on the response have
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been labeled to give the corresponding values of time and current. These values can be used to check the value of
the damped resonant frequency od.

If the voltage of the voltage source were a constant vs(t) ¼ Vs, then the steady-state inductor current
would be

i tð Þ ¼ V s

100

Thus, we expect the steady-state inductor current to be i(1) ¼ 0 when Vs ¼ 0 V and to be i(1) ¼ 200 mA when
Vs ¼ 20 V. The plot in Figure 9.11-2 shows that the steady-state values of the inductor current are indeed i(1) ¼ 0 and
i(1) ¼ 200 mA.

The plot in Figure 9.11-2 shows an underdamped response. The RLC circuit will be underdamped if

10�5 ¼ L < 4R2C ¼ 4� 1002 � 10�9

Because this inequality is satisfied, the circuit is indeed underdamped, as indicated by the plot.

+
– μ

μ

(b)(a)

i(t)100 Ω

0

20

2 4 6 8

vs, V

t,   s

1 nFvs 10   H

FIGURE 9.11-1 An RLC circuit (b) excited by a square wave (a).

0 A

–100 mA

100 mA

200 mA

300 mA

0 s 1.0 ms 2.0 ms 3.0 ms 4.0 ms 5.0 ms 6.0 ms
Time

I (L1)

(378.151n, 237.442m)

(731.092n, 192.927m)

(136.159n, 100.000m)

FIGURE 9.11-2 PSpice plot of the inductor current i(t) for the circuit shown in Figure 9.11-1.
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The damped resonant frequency od is given by

od ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LC
� 1

2RC

� �2
s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

10�5 � 10�9 �
1

2� 100� 10�9

� �2
s

¼ 8:66� 106 rad/s

The plot indicates that the plot has a maxima at 378 ns and a minima at 731 ns. Therefore, the period of the damped
oscillation can be approximated as

Td ¼ 2 731� 10�9 � 378� 10�9
� � ¼ 706� 10�9 s

The damped resonant frequency od is related to Td by Eq. 9.6-9. Therefore,

od ¼ 2p
Td

¼ 2p
706� 10�9 ¼ 8:90� 106 rad/s

The value of od obtained from the plot agrees with the value obtained from the circuit.
We conclude that the plot is correct.

9 . 1 2 D E S I G N E X A M P L E Auto Airbag Igniter

Airbags are widely used for driver and passenger protection in automobiles. A pendulum is used to switch a
charged capacitor to the inflation ignition device, as shown in Figure 9.12-1. The automobile airbag is inflated
by an explosive device that is ignited by the energy absorbed by the resistive device represented by R. To inflate,
it is required that the energy dissipated in R be at least 1 J. It is required that the ignition device trigger within
0.1 s. Select the L and C that meet the specifications.

Describe the Situation and the Assumptions
1. The switch is changed from position 1 to position 2 at t ¼ 0.

2. The switch was connected to position 1 for a long time.

3. A parallel RLC circuit occurs for t � 0.

+
–12 V

1 2

C

t = 0

L 4 Ω R
Airbag
igniter

FIGURE 9.12-1 An automobile
airbag ignition device.

State the Goal
Select L and C so that the energy stored in the capacitor is quickly delivered to the resistive device R.
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Generate a Plan
1. Select L and C so that an underdamped response is obtained with a period of less than or equal to 0.4 s (T	 0.4 s).

2. Solve for v(t) and i(t) for the resistor R.

Act on the Plan
We assume that the initial capacitor voltage is v(0) ¼ 12 V and iL(0) ¼ 0 because the switch is in position 1 for a
long time prior to t ¼ 0. The response of the parallel RLC circuit for an underdamped response is of the form

v tð Þ ¼ e�at B1 cosodt þ B2 sinodtð Þ ð9:12-1Þ

This natural response is obtained when a2 <o2
0 or L < 4R2C. We choose an underdamped response for our

design but recognize that an overdamped or critically damped response may satisfy the circuit’s design
objectives. Furthermore, we recognize that the parameter values selected below represent only one acceptable
solution.

Because we want a rapid response, we will select a ¼ 2 (a time constant of 1=2 s) where a ¼ 1= 2RCð Þ.
Therefore, we have

C ¼ 1

2Ra
¼ 1

16
F

Recall that o2
0 ¼ 1= LCð Þ and it is required that a2<o2

0. Because we want a rapid response, we select the natural
frequency o0 so that (recall T 
 0.4 s)

o0 ¼ 2p
T

¼ 2p
0:4

¼ 5p rad/s

Therefore, we obtain

L ¼ 1

o2
0C

¼ 1

25p2 1=16ð Þ ¼ 0:065 H

Thus, we will use C ¼ 1=16 F and L ¼ 65 mH. We then find that od ¼ 15.58 rad/s and, using Eq. 9.6-5, we have

v tð Þ ¼ e�2t B1 cosodt þ B2 sinodtð Þ ð9:12-2Þ

Then B1 ¼ v(0) ¼ 12 and

odB2 ¼ aB1 � B1

RC
¼ 2� 4ð Þ12 ¼ �24

Therefore, B2 ¼ �24=15.58 ¼ �1.54. Because B2 � B1, we can approximate Eq. 9.12-2 as

v tð Þ ffi 12e�2t cosodt V

The power is then

p ¼ v2

R
¼ 36e�4t cos2 odt W

Verify the Proposed Solution
The actual voltage and current for the resistor R are shown in Figure 9.12-2 for the first 100 ms. If we sketch
the product of v and i for the first 100 ms, we obtain a linear approximation declining from 36 W at t ¼ 0 to 0 W at
t ¼ 95 ms. The energy absorbed by the resistor over the first 100 ms is then
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9.13 SUMMARY

Second-order circuits are circuits that are represented by a
second-order differential equation, for example,

d2

dt2
x tð Þ þ 2a

d

dt
x tð Þ þ o2

0x tð Þ ¼ f tð Þ
where x(t) is the output current or voltage of the circuit and
f ðtÞ is the input to the circuit. The output of the circuit, also
called the response of the circuit, can be the current or
voltage of any device in the circuit. The output is frequently
chosen to be the current of an inductor or the voltage of a
capacitor. The input to the circuit is provided by the
voltages of independent voltage sources and/or currents
of independent current sources. The coefficients of this
differential equation have names: a is called the damping
coefficient, and o0 is called the resonant frequency.
Obtaining the differential equation to represent an arbitrary
circuit can be challenging. This chapter presents three
methods for obtaining that differential equation: the direct
method (Section 9.2), the operator method (Section 9.2),
and the state variable method (Section 9.10).
The characteristic equation of a second-order circuit is

s2 þ 2as þ o2
0 ¼ 0

This second-order equation has two solutions, s1 and s2.
These solutions are called the natural frequencies of the
second-order circuit.
Second-order circuits are characterized as overdamped, criti-
cally damped, or underdamped. A second-order circuit is
overdamped when s1 and s2 are real and unequal, or,
equivalently, a > o0. A second-order circuit is critically
damped when s1 and s2 are real and equal, or, equivalently,
a ¼ o0. A second-order circuit is underdamped when s1 and
s2 are real and equal, or, equivalently, a < o0.
Table 9.13-1 describes the natural frequencies of over-
damped, underdamped, and critically damped parallel and
series RLC circuits.
The complete response of a second-order circuit is the sum of
the natural response and the forced response

x ¼ xn þ xf

The form of the natural response depends on the natural
frequencies of the circuit as summarized in Table 9.13-2. The
form of the forced response depends on the input to the
circuit as summarized in Table 9.13-3.

100806040200
–12

–8

–4

0

4

8

12

V(1) i(R)

i(t) current through
the resistor (A)

v(t) voltage across
the resistor (V)

Time (ms)

FIGURE 9.12-2 The response
of the RLC circuit.

w ffi 1

2
36ð Þ 0:1 sð Þ ¼ 1:8 J

Therefore, the airbag will trigger in less than 0.1 s, and our objective is achieved.
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Table 9.13-1 Natural Frequencies of Parallel RLC and Series RLC Circuits

PARALLEL RLC SERIES RLC

Circuit

LR C

i(t) L

CR v(t)

+

–

Differential equation d2

dt2
i tð Þ þ 1

RC

d

dt
i tð Þ þ 1

LC
i tð Þ ¼ 0

d2

dt2
v tð Þ þ R

L

d

dt
v tð Þ þ 1

LC
v tð Þ ¼ 0

Characteristic equation
s2 þ 1

RC
s þ 1

LC
¼ 0 s2 þ R

L
s þ 1

LC
¼ 0

Damping coefficient, rad/s
a ¼ 1

2RC
a ¼ R

2L

Resonant frequency, rad/s
o0 ¼ 1ffiffiffiffiffiffi

LC
p o0 ¼ 1ffiffiffiffiffiffi

LC
p

Damped resonant frequency, rad/s
od ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2RC

� �2

� 1
LC

s
od ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

� 1
LC

s

Natural frequencies: overdamped case
s1; s2 ¼ � 1

2RC
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2RC

� �2

� 1
LC

s
s1; s2 ¼ � R

2L
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R

2L

� �2

� 1
LC

s

when R <
1
2

ffiffiffiffi
L

C

r
when R > 2

ffiffiffiffi
L

C

r

Natural frequencies: critically damped case
s1 ¼ s2 ¼ � 1

2RC
when R ¼ 1

2

ffiffiffiffi
L

C

r
s1 ¼ s2 ¼ � R

2L
when R ¼ 2

ffiffiffiffi
L

C

r

Natural frequencies: underdamped case
s1; s2 ¼ � 1

2RC
� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LC
� 1

2RC

� �2
s

s1; s2 ¼ � R

2L
� j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LC
� R

2L

� �2
s

when R >
1
2

ffiffiffiffi
L

C

r
when R < 2

ffiffiffiffi
L

C

r

Table 9.13-2 Natural Response of Second-Order Circuits

CASE NATURAL FREQUENCIES NATURAL RESPONSE, xn

Overdamped s1; s2 ¼ �a�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � o2

0

p
A1es1 t þ A2es2 t

Critically damped s1; s2 ¼ �a (A1þA2t)e�at

Underdamped s1; s2 ¼ �a� j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o2

0 � a2
p

¼ �a� jod (A1 cos odtþA2 sin odt)e�at

Table 9.13-3 Forced Response of Second-Order Circuits

INPUT, f(t) FORCED RESPONSE, xf

Constant K A

Ramp K t AþBt

Sinusoid K cos ot, K sin ot, or K cos (otþy) A cos otþB sin ot

Exponential Ke�bt Ae�bt
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PROBLEMS

Section 9.2 Differential Equation for Circuits with

Two Energy Storage Elements

P 9.2-1 Find the differential equation for the circuit shown
in Figure P 9.2-1 using the direct method.

vs 100 Ω

2 Ω

10   F

1 mH

μ+
–

Figure P 9.2-1

P 9.2-2 Find the differential equation for the circuit shown in
Figure P 9.2-2 using the operator method.

Answer:

d2

dt2
iL tð Þ þ 11; 000

d

dt
iL tð Þ þ 1:1 � 108iL tð Þ ¼ 108is tð Þ

is 100 Ω

1 mH

10 Ω

10   Fμ

iL

Figure P 9.2-2

P 9.2-3 Find the differential equation for iL(t) for t > 0 for the
circuit of Figure P 9.2-3.

R1

R2

L

+
–

is

vcC

vs

iL

t = 0

+

–

Figure P 9.2-3

P 9.2-4 The input to the circuit shown in Figure P 9.2-4 is
the voltage of the voltage source, Vs. The output is the inductor
current i(t). Represent the circuit by a second-order differential
equation that shows how the output of this circuit is related to
the input for t> 0.

Hint: Use the direct method.

R2

L

+
– Vs

i(t)

t = 0

v(t)

+

–

R1
R3

C

Figure P 9.2-4

P 9.2-5 The input to the circuit shown in Figure P 9.2-5 is
the voltage of the voltage source, vs. The output is the capacitor
voltage v(t). Represent the circuit by a second-order differential
equation that shows how the output of this circuit is related to
the input for t > 0.

Hint: Use the direct method.

+
– vs

R1

R2

L

i(t)

v(t)

+

–

C

t = 0

Figure P 9.2-5

P 9.2-6 The input to the circuit shown in Figure P 9.2-6 is the
voltage of the voltage source, vs. The output is the inductor
current i(t). Represent the circuit by a second-order differential
equation that shows how the output of this circuit is related to
the input for t > 0.

Hint: Use the direct method.

+
– vs

R1

R2

L i(t)

v(t)

+

–

C

t = 0

Figure P 9.2-6

Problem available in WileyPLUS at instructor’s discretion.

Problems 411



P 9.2-7 The input to the circuit shown in Figure P 9.2-7 is the
voltage of the voltage source, vs. The output is the inductor
current i2(t). Represent the circuit by a second-order differential
equation that shows how the output of this circuit is related to
the input for t > 0.

Hint: Use the operator method.

+
– vs

R1

R2

L1
i1(t)

t = 0

L2
i2(t)

R3

Figure P 9.2-7

P 9.2-8 The input to the circuit shown in Figure P 9.2-8 is the
voltage of the voltage source, vs. The output is the capacitor
voltage v2(t). Represent the circuit by a second-order differen-
tial equation that shows how the output of this circuit is related
to the input for t > 0.

Hint: Use the operator method.

+
– vs

R1 R2

v2(t)

+

–

C2

t = 0

v1(t)

+

–

C1

R3

Figure P 9.2-8

P 9.2-9 The input to the circuit shown in Figure P 9.2-9 is
the voltage of the voltage source, vs. The output is the capacitor
voltage v(t). Represent the circuit by a second-order differential
equation that shows how the output of this circuit is related to
the input for t > 0.

Hint: Use the direct method.

+
– vs R1

R2

L i(t)

v(t)

+

–
C

t = 0

Figure P 9.2-9

P 9.2-10 The input to the circuit shown in Figure P 9.2-10 is
the voltage of the voltage source, vs. The output is the capacitor
voltage v(t). Represent the circuit by a second-order differential
equation that shows how the output of this circuit is related to
the input for t > 0.

Hint: Find a Th�evenin equivalent circuit.

+
–

ia

biavs

R1

R2

L

i(t)

v(t)

+

–

C

t = 0

Figure P 9.2-10

P 9.2-11 The input to the circuit shown in Figure P 9.2-11
is the voltage of the voltage source, vs(t). The output is the
voltage v2(t). Derive the second-order differential equation that
shows how the output of this circuit is related to the input.

Hint: Use the direct method.

–

+

v2(t)

+

–

C2v1(t)

+

–

C1
+
–

R1

vs(t)

R2

Figure P 9.2-11

P 9.2-12 The input to the circuit shown in Figure P 9.2-12 is
the voltage of the voltage source, vs(t). The output is the voltage
vo(t). Derive the second-order differential equation that shows
how the output of this circuit is related to the input.

Hint: Use the operator method.

+

–

+
–

v2(t) +–

C2

R2

v1(t)+ –

C1R1

vo(t)

+

–

vs(t)

Figure P 9.2-12
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P 9.2-13 The input to the circuit shown in Figure P 9.2-13
is the voltage of the voltage source, vs(t). The output is the
voltage vo(t). Derive the second-order differential equation that
shows how the output of this circuit is related to the input.

Hint: Use the direct method.

+

–

+
–

v(t) +–

C

R2

R1

vo(t)

+

–

vs(t)

t = 0

L

i(t)

Figure P 9.2-13

P 9.2-14 The input to the circuit shown in Figure P 9.2-14 is
the voltage of the voltage source, vs(t). The output is the voltage
v2(t). Derive the second-order differential equation that shows
how the output of this circuit is related to the input.

Hint: Use the direct method.

+

–

+
–

v1(t)+ –

C1

R2

R1

vs(t)

R3

v2(t)

+

–

C2

Figure P 9.2-14

P 9.2-15 Find the second-order differential equation for i2
for the circuit of Figure P 9.2-15 using the operator method.
Recall that the operator for the integral is 1=s.

Answer: 3
d2i2
dt2

þ 4
di2
dt

þ 2 i2 ¼ d2vs

dt2

i1 i2vs
1 H

+
–

1 2

1 Ω 2 Ω

F

Figure P 9.2-15

Section 9.3 Solution of the Second-Order

Differential Equation—The Natural Response

P 9.3-1 Find the characteristic equation and its roots for the
circuit of Figure P 9.2-2.

P 9.3-2 Find the characteristic equation and its roots for the
circuit of Figure P 9.3-2.

Answer: s2 þ 400s þ 3 � 104 ¼ 0
roots: s ¼ �300; �100

is 40 Ω mF

100 mH

1 3

iL
vc

+

–

Figure P 9.3-2

P 9.3-3 Find the characteristic equation and its roots for the
circuit shown in Figure P 9.3-3.

vs 1 mH

2 Ω
1 Ω

10   Fμ

+
–

vc

iL

+

–

Figure P 9.3-3

P 9.3-4 German automaker Volkswagen, in its bid to make
more efficient cars, has come up with an auto whose engine
saves energy by shutting itself off at stoplights. The stop–start
system springs from a campaign to develop cars in all its world
markets that use less fuel and pollute less than vehicles now on
the road. The stop–start transmission control has a mechanism
that senses when the car does not need fuel: coasting downhill
and idling at an intersection. The engine shuts off, but a small
starter flywheel keeps turning so that power can be quickly
restored when the driver touches the accelerator.

A model of the stop–start circuit is shown in Figure
P 9.3-4. Determine the characteristic equation and the natural
frequencies for the circuit.

Answer: s2 þ 20s þ 400 ¼ 0
s ¼ �10 � j17:3

1 2 H

10 Ω

+
–

+
–

5 mF

10u(t) V

7u(t) V

Figure P 9.3-4 Stop–start circuit.
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Section 9.4 Natural Response of the Unforced

Parallel RLC Circuit

P 9.4-1 Determine v(t) for the circuit of Figure P 9.4-1 when L
¼ 1 H and vs ¼ 0 for t � 0. The initial conditions are v(0) ¼ 6 V
and dv=dt(0) ¼ �3000 V/s.

Answer: v tð Þ ¼ �2e�100t þ 8e�400t V

L

Ω80
+

–
v(t) 25  Fμ+

–vs(t)

Figure P 9.4-1

P 9.4-2 An RLC circuit is shown in Figure P 9.4-2, in
which v(0) ¼ 2 V. The switch has been open for a long time
before closing at t ¼ 0. Determine and plot v(t).

F 1 HΩ
t = 0

v(t)
+

–
3 41 3

Figure P 9.4-2

P 9.4-3 Determine i1(t) and i2(t) for the circuit of Figure
P 9.4-3 when i1(0) ¼ i2(0) ¼ 11 A.

i2
Ω2

i1

2 H

3 HΩ1

Figure P 9.4-3

P 9.4-4 The circuit shown in Figure P 9.4-4 contains a switch
that is sometimes open and sometimes closed. Determine the
damping factor a, the resonant frequency o0, and the damped
resonant frequency od of the circuit when (a) the switch is open
and (b) the switch is closed.

+
–

i(t)

v(t)

+

–

5 mF50 Ω

10 Ω

2 H

20 V

40 Ω

Figure P 9.4-4

P 9.4-5 The circuit shown in Figure P 9.4-5 is used in air-
planes to detect smokers who surreptitiously light up before
they can take a single puff. The sensor activates the switch, and

the change in the voltage v(t) activates a light at the flight
attendant’s station. Determine the natural response v(t).

Answer: v tð Þ ¼ �1:16e�2:7t þ 1:16e�37:3t V

1 A
1 Ω

0.4 H F v(t)
+

–

Light 
bulb

t = 0
1 40

Sensor

Figure P 9.4-5 Smoke detector.

Section 9.5 Natural Response of the Critically

Damped Unforced Parallel RLC Circuit

P 9.5-1 Find vc(t) for t > 0 for the circuit shown in Figure
P 9.5-1.

Answer: vc tð Þ ¼ 3 þ 6000tð Þe�2000t V

100 Ω 30u(–t) mA

25 mH

10 mFvc
+
–

Figure P 9.5-1

P 9.5-2 Find vc(t) for t > 0 for the circuit of Figure P 9.5-2.
Assume steady-state conditions exist at t ¼ 0�.

Answer: vc tð Þ ¼ �8te�2t V

+
–

t = 0

20 V F vc
+

–
11

Ω10

1 4H Ω

Figure P 9.5-2

P 9.5-3 Police often use stun guns to incapacitate potentially
dangerous felons. The handheld device provides a series of
high-voltage, low-current pulses. The power of the pulses is far
below lethal levels, but it is enough to cause muscles to contract
and put the person out of action. The device provides a pulse of
up to 50,000 V, and a current of 1 mA flows through an arc.
A model of the circuit for one period is shown in Figure P 9.5-3.
Find v(t) for 0 < t < 1 ms. The resistor R represents the spark
gap. Select C so that the response is critically damped.

+
–

v
+

–

R = 106 Ω
t = 0 

104 V

10 mH

C

Figure P 9.5-3
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P 9.5-4 Reconsider Problem P 9.4-1 when L ¼ 640 mH and
the other parameters and conditions remain the same.

Answer: v tð Þ ¼ 6 � 1500tð Þe�250t V

P 9.5-5 An automobile ignition uses an electromagnetic trigger.
The RLC trigger circuit shown in Figure P 9.5-5 has a step input
of 6 V, and v(0) ¼ 2 V and i(0) ¼ 0. The resistance R must be
selected from 2V<R< 7V so that the current i(t) exceeds 0.6 A
for greater than 0.5 s to activate the trigger. A critically damped
response i(t) is required to avoid oscillations in the trigger
current. Select R and determine and plot i(t).

i6 u(t) V
v(t)

+

+

–

–Trigger

1 H 1 4 F

R

Figure P 9.5-5

Section 9.6 Natural Response of an Underdamped

Unforced Parallel RLC Circuit

P 9.6-1 A communication system from a space station uses
short pulses to control a robot operating in space. The transmitter
circuit is modeled in Figure P 9.6-1. Find the output voltage vc(t)
for t > 0. Assume steady-state conditions at t ¼ 0�.

Answer: vc tð Þ ¼ e�400t 3 cos 300t þ 4 sin 300t½ � V

+
–

vc
+

–

6 V

0.8 H

250 Ω

250 Ω
t = 0

5 × 10-6 F

Figure P 9.6-1

P 9.6-2 The switch of the circuit shown in Figure P 9.6-2 is
opened at t ¼ 0. Determine and plot v(t) when C ¼ 1=4 F.
Assume steady state at t ¼ 0�.

Answer: v tð Þ ¼ �4e�2t sin 2t V

+
–

t = 0

6 V C v(t)
+

–
HΩ1

Ω3

1 2

Figure P 9.6-2

P 9.6-3 A 240-W power supply circuit is shown in Figure
P 9.6-3a. This circuit employs a large inductor and a large
capacitor. The model of the circuit is shown in Figure P 9.6-3b.
Find iL(t) for t > 0 for the circuit of Figure P 9.6-3b. Assume
steady-state conditions exist at t ¼ 0�.

Answer: iL tð Þ ¼ e�2t �4 cos t þ 2 sin tð Þ A

(a)

2 Ω

4 Ω

8 Ω

iL

1 4 F

7 A

t = 0

4 H

(b)

Figure P 9.6-3 (a) A power supply. (b) Model of the power
supply circuit.

P 9.6-4 The natural response of a parallel RLC circuit is
measured and plotted as shown in Figure P 9.6-4. Using this
chart, determine an expression for v(t).

Hint: Notice that v(t) ¼ 260 mV at t ¼ 5 ms and that v(t) ¼
�200 mV at t ¼ 7.5 ms. Also, notice that the time between the
first and third zero-crossings is 5 ms.

Answer: v tð Þ ¼ 544e�276t sin 1257t V

0 5 10 15 20 25 30
–400

–300

–200

–100

0

100

200

300

400

500

600

v(t)
(mV)

Time (ms)

Figure P 9.6-4 The natural response of a parallel RLC circuit.

# Courtesy of R.S.R. Electronics, Inc.
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P 9.6-5 The photovoltaic cells of the proposed space station
shown in Figure P 9.6-5a provide the voltage v(t) of the circuit
shown in Figure P 9.6-5b. The space station passes behind the
shadow of earth (at t ¼ 0) with v(0) ¼ 2 V and i(0) ¼ 1/10 A.
Determine and sketch v(t) for t > 0.

Photocells

(a)

+

–
Ω5

Space
station

electric motors

2 H F v

The photovoltaic
cells connected

in parallel

i

(b)

1 10

Figure P 9.6-5 (a) Photocells on space station. (b) Circuit with
photocells.

Section 9.7 Forced Response of an RLC Circuit

P 9.7-1 Determine the forced response for the inductor current
if when (a) is ¼ 1 A, (b) is ¼ 0.5t A, and (c) is ¼ 2e�250t A for the
circuit of Figure P 9.7-1.

is u(t) A

i

   Ω
10 mH

1 mF100 65

Figure P 9.7-1

P 9.7-2 Determine the forced response for the capacitor
voltage vf for the circuit of Figure P 9.7-2 when (a) vs ¼ 2 V,
(b) vs ¼ 0.2t V, and (c) vs ¼ 1e�30t V.

+
–vs u(t) V v

+

–

7 Ω

833.3   F 

0.1 H

μ

Figure P 9.7-2

P 9.7-3 A circuit is described for t > 0 by the equation

d2v

dt2
þ 5

dv

dt
þ 6v ¼ vs

Find the forced response vf for t > 0 when (a) vs ¼ 8 V, (b) vs ¼
3e�4t V, and (c) vs ¼ 2e�2t V.

Answer: (a) vf ¼ 8=6 V (b) vf ¼ 3
2

e�4t V (c) vf ¼ 2te�2t V

Section 9.8 Complete Response of an RLC Circuit

P 9.8-1 Determine i(t) for t > 0 for the circuit shown in Figure
P 9.8-1.

iLi

+
–11 mA

t = 0
1 kΩ 4 V

6.25 H2 kΩ
1 μFvc

+

–

Figure P 9.8-1

P 9.8-2 Determine i(t) for t > 0 for the circuit shown in Figure
P 9.8-2.

Hint: Show that 1 ¼ d2

dt2
i tð Þ þ 5

d

dt
i tð Þ þ 5i tð Þ for t > 0

Answer: i tð Þ ¼ 0:2 þ 0:246 e�3:62t � 0:646 e�1:38t A for t > 0.

i(t)2u(t) – 1 V 0.25 Fv(t)
+

–

+
– 4 H

4 Ω1 Ω

Figure P 9.8-2

P 9.8-3 Determine v1(t) for t > 0 for the circuit shown in
Figure P 9.8-3.

Answer: v1 tð Þ ¼ 10 þ e�2:4�104 t � 6 e�4�103 t V for t > 0

+
–10 V v1(t)

t = 0+

–

1 kΩ 1 kΩ

1/6 μF v2(t)
+

–
1/16 μF

Figure P 9.8-3

P 9.8-4 Find v(t) for t > 0 for the circuit shown in Figure
P 9.8-4 when v(0) ¼ 1 V and iL(0) ¼ 0.
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Answer: v ¼ 25e�3t � 1
17

[429e�4t � 21 cos t þ 33 sin t� V

1 12 F
iL

+
– v

+

–
0.5 H5 cos t V

1 Ω 1 Ω

Figure P 9.8-4

P 9.8-5 Find v(t) for t > 0 for the circuit of Figure P 9.8-5.

Answer: v tð Þ ¼ �16e�t þ 16e�3t þ 8½ �u tð Þ
þ 16e� t�2ð Þ � 16e�3 t�2ð Þ � 8

� 	
u t � 2ð Þ V

v

+

–

1 3 F

4 Ω 1 H2[u(t) – u(t – 2)] A

Figure P 9.8-5

P 9.8-6 An experimental space station power supply system
is modeled by the circuit shown in Figure P 9.8-6. Find v(t) for
t > 0. Assume steady-state conditions at t ¼ 0�.

t = 0

0.125 F
+

–4 Ω
2 Ω 5 V

4 H

(10 cos t)u(t) V

i(t)

v(t) +
–

– +

Figure P 9.8-6

P 9.8-7 Find vc(t) for t > 0 in the circuit of Figure P 9.8-7
when (a) C ¼ 1=18 F, (b) C ¼ 1=10 F, and (c) C ¼ 1=20 F.

Answers:

(a) vc tð Þ ¼ 8e�3t þ 24te�3t � 8 V
(b) vc tð Þ ¼ 10e�t � 2e�5t � 8 V
(c) vc tð Þ ¼ e�3t 8 cos t þ 24 sin tð Þ � 8 V

v(t)
+

–
4 Ω C

8 Ω

2 H

a

2u(t) A

i(t)

Figure P 9.8-7

P 9.8-8 Find vc(t) for t > 0 for the circuit shown in Figure
P 9.8-8.

Hint: 2 ¼ d2

dt2
vc tð Þ þ 6

d

dt
vc tð Þ þ 2vc tð Þ for t > 0

Answer: vc tð Þ ¼ 0:123e�5:65t þ 0:877e�0:35t þ 1 V for t > 0.

4 Ω 8 Ω

F vC(t)

+

–
iL(t)

2 H

u(t) +     A– 1 4

1 4

1 2

Figure P 9.8-8

P 9.8-9 In Figure P 9.8-9, determine the inductor current
i(t) when is ¼ 5u(t) A. Assume that i(0) ¼ 0, vc(0) ¼ 0.

Answer: i(t) ¼ 5 + e�2t [�5 cos 5t � 2 sin 5t] A

i

Ω2 Fis
8 29 1 8

H

Figure P 9.8-9

P 9.8-10 Railroads widely use automatic identification of
railcars. When a train passes a tracking station, a wheel
detector activates a radio-frequency module. The module’s
antenna, as shown in Figure P 9.8-10a, transmits and receives
a signal that bounces off a transponder on the locomotive. A

Vehicle-mounted
transponder tag

Wheel detector
input

Antenna

+ –

ΩΩ1

L

v

0.5
Ω1.5

is

0.5 F

i

(b)

(a)

Figure P 9.8-10 (a) Railroad identification system.
(b) Transponder circuit.
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trackside processor turns the received signal into useful infor-
mation consisting of the train’s location, speed, and direction
of travel. The railroad uses this information to schedule
locomotives, trains, crews, and equipment more efficiently.

One proposed transponder circuit is shown in Figure
P 9.8-10b with a large transponder coil of L ¼ 5 H. Determine
i(t) and v(t). The received signal is is ¼ 9 þ 3e�2t u(t) A.

P 9.8-11 Determine v(t) for t > 0 for the circuit shown in
Figure P 9.8-11.

Answer: vc tð Þ ¼ 0:75 e�4t � 6:75 e�36t þ 16 V for t > 0

i(t) va(t)

v(t)

–

+

+

–

4 Ω0.1 H
+
– 0.625 F

2va(t)
6u(t) + 10 V

Figure P 9.8-11

P 9.8-12 The circuit shown in Figure P 9.8-12 is at steady state
before the switch opens. The inductor current is given to be

i(t) ¼ 240þ 193e�6:25t cos (9:27t � 102) mA for t � 0

Determine the values of R1, R3, C, and L.

L

+
–

i(t)

t = 0

v(t)

+

–

R1
R3

C 20 Ω

24 V

Figure P 9.8-12

P 9.8-13 The circuit shown in Figure P 9.8-13 is at steady
state before the switch opens. Determine the inductor current
i(t) for t > 0.

+
–

i(t)

t = 0

v(t)

+

–

12 Ω

18 V

8 Ω 24 Ω

0.4 H

25 mF

Figure P 9.8-13

*P 9.8-14 The circuit shown in Figure P 9.8-14 is at
steady state before the switch closes. Determine the capacitor
voltage v(t) for t > 0.

+
–

ia

3ia

i(t)

v(t)

+

–

t = 0

10 Ω
10 Ω20 V

0.4 H

25 mF

Figure P 9.8-14

P 9.8-15 The circuit shown in Figure P 9.8-15 is at steady
state before the switch closes. Determine the capacitor voltage,
v(t), for t > 0.

+
–

i(t)

v(t)

+

–

t = 0

5 mF50 Ω

50 Ω

2 H

20 V

Figure P 9.8-15

P 9.8-16 The circuit shown in Figure P 9.8-16 is at steady
state before the switch closes. Determine the inductor current
i(t) for t > 0.

+
–

i(t)

v(t)

+

–

t = 0

9 Ω

16 Ω

0.4 H

25 mF20 V

Figure P 9.8-16

P 9.8-17 The circuit shown in Figure P 9.8-17 is at steady
state before the switch opens. Determine the inductor current
i2(t) for t > 0.

+
–

i1(t)

t = 0

i2(t)24 Ω

75 Ω

15 Ω

4 H 1.6 H

20 V

Figure P 9.8-17
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P 9.8-18 The circuit shown in Figure P 9.8-18 is at steady
state before the switch closes. Determine the capacitor voltage
v(t) for t > 0.

+
–

i(t)

v(t)

+

–

t = 0

50 Ω

50 Ω

5 mF

2 H

20 V

Figure P 9.8-18

P 9.8-19 Find the differential equation for vc(t) in the
circuit of Figure P 9.8-19, using the direct method. Find
vc(t) for time t > 0 for each of the following sets of component
values:

(a) C ¼ 1 F, L ¼ 0.25 H, R1 ¼ R2 ¼ 1.309 V
(b) C ¼ 1 F, L ¼ 1 H, R1 ¼ 3 V, R2 ¼ 1 V
(c) C ¼ 0.125 F, L ¼ 0.5 H, R1 ¼ 1 V, R2 ¼ 4 V

Answer:

(a) vc tð Þ ¼ 1
2
�e�2t þ 1

2
e�4t V

(b) vc tð Þ ¼ 1
4
� 1

4
þ 1

2
t

� �
e�2t V

(c) vc tð Þ ¼ 0:8 � e�2t 0:8 cosð 4t þ 0:4 sin 4tÞ V

L

R2

R1

C+
–

iL(t)

vc(t)vs(t) = u(t)
+

–

Figure P 9.8-19

P 9.8-20 Find the differential equation for vo(t) in the
circuit of Figure P 9.8-20, using the direct method. Find
vo(t) for time t > 0 for each of the following sets of component
values:

(a) C ¼ 1 F, L ¼ 0.25 H, R1 ¼ R2 ¼ 1.309 V

(b) C ¼ 1 F, L ¼ 1 H, R1 ¼ 1 V, R2 ¼ 3 V
(c) C ¼ 0.125 F, L ¼ 0.5 H, R1 ¼ 4 V, R2 ¼ 1 V

Answer:

(a) vo tð Þ ¼ 1
2
� e�2t þ 1

2
e�4t V

(b) vo tð Þ ¼ 3
4
� 3

4
þ 3

2
t

� �
e�2t V

(c) vo tð Þ ¼ 0:2 � e�2t 0:2 cos 4t þ 0:1 sin 4tð Þ V

L

R2

R1

C+
–

iL(t)

vo(t)vs(t) = u(t)

+

–

vc(t)
+

–

Figure P 9.8-20

Section 9.9 State Variable Approach to Circuit

Analysis

P 9.9-1 Find v(t) for t > 0, using the state variable
method of Section 9.9 when C ¼ 1=5 F in the circuit
of Figure P 9.9-1. Sketch the response for v(t) for 0 <
t < 10 s.

Answer: v tð Þ ¼ �25e�t þ e�5t þ 24 V

6 Ω

v
+

–
C

1 H

4u(t) A

Figure P 9.9-1

P 9.9-2 Repeat Problem P 9.9-1 when C ¼ 1=10 F. Sketch the
response for v(t) for 0 < t < 3 s.

Answer: v tð Þ ¼ e�3t �24 cos t � 32 sin tð Þ þ 24 V

P 9.9-3 Determine the current i(t) and the voltage v(t) for the
circuit of Figure P 9.9-3.

Answer: i tð Þ ¼ 3:08e�2:57t � 0:08e�97:4t � 6
� �

A

0.5 Ω
i

–3u(t) A 0.2 H v
+

–
20 mF 3 A

Figure P 9.9-3

P 9.9-4 Clean-air laws are pushing the auto industry
toward the development of electric cars. One proposed
vehicle using an ac motor is shown in Figure P 9.9-4a.
The motor-controller circuit is shown in Figure P 9.9-4b
with L ¼ 100 mH and C ¼ 10 mF. Using the state equation
approach, determine i(t) and v(t) where i(t) is the motor-
control current. The initial conditions are v(0) ¼ 10 V and
i(0) ¼ 0.
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P 9.9-5 Studies of an artificial insect are being used to under-
stand the nervous system of animals. A model neuron in the
nervous system of the artificial insect is shown in Figure P 9.9-5.
The input signal vs is used to generate a series of pulses, called
synapses. The switch generates a pulse by opening at t ¼ 0 and
closing at t ¼ 0.5 s. Assume that the circuit is at steady state and
that v(0�) ¼ 10 V. Determine the voltage v(t) for 0 < t < 2 s.

+
–

vvs

+

–
F30 V

H

3 Ω

6 Ω
Switch

1 6

1 2

Figure P 9.9-5 Neuron circuit model.

Section 9.10 Roots in the Complex Plane

P 9.10-1 For the circuit of Figure P 9.10-1, determine
the roots of the characteristic equation and plot the roots on
the s-plane.

3 kΩ2 kΩ

i1 i2

+
– 2 mH2 mH12 – 6u(t) V

Figure P 9.10-1

P 9.10-2 For the circuit of Figure P 9.6-1, determine the roots
of the characteristic equation and plot the roots on the s-plane.

P 9.10-3 For the circuit of Figure P 9.10-3, determine the roots
of the characteristic equation and plot the roots on the s-plane.

vs 4 kΩF

4 H

μ1 4
+
–

Figure P 9.10-3

P 9.10-4 An RLC circuit is shown in Figure P 9.10-4.

(a) Obtain the two-node voltage equations, using operators.
(b) Obtain the characteristic equation for the circuit.
(c) Show the location of the roots of the characteristic equation

in the s-plane.
(d) Determine v(t) for t > 0.

36u(t) V +
–

Ω12 Ω6

a b

v(t)
+

–
F

1 H

1 18

Figure P 9.10-4

Section 9.11 How CanWe Check . . . ?

P 9.11-1 Figure P 9.11-1a shows an RLC circuit. The voltage
vs(t) of the voltage source is the square wave shown in Figure
P 9.11-1a. Figure P 9.11-1c shows a plot of the inductor current
i(t), which was obtained by simulating this circuit, using
PSpice. Verify that the plot of i(t) is correct.

Answer: The plot is correct.

+ –

Ω
2vx

vx

2ix

1

ix

L

2
C

v

+

–

i

Ω

+ –

Transistorized
dc to ac inverter

Integrated interior
permanent magnet

ac motor and
automatic transaxle

Sodium-sulfur
battery

System
controller

Electric power
steering

(a) (b)

Figure P 9.9-4 (a) Electric vehicle. (b) Motor-controller circuit.
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P 9.11-2 Figure P 9.11-2b shows an RLC circuit. The
voltage vs(t) of the voltage source is the square wave shown
in Figure P 9.11-2a. Figure P 9.11-2c shows a plot of

the inductor current i(t), which was obtained by simulating
this circuit, using PSpice. Verify that the plot of i(t) is correct.

Answer: The plot is not correct.

t, ms

(a)

0

25

4 8 12 16

vs, V

+
–

(b)

i(t)100 Ω

12 mHvs μ2   F

(c)

0 A

–200 mA

200 mA

400 mA

0 s 2.0 ms 4.0 ms 6.0 ms 8.0 ms

TimeI (L1)

I (L1)

(550.562u, 321.886m)

(1.6405m, 256.950m)

(1.0787m, 228.510m)

(3.6854m, 250.035m)

Figure P 9.11-1

t, ms

+
–

(b)(a)

i(t)100 Ω

0

15

2 4 6 8

vs, V

8 mHvs μ0.2   F

Figure P 9.11-2
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PSpice Problems

SP 9-1 The input to the circuit shown in Figure SP 9-1 is the
voltage of the voltage source, vi(t). The output is the voltage
across the capacitor, vo(t). The input is the pulse signal specified
graphically by the plot. Use PSpice to plot the output vo(t) as a
function of t for each of the following cases:

(a) C ¼ 1 F, L ¼ 0.25 H, R1 ¼ R2 ¼ 1.309 V

(b) C ¼ 1 F, L ¼ 1 H, R1 ¼ 3 V, R2 ¼ 1 V
(c) C ¼ 0.125 F, L ¼ 0.5 H, R1 ¼ 1 V, R2 ¼ 4 V
Plot the output for these three cases on the same axis.

0

5

vi(V)

t (s)10 15

5

vo(t)vi(t) R2

R1L

+

–
C+

–

Figure SP 9-1

Hint: Represent the voltage source, using the PSpice part
named VPULSE.

SP 9-2 The input to the circuit shown in Figure SP 9-2 is the
voltage of the voltage source, vi(t). The output is the voltage

vo(t) across resistor R2. The input is the pulse signal specified
graphically by the plot. Use PSpice to plot the output vo(t) as a
function of t for each of the following cases:

(a) C ¼ 1 F, L ¼ 0.25 H, R1 ¼ R2 ¼ 1.309 V
(b) C ¼ 1 F, L ¼ 1 H, R1 ¼ 3 V, R2 ¼ 1 V
(c) C ¼ 0.125 F, L ¼ 0.5 H, R1 ¼ 1 V, R2 ¼ 4 V

Plot the output for these three cases on the same axis.

Hint: Represent the voltage source, using the PSpice part
named VPULSE.

0

5

vi(V)

t (s)10 15

5

vo(t)vi(t)

R1

+

–
C+

– R2

L

Figure SP 9-2

SP 9-3 Determine and plot the capacitor voltage v(t) for 0 < t
< 300 ms for the circuit shown in Figure SP 9-3a. The sources
are pulses as shown in Figures SP 9-3b,c.

(c)

0 A

–100 mA

200 mA

100 mA

300 mA

0 s 2.0 ms 4.0 ms 6.0 ms 8.0 ms
Time

I (L1)

(426.966u, 172.191m)

(1.7753m, 149.952m)

(831.461u, 146.570m)

Figure P 9.11-2 (Continued )
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v 0.1   Fμ

+
–+

–

ig Ω50

Ω50

1 mH

vg

Ω10

(a)

0 100 200
0

0.2 A

ig

t (   s)μ
0 100 200

0

5 V

vg

t (   s)μ

(b) (c)

Figure SP 9-3 (a) Circuit, (b) current pulse, and (c) voltage
pulse.

SP 9-4 Determine and plot v(t) for the circuit of Figure
SP 9-4 when vs(t) ¼ 5u(t) V. Plot v(t) for 0 < t < 0.25 s.

+
–

v(t)
+

–

vs(t)

2  Fμ

Ω3 k Ω6 k

Ω2 k Ω3 k

3  Fμ

Figure SP 9-4

Design Problems

DP 9-1 Design the circuit shown in Figure DP 9-1 so that

vc tð Þ ¼ 1

2
þ A1e�2t þ A2e

�4t V for t > 0

Determine the values of the unspecified constants A1 and A2.

Hint: The circuit is overdamped, and the natural frequencies
are 2 and 4 rad/sec.

L

R2

R1

C+
–

iL(t)

vc(t)vs(t) = u(t)
+

–

Figure DP 9-1

DP 9-2 Design the circuit shown in Figure DP 9-1 so that

vc tð Þ ¼ 1

4
þ A1 þ A2tð Þe�2t V for t > 0

Determine the values of the unspecified constants A1 and A2.

Hint: The circuit is critically damped, and the natural frequen-
cies are both 2 rad/sec.

DP 9-3 Design the circuit shown in Figure DP 9-1 so that

vc tð Þ ¼ 0:8þ e�2t A1 cos 4t þ A2 sin 4tð ÞV for t > 0

Determine the values of the unspecified constants A1 and A2.

Hint: The circuit is underdamped, the damped resonant fre-
quency is 4 rad/sec, and the damping coefficient is 2.

DP 9-4 Show that the circuit shown in Figure DP 9-1 cannot be
designed so that

vc tð Þ ¼ 0:5þ e�2t A1 cos 4t þ A2 sin 4tð ÞV for t > 0

Hint: Show that such a design would require 1=RC þ 10RC ¼
4 where R ¼ R1 ¼ R2. Next, show that 1=RC þ 10 RC ¼ 4
would require the value of RC to be complex.

DP 9-5 Design the circuit shown in Figure DP 9-5 so that

vo tð Þ ¼ 1

2
þ A1 e�2t þ A2 e�4t V for t > 0

Determine the values of the unspecified constants A1 and A2.

+
–

iL(t)

vc(t)

+

–

vo(t)

+

–

L

R2

R1

Cvs(t) = u(t)

Figure DP 9-5

Hint: The circuit is overdamped, and the natural frequencies
are 2 and 4 rad/sec.

DP 9-6 Design the circuit shown in Figure DP 9-5 so that

vo tð Þ ¼ 3

4
þ A1 þ A2tð Þe�2t V for t > 0

Determine the values of the unspecified constants A1 and A2.

Hint: The circuit is critically damped, and the natural frequen-
cies are both 2 rad/sec.
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DP 9-7 Design the circuit shown in Figure DP 9-5 so that

vc tð Þ ¼ 0:2þ e�2t A1 cos 4t þ A2 sin 4tð ÞV for t > 0

Determine the values of the unspecified constants A1 and A2.

Hint: The circuit is underdamped, the damped resonant fre-
quency is 4 rad/sec, and the damping coefficient is 2.

DP 9-8 Show that the circuit shown in Figure DP 9-5 cannot be
designed so that

vc tð Þ ¼ 0:5þ e�2t A1 cos 4t þ A2 sin 4tð ÞV for t > 0

Hint: Show that such a design would require 1=RC þ 10 RC ¼
4 where R ¼ R1 ¼ R2. Next, show that 1=RC þ 10 RC ¼ 4
would require the value of RC to be complex.

DP 9-9 A fluorescent light uses cathodes (coiled tungsten
filaments coated with an electron-emitting substance) at each
end that send current through mercury vapors sealed in the tube.
Ultraviolet radiation is produced as electrons from the cathodes
knock mercury electrons out of their natural orbits. Some of the
displaced electrons settle back into orbit, throwing off the excess
energy absorbed in the collision. Almost all of this energy is in

the form of ultraviolet radiation. The ultraviolet rays, which are
invisible, strike a phosphor coating on the inside of the tube. The
rays energize the electrons in the phosphor atoms, and the atoms
emit white light. The conversion of one kind of light into another
is known as fluorescence.

One form of a fluorescent lamp is represented by the RLC
circuit shown in Figure DP 9-9. Select L so that the current i(t)
reaches a maximum at approximately t ¼ 0.5 s. Determine the
maximum value of i(t). Assume that the switch was in position 1
for a long time before switching to position 2 at t ¼ 0.

Hint: Use PSpice to plot the response for several values of L.

t = 0

10 V +
–

1 2

i

L

F
Ω4

1 3

Figure DP 9-9 Flourescent lamp circuit.
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CHAPTER 10 Sinusoidal
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I N T H I S C H A P T E R
10.1 Introduction
10.2 Sinusoidal Sources
10.3 Phasors and Sinusoids
10.4 Impedances
10.5 Series and Parallel

Impedances
10.6 Mesh and Node

Equations
10.7 Th�evenin and Norton

Equivalent Circuits

10.8 Superposition
10.9 Phasor Diagrams

10.10 Op Amps in AC
Circuits
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10.13 Using PSpice to
Analyze AC Circuits

10.14 How Can We
Check . . . ?

10.15 DESIGN
EXAMPLE—An Op
Amp Circuit

10.16 Summary
Problems
PSpice Problems
Design Problems

10.1 I n t r o d u c t i o n

Consider the experiment illustrated in Figure 10.1-1. Here, a function generator provides the input to a
linear circuit and the oscilloscope displays the output, or response, of the linear circuit. The linear circuit
itself consists of resistors, capacitors, inductors, and perhaps dependent sources and/or op amps. The
function generator allows us to choose from several types of input function. These input functions are
called waveforms or waves. A typical function generator will provide square waves, pulse waves,
triangular waves, and sinusoidal waves.

The output of the circuit will consist of two parts: a transient part that dies out as time increases
and a steady-state part that persists. Typically, the transient part dies out quickly, perhaps in a couple of
milliseconds. We expect that the oscilloscope in Figure 10.1-1 will display the steady-state response of
the linear circuit to the input provided by the function generator.

Suppose we select a sinusoidal input. The function generator permits us to adjust the
amplitude, phase angle, and frequency of the input. We notice that no matter what adjustments we
make, the (steady-state) response is always a sine wave at the same frequency as the input. The
amplitude and phase angle of the output differ from the input, but the frequency is always the
same.

Suppose we select a square wave input. The steady-state response is not a square wave. Similarly,
the steady-state responses to pulse waves and triangular waves do not have the same shape as the input.

Linear circuits with sinusoidal inputs that are at steady state are called ac circuits. The electric
power system that provides us with convenient electricity is a very large ac circuit. AC circuits are the
subject of this chapter. In particular, we will see that:

� It’s useful to associate a complex number with a sinusoid. Doing so allows us to define phasors
and impedances.

� Using phasors and impedances, we obtain a new representation of the linear circuit, called the
“frequency-domain representation.”

� We can analyze ac circuits in the frequency domain to determine their steady-state response. 425



10.2 S i n u s o i d a l S o u r c e s

In this chapter, we will begin to consider electric circuits in which the source voltage or source current is
sinusoidal. Such circuits play a prominent role in both communication systems and in power systems.
There are so many important applications of these circuits that it is difficult to overstate their
importance.

Consider a circuit having sinusoidal inputs. The inputs to a circuit are the independent voltage
source voltages and the independent current source currents, so we are considering a circuit having
sinusoidal source voltages and source currents. For now, assume that all of the sinusoidal inputs have
the same frequency. Later we will consider the case where the inputs have different frequencies.

In Chapters 8 and 9, we’ve seen that the output or response of such a circuit consists of the sum of
the natural response and the forced response, for example,

v tð Þ ¼ v n tð Þ þ v f tð Þ
When all of the inputs to the circuit are sinusoids having the same frequency, the forced response vf(t) is
also a sinusoid having the same frequency as the inputs. As time goes on, the transient part of the
response dies out. The part of the response that is left is called the steady-state response. Once the
transient part of the response has died out, we say that the circuit is “at steady state.” In the case of
sinusoidal inputs having the same frequency, the steady-state response is equal to the forced response, a
sinusoid at the input frequency.

We can choose the output of our circuit to be any voltage or current that is of interest to us. We
conclude that when a circuit satisfies the two conditions that (1) all
of the inputs are sinusoidal and have the same frequency and
(2) the circuit is at steady state, then all of the currents and voltages
are sinusoidal and have the same frequency as the inputs. Tradi-
tionally, sinusoidal currents have been called alternating currents
(ac) and circuits that satisfy the above conditions are called ac
circuits.

To summarize, an ac circuit is a steady-state circuit in which
all of the inputs are sinusoidal and have the same frequency. All of
the currents and voltages of an ac circuit are sinusoidal at the input
frequency.

Consider the sinusoidal function

v tð Þ ¼ A sin otð ÞV ð10:2-1Þ

Oscilloscope

Function Generator

Linear

Circuit

FIGURE 10.1-1
Measuring the input and
output of a linear circuit.

A

t

v (t) T

−A

FIGURE 10.2-1 A sinusoidal function.
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shown in Figure 10.2-1. The parameter A in Eq. 10.2-1 and also in Figure 10.2-1
is called the amplitude of the sinusoid. The sinusoid is a periodic function defined
by the property

v t þ Tð Þ ¼ v tð Þ ð10:2-2Þ
for all time. The constant T is called the “period of oscillation” or just the
“period.” The reciprocal of T defines the frequency or number of cycles per
second, denoted by f, where

f ¼ 1

T
ð10:2-3Þ

The units of frequency are hertz (Hz) in honor of the scientist Heinrich Hertz,
shown in Figure 10.2-2. The angular frequency of the sinusoidal function is

o ¼ 2pf ¼ 2p
T

ð10:2-4Þ
The units of angular frequency are radians per second.

Next, consider the effect of replacing t by t + ta where ta is some arbitrary
constant time. As shown in Figure 10.2-3, v(t + t a) is a sinusoid that is identical
to v(t) except that v(t + t a) is advanced from v(t) by time ta. We have

v t þ t að Þ ¼ A sin o t þ t að Þð Þ ¼ A sin o t þ o t að Þ ¼ A sin o t þ yð Þ V

where y is in radians and is called the phase angle of the
sinusoid A sin(ot + y). The phase angle in radians is related to
the time ta by

y ¼ o t a ¼ 2p
T

t a ¼ 2p
t a
T

ð10:2-5Þ
Similarly, replacing t by t – td produces a sinusoid that

is identical to v(t) except that v(t� td) is delayed from v(t) by
time td. We have

v t � t dð Þ ¼ A sin o t � t dð Þð Þ ¼ A sin o t � o t dð Þ ¼ A sin o t þ yð Þ V

where now the phase angle in radians is related to the time td by

y ¼ �o t d ¼ � 2p
T

t d ¼ �2p
t d
T

ð10:2-6Þ
Notice that an advance or delay of a full period leaves a sinusoid unchanged, that is v(t� T) = v(t).

Consequently, an advance by time ta is equivalent to a delay by time T– ta. Similarly, a delay by time td
is equivalent to an advance by time T– td.

−A

t

ta

v (t)v (t+ ta)

FIGURE 10.2-3 Advancing a sinusoid in time.

E X A M P L E 1 0 . 2 - 1 Phase Shift and Delay

Consider the sinusoids
v 1 tð Þ ¼ 10cos 200 t þ 45�ð Þ V and v 2 tð Þ ¼ 8 sin 200 t þ 15�ð Þ V

Determine the time by which v2(t) is advanced or delayed with respect to v1(t).

Solution
The two sinusoids have the same frequency but different amplitudes. The time by which v2(t) is advanced or
delayed with respect to v1(t) is the time between a peak of v2(t) and the nearest peak of v1(t). The period of the
sinusoids is given by

200 ¼ 2p
T

) T ¼ p
100

¼ 0:0314159 ¼ 31:4159 ms

FIGURE 10.2-2 Heinrich R. Hertz
(1857–1894).

Courtesy of the Institution of Electrical
Engineers

Try it 
yourself 

in WileyPLUS
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To compare the phase angles of v1(t) and v2(t) we need to express both using the same trigonometric function.
Choosing cosine, represent v2(t) as

v 2 tð Þ ¼ 8 sin 200 t þ 15�ð Þ ¼ 8 cos 200 t þ 15� � 90�ð Þ ¼ 8 cos 200 t � 75�ð Þ V

Let y1 and y2 represent the phase angles of v1(t) and v2(t). To compare v2(t) to v1(t) consider

y 2 � y 1 ¼ �75� � 45� ¼ �120� ¼ � p
3
rad

The minus sign indicates a delay rather than an advance. Convert this angle to a time using Eq. 10.2-5

y 2 � y 1 ¼ 2p
td

T
) td ¼ y 2 � y 1ð ÞT

2p
¼ � p

3 0:0314159ð Þ
2p

¼ �10:47 ms

Again, the minus sign indicates a delay. We conclude that v2(t) is delayed with respect to v1(t) by 10.47 ms. Figure
10.2-4 shows plots of v1(t) and v2(t). (Voltage v1(t) is plotted using a dashed line and voltage v2(t) is plotted using a
solid line.) Figure 10.2-4 shows that v2(t) is indeed delayed by about 10.5 ms with respect to v1(t).

0 10 20 30 40 50 60
–10

–5

0

5

10

Time, ms

V
ol

ta
ge

, V

FIGURE 10.2-4 A MATLAB plot of v1(t) and v2(t) showing that v2(t) is indeed delayed with respect to v1(t) by 10.47 ms.

Next, consider the problem of obtaining an analytic
representation A cos ot þ yð Þ of a sinusoid that is given
graphically. This problem is frequently encountered by
engineers and engineering students in the laboratory. Fre-
quently, an engineer will see a sinusoidal voltage displayed
on an oscilloscope and need to represent that voltage using
an equation. The analytic representation of the sinusoid is
obtained in three steps. The first two are straightforward. The
third requires some attention. The procedure is illustrated in
Figure 10.2-5, which shows two sinusoidal voltages.

1. Measure the amplitude, A. The location of the time axis
may not be obvious when the sinusoidal voltage is
displayed on an oscilloscope, so it may be more conve-
nient to measure the peak-to-peak amplitude 2A as
shown in Figure 10.2-5.
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–10

–5
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20
T

2A

v1(t)

v2(t)

FIGURE 10.2-5 Two sinusoids having the same amplitude
and period but different phase angles.
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E X A M P L E 1 0 . 2 - 2 Graphical and Analytic Representat ion
of Sinusoids

Determine the analytic representations of the sinusoidal voltages v1(t) and v2(t) shown in Figure 10.2-6.

Solution
Both v1(t) and v2(t) have the same amplitude and period:

2A ¼ 30 ) A ¼ 15 V

and T ¼ 0:2 s ) o ¼ 2p
0:2

¼ 10p rad/s

As noted earlier, v1 t1ð Þ ¼ v2 t1ð Þ ¼ 10:6066 V at t1 ¼ 0:15 s. Because v1(t) is increasing (positive slope) at time t1,
the phase angle y1 of the sinusoidal voltage v1(t) is calculated as

y1 ¼ � cos �1 v t1ð Þ
A

� �
� ot1 ¼ � cos �1 10:6066

15

� �
� 10pð Þ 0:15ð Þ ¼ �5:498 rad ¼ �315� ¼ 45�

(Notice that the units of ot1 are radians, so cos �1 v t1ð Þ
A

� �
must also be calculated in radians so that we can do the

subtraction.) Finally, v1(t) is represented as

v1 tð Þ ¼ 15 cos 10pt þ 45�ð ÞV

Next, because v2(t) is decreasing (negative slope) at time t1, the phase angle y2 of the sinusoidal voltage v2(t) is
calculated as

y2 ¼ cos �1 v t1ð Þ
A

� �
� ot1 ¼ cos �1 10:6066

15

� �
� 10pð Þ 0:15ð Þ ¼ �3:927 rad ¼ �225� ¼ 135�

Finally, v2(t) is represented as

v2 tð Þ ¼ 15 cos 10pt þ 135�ð ÞV

Try it 
yourself 

in WileyPLUS

2. Measure the period T in s and calculate the frequency o ¼ 2p=T in rad/s.

3. Pick a time and measure the voltage at that time. For example, t ¼ t1 ¼ 0:15 s at the point
marked in Figure 10.2-5. Notice that v1 t1ð Þ ¼ v2 t1ð Þ ¼ 10:6066 V, but v1(t1) and v2(t1) are
clearly not the same sinusoid. The additional information needed to distinguish these
two sinusoids is that v1(t) is increasing (positive slope) at time t1, whereas v2(t) is
decreasing (negative slope) at time t1. Finally, calculate the phase angle y of a sinusoidal
voltage v(t) as

y ¼
� cos �1 v t1ð Þ

A

� �
� ot1 when v tð Þ is increasing at time t1

cos �1 v t1ð Þ
A

� �
� ot1 when v tð Þ is decreasing at time t1

8>>><
>>>:
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10.3 P h a s o r s a n d S i n u s o i d s

A current or voltage in an ac circuit is a sinusoid at the input frequency. Such a current or voltage is
characterized by its amplitude and phase angle.

A phasor is a complex number that is used to represent the amplitude and phase angle of a
sinusoid. The relationship between the sinusoid and the phasor is described by

A cos o t þ yð Þ $ Affy ð10:3-1Þ

There are a couple of things that we should notice. First, the sinusoid is represented using the cosine
rather than the sine function. Second, the phasor is a complex number represented in polar form. The
magnitude of the phasor is equal to the amplitude of the sinusoid, and the angle of the phasor is equal to
the phase angle of the sinusoid.

Example 10.3-1 illustrates a convention that we will use to name the sinusoids and phasors
associated with currents and voltages in ac circuits. We will use lowercase i and v to indicate a
sinusoidal current or voltage, often with a subscript. Often, as in Example 10.3-1, we will explicitly
indicate that a sinusoid is function of time, but sometimes we will write i1 instead of i1(t). We will use
bold uppercase I and V to indicate the corresponding phasor current or voltage with the same subscript.
In general, the phasors are functions of the input frequency. In an ac circuit, the input frequency is fixed
and we often shorten I1(o) to I1.

Figure 10.3-1a shows the phasor as a complex number V, represented by a point in the complex
plane. In Figure 10.3-1a, a line segment is drawn from the origin of the complex plane to the point
representing the phasor. The angle of this line segment y, measured counter-clockwise from the real
axis, is the angle of the phasor. The length of the line segment A is called the magnitude of the phasor.
The polar form represents the phasor in terms of its magnitude and angle. To indicate that A is the
magnitude of the phasor V and that y is the angle of V, we write

A ¼ Vj j and y ¼ ffV ð10:3-2Þ

E X A M P L E 1 0 . 3 - 1 Phasors and Sinusoids

Determine the phasors corresponding to the sinusoids

i1 tð Þ ¼ 120 cos 400 t þ 60�ð Þ mA and i2 tð Þ ¼ 100 sin 400 t � 75�ð Þ mA

Solution
Using Eq. 10.3-1 we have

I 1 oð Þ ¼ 120ff60� mA

Next, express i2(t) using the cosine instead of the sine.

i 2 tð Þ ¼ 100 cos 400 t � 75� � 90�ð Þ ¼ 100 cos 400 t � 165�ð Þ mA

(See the trigonometric identities in Appendix C.) Using Eq. 10.3-1, we have

I 2 oð Þ ¼ 100ff�165� mA

Try it 
yourself 

in WileyPLUS
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Figure 10.3-1b shows an alternate representation of
the phasor V. As before, V is represented by a point in the
complex plane. In Figure 10.3-1b, the real numbers a and b
are identified by the projections of the point onto the real
and imaginary axis. Consequently, a is called the real part
of V and b is called the imaginary part of V. We write

a ¼ Re Vf g and b ¼ Im Vf g ð10:3-3Þ

and represent V as a complex number in rectangular form as

V ¼ a þ jb

where j ¼ ffiffiffiffiffiffiffi�1
p

.
Figure 10.3-2 shows a phasor V with Re{V}< 0. Notice that y, not f, is the angle of V.

Since a phasor can be expressed in both rectangular and polar forms, we write

a þ j b ¼ V ¼ Affy ð10:3-4Þ
The trigonometry of Figures 10.3-1 and 10.3-2 provides the following equations for converting
between the rectangular and polar forms of phasors.

a ¼ A cos yð Þ; b ¼ A sin yð Þ; A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a 2 þ b 2

p
ð10:3-5Þ

and y ¼
tan�1 b

a

� �
a > 0

180� � tan�1 b

�a

� �
a < 0

8>><
>>:

ð10:3-6Þ

Several special cases are worth noticing.

1 ¼ 1ff0�; j ¼ 1ff90�; � 1 ¼ 1ff�180� and � j ¼ 1ff�90� ¼ 1ff270� ð10:3-7Þ

Real axis
0

b

a

Imaginary axis

V = a + jb

0

(a ) (b)

θ

Real axis
0

Imaginary axis

V = A

θ0

A

FIGURE 10.3-1 Polar
(a) and rectangular
(b) forms of a phasor.

Real axis0

b

a

Imaginary axis

= a + jbθ

0

V = A

A
θ

φ

FIGURE 10.3-2 A phasor having a< 0.

E X A M P L E 1 0 . 3 - 2 Rectangular and Polar Forms of Phasors

Consider the phasors V1 ¼ 4:25ff115� and V2 ¼ �4þ j3

Convert V1 to rectangular form and V2 to polar form.

Solution
Using Eq. 10.3-5

V1 ¼ Re V1f g þ jIm V1f g ¼ 4:25 cos 115�ð Þ þ j4:25 cos 115�ð Þ ¼ �1:796þ j3:852

Try it 
yourself 

in WileyPLUS
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Next, consider doing arithmetic with phasors. Suppose we have two phasors, V1 and V2, each
represented in both rectangular and polar forms. That is

V1 ¼ a þ j b ¼ Effy and V2 ¼ c þ j d ¼ Ffff
where, for example, a and b, the real and imaginary parts of V1, can be calculated from E and y, the
magnitude and angle of V1, using Eq. 10.3-5. Phasors are added using the rectangular forms of the
phasors as follows:

V1 þ V2 ¼ a þ j bð Þ þ c þ j dð Þ ¼ a þ cð Þ þ j b þ dð Þ ð10:3-8Þ

Similarly V1 � V2 ¼ a þ j bð Þ � c þ j dð Þ ¼ a � cð Þ þ j b � dð Þ ð10:3-9Þ
Phasors are multiplied and divided using the polar forms of the phasors as follows:

V 1 � V 2 ¼ Effy� �
Ffff� �

¼ EFff yþ fð Þ and V1

V2
¼ Affy

Bfff ¼ A

B
ff y� fð Þ ð10:3-10Þ

The conjugate of the phasor V1 = a + jb is denoted as V1
* and is defined as

V1
� ¼ a þ j bð Þ� ¼ a � j b

¼ Effy� ��
¼ Eff�y

ð10:3-11Þ

Next, using Eq. 10.3-5

V2j j ¼ �4þ j3j j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4ð Þ2 þ 32

q
¼ 5

Noticing that Re{V2} =� 4< 0 and using Eq. 10.3-6, we see that

ffV2 ¼ 180� � tan�1 3

� �4ð Þ
� �

¼ 143�

Consequently,
V2 ¼ 5ff143�

E X A M P L E 1 0 . 3 - 3 Arithmetic Using Phasors

Consider the phasors

V1 ¼ �1:796þ j3:852 ¼ 4:25ff115� and V2 ¼ �4þ j3 ¼ 5ff143�
Determine V1 + V2, V1 �V2 and V1

V2
.

Solution
Using Eq. 10.3-8

V1 þ V2 ¼ �1:796þ j3:852ð Þ þ �4þ j3ð Þ ¼ �1:796� 4ð Þ þ j 3:852þ 3ð Þ ¼ �5:796þ j6:852

Try it 
yourself 

in WileyPLUS

432 10. Sinusoidal Steady-State Analysis



Two phasors, V1 and V2, are equal to each other if and only if one of the following two conditions
is satisfied:

1. Both Re{V1} = Re{V2} and Im{V1} = Im{V2}.

2. Both |V1| = |V2| and ffV1 ¼ ffV2.

(Conditions 1 and 2 are not independent. If V1 = V2, then both conditions are satisfied. If either
condition is satisfied, then V1 = V2 and the other condition is also satisfied.)

The use of phasors to represent sinusoids is based on Euler’s formula. Euler’s formula is

e jf ¼ cos fþ j sin f ð10:3-12Þ
Consequently,

Ae jf ¼ A cos fþ jA sin f

Using Eqs. 10.3-4 and 10.3-5, we have

A cos fþ jA sin f ¼ Afff
Consequently, Ae jf ¼ Afff ð10:3-13Þ

Ae jf is called the exponential form of a phasor. The conversion between the polar and exponential
forms is immediate. In both, A is the amplitude of the sinusoid and f is the phase angle of the sinusoid.

Next, consider
Ae j o tþyð Þ ¼ A cos o t þ yð Þ þ j A sin o t þ yð Þ ð10:3-14Þ

Taking the real part of both sides of Eq.10.3-14 gives

Acos ot þ yð Þ ¼ Re Ae j otþyð Þ
n o

¼ Re Ae jy e jot
� � ð10:3-15Þ

Consider a sinusoid and corresponding phasor

v tð Þ ¼ A cos o t þ yð Þ V and V oð Þ ¼ Affy ¼ Ae j y V ð10:3-16Þ
Substituting Eq. 10.3-16 into Eq. 10.3-15 gives

v tð Þ ¼ Re V oð Þ e jo t
� � ð10:3-17Þ

Next, consider a KVL or KCL equation from an ac circuit, for example,

0 ¼
X

i

v i tð Þ ð10:3-18Þ

Using Eq. 10.3-17, we can write Eq. 10.3-18 as

0 ¼
X

i

Re Vi oð Þ e jot
� � ¼ Re e jot

X
i

V i oð Þ
( )

ð10:3-19Þ

Next, using Eq. 10.3-10

V1 � V2 ¼ 4:25ff115�� �
5ff143�� �

¼ 4:25ð Þ 5ð Þff 115þ 143ð Þ� ¼ 21:25ff258� ¼ 21:25ff�102�

Finally,

V1

V2
¼ 4:25ff115�

5ff143� ¼ 4:25

5

� �ff 115� 143ð Þ� ¼ 0:85ff�28�
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Eq. 10.3-19 is required to be true for all values of time t. Let t = 0. Then e j ot = e 0 = 1 and Eq. 10.3-19
becomes

0 ¼ Re
X

i

V i oð Þ
( )

ð10:3-20Þ

Next, let t = p/(2 o). Then e j ot = e� j p/2 =� j and Eq. 10.3-19 becomes

0 ¼ Re �j
X

i

V i oð Þ
( )

¼ Im
X

i

V i oð Þ
( )

ð10:3-21Þ

Together, Eqs. 10.3-19 and 10.3-21 indicate that the phasors 0 and
X

i

V i oð Þ are equal. That is,

0 ¼
X

i

Vi oð Þ

In summary, if a set of sinusoidal voltages vi(t) satisfy KVL for an ac circuit, the
corresponding phasor voltages Vi(o) satisfy the same KVL equation. Similarly, if a set of
sinusoidal currents ii(t) satisfy KCL for an ac circuit, the corresponding phasor currents Ii(o)
satisfy the same KCL equation.

E X A M P L E 1 0 . 3 - 4 Kirchhoff’s Laws for AC Circuits

The input to the circuit shown in Figure 10.3-3 is the voltage source voltage,

v s tð Þ ¼ 25 cos 100 t þ 15�ð Þ V

The output is the voltage across the capacitor,

vC tð Þ ¼ 20 cos 100 t � 22�ð Þ V

Determine the resistor voltage vR(t).

Solution
Apply KVL to get

vR tð Þ ¼ v s tð Þ � vC tð Þ ¼ 25 cos 100 t þ 15�ð Þ � 20 cos 100 t � 22�ð Þ

Writing the KVL equation using phasors, we have

VR oð Þ ¼ Vs oð Þ � VC oð Þ ¼ 25ff15� � 20ff�22�

¼ 24:15þ j 6:47ð Þ � 18:54� j 7:49ð Þ
¼ 5:61þ j 13:96

¼ 15ff68:1� V

Converting the phasor VR(o) to the corresponding sinusoid, we have

VR oð Þ ¼ 15ff68:1� V , vR tð Þ ¼ 15 cos 100 t þ 68:1�ð Þ V

+
–

vC(t)

+

−

vs(t)

vR(t)+ −

R=300 Ω

C=25 mF

i (t)

FIGURE 10.3-3 The circuit in
Example 10.3-4

Try it 
yourself 

in WileyPLUS

434 10. Sinusoidal Steady-State Analysis



10.4 I m p e d a n c e s

We’ve seen that all of the currents and voltages of an ac circuit are sinusoids at the input frequency.
Figure 10.4-1a shows an element of an ac circuit. The element voltage and element current are labeled
as v(t) and i(t). We can write

v tð Þ ¼ Vm cos o t þ yð Þ V and i tð Þ ¼ Im cos o t þ fð Þ A ð10:4-1Þ
where Vm and Im are the amplitudes of the sinusoidal voltage and current, y andf are the phase angles of
the voltage and current, and o is the input frequency. The corresponding phasors are

V oð Þ ¼ Vmffy V and I oð Þ ¼ Imfff A

Figure 10.4-1b shows the circuit element again, now labeled with the phasor voltage and current V(o)
and I(o). Notice that the voltage and current adhere to the passive convention in both Figure 10.4-1a
and Figure 10.4-1b.

The impedance of an element of an ac circuit is defined to be the ratio of the voltage phasor to
the current phasor. The impedance is denoted as Z(o) so

Z oð Þ ¼ V oð Þ
I oð Þ ¼ Vmffy

Imfff ¼ Vm

Im
ff y� fð Þ V ð10:4-2Þ

Consequently,
V oð Þ ¼ Z oð Þ I oð Þ ð10:4-3Þ

Alternate Solution
Alternately, we can solve the KVL equation using trigonometry instead of phasors. We’ll need this trigonometric
identity from Appendix C:

cos a� bð Þ ¼ cos að Þ cos bð Þ 	 sin að Þ sin bð Þ
Using the trigonometric identity, we determine

25 cos 100 t þ 15�ð Þ ¼ 25 cos 100 tð Þ cos 15�ð Þ � sin 100 tð Þ sin 15�ð Þ½ 

¼ 24:15 cos 100 tð Þ � 6:47 sin 100 tð Þ

and
20 cos 100 t � 22�ð Þ ¼ 20 cos 100 tð Þ cos 22�ð Þ þ sin 100 tð Þ sin 22�ð Þ½ 


¼ 18:54 cos 100 tð Þ þ 7:49 sin 100 tð Þ
Substituting these results into the KVL equation gives

vR tð Þ ¼ v s tð Þ � vC tð Þ ¼ 25 cos 100 t þ 15�ð Þ � 20 cos 100 t � 22�ð Þ
¼ 24:15 cos 100 tð Þ � 6:47 sin 100 tð Þ½ 
 � 18:54 cos 100 tð Þ þ 7:49 sin 100 tð Þ½ 

¼ 5:61 cos 100 tð Þ � 13:96 sin 100 tð Þ
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5:612 þ 13:962

p
cos 100 t � tan�1 �16:96

5:61

� �� �

¼ 15 cos 100 t þ 68:1�ð Þ V

Using phasors instead of trigonometry to solve the KVL equation produced the same result but required less effort.
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which is Ohm’s law for ac circuits. The admittance of an element of an ac circuit is
the reciprocal of its impedance. The impedance is denoted as Y(o) so

Y oð Þ ¼ 1

Z oð Þ ¼
I oð Þ
V oð Þ

To distinguish the two representations of the circuit element in Figure 10.4-1,
we say the Figure 10.4-1a represents the circuit element in the time domain and
Figure 10.4-1b represents the circuit element in the frequency domain.

Consider a capacitor in an ac circuit as shown in Figure 10.4-2a. We know
that the capacitor voltage is a sinusoid at the input frequency so we can write

vC tð Þ ¼ A cos o t þ yð Þ V

The corresponding capacitor current is

iC tð Þ ¼ C
d

dt
vC tð Þ ¼ �CoA sin o t þ yð Þ ¼ CoA cos o t þ yþ 90�ð Þ A

The phasors corresponding to the capacitor voltage and current are

VC oð Þ ¼ Affy V and IC oð Þ ¼ CoAff yþ 90�ð Þ ¼ Coff90�� �
Affy� �

¼ joC Affy A

The impedance of the capacitor is given by the ratio of the voltage phasor to the current phasor:

ZC oð Þ ¼ VC oð Þ
IC oð Þ ¼ Affy

joC Affy ¼ 1

joC
V ð10:4-4Þ

By convention, we label the capacitor by its impedance in the frequency
domain as shown in Figure 10.4-2b. Using Eq. 10.4-3, we write

VC oð Þ ¼ 1

joC
IC oð Þ ð10:4-5Þ

Figure 10.4-3 shows an inductor in an ac circuit. We know that the
inductor current is a sinusoid at the input frequency, so we can write

iL tð Þ ¼ A cos o t þ yð Þ A

The corresponding inductor voltage is

vL tð Þ ¼ L
d

dt
iL tð Þ ¼ �LoA sin o t þ yð Þ ¼ LoA cos o t þ yþ 90�ð Þ V

The phasors corresponding to the inductor current and voltage are

IL oð Þ ¼ Affy A and VL oð Þ ¼ LoAff yþ 90�ð Þ ¼ joL Affy V

The impedance of the inductor is given by the ratio of the voltage phasor
to the current phasor:

ZL oð Þ ¼ VL oð Þ
IL oð Þ ¼ joL Affy

Affy ¼ joL V ð10:4-6Þ

We label the inductor by its impedance in the frequency domain as shown
in Figure 10.4-3b. Using Eq. 10.4-3, we write

VL oð Þ ¼ joL IL oð Þ ð10:4-7Þ

v (t)

+

−i (t)

V (ω)

I (ω)

+

−

(a) (b)

FIGURE 10.4-1 An element of an
ac circuit represented (a) in the time
domain and (b) in the frequency
domain.

vC(t)

+

−

C

iC(t)

VC(ω)

+

−
IC(ω)

1
jωC

(a) (b)

FIGURE 10.4-2 A capacitor in an ac circuit
represented (a) in the time domain and (b) in the
frequency domain.

vL(t)

+

−

L

iL(t)

VL(ω)

+

−IL(ω)

jωL

(a) (b)

FIGURE 10.4-3 An inductor in an ac circuit
represented (a) in the time domain and (b) in the
frequency domain.
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A resistor from an ac circuit is shown in Figure 10.4-4a. We know that the
resistor voltage is a sinusoid at the input frequency so we can write

vR tð Þ ¼ Acos o t þ yð Þ
The resistor current is

iR tð Þ ¼ vR tð Þ
R

¼ A

R
cos o t þ yð Þ

The impedance of the resistor is the ratio of the voltage phasor to the current phasor:

ZR oð Þ ¼ VR oð Þ
IR oð Þ ¼ Affy

A
Rffy ¼ R V ð10:4-8Þ

The impedance of a resistor is numerically equal to the resistance. Using Eq. 10.4-3, we write

VR oð Þ ¼ R IR oð Þ ð10:4-9Þ

vR(t)

+

−

R

iR(t)

+

−

R VR(ω)

IR(ω)

(a) (b)

FIGURE 10.4-4 A resistor in an ac
circuit represented (a) in the time
domain and (b) in the frequency
domain.

E X A M P L E 1 0 . 4 - 1 Impedances

The input to the ac circuit shown in Figure 10.4-5 is the source voltage

v S tð Þ ¼ 12 cos 1000 t þ 15�ð Þ V

Determine (a) the impedances of the capacitor, inductor, and resistance and
(b) the current i(t).

Solution
(a) The input frequency is o = 1000 rad/s. Using Eq. 10.4-4 shows that the

impedance of the capacitor is

ZC oð Þ ¼ 1

joC
¼ 1

j1000 40� 10�6
	 
 ¼ 25

j
¼ �j25 V

Using Eq. 10.4-6 shows that the impedance of the inductor is

ZL oð Þ ¼ joL ¼ j1000 0:065ð Þ ¼ j65 V

Using Eq. 10.4-8, the impedance of the resistor is
ZR oð Þ ¼ R ¼ 30 V

(b) Apply KVL to write
12 cos 1000 t þ 15�ð Þ ¼ vR tð Þ þ vL tð Þ þ vC tð Þ

Using phasors, we get

12ff15� ¼ VR oð Þ þ VL oð Þ þ VC oð Þ ð10:4-10Þ
Using Eqs. 10.4-5, 10.4-7, and 10.4-9, we get

12ff15� ¼ 30 I oð Þ þ j65 I oð Þ � j25 I oð Þ ¼ 30þ j40ð Þ I oð Þ ð10:4-11Þ
Solving for I(o) gives

I oð Þ ¼ 12ff15�
30þ j40

¼ 12ff15�
50ff53:13� ¼ 0:24ff38:13� A

The corresponding sinusoid is
i tð Þ ¼ 0:24 cos 1000 t � 38:13�ð Þ A

+
–

vL(t)

+

−

vs(t)

vR(t)+ −

30 Ω

40 μF

i (t)

vC(t) +−

65 mH

FIGURE 10.4-5 The AC circuit in
Eample 10.4-1.

Try it 
yourself 
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Figure 10.4-6 shows the “frequency domain representation” of the
circuit from Figure 10.4-5. In contrast, Figure 10.4-5 shows the “time do-
main representation” of the circuit. Notice that in the time domain, voltage
and currents are represented as sinusoids, while in the frequency domain,
voltages and currents are represented as phasors. In the time domain, resistors,
capacitors, and inductors are represented by their resistance, capacitance, or
inductance, while in the frequency domain, resistors, capacitors, and inductors
are represented by their impedance.

Figure 10.4-6 summarizes the information used to solve Example 10.4-1.
First, we apply KVL to Figure 10.4-6 to obtain Eq. 10.4-10. Next, we apply

“Ohm’s law for ac circuits” in Figure 10.4-6 to obtain Eq. 10.4-11. Solving Eq. 10.4-11, using complex
arithmetic, produces the phasor corresponding to the current i(t).

E X A M P L E 1 0 . 4 - 2 AC Circuits in the Frequency Domain

The input to the ac circuit shown in Figure 10.4-7 is the source
voltage

v S tð Þ ¼ 48 cos 500 t þ 75�ð Þ V

Determine the voltage v(t).

Solution
The input frequency is o = 500 rad/s. The impedances of the capacitor and inductor are

ZC oð Þ ¼ 1

joC
¼ 1

j500 25� 10�6
	 
 ¼ 80

j
¼ �j80 V;

and ZL oð Þ ¼ joL ¼ j500 0:1ð Þ ¼ j50 V

Figure 10.4-8 shows the circuit represented in the frequency domain
using phasors and impedances. Notice that

(a) The voltage source voltage is described by the phasor corre-
sponding to vs(t).

(b) The currents and voltages of the resistor, inductor, and capaci-
tor are described by the phasors IR(o), V(o), I (o), VL(o), and
IC(o).

(c) The resistor, inductor, and capacitor are described by their
impedances.

Apply Ohm’s law to each of the impedances to get

VL oð Þ ¼ j50 I oð Þ; IC oð Þ ¼ V oð Þ
�j80

and IR oð Þ ¼ V oð Þ
80

Apply KCL to the top left node to get

I oð Þ ¼ IC oð Þ þ IR oð Þ ¼ V oð Þ
�j80

þ V oð Þ
80

ð10:4-12Þ

+
–

+

−

30 Ω

12  15°  V

VR(ω)+ −

VL(ω)

+− VC(ω)

j65 Ω

I (ω)

− j25 Ω

FIGURE 10.4-6 The circuit from Figure
10.4-5, represented in the frequency domain.

+
–

+

−

vs(t) v (t) 80 Ω25 mF

i (t)10 mH

FIGURE 10.4-7 The ac circuit in Example
10.4-2.

48  75°  V V (ω)

j50 Ω I (ω)

− j80 Ω+
–

+

−

80 Ω

IR(ω)

IC(ω)

+ –VL(ω)

FIGURE 10.4-8 The circuit from Figure 10.4-7,
represented in the frequency domain.

Try it 
yourself 
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Consider a dependent source in an ac circuit as shown in Figure 10.4-9a. The controlling current
ia(t) is a sinusoid at the input frequency.

i a tð Þ ¼ A cos o t þ yð Þ
The controlled voltage is given by

v b tð Þ ¼ K i a tð Þ ¼ K A cos o t þ yð Þ
The corresponding phasors are

Ia oð Þ ¼ Affy and Vb oð Þ ¼ KAffy ¼ K Ia oð Þ
Figure 10.4-9b shows the frequency domain representation of the dependent source.

Apply KVL to the right mesh to get

48ff75� ¼ VL oð Þ þ V oð Þ ¼ j50 I oð Þ þ V oð Þ ð10:4-13Þ
Combining Eqs. 10.4-12 and 10.4-13 gives

48ff75� ¼ j50
V oð Þ
�j80

þ V oð Þ
80

� �
þ V oð Þ ¼ j50

�j80
þ j50

80
þ 1

� �
V oð Þ

¼ �0:625þ j0:625þ 1½ 
V oð Þ ¼ 0:375þ j0:625ð ÞV oð Þ
Solving for V(o) gives

V oð Þ ¼ 48ff75�
0:375þ j0:625

¼ 48ff75�
0:7289ff59� ¼ 65:9ff16� V

The corresponding sinusoid is
v tð Þ ¼ 65:9 cos 500 t þ 16�ð Þ V

i a(t) I a(ω)

(a)

+

–
vb(t) = K i a(t) Vb(ω) = K I a(ω)

(b)

+

–

FIGURE 10.4-9 A CCVS from an ac
circuit represented (a) in the time
domain and (b) in the frequency domain.

E X A M P L E 1 0 . 4 - 3 AC Circuits Containing a Dependent Source

The input to the ac circuit shown in Figure 10.4-10 is the source voltage

v S tð Þ ¼ 12 cos 1000 t þ 45�ð Þ V

Determine the voltage vo(t).

+
–

vo(t)

+

−

vs(t) 25 Ω 20 mF

i1(t)

+

–

25 Ω

v2(t) = 100 i1(t)

FIGURE 10.4-10 The ac circuit in Example 10.4-3.

Try it 
yourself 
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10.5 S e r i e s a n d P a r a l l e l I m p e d a n c e s

Figure 10.5-1a shows a circuit called “Circuit A” connected to two series impedances. Using KCL in
Figure 10.5-1 shows that

I 1 ¼ I 2 ¼ I ð10:5-1Þ
Using Ohm’s law in Figure 10.5-1a shows that

V 1 ¼ Z 1 I 1 ¼ Z 1 I and V 2 ¼ Z 2 I 2 ¼ Z 2 I

Using KVL in Figure 10.5-1a shows that

V ¼ V 1 þ V 2 ¼ Z 1 þ Z 2ð Þ I ð10:5-2Þ
The impedance of the series combination of Z1 and Z2 is given by

V
I
¼ Z 1 þ Z 2

Solution
The input frequency is o = 1000 rad/s. The impedance of the capacitor is

1

joC
¼ 1

j1000 20� 10�6
	 
 ¼ 50

j
¼ �j50 V;

Figure 10.4-11 shows the circuit represented in the frequency domain using phasors and impedances. Notice that

(a) The voltage source voltage is described by the phasor corresponding to vs(t).
(b) The currents and voltages of the CCVS are described by phasors. The phasor corresponding to the controlled

voltage is expressed as the product of the gain of the CCVS and the phasor corresponding to the controlling
current.

(c) The resistors and the capacitor are described by their impedances.

12   45°  V Vo (ω)

I1(ω)

− j50 Ω+
–

+

−

25 Ω
+

–

25 Ω

V2(ω) = 100 I1(ω)
I2(ω)

FIGURE 10.4-11 The circuit from Figure 10.4-10,
represented in the frequency domain.

The controlling current of the CCVS in Figure 10.4-11 is

I 1 oð Þ ¼ 12ff45�
25

¼ 0:48ff45� A

Apply KVL to the right-hand mesh in Figure 10.4-11 to get
100 I 1 oð Þ ¼ 25 I 2 oð Þ � j50 I 2 oð Þ

Solving for I2(o) gives

I 2 oð Þ ¼
100 0:48ff45�� �

25� j50
¼ 0:85865ff108:44� A

Finally,

Vo oð Þ ¼ �j50 � I 2 oð Þ ¼ 42:933ff18:44� V
The corresponding sinusoid is

vo tð Þ ¼ 42:933 cos 1000t þ 18:44�Þ Vð
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We call this impedance the equivalent impedance of the series impedances and write
Z eq ¼ Z 1 þ Z 2 ð10:5-3Þ

We say that the impedance Zeq is equivalent to the series combination of Z1 and Z2 because replacing
Z1 and Z2 in Figure 10.5-1a) by Zeq in Figure 10.5-1b will not change the current or voltage of any
element of Circuit A. Equation 10.5-3 generalizes to the case of n series impedances

Z eq ¼ Z 1 þ Z 2 þ � � � þ Z n ð10:5-4Þ

+ –V 1

V

+

–

I

V 2

+

–I 2

Z 2

I 1
Z 1

V

+

–

I

Z eqCircuit A Circuit A

(a) (b)

FIGURE 10.5-1 Series impedances (a) and an equivalent impedance (b).

The voltages across the impedances Z1 and Z2 in Figure 10.5-1a are given by

V 1 ¼ Z 1 I ¼ Z 1
V

Z 1 þ Z 2
¼ Z 1

Z 1 þ Z 2
V and V 2 ¼ Z 2 I ¼ Z 2

Z 1 þ Z 2
V ð10:5-5Þ

These equations show how V, the voltage across the series impedances, is divided between the
individual impedances. They are called the voltage division equations.

V

+

–

I

V 1

+

– I 2

Z 2

I 1

Z 1
V

+

–

I

Z eqCircuit A Circuit A

(a) (b)

V 2

+

–

FIGURE 10.5-2 Parallel impedances (a) and an equivalent impedance (b).

Figure 10.5-2a shows a circuit called “Circuit A” connected to two parallel impedances. Using
KVL in Figure 10.5-2a shows that

V 1 ¼ V 2 ¼ V ð10:5-6Þ
Using Ohm’s law in Figure 10.5-2a shows that

I 1 ¼ V 1

Z 1
¼ V

Z 1
and I 2 ¼ V 2

Z 2
¼ V

Z 2

Using KCL in Figure 10.5-1a shows that

I ¼ I 1 þ I 2 ¼ 1

Z 1
þ 1

Z 2

� �
V ð10:5-7Þ

The impedance of the parallel combination of Z1 and Z2 is given by
V
I
¼ 1

1
Z 1

þ 1
Z 2
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We call this impedance the equivalent impedance of the parallel impedances and write

Z eq ¼ 1
1

Z 1
þ 1

Z 2

ð10:5-8Þ

We say that the impedance Zeq is equivalent to the parallel combination of Z1 and Z2 because replacing
Z1 and Z2 in Figure 10.5-2a by Zeq in Figure 10.5-2b will not change the current or voltage of any
element of Circuit A. Equation 10.5-8 generalizes to the case of n series impedances

Z eq ¼ 1
1

Z 1
þ 1

Z 2
þ � � � þ 1

Z n

ð10:5-9Þ

Equivalently, we can write equation 10.5-9 in terms of admittances

Y eq ¼ 1

Z eq
¼ 1

Z 1
þ 1

Z 2
þ � � � þ 1

Z n
¼ Y 1 þ Y 2 þ � � � þ Y n ð10:5-10Þ

The currents the impedances Z1 and Z2 in Figure 10.5-2a are given by

I 1 ¼ V
Z 1

¼ 1

Z 1

I
1

Z 1
þ 1

Z 2

¼ Z 2

Z 1 þ Z 2
I and I 2 ¼ V

Z 2
¼ Z 1

Z 1 þ Z 2
I ð10:5-11Þ

These equations show how I, the current in the parallel impedances, is divided between the individual
impedances. They are called the current division equations.

The voltage division equations and current division equations are summarized in Table 10.5-1.

Table 10.5-1 Voltage and Current Division in the Frequency Domain

CIRCUIT EQUATIONS

Voltage division

I I1

V1

V
V2

+
+

–

–

I2

+
–

Z1

Z2

I1 ¼ I2 ¼ I

V1 ¼ Z1

Z1 þ Z2
V

V2 ¼ Z2

Z1 þ Z2
V

Current division I V2

+

–

I2I1

Z2V1

+

–

V
+

–
Z1

V1 ¼ V2 ¼ V

I1 ¼ Z2

Z1 þ Z2
I

I2 ¼ Z1

Z1 þ Z2
I

E X A M P L E 1 0 . 5 - 1 Analysis of AC Circuits Using Impedances

Determine the steady-state current i(t) in the RLC circuit shown in Figure 10.5-3a, using phasors and impedances.

i(t)
Vs

R= 9 Ω

(b)(a)

Z3

Z2vs(t)=100 cos100t  V +
–

L= 10 mH

C= 1 mF +
–

I Z1

FIGURE 10.5-3 The circuit from
Example 10.5-1 represented (a) in
the time domain and (b) in the
frequency domain.

Try it 
yourself 

in WileyPLUS
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Solution
First, we represent the circuit in using phasors and impedances as shown in Figure 10.5-3b. Noticing that the
frequency of the sinusoidal input in Figure 10.5-3a is o ¼ 100 rad/s, the impedances in Figure 10.5-3b are
determined to be

Z1 ¼ R ¼ 9V; Z2 ¼ 1

joC
¼ 1

j 100ð Þ 0:001ð Þ ¼
10

j
¼ �j10V

and Z3 ¼ joL ¼ j 100ð Þ 0:001ð Þ ¼ j1V

The input phasor in Figure 10.5-3b is

Vs ¼ 100ff0� V
Next, we use KVL in Figure 10.5-3b to obtain

Z1I þ Z2I þ Z3I ¼ Vs

Substituting for the impedances and the input phasor gives

9� j10þ j1ð ÞI ¼ 100ff0�
or

I ¼ 100ff0�
9� j9

¼ 10ff0�
9
ffiffiffi
2

p ff�45�
¼ 7:86ff45� A

Therefore, the steady-state current in the time domain is
i tð Þ ¼ 7:86 cos 100t þ 45�ð Þ A

E X A M P L E 1 0 . 5 - 2 Voltage Division
Using Impedances

INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 10.5-4a. The input to the circuit is the voltage of the voltage source,

vs tð Þ ¼ 7:28 cos 4t þ 77�ð ÞV
The output is the voltage across the inductor vo(t). Determine the steady-state output voltage vo(t).

77° V7.28vo(t)vs(t)

+

–

3 Ω

0.54 H

(b)(a)

–
+

+

–

3 Ω

j2.16 Ω–
+ Vo( )ω

FIGURE 10.5-4 The circuit considered in
Example 10.5-2 represented (a) in the time
domain and (b) in the frequency domain.

Solution
The input voltage is sinusoid. The output voltage is also sinusoid and has the same frequency as the input
voltage. The circuit has reached steady state. Consequently, the circuit in Figure 10.5-4a can be represented in the
frequency domain, using phasors and impedances. Figure 10.5-4b shows the frequency-domain representation
of the circuit from Figure 10.5-4a. The impedance of the inductor is joL ¼ j 4ð Þ 0:54ð Þ ¼ j2:16 V, as shown in
Figure 10.5-4b.

Try it 
yourself 

in WileyPLUS
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Apply the voltage divider principle to the circuit in Figure 10.5-4b to represent the output voltage in the
frequency domain as

Vo oð Þ ¼ j2:16

3þ j2:16
�7:28ff77�� �

¼ 2:16ff90�
3:70ff36� �7:28ff77�� �

¼ 2:16ð Þ �7:28ð Þ
3:70 ff 90� þ 77�ð Þ � 36�

¼ �4:25ff131� ¼ 4:25ff311� V

In the time domain, the output voltage is represented as

vo tð Þ ¼ 4:25 cos 4t þ 311�ð ÞV

E X A M P L E 1 0 . 5 - 3 AC Circuit Analysis INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 10.5-5a. The input to the circuit is the voltage of the voltage source,

vs tð Þ ¼ 7:68 cos 2t þ 47�ð ÞV
The output is the voltage across the resistor,

vo tð Þ ¼ 1:59 cos 2t þ 125�ð ÞV
Determine capacitance C of the capacitor.

1
2C

vo(t)vs(t)
+

–

(b)(a)

+
–

C

1 Ω +
– 1 ΩVs( )ω

++ –

–
Vo( )ω

l( )ω

Vc( )ω

–j Ω

FIGURE 10.5-5 The circuit considered in
Example 10.5-3 represented (a) in the time
domain and (b) in the frequency domain.

Solution
The input voltage is sinusoid. The output voltage is also sinusoid and has the same frequency as the input voltage.
Apparently, the circuit has reached steady state. Consequently, the circuit in Figure 10.5-5a can be represented in
the frequency domain, using phasors and impedances. Figure 10.5-5b shows the frequency-domain representation
of the circuit from Figure 10.5-5a. The impedance of the capacitor is

1

joC
¼ j

j2oC
¼ � j

oC
¼ � j

2 C

The phasors corresponding to the input and output sinusoids are

Vs oð Þ ¼ 7:68ff47� V
and Vo oð Þ ¼ 1:59ff125� V
The current I(o) in Figure 10.5-5b is given by

I oð Þ ¼ Vo oð Þ
1

¼ 1:59ff125�
1ff0� ¼ 1:59ff125� A

Try it 
yourself 

in WileyPLUS
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The capacitor voltage Vc(o) in Figure 10.5-5b is given by

Vc oð Þ ¼ Vs oð Þ � Vo oð Þ ¼ 7:68ff47� � 1:59ff125�
¼ 5:23þ j5:62ð Þ � �0:91þ 1:30ð Þ
¼ 5:23þ 0:91ð Þ þ j 5:62� 1:30ð Þ
¼ 6:14þ j4:32

¼ 7:51ff35� V

The impedance of the capacitor is given by

�j
1

2C
¼ Vc oð Þ

I oð Þ ¼ 7:51ff35�
1:59ff125� ¼ 4:72ff�90�

Solving for C gives

C ¼ �j

2 4:72ff�90�
� � ¼ 1ff�90�

2 4:72ff�90�
� � ¼ 0:106 F

E X A M P L E 1 0 . 5 - 4 AC Circuit Analysis INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 10.5-6a. The input
to the circuit is the voltage of the voltage source vs(t),
and the output is the voltage across the 4-V resistor,
vo(t). When the input is vs tð Þ ¼ 8:93 cos 2t þ 54�ð Þ V,
the corresponding output is vo tð Þ ¼ 3:83 cos 2tþð
83�Þ V. Determine the voltage across the 9-V
resistor va(t) and the value of the capacitance C of the
capacitor.

Solution
The input voltage is a sinusoid. The output voltage is
also sinusoid and has the same frequency as the input
voltage. Apparently, the circuit has reached steady
state. Consequently, the circuit in Figure 10.5-6a can
be represented in the frequency domain, using phasors and impedances. Figure 10.5-6b shows the frequency-
domain representation of the circuit from Figure 10.5-6a. The voltages Vs(o), Va(o), and Vo(o) in Figure 10.5-6b
are the phasors corresponding to vs(t), va(t), and vo(t) from Figure 10.5-6a. The capacitor and the resistors are
represented as impedances in Figure 10.5-6b. The impedance of the capacitor is �j1=oC ¼ �j1=2C where 2 rad/s
is the value of the frequency of vs(t).

The phasors corresponding to the input and output sinusoids are

Vs oð Þ ¼ 8:93ff54� V
and

Vo oð Þ ¼ 3:83ff83� V

vo(t)

va(t)– + +

–
vs(t)

+
– 4 Ω

9 Ω

C

+
– 4 Ω

9 Ω
a b

c

1
2C

Vs( )ω
+– +

–
Vo( )ω

Va( )ω

–j

(b)(a)

FIGURE 10.5-6 The circuit considered in Example 10.5-4
represented (a) in the time domain and (b) in the
frequency domain.

Try it 
yourself 
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First, we calculate the value of Va(o). Apply KVL to the mesh in Figure 10.8-6b that consists of the two resistors
and the voltage source to get

Va oð Þ ¼ Vo oð Þ � Vs oð Þ ¼ 3:83ff83�� �
� 8:93ff54�� �

¼ 0:47þ j3:80ð Þ � 5:25þ j7:22ð Þ
¼ �4:78� j3:42

¼ 5:88ff216�
The voltage across the 9-V resistor va(t) is the sinusoid corresponding to this phasor

va tð Þ ¼ 5:88 cos 2t þ 216�ð ÞV

We can determine the value of the capacitance by applying Kirchhoff’s current law (KCL) at node b in
Figure 10.8-6a:

Va oð Þ
�j

1

2C

þ Va oð Þ
9

þ Vo oð Þ
4

¼ 0

j2Cð ÞVa oð Þ þ Va oð Þ
9

þ Vo oð Þ
4

¼ 0

Solving this equation for j2C gives

j2C ¼ 4Va oð Þ þ 9Vo oð Þ
�36Va oð Þ

Substituting the values of the phasors Va(o) and Vo(o) into this equation gives

j2C ¼ 4 �4:78� j3:42ð Þ þ 9 0:47þ j3:80ð Þ
�36 5:88ff216�� �

¼ �14:89þ j20:52

�36 5:88ff216�� �

¼ 25:35ff126�
36ff�180�
� �

5:88ff216�� �

¼ 25:35

36ð Þ 5:88ð Þff126� � �180� þ 216�ð Þ

¼ 0:120ff90�
¼ j 0:120

Therefore, the value of the capacitance is C ¼ 0:12
2

¼ 0:06 ¼ 60 mF.
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10.6 Me s h a n d N o d e E q u a t i o n s

We can analyze an ac circuit by writing and solving a set of simultaneous equations. Two methods, the
node equations and the mesh equations, are quite popular. Before writing either the node equations or
mesh equations, we represent the ac circuit in the frequency domain using phasors and impedances.

The node equations are a set of simultaneous equations in which the unknowns are the node
voltages. We write the node equations by

1. Expressing the element voltages and currents (for example, the current and voltage of an
impedance) in terms of the node voltages.

2. Applying KCL at the nodes of the ac circuit.

After writing and solving the node equations, we can determine all of the voltages and currents of the ac
circuit using Ohm’s and Kirchhoff’s laws.

−+ V1 – V2

V1 V2

Z

Z

I =

+ –

−+ −+

V1 – V2

Va V1 V2 V1 V2

V1 – V2

Vs
+ −

V1 – V2

(a) (b) (c)

FIGURE 10.6-1 Expressing
element voltages and currents in
terms of node voltages.

Figure 10.6-1 illustrates techniques for expressing the element voltages and currents in terms of
the node voltages. Figure 10.6-1a shows a generic circuit element having node voltages V1 and V2 and
element voltage Va. We see that

E X A M P L E 1 0 . 5 - 5 Equivalent Impedance

Determine the equivalent impedance of the circuit shown in Figure 10.5-7a at the frequency o ¼ 1000 rad/s.

Solution
Represent the circuit in the frequency domain as shown in Figure 10.5-7b. After replacing series impedances by an
equivalent impedance, we have the circuit shown in Figure 10.5-7c. Zeq is now seen to be the equivalent impedance
of the parallel impedances in Figure 10.5-7c.

Zeq ¼ �j500 400þ j300ð Þ
�j500þ 400þ j300

¼ 150; 000� j200; 000

400� j200
¼ 250; 000ff�53:1o

447:2ff�26:6o
¼ 599:0ff�26:5oV

400 Ω

2 mF 300 mH −j 500 Ω j 300 Ω

Zeq

400 Ω

Zeq

−j 500 Ω 400 + j 300 Ω

Zeq

(a) (b) (c)

FIGURE 10.5-7 The circuit considered in Example 10.5-5 (a) in the time domain, (b) in the frequency domain, and (c) after
replacing series impedances by an equivalent impedance.

Try it 
yourself 

in WileyPLUS
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V a ¼ V 1 � V 2 ð10:6-1Þ
(To remember this equation, we notice that V1 is the node voltage near the plus sign of the polarity of
Va, and V2 is the node voltage near the minus sign of the polarity of Va. It is V2 rather than V1 that is
negative in Equation 10.6-1.)

In Figure 10.6-1b, the element is a voltage source and Vs is the phasor voltage of the source.
Noticing that V1 is the node voltage near the plus sign of the polarity of Vs, we write

V s ¼ V 1 � V 2 ð10:6-2Þ
In Figure 10.6-1c, the element is an impedance. Notice that the voltage V1� V2 across the impedance
and the current I in the impedance adhere to the passive convention. Using Ohm’s law, we write

I ¼ V 1 � V 2

Z
ð10:6-3Þ

E X A M P L E 1 0 . 6 - 1 Node Equations for AC Circuits

Determine the voltage va(t) for the circuit shown in Figure 10.6-2.

8 Ω 80 mH

va(t)

+

–

20 cos(250 t) V 0.25 mF
+

–
4 va(t)+

– 1.2 cos(250 t +45°) A

36 mH

FIGURE 10.6-2 The ac circuit considered in
Example 10.6-1.

Solution
First, we represent the circuit in the frequency domain as shown in Figure 10.6-3. Next, we express the currents I1,
I2, and I3 in terms of the node voltages. Figure 10.6-4 illustrates this process by focusing attention on each of the
currents in turn. In Figure 10.6-4a, we consider the impedance corresponding to the 8-V resistor connected in series
with the 36-mH inductor. (Notice that the current I1 is directed from the node having the node voltage 20 ff0� V
toward the node having the node voltage Va(o).) Comparing Figure 10.6-4a to Figure 10.6-1c, we write

I 1 ¼ 20ff0� � V a oð Þ
8� j9

In Figure 10.6-4b, we consider the impedance corresponding to the capacitor. The node voltage at the reference
node is 0 V, so we write

I 2 ¼ V a oð Þ � 0

�j16
¼ V a oð Þ

�j16

In Figure 10.6-4b, we consider the impedance corresponding to the 80-mH inductor. We have

I 3 ¼ V a oð Þ � 4V a oð Þ
j20

¼ � 3V a oð Þ
j20

+

–

+

–
+
– 4 Va(ω)Va(ω) 1.2    45°  A20   0°  V − j16 Ω

j9 Ω j20 Ω

I2

I3I1

8 Ω

FIGURE 10.6-3 The ac circuit from Figure
10.6-2 represented in the frequency domain
using phasors and impedances.

Try it 
yourself 

in WileyPLUS
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Applying KCL at the top node of the capacitor gives

I 1 þ 1:2ff45� ¼ I 2 þ I 3

Substituting for I1, I2, and I3 gives

20ff0� � V a oð Þ
8� j9

þ 1:2ff45� ¼ V a oð Þ
�j16

þ � 3V a oð Þ
j20

� �

Collecting the terms involving Va(o) gives

20ff0�
8� j9

þ 1:2ff45� ¼ 1

8� j9
þ 1

�j16
� 3

j20

� �
V a oð Þ

Solving for Va(o), perhaps using MATLAB (see Figure 10.6-5), gives

V a oð Þ ¼ 12:43ff�81:2� V
The corresponding sinusoid is

v a tð Þ ¼ 12:43 cos 250 t � 81:2�ð Þ V

8 Ω

4 Va(ω)Va(ω)
I3

j20 Ω

Va(ω)
I1

j9 Ω

20    0°  V

− j16 Ω
I2

Va(ω)

(b) (c)(a)

FIGURE 10.6-4 Expressing the
currents I1, I2, and I3 in terms of the
node voltages.

FIGURE 10.6-5 Using MATLAB to
calculate Va in Example 10.6-1.
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The mesh equations are a set of simultaneous equations in which the unknowns are the mesh
currents. We write the mesh equations by

1. Expressing the element voltages and currents (for example, the current and voltage of an
impedance) in terms of the mesh currents.

2. Applying KVL to the meshes of the ac circuit.

After writing and solving the mesh equations, we can determine all of the voltages and currents of the ac
circuit using Ohm’s and Kirchhoff’s laws.

ZV

+

−

I = I1 – I2

I2I1

I1 – I2

Is

I1 – I2Ia

I2 I2I1 I1

(a) (b) (c)

FIGURE 10.6-6 Expressing element voltages and currents in terms of mesh currents.

Figure 10.6-6 illustrates techniques for expressing the element voltages and currents in terms of
the mesh voltages. Figure 10.6-6a shows a generic circuit element that is in two meshes having mesh
currents I1 and I2. Ia is the element current of the generic element. We see that

I a ¼ I 1 � I 2 ð10:6-4Þ
(To remember this equation we notice that I1 has the same direction in the generic element as does Ia,

while I2 has the opposite direction in the generic element. It is I2 rather than I1 that’s negative in
Equation 10.6-4.)

In Figure 10.6-6b, the element is a current source that is in two meshes, and Is is the phasor
current of the source. Noticing that I1 has the same direction in the current source as Is and I2 the
opposite direction, we write

I s ¼ I 1 � I 2 ð10:6-5Þ
In Figure 10.6-6c, the element is an impedance. The current I1� I2 in the impedance and the voltage V
across the impedance adhere to the passive convention. Using Ohm’s law we write

V ¼ Z I 1 � I 2ð Þ ð10:6-6Þ

E X A M P L E 1 0 . 6 - 2 Mesh Equation for AC Circuits

Determine the mesh currents for the circuit shown in Figure 10.6-7.

45cos(500t ) V 12.5 mF

200 Ω

vo

+

–

+
–

100 Ω 80 mH

50 mH

25 mF

FIGURE 10.6-7 The AC circuit considered in Example 10.6-2.

Try it 
yourself 

in WileyPLUS
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Solution
First, we will represent the circuit in the frequency domain using phasors and impedances. The impedances of the
capacitors and inductors are

�j
1

500 25� 10�6
	 
 ¼ �j80 V;�j

1

500 12:5� 10�6
	 
 ¼ �j160 V; j500 80� 10�3

	 
 ¼ j40 V

and j500 50� 10�3
	 
 ¼ j25 V

The frequency domain representation of the circuit is shown in Figure 10.6-8. Also, the mesh currents I1, I2, and I3

are identified in Figure 10.6-8. Next, express the currents in the impedances as shown in Figure 10.6-9.
The voltages across the impedances are labeled as Va, Vb, Vc, Vd, Ve, and Vo in Figure 10.6-9. Each of these
voltages is expressed in terms of the mesh currents by multiplying an impedance by the currents in that impedance.
For example,

V b ¼ j40 I 1;V d ¼ j25 I 2 � I 1ð Þ and V e ¼ �j80 I 2 � I 3ð Þ
Having expressed the impedance currents and voltages in terms of the mesh current, we next apply KVL to each of
the meshes to obtain the following equations:

100 I 1 þ j40 I 1 � j25 I 2 � I 1ð Þ � 100 I 2 � I 1ð Þ ¼ 0

200 I 2 � I 1ð Þ � j80 I 2 � I 3ð Þ � 45ff0� ¼ 0

and �j25 I 2 � I 1ð Þ þ �j160ð Þ I 3 � �j80ð Þ I 2 � I 3ð Þ ¼ 0

These simultaneous equations can be organized into a single matrix equation:

300þ j65 �200 �j25
�200 200� j80 j80
�j25 j80 �j215

2
4

3
5 I 1

I 2

I 3

2
4

3
5 ¼

0
45
0

2
4

3
5

Solving, for example, using MATLAB, gives

I 1

I 2

I 3

2
4

3
5 ¼

0:374ff115�
0:575ff25�
0:171ff28�

2
64

3
75

In the time domain, the mesh currents are

i 1 tð Þ ¼ 374 cos 500 t þ 15�ð Þ mA; i 2 tð Þ ¼ 575 cos 500 t þ 25�ð Þ mA

and
i 3 tð Þ ¼ 171 cos 500 t þ 28�ð Þ mA

200 Ω j 25 Ω

−j 80 Ω Vo

+

–

45   0°  V −j 160 ΩI2

I1

I3
+
–

j 40 Ω100 Ω

FIGURE 10.6-8 The AC circuit from Figure 10.6-7
represented in the frequency domain using phasors and
impedances.
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200 Ω j 25 Ω

−j 80 Ω
Vo

+

–
45   0°  V

−j 160 Ω

I2 – I3

I2

I1

I3

+
–

j 40 Ω100 Ω

Ve

+

–

I2 – I1

Va+ –

Vc+ – Vd+ –

I3

I2 – I1

Vb+ –

I1

FIGURE 10.6-9 Expressing the current in each impedance
in term of the mesh currents.

E X A M P L E 1 0 . 6 - 3 Node Equations for an AC Circuit with a Supernode

The input to the circuit shown in Figure 10.6-10 is the voltage source voltage
vs tð Þ ¼ 10 cos 10tð Þ V

The output is the current i(t) in resistor R1. Determine i(t).

C = 10 mF
+
– R2 = 10 Ω

+–

v s(t )

R1 = 10 Ω

i (t )

10 i (t )
L = 500 mH

R3 = 5 Ω

FIGURE 10.6-10 The circuit considered in
Example 10.6-3.

Solution
First, we will represent the circuit in the frequency domain using phasors and impedances. The impedances of the
capacitor and inductor are

Z c ¼ �j
1

10 0:010ð Þ ¼ �j10 V and ZL ¼ j10 0:5ð Þ ¼ j5 V

The frequency domain representation of the circuit is shown in Figure 10.6-11. We can analyze this circuit by
writing and solving node equations. To simply this process, we can first replace series and parallel impedances by
equivalent impedances as shown in Figure 10.6-12. Impedances Z1 and Z2 in Figure 10.6-12 are given by

Z 1 ¼ 10jj �j10ð Þ ¼ 10 �j10ð Þ
10� j10

¼ 5� j5 V and Z 2 ¼ 5þ j5 V

ZC = − j 10 Ω
+
– R2 = 10 Ω

+–

R1 = 10 Ω ZL = j 5 Ω

R3 = 5 Ω
I

10 I

Vs

FIGURE 10.6-11 The frequency domain
representation of the circuit from Figure 10.6-10.
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+
– Z2

+–

R1 = 10 Ω

I

10 I

Z1
Vs

V1 V2

FIGURE 10.6-12 The simplified frequency domain circuit identifying the supernode
corresponding to the dependent voltage source.

Next, consider the dependent source in Figure 10.6-12. We can use Ohm’s law to express the controlling current
I as

I ¼ V s � V 1

R 1
ð10:6-7Þ

Using KVL, we can express the dependent source voltage as

10 I ¼ V 2 � V 1

Apply KCL to the supernode identified in Figure 10.6-12 to get

I ¼ V 1

Z 2
þ V 2

Z 3
¼ V 1

Z 2
þ V 1 þ 10 I

Z 3
) Z 2 þ Z 3ð ÞV 1 þ Z 2 10� Z 3ð Þ I ¼ 0 ð10:6-8Þ

Organizing Eqs. 10.6-7 and 10.6-8 into matrix form, we get

1 R 1

Z 2 þ Z 3 Z 2 10� Z 3ð Þ
� �

V 1

I

� �
¼ V s

0

� �

Solving these equations, perhaps using MATLAB, gives

V 1 ¼ 4:4721ff63:4� V and I ¼ 0:89443ff�26:6� A

Back in the time domain, the output current is

i tð Þ ¼ 0:89443 cos 10 t � 26:6�ð Þ A

E X A M P L E 1 0 . 6 - 4 AC Circuits Containing Op Amps

The input to the ac circuit shown in Figure 10.6-13 is the
voltage source voltage

v s tð Þ ¼ 125 cos 500 t þ 15�ð Þ mV

Determine the output voltage vo(t).

Solution
The impedances of the capacitor and inductor are

ZC ¼ �j
1

5000 25� 10�9
	 
 ¼ �j8000 V and ZL ¼ j5000 80� 10�3

	 
 ¼ j400 V

Figure 10.6-14 show the circuit represented in the frequency domain using phasors and impedances.

–

+

10 kΩ

25 nF

+
–

10 kΩ

300 Ω 20 kΩ

80 mH

vs(t )

vo(t )

FIGURE 10.6-13 The circuit considered in
Example 10.6-4.

Try it 
yourself 

in WileyPLUS
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10.7 T h �ev e n i n a n d N o r t o n E q u i v a l e n t C i r c u i t s

In this section, we will determine the Th�evenin and Norton equivalent circuits of an ac circuit.
Figure 10.7-1 illustrates the use of Th�evenin and Norton equivalent circuits. In Figure 10.7-1a, an

ac circuit is partitioned into two parts—circuit A and circuit B—that are connected at a single pair of
terminals. (This is the only connection between circuits A and B. In particular, if the overall circuit
contains a dependent source, then either both parts of that dependent source must be in circuit A or both
parts must be in circuit B.) In Figure 10.7-1b, circuit A is replaced by its Th�evenin equivalent circuit,
which consists of a voltage source in series with an impedance. In Figure 10.7-1c, circuit A is replaced
by its Norton equivalent circuit, which consists of a current source in parallel with an impedance.
Replacing circuit A by its Th�evenin or Norton equivalent circuit does not change the voltage or current
of any element in circuit B. This means that if you looked at a list of the values of the currents and
voltages of all the circuit elements in circuit B, you could not tell whether circuit B was connected to
circuit A or connected to its Th�evenin equivalent or connected to its Norton equivalent circuit.

Finding the Th�evenin or Norton equivalent circuit of circuit A involves three parameters: the
open-circuit voltage Voc, the short-circuit current Isc, and the Th�evenin impedance Zt. Figure 10.7-2

–

+

10 kΩ

+
–

10 kΩ

300 Ω 20 kΩ

−j 8000 Ω

j 400 Ω Vo (ω)

Vs (ω)

FIGURE 10.6-14 The frequency domain representation of the circuit from
Figure 10.6-13.

Applying KCL at the noninverting node of the op amp, we get

V s � V a

j400
¼ V a

300
þ 0 ) V s ¼ V a 1þ j400

300

� �

Solving for Va gives

V a ¼ 300

300þ j 400

� �
V s ¼ 0:6ff�53:1�

� �
0:125ff15�� �

¼ 0:075ff�38:1� V

Next, apply KCL at the inverting node of the op amp to get

V a

4000
þ V a � V o

10; 000
þ V a � V o

�j8000
¼ 0

Multiplying by 80,000 gives

0 ¼ 20V a þ 8 V a � V oð Þ þ j10 V a � V oð Þ
Solving for Vo gives

V o ¼ 28þ j10

8þ j10
V a ¼ 29:73ff19:65�

12:81ff51:34� 0:075ff�38:1�
� �

¼ 0:174ff�69:79�

In the time domain, the output voltage is

v o tð Þ ¼ 174 cos 500 t � 69:79�ð Þ mV
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illustrates the meaning of these three parameters. In Figure 10.7-2a, an open circuit is connected across
the terminals of circuit A. The voltage across that open circuit is the open-circuit voltage Voc. In
Figure 10.7-2b, a short circuit is connected across the terminals of circuit A. The current in that short
circuit is the short-circuit current, Isc.

Figure 10.7-2c indicates that the Th�evenin impedance, Zt, is the equivalent impedance of circuit
A*. Circuit A* is formed from circuit A by replacing all the independent voltage sources by short
circuits and replacing all the independent current sources by open circuits. (Dependent current and
voltage sources are not replaced with open circuits or short circuits.) Frequently, the Th�evenin
impedance Zt can be determined by repeatedly replacing series or parallel impedances by equivalent
impedances.

The open-circuit voltage Voc, the short-circuit current Isc, and the Th�evenin impedance Zt, are
related by the equation

V oc ¼ Z t I sc ð10:7-1Þ

Circuit BCircuit A

a

b

a

b

(a)

Circuit B+
–

(b)

Z t

Voc

a

b

Circuit B

(c)

Z tIsc

FIGURE 10.7-1 (a) A circuit portioned into two parts: Circuit A and Circuit B. (b) Replacing Circuit A by its Th�evenin
equivalent circuit. (c) Replacing Circuit A by its Norton equivalent circuit.

Circuit A

a

b

(a)

+

–

Voc

Z t

Circuit A

a

b

(b)

Circuit A*

a

b

(c)

Isc

FIGURE 10.7-2 The Th�evenin equivalent
circuit involves three parameters: (a) the
open-circuit voltage Voc, (b) the short-circuit
current Isc, and (c) the Th�evenin impedance Zt.

E X A M P L E 1 0 . 7 - 1 Th�evenin Equivalent Circuit

Find the Th�evenin equivalent circuit of the ac circuit in Figure shown in Figure 10.7-3.

+
–

200 Ω

36 cos(160t ) V 2.25 H

50 mF

FIGURE 10.7-3 The circuit considered in Example 10.7-1.

Solution
We begin by representing the circuit from Figure 10.7-3 in the frequency domain, using phasors and impedance.
The result, shown in Figure 10.7-4, corresponds to circuit A in Figures 10.7-1 and 10.7-2.

Next, we determine the open-circuit voltage using the circuit shown in Figure 10.7-5a. In Figure 10.7-5a, an
open circuit is connected across the terminals of the circuit from Figure 10.7-3. The voltage across that open circuit
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is the open-circuit voltage Voc. Noticing that there is no current in the –j 125-V impedance due to the open circuit,
we calculate Voc. Using voltage division, we calculate

V oc ¼ j360

200þ j360
36ff0� ¼ 31:470ff29:1�

The Th�evenin impedance is determined using the circuit shown in Figure 10.7-5b. This circuit is obtained
from the circuit in Figure 10.7-4 by setting the input to zero. In the present case, there is only one input, the voltage
of the independent voltage source. A zero voltage source is equivalent to a short circuit. Consequently, the voltage
source in Figure 10.7-4 is replaced by a short circuit in Figure 10.7-5b. Replacing series or parallel impedances by
equivalent impedances, we obtain

Z t ¼ �j125þ 200 j360ð Þ
200þ j360

¼ 152:83� j40:094 V ¼ 158ff�14:7� V

Figure 10.7.6 shows the Th�evenin equivalent circuit, which consists of a voltage source in series with an
impedance. The voltage source voltage is the open-circuit voltage Voc. The value of the impedance is Zt.

+
–

200 Ω

36   0°  V

−j 125 Ω

j 360 Ω

200 Ω −j 125 Ω

j 360 Ω

Z t

+

–

Voc

(a) (b)

FIGURE 10.7-5 Determining the
(a) the open-circuit voltage and (b) the
Th�evenin impedance of the circuit in
Figure 10.7-4.

+
–

152.83 − j 40.094 Ω

31.47   29.1°  V
FIGURE 10.7-6 The Th�evenin equivalent
of the circuit in Figure 10.7-3.

+
–

200 Ω

36   0°  V

−j 125 Ω

j 360 Ω FIGURE 10.7-4 The circuit from
Figure 10.7-3, represented in the
frequency domain.

E X A M P L E 1 0 . 7 - 2 Norton Equivalent Circuit

Find the Norton equivalent circuit of the ac circuit in Figure 10.7-7.

+
–

30 Ω

10   30°  V −j 25 Ω

+–

50 Ω

I a

5 I a

FIGURE 10.7-7 The circuit considered in Example 10.7-2.
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Solution
The circuit in Figure 10.7-7 is already represented in the frequency domain. This circuit corresponds to circuit A in
Figures 10.7-1 and 10.7-2.

Next, we determine the open-circuit voltage using the circuit shown in Figure 10.7-8.
In Figure 10.7-8, an open circuit is connected across the terminals of circuit. The voltage across that open

circuit is the open-circuit voltage Voc. (Notice that there is no current in the 50-V impedance due to the open
circuit.) Apply KVL to the left mesh to get

30 I a � 5 I a þ �j25ð Þ I a ¼ 10ff30�
Solving for Ia, we get

I a ¼ 10ff30�
25� j25

¼ 0:2828ff75� A
Apply KVL to the right mesh to get

Voc ¼ �j25 I a ¼ 25ff�90�
� �

0:2828ff75� ¼ 7:071ff�15� V

Next, we determine the short-circuit current using the circuit shown in Figure 10.7-9. In Figure 10.7-9, a
short circuit is connected across the terminals of circuit. The current in that open circuit is the short-circuit current
Isc. In Figure 10.7-9, the controlling current of the dependent source is related to the mesh currents by

I a ¼ I 1 � I sc
Apply KVL to the left mesh to get

30 I 1 � 5 I 1 � I scð Þ � j25 I 1 � I scð Þ ¼ 10ff30�
Apply KVL to the left mesh to get

50 I sc � �j25ð Þ I 1 � I scð Þ ¼ 0

Organize these equations in matrix form to get

25� j25 5þ j25
j25 50� j25

� �
I 1
I sc

� �
¼ 10ff30�

0

� �

Solving using MATLAB gives I 1

I sc

� �
¼ 0:2370ff61:4�

0:1060ff�2�

" #

The Th�evenin impedance is calculated using Eq. 10.7-1 to be

Z t ¼ V oc

I sc
¼ 7:071ff�15�

0:1060ff�2�
¼ 66:71ff�13� V

Finally, Figure 10.7.10 shows the Norton equivalent circuit,
which consists of a current source in parallel with an impedance. The
current source current is the short-circuit voltage Isc. The impedance
is the Th�evenin impedance Zt.

66.71   −13° Ω106   −2°  mA

FIGURE 10.7-10 The Norton equivalent
circuit of the circuit in Figure 10.7-7.

+
–

30 Ω

10   30°  V −j 25 Ω

+–

50 Ω

+

–

Voc

I a

5 I aI a

0

FIGURE 10.7-8 The circuit used to determine
the open circuit voltage of the circuit in Figure
10.7-7.

+
–

30 Ω

10   30°  V −j 25 Ω

+–

50 Ω

I a

5 I a

I scI 1
I sc

FIGURE 10.7-9 The circuit used to determine the short circuit
current of the circuit in Figure 10.7-7.
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a

b

(a)

Circuit B+
–

(b)

Z t = Zn

Voc = Z t Isc

a

b

Circuit BIsc = Zn = Z t

Voc 

Z t

FIGURE 10.7-11 Source
Transformations.

The circuits connected to Circuit B in Figure 10.7-11a and b are equivalent to each other. The
circuit in Figure 10.7-11b is the Norton equivalent of the circuit in Figure 10.7-11a, and the circuit in
Figure 10.7-11a is the Th�evenin equivalent of the circuit in Figure 10.7-11b. Consequently, we can
replace a series combination of a voltage source and impedance by a parallel combination of a current
source and an impedance, or vice versa, without changing the value of any current or voltage in circuit
B. This equivalence is commonly referred to as a source transformation. The following example
illustrates the utility of source transformations.

E X A M P L E 1 0 . 7 - 3 Source Transformations

Use source transformations and equivalent impedance to find the Th�evenin equivalent circuit of the ac circuit
shown in Figure 10.7-3.

Solution
Figure 10.7-12 illustrates the process. Figure 10.7-12a identifies a series combination of a voltage source and
impedance. A source transformation replaces this series combination with a parallel combination of a current
source and impedance in Figure 10.7-12b. The impedances of the resistor and inductor are connected in parallel in
Figure 10.7-12b. We calculate the equivalent impedance

200jj j360 ¼ 200 j360ð Þ
200þ j360

¼ 72000ff90�
411:8ff60:9� ¼ 174:8ff29:1�

to obtain the circuit in Figure 10.7-12c. Figure 10.7-12d identifies a parallel combination of a current source. A
source transformation replaces this parallel combination with a series combination of a voltage source and
impedance in Figure 10.7-12e. We calculate the equivalent impedance

174:8ff29:1� � j125 ¼ 152:83þ j84:907� j125 ¼ 152:83� j40:094

to obtain the Th�evenin equivalent circuit in Figure 10.7-12c.

+
–

200 Ω

36   0°  V

−j 125 Ω

j 360 Ω 200 Ω0.18   0°  A

−j 125 Ω

j 360 Ω

(b)(a)

FIGURE 10.7-12 Source Transformations in Example 10.7-3.

Try it 
yourself 

in WileyPLUS
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10.8 S u p e r p o s i t i o n

Suppose we encounter a circuit that is at steady state and all of its inputs are sinusoidal but not all of the
input sinusoid have the same frequency. Such a circuit is not an ac circuit and the currents and voltages
will not be sinusoidal. We can analyze this circuit using the principle of superposition.

The principle of superposition says that the output of a linear circuit due to several inputs working
together is equal to the sum of the outputs working separately. The inputs to the circuit are the voltages
of the independent voltage sources and the currents of the independent current sources.

When we set all but one input to zero, the other inputs become 0-V voltage sources and 0-A
current sources. Because 0-V voltage sources are equivalent to short circuits and 0-A current sources are
equivalent to open circuits, we replace the sources corresponding to the other inputs by open or short
circuits. We are left with a steady-state circuit having a single sinusoidal input. Such a circuit is an ac
circuit and we analyze it using phasors and impedances.

Thus, we use superposition to replace a circuit involving several sinusoidal inputs at different
frequencies by several circuits each having a single sinusoidal input. We analyze each of the several ac
circuits using phasors and impedances to obtain its sinusoidal output. The sum of those several
sinusoidal outputs will be identical to the output of the original circuit. The following example
illustrates this procedure.

0.18   0°  A

−j 125 Ω

174.8   29.1°  Ω
0.18   0°  A

−j 125 Ω

174.8   29.1°  Ω

+
– 31.5   29.1°  V

−j 125 Ω174.8   29.1°  Ω

+
– 31.5   29.1°  V

152.83 − j 40.094 Ω

(c)

(e)

(d)

(f)

FIGURE 10.7-12 (Continued)

E X A M P L E 1 0 . 8 - 1 Superposit ion

Determine the voltage vo(t) across the 8-V resistor in the circuit shown in Figure 10.8-1.

8 Ω

150 mH

vo(t)

+

–

20 cos(50 t) V

2 mF

+
– 20 cos(10 t ) V+

–

FIGURE 10.8-1 The circuit considered in Example 10.8-1
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Solution
The voltage vo(t) is caused by two sinusoidal sources, one having a frequency of 50 rad/s and the other having a
frequency of 10 rad/s. Let vo1(t) be the part of vo(t) caused by the 50 rad/s source acting alone, and let vo2(t) be
the part of vo(t) caused by the 10 rad/s source acting alone. Figure 10.8-2a shows the circuit used to calculate vo1(t).
The 10 rad/s source has been replaced by a 0-V voltage source represented as a short circuit. Similarly,
Figure 10.8-2b shows the circuit used to calculate vo2(t). In Figure 10.8-2b it is the 50 rad/s source that has
been replaced by a 0-V voltage source represented as a short circuit.

Both of the circuits in Figure 10.8-2 are ac circuits since they are at steady state and have a single sinusoidal
input. Figures 10.8-3a and b show the frequency domain representations of these ac circuits. Notice, for example,
that the value of impedance of the 150 mH inductor is j 7.5 V in Figure 10.8-3a because the input frequency is
50 rad/s but it is j 1.5-V in Figure 10.8-3a because the input frequency is 10 rad/s.

(a)

8 Ω

150 mH

vo1(t)

+

–

20 cos(50 t) V

2 mF

+
–

(b)

8 Ω

150 mH

vo2(t)

+

–

2 mF

20 cos(10 t ) V+
– FIGURE 10.8-2 Using

superposition to separate
the circuit form Figure
10.8-1 into two ac
circuits.

Using equivalent impedance and voltage division in Figure 10.8-3a, we calculate

Vo1 ¼
8 j 7:5ð Þ
8þj 7:5

�j10þ 8 j 7:5ð Þ
8þj 7:5

20ff0�� �
¼ 15:46ff104:9� V

Similarly, using equivalent impedance and voltage division in Figure 10.8-3b, we calculate

Vo2 ¼
8 �j 50ð Þ
8�j 50

j1:5þ 8 �j 50ð Þ
8�j 50

20ff0�� �
¼ 20:24ff�10:94� V

The corresponding sinusoids are

vo1 tð Þ ¼ 15:46 cos 50 t þ 104:9�ð Þ V and vo2 tð Þ ¼ 20:24 cos 10 t � 10:94�ð Þ V
The response to both sources working together is equal to the sum of the responses to the two sources working
separately

vo tð Þ ¼ vo1 tð Þ þ vo2 tð Þ ¼ 15:46 cos 50 t þ 104:9�ð Þ þ 20:24 cos 10 t � 10:94�ð Þ V
The output voltage vo(t) is plotted in Figure 10.8-4. As expected, it is not sinusoidal.

j1.5 Ω

20   0°  V

(b)

8 Ω

+

–

+
–Vo2(ω)

− j50 Ω− j10 Ω

Vo1(ω)

(a)

8 Ω

+

–

+
–20   0°  V

j7.5 Ω

FIGURE 10.8-3 The ac circuits
from Figure 10.8-2, represented in
the frequency domain.
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10.9 P h a s o r D i a g r am s

Phasors representing the voltage or current of a circuit are time quantities transformed or converted
into the frequency domain. Phasors are complex numbers and can be portrayed in a complex plane.
The relationship of phasors on a complex plane is called a phasor diagram.

A phasor diagram is a graphical representation of phasors and their relationship on the
complex plane.

R

ω

j ωL

+ – + –

+

–

–j
C

+

–

L

C
i (t )= Im cos(ωt ) Avs (t )

vR (t ) vL
 (t )

vC (t )
R

+ – + –

+

–

+

–
I = Im   0° AVs

VR VL

VC

1

(a) (b)

FIGURE 10.9-1
A series RLC circuit
represented in (a) the time
domain and (b) the
frequency domain.
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FIGURE 10.8-4 The output voltage vo(t) from the circuit shown in Figure 10.8-1.
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Let us consider the series RLC circuit represented in the time domain in Figure 10.9-1a and in the
frequency domain in Figure 10.9-1b. The phasor current in Figure 10.9-1b is

I ¼ I mff0�
The phasor voltages across the impedances in Figure 10.9-1b are given by

VR ¼ R I mff0�� �
¼ RI mff0�;VL ¼ joL I mff0�� �

¼ oLI mff90�
and VC ¼ �j

1

oC
I mff0�� �

¼ I m

oCff�90�

These phasors are drawn in the complex plane in Figure 10.9-2a.
Using KVL, we obtain

V S ¼ VR þ VL þ VC ¼ VR þ VL þ VCð Þ ð10:9-1Þ

The phasor VL + VC is given by

VL þ VC ¼ joL I mff0�� �
� j

1

oC
I mff0�� �

¼ joL � j
1

oC
I mff0�� �

From Figure 10.9-1a, we see that jVLj> jVCj so

VL þ VC ¼ j oL � 1

oC

� �
I mff0�� �

¼ oL � 1

oC

� �
I mff90�� �

ð10:9-2Þ

This phasor is shown in the complex plane in Figure 10.9-2b.
Substituting Eq. 10.0-2 into Eq. 10.2-1 gives

V S ¼ VR þ VL þ VCð Þ ¼ RI m þ j oL � 1

oC

� �
I mð Þ ð10:9-3Þ

This phasor is shown in the complex plane in Figure 10.9-2c.

I

VL

VR
VC

Imaginary axis

Real axis

I

VL

VR
VC

VL+ VC

Imaginary axis

Real axis

θ

I

Vs

VL

VR
VC

VL+ VC

Imaginary axis

Real axis

(a) (b) (c)

FIGURE 10.9-2 Phasor diagrams for the RLC circuit in Figure 10.9-1b.
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10.10 Op Amp s i n A C C i r c u i t s

The discussion in the prior sections considered the behavior of operational amplifiers and their
associated circuits in the time domain. In this section, we consider the behavior of operational amplifiers
and associated RLC circuits in the frequency domain, using phasors.

Figure 10.10-1 shows two frequently used operational amplifier circuits, the inverting amplifier
and the noninverting amplifier. These circuits are represented using impedances and phasors. This
representation is appropriate when the input is sinusoidal and the circuit is at steady state. Vs is the
phasor corresponding to a sinusoidal input voltage, and Vo is the phasor representing the resulting
sinusoidal output voltage. Both circuits involve two impedances, Z1 and Z2.

–

+

(a)

Vs

I1

+

–
Vo

Z2Z1

+
–

–

+

+

–

(b)

V1

+

–
V1

I1

+

–

Vo

Z2Z1

Vs
+
–

a

a

FIGURE 10.10-1 (a) An inverting
amplifier and (b) a noninverting
amplifier.

E X A M P L E 1 0 . 9 - 1 Phasor Diagrams

Consider the circuit shown in Figure 10.9-1a when R = 80 V, L = 8 H, C = 5 mF and
i tð Þ ¼ 0:25 cos 10 tð Þ A

Solution
Noticing that o = 10 rad/s, we calculate

joL ¼ j80 V and � j
1

oC
¼ �j

1

10 0:005ð Þ ¼ �j20 V

The phasor voltages across the impedances in Figure 10.9-1b are

VR ¼ 80 0:25ff0�� �
¼ 20ff0� V; VL ¼ j80 0:25ff0�� �

¼ j20 ¼ 20ff90�V
and VC ¼ �j20 0:25ff0�� �

¼ �j5 ¼ 5ff�90� V

These phasors are drawn in the complex plane in Figure 10.9-2a.

The phasor VL + VC is given by VL þ VC ¼ j20� j5ð Þ ¼ 15ff90� V
This phasor is shown in the complex plane in Figure 10.9-2b.

Using KVL gives V S ¼ VR þ VL þ VCð Þ ¼ 20þ j15 ¼ 25ff36:9� V

This phasor is shown in the complex plane in Figure 10.9-2c.
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Now let us determine the ratio of output-to-input voltage Vo=Vs for the inverting amplifier shown
in Figure 10.10-1a. This circuit can be analyzed by writing the node equation at node a as

Vs � V1

Z1
þ Vo � V1

Z2
� I1 ¼ 0 ð10:10-1Þ

When the operational amplifier is ideal, V1 and I1 are both 0. Then,

Vs

Z1
þ Vo

Z2
¼ 0 ð10:10-2Þ

Finally,
Vo

Vs
¼ �Z2

Z1
ð10:10-3Þ

Next, we will determine the ratio of output-to-input voltage Vo=Vs for the noninverting
amplifier shown in Figure 10.10-1b. This circuit can be analyzed by writing the node equation at
node a as Vs þ V1ð Þ

Z1
� Vo � Vs þ V1ð Þ

Z2
þ I1 ¼ 0 ð10:10-4Þ

When the operational amplifier is ideal, V1 and I1 are both 0. Then,

Vs

Z1
� Vo � Vs

Z2
¼ 0

Finally,
Vo

Vs
¼ Z1 þ Z2

Z1
ð10:10-5Þ

Typically, impedancesZ1 andZ2areobtainedusingonly resistorsandcapacitors.
Of course, in theory, we could use inductors, but their cost and size relative to
capacitors result in little use of inductors with operational amplifiers.

An example of the inverting amplifier is shown in Figure 10.10-2, The
impedance Zn, where n is equal to 1 or 2, is a parallel RnCn impedance so that

Zn ¼
Rn

1

joCn

Rn þ 1

joCn

¼ Rn

1þ joCnRn
ð10:10-6Þ

Using Eqs. 10.10-3 and 10.10-6, one may obtain the ratio Vo=Vs.

E X A M P L E 1 0 . 1 0 - 1 AC Amplifier

Find the ratio Vo=Vs for the circuit of Figure 10.10-2 when R1 ¼ 1 kV; R2 ¼ 10 kV; C1 ¼ 0; and C2 ¼ 0:1 mF
for o ¼ 1000 rad/s.

Solution
The circuit of Figure 10.10-2 is an example of the inverting amplifier shown in Figure 10.10-1a. Using Eqs. 10.10-3
and 10.10-6, we obtain

Vo

Vs
¼ �Z1

Z2
¼ �

R2

1þ joC2R2

R1

1þ joC1R1

¼ �R2 1þ joC1R1ð Þ
R1 1þ joC2R2ð Þ

Substituting the given values of R1; R2; C1; C2; and o gives

Vo

Vs
¼ � 104 1þ j100 0ð Þ103	 


103 1þ j103 0:1� 10�6
	 


104
	 
 ¼ � 10

1þ j
¼ 7:07ff135�

–

+Vs

R2

C2

+

–
Vo

+
–

R1

C1

FIGURE 10.10-2 Operational amplifier
with two RC circuits connected.
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EXERCISE 10.10-1 Find the ratio Vo=Vs for the circuit shown in Figure 10.10-2 when
R1 ¼ R2 ¼ 1 kV, C2 ¼ 0, C1 ¼ 1 mF, and o ¼ 1000 rad/s.

Answer: Vo=Vs ¼ �1 � j

10.11 T h e C omp l e t e R e s p o n s e

Next, we consider circuits with sinusoidal inputs that are subject to abrupt changes, as when a switch
opens or closes. To find the complete response of such circuits, we:

� Represent the circuit by a differential equation.
� Find the general solution of the homogeneous differential equation. This solution is the natural

response vn(t). The natural response will contain unknown constants that will be evaluated later.
� Find a particular solution of the differential equation. This solution is the forced response vf (t).
� Represent the response of the circuit as v tð Þ ¼ vn tð Þ þ vf tð Þ.
� Use the initial conditions, for example, the initial values of the currents in inductors and the voltages

across capacitors to evaluate the unknown constants.

Consider the circuit shown in Figure 10.11-1. Before time t ¼ 0, this circuit is at
steady state, so all its voltages and currents are sinusoidal with a frequency of 5 rad/s.
At time t ¼ 0, the switch closes, disturbing the circuit. Immediately after t ¼ 0, the
currents and voltages are not sinusoidal. Eventually, the disturbance dies out and
the circuit is again at steady state (most likely a different steady state). Once again, the
currents and voltages are all sinusoidal with a frequency of 5 rad/s.

Two different steady-state responses are used to find the complete response
of this circuit. The steady-state response before the switch closes is used to determine
the initial condition. The steady-state response after the switch closes is used as
the particular solution of the differential equation representing the circuit.

+
– v(t)

+

–
50 mF

2 Ω

12 cos 5t V

2 Ω

t=0

FIGURE 10.11-1 The circuit
considered in Example 10.11-1.

E X A M P L E 1 0 . 1 1 - 1 Complete Response

Determine v(t), the voltage across the capacitor in Figure 10.11-1, both before and after the switch closes.

Solution
Step 1: For t < 0, the switch is open and the circuit is at steady state.

The open switch acts like an open circuit, so the two 2-V resistors are connected in series. Replacing the
series resistors with an equivalent resistor produces the circuit shown in Figure 10.11-2a. Next, we use impedances
and phasors to represent the circuit in the frequency domain as shown in Figure 10.11-2b.

Using voltage division in the frequency domain gives

V oð Þ ¼ �j4

4� j4

� �
12ff0�
� �

¼ 48ff�90�

5:66ff�45�
¼ 8:485ff�45� V

In the time domain,

v tð Þ ¼ 8:485 cos 5t � 45�ð ÞV

The Complete Response 465



Immediately before the switch closes, the capacitor voltage is
v 0�ð Þ ¼ lim

t!0�
v tð Þ ¼ 8:485 cos 0� 45�ð Þ ¼ 6 V

The capacitor voltage is continuous, so the capacitor voltage immediately after the switch closes is the same as
immediately before the switch closes. That is,

v 0þð Þ ¼ v 0�ð Þ ¼ 6 V

Step 2: For t > 0, the switch is closed. Eventually, the circuit will reach a new steady state.
The closed switch acts like a short circuit. A short circuit in parallel with a resistor is equivalent to a short

circuit, so we have the circuit shown in Figure 10.11-3a. The steady-state response of the circuit can be obtained by
representing the circuit in the frequency domain as shown in Figure 10.11-3b.

Using voltage division in the frequency domain gives

V oð Þ ¼ �j4

2� j4

� �
12ff0�� �

¼ 48ff�90�

4:47ff�63:4�
¼ 10:74ff�26:6� V

In the time domain,

v tð Þ ¼ 10:74 cos 5t � 26:6�ð ÞV
Step 3: Immediately after t ¼ 0, the switch is closed but the
circuit is not at steady state. We must find the complete
response of a first-order circuit.

In Figure 10.11-2a, the capacitor is connected to a series
voltage source and resistor, that is, a Th�evenin equivalent
circuit. We can identify Rt and voc as shown in Figure 10.11-4.

Consequently, the time constant of the circuit is

t ¼ Rt C ¼ 2� 0:05 ¼ 0:1 1=s

The natural response of the circuit is
vn tð Þ ¼ Ke�10t

The steady-state response for t > 0 can be used as the forced response, so
vf tð Þ ¼ 10:74 cos 5t � 26:6�ð ÞV

The complete response is
v tð Þ ¼ vn tð Þ þ vf tð Þ ¼ Ke�10t þ 10:74 cos 5t � 26:6�ð Þ

+
– v(t)

+

–
50 mF

4 Ω

12 cos 5t  V
+
–

+

–

4 Ω

−j4 Ω V(ω)

(a) (b)

0° V12 FIGURE 10.11-2 The circuit from
Figure 10.11-1 before the switch closes,
represented (a) in the time domain and
(b) in the frequency domain.

+
– v(t)

+

–
50 mF

2 Ω

12 cos 5t  V
+
–

+

–

2 Ω

−j4 Ω V(ω)

(a) (b)

0° V12 FIGURE 10.11-3 The circuit from
Figure 10.11-1 after the switch closes,
represented (a) in the time domain and (b)
in the frequency domain.

+
–

v(t)vOC = 12 cos 5t  V

+

–
C = 0.05 F

Rt = 2 Ω

FIGURE 10.11-4 Identifying Rt and voc in Figure
10.11-2a.
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The constant, K, is evaluated using the initial capacitor voltage, v(0þ):

6 ¼ v 0þð Þ ¼ Ke�0 þ 10:74 cos 0� 26:6�ð Þ ¼ K þ 9:6

Thus, K ¼ �3:6 and

v tð Þ ¼ �3:6e�10t þ 10:74 cos 5t � 26:6�ð ÞV
Step 4: Summarize the results.

The capacitor voltage is

v tð Þ ¼ 8:485 cos 5t � 45�ð ÞV for t � 0
�3:6e�10t þ 10:74 cos 5t � 26:6�ð ÞV for t  0



Figure 10.11-5 shows the capacitor voltage as a function of time:

−6 −4 −2 0 2 4

−10

−5

0

5

10

6 8

Time, seconds

C
ap

ac
ito

r 
vo

lta
ge

, v
ol

ts

Complete Response of a Switched Circuit with Sinusoidal Input

FIGURE 10.11-5 The complete response, plotted using
MATLAB.

E X A M P L E 1 0 . 1 1 - 2 Responses of Various Types of Circuits

The input to each of the circuits shown in Figure 10.11-6 is the voltage source voltage. The output of each circuit is
the current i(t). Determine the output of each of the circuits.

+
–

6 Ω

4 + 8u(t)  V 2 H

i(t)

(a)

+
–

6 Ω

12 cos 5t  V 2 H

i(t)

(b)
FIGURE 10.11-6 Six circuits considered in Example
10.11-2.
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+
–

6 Ω

12  V 2 H

i(t)

(e)

+
–

4 Ω

2 H

i(t)

t = 0

12 cos 5t  V

2 Ω

(f)

+
– 6 Ω 2 H

i(t)

12e−5t u(t)  V

iL(t)

iR(t)

(c)

+
–

4 Ω

12  V 2 H

i(t)

t = 0

2 Ω

(d)

FIGURE 10.11-6 (Continued)

Solution
In this example, we consider similar circuits in contrasting situations. In some cases, the circuit changes abruptly at
time t ¼ 0. Consequently, the circuit is not at steady state and we seek a complete response—consisting of both a
steady-state part and a transient part. In other cases, there is no abrupt change and so no transient part of the
response. We seek only the steady-state response. In one case, the input provides the inductor voltage directly, and
we can determine the response using the constitutive equation of the inductor.
Case 1: The circuit in Figure 10.11-6a will be at steady state until time t ¼ 0. Because the input is constant before time
t ¼ 0, all of the element voltages and currents will be constant. At time t ¼ 0, the input changes abruptly, disturbing the
steady state. Eventually the disturbance dies out and the circuit is again at steady state. All of the element voltages and
currents will again be constant, but they will have different constant values because the input has changed.

The three stages can be illustrated as shown
in Figure 10.11-7. Figure 10.11-7a represents the
circuit for t < 0. The source voltage is constant
and the circuit is at steady state, so the inductor
acts like a short circuit. The inductor current is

i tð Þ ¼ 4

6
¼ 2

3
A

In particular, immediately before t ¼ 0, i 0�ð Þ ¼
0:667 A. The current in an inductor is continuous, so

i 0þð Þ ¼ i 0�ð Þ ¼ 0:667 A

Figure 10.11-7b represents the circuit immediately after t ¼ 0. The input is constant but the circuit is not at
steady state, so the inductor does not act like a short circuit. The part of the circuit that is connected to the inductor
has the form of a Th�evenin equivalent circuit, so we recognize that

Rt ¼ 6V and voc ¼ 12 V

Consequently,

isc ¼ 12

6
¼ 2 A

The time constant of the circuit is

t ¼ L

Rt
¼ 2

6
¼ 1

3

+
–

6 Ω

4 V

i(t)

(a) (b) (c)

+
–

6 Ω

12  V 2 H

i(t)

+
– 12  V

i(t)6 Ω

FIGURE 10.11-7 The circuit from Figure 10.11-6a, (a) at steady state
for t < 0, (b) after t ¼ 0 but before the circuit reaches steady state, and
(c) at steady state for t > 0.

468 10. Sinusoidal Steady-State Analysis



The Complete Response 469

Finally, i tð Þ ¼ isc þ i 0þð Þ � iscð Þe�t=t ¼ 2þ 0:667� 2ð Þe�3t ¼ 2� 1:33e�3t A
As t increases, the exponential part of i(t) gets smaller. When t ¼ 5t ¼ 1:667 s,

i tð Þ ¼ 2� 1:33e�3 1:667ð Þ ¼ 2� 0:009 � 2 A

The exponential part of i(t) has become negligible, so we recognize that the circuit is again at steady state and that
the new steady-state current is i tð Þ ¼ 2 A.

Figure 10.11-7c represents the circuit after the disturbance has died out and the circuit has reached steady
state, that is, when t > 5t. The source voltage is constant and the circuit is at steady state, so the inductor acts like a
short circuit. As expected, the inductor current is 2 A.
Case 2: The circuit in Figure 10.11-6b does not contain a switch and the input
does not change abruptly, so we expect the circuit to be at steady state. The input is
sinusoidal at a frequency of 5 rad/s, so all of the element currents and voltages will
be sinusoidal at a frequency of 5 rad/s. We can find the steady-state response by
representing the circuit in the frequency domain, using impedances and phasors as
shown in Figure 10.11-8.

Ohm’s law gives

I oð Þ ¼ 12ff0�
6þ j10

¼ 12ff0�
11:66ff59� ¼ 1:03ff�59� A

The corresponding current in the time domain is

i tð Þ ¼ 1:03 cos 5t � 59�ð ÞA
Case 3: The voltage source, resistor, and inductor in the circuit in Figure 10.11-6c are connected in parallel. The
element voltage of the resistor and inductor are each equal to the voltage source voltage. The current in the resistor
is given by Ohm’s law to be

iR tð Þ ¼ 12e�5t

6
¼ 2e�5t A

The current in the inductor is

iL tð Þ ¼ 1

L

Z t

0
n tð Þ dtþ iL 0ð Þ ¼ 1

2

Z t

0
12e�5tdtþ iL 0ð Þ

¼ 12

2 �5ð Þ e�5t � 1ð Þ þ iL 0ð Þ ¼ �1:2e�5t þ 1:2þ iL 0ð Þ

Finally, using KCL gives

i tð Þ ¼ iR tð Þ þ iL tð Þ ¼ 2e�5t � 1:2e�5t þ 1:2þ iL 0ð Þ ¼ 0:8e�5t þ 1:2þ iL 0ð Þ

Before time t ¼ 0, the voltage of source voltage is zero. If the circuit is at steady state, iL 0ð Þ ¼ 0. Then

i tð Þ ¼ 0:8e�5t þ 1:2 A

Case 4: The circuit in Figure 10.11-6d will be at steady state until the switch opens at time t ¼ 0. Because the
source voltage is constant, all of the element voltages and currents will be constant. At time t ¼ 0, the switch opens,
disturbing the steady state. Eventually the disturbance dies out and the circuit is again at steady state. All of the
element voltages and currents will be constant, but they will have different constant values because the circuit has
changed.

+
–

6 Ω

j10 Ω

I(ω)

0°  V12

FIGURE 10.11-8 The circuit in
Figure 10.11-6b is represented
in the frequency domain.



The three stages can be illustrated as shown in Figure 10.11-9. Figure 10.11-9a represents the circuit for
t < 0. The closed switch is represented as a short circuit. The source voltage is constant and the circuit is at steady
state, so the inductor acts like a short circuit. The inductor current is

i tð Þ ¼ 0 A

In particular, immediately before t ¼ 0; i 0�ð Þ ¼ 0 A. The current in an inductor is continuous, so

i 0þð Þ ¼ i 0�ð Þ ¼ 0 A

Figure 10.11-9b represents the circuit immediately after t ¼ 0. The input is constant but the circuit is not at
steady state, so the inductor does not act like a short circuit. The part of the circuit that is connected to the inductor
has the form of a Th�evenin equivalent circuit, so we recognize that

Rt ¼ 6V and voc ¼ 12 V

Consequently,

isc ¼ 12

6
¼ 2 A

The time constant of the circuit is

t ¼ L

Rt
¼ 2

6
¼ 1

3

Finally,

i tð Þ ¼ isc þ i 0þð Þ � iscð Þe�t=t ¼ 2þ 0� 2ð Þe�3t ¼ 2� 2e�3t A

As t increases, the exponential part of i(t) gets smaller. When t ¼ 5t ¼ 1:667 s,

i tð Þ ¼ 2� 2e�3 1:667ð Þ ¼ 2� 0:013 � 2 A

The exponential part of i(t) has become negligible, so we recognize that the circuit is again at steady state and that
the steady state current is i tð Þ ¼ 2 A.

Figure 10.11-9c represents the circuit after the disturbance has died out and the circuit has reached steady
state, that is, when t > 5t. The source voltage is constant and the circuit is at steady state, so the inductor acts like a
short circuit. As expected, the inductor current is 2 A.
Case 5: The circuit in Figure 10.11-6e does not contain a switch and the input does not change abruptly, so we
expect the circuit to be at steady state. Because the source voltage is constant, all of the element voltages and
currents will be constant. Because the source voltage is constant and the circuit is at steady state, the inductor acts
like a short circuit. (We’ve encountered this circuit twice before in this example, after the disturbance died out in
cases 2 and 4.) The current is given by

i tð Þ ¼ 12

6
¼ 2 A

+
–

4 Ω

12  V

i(t)2 Ω

+
– 12  V 2 H

i(t)6 Ω

+
– 12  V

i(t)6 Ω

(a) (b) (c)

FIGURE 10.11-9 The circuit from Figure 10.11-6d, (a) steady state for t < 0, (b) after t ¼ 0 but before the circuit reaches steady
state, and (c) at steady state for t > 0.
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The Complete Response 471

Case 6: We expect that the circuit in Figure 10.11-6f will be at steady state before the switch opens. As before,
opening the switch will change the circuit and disturb the steady state. Eventually, the disturbance will die out and
the circuit will again be at steady state. We will see that the steady-state current is constant before the switch opens
and sinusoidal after the switch opens.

Figure 10.11-10a shows the circuit before the switch opens. Applying KVL gives

2i tð Þ þ 2
d

dt
i tð Þ ¼ 0

Consequently, the inductor current is i tð Þ ¼ 0 before the switch opens. The current in an inductor is continuous, so

i 0þð Þ ¼ i 0�ð Þ ¼ 0 A

Figure 10.11-10b represents the circuit after the switch opens. We can determine the inductor current by
adding the natural response to the forced response and then using the initial condition to evaluate the constant in the
natural response.

First, we find the natural response. The part of the circuit that is connected to the inductor has the form of the
Th�evenin equivalent circuit, so we recognize that

Rt ¼ 6V

The time constant of the circuit is

t ¼ L

Rt
¼ 2

6
¼ 1

3

The natural response is

in tð Þ ¼ Ke�3t A

We can use the steady-state response as the forced response. As in case 2, we obtain the steady-state response
by representing the circuit in the frequency as shown in Figure 10.11-10c. As before, we find
I oð Þ ¼ 1:03ff�59� A. The forced response is

+
–

6 Ω

12 cos 5t  V 2 H

i(t)

+
–

4 Ω

2 H

i(t)

12 cos 5t  V

2 Ω

(a) (b)

+
–

6 Ω

j10 Ω

I(ω)

(c)

0°  V12 FIGURE 10.11-11 The circuit from Figure 10.11-11f,
(a) before the switch opens, (b) after the switch opens, and
(c) the steady-state circuit for t > 0 represented in
the frequency domain.



10.12 U s i n g MAT L AB t o A n a l y z e A C C i r c u i t s

Analysis of steady-state linear circuits with sinusoidal inputs using phasors and impedances requires
complex arithmetic. MATLAB can be used to reduce the effort required to do this complex
arithmetic. Consider the circuit shown in Figure 10.12-1a. The input to this circuit, vs(t), is a
sinusoidal voltage. At steady state, the output vo(t) will also be a sinusoidal voltage as shown in
Figure 10.12-1a. This circuit can be represented in the frequency domain, using phasors and

impedances as shown in Figure 10.12-1b. Analysis of this circuit proceeds as follows. Let Z1 denote
the impedance of the series combination of R1 and joL. That is,

Z1 ¼ R1 þ joL ð10:12-1Þ

Next, let Y2 denote the admittance of the parallel combination of R2 and 1=joC. That is,

Y2 ¼ 1

R2
þ joC ð10:12-2Þ

Let Z2 denote the corresponding impedance, that is,

Z2 ¼ 1

Y2
ð10:12-3Þ

if tð Þ ¼ 1:03 cos 5t � 59�ð ÞA
Then, i tð Þ ¼ in tð Þ þ if tð Þ ¼ Ke�3t þ 1:03 cos 5t � 59�ð ÞA:

At t ¼ 0,

i 0ð Þ ¼ Ke�0 þ 1:03 cos �59�ð Þ ¼ K þ 0:53

so i tð Þ ¼ �0:53e�3t þ 1:03 cos 5t � 59�ð ÞA

(b)

+

–
+
–

R1

R2Vs = Ae jθ Vo = Be jφ

ωLj

(a)

+

–
+
–vs(t) = A cos ( t + )ω θ vo(t) = B cos ( t + )ω φ

R1

R2 C

L

ωCj
1

FIGURE 10.12-1
A steady-state circuit excited
by a sinusoidal input voltage.
This circuit is represented
both (a) in the time domain and
(b) in the frequency domain.
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FIGURE 10.12-2 MATLAB input file corresponding to the circuit shown in Figure 10.12-1.
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FIGURE 10.12-3 MATLAB plots showing
the input and output voltages of the circuit
shown in Figure 10.12-1.



Finally, Vo is calculated from Vs using voltage division. That is,

Vo ¼ Z2

Z1 þ Z2
Vs ð10:12-4Þ

Figure 10.12-2 shows a MATLAB input file that uses Eqs. 10.12-1 through 10.12-3 to find the
steady-state response of the circuit shown in Figure 10.12-1. Equation 10.12-4 is used to calculate Vo.
Next, B ¼ Voj j and f ¼ ffVo are calculated and used to determine the magnitude and phase angle of
the sinusoidal output voltage. Notice that MATLAB, not the user, does the complex arithmetic needed
to solve these equations. Finally, MATLAB produces the plot shown in Figure 10.12-3, which displays
the sinusoidal input and output voltages in the time domain.

10.13 U s i n g P S p i c e t o A n a l y z e A C C i r c u i t s

To use PSpice to analyze an ac circuit, we do the following:

1. Draw the circuit in the OrCAD Capture workspace.

2. Specify a AC Sweep\Noise simulation.

3. Run the simulation.

4. Open an output file to view the simulation results.

Table 10.13-1 shows some PSpice parts used to analyze ac circuits. When simulating ac
circuits, we will represent independent voltage and current sources using the PSpice parts VAC and
IAC, respectively. These PSpice parts each have properties named ACMAG and ACPHASE. We
will edit the value of these properties to specify the amplitude and phase angle of a sinusoid.
(Consequently, ACMAG and ACPHASE also represent the magnitude and phase angle of the phasor
corresponding to the sinusoid.)

Table 10.13-1 PSpice Parts for AC Circuits and the Libraries in Which They Are Found

SYMBOL DESCRIPTION PSPICE NAME LIBRARY

–

+1Vac
0Vdc

V?
AC voltage source VAC SOURCE

–

+1Aac
0Adc

I?
AC current source IAC SOURCE

Print element voltage VPRINT2 SPECIAL

Print node voltage VPRINT1 SPECIAL

IPRINT

Print element current IPRINT SPECIAL
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We will add the PSpice parts VPRINT1, VPRINT2, and IPRINT from Table 10.13-1 to specify
those current and voltage values that PSpice is to print into the output file. Each of these PSpice parts has
properties named AC, REAL, IMAG, MAG, and PHASE. We will edit the value of each of these
properties to be y. Then, when we simulate the circuit, PSpice will print the value of the corresponding
phasor in both rectangular form and polar form.

E X A M P L E 1 0 . 1 3 - 1 Using PSpice to Analyze AC Circuits

Consider the ac circuit shown in Figure 10.13-1, in which

vs tð Þ ¼ 12 cos 100t þ 15�ð ÞV and is tð Þ ¼ 1:5 cos 100t þ 135�ð ÞA
Use PSpice to determine the voltages v1 and v3 and the current i2.

20 Ω

4 mF

5 H2 H

i2
10 Ω

vs is+
–

+ –v1
v3

FIGURE 10.13-1 An AC circuit.

Solution
We begin by drawing the circuit in the OrCAD workspace as shown in Figure 10.13-2 (see Appendix A). Notice
that we have used the PSpice parts VAC and IAC from Table 10.13-1 to represent the sources. Also, we have edited

the ACMAG and ACPHASE properties of these sources, setting ACMAG ¼12 and ACPHASE ¼ 15 for the
voltage source and ACMAG ¼ 1.5 and ACPHASE ¼ 135 for the current source.

Figure 10.13-2 also shows that we have added PSpice parts VPRINT1, IPRINT, and VPRINT2 to measure
v1, i2, and v3. These printers are connected to the circuit in the same way that ammeters and voltmeters would
be connected to measure v1, i2, and v3. Notice the minus sign on the VPRINT2 printer. It indicates the
terminal near the minus sign of the polarity of the measured voltage. Similarly, the current measured by
the IPRINT printer is the current directed toward the terminal marked by the minus sign. The minus sign
on the VPRINT1 printer can be ignored. This printer measures the node voltage at the node to which it is
connected.

We will perform a AC Sweep\Noise simulation. (Select Pspice\New Simulation Profile from the OrCAD
Capture menu bar; then select AC Sweep\Noise from the Analysis Type drop-down list. Set both the Start
Frequency and End Frequency to 100= 2pð Þ ¼ 15:92. Select a Linear Sweep and set the Total Points to 1.) Select
PSpice\Run Simulation Profile from the OrCAD Capture menu bar to run the simulation.

5H 20

4mF

21

2H10

R2

ACMAG = 12Vac
ACPHASE = 15

ACMAG = 1.5Aac
ACPHASE = 135

L1

IPRINT

1 2

0

–

+

–

+

–

–

–

FIGURE 10.13-2 The circuit of Figure 10.13-1
as drawn in the OrCAD workspace.
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10.14 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the specifica-
tions have been satisfied. In addition, computer output must be reviewed to guard against data-entry
errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

After we run the simulation, OrCAD Capture will open a Schematics window. Select View\Output File from
the menu bar on the Schematics window. Scroll down through the output file to find the printer voltage and
currents:

FREQ VM(N615) VP(N615) VR(N615) VI(N615)
15.92E+00 1.579E+01 �8.112E+00 1.564E+01 �2.229E+00

FREQ IM(V_PRINT2) IP(V_PRINT2) IR(V_PRINT2) II (V_PRINT2)
15.92E+00 6.694E�01 1.272E+02 �4.045E�01 5.334E�01

FREQ VM(N256,N761) VP(N256,N761) VR(N256,N761) VI(N256,N761)
15.92E+00 4.533E+01 2.942E+01 3.949E+01 2.227E+01

This output requires some interpretation. The labels VM, VP, VR, and VI indicate the magnitude, angle, real part,
and imaginary part of a voltage, and the labels IM, IP, IR, and II indicate the magnitude, angle, real part, and
imaginary part of a current. The labels N614, N256, and N761 are node numbers generated by PSpice. VM(N615)
refers to the voltage at a single node, that is, the node voltage v1. IM(V_PRINT2) refers to a current, that is, i2. VM
(N256,N761) refers to a voltage between two nodes, that is, v3. Consequently, the simulation results indicate that

v1 tð Þ ¼ 15:79 cos 100t � 8:1�ð Þ ¼ 15:64 cos 100tð Þ þ 2:229 sin 100tð ÞV;

i2 tð Þ ¼ 0:6694 cos 100t þ 127:2�ð Þ ¼ �0:4045 cos 100tð Þ � 0:5334 sin 100tð ÞV;
and

v3 tð Þ ¼ 45:33 cos 100t þ 29:40ð Þ ¼ 39:49 cos 100tð Þ � 22:27 sin 100tð ÞV

E X A M P L E 1 0 . 1 4 - 1 How Can We Check Arithmetic
with Complex Numbers?

It is known that
10

R � j4
¼ Aff53�

A computer program states that A ¼ 2. How can we check this result? (Notice that values are given to only two
significant figures.)
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Solution
The equation for the angle is

�tan�1 �4

R

� �
¼ 53�

Then, we have

R ¼ �4

tan �53�ð Þ ¼ 3:014

Solving for A in terms of R, we obtain

A ¼ 10

R2 þ 16
	 
1=2 ¼ 1:997

Therefore, A ¼ 2 is correct to two significant figures.

E X A M P L E 1 0 . 1 4 - 2 How Can We Check AC Circuit Analysis?

Consider the circuit shown in Figure 10.14-1. Suppose we know that the capacitor voltages are

1:96 cos 100t � 101:3�ð ÞV and 4:39 cos 100t � 37:88�ð ÞV
but we do not know which voltage is v1(t) and which is v2(t). How can we check the capacitor voltages?

+
– v1(t)

+

–
v2(t)

+

–
BA

10 kΩ10 kΩa b c

10cos(100t) V 2   Fμ1   Fμ

FIGURE 10.14-1 An example circuit.

Solution
Let us guess that

v1 tð Þ ¼ 1:96 cos 100t � 101:3�ð Þ
and

v2 tð Þ ¼ 4:39 cos 100t � 37:88�ð Þ
and then check to see whether this choice satisfies the node equations representing the circuit. These node
equations are

10� V1

R1
¼ joC1V1 þ V1 � V2

R2

and

joC2V2 ¼ V1 � V2

R2

where V1 and V2 are the phasors corresponding to v1(t) and v2(t). That is,
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V1 ¼ 1:96e�j101:3� and V2 ¼ 4:39e�j37:88�

Substituting the phasors V1 and V2 into the left-hand side of the first node equation gives

10� 1:96e�j101:3

10� 103
¼ 0:001þ j1:92� 10�4

Substituting the phasors V1 and V2 into the right-hand side of the first node equation gives

j � 100� 10�6 � 1:96e�j101:3 þ 1:96e�j101:3 � 4:39e�j37:88

10� 103

¼ �19:3� 10�4 þ j3:89� 10�5

Because the right-hand side is not equal to the left-hand side, V1 and V2 do not satisfy the node equation. That
means that the selected order of v1(t) and v2(t) is not correct. Instead, use the reverse order so that

v1 tð Þ ¼ 4:39 cos 100t � 37:88�ð Þ
and

v2 tð Þ ¼ 1:96 cos 100t � 101:3�ð Þ

Now the phasors V1 and V2 will be

V1 ¼ 4:39e�j37:88� and V2 ¼ 1:96e�j101:3�

Substituting the new values of the phasors V1 and V2 into the left-hand side of the first node equation gives

10� 4:39e�j37:88

10� 103
¼ 6:353� 10�4 þ j2:696� 10�4

Substituting the new values of the phasors V1 and V2 into the right-hand side of the first node equation gives

j � 100 � 10�6 � 4:39e�j37:88 þ 4:39e�j37:88 � 1:96e�j101:3

10� 103

¼ þ6:545� 10�4 þ j2:69� 10�4

Because the right-hand side is very close to equal to the left-hand side, V1 and V2 satisfy the first node equation.
That means that v1(t) and v2(t) are probably correct. To be certain, we will also check the second node equation.
Substituting the phasors V1 and V2 into the left-hand side of the second node equation gives

j � 100 � 2� 10�6 � 1:96e�j101:3 ¼ þ3:84� 10�4 � j7:681� 10�5

Substituting the phasors V1 and V2 into the right-hand side of the second node equation gives

4:39e�j37:88 � 1:96e�j101:3

10� 103
¼ 3:85� 10�4 � j7:735� 10�5

Because the right-hand side is equal to the left-hand side, V1 and V2 satisfy the second node equation. Now we are
certain that

v1 tð Þ ¼ 4:39 cos 100t � 37:88�ð ÞV
and

v2 tð Þ ¼ 1:96 cos 100t � 101:3�ð ÞV
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1 0 . 1 5 D E S I G N E X A M P L E An Op Amp Circuit

Figure 10.15-1a shows two sinusoidal voltages, one labeled as input and the other labeled as output. We want to
design a circuit that will transform the input sinusoid into the output sinusoid. Figure 10.15-1b shows a candidate
circuit. We must first determine whether this circuit can do the job. Then, if it can, we will design the circuit, that is,
specify the required values of R1, R2, and C.

v(t)

t

Output
v2(t) = 2 sin(2  1000t + 120°) V

Input
v1(t) = sin(2  1000t) Vπ

π

–

+

(b)

(a)

R1v1(t)
v2(t)

R2

C

FIGURE 10.15-1 (a) Input and output voltages. (b) Proposed circuit.

Define the Situation and the Assumptions
The input and output sinusoids have different amplitudes and phase angles but the same frequency:

f ¼ 1000 Hz

or, equivalently,

o ¼ 2p1000 rad/s

We now know that this must be the case. When the input to a linear circuit is a sinusoid, the steady-state output will
also be a sinusoid having the same frequency.

In this case, the input sinusoid is

v1 tð Þ ¼ sin 2p1000tð Þ ¼ cos 2p1000t � 90�ð ÞV
and the corresponding phasor is

V1 ¼ 1e�j90� ¼ 1ff�90� V

The output sinusoid is

v2 tð Þ ¼ 2 sin 2p1000t þ 120�ð Þ ¼ 2 cos 2p1000t þ 30�ð Þ V
and the corresponding phasor is

V2 ¼ 2e j30� V

The ratio of these phasors is

V2

V1
¼ 2e j30�

1e�j90� ¼ 2e j120�
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The magnitude of this ratio, called the gain G, of the circuit used to transform the input sinusoid into the output
sinusoid is

G ¼ V2

V1

����
���� ¼ 2

The angle of this ratio is called the phase shift y of the required circuit:

y ¼ff V2

V1
¼ 120�

Therefore, we need a circuit that has a gain of 2 and a phase shift of 120�.

State the Goal
Determine whether it is possible to design the circuit shown in Figure 10.15-1b to have a gain of 2 and a phase shift
of 120�. If it is possible, specify the appropriate values of R1, R2, and C.

Generate a Plan
Analyze the circuit shown in Figure 10.15-1b to determine the ratio of the output phasor to the input phasor, V2=V1.
Determine whether this circuit can have a gain of 2 and a phase shift of 120�. If so, determine the required values of
R1, R2, and C.

Act on the Plan
The circuit in Figure 10.15-1b is a special case of the circuit shown in Figure 10.10-1. The impedance Z1 in Figure
10.10-1 corresponds to the resistor R1 in Figure 10.15-1b, and impedance Z2 corresponds to the parallel
combination of resistor R2 and capacitor C. That is,

Z1 ¼ R1

and

Z2 ¼ R2 1=joCð Þ
R2 þ 1=joC

¼ R2

1þ joCR2

Then, using Eq. 10.10-3,
V2

V1
¼ �Z2

Z1
¼ �R2= 1þ joCR2ð Þ

R1
¼ � R2=R1

1þ joCR2

The phase shift of the circuit in Figure 10.15-1b is given by

y ¼ff V2

V1
¼ff� R2=R1

1þ joCR2
¼ 180� � tan�1 oCR2 ð10:15-1Þ

What values of phase shift are possible? Notice that o, C, and R2 are all positive, which means that

0� � tan�1 oCR2 � 90�

Therefore, the circuit shown in Figure 10.15-1b can be used to obtain phase shifts between 90� and 180�. Hence, we
can use this circuit to produce a phase shift of 120�.

The gain of the circuit in Figure 10.15-1b is given by

G ¼ V2

V1

����
���� ¼ � R2=R1

1þ joCR2

����
����

¼ R2=R1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2C2R2

2

q ¼ R2=R1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 180� � yð Þ

p ð10:15-2Þ
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Next, first solve Eq. 10.15-1 for R2 and then Eq. 10.15-1 for R1 to get

R2 ¼ tan 180� � yð Þ
oC

and

R1 ¼ R2=Gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ tan2 180� � yð Þ

p

These equations can be used to design the circuit. First, pick a convenient, readily available, and inexpensive value
of the capacitor, say,

C ¼ 0:02 mF

Next, calculate values of R1 and R2 from the values of o, C, G, and y. For o ¼ 6283 rad/s, C ¼ 0:02 mF, G ¼ 2,
and y ¼ 120�, we calculate

R1 ¼ 3446V and R2 ¼ 13:78 kV

and the design is complete.

Verify the Proposed Solution
When C ¼ 0:02 mF, R1 ¼ 3446 V, and R2 ¼ 13:78 kV, the network function of the circuit is

V2

V1
¼ � R2=R1

1þ joCR2
¼ � 4

1þ jo 0:2756� 10�3
	 


In this case, o ¼ 2p1000, and V1 ¼ 1ff�90�, so

V2

V1
¼ � 4

1þ j 2p� 103
	 


0:2756� 10�3
	 
 ¼ 2ff120�

as required by the specifications.

10.16 SUMMARY

With the pervasive use of ac electric power in the home and
industry, it is important for engineers to analyze circuits with
sinusoidal independent sources.
The steady-state response of a linear circuit to a sinusoidal
input is itself a sinusoid having the same frequency as the
input signal.
Circuits that contain inductors and capacitors are represented
by differential equations. When the input to the circuit is
sinusoidal, the phasors and impedances can be used to repre-
sent the circuit in the frequency domain. In the frequency
domain, the circuit is represented by algebraic equations. The
original circuit, represented by a differential equation, is called
the time-domain representation of the circuit.
The steady-state response of a linear circuit with a sinusoidal
input is obtained as follows:

1. Transform the circuit into the frequency domain, using
phasors and impedances.

2. Represent the frequency-domain circuit by algebraic
equations, for example, mesh or node equations.

3. Solve the algebraic equations to obtain the response of
the circuit.

4. Transform the response into the time domain, using
phasors.

Table 10.16-1 summarizes the relationships used to trans-
form a circuit from the time domain to the frequency domain
or vice versa.
When a circuit contains several sinusoidal sources, we
distinguish two cases.

1. When all of the sinusoidal sources have the same
frequency, the response will be a sinusoid with that
frequency, and the problem can be solved in the same
way that it would be if there was only one source.

2. When the sinusoidal sources have different frequencies,
superposition is used to break the time-domain circuit up
into several circuits, each with sinusoidal inputs all at the
same frequency. Each of the separate circuits is analyzed
separatelyandtheresponsesaresummed inthetimedomain.

MATLAB greatly reduces the computational burden associ-
ated with solving mesh or node equations having complex
coefficients.
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Table 10.16-1 Time-Domain and Frequency-Domain Relationships

ELEMENT TIME DOMAIN FREQUENCY DOMAIN

Current Source i(t) = A cos (   t +   )θω θI(  ) = Ae jω

Voltage source v(t) = B cos (   t +   )+
– φω V(  ) = Bej+

–
φω

Resistor
+

–
v(t) = R i(t)v(t)

i(t)

R
+

–
V(  ) = R I(  )V(  )

I(  )

R ω ωω

ω

Capacitor 1
C

+

–
v(t) v(t) = i(  ) d

i(t)

C τ τ∫
t

–∞
1

j   C
1

j   C

+

–
V(  ) V(  ) = I(  )

I(  )

ω ω ωω ω

ω

Inductor  d
dt

+

–
v(t) v(t) = L i(t)

i(t)

L
+

–
V(  ) V(  ) = j   L I(  ) 

I(  )

j   Lω ω ω ω

ω

ω

CCVS ic(t)
+

–
v(t) = K ic(t)

i(t)

+

–
Ic(  )

+

–
V(  ) = K Ic(  )

I(  )

+

–
ωω

ω

ω

Ideal op amp
+

–
v(t)

+

–
O

i2 = O

i1 = O
–

+

i(t)

I1 = O

I2 = O

+

–
V(  )

+

–
O

I(  )–

+

ω

ω

PROBLEMS

Section 10.2 Sinusoidal Sources

P 10.2-1 Given the sinusoids v1(t) = 8 cos(250t + 15�) V and
v2(t) = 6 cos(250t� 45�) V, determine the time by which v2(t) is
advanced or delayed with respect to v1(t).

P 10.2-2 Given the sinusoids v1(t) = 8 cos(100t� 54�) V and
v2(t) = 8 cos(100t� 102�) V, determine the time by which v2(t) is
advanced or delayed with respect to v1(t).

P 10.2-3 A sinusoidal current is given as
i tð Þ ¼ 125 cos 5000p t � 135�ð Þ mA

Determine the period T and the time t1 at which the first positive
peak occurs.

Answer: T = 0.4 ms and t1 = 0.15 ms.

P 10.2-4 Express the voltage shown in Figure P 10.2-7 in the
general form

Problem available in WileyPLUS at instructor’s discretion.
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v tð Þ ¼ Acos o t þ yð Þ V

where A 0 and � 180� < y� 180�.

45

t, ms

v (t), mV

−45

20

40 60

Figure P 10.2-4

P 10.2-5 Figure P 10.2-5 shows a sinusoidal voltage v(t),
plotted as a function of time t. Represent v(t) by a function of
the form A cos ot þ yð Þ.
Answer: v tð Þ ¼ 18 cos 393t � 27�ð Þ

–20 V
0 s 20 ms

t
40 ms

0 V

20 V

v(t)

Figure P 10.2-5

P 10.2-6 Figure P 10.2-6 shows a sinusoidal voltage v(t),
plotted as a function of time, t. Represent v(t) by a function of
the form A cos ot þ yð Þ.

–20 V
0 s 20 ms

t
40 ms 60 ms

0 V

20 V

v(t)

Figure P 10.2-6

Section 10.3 Phasors and Sinusoids

P 10.3-1 Express the current

i tð Þ ¼ 2 cos 6 t þ 120�ð Þ þ 2 sin 6 t � 60�ð Þ mA

in the general form

i tð Þ ¼ A cos o t þ yð Þ mA

where A 0 and � 180� < y� 180�.

P 10.3-2 Express the voltage

v tð Þ ¼ 5
ffiffiffi
2

p
cos 8 tð Þ þ 2 sin 8 t þ 45�ð Þ V

in the general form
v tð Þ ¼ A cos o t þ yð Þ V

where A 0 and � 180� < y� 180�.

P 10.3-3 Determine the polar form of the quantity

25ff36:9�� �
80ff�53:1�
� �

4 þ j8ð Þ þ 6� j8ð Þ
Answer: 200ff�16:2�

P 10.3-4 Determine the polar and rectangular form of the
expression

5 ffþ81:87� 4� j3þ 3
ffiffiffi
2

p ff�45�

7� j1

 !

Answer: 88:162ff30:127� ¼ 76:2520 þ j44:2506

P 10.3-5 Determine the polar and rectangular form of the
expression

60 ff120�� �
�16þ j12þ 20ff15�� �

5ff�75�

P 10.3-6 The circuit shown in Figure 10.3-6 is at steady state.
The current source currents are

i 1 tð Þ ¼ 10 cos 25 tð Þ mAand i 3 tð Þ ¼ 10 cos 25 t þ 135�ð Þ mA

Determine the voltage v2(t).

i3(t)i1(t) 250 Ω

+

–

v2(t)

Figure P 10.3-6

P 10.3-7 The circuit shown in Figure 10.3-7 is at steady state.
The inputs to this circuit are the current source current

i 1 tð Þ ¼ 0:12 cos 100 t þ 45�ð Þ A

and the voltage source voltage

v 2 tð Þ ¼ 24 cos 100 t � 60�ð Þ V

Determine the current i2(t).

i1(t) 96 Ωv2(t)

i2(t)
+
–

Figure P 10.3-7

P 10.3-8 Given that

i1 tð Þ ¼ 30 cos 4t þ 45�ð ÞmA
and

i2 tð Þ ¼ �40 cos 4tð ÞmA
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Determine v(t) for the circuit shown in Figure P 10.3-8.

120 Ω100 Ω

15 H v(t)

i1 (t) i2 (t)

+

–

Figure P 10.3-8

P 10.3-9 For the circuit shown in Figure P 10.3-9, find
(a) the impedances Z1 and Z2 in polar form, (b) the total
combined impedance in polar form, and (c) the steady-state
current i(t).

Answers: (a) Z1 ¼ 5ff53:1�; Z2 ¼ 8
ffiffiffi
2

p ff�45�

(b) Z1 þ Z2 ¼ 11:7ff�20�

(c) i tð Þ ¼ 8:55ð Þ cos 1250t þ 20�ð Þ A

Z1 Z2

+ –
i

3.2 mH3 Ω 8 Ωμ100 F

100 cos (1250t) V

Figure P 10.3-9

P 10.3-10 The circuit shown in Figure P 10.3-10 is at
steady state. The voltages vs(t) and v2(t) are given by

vs tð Þ ¼ 7:68 cos 2t þ 47�ð ÞV
and

v2 tð Þ ¼ 1:59 cos 2t þ 125�ð ÞV
Find the steady-state voltage v1(t)

Answer: v1 tð Þ ¼ 7:51 cos 2t þ 35�ð Þ V

v1(t)

vs(t) v2(t)

+

+

–

–

+
–

C
R

Figure P 10.3-10

P 10.3-11 The circuit shown in Figure P 10.3-11 is at
steady state. The currents i1(t) and i2(t) are given by

i1 tð Þ ¼ 744 cos 2t � 118�ð Þ mA

and

i2 tð Þ ¼ 540:5 cos 2t þ 100�ð Þ mA

Find the steady-state current i(t).

Answer: i tð Þ ¼ 460 cos 2t þ 196�ð Þ mA

i1(t) i2(t)

v1(t) v2(t)10 Ω
10 Ω 10 Ω

0.05 F

6 H

i(t)

+
–

+
–

Figure P 10.3-11

P 10.3-12 Determine i(t) of the RLC circuit shown in
Figure P 10.3-12 when vs ¼ 2 cos 4t þ 30�ð Þ V.

Answer: i tð Þ ¼ 0:185 cos 4t � 26:3�ð Þ A

+
–vs F

3 H

6 Ω
1 12

i(t)

Figure P 10.3-12

Section 10.4 Impedances

P 10.4-1 Figure P 10.4-1a shows a circuit represented in the
time domain. Figure P 10.4.1b shows the same circuit repre-
sented in the frequency domain, using phasors and impedances.
ZR, ZC, ZL1, and ZL2 are the impedances corresponding to the
resistor, capacitor, and two inductors in Figure P 10.4-1a. Vs is
the phasor corresponding to the voltage of the voltage source.
Determine ZR, ZC, ZL1, ZL2, and Vs.

Hint: 5 sin 5t ¼ 5 cos 5t � 90�ð Þ

Answer: ZR ¼ 8 V;ZC ¼ 1

j5
1
12

� � ¼ 2:4
j

¼ j2:4
j � j

¼ �j2:4 V;ZL1 ¼ j5 2ð Þ ¼ j10 V;

ZL2 ¼ j5 4ð Þ ¼ j20 V; and Vs ¼ 5ff�90� V

8 Ω 2 H

4 H

5 sin 5t V 
vo

+

–

+ –

1
12

F

(a)

Vo

+

–

+ –

(b)

Vs

ZR

ZC

ZL1

ZL2

Figure P 10.4-1 A circuit represented (a) in the time domain and
(b) in the frequency domain.

P 10.4-2 Figure P 10.4-2a shows a circuit represented in the
time domain. Figure P 10.4-2b shows the same circuit
represented in the frequency domain, using phasors and
impedances. ZR, ZC, ZL1, and ZL2 are the impedances
corresponding to the resistor, capacitor, and two inductors
in Figure P 10.4-2a. Is is the phasor corresponding to the
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current of the current source. Determine ZR, ZC, ZL1, ZL2,
and Is.

Answer: ZR ¼ 8V; ZC ¼ 1

j3
1

12

� � ¼ 4

j
¼ j4

j � j

¼ �j4V; ZL1 ¼ j3 2ð Þ ¼ j6V;

ZL2 ¼ j3 4ð Þ ¼ j 12V; and Is ¼ 4ff15� A

Is

ZR

ZC

ZL1

ZL2

(b)

Vo

+

–

8 Ω 2 H

4 H

4 cos (3t + 15°) Avo

+

–

F

(a)

1 12

Figure P 10.4-2 A circuit represented (a) in the time domain and
(b) in the frequency domain.

P 10.4-3 Represent the circuit shown in Figure P 10.4-3 in the
frequency domain using impedances and phasors.

i1(t ) = 400 cos(25 t − 24°) mA

i2(t ) = 750 cos(25 t + 60°) mA

i1(t ) i2(t )

64 mH

4 mF
25 Ω

+ –va

i (t )

Figure P 10.4-3

P 10.4-4 Represent the circuit shown in Figure P 10.4-4 in the
frequency domain using impedances and phasors.

2.5 mF 80 mH 8va

25 Ω

is(t ) = 1.44 cos(50 t −24°) mA

is(t ) va

+

–
i (t )

Figure P 10.4-4

P 10.4-5 Determine the current i(t) for the circuit shown in
Figure P 10.4-5.

+
–7.4 cos(200t −24°) V

250 Ω

16 mF

480 mH

i (t )

Figure P 10.4-5

P 10.4-6 The input to the circuit shown in Figure P 10.4-6 is
the current

i tð Þ ¼ 120 cos 4000 tð Þ mA

Determine the voltage v(t) across the 40-V resistor.

40 Ω20 μF

15 mH

i (t ) v (t )

+

–

Figure P 10.4-6

P 10.4-7 The input to the circuit shown in Figure P 10.4-7 is
the current

i tð Þ ¼ 82 cos 10000 tð Þ mA

Determine the voltage v(t) across the 50-kV resistor.

20 kΩ 5 nF

i (t )

v (t )

+

–

–

+

50 kΩ

Figure P 10.4-7

P 10.4-8 Each of the following pairs of element voltage
and element current adheres to the passive convention. Indicate
whether the element is capacitive, inductive, or resistive and
find the element value.

(a) v tð Þ ¼ 15 cos 400t þ 30�ð Þ; i ¼ 3 sin 400t þ 30�ð Þ
(b) v tð Þ ¼ 8 sin 900t þ 50�ð Þ; i ¼ 2 sin 900t þ 140�ð Þ
(c) v tð Þ ¼ 20 cos 250t þ 60�ð Þ; i ¼ 5 sin 250t þ 150�ð Þ
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Answers: (a) L ¼ 12:5 mH
(b) C ¼ 277:77 mF
(c) R ¼ 4 V

P 10.4-9 The voltage and current for the circuit shown in
Figure P 10.4-9 are given by

v tð Þ ¼ 20 cos 20t þ 15�ð ÞV and i tð Þ ¼ 1:49 cos 20t þ 63�ð ÞA
Determine the values of the resistance R and capacitance C

v(t)

C
R

i(t)

+ –

Figure P 10.4-9

P 10.4-10 Figure P 10.4-10 shows an ac circuit represented in
both the time domain and the frequency domain. Determine the
values of A, B, a, and b.

+
– 12cos10t  V

3 4

1 2
18 Ω 2.5 H

4 mF9 Ω

5 mF

0.8 H

5 Ω

+
– 12   0°  V

1 2

3 4

Z1 = A   54.2° Ω

Z3 = a + jb Ω

Z2 = B   −19.8° Ω

Figure P 10.4-10

P 10.4-11 Represent the circuit shown in Figure P 10.4-11
in the frequency domain, using impedances and phasors.

+
– v(t)

+

–i(t)
15 cos 4t V 5i(t)

6 Ω

2 H 0.125 F

Figure P 10.4-11

P 10.4-12 Represent the circuit shown in Figure P 10.4-12 in
the frequency domain, using impedances and phasors.

v(t)
+

–

i(t)

+ –

+ –

0.25 F

2 H

12 cos (5t – 30°) V

15 cos (5t + 60°) V

0.05 F
6 Ω

Figure P 10.4-12

P 10.4-13 Find R and L of the circuit of Figure P 10.4-13
when v(t) ¼ 10 cos(ot þ 40�) V; i(t) ¼ 2 cos(ot þ 15�) mA and
o ¼ 2 � 106 rad/s.

Answer: R ¼ 4:532 kV, L ¼ 1:057 mH

+

–

v L

R

i

Figure P 10.4-13

Section 10.5 Series and Parallel Impedances

P 10.5-1 Determine the steady-state voltage v(t) in the circuit
shown in Figure P 10.5-1.

Answer: v(t) = 32 cos(250 t� 57.9�) V

v (t ) 16 Ω

+

–

+ –

48 mH

40 cos(250 t −15°) V

Figure P 10.5-1

P 10.5-2 Determine the voltage v(t) in the circuit shown in
Figure P 10.5-2.

Answer: v(t) = 14.57 cos(800 t + 111.7�) V

18 cos(800 t ) V

v(t )

140 mH

5 mF120 Ω

+

–

+ –

80 Ω

125 mH

Figure P 10.5-2

P 10.5-3 Determine the voltage v(t) in the circuit shown in
Figure P 10.5-3.

Answer: v(t) = 14.1 cos(2500 t� 35.2�) V
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22 cos (2500 t +15°) V v (t )4 mF

120 Ω

+

–

100 mH+
–

Figure P 10.5-3

P 10.5-4 The input to the circuit shown in Figure P 10.5-4 is
the current is(t) = 48 cos(25 t) mA. Determine the current i1(t).

Answer: i1(t) = 144 cos(25 t + 180�) mA

2 mF0.6 H

is(t )
i1(t )

Figure P 10.5-4

P 10.5-5 The input to the circuit shown in Figure P 10.5-5 is
the current i s(t) = 48 cos(25 t) mA. Determine the current i2(t).

20 Ω
0.6 H

is(t)
i2(t)

Figure P 10.5-5

P 10.5-6 The input to the circuit shown in Figure P 10.5-6 is
the current is(t) = 48 cos(25 t) mA. Determine the current i3(t).

Answer: i3(t) = 16.85 cos(25 t + 69.4�) mA

0.6 H

is(t)

20 Ω

0.6 H
i3(t)

Figure P 10.5-6

P 10.5-7 Figure P 10.5-7 shows a circuit represented in the
frequency domain. Determine the voltage phasor V1.

Answer: V1 = 14.59ff�13:15� V

+
– V1

+

–

j 80 Ω 

125 Ω

−j 50 Ω20   30° V

Figure P 10.5-7

P 10.5-8 Figure P 10.5-8 shows a circuit represented in the
frequency domain. Determine the current phasor I2.

Answer: I 2 = 18.48ff�93:7� mA

I2

j 80 Ω

45 Ω

−j 50 Ω20   30° mA

Figure P 10.5-8

P 10.5-9 Figure P 10.5-9 shows an ac circuit represented in
both the time domain and the frequency domain. Suppose

Z1 ¼ 15:3ff�24:1� V and Z2 ¼ 14:4ff53:1� V
Determine the voltage v(t) and the values of R1, R2, L, and C.

+
–

R1

R2

C

L15 cos 20t  V v(t)

+

–

+
– V(ω)

+

–

Z1

Z215   0°  V

Figure P 10.5-9

P 10.5-10 Find Z and Y for the circuit of Figure P 10.5-10
operating at 10 kHz.

1   F

Z,Y

36 Ωμ 160   Hμ

Figure P 10.5-10

P 10.5-11 For the circuit of Figure P 10.5-11, find the
value of C required so that Z ¼ 590:7 V when f ¼ 1 MHz.

Answer: C ¼ 0:27 nF

Z

C 47   H

300 Ω

μ

Figure P 10.5-11
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P 10.5-12 Determine the impedance Z for the circuit shown in
Figure P 10.5-12.

Z

2 mF

2 mF

2 mF100 Ω

2.5 H

1.5 H

Figure P 10.5-12

P 10.5-13 The big toy from the hit movie Big is a child’s
musical fantasy come true—a sidewalk-sized piano. Like a
hopscotch grid, this once-hot Christmas toy invites anyone who
passes to jump on, move about, and make music. The developer
of the toy piano used a tone synthesizer and stereo speakers as
shown in Figure P 10.5-13 (Gardner, 1988). Determine the
current i(t) for a tone at 796 Hz when C ¼ 10 mF.

i+
–v = 12 cos   t V

Ω20

3 mH

Cω

Speaker

Figure P 10.5-13 Tone synthesizer.

P 10.5-14 Determine B and L for the circuit of Figure
P 10.5-14 when i tð Þ ¼ B cos 3t � 51:87�ð Þ A.

Answer: B ¼ 1:6 and L ¼ 2 H

8 Ω2 cos(3t – 15°) A

i(t)

L

Figure P 10.5-14

P 10.5-15 Spinal cord injuries result in paralysis of the lower
body and can cause loss of bladder control. Numerous electrical
devices have been proposed to replace the normal nerve path-
way stimulus for bladder control. Figure P 10.5-15 shows the
model of a bladder control system in which vs ¼ 20 cos ot V
and o ¼ 100 rad/s. Find the steady-state voltage across the
10-V load resistor.

Answer: v tð Þ ¼ 10
ffiffiffi
2

p
cos 100t þ 45�ð Þ V

50 Ω Regular nerve
pathway load10 Ωμ100 F+

–vs

1 mF

Figure P 10.5-15

P 10.5-16 There are 500 to 1000 deaths each year in the
United States from electric shock. If a person makes a good

contact with his hands, the circuit can be represented by Figure
P 10.5-16, in which vs ¼ 160 cos ot V and o ¼ 2pf .
Find the steady-state current i flowing through the body when
(a) f ¼ 60 Hz and (b) f ¼ 400 Hz.

Answer: (a) i tð Þ ¼ 0:53 cos 120pt þ 5:9�ð Þ
(b) i tð Þ ¼ 0:625 cos 800pt þ 59:9�ð Þ A

i

vs

100 mH

300 Ω

μ2 F+
–

Source

Person's body

Figure P 10.5-16

P 10.5-17 Determine the steady-state voltage v(t) and
current i(t) for each of the circuits shown in Figure P 10.5-17.

+
–

+–

(a)

40 Ω 10 Ω

4 Ω

i(t)

v(t)

24 V

+
–

+–

(b)

40 Ω

4 H

i(t)

v(t)

24 cos (4t + 15°) V
10 mF

Figure P 10.5-17

P 10.5-18 Determine the steady-state current i(t) for the
circuit shown in Figure P 10.5-18.

4 H

5 H

+ –

i(t)

30 Ω

20 Ω 2 mF

5 mF

5 cos (10t + 30°) V
Figure P 10.5-18
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P 10.5-19 Determine the steady-state voltage v(t) for the
circuit shown in Figure P 10.5-19.

30 Ω

20 Ω

10 cos(5t + 45°) mAv(t)

5 mF

4 H

2 H

4 mF

+

–

Figure P 10.5-19

P 10.5-20 Determine the steady-state voltage v(t) for the
circuit shown in Figure P 10.5-20.

+
–

20 Ω

40 Ω

10 mF
5 mF

5 H

2.5 H

10 cos(4t + 60°) V v(t)
+

–

Figure P 10.5-20

P 10.5-21 The input to the circuit shown in Figure P 10.5-21
is the current source current

is tð Þ ¼ 25 cos 10t þ 15�ð ÞmA

The output is the current i1(t). Determine the steady-state
response i1(t).

is(t)

i1(t)

40 Ω

25 Ω

2 H

5 H

2 mF

5 mF

Figure P 10.5-21

P 10.5-22 Determine the steady-state voltage v(t) and
current i(t) for each of the circuits shown in Figure P 10.5-22.

v(t)

(a)

80 Ω

80 Ω

8 H

40 Ω24 mA

v(t)

(b)

80 Ω4 mF i(t)

i(t)

24 cos(10t + 15°) mA

+

–

+

–

Figure P 10.5-22

P 10.5-23 Determine the steady-state current i(t) for the
circuit in Figure P 10.5-23.

2 H

2 H

40 Ω
25 Ω

5 mF

2 mF

20 Ω
i(t)

16 cos(20t + 75°) V+
–

Figure P 10.5-23

P 10.5-24 When the switch in the circuit shown in Figure
P 10.5-24 is open and the circuit is at steady state, the capacitor
voltage is

v tð Þ ¼ 14:14 cos 100t � 45�ð ÞV
When the switch is closed and the circuit is at steady state, the
capacitor voltage is

v tð Þ ¼ 17:89 cos 100t � 26:6�ð ÞV
Determine the values of the resistances R1 and R2.

+
–

+

–
0.5   F v(t)μ20 cos (100t) V

R1 R2

Figure P 10.5-24

P 10.5-25 Determine the steady-state current i(t) for the
circuit shown in Figure P 10.5-25.
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20 Ω

40 Ω

15 Ω

4 H

8 H
2 H

i(t)

8 mF

10 mF

20 cos (5t + 30°) mA

Figure P 10.5-25

P 10.5-26 Determine the steady-state voltage v(t) and
current i(t) for each of the circuits shown in Figure
P 10.5-26.

5 mF

(a)

3 H

2 H4i(t) v(t)
+

–

(b)

10 Ω
40 Ω

i(t)

20 cos (10t + 15°) V+
–

4i(t) v(t)
+

–
40 Ω

50 Ω

i(t)

20 V
+
–

Figure P 10.5-26

P 10.5-27 Determine the steady-state voltage v(t) for each
of the circuits shown in Figure P 10.5-27.

24 V

(a)

+
–

80 Ω

40 Ω 100 Ω

20 Ω

+ −v(t)

(b)

+
–

20 Ω

15 Ω20 Ω2 mF

25 Ω

v(t)

3 H

24 cos (20t + 45°) V

4 H 4 mF

5 mF

+ –

Figure P 10.5-27

P 10.5-28 The input to the circuit shown in Figure P 10.5-
28 is the voltage of the voltage source

vs tð Þ ¼ 5 cos 2t þ 45�ð ÞV
The output is the inductor voltage v(t). Determine the steady-
state output voltage.

0.1 F

4 Ωvs(t) v(t)
+

–
3 H+

–

Figure P 10.5-28

P 10.5-29 Determine the steady-state voltage v(t) for the
circuit of Figure P 10.5-29.

Hint: Analyze the circuit in the frequency domain, using
impedances and phasors. Use voltage division twice. Add the
results.

Answer: v tð Þ ¼ 3:58 cos 5t þ 47:2�ð Þ V

v(t)

8 Ω 2 H

4 H

5 sin 5t V 

+

_

+ –

F1 12

Figure P 10.5-29
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P 10.5-30 Determine the voltage v(t) for the circuit of
Figure P 10.5-30.

Hint: Analyze the circuit in the frequency domain, using
impedances and phasors. Replace parallel impedances with
an equivalent impedance twice. Apply KVL.

Answer: v tð Þ ¼ 14:4 cos 3t � 22�ð Þ V

8 Ω 2 H

4 H

4 cos (3t + 15°) A v(t)

+

–

F1 12

Figure P 10.5-30

P 10.5-31 The input to the circuit in Figure P 10.5-31 is the
voltage source voltage vs(t). The output is the voltage vo(t).
When the input is vs tð Þ ¼ 8 cos 40tð Þ V, the output is
vo tð Þ ¼ 2:5 cos 40t þ 14�ð Þ V. Determine the values of the
resistances R1 and R2.

+

–

vo(t)+
– R2L = 1 H

R1

vs(t)

Figure P 10.5-31

Section 10.6 Mesh and Node Equations

P 10.6-1 The input to the circuit shown in Figure P 10.6-1 is
the voltage

v s tð Þ ¼ 48 cos 2500 t þ 45�ð Þ V

Write and solve node equations to determine the steady-state
output voltage vo(t).

+–

+
– 20 Ω

30 Ω

i (t )

10 μF

25 i (t )
20 mH

10 mHvs(t ) vo(t )

+

–

Figure P 10.6-1

P 10.6-2 Figure P 10.6-2 shows an ac circuit represented in
the frequency domain. Determine the values of the phasor node
voltages Vb and Vc.

Answer: Vb ¼ 7:69ff�19:8� and Vc ¼ 10:18ff7:7�

+

–

Vc

+

–

Vb

15 − j10 Ω

40 + j20 Ω

20 − j25 Ω j40 Ω

j30 Ω

+
–12   15°  V

Figure P 10.6-2

P 10.6-3 Figure P 10.6-3 shows an ac circuit represented in
the frequency domain. Determine the value of the phasor node
voltage V.

Answer: V ¼ 71:0346ff�39:627� V

+

–

V

25 − j 50 Ω

20 + j 20 Ω

j 40 Ω

+
–20   30°  V 250   15°  mA +

–
20   30°  V

Figure P 10.6-3

P 10.6-4 Figure P 10.6-4 shows an ac circuit represented in
the frequency domain. Determine the values of the phasor mesh
currents.

25 − j50 Ω

32 + j16 Ω

j40 Ω

48   75°  V

+

− j50 Ω
I2

I1

I3

40 + j15 Ω

–

Figure P 10.6-4

P 10.6-5 A commercial airliner has sensing devices to
indicate to the cockpit crew that each door and baggage hatch is
closed. A device called a search coil magnetometer, also known
as a proximity sensor, provides a signal indicative of the
proximity of metal or other conducting material to an inductive
sense coil. The inductance of the sense coil changes as the
metal gets closer to the sense coil. The sense coil inductance is
compared to a reference coil inductance with a circuit called a
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balanced inductance bridge (see Figure P 10.6-5). In the
inductance bridge, a signal indicative of proximity is observed
between terminals a and b by subtracting the voltage at b, vb,
from the voltage at a, va (Lenz, 1990).

The bridge circuit is excited by a sinusoidal voltage
source vs ¼ sin 800ptð Þ V. The two resistors, R ¼ 100 V, are
of equal resistance. When the door is open (no metal is present),
the sense coil inductance LS is equal to the reference coil
inductance LR ¼ 40 mH. In this case, what is the magnitude of
the signal Va � Vb?

When the airliner door is completely closed,
LS ¼ 60 mH. With the door closed, what is the phasor repre-
sentation of the signal Va � Vb?

+
–vs

ab

LR Ls

R R

Door

Figure P 10.6-5 Airline door sensing unit.

P 10.6-6 Using a tiny diamond-studded burr operating at
190,000 rpm, cardiologists can remove life-threatening
plaque deposits in coronary arteries. The procedure is fast,
uncomplicated, and relatively painless (McCarty, 1991). The
Rotablator, an angioplasty system, consists of an advancer/
catheter, a guide wire, a console, and a power source. The
advancer/catheter contains a tiny turbine that drives the
flexible shaft that rotates the catheter burr. The model of
the operational and control circuit is shown in Figure
P 10.6-6. Determine v(t), the voltage that drives the tip,
when vs ¼

ffiffiffi
2

p
cos 40t � 135�ð Þ V.

Answer: v tð Þ ¼ ffiffiffi
2

p
cos 40t � 135�ð Þ V

+
–

2i

H F

FF Ω2
i

vs

+

–
v(t)1 80

1 20 1 80

1 80

Figure P 10.6-6 Control circuit for Rotablator.

P 10.6-7 For the circuit of Figure P 10.6-7, it is known that

v2 tð Þ ¼ 0:7571 cos 2t þ 66:7�ð ÞV
v3 tð Þ ¼ 0:6064 cos 2t � 69:8�ð ÞV

Determine i1(t).

+
–

v3

i1

 3i1A cos 2t V

1 H 5 H

5 Ω

1 F F

+

–
v2

+

–
1 4

Figure P 10.6-7

P 10.6-8 The input to the circuit shown in Figure P 10.6-8 is
the voltage

vs ¼ 25 cos 40t þ 45�ð Þ V
Determine the mesh currents i1 and i2 and the voltage vo.

i1

50 Ω

vo

+

–

+
– 400 Ω

i 2

vs

6 H

3 H

8 H

Figure P 10.6-8

P 10.6-9 The input to the circuit shown in Figure P 10.6-9 is
the voltage

vs tð Þ ¼ 42 cos 800t þ 60�ð ÞmV

Determine the output voltage vo(t).

Answer: vo(t) = 823.5 cos(800 t � 55.6�) mV

+
–

500 Ω 2 kΩ

–

+

10 kΩ 10 kΩ

0.25 μF

2.5 H
vs(t)

vo(t)

Figure P 10.6-9

P 10.6-10 The idea of using an induction coil in a lamp isn’t
new, but applying it in a commercially available product is.
An induction coil in a bulb induces a high-frequency energy
flow in mercury vapor to produce light. The lamp uses about
the same amount of energy as a fluorescent bulb but lasts six
times longer, with 60 times the life of a conventional
incandescent bulb. The circuit model of the bulb and its
associated circuit are shown in Figure P 10.6-10. Determine
the voltage v(t) across the 2-V resistor when C ¼ 40 mF,
L ¼ 40 mH, vs ¼ 10 cos o0t þ 30�ð Þ, and o0 ¼ 105 rad/s.

Answer: v tð Þ ¼ 6:45 cos 105t þ 44�
	 


V
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v

vs

+

–

1 Ω

1 Ω

2 Ω

Induction bulb

1 Ω

+
–

C

L

Figure P 10.6-10 Induction bulb circuit.

P 10.6-11 The development of coastal hotels in various
parts of the world is a rapidly growing enterprise. The need for
environmentally acceptable shark protection is manifest where
these developments take place alongside shark-infested waters
(Smith, 1991). One concept is to use an electrified line sub-
merged in the water to deter the sharks, as shown in Figure
P 10.6-11a. The circuit model of the electric fence is shown in
Figure P 10.6-11b, in which the shark is represented by an
equivalent resistance of 100 V. Determine the current flowing
through the shark’s body, i(t), when vs ¼ 375 cos 400t V.

Electric
fence

(a)

+
–

(b)

100 Ω250 mH

100   F

i

vs

μ 25   Fμ

Source Electric fence Shark

Figure P 10.6-11 Electric fence for repelling sharks.

P 10.6-12 Determine the node voltages at nodes a and b of
each of the circuits shown in Figure P 10.6-12.

i(t)

(a)

+
– 15 Ω 50 Ω

20 Ω

24 V

40 Ω

25 Ω

a
b

25 Ω

40 Ω

15 Ω 3 H

4 H

5 H

4 mF 5 mF2 H

(b)

24 cos (20t + 45°) V

20 Ωa
b

+
–

Figure P 10.6-12

P 10.6-13 Determine the steady-state voltage v(t) for the
circuit shown in Figure P 10.6-13.

15 cos (8t + 45°) V

v(t)

50 cos (8t – 30°) mA

+ –

4 H 15 Ω

25 Ω 5 mF

+

–

Figure P 10.6-13

P 10.6-14 The input to the circuit shown in Figure P 10.6-14
is the voltage source voltage vs(t). The output is the resistor
voltage vo(t). Determine the output voltage when the circuit is
at steady state and the input is

vs tð Þ ¼ 25 cos 100t � 15�ð ÞV

vo(t)vs(t)
+

–

+
– 40 Ω9 i(t)

i(t) 2 mF

5 H

Figure P 10.6-14

P 10.6-15 When the circuit shown in Figure P 10.6-15 is
at steady state, the mesh current is

i tð Þ ¼ 0:8394 cos 10t þ 138:5�ð ÞA
Determine the values of L and R.
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i(t)

25 Ω

4 mF

+ –

+ –

RL

8 cos (10t + 210°) V

30 cos (10t – 15°) V

Figure P 10.6-15

P 10.6-16 The circuit shown in Figure P 10.6-16 has two
inputs:

v1 tð Þ ¼ 50 cos 20t � 75�ð ÞV
v2 tð Þ ¼ 35 cos 20t þ 110�ð ÞV

When the circuit is at steady state, the node voltage is

v tð Þ ¼ 21:25 cos 20t � 168:8�ð ÞV
Determine the values of R and L.

5 mF 6 H

2 H

v(t)v1(t) v2(t)
+

–

40 Ω

50 Ω

+
–

+
–LR

Figure P 10.6-16

P 10.6-17 Determine the steady-state current i(t) for the
circuit shown in Figure P 10.6-17.

2 mF

4 H

2 H

i(t)

15 Ω

25 Ω

+
– 50 cos (25t) V

Figure P 10.6-17

P 10.6-18 Determine the steady-state current i(t) for the
circuit shown in Figure P 10.6-18.

16 mF

i(t)
4 H 45 Ω

10 Ω

25 Ω

+
– 24 cos (10t + 15°) V

Figure P 10.6-18

P 10.6-19 Determine the steady state voltage vo(t) for the
circuit shown in Figure P 10.6-19.

vo(t)
+

–
v(t) 5v(t)
+

–

25 Ω20 cos (5t) V

10 mF8 H 10 Ω

20 mF+
–

+
–

Figure P 10.6-19

P 10.6-20 Determine the steady-state current i(t) for each of
the circuits shown in Figure P 10.6-20.

2 H

2 mF 4 mF

i(t)

15 Ω

20 Ω

i(t)

4 i(t)

4 i(t)

20 Ω 8 Ω36 mA

36 cos (25t) mA

(a)

(b)

+ –

+ –

Figure P 10.6-20

P 10.6-21 The input to the circuit shown in Figure P 10.6-21
is the current

i s tð Þ ¼ 50 cos 200 tð Þ mA
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Determine the steady-state mesh current i2.

100 mH

60 Ω 80 μFi2i1i s

Figure P 10.6-21

P 10.6-22 The input to the circuit shown in Figure P 10.6-22
is the current

i s tð Þ ¼ 80 cos 250 tð Þ mA

The steady-state mesh current in the right mesh is

i s tð Þ ¼ 66:56 cos 250 t þ 33:7�ð Þ mA

Determine the value of the resistance R.

600 mH

20 mFi2i1i s R

Figure P 10.6-22

P 10.6-23 The circuit shown in Figure P 10.6-23 is at steady
state. The voltage source voltages are given by

v1 tð Þ ¼ 12 cos 2t � 90�ð ÞV and v2 tð Þ ¼ 5 cos 2t þ 90�ð ÞV
The currents are given by

i1 tð Þ ¼ 744 cos 2t � 118�ð ÞmA; i2 tð Þ ¼ 540:5 cos 2t þ 100�ð ÞmA

Determine the values of R1, R2, L, and C

R2

R1

L C

v1(t) v2(t)

i1(t) i2(t)

i(t)
10 Ω+

–
+
–

Figure P 10.6-23

Section 10.7 Th�evenin and Norton Equivalent

Circuits

P 10.7-1 Determine the Th�evenin equivalent circuit of the
circuit shown in Figure P 10.7-1 when (a) o = 1000 rad/s,
(b) o = 2000 rad/s and (c) o = 4000 rad/s.

+
– 12 cos(ωt ) V

2.5 kΩ 1.25 H

2 mF

Figure P 10.7-1

P 10.7-2 Determine the Th�evenin equivalent circuit for
the circuit shown in Figure P 10.7-2 when vs ¼ 5
cos 4000t � 30�ð Þ.

Answer: Vt ¼ 5:7ff�21:9� V

Zt ¼ 23ff�81:9� V

1 80 mF

80 Ω

+
–vs

20 mH

Figure P 10.7-2

P 10.7-3 Find the Th�evenin equivalent circuit for the circuit
shown in Figure P 10.7-3, using the mesh current method.

Answer: Vt ¼ 3:71ff�16� V

Zt ¼ 247ff�16� V

1 150 mF 300 Ω

600 Ω
2v

9 cos 500t +
– v

+

–

+–

Figure P 10.7-3

P 10.7-4 A pocket-sized minidisc CD player system has an
amplifier circuit shown in Figure P 10.7-4 with a signal vs ¼
10 cos ot þ 53:1�ð Þ at o ¼ 10; 000 rad/s. Determine the
Th�evenin equivalent at the output terminals a–b.

+
–

a

b

3i /2

2 Ω

200   Hμ

25   Fμvs

i

Figure P 10.7-4

P 10.7-5 An AM radio receiver uses the parallel RLC
circuit shown in Figure P 10.7-5. Determine the frequency f0 at
which the admittance Y is a pure conductance. The AM radio
will receive the signal broadcast at the frequency f0. What is the
“number” of this station on the AM radio dial?

Answer: f 0 ¼ 800 kHz, which corresponds to 80 on the AM
radio dial.
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Y

Ω20 k 39.6   Hμ1 nF

Figure P 10.7-5

P 10.7-6 Consider the circuit of Figure P 10.7-6, of which we
wish to determine the current I. Use a series of source trans-
formations to reduce the part of the circuit connected to the 2-V
resistor to a Norton equivalent circuit, and then find the current
in the 2-V resistor by current division.

30° A3 –j3 Ω –j2 Ω 2 Ω

j4 Ω

4 Ω

I

Figure P 10.7-6

P 10.7-7 For the circuit of Figure P 10.7-7, determine the
current I using a series of source transformations. The source
has o ¼ 25 � 103 rad/s.

Answer: i tð Þ ¼ 4 cos 25; 000t � 44�ð Þ mA

+
–

I

100 Ω200 Ω

20
160   Hμ

10   Fμ45° V

Figure P 10.7-7

P 10.7-8 Determine the value of Vt and Zt such that the circuit
shown in Figure P 10.7-8b is the Th�evenin equivalent circuit of
the circuit shown in Figure P 10.7-8a.

Answer: Vt ¼ 3:58ff47� and Zt ¼ 4:9 þ j1:2 V

+
–

8 Ω

j20 Ω

j10 Ω
–j5

a

a

b

b

+ –

–j2.4 Ω

(a) (b)

Zt

Vt

Figure P 10.7-8

Section 10.8 Superposition

P 10.8-1 Determine the steady-state current i(t) in the circuit
shown in Figure P 10.8-1 when the voltage source voltages are

vs1 tð Þ ¼ 12 cos 2500 tð Þ Vand vs2 tð Þ ¼ 12 cos 4000 tð Þ V

+
–

300 Ω

100 mH

+
–

v1(t ) v2(t )

1 μF

i(t )

Figure P 10.8-1

P 10.8-2 Determine the steady-state voltage vo(t) in the circuit
shown in Figure P 10.8-2 when the current source current is
(a) 400 rad/s and (b) 200 rad/s.

12 cos (400 t ) V

 100 cos (ω t ) mA

+
–

100 Ω

+ –vo(t )

375 mH

Figure P 10.8-2

P 10.8-3 Determine the steady-state current i(t) in the circuit
shown in Figure P 10.8-3 when the voltage source voltage is

vs tð Þ ¼ 8þ 8 cos 400t � 135�ð Þ V

Answer: i(t) = 0.533 + 0.32 cos(400 t� 188�) A

+
–vs(t)

15 Ω

50 mH
i (t)

Figure P 10.8-3

P 10.8-4 Determine the steady-state current i(t) in the
circuit shown in Figure P 10.8-4 when the voltage source
voltages are

vs1(t) ¼ 10 cos(800t + 30�) V
and

vs2(t) ¼ 15 sin(200t � 30�) V

Answer: i(t) = 44.7 cos(800t� 33.4�) + 134.2 cos(200t + 33.4�)
mA

496 10. Sinusoidal Steady-State Analysis



+
–

vs1(t )

100 Ω

250 mH

i (t)
+
–

vs2(t )

Figure P 10.8-4

P 10.8-5 The input to the circuit shown in Figure P 10.8-5 is the
current source current

is tð Þ ¼ 36 cos 25tð Þ þ 48 cos 50t þ 45�ð ÞmA

Determine the steady-state current i(t).

2 H

2 mF 4 mF15 Ω

20 Ω

i(t)
is(t)

4i(t)

+ –

Figure P 10.8-5

P 10.8-6 The inputs to the circuit shown in Figure
P 10.8-6 are

vs1 tð Þ ¼ 30 cos 20t þ 70�ð ÞV
and

vs2 tð Þ ¼ 18 cos 10t � 15�ð ÞV
The response of this circuit is the current i(t). Determine the
steady-state response of the circuit.

5 mF4 H

2 H

vs1(t) vs2(t)

20 Ω20 Ω

15 Ω

10 Ω

+
–

+
–

i(t)

Figure P 10.8-6

P 10.8-7 The input to the circuit shown in Figure
P 10.8-7 is the voltage source voltage

vs tð Þ ¼ 5þ 30 cos 100tð ÞV
Determine the steady-state current i(t).

20  F 50 mH

5 Ω25 Ω

vs(t)
+
–

i(t)

μ

Figure P 10.8-7

P 10.8-8 Determine the voltage v(t) for the circuit of Figure
P 10.8-8.

Hint: Use superposition.

Answer: v tð Þ ¼ 3:58 cos 5t þ 47:2�ð Þ þ 14:4 cos 3t � 22�ð Þ V

v(t)

8 Ω 2 H

4 H

5 sin 5t V 

+

–

F

4 cos (3t + 15°) A + –

1 12

Figure P 10.8-8

P 10.8-9 Using the principle of superposition, determine i(t)
of the circuit shown in Figure P 10.8-9 when v1 ¼ 10 cos 10t V.

Answer: i ¼ �2 þ 0:71 cos 10t � 45�ð Þ A

5 Ω 1.5 H

10 mF 10 Ω
i(t)

v1
+
– 3 A

Figure P 10.8-9

Section 10.9 Phasor Diagrams

P 10.9-1 Using a phasor diagram, determine V when V ¼
V1 � V2 þ V�

3 and V1 ¼ 3 þ j3, V2 ¼ 4 þ j2, and V3 ¼ �3
� j2. (Units are volts.)

Answer: V ¼ 5ff143:1� V

P 10.9-2 Consider the series RLC circuit of Figure P 10.9-2 when
R ¼ 10 V, L ¼ 1 mH, C ¼ 100 mF, and o ¼ 103 rad/s. Find I
and plot the phasor diagram.

+
–

I
0° V10

R Lωj

Cωj
1

Figure P 10.9-2
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Section 10.10 Op Amps in AC Circuits

P 10.10-1 The input to the circuit shown in Figure P 10.10-1
is the voltage

v s tð Þ ¼ 2:4 cos 500tð Þ V
Determine the output voltage vo(t).

Answer: vo(t) = 6.788 cos(500t + 135�) V

–

+

+
–

5 kΩ

vs(t )

vo(t )

0.1 mF

20 kΩ

Figure P 10.10-1

P 10.10-2 The input to the circuit shown in Figure P 10.10-2
is the voltage

v s tð Þ ¼ 1:2 cos 400 t þ 20�ð Þ V
Determine the output voltage vo(t).

–

+

+
–

48 kΩ
vs(t )

vo(t )

0.25 μF

Figure P 10.10-2

P 10.10-3 The input to the circuit shown in Figure P 10.10-3
is the voltage

v s tð Þ ¼ 3:2 cos 200 tð Þ V
Determine the output voltage vo(t).

–

+

+
–

20 kΩ

125 nF

vs(t )

vo(t )

20 kΩ 40 kΩ

Figure P 10.10-3

P 10.10-4 The input to the circuit shown in Figure P 10.10-4
is the voltage

v s tð Þ ¼ 1:2 cos 2000 tð Þ V
Determine the output voltage vo(t).

–

+

+
–

15 kΩ

200 nFvs(t )

vo(t )

Figure P 10.10-4

P 10.10-5 The input to the circuit shown in Figure P 10.10-5
is the voltage

v s tð Þ ¼ 1:2 cos 2000 tð Þ V
Determine the output voltage vo(t).

–

+

+
–

5 kΩ

vs(t )

vo(t )

10 nF

Figure P 10.10-5

P 10.10-6 Determine the ratio Vo=Vs for the circuit
shown in Figure P 10.10-6.

–

+
Vs

Z2Z1

+
–

–

+ +

–
Vo

Z4Z3

Figure P 10.10-6

P 10.10-7 Determine the ratio Vo=Vs for both of the circuits
shown in Figure P 10.10-7.

Vs Z2

Z1

+
–

+

–

VoZ4

Z3

(a)

Vs Z2

Z1

+
–

–

+
+

–

Vo
Z4

Z3

(b)Figure P 10.10-7
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P 10.10-8 Determine the ratio Vo=Vs for the circuit
shown in Figure P 10.10-8.

Vs Z2

Z1

+
–

–

+
+

–

VoZ6

Z3 Z4

Z5

Figure P 10.10-8

P 10.10-9 When the input to the circuit shown in Figure
P 10.10-9 is the voltage source voltage

vs tð Þ ¼ 2 cos 1000tð ÞV
the output is the voltage

vo tð Þ ¼ 5 cos 1000t � 71:6�ð ÞV
Determine the values of the resistances R1 and R2.

+

–

1 kΩ

+
–

v(t)

+

–

vo(t)

+

–

vs(t)

R2

R1

C=1 mF

Figure P 10.10-9

P 10.10-10 When the input to the circuit shown in Figure
P 10.10-10 is the voltage source voltage

vs tð Þ ¼ 4 cos 100tð ÞV
the output is the voltage

vo tð Þ ¼ 8 cos 100t þ 135�ð ÞV
Determine the values of C and R

10 kΩ

10 kΩ10 kΩ
–

+ +

–

+
– v(t)

+

– vo(t)

C

R

vs(t)

Figure P 10.10-10

P 10.10-11 The input to the circuit shown in Figure P 10.10-11
is the voltage source voltage vs(t). The output is the voltage

vo(t). The input vs tð Þ ¼ 2:5 cos 1000tð Þ V causes the output to
be vo tð Þ ¼ 8 cos 1000t þ 104�ð Þ V. Determine the values of
the resistances R1 and R2.

Answers: R1 ¼ 1515 V and R2 ¼ 20 kV:

+
–

R2

C = 0.2 μF

–

+

R1

vs(t)

R3

+

–

vo(t)

Figure P 10.10-11

Section 10.11 The Complete Response

P 10.11-1 The input to the circuit shown in Figure P 10.11-1
is the voltage vs = 12 cos(4000 t) V. The output is the capacitor
voltage vo. Determine vo.

+
–

25 Ω

100 Ω

200 Ω

+ –

i a

150 i a

20 mF

t = 0

vo

+

–

vs

Figure P 10.11-1

P 10.11-2 The input to the circuit shown in Figure P 10.11-2
is the voltage vs = 12 cos(4000 t) V. The output is the capacitor
voltage vo. Determine vo.

+
–

25 Ω

100 Ω

200 Ω

+ –

i a

150 i a

20 mF

t = 0

vo

+

–

vs

Figure P 10.11-2

Section 10.12 Using MATLAB to Analyze Electric

Circuits

P 10.12-1 Determine the mesh currents for the circuit shown
in Figure P 10.12-1 when

vs(t) = 12 cos(2500t + 60�) V
and

is(t) ¼ 2 cos(2500t � 15�) mA
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2 kΩ

i3

i2

i1

0.2 mF

0.4 mF

vs(t )

is(t )

2.4 kΩ

4 kΩ
1.5 kΩ

750 mH

480 mH

+
–

Figure P 10.12-1

P 10.12-2 Determine the node voltages for the circuit shown
in Figure P 10.12-2 when

vs tð Þ ¼ 12 cos 400t þ 45�ð Þ V:

i2

0.125 mFvs(t )

10 kΩ

4 kΩ

5 H

+
–

v2

+

–

+–

10,000 i 2

v3

+

–

4 kΩ

v4

+

–

8 H

Figure P 10.12-2

P 10.12-3 Determine the mesh currents for the circuit shown
in Figure P 10.12-3.

3 − j 8 Ω

I3

I2

I1 Io

j8 Ω

4 + j 5 Ω
+
–

+

–

Va

5 Va

4.2   30°  A

5 Ω

Figure P 10.12-3

P 10.12-4 Determine the node voltages for the circuit shown
in Figure P 10.12-4.

I1

+
–

V2

+

–

10 I1
Vo

+

–

2 + j 4 Ω

4 Ω4 Ω

j 6 Ω

5 − j 2 Ω

24   45°  V

Figure P 10.12-4

P 10.12-5 The input to the circuit shown in Figure P 10.12-5
is the voltage source voltage

vs tð Þ ¼ 12cos 20;000t þ 60�ð Þ V
and the output is the steady-state voltage vo(t). Use MATLAB
to plot the input and output sinusoids.

+
–

–

+

2 nF

200 kΩ

50 kΩ vo

+

–

vs

Figure P 10.12-5

P 10.12-6 The input to the circuit shown in Figure P 10.12-6
is the voltage source voltage

vs tð Þ ¼ 3 cos 4000t þ 30�ð Þ V
and the output is the steady-state voltage vo(t). Use MATLAB
to plot the input and output sinusoids.

+
–

–

+

20 nF

20 kΩ

vo

vs

5 kΩ

Figure P 10.12-6
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Section 10.14 How CanWe Check . . . ?

P 10.14-1 Computer analysis of the circuit in Figure P 10.14-1
indicates that the values of the node voltages are V1 ¼
20ff�90� and V2 ¼ 44:7ff�63:4�. Are the values correct?

Hint: Calculate the current in each circuit element, using the
values of V1 and V2. Check to see whether KCL is satisfied at
each node of the circuit.

2 A 10 Ω

j10 Ω

Ix

3Ix

V1 V2

10 Ω

Figure P 10.14-2

P 10.14-2 Computer analysis of the circuit in Figure P 10.14-2
indicates that the mesh currents are i1 tð Þ ¼ 0:39 cos 5t þð
39�Þ A and i2 tð Þ ¼ 0:28 cos 5t þ 180�ð Þ A. Is this analysis
correct?

Hint: Represent the circuit in the frequency domain, using
impedances and phasors. Calculate the voltage across each
circuit element, using the values of I1 and I2. Check to see
whether KVL is satisfied for each mesh of the circuit.

8 Ω 2 H

4 H

5 sin 5t V 

+ –

F i2

i1

1 12

Figure P 10.14-2

P 10.14-3 Computer analysis of the circuit in Figure P 10.14-3
indicates that the values of the node voltages are v1 tð Þ ¼
19:2 cos 3t þ 68�ð Þ V and v2 tð Þ ¼ 2:4 cos 3t þ 105�ð Þ V. Is
this analysis correct?

Hint: Represent the circuit in the frequency domain, using
impedances and phasors. Calculate the current in each circuit
element, using the values of V1 and V2. Check to see whether
KCL is satisfied at each node of the circuit.

8 Ω 2 H

4 H

4 cos (3t + 15°) A 

F

v2

v1

1 12

Figure P 10.14-3

P 10.14-4 A computer program reports that the currents of the
circuit of Figure P 10.14-4 are I ¼ 0:2ff53:1� A, I1 ¼
632ff�18:4� mA, and I2 ¼ 190ff71:6� mA. Verify this result.

+
–

I

I1 I2

j500 Ω

–j1000 Ω3000 Ω100 0° V

Figure P 10.14-4

P 10.14-5 The circuit shown in Figure P 10.14-5 was built
using a 2-percent resistor having a nominal resistance of 500 V

and a 10-percent capacitor with a nominal capacitance of 5 mF.
The steady-state capacitor voltage was measured to be

v tð Þ ¼ 18:3 cos 200t � 24�ð ÞV
The voltage source represents a signal generator. Suppose that the
signal generator was adjusted so carefully that errors in the
amplitude, frequency, and angle of the voltage source voltage
are all negligible. Is the measured response explained by the
component tolerances? That is, could the measured v(t) have
been produced by this circuit with a resistance R that is within
2 percent of 500 V and a capacitance C that is within 5 percent of
5 mF?

v(t)

+

–

R

C20 cos (200t) V +
–

Figure P 10.14-5
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PSpice Problems

SP 10-1 The circuit shown in Figure SP 10-1 has two inputs,
vs(t) and is(t), and one output, v(t). The inputs are given by

vs tð Þ ¼ 10 sin 6t þ 45�ð ÞV
and

is tð Þ ¼ 2 sin 6t þ 60�ð ÞA
Use PSpice to demonstrate superposition. Simulate three
versions of the circuit simultaneously. (Draw the circuit in
the PSpice workspace. Cut and paste to make two copies. Edit
the part names in the copies to avoid duplicate names. For
example, the resistor will be R1 in the original circuit. Change
R1 to R2 and R3 in the two copies.) Use the given vs(t) and is(t)
in the first version. Set is tð Þ ¼ 0 in the second version and
vs tð Þ ¼ 0 in the third version. Plot the capacitor voltage v(t) for
all three versions of the circuit. Show that the capacitor voltage
in the first version of the circuit is equal to the sum of the
capacitor voltages in the second and third versions.

Hint: Use PSpice parts VSIN and ISIN for the voltage and
current source. PSpice uses hertz rather than rad/s as the unit
for frequency.

Remark: Notice that v(t) is sinusoidal and has the same
frequency as vs(t) and is(t).

vs(t) is(t)

3 Ω1 H

F+
– v(t)

+

–
1 12

Figure SP 10.1

SP 10-2 The circuit shown in Figure SP 10-1 has two
inputs, vs(t) and is(t), and one output, v(t). The inputs are
given by

vs tð Þ ¼ 10 sin 6t þ 45�ð ÞV
and

is tð Þ ¼ 2 sin 18t þ 60�ð ÞA
Use PSpice to demonstrate superposition. Simulate three
versions of the circuit simultaneously. (Draw the circuit in
the PSpice workspace. Cut and paste to make two copies. Edit
the part names in the copies to avoid duplicate names. For
example, the resistor will be R1 in the original circuit. Change
R1 to R2 and R3 in the two copies.) Use the given vs(t) and is(t)
in the first version. Set is tð Þ ¼ 0 in the second version and
vs tð Þ ¼ 0 in the third version. Plot the capacitor voltage v(t) for
all three versions of the circuit. Show that the capacitor voltage
in the first version of the circuit is equal to the sum of the
capacitor voltages in the second and third versions.

Hint: Use PSpice parts VSIN and ISIN for the voltage and
current source. PSpice uses hertz rather than rad/s as the unit
for frequency.
Remark: Notice that v(t) is not sinusoidal.

SP 10-3 The circuit shown in Figure SP 10-1 has two inputs,
vs(t) and is(t), and one output, v(t). The inputs are given by

vs tð Þ ¼ 10 sin 6t þ 45�ð ÞV
and

is tð Þ ¼ 0:8 A

Use PSpice to demonstrate superposition. Simulate three
versions of the circuit simultaneously. (Draw the circuit in
the PSpice workspace. Cut and paste to make two copies. Edit
the part names in the copies to avoid duplicate names. For
example, the resistor will be R1 in the original circuit. Change
R1 to R2 and R3 in the two copies.) Use the given vs(t) and is(t)
in the first version. Set is tð Þ ¼ 0 in the second version and
vs tð Þ ¼ 0 in the third version. Plot the capacitor voltage v(t) for
all three versions of the circuit. Show that the capacitor voltage
in the first version of the circuit is equal to the sum of the
capacitor voltages in the second and third versions.

Hint: Use PSpice parts VSIN and IDC for the voltage and
current source. PSpice uses hertz rather than rad/s as the unit
for frequency.

Remark: Notice that v(t) looks sinusoidal, but it’s not sinusoi-
dal because of the dc offset.

SP 10-4 The circuit shown in Figure SP 10-1 has two inputs,
vs(t) and is(t), and one output, v(t). When inputs are given by

vs tð Þ ¼ Vm sin 6t V

and
is tð Þ ¼ Im A

the output will be

vo tð Þ ¼ A sin 6t þ yð Þ þ B V

Linearity requires that A be proportional to Vm and that B be
proportional to Im. Consequently, we can write A ¼ k1Vm and
B ¼ k2Im, where k1 and k2 are constants yet to be determined.

(a) Use PSpice to determine the value of k1 by simulating the
circuit, using Vm ¼ 1 V and Im ¼ 0.

(b) Use PSpice to determine the value of k2 by simulating the
circuit, using Vm ¼ 0 V and Im ¼ 1.

(c) Knowing k1 and k2, specify the values of Vm and Im that are
required to cause

vo tð Þ ¼ 5 sin 6t þ yð Þ þ 5 V

Simulate the circuit, using PSpice to verify the specified values
of Vm and Im.
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Design Problems

DP 10-1 Design the circuit shown in Figure DP 10-1 to produce
the specified output voltage vo(t) = 8cos(1000t + 104�) V when
provided with the input voltage vi(t) = 2.5cos(1000t) V.

+
–

10 kΩ

+

–

R1 R2

C

–

+

vo(t)

v i(t)

Figure DP 10-1

DP 10-2 Design the circuit shown in Figure DP 10-2 to produce
the specified output voltage vo(t) = 2.5cos(1000t � 76�) V when
provided with the input voltage vi(t) = 12cos(1000t) V.

+
–

R1

R2C

+

–

vo(t )v i(t )

Figure DP 10-2

DP 10-3 Design the circuit shown in Figure DP 10-3 to produce
the specified output voltage vo(t) = 2.5cos(40 t + 14�) V when
provided with the input voltage vi(t) = 8cos(40 t) V.

+
–

R1

R2L

+

–

vo(t )v i(t )

Figure DP 10-3

DP 10-4 Show that it is not possible to design the circuit shown
in Figure DP 10-4 to produce the specified output voltage
vo(t) = 2.5cos(40t � 14�) when provided with the input voltage
vi(t) = 8cos(40t) V.

+
–

R1

R2Lv i(t )

+

–

vo(t )

Figure DP 10-4

DP 10-5 A circuit with an unspecified R, L, and C is shown in
Figure DP 10-5. The input source is is ¼ 10 cos 1000t A, and the
goal is to select the R, L, and C so that the node voltage is
v ¼ 80 cos 1000t V.

Cis Ω10

R

L

v

Figure DP 10-5

DP 10-6 The input to the circuit shown in Figure DP 10-6 is the
voltage source voltage

vs tð Þ ¼ 10 cos 1000tð ÞV
The output is the steady-state capacitor voltage

vo tð Þ ¼ A cos 1000t þ yð ÞV
(a) Specify values for R and C such that y ¼ �30�. Determine

the resulting value of A.
(b) Specify values for R and C such that A ¼ 5 V. Determine the

resulting values of y.
(c) Is it possible to specify values for R and C such that A ¼ 4

and y ¼ �60�? (If not, justify your answer. If so, specify R
and C.)

(d) Is it possible to specify values of R and C such that A ¼
7:07 V and y ¼ �45�? (If not, justify your answer. If so,
specify R and C.)

vo(t)vs(t)

+

–

R

C+
–

Figure DP 10-6
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Design Problems

11.1 I n t r o d u c t i o n

In this chapter, we continue our study of ac circuits. In particular, we will see the following:

� The power supplied or received by any element of an ac circuit can be conveniently calculated after
representing the circuit in the frequency domain.

Power in ac circuits is an important topic. Engineers have developed an extensive
vocabulary to describe power in an ac circuit. We’ll encounter average power, real and reactive
power, complex power, the power factor, rms values, and more.

� AC circuits that contain coupled inductors and/or ideal transformers can be conveniently analyzed in
the frequency domain.

Both coupled inductors and ideal transformers consist of magnetically coupled coils.
(Coils may be tightly coupled or loosely coupled. The coils of an ideal transformer are
perfectly coupled.) After representing coupled inductors and transformers in the frequency
domain, we will be able to analyze ac circuits containing these devices.

11.2 E l e c t r i c P ow e r

Human civilization’s progress has been enhanced by society’s ability to control and distribute energy.
Electricity serves as a carrier of energy to the user. Energy present in a fossil fuel or a nuclear fuel is
converted to electric power to transport and readily distribute it to customers. By means of transmission
lines, electric power is transmitted and distributed to essentially all the residences, industries, and
commercial buildings in the United States and Canada.

Electric power may be transported readily with low attendant losses, and improved methods for
safe handling of electric power have been developed over the past 90 years. Furthermore, methods of
converting fossil fuels to electric power are well developed, economical, and safe.

Means of converting solar and nuclear energy to electric power are currently in various stages of
development or of proven safety. Geothermal energy, tidal energy, and wind energy may also be
converted to electric power. The kinetic energy of falling water may readily be used to generate
hydroelectric power.
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The necessity of transmitting electrical power over long distances fostered the development of
ac high-voltage power lines from power plant to end user. A modern transmission line is shown in
Figure 11.2-1.

Electric energy generation uses original sources such as hydropower, coal, and nuclear energy.
An example of a large hydroelectric power project is shown in Figure 11.2-2. A typical hydroelectric
power plant can generate 1000 MW. On the other hand, many regions are turning to small generators
such as the wind-power device shown in Figure 11.2-3. A typical wind-power machine may be capable
of generating 75 kW.

A unique element of the American power system is its interconnectedness. Although the power
system of the United States consists of many independent companies, it is interconnected by large
transmission facilities. An electric utility is often able to save money by buying electricity from another
utility and by transmitting the energy over the transmission lines of a third utility.

The power levels for selected electrical devices or phenomena are shown in Figure 11.2-4.

11.3 I n s t a n t a n e o u s P ow e r a n d A v e r a g e P ow e r

We are interested in determining the power generated and absorbed in a circuit or in an element of a circuit.
Electrical engineers talk about several types of power, for example, instantaneous power, average power,
and complex power. We will start with an examination of the instantaneous power, which is the product of
the time-domain voltage and current associated with one or more circuit elements. The instantaneous
power is likely to be a complicated function of time. This prompts us to look for a simpler measure of the
power generated and absorbed in a circuit element, such as the average power.

Consider the circuit element shown in Figure 11.3-1. Notice that the element voltage
v(t) and the element current i(t) adhere to the passive convention. The instantaneous power delivered
to this circuit element is the product of the voltage v(t) and the current i(t), so that

p tð Þ ¼ v tð Þ i tð Þ ð11:3-1Þ
The unit of power is watts (W). We can always calculate the instantaneous power because no
restrictions have been placed on either v(t) or i(t). The instantaneous power can be a quite complicated
function of t when v(t) or i(t) is itself a complicated function of t.

FIGURE 11.2-1 AC power high-voltage transmission
lines.

# Jason Reekie/iStockphoto

FIGURE 11.2-2 A large hydroelectric
power plant.

FIGURE 11.2-3 A large
wind-power turbine and
generator.

# Douglas Rial/iStockphoto

# Hans Hillewaert. Image
from Wikipedia
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Suppose that the voltage v(t) is a periodic function having period T. That is,

v tð Þ ¼ v t þ Tð Þ
because the voltage repeats every T seconds. Then, for a linear circuit, the current will also be a periodic
function having the same period, so

i tð Þ ¼ i t þ Tð Þ
Therefore, the instantaneous power is

p tð Þ ¼ v tð Þi tð Þ
¼ v t þ Tð Þi t þ Tð Þ

The average value of a periodic function is the integral of the time function over a complete period,
divided by the period. We use a capital P to denote average power and a lowercase p to denote
instantaneous power. Therefore, the average power P is given by

P ¼ 1

T

Z t0þT

t0

p tð Þdt ð11:3-2Þ

where t0 is an arbitrary starting point in time.
Next, suppose that the voltage v(t) is sinusoidal, that is,

v tð Þ ¼ Vm cosot þ yVð Þ

10–12
10–8

10–6

10–4

10–2

0

102

104

106

108

1010

1012

10–10 10–8 10–6 10–4 10–2 100 102 104 106 108 1010

Voltage
(V)

Current (A)

Radio
antenna

Human
heart

Human
nerve
cell

Car
battery

House
circuit

TV picture
tube

Power
transmission

lines

Lightning
bolt

Large
industrial

motor
Memory
cell on

integrated
circuit

Car
radio

FIGURE 11.2-4 Power levels for selected electrical devices or phenomena.

v(t)

+

–

i(t)

FIGURE 11.3-1
A circuit
element.
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Then, for a linear circuit at steady state, the current will also be sinusoidal and will have the same
frequency, so

i tð Þ ¼ Im cosot þ yIð Þ
The period and frequency of v(t) and i(t) are related by

o ¼ 2p
T

The instantaneous power delivered to the element is

p tð Þ ¼ VmIm cos ot þ yVð Þ cos ot þ yIð Þ
Using the trigonometric identity (see Appendix C) for the product of two cosine functions,

p tð Þ ¼ VmIm
2

cos yV � yIð Þ þ cos 2ot þ yV þ yIð Þ½ �
We see that the instantaneous power has two terms. The first term within the brackets is independent of
time, and the second term varies sinusoidally over time at twice the radian frequency of v(t).

The average power delivered to the element is

P ¼ 1

T

Z T

0

VmIm
2

cos yV � yIð Þ þ cos 2ot þ yV þ yIð Þ½ � dt

where we have chosen t0¼ 0. Then we have

P ¼ 1

T

Z T

0

VmIm
2

cos yV � yIð Þdt þ 1

T

Z T

0

VmIm
2

cos 2ot þ yV þ yIð Þdt

¼ VmIm cos yV � yIð Þ
2T

Z T

0
dt þ VmIm

2T

Z T

0
cos 2ot þ yV þ yIð Þdt

The second integral is zero because the average value of the cosine function over a complete period is
zero. Then we have

P ¼ VmIm
2

cos yV � yIð Þ ð11:3-3Þ

E X A M P L E 1 1 . 3 - 1 Average Power

Find the average power delivered to a resistor R when the current through the resistor is i(t), as shown in Figure
11.3-2.

Im

–T 0 T 2T t (s) FIGURE 11.3-2 Current through a resistor in Example 11.3-1.

Solution
The current waveform repeats every T seconds and attains a maximum value of Im. Using the period from t¼ 0 to
t¼ T, we have

i ¼ Im
T

t 0 � t < T
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E X A M P L E 1 1 . 3 - 2 Average Power

The circuit shown in Figure 11.3-3 is at steady state. The mesh current is

i tð Þ ¼ 721 cos 100t � 41�ð Þ mA

The element voltages are

vs tð Þ ¼ 20 cos 100t � 15�ð Þ V
vR tð Þ ¼ 18 cos 100t � 41�ð Þ V
vL tð Þ ¼ 8:66 cos 100t þ 49�ð Þ V

Find the average power delivered to each device in this circuit.
vR(t)

vL(t)vs(t) = 20 cos (100t – 15°) V

25 Ω

i(t)

120 mH

+

+

–

–

+
–

FIGURE 11.3-3 An RL circuit with
a sinusoidal voltage source.

Solution
Notice that vs(t) and i(t) don’t adhere to the passive convention. Thus, vs(t) i(t) is the power delivered by the voltage
source. Therefore, the average power calculated using Eq. 11.3-3 is the average power delivered by the voltage
source. The average power delivered by the voltage source is

Ps ¼ 20ð Þ 0:721ð Þ
2

cos �15� � �41�ð Þð Þ ¼ 6:5W

The average power delivered to the voltage source is �6.5 W.
Because vR(t) and i(t) do adhere to the passive convention, the average power calculated using Eq. 11.3-3 is

the average power delivered to the resistor. The power delivered to the resistor is

PR ¼ 18ð Þ 0:721ð Þ
2

cos �41� � �41�ð Þð Þ ¼ 6:5W

Then the instantaneous power is

p ¼ i 2R ¼ I 2
mt 2

T2 R 0 � t < T

It is sufficient to find the average power over 0 < t < T because the power is periodic with period T. Then the
average power is

P ¼ 1

T

Z T

0

I 2
mR

T2 t 2 dt

Integrating, we have

P ¼ I 2
mR

T3

Z T

0
t2 dt ¼ I 2

mR

T3

T3

3
¼ I 2

mR

3
W

Try it 
yourself 

in WileyPLUS
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EXERCISE 11.3-1 Determine the instantaneous power delivered to an element and sketch
p(t) when the element is (a) a resistance R and (b) an inductor L. The voltage across the element is
v(t) ¼ Vm cos (ot þ u) V.

Answers:

(a) PR ¼ V2
m

2R
1 þ cos 2ot þ 2yð Þ½ � W

(b) PL ¼ V2
m

2oL
cos 2ot þ 2y� 90�ð Þ W

11.4 E f f e c t i v e V a l u e o f a P e r i o d i c W a v e f o rm

The voltage available from a wall plug in a residence is said to be 110 V. Of course, this is not the
average value of the sinusoidal voltage because we know that the average would be zero. It is also not
the instantaneous value or the maximum value, Vm, of the voltage v ¼ Vm cos ot.

The effective value of a voltage is a measure of its effectiveness in delivering power to a load
resistor. The concept of an effective value comes from a desire to have a sinusoidal voltage (or current)
deliver to a load resistor the same average power as an equivalent dc voltage (or current). The goal is tofind
a dc Veff (or Ieff) that will deliver the same average power to the resistor as would be delivered by a
periodically varying source, as shown in Figure 11.4-1.

The average power delivered to the resistor R by a periodic current is

P ¼ 1

T

Z T

0
i 2R dt ð11:4-1Þ

We select the period T of the periodic current as the integration interval.
The power delivered by a direct current is

P ¼ I2eff R ð11:4-2Þ
where Ieff is the dc current that will deliver the same power as the periodically varying current. That is,
Ieff is defined as the steady (constant) current that is as effective in delivering power as the periodically
varying current.

The power delivered to the inductor is

PL ¼ 8:66ð Þ 0:721ð Þ
2

cos 49� � �41�ð Þð Þ ¼ 0W

Why is the average power delivered to the inductor equal to zero? The angle of the element voltage is 90� larger
than the angle of the element current. Because cos 90�ð Þ ¼ 0, the average power delivered to the inductor is zero.
The angle of the inductor voltage will always be 90� larger than the angle of the inductor current. Therefore, the
average power delivered to any inductor is zero.

i

+
–

Ieff

+
–vs VeffR R

FIGURE 11.4-1 The goal is to find a dc voltage Veff

for a specified vs(t) that will deliver the same average
power to R as would be delivered by the ac source.
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We equate Eqs. 11.4-1 and 11.4-2, obtaining

I2eff R ¼ R

T

Z T

0
i 2 dt

Solving for Ieff, we have

Ieff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

Z T

0
i 2 dt

s
ð11:4-3Þ

We see that Ieff is the square root of the mean of the squared value. Thus, the effective current Ieff is
commonly called the root-mean-square current Irms.

The effective value of a current is the steady current (dc) that transfers the same average power as
the given varying current.

Of course, the effective value of the voltage in a circuit is similarly found from the equation

V2
eff ¼ V2

rms ¼
1

T

Z T

0
v 2 dt

Thus V rms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

Z T

0
v 2dt

s

Now let us find the Irms of a sinusoidally varying current i ¼ Im cos ot. Using Eq. 11.4-3 and a
trigonometric formula from Appendix C, we have

Irms ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

Z T

0
I2m cos2ot dt

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2m
T

Z T

0

1

2
1þ cos 2otð Þ dt

s
¼ Imffiffiffi

2
p ð11:4-4Þ

because the integral of cos 2ot is zero over the period T. Remember that Eq. 11.4-4 is true only for
sinusoidal currents.

In practice, we must be careful to determine whether a sinusoidal voltage is expressed in terms of
its effective value or its maximum value Im. In the case of power transmission and use in the home, the
voltage is said to be 110 V or 220 V, and it is understood that these values refer to the rms or effective
values of the sinusoidal voltage.

In electronics or communications circuits, the voltage could be described as 10 V, and the person
is typically indicating the maximum or peak amplitude Vm. Henceforth, we will use Vm as the peak
value and Vrms as the rms value. Sometimes it is necessary to distinguish Vrms from Vm by the context in
which the voltage is given.

E X A M P L E 1 1 . 4 - 1 Effective Value

Find the effective value of the current for the sawtooth waveform shown in Figure 11.4-2.

–T 0 T 2T

Im

FIGURE 11.4-2 A sawtooth current waveform.
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EXERCISE 11.4-1 Find the effective value of the following currents: (a) cos 3t þ cos 3t;
(b) sin 3t þ cos(3t þ 60�); (c) 2 cos 3t þ 3 cos 5t

Answer: (a)
ffiffiffi
2

p
(b) 0.366 (c) 2.55

E X A M P L E 1 1 . 4 - 2 Average Power in AC and DC Circuits

The sources in the ac and dc circuits shown in Figure 11.4-3 supply equal values of average power. Determine the
values of average power and of the amplitude of the sinusoidal voltage.

25  V

20 Ω

+ –

A cos(125 t + 45°)  V

20 Ω

+ –

FIGURE 11.4-3 The circuit considered in Example 11.4-2.

Solution
The average power supplied by the dc source is equal to the power dissipated by the resistor in the dc circuit, that is

P ave ¼ 252

20
¼ 31:25 W

The ac source will supply the same average power ac the dc source when the rms value of the sinusoidal source
voltage is equal to the dc source voltage. That is,

Affiffiffi
2

p ¼ 25 ) A ¼ 25
ffiffiffi
2

p
¼ 35:355 V

Solution
First, we will express the current waveform over the period 0 � t < T. The current is then

i ¼ Im
T

t 0 � t < T

The effective value is found from

I2eff ¼
1

T

Z T

0
i 2 dt ¼ 1

T

Z T

0

I2m
T2 t2 dt ¼ I2m

T3

t3

3

� �T

0

¼ I2m
3

Therefore, solving for Ieff, we have

Ieff ¼ Imffiffiffi
3

p

It’s worth noticing that the rms value of a sawtooth waveform with amplitude Im is different than the rms value of a
sinusoidal waveform having amplitude Im.

Try it 
yourself 

in WileyPLUS
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11.5 C omp l e x P ow e r

Suppose that a linear circuit with a sinusoidal input is at steady state. All the element voltages and currents
will be sinusoidal, with the same frequency as the input. Such a circuit can be analyzed in the frequency
domain, using phasors and impedances. Indeed, we can calculate the power generated or absorbed in a
circuit or in any element of a circuit, in the frequency domain, using phasors and impedances.

Figure 11.5-1 represents the voltage and current of an element in both the time domain
and the frequency domain. Notice that the element current and voltage adhere to the passive convention.
In a previous section, the instantaneous power and the average power were calculated from the time-
domain representations of the element current and voltage v(t) or i(t). In contrast, we now turn our
attention to the frequency-domain representations of the element current and voltage

I oð Þ ¼ ImffyI and V oð Þ ¼ VmffyV ð11:5-1Þ
The complex power delivered to the element is defined to be

S ¼ VI*

2
¼

ðVm ffyVÞ Im ff�yI
� �
2

¼ VmIm
2 ffyV � yI ð11:5-2Þ

where I� denotes the complex conjugate of I (see Appendix B). The magnitude of S

jSj ¼ VmIm
2

ð11:5-3Þ

is called the apparent-power.
Converting the complex power S from polar to rectangular form gives

S ¼ VmIm
2

cos yV � yIð Þ þ j
VmIm
2

sin yV � yIð Þ ð11:5-4Þ
The real part of S is equal to the average power that we calculated previously in the time domain! (See
Eq. 11.3-3.) Recall that the average power was denoted as P. We can represent the complex power as

S ¼ P þ jQ ð11:5-5Þ

where P ¼ VmIm
2

cos yV � yIð Þ ð11:5-6Þ

is the average power and

Q ¼ VmIm
2

sin yV � yIð Þ ð11:5-7Þ
is the reactive power. The complex power, average power, and reactive power are all the product of a
voltage and a current. Nonetheless, it is conventional to use different units for these three types of
power. We have already seen that the units of the average power are watts. The units of complex power

(a)

+

–

v(t) = Vm cos (  t + V) ω θ

i(t) = Im cos ( t + I) ω θ

(b)

+

–

V V( ) = Vme jω θ

I I( ) = Ime jω θ

FIGURE 11.5-1 A linear circuit is excited by a sinusoidal input. The circuit has reached steady state. The element
voltage and current can be represented in (a) the time domain or (b) the frequency domain.

512 11. AC Steady-State Power



are volt-amps (VA), and the units of reactive power are volt-amps reactive (VAR). The formulas used to
calculate power in the frequency domain are summarized in Table 11.5-1.

Let’s return to Figure 11.5-1b. The impedance of the element can be expressed as

Z oð Þ ¼ V oð Þ
I oð Þ ¼ VmffyV

Imffy I

¼ Vm

Im ffyV � yI ð11:5-8Þ

Converting the impedance Z from polar to rectangular form gives

Z oð Þ ¼ Vm

Im
cos yV � yIð Þ þ j

Vm

Im
sin yV � yIð Þ ð11:5-9Þ

We can represent the impedance as
Z oð Þ ¼ R þ jX

where R ¼ Vm

Im
cos yV � yIð Þ is the resistance and X ¼ Vm

Im
sin yV � yIð Þ is the reactance.

The similarity between Eqs. 11.5-4 and 11.5-9 suggests that the complex power can be expressed
in terms of the impedance

S ¼ VmIm
2

cos yV � yIð Þ þ j
VmIm
2

sin yV � yIð Þ

¼ I2m
2

� �
Vm

Im
cos yV � yIð Þ þ j

I2m
2

� �
Vm

Im
sin yV � yIð Þ

¼ I2m
2

� �
Re Zð Þ þ j

I2m
2

� �
Im Zð Þ

ð11:5-10Þ

In particular, the average power delivered to the element is given by

P ¼ I2m
2

� �
Re Zð Þ ð11:5-11Þ

When the element is a resistor, then Re(Z) ¼ R

PR ¼ I2m
2

� �
R

When the element is a capacitor or an inductor, then Re(Z) ¼ 0; thus, the average power delivered to a
capacitor or an inductor is zero.

Figure 11.5-2 summarizes Eqs. 11.5-4 and 11.5-9, using (a) the impedance triangle and (b) the
power triangle.

Table 11.5-1 Frequency-Domain Power Relationships

QUANTITY
RELATIONSHIP USING

PEAK VALUES
RELATIONSHIP

USING rms VALUES UNITS

Element voltage, v(t) v tð Þ ¼ Vm cos ot þ yvð Þ v tð Þ ¼ V rms

ffiffiffi
2

p
cos ot þ yVð Þ V

Element current, i(t) i tð Þ ¼ Imcos ot þ yIð Þ i tð Þ ¼ I rms

ffiffiffi
2

p
cos ot þ yIð Þ A

Complex power, S S ¼ VmIm

2
cos yV � yIð Þ

þj
VmIm

2
sin yV � yIð Þ

S ¼ V rmsIrms cos yV � yIð Þ
þjV rmsIrms sin yV � yIð Þ

VA

Apparent power, jSj jSj ¼ VmIm

2
jSj ¼ V rmsIrms VA

Average power, P P ¼ VmIm

2
cos yV � yIð Þ P ¼ V rmsIrmscos yV � yIð Þ W

Reactive power, Q Q ¼ VmIm

2
sin yV � yIð Þ Q ¼ V rmsIrmssin yV � yIð Þ VAR
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E X A M P L E 1 1 . 5 - 1 Complex Power

The circuit shown in Figure 11.5-3 consists of a source driving a load. The
current source current is

i tð Þ ¼ 1:25 cos 5t � 15�ð ÞA
(a) What is the value of the complex power delivered by the source to the

load when R ¼ 20 V and L ¼ 3 H?
(b) What are the values of the resistance R and inductance L when the

source delivers 11.72 þ j11.72 VA to the load?

Solution
Represent the circuit in the frequency domain as shown in Figure 11.5-4,
where I ¼ 1:25ff�15�A. The equivalent impedance of the parallel resistor
and inductor is

Z ¼ joLR

R þ joL

(a) When R ¼ 20 V and L ¼ 3 H, the equivalent impedance is

Z ¼ j300

20þ j15
¼ 12ff53� V

The voltage across this impedance is

V ¼ IZ ¼ ð1:25ff�15�Þð12ff53�Þ ¼ 15ff38� V
The complex power delivered by the source is

S ¼ VI*

2
¼ ð15ff38�Þð1:25ff�15�Þ*

2
¼ ð15ff38�Þð1:25ff15�Þ

2
¼ 9:375ff53� VA

(b) The voltage across the equivalent impedance can be calculated from the complex power and the current, using

S ¼ VI*

2
) V ¼ 2S

I*

When S ¼ 11:72 þ j11:72 ¼ 16:57ff45� VA

V ¼ 2S

I*
¼ 2ð16:57ff45�Þ

ð1:25ff�15�Þ*
¼ 2ð16:57ff45�Þ

1:25ff15� ¼ 26:52ff30� V

i(t) R L

source load

+

–

v(t)

FIGURE 11.5-3 A circuit consisting
of a source driving a load.

R jωL

source load

+

–

VI

FIGURE 11.5-4 The circuit from
Figure 11.5-3, represented in the
frequency domain.

Try it 
yourself 

in WileyPLUS

Im (Z)

R
θ

X

Re (Z)

Im (S)
⎜S ⎜⎜Z ⎜

P

Q

θ
Re (S)

(a) (b)

FIGURE 11.5-2 (a) The impedance triangle where Z ¼ R þ jX. (b) The complex power triangle where S ¼ P þ jQ.
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E X A M P L E 1 1 . 5 - 2 Parallel Loads

The circuit shown in Figure 11.5-5 consists of a source driving a load that consists of the parallel connection of two
loads. The voltage source voltage is

v tð Þ ¼ 24 cos 5t þ 30�ð ÞV
Load A receives

SA ¼ 9:216þ j6:912 VA

The impedance of load B is

ZB ¼ 42:426ff45� VA
(a) Determine the value of the complex power delivered by the source to the parallel load.
(b) Determine the value of the equivalent impedance of the parallel load.

Solution
Represent the circuit in the frequency domain as shown in Figure 11.5-6,
where V ¼ 24ff30� V. The current in load A can be calculated from the
complex power received by load A, using

SA ¼ VI*1
2

) I1 ¼ 2SA

V

� �*

When SA ¼ 9:216 þ j6:912 ¼ 11:52ff36:9� VA

I1 ¼ 2ð11:52ff36:9�Þ
24ff30�

 !*
¼ ð0:96ff7�Þ* ¼ 0:96ff�7� A

The current in load B can be calculated as

I2 ¼ V
ZB

¼ 24ff30�
42:426ff45� ¼ 0:566ff�15� A

The source current is
I ¼ I1 þ I2 ¼ 1:522ff�9:9� A

(a) The complex power delivered by the source is

S ¼ VI*

2
¼ ð24ff30�Þð1:522ff�9:9�Þ*

2
¼ 18:265ff39:9� ¼ 14:02þ j11:71 VA

(b) The equivalent impedance of the parallel load is

Z ¼ V
I
¼ 24ff30�

1:522ff�9:9�
¼ 15:768ff39:9� V

+
–v(t) A B

FIGURE 11.5-5 A circuit consisting
of a source driving a parallel load.

+
–

I

I2I1V A B

FIGURE 11.5-6 The circuit from
Figure 11.5-5, represented in the
frequency domain.

Try it 
yourself 

in WileyPLUS

The equivalent impedance is

Z ¼ V
I
¼ 26:52ff30�

1:25ff�15�
¼ 21:21ff45� V

It’s convenient to take the reciprocal:
1

R
� j

1

oL
¼ 1

21:21ff45� ¼ 0:033338� j 0:033338

Consequently,

R ¼ 1

0:033338
¼ 30V and 5L ¼ 1

0:033338
¼ 30 ) L ¼ 6 H
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Complex power is conserved. The sum of the complex power received by all the elements of a
circuit is zero. This fact can be expressed by the equation

X
all

elements

VkI*k
2

¼ 0 ð11:5-12Þ

where Vk and Ik are the phasors corresponding to the element voltage and current of the kth element of the
circuit. The phasors Vk and Ik must adhere to the passive convention so that VkIk

�=2 is the complex power
received by the kth branch. The summation in Eq. 11.5-12 adds up the complex powers in all elements of the
circuit. When an element of the circuit is a source that is supplying power to the circuit, VkIk

�=2 will be
negative, indicating that positive complex power is being supplied rather than received. Sometimes
conservation of complex power is expressed as

X
sources

VkI*k
2

¼
X
other

elements

VkI*k
2

ð11:5-13Þ

where phasors Vk and Ik adhere to the passive convention for the “other elements”but do not adhere to the
passiveconventionfor thesources.WhenVk andIk donotadhere to thepassiveconvention, thenVkIk

�=2is
the complex power supplied by the kth branch. We read Eq. 11.5-13 to say that the total complex power
supplied by the sources is equal to the total complex power received by the other elements of the circuit.

Equation 11.5-12 implies that both
X

all
Elements

Re
VkI*k
2

� �
¼ 0

and
X

all
Elements

Im
VkI*k
2

� �
¼ 0

Therefore,

X
all

elements

Pk ¼ 0 and
X

all
elements

Qk ¼ 0

In other words, average power and reactive power are both conserved.

E X A M P L E 1 1 . 5 - 3 Conservation of Complex Power

Verify that complex power is conserved in the circuit of Figure 11.5-7 when vs ¼ 100 cos 1000t V.

i(t)

vR(t)

R = 10 Ω L = 20 mH

+ –
vL(t)

+ –

vC(t)vs(t)
+

–
μC = 100 F+

–

FIGURE 11.5-7 Circuit for Examples 11.5-3 and 11.5-4.

Solution
The phasor corresponding to the source voltage is

Vs oð Þ ¼ 100ff0 V
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Writing and solving a mesh equation, we find that the phasor corresponding to the mesh current is

I oð Þ ¼ Vs oð Þ
R þ joL � j

1

oC

¼ 100

10þ j 1000ð Þ 0:02ð Þ � j
1

1000ð Þ10�4

¼ 7:07ff�45� A

Ohm’s law provides the phasors corresponding to the element voltages:

VR oð Þ ¼ R I oð Þ ¼ 10ð7:07ff�45�Þ ¼ 70:7ff�45� V

VL oð Þ ¼ joL I oð Þ ¼ j 1000ð Þ 0:02ð Þð7:07ff45�Þ
¼ ð20ff90�Þð7:07ff�45�Þ ¼ 141:4ff45� V

VC oð Þ ¼ �j
1

oC
I oð Þ ¼ �j

1

1000ð Þ 10�4
	 
 ð7:07ff�45�Þ

¼ ð10ff90�Þð7:07ff�45�Þ ¼ 70:7ff�135� V

Consider the voltage source. The phasors Vs and I do not adhere to the passive convention. The complex power

SV ¼ VsI*

2
¼ 100ð7:07ff�45�Þ*

2
¼ 100ð7:07ff45�Þ

2

¼ 100 7:07ð Þ
2 ff45� ¼ 353:5ff45� VA

is the complex power supplied by the voltage source.
The phasors I and VR do adhere to the passive convention. The complex power

SR ¼ VRI*

2
¼ ð70:7ff�45�Þð7:07ff�45�Þ*

2

¼ ð70:7ff�45�Þð7:07ff45�Þ
2

¼ 70:7ð Þ 7:07ð Þ
2 ff�45� þ 45� ¼ 250ff0 VA

is the complex power absorbed by the resistor. Similarly,

SL ¼ VLI*

2
¼ ð141:4ff45�Þð7:07ff45�Þ

2
¼ 141:4ð Þ 7:07ð Þ

2 ff45� þ 45� ¼ 500ff90� VA
is the complex power delivered to the inductor, and

SC ¼ VCI*

2
¼ ð70:7ff�135�Þð7:07ff45�Þ

2
¼ 70:7ð Þ 7:07ð Þ

2 ff�135� þ 45�

¼ 250ff�90� VA

is the complex power delivered to the capacitor.
To verify that complex power has been conserved, we calculate the complex power received by the “other

elements” and compare it to the complex power supplied by the source:

SR þ SL þ SC ¼ 250ff0� þ 500ff90� þ 250ff�90�

¼ 250þ j0ð Þ þ 0þ j500ð Þ þ 0� j250ð Þ
¼ 250þ j250 ¼ 353:5ff45� ¼ SV

As expected, the complex power supplied by the source is equal to the complex power received by the other
elements of the circuit.
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EXERCISE 11.5-1 Determine the average power delivered to each element of
the circuit shown in Figure E 11.5-1. Verify that average power is conserved.

Answer: 4:39 þ 0 ¼ 4:39 W

EXERCISE 11.5-2 Determine the complex power delivered to each element
of the circuit shown in Figure E 11.5-2. Verify that complex power is conserved.

Answer: 6:606 þ j5:248 � j3:303 ¼ 6:606 þ j1:982 VA

E X A M P L E 1 1 . 5 - 4 Conservation of Average Power

Verify that average power is conserved in the circuit of Figure 11.5-7 when vs ¼ 100 cos 1000t V.

Solution
The phasor corresponding to the source voltage is

Vs oð Þ ¼ 100ff0 V
Writing and solving a mesh equation, we find that the phasor corresponding to the mesh current is

I oð Þ ¼ Vs oð Þ
R þ joL � j

1

oC

¼ 100

10þ j 1000ð Þ 0:02ð Þ � j
1

1000ð Þ10�4

¼ 7:07ff�45� A

The average power absorbed by the resistor, the capacitor, and the inductor can be calculated using

P ¼ I2m
2

� �
Re Zð Þ

Because Re(Z) ¼ 0 for the capacitor and for the inductor, the average power absorbed by each of these devices is
zero. Re(Z) ¼ R for the resistor, so

PR ¼ I2m
2

� �
R ¼ 7:072

	 

2

10 ¼ 250W

The average power supplied by the source is

PV ¼ Re SVð Þ ¼ Re
VsI*

2

� �
¼ Re

100 7:07ð Þ
2 ff45�� �

¼ Reð353:5ff45�Þ ¼ 250W

To verify that average power has been conserved, we calculate the average power received by the “other elements”
and compare it to the average power supplied by the source:

PR þ PL þ PC ¼ 250þ 0þ 0 ¼ 250 ¼ PV

As expected, the average power supplied by the sources is equal to the average power received by the other
elements of the circuit.

10 Ω

+
– 4 H12 cos 2t

FIGURE E 11.5-1

10 Ω

+
– 4 H12 cos 2t

1 10 F

FIGURE E 11.5-2
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11.6 P ow e r F a c t o r

In this section, as in the previous section, we consider a linear circuit with a sinusoidal input that is at
steady state. All the element voltages and currents will be sinusoidal and will have the same frequency
as the input. Such a circuit can be analyzed in the frequency domain, using phasors. In particular, we can
calculate the power generated or absorbed in a circuit or in any element of a circuit, in the frequency
domain, using phasors and impedances.

Recall that in Section 11.5 we showed that the average power absorbed by the element shown in
Figure 11.5-1 is

P ¼ VmIm
2

cos yV � yIð Þ

and that the apparent power is

jSj ¼ VmIm
2

The ratio of the average power to the apparent power is called the power factor (pf ). The power factor
is calculated as

pf ¼ cos yV � yIð Þ
The angle yV � yIð Þ is often referred to as the power factor angle. The average power absorbed by the
element shown in Figure 11.5-1 can be expressed as

P ¼ VmIm
2

pf ð11:6-1Þ

The cosine is an even function, that is, cos (y) ¼ cos (�y). So

pf ¼ cos yV � yIð Þ ¼ cos yI � yVð Þ
This causes a small difficulty. We can’t calculate yV � yI from pf without some additional information.
For example, suppose pf ¼ 0:8. We calculate

36:87� ¼ cos�1 0:8ð Þ
but that’s not enough to determine yV � yI uniquely. Because the cosine is even, both cos (36.87�) ¼
0.8 and cos (�36.87�) ¼ 0.8, so either yV � yI ¼ 36:87� or yV � yI ¼ �36:87�. This difficulty is
resolved by labeling the power factor as leading or lagging. When yV � yI > 0, the power factor is said
to be lagging, and when yV � yI < 0, the power factor is said to be leading. If the power factor is
specified to be 0.8 leading, then yV � yI ¼ �36:87�. On the other hand, if the power factor is specified
to be 0.8 lagging, then yV � yI ¼ 36:87�.

The significance of the power factor is illustrated by the
circuit shown in Figure 11.6-1. This circuit models the transmis-
sion of electric power from a power utility company to a
customer. The customer’s load is connected to the power com-
pany’s power plant by a transmission line. Typically, the cus-
tomer requires power at a specified voltage. The power company
must supply both the power used by the customer and the power
absorbed by the transmission line. The power absorbed by the
transmission line is lost; it doesn’t do anybody any good, and we
want to minimize it.

The circuit in Figure 11.6-2 models the transmission of
electric power from a power utility company to a customer in the
frequency domain, using impedances and phasors. Our objective

v(t)

+

–

i(t)
+
–

R

Lvs(t) = A cos tω

Transmission linePower plant Customer’s load

R1

2

R1

2

L1

2

L1

2

FIGURE 11.6-1 Power plant supplying a customer’s
electrical load. A transmission line connects the power
plant to the customer’s terminals.
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is to find a way to reduce the power absorbed
by the transmission line. In this situation, it is
likely that we cannot change the transmission
line, so we can’t change R1 or joL1. Similarly,
because the customer requires a specified
average power at a specified voltage, we
can’t change Vm or P. In the following analy-
sis, we leave R1, L1, Vm, and P as variables for
the sake of generality. We won’t need to repeat
the analysis later if we encounter a similar
situation with a different customer and a dif-
ferent transmission line. We will see that it is
possible to adjust the power factor by adding a
compensating impedance to the customer’s load. We will leave the power factor pf as a variable in our
analysis because we plan to vary the power factor to reduce the power absorbed by the load.

The impedance of the line is

ZLINE oð Þ ¼ R1

2
þ jo

L1

2
þ R1

2
þ jo

L1

2
¼ R1 þ joL1

The average power absorbed by the line is

PLINE ¼ I2m
2
Re ZLINEð Þ ¼ I2m

2
R1

Because the customer requires power at a specified voltage, we will treat the voltage across the load, Vm,
and the average power delivered to the load, P, as known quantities. Recall from Eq. 11.6-1 that

P ¼ VmIm
2

pf

Solving for Im gives

Im ¼ 2P

Vm pf

so PLINE ¼ 2
P

Vm pf

� �2

R1

Increasing pf will reduce the power absorbed in the transmission line. The power factor is the cosine of
an angle, so its maximum value is 1. Notice that pf ¼ 1 occurs when yV ¼ yI, that is, when the load
appears to be resistive.

In Figure 11.6-3, a compensating impedance has been attached across the terminals of the
customer’s load. We plan to use this impedance to adjust the power factor of the customer’s load. Because
it is to the advantage of both the power
company and the user to keep the
power factor of a load as close to
unity as feasible, we say that we are
correcting the power factor of the
load. We will denote the corrected
power factor as pfc and the corre-
sponding phase angle as yC. That is,

pfc ¼ cos yC

We can represent the imped-
ance of the load as

Z ¼ R þ jX

+

–

+
–

R1

R2

L1

2

R1

2
Transmission linePower plant Customer’s load

Vs( ) = Aω 0°
I( I) = Imω θ

V( V) = Vmω θ

jω

L1

2
jω

j Lω

FIGURE 11.6-2 Frequency-domain representation of the
power plant supplying a customer’s electrical load.

+

–

+
–

R

Transmission linePower plant Customer’s load

Vs( ) = Aω 0°
IL( )ω

I( )ωZC( )ωV( )ω j Lω

R1

2

L1

2

R1

2

jω

L1

2
jω

FIGURE 11.6-3 Power plant supplying a customer’s electrical load.
A compensating impedance has been added to the customer’s load to
correct the power factor.
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Similarly, we can represent the impedance of the compensating impedance as

ZC ¼ RC þ jXC

Because Z is connected to draw a current I, the power delivered to Z will remain P. The benefit of the
parallel impedance is that the parallel combination appears as the load to the source, and IL is the current
that flows through the transmission line. We want ZC to absorb no average power. Therefore, we choose
a reactive element so that

ZC ¼ jXC

The impedance of the parallel combination, ZP, is

ZP ¼ ZZC

Z þ ZC

The parallel impedance may be written as

ZP ¼ RP þ jXP ¼ ZPffyP

and the power factor of the new combination is

pfc ¼ cos yP ¼ cos tan�1 XP

RP

� �
ð11:6-2Þ

where pfc is the corrected power factor, and the corrected phase yC ¼ uP. Some algebra is needed to
calculate RP and XP:

ZP ¼ R þ jXð Þ jXC

R þ jX þ jXC

¼ RX2
C þ j R2XC þ XC þ Xð ÞX XC

� �
R2 þ X þ XCð Þ2

¼ RX2
C

R2 þ X þ XCð Þ2 þ j
R2XC þ XC þ Xð ÞX XC

R2 þ X þ XCð Þ2

Therefore, the ratio of XP to RP is

XP

RP
¼ R2 þ XC þ Xð ÞX

RXC
ð11:6-3Þ

Equation 11.6-2 may be written as

XP

RP
¼ tan cos�1 pfc

	 
 ð11:6-4Þ

Combining Eqs. 11.6-3 and 11.6-4 and solving for XC, we have

XC ¼ R2 þ X2

R tan cos�1 pfcð Þ � X
ð11:6-5Þ

We note that XC may be positive or negative, depending on the required pfc and the original R and X of
the load. The factor tan cos�1 pfcð Þ½ � will be positive if pfc is specified as lagging and negative if it is
specified as leading.

Typically, we will find that the customer’s load is inductive, and we will need a capacitive
impedance ZC. Recall that for a capacitor, we have

ZC ¼ �j

oC
¼ jXC ð11:6-6Þ
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Note that we determine that XC is typically negative. Combining Eqs. 11.6-5 and 11.6-6 gives

�1

oC
¼ R2 þ X2

R tan cos�1 pfcð Þ � X

Solving for oC gives

oC ¼ X � R tan cos�1 pfcð Þ
R2 þ X2 ¼ R

R2 þ X2

X

R
� tan cos�1 pfc

	 
� �

Let y ¼ tan�1 X

R

� �
. Then

oC ¼ R

R2 þ X2 tan y� tan yCð Þ ð11:6-7Þ
where y ¼ cos�1 pfð Þ and yC ¼ cos�1 pfcð Þ.

E X A M P L E 1 1 . 6 - 1 Parallel Loads

A customer’s plant has two parallel loads connected to the power utility’s distribution lines. The first load consists
of 50 kW of heating and is resistive. The second load is a set of motors that operate at 0.86 lagging power factor.
The motors’ load is 100 kVA. Power is supplied to the plant at 10,000 volts rms. Determine the total current flowing
from the utility’s lines into the plant and the plant’s overall power factor.

Solution
Figure 11.6-4a summarizes what is known about this power system.

First, consider the heating load. Because this load is resistive, the reactive power is zero. Therefore,

S1 ¼ P1 ¼ 50 kW

Next, consider the motors. The power factor is lagging, so y2 > 0�:

y2 ¼ cos�1 pf 2ð Þ ¼ cos�1 0:86ð Þ ¼ 30:7�

The complex power absorbed by the motors is

S2 ¼ jS2jffy2 ¼ 100ff30:7� kVA
The average power and reactive power absorbed by the motors is obtained by converting the complex power to
rectangular form:

S2 ¼ jS2j cos y2 þ jjS2j sin y2 ¼ 100 cos 30:7� þ j100 sin 30:7� ¼ 86þ j51 kVA

(a)

Vrms = 10 kV

Power plant Transmission line Customer’s load

ω
vs(t) =

A cos t

+

–

i(t) P = 50 kW
pf = 1

⎪S⎪ = 100 kVA
pf = 0.86
lagging

+
–

R
2

L
2

R
2

L
2

(b)

Vrms = 10 kV
Irms = 14.5 A

Power plant Transmission line Customer’s load

ω
vs(t) =

A cos t

+

–

P = 136 kW
pf = 0.94
lagging

+
–

R
2

L
2

R
2

L
2

FIGURE 11.6-4 Power system for Example 11.6-1.

Try it 
yourself 

in WileyPLUS
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Therefore, P2 ¼ 86 kW and Q2 ¼ 51 kVAR

The total complex power S delivered to the total load is the sum of the complex power delivered to each load:

S ¼ S1 þ S2 ¼ 50þ 86þ j51ð Þ ¼ 136þ j51 kVA

The average power and reactive power of the customer’s load is

P ¼ 136 kW and Q ¼ 51 kVAR

To calculate the power factor of the customer’s load, first convert S to polar form:

S ¼ 145:2ff20:6� kVA
Then pf ¼ cos 20:6�ð Þ ¼ 0:94 lagging

The total current flowing from the utility’s lines into the plant can be calculated from the apparent
power absorbed by the customer’s load and the voltage across the terminals of the customer’s load. Recall that

jSj ¼ VmIm
2

¼ V rmsIrms

Solving for the current gives

Irms ¼ jSj
V rms

¼ 145; 200

104
¼ 14:52 A rms

Figure 11.6-4b summarizes the results of this example.

E X A M P L E 1 1 . 6 - 2 Power Factor Correction

A load as shown in Figure 11.6-5 has an impedance of Z ¼ 100 þ j100 V. Find the parallel capacitance required to
correct the power factor to (a) 0.95 lagging and (b) 1.0. Assume that the source is operating at o ¼ 377 rad/s.

I1
Vs

I
+
– Z1 Z

Power
company
generator

Transmission
line current

Customer’s
terminals

Parallel
impedance Load

FIGURE 11.6-5 Use of an added parallel impedance Z1 to correct the customer’s power factor.

Solution
The phase angle of the impedance is y ¼ 45�, so the original load has a lagging power factor with

cos y ¼ cos 45� ¼ 0:707

First, we wish to correct the pf so that pfc ¼ 0.95 lagging. Then, we use Eq. 11.6-5 as follows:

XC ¼ 1002 þ 1002

100 tan cos�1 0:95ð Þ � 100
¼ �297:9 V

The capacitor required is determined from

� 1

oC
¼ XC
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Therefore, because o ¼ 377 rad/s,

C ¼ � 1

o XC
¼ �1

377 �297:9ð Þ ¼ 8:9 mF

If we wish to correct the load to pfc ¼ 1, we have

XC ¼ 2	 104

100 tan cos�1 1ð Þ � 100
¼ �200

The capacitor required to correct the power factor to 1.0 is determined from

C ¼ �1

oXC
¼ �1

377 �200ð Þ ¼ 13:3 mF

Because the uncorrected power factor is lagging, we can alternatively use Eq. 11.6-7 to determine C. For
example, it follows that pfc ¼ 1. Then yC ¼ 0�. Therefore,

oC ¼ 100

2	 104
tan y� tan yCð Þ ¼ 5	 10�3

	 

tan 45�ð Þ � tan 0�ð Þð Þ ¼ 5	 10�3

and C ¼ 5	 10�3

377
¼ 13:3 mF

As expected, this is the same value of capacitance as was calculated using Eq. 11.6-5.

E X A M P L E 1 1 . 6 - 3 Complex Power INTERACT IVE EXAMPLE

The input to the circuit shown in Figure 11.6-6a is the voltage of the voltage source,

vs tð Þ ¼ 7:28 cos 4t þ 77�ð Þ V
The output is the voltage across the inductor,

vo tð Þ ¼ 4:254 cos 4t þ 311�ð Þ V
Determine the following:
(a) The average power supplied by the voltage source.
(b) The average power received by the resistor.
(c) The average power received by the inductor.
(d) The power factor of the impedance of the series connection of the resistor and inductor.

Solution
The input voltage is sinusoid. The output voltage is also sinusoid and has the same frequency as the input voltage.
Apparently, the circuit has reached steady state. Consequently, the circuit in Figure 11.6-6a can be represented in the

3 Ω

–
+vs(t) vo(t)

+

+

–

–

(a)

0.54 H

3 Ω
–
+

+

–

(b)

j 2.16 Ω

VR( )ω

Vs( )ω

l( )ω

Vo( )ω

FIGURE 11.6-6 The circuit considered in
Example 11.6-3 represented (a) in the time domain
and (b) in the frequency domain.

Try it 
yourself 

in WileyPLUS
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frequencydomain,usingphasorsand impedances.Figure11.6-6b shows the frequency-domain representationof thecircuit
from Figure 11.6-6a. The impedance of the inductor is joL ¼ j 4ð Þ 0:54ð Þ ¼ j2:16 V, as shown in Figure 11.6-6b.

The phasors corresponding to the input and output sinusoids are

VS oð Þ ¼ 7:28ff77� V
and

Vo oð Þ ¼ 4:254ff311� V
The current I(o) in Figure 11.6-6b is calculated from Vo(o) and the impedance of the inductor, using Ohm’s law:

I oð Þ ¼ Vo oð Þ
j 2:16

¼ 4:254ff311�
2:16ff90� ¼ 4:254

2:16 ff311� � 90� ¼ 1:969ff221�A
Once we know I(o), we are ready to answer the questions asked in this example.

(a) The average power supplied by the source is calculated from I(o) and Vs(o). The average power of the source
is given by

Vs oð Þj j I oð Þj j
2

cosðffVs oð Þ �ffI oð ÞÞ ¼ 7:28ð Þ 1:969ð Þ
2

cos 77� � 221�ð Þ
¼ 7:167 cos �144�ð Þ ¼ �5:8W

ð11:6-8Þ

Notice that I(o) and Vs(o) adhere to the passive convention. Consequently, Eq. 11.6-8 gives the power
received by the voltage source rather than the power supplied by the voltage source. The power supplied is the
negative of the power received. Therefore, the power supplied by the voltage source is

Ps ¼ 5:8W

(b) The resistor voltage VR(o) in Figure 11.6-6b is given by

VR oð Þ ¼ R I oð Þ ¼ 3ð1:969ff221�Þ ¼ 5:907ff221� V
The average power received by the resistor is calculated from I(o) and VR(o):

PR ¼ VR oð Þj j I oð Þj j
2

ðcosðffVR oð Þ �ffI oð ÞÞÞ ¼ 5:907ð Þ 1:969ð Þ
2

cos 221� � 221�ð Þ
¼ 5:8 cos 0�ð Þ ¼ 5:8W

ð11:6-9Þ

Notice that I(o) and VR(o) adhere to the passive convention. Consequently, PR is the power received by the
resistor, as required.

Alternately, the power received by a resistor can be calculated from the current I(o) and the resistance R.
To see how, first notice that the voltage and current of a resistor are related by

VR oð Þ ¼ RI oð Þ ) VR oð Þj jffVR oð Þ ¼ Rð I oð Þj jffI oð ÞÞ ) VR oð Þj j ¼ R I oð Þj jffVR oð Þ ¼ ffI oð Þ


Substituting these expressions for jVR(o)j and ffVR(o) into Eq. 11.6-9 gives

PR ¼ jRI oð Þj jI oð Þj
2

cos ðffI oð Þ �ffI oð ÞÞ ¼ RjI oð Þj2
2

¼ 3ð Þ 1:969ð Þ2
2

¼ 5:8W

(c) The average power received by the inductor is calculated from I(o) and Vo(o):

PL ¼ jVo oð ÞjjI oð Þj
2

cos ðffVo oð Þ �ffI oð ÞÞ ¼ 4:254ð Þ 1:969ð Þ
2

cos 311� � 221�ð Þ
¼ 4:188 cos 90�ð Þ ¼ 0W

ð11:6-10Þ

The phase angle of the inductor voltage is always 90� greater than the phase angle of the inductor current.
Consequently, the value of average power received by any inductor is zero.
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EXERCISE 11.6-1 A circuit has a large motor connected to the ac power lines [o ¼ (2p)60 ¼
377 rad/s]. The model of the motor is a resistor of 100 V in series with an inductor of 5 H. Find the
power factor of the motor.

Answer: pf ¼ 0.053 lagging

EXERCISE 11.6-2 A circuit has a load impedance Z ¼ 50þj80 V, as shown in Figure 11.6-5.
Determine the power factor of the uncorrected circuit. Determine the impedance ZC required to
obtain a corrected power factor of 1.0.

Answer: pf ¼ 0:53 lagging, ZC ¼ �j111:25 V

EXERCISE 11.6-3 Determine the power factor for the total plant of Example 11.6-1 when the
resistive heating load is decreased to 30 kW. The motor load and the supply voltage remain as
described in Example 11.6-1.

Answer: pf ¼ 0.915

EXERCISE 11.6-4 A 4-kW, 110-Vrms load, as shown in Figure 11.6-5, has a power factor of
0.82 lagging. Find the value of the parallel capacitor that will correct the power factor to 0.95 lagging
when o ¼ 377 rad/s.

Answer: C ¼ 0.324 mF

(d) The power factor of the impedance of the series connection of the resistor and inductor can be calculated from
I(o) and the voltage across the impedance. That voltage is VR(o) þ Vo(o), which is calculated by applying
Kirchhoff’s voltage law to the circuit in Figure 11.6-6b:

VR oð Þ þ Vo oð Þ þ Vs oð Þ ¼ 0

VR oð Þ þ Vo oð Þ ¼ �Vs oð Þ ¼ �7:28ff77�
¼ ð1ff180�Þð7:28ff77�Þ
¼ 7:28ff257�

Now the power factor is calculated as

pf ¼ cos ðff VR oð Þ þ Vo oð Þð Þ �ffI oð ÞÞ ¼ cos 257� � 221�ð Þ ¼ 0:809

The power factor is said to be lagging because 257� � 221� ¼ 36� > 0.
Average power is conserved. In this example, that means that the average power supplied by the voltage

source must be equal to the sum of the average powers received by the resistor and the inductor. This fact
provides a check on the accuracy of our calculations.

If the value of Vo(o) had not been given, then I(o) would be calculated by writing and solving a mesh
equation. Referring to Figure 11.6-6b, the mesh equation is

3I oð Þ þ j2:16 I oð Þ þ 7:28ff77� ¼ 0

Solving for I(o) gives

I oð Þ ¼ �7:28ff77�
3þ j2:16

¼ ð1ff180�Þð7:28ff77�Þ
3:697ff36�

¼ 1ð Þ 7:28ð Þ
3:697 ff180� þ 77� � 36� ¼ 1:969ff221� A

as before.
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11.7 T h e P ow e r S u p e r p o s i t i o n P r i n c i p l e

In this section, let us consider the case when the circuit contains two or more sources. For example,
consider the circuit shown in Figure 11.7-1a with two sinusoidal voltage sources. The principle of
superposition states that the response to both sources acting together is equal to the sum of the responses
to each voltage source acting alone. The application of the principle of superposition is illustrated in
Figure 11.7-1b, where i1 is the response to source 1 acting alone, and the response i2 is the response to
source 2 acting alone. The total response is

i ¼ i1 þ i2 ð11:7-1Þ
The instantaneous power is

p ¼ i 2R ¼ R i1 þ i2ð Þ2 ¼ R i 21 þ i 22 þ 2i1i2
	 


where R is the resistance of the circuit. Then the average power is

P ¼ 1

T

Z T

0
p dt ¼ R

T

Z T

0
i 21 þ i 22 þ 2i1i2
	 


dt

¼ R

T

Z T

0
i 21 dt þ R

T

Z T

0
i 22 dt þ 2R

T

Z T

0
i1i2 dt ¼ P1 þ P2 þ 2R

T

Z T

0
i1i2 dt

ð11:7-2Þ

where P1 is the average power due to v1 and P2 is the average power due to v2. We will see that when v1

and v2 are sinusoids having different frequencies, then

2R

T

Z T

0
i1i2 dt ¼ 0 ð11:7-3Þ

When Eq. 11.7-3 is satisfied, then Eq. 11.7-2 reduces to

P ¼ P1 þ P2 ð11:7-4Þ
This equation states that the average power delivered to the resistor by both sources acting together is
equal to the sum of the average power delivered to the resistor by each voltage source acting alone. This
is the principle of power superposition. Notice that the principle of power superposition is valid only
when Eq. 11.7-3 is satisfied.

Now let us determine under what conditions Eq. 11.7-3 is satisfied. Let the radian frequency for
the first source be mo, and let the radian frequency for the second source be no. The currents can be
represented by the general form

i1 ¼ I1 cos mot þ fð Þ
and i2 ¼ I2 cos not þ yð Þ
It can be shown that Z T

0
cos mot þ fð Þcos not þ yð Þdt ¼ 0 m 6¼ n

cos f� yð Þ m ¼ n



Consequently,

2R

T

Z T

0
i1i2dt ¼ 0 m 6¼ n

RI1I2 cos f� yð Þ m ¼ n


ð11:7-5Þ

(a)

R

i(t)

v1(t) v2(t)+
–

+
–

(b)

R

i1(t) i2(t)

v1(t) +
–

R
v2(t)+

–

FIGURE 11.7-1 (a) A circuit
with two sources. (b) Using
superposition to calculate the
resistor current as i(t) ¼ i1(t) þ
i2(t).
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Therefore, in summary, the superposition of average power states that the average power
delivered to a circuit by several sinusoidal sources, acting together, is equal to the sum of the average
power delivered to the circuit by each source acting alone, if, and only if, no two of the sources have the
same frequency. Similar arguments show that superposition can be used to calculate the reactive power
or the complex power delivered to a circuit by several sinusoidal sources, provided again that no two
sources have the same frequency.

If two or more sources are operating at the same frequency, the principle of power superposition is
not valid, but the principle of superposition remains valid. In this case, we use the principle of
superposition to find each phasor current and then add the currents to obtain the total phasor current

I ¼ I1 þ I2 þ 
 
 
 þ IN

for N sources. Then we have the average power

P ¼ I2mR

2
ð11:7-6Þ

where jIj ¼ Im.

E X A M P L E 1 1 . 7 - 1 Power Superposit ion

The circuit in Figure 11.7-2 contains two sinusoidal sources. To illustrate power superposition, consider two cases:

(1) vA tð Þ ¼ 12 cos 3t V and vB tð Þ ¼ 4 cos 4t V

(2) vA tð Þ ¼ 12 cos 4t V and vB tð Þ ¼ 4 cos 4t V

Find the average power absorbed by the 6-V resistor.

Solution
The application of the principle of superposition is illustrated in Figure 11.7-2b, where i1 is the response to the
voltage source A acting alone, and the response i2 is the response to the voltage source B acting alone. The total

+
–

+
–

i(t)

6 Ω 2 H

vA(t) = 12 cos 1t Vω vB(t) = 4 cos 2t Vω

(a)

+
–

i1(t)

6 Ω 2 H

vA(t) +
–

i2(t)

6 Ω 2 H

vB(t)

(b)

+
–

6 Ω

(c)

+
–

6 Ω
VA( )ω VB( )ω

l1( )ω l2( )ω

j2 1ω j2 2ω FIGURE 11.7-2 (a) A circuit with two
sinusoidal sources. (b) Using superposition to
find the response to each source separately.
(c) Representing the circuits from (b) in the
frequency domain.
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EXERCISE 11.7-1 Determine the average power absorbed by the resistor in Figure 11.7-2a for
these two cases:

(a) vA(t) ¼ 12 cos 3t V and vB(t) ¼ 4 cos 3t V;

(b) vA(t) ¼ 12 cos 4t V and vB(t) ¼ 4 cos 3t V

Answers: (a) 2.66 W (b) 4.99 W

response is i ¼ i1 þ i2. In Figure 11.7-2c, the circuits from Figure 11.7-2b are represented in the frequency domain,
using impedances and phasors.

Now consider the two cases.
Case 1: Analysis of the circuits in Figure 11.7-2c gives

I1 oð Þ ¼ 1:414ff�45� A and I2 oð Þ ¼ 0:4ff127� A
These phasors correspond to different frequencies and cannot be added. The corresponding time-domain currents are

i1 tð Þ ¼ 1:414 cos 3t � 45�ð ÞA and i2 tð Þ ¼ 0:4 cos 4t � 143�ð Þ A
Using superposition, we find that the total current in the resistor is

i tð Þ ¼ 1:414 cos 3t � 45�ð Þ þ 0:4 cos 4t þ 127�ð Þ A
The average power could be calculated as

P ¼ R

T

Z T

0
i 2 dt ¼ R

T

Z T

0
1:414 cos 3t � 45�ð Þ þ 0:4 cos 4t þ 127�ð Þð Þ2 dt

Because the two sinusoidal sources have different frequencies, the average power can be calculated more easily
using power superposition:

P ¼ P1 þ P2 ¼ 1:4142

2
6þ 0:42

2
6 ¼ 6:48W

Notice that both superposition and power superposition were used in this case. First, superposition was used to
calculate I1(o) and I2(o). Next, P1 was calculated using I1(o), and P2 was calculated using I2(o). Finally, power
superposition was used to calculate P from P1 and P2.

Case 2: Analysis of the circuits in Figure 11.7-2c gives

I1 oð Þ ¼ 1:2ff�53� A and I2 oð Þ ¼ 0:4ff127� A
Both of these phasors correspond to the same frequency, o ¼ 4 rad/s. Therefore, these phasors can be added to
obtain the phasor corresponding to i(t).

I oð Þ ¼ I1 oð Þ þ I2 oð Þ ¼ ð1:2ff�53�Þ þ ð0:4ff127�Þ ¼ 0:8ff�53� A

The sinusoidal current corresponding to this phasor is

i tð Þ ¼ 0:8 cos 4t � 53�ð Þ A
The average power absorbed by the resistor is

P ¼ 0:82

2
6 ¼ 1:92W

Alternately, the time-domain currents corresponding to I1(o) and I2(o) are

i1 tð Þ ¼ 1:2 cos 4t � 53�ð ÞA and i2 tð Þ¼0:4 cos 4t þ 127�ð Þ A
Using superposition, we find that the total current in the resistor is

i tð Þ ¼ 1:2 cos 4t � 53�ð Þ þ 0:4 cos 4t þ 127�ð Þ ¼ 0:8 cos 4t � 53�ð Þ A
So P ¼ 1.92 W, as before.

Power superposition cannot be used in this case because the two sinusoidal sources have the same frequency.
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11.8 T h e M a x im um P owe r T r a n s f e r T h e o r em

In Chapter 5, we proved that for a resistive network, maximum power is transferred from a source to a load
when the load resistance is set equal to the Th�evenin resistance of the Th�evenin equivalent source. Now let
us consider a circuit represented by a Th�evenin equivalent circuit for a sinusoidal steady-state circuit, as
shown in Figure 11.8-1, when the load is ZL.

We then have

Zt ¼ Rt þ jXt

and ZL ¼ RL þ jXL

The average power delivered to the load is

P ¼ I2m
2

RL

The phasor current I is given by

I ¼ Vt

Zt þ ZL
¼ Vt

Rt þ jXtð Þ þ RL þ jXLð Þ

where we may select the values of RL and XL. The average power delivered to the load is

P ¼ I2mRL

2
¼ jVtj2RL=2

Rt þ RLð Þ2 þ Xt þ XLð Þ2

and we wish to maximize P. The term (Xt þ XL)2 can be eliminated by setting XL ¼ �Xt. We have

P ¼ jVtj2RL

2 Rt þ RLð Þ2

The value of RL that maximizes P is determined by taking the derivative dP/dRL and setting it
equal to zero. Then we find that dP=dRL ¼ 0 when RL ¼ Rt.

Consequently, we have

ZL ¼ Rt � jXt

Thus, the maximum power transfer from a circuit with a Th�evenin equivalent circuit with an
impedance Zt is obtained when ZL is set equal to Z*

t , the complex conjugate of Zt.

I
+
–

Zt

ZLVt

FIGURE 11.8-1 The Th�evenin
equivalent circuit with a load
impedance.

E X A M P L E 1 1 . 8 - 1 Maximum Power Transfer

Find the load impedance that transfers maximum power to the load and determine
the maximum power delivered to the load for the circuit shown in Figure 11.8-2.

Solution
We select the load impedance ZL to be the complex conjugate of Zt so that

ZL ¼ Z*
t ¼ 5þ j6V

+
–

5 – j6

ZL0° V10
I

FIGURE 11.8-2 Circuit for
Example 11.8-1. Impedances
in ohms.

Try it 
yourself 

in WileyPLUS
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EXERCISE 11.8-1 For the circuit of Figure 11.8-1, find ZL to obtain the maximum power
transferred when the Th�evenin equivalent circuit has Vt ¼ 100ff0�V and Zt ¼ 10 þ j14 V. Also,
determine the maximum power transferred to the load.

Answer: ZL ¼ 10 � j14 V and P ¼ 125 W

EXERCISE 11.8-2 A television receiver uses a cable to connect
the antenna to the TV, as shown in Figure E 11.8-2, with vs ¼ 4 cos ot
mV. The TV station is received at 52 MHz. Determine the average
power delivered to each TV set if (a) the load impedance is Z ¼ 300 V;
(b) two identical TV sets are connected in parallel with Z ¼ 300 V for
each set; (c) two identical sets are connected in parallel and Z is to be
selected so that maximum power is delivered at each set.

Answers: (a) 9.6 nW (b) 4.9 nW (c) 5 nW

11.9 C o u p l e d I n d u c t o r s

The concept of self-inductance was introduced in Chapter 7. We commonly use the term inductance for
self-inductance, and we are familiar with circuits that have inductors. In this section, we consider
coupled inductors, which are useful in circuits with sinusoidal steady-state (ac) voltages and currents
and are also widely used in electronic circuits.

Coupled inductors, or coupled coils, are magnetic devices that consist of two or more
multiturn coils wound on a common core.

Figure 11.9-1a shows two coils of wire wrapped around a magnetic core. These coils are said to
be magnetically coupled. A voltage applied to one coil, as shown in Figure 11.9-1a, causes a voltage
across the second coil. Here’s why. The input voltage v1(t) causes a current i1(t) in coil 1. The current
and voltage are related by

v1 ¼ L1
di1
dt

ð11:9-1Þ
where L1 is the self-inductance of coil 1. The current i1(t) causes a flux in the magnetic core. This flux is
related to the current by

f ¼ c1N1i1 ð11:9-2Þ

Then the maximum power transferred can be obtained by noting that

I ¼ 10ff0�
5þ 5

¼ 1ff0� A
Therefore, the average power transferred to the load is

P ¼ I2m
2

RL ¼ 1ð Þ2
2

5 ¼ 2:5W

Cable

+
–

Antenna TV set

Impedance of
one TV setZ

Ω200
Vs

FIGURE E 11.8-2
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where c1 is a constant that depends on the magnetic properties and geometry of the core, and N1 is the
number of turns in coil 1. The number of turns in a coil indicates the number of times the wire is
wrapped around the core. The flux f is contained within the magnetic core. The core has a cross-
sectional area A. The voltage across the coil 1 is related to the flux by

v1 ¼ N1
df
dt

¼ N1
d

dt
c1N1i1ð Þ ¼ c1N

2
1

di1
dt

ð11:9-3Þ

Comparing Eqs. 11.9-1 and 11.9-3 shows that

L1 ¼ c1N
2
1 ð11:9-4Þ

A voltage v2 at the terminals of the second coil is induced by f, which flows through the
second coil. This voltage is related to the flux by

v2 ¼ N2
df
dt

¼ cM N1N2
di1
dt

¼ M
di1
dt

ð11:9-5Þ

where cM is a constant that depends on the magnetic properties and geometry of the core, N2 is
the number of turns in the second coil, and M ¼ cMN1N2 is a positive number called the
mutual inductance. The unit of mutual inductance is the henry, H.

The polarity of the voltage v2, compared to the polarity of v1, depends on the way in which
the coils are wrapped on the core. There are two distinct cases, and they are shown in Figures
11.9-1a,b. The difference between these two figures is the direction in which coil 2 is wrapped
around the core. A dot convention is used to indicate the way the coils have been wrapped on the
coil. Notice that one end of each coil is marked with a dot. When the reference direction of the
current of one coil enters the dotted end of that coil, the reference polarity of the induced voltage
is positive at the dotted end of the other coil. For example, in Figures 11.9-1a, b, the reference
direction of the current i1 enters the dotted end of the left coil. Consequently, in Figures 11.9-1a,
b, the + sign of the reference polarity of v2 is located at the dotted end of the right coil.

The circuit symbol that is used to represent coupled inductors is shown in Figure 11.9-2
with the dots shown and the mutual inductance identified as M. Two cases are shown in
Figure 11.9-2. In Figure 11.9-2a, both coil currents enter the dotted ends of the coils. In Figure
11.9-2b, one current, i1, enters the dotted end of a coil, but the other current, i2, enters the
undotted end on the coil. In both cases, the reference directions of the voltage and current of
each coil adhere to the passive convention.

Cross-sectional
area A a

b

v2

N2

φv1

N1

+

–

+
–

(a)

Cross-sectional
area A

a

b

v2

N2

i1i1

φv1

N1

–

+

+
–

(b)

FIGURE 11.9-1 Two magnetically coupled coils mounted on a magnetic material. The flux f is contained
within the magnetic core.

(b)

i1(t) i2(t)

v1(t) L1 L2

M
+

–

v2(t)

+

–

(a)

i1(t) i2(t)

v1(t) L1 L2

M
+

–

v2(t)

+

–

FIGURE 11.9-2 Circuit
symbol for coupled
inductors. In (a), both coil
currents enter the dotted
ends of the coils. In (b),
one coil current enters the
dotted end of the coil, but
the other coil current
enters the undotted end.
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Suppose both coil currents enter the dotted ends of the coils, as in Figure 11.9-1a, or both coil
currents enter the undotted ends of the coils. The voltage across the first coil, v1, is related to the coil
currents by

v1 ¼ L1
di1
dt

þ M
di2
dt

ð11:9-6Þ

Similarly, the voltage across the second coil is related to the coil currents by

v2 ¼ L2
di2
dt

þ M
di1
dt

ð11:9-7Þ

In contrast, suppose one coil current enters the dotted end of a coil while the other coil current
enters the undotted end of a coil, as in Figure 11.9-2b. The voltage across the first coil, v1, is related to
the coil currents by

v1 ¼ L1
di1
dt

� M
di2
dt

ð11:9-8Þ

Similarly, the voltage across the second coil is related to the coil currents by

v2 ¼ L2
di2
dt

� M
di1
dt

ð11:9-9Þ

Thus, the mutual inductance can be seen to induce a voltage in a coil due to the current in the other coil.
Coupled inductors can be modeled using inductors (without coupling) and dependent sources.

Figure 11.9-3 shows an equivalent circuit for coupled inductors.
The use of coupled inductors is usually limited to non-dc applications because coils behave as

short circuits for a steady current.
Suppose that coupled inductors are part of a linear circuit with a sinusoidal input and that the

circuit is at steady state. Such a circuit can be analyzed in the frequency domain, using phasors. The
coupled inductors shown in Figure 11.9-2a are represented by the phasor equations

V1 ¼ joL1I1 þ joM I2 ð11:9-10Þ
and

V2 ¼ joL2I2 þ joM I1 ð11:9-11Þ

In contrast, the coupled inductors shown in Figure 11.9-2b are represented by the phasor equations

V1 ¼ joL1I1 � joM I2 ð11:9-12Þ
and

V2 ¼ joL2I2 � joM I1 ð11:9-13Þ

(a) (b)

i1(t) i2(t)

v1(t) L1 L2

M
+

–

v2(t)

+

–

i1(t) i2(t)L1 L2

v1(t)

+

–

v2(t)

+

–

+

–

di2
dt

M
di1
dt

M
+

–

FIGURE 11.9-3 (a) Coupled inductors and (b) an equivalent circuit.
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The inductances L1 and L2 and mutual inductance M each depend on the magnetic properties and
geometry of the core and the number of turns in the coils. Referring to Eqs. 11.9-4 and 11.9-5, we can
write

L1L2 ¼ c1N2
1

	 

c2N

2
2

	 
 ¼ c1c2 N1N2ð Þ2 ¼ cMN1N2

k

� �2

¼ M2

k2
ð11:9-14Þ

where the constant k ¼ cM=
ffiffiffiffiffiffiffiffiffi
c1c2

p
is called the coupling coefficient. Because the coupling coefficient

depends on c1, c2, and cM, it depends on the magnetic properties and geometry of the core. Solving Eq.
11.9-14 for the coupling coefficient gives

k ¼ Mffiffiffiffiffiffiffiffiffiffi
L1L2

p ð11:9-15Þ

The instantaneous power absorbed by coupled inductors is

p tð Þ ¼ v1 tð Þi1 tð Þ þ v2 tð Þi2 tð Þ

¼ L1
d

dt
i1 tð Þ � M

d

dt
i2 tð Þ

� �
i1 tð Þ þ L2

d

dt
i2 tð Þ � M

d

dt
i1 tð Þ

� �
i2 tð Þ

¼ L1i1 tð Þ d

dt
i1 tð Þ � M

d

dt
i1 tð Þi2 tð Þð Þ þ L2i2 tð Þ d

dt
i2 tð Þ

ð11:9-16Þ

where �M is used if one current enters the undotted end of a coil while the other current enters the
dotted end; otherwise, +M is used. The energy stored in the coupled inductors is calculated by
integrating the power absorbed by the coupled inductors. The energy stored in coupled inductors is

w tð Þ ¼
Z t

�1
p tð Þdt ¼ 1

2
L1i

2
1 þ

1

2
L2i

2
2 � Mi1i2 ð11:9-17Þ

where, again, �M is used if one current enters the undotted end of a coil while the other current enters
the dotted end; otherwise, +M is used. We can use this equation to find how large a value M can attain in
terms of L1 and L2. Because coupled inductors are a passive element, the energy stored must be greater
than or equal to zero. The limiting quantity for M is obtained when w¼ 0 in Eq. 11.9-17. Then we have

1

2
L1i 21 þ

1

2
L2i 22 � Mi1 i2 ¼ 0 ð11:9-18Þ

as the limiting condition for the case in which one current enters the dotted terminal and the other
current leaves the dotted terminal. Now add and subtract the term i1i2 ¼ ffiffiffiffiffiffiffiffiffiffi

L1L2
p

in the equation to
generate a term that is a perfect square as follows:

ffiffiffiffiffi
L1

2

r
i1 �

ffiffiffiffiffi
L2

2

r
i2

 !2

þ i1i2
ffiffiffiffiffiffiffiffiffiffi
L1L2

p � M
	 
 ¼ 0

The perfect square term can be positive or zero. Therefore, to have w � 0, we require that

ffiffiffiffiffiffiffiffiffiffi
L1L2

p � M ð11:9-19Þ
Thus, the maximum value of M is

ffiffiffiffiffiffiffiffiffiffi
L1L2

p
.

Therefore, the coupling coefficient of passive coupled inductors can be no larger than 1. In
addition, the coupling coefficient cannot be negative because L1, L2, and M are all nonnegative. When
k ¼ 0, no coupling exists. Therefore, the coupling coefficient must satisfy

0 � k � 1 ð11:9-20Þ
Most power system transformers have a k that approaches 1, whereas k is low for radio circuits.
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Figure 11.9-4a shows coupled inductors used as a transformer to connect a source to a load. The
coil connected to the source is called the primary coil, and the coil connected to the load is called the
secondary coil. Circuit 2 is connected to circuit 1 through the magnetic coupling of the transformer, but
there is no electrical connection between these two circuits. For example, there is no path for current to
flow from circuit 1 to circuit 2. In addition, no circuit element is connected between a node of circuit 1
and a node of circuit 2.

Figure 11.9-4b shows a specific example of the situation shown in Figure 11.9-4a. The source is a
single sinusoidal voltage source, and the load is a single impedance. The circuit has been represented in
the frequency domain, using phasors and impedances. The circuit in Figure 11.9-4b can be analyzed by
writing mesh equations. The two mesh equations are

joL1I1 � joM I2 ¼ V1

�joM I1 þ joL2 þ Z2ð ÞI2 ¼ 0

Solving for I2 in terms of V1, we have

I2 ¼ jo M

joð Þ2 L1L2 � M2
	 
þ jo L1Z2ð Þ

� �
2
4

3
5V1 ð11:9-21Þ

When the coupling coefficient of the coupled inductors is unity, then M ¼ ffiffiffiffiffiffiffiffiffiffi
L1L2

p
and Eq. 11.9-21

reduces to

I2 ¼ jo M

jo L1Z2

� �
V1 ¼ jo

ffiffiffiffiffiffiffiffiffiffi
L1L2

p
joL1Z2

� �
V1 ¼

ffiffiffiffiffi
L2

p
Z2

ffiffiffiffiffi
L1

p V1 ð11:9-22Þ

The voltage across the impedance is given by

V2 ¼ Z2I2 ¼
ffiffiffiffiffi
L2

L1

r
V1 ð11:9-23Þ

The ratio of the inductances is related to the magnetic properties and geometry of the core and the
number of turns in the coils. Referring to Eq. 11.9-4, we can write

L2

L1
¼ c2N2

2

c1N2
1

When both coils are wound symmetrically on the same core, then c1 ¼ c2. In this case,

L2

L1
¼ N2

2

N2
1

¼ n2 ð11:9-24Þ

where n is called the turns ratio of the transformer. Combining Eqs. 11.9-23 and 11.9-24 gives

V2 ¼ nV1 ð11:9-25Þ
where V1 is the voltage across the primary coil, V2 is the voltage across the secondary coil, and n is the
turns ratio.

(b)

j Mω

j L1ω j L2ωI1 I2
+
–V1 V2Z2

+

–

(a)

i1(t) i2(t)

v1(t) L1 L2

M
+

–

v2(t)

+

–

Circuit 1
(source)

Primary Secondary

Circuit 2
(load)

FIGURE 11.9-4 (a) Coupled inductors used as a transformer to couple two circuits magnetically and (b) a transformer used to couple
a voltage source magnetically to an impedance.
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E X A M P L E 1 1 . 9 - 1 Coupled Inductors INTERACT IVE EXAMPLE

Find the voltage v2(t) in the circuit as shown in Figure 11.9-5a.

(b)

I1 I2

V1

+

–

V2

+

–

j16

j8
8

j12 12+
–45°5

Primary Secondary

(a)

i1(t) i2(t)

v1(t)

+

–

v2(t)

+

–

4 H 3 H

2 H
8 Ω

12 Ω+
–5 cos (4t + 45°) V

Primary Secondary

FIGURE 11.9-5 A circuit in which coupled inductors are used as a transformer. The circuit is represented (a) in the time domain and
(b) in the frequency domain, using phasors and impedances.

Solution
First, represent the circuit in the frequency domain, using phasors and impedances, as shown in Figure
11.9-5b. Notice that the coil currents I1 and I2 both enter the dotted end of the coils. Express the coil voltages as
functions of the coil currents, using the equations that describe the coupled inductors, Eqs.
11.9-10 and 11.9-11.

V1 ¼ j16 I1 þ j8 I2
V2 ¼ j8 I1 þ j12 I2

Next, write two mesh equations

5ff45� ¼ 8 I1 þ V1

and

V2 ¼ �12 I2

Substituting the equations for the coil voltages into the mesh equations gives

5ff45� ¼ 8 I1 þ j16 I1 þ j8 I2ð Þ ¼ 8þ j16ð ÞI1 þ j8 I2
and

j8 I1 þ j12 I2 ¼ �12 I2

Solving for I2 gives

I2 ¼ 0:138ff�141� A

Next, V2 is given by

V2 ¼ �12 I2 ¼ 1:656ff39� V
Returning to the time domain,

v2 tð Þ ¼ 1:656 cos 4t þ 39�ð ÞV

Try it 
yourself 

in WileyPLUS
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E X A M P L E 1 1 . 9 - 2 Coupled Inductors INTERACT IVE EXAMPLE

The input to the circuit shown in Figure 11.9-6a is the voltage of the voltage source,

vs tð Þ ¼ 5:94 cos 3t þ 140�ð ÞV

The output is the voltage across the right-hand coil, vo(t). Determine the output voltage vo(t).

(a)

vo(t)

+

–

5 Ω

+
–vs(t)

4 H

5 H2 H

(b)

+

–

5 Ω j12 Ω

+
– j15 Ωj6 ΩVs( )ω Vo( )ω

l( )ω

FIGURE 11.9-6 The circuit considered in Example 11.9-2 represented (a) in the time domain and (b) in the frequency domain.

Solution
The input voltage is a sinusoid. The output voltage is also a sinusoid and has the same frequency as the input
voltage. Apparently, the circuit is at steady state. Consequently, the circuit in Figure 11.9-6a can be represented in
the frequency domain, using phasors and impedances. Figure 11.9-6b shows the frequency-domain representation
of the circuit from Figure 11.9-6a.

The phasor corresponding to the input sinusoids is

Vs oð Þ ¼ 5:94ff140� V
The circuit in Figure 11.9-6b consists of a single mesh. Notice that the mesh current I(o) enters the undotted ends of
both coils. Apply KVL to the mesh to get

5 I oð Þ þ j12 I oð Þ þ j6 I oð Þð Þ þ j6 I oð Þ þ j15 I oð Þð Þ � 5:94ff140� ¼ 0

5 I oð Þ þ j12þ j6þ j6þ j15ð ÞI oð Þ � 5:94ff140� ¼ 0

Solving for I(o) gives

I oð Þ ¼ 5:94ff140�
5þ j 12þ 6þ 6þ 15ð Þ ¼

5:94ff140�
5þ j39

¼ 5:94ff140�
39:3ff83� ¼ 0:151ff57� A

Notice that the voltage Vo(o) across the right-hand coil and the mesh current I(o) adhere to the passive convention.
The voltage across the right-hand coil is given by

Vo oð Þ ¼ j15 I oð Þ þ j6 I oð Þ ¼ j21 I oð Þ ¼ j21ð0:151ff57�Þ
¼ ð21ff90�Þð0:151ff57�Þ
¼ 3:17ff147� V

In the time domain, the output voltage is given by

vo tð Þ ¼ 3:17 cos 3t þ 147�ð ÞV

Try it 
yourself 

in WileyPLUS
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E X A M P L E 1 1 . 9 - 3 Coupled Inductors INTERACT IVE EXAMPLE

The input to the circuit shown in Figure 11.9-7a is the voltage of the voltage source,

vs tð Þ ¼ 5:94 cos 3t þ 140�ð ÞV

The output is the voltage across the right-hand coil, vo(t). Determine the output voltage vo(t).

(a)

vo(t)

+

–

5 Ω

+
–vs(t)

4 H

5 H2 H

(b)

+

–

5 Ω j12 Ω

+
– j15 Ωj6 ΩVs( )ω Vo( )ω

l( )ω

FIGURE 11.9-7 The circuit considered in Example 11.9-3, represented (a) in the time domain and (b) in the frequency domain.

Solution
The circuit shown in Figure 11.9-7b is very similar to the circuit shown in Figure 11.9-6a. There is only one difference:
the dot of the left-hand coil is located at the right of the coil in Figure 11.9-6a and at the left of the coil in Figure 11.9-7a.
As in Example 11.9-2, our first step is to represent the circuit in the frequency domain, using phasors and impedances.
Figure 11.9-7b shows the frequency-domain representation of the circuit from Figure 11.9-7a.

The phasor corresponding to the input sinusoids is

Vs oð Þ ¼ 5:94ff140� V
The circuit in Figure 11.9-7 consists of a single mesh. Notice that the mesh current I(o) enters the dotted end of the
left-hand coil and the undotted end of the right-hand coil. Apply KVL to the mesh to get

5 I oð Þ þ j12 I oð Þ � j6 I oð Þð Þ þ �j6 I oð Þ þ j15 I oð Þð Þ � 5:94ff140� ¼ 0

5 I oð Þ þ j12� j6� j6þ j15ð Þ I oð Þ � 5:94ff140� ¼ 0

Solving for I(o) gives

I oð Þ ¼ 5:94ff140�
5þ j 12� 6� 6þ 15ð Þ ¼

5:94ff140�
5þ j15

¼ 5:94ff140�
15:8ff71:6 ¼ 0:376ff68:4� A

Notice that the voltage Vo(o) across the right-hand coil and the mesh current I(o) adhere to the passive convention.
The voltage across the right-hand coil is given by

Vo oð Þ ¼ j15 I oð Þ � j6 I oð Þ ¼ j9 I oð Þ ¼ j9ð0:376ff68:4�Þ
¼ ð9ff90�Þð0:376ff68:4�Þ
¼ 3:38ff158:4� V

In the time domain, the output voltage is given by

vo tð Þ ¼ 3:38 cos 3t þ 158:4�ð Þ V

Try it 
yourself 

in WileyPLUS
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EXERCISE 11.9-1 Determine the voltage vo for the circuit of
Figure E 11.9-1.

Hint: Write a single mesh equation. The currents in the two coils are
equal to each other and equal to the mesh current.

Answer: vo ¼ 14 cos 4t V

EXERCISE 11.9-2 Determine the voltage vo for the circuit of
Figure E 11.9-2.

Hint: This exercise is the same as Exercise 11.9-1, except for the
position of the dot on the vertical coil.

Answer: vo ¼ 18 cos 4t V

EXERCISE 11.9-3 Determine the current io for the circuit of Figure
E 11.9-3.

Hint:The voltage across the vertical coil is zero because of the short circuit.
The voltage across the horizontal coil induces a current in the vertical coil.
Consequently, the current in the vertical coil is not zero.

Answer: io ¼ 1.909 cos (4t � 90�) A

EXERCISE 11.9-4 Determine the current io for the circuit of Figure
E 11.9-4.

Hint: This exercise is the same as Exercise 11.9-3, except for the
position of the dot on the vertical coil.

Answer: io ¼ 0.818 cos (4t � 90�) A

11.10 T h e I d e a l T r a n s f o rm e r

One major use of transformers is in ac power distribution. Transformers possess the ability to step up or
step down ac voltages or currents. Transformers are used by power utilities to raise (step up) the voltage
from 10 kV at a generating plant to 200 kV or higher for transmission over long distances. Then, at a
receiving plant, transformers are used to reduce (step down) the voltage to 220 or 110 V for use by the
customer (Coltman, 1988).

In addition to power systems, transformers are commonly used in electronic and communica-
tion circuits. They provide the ability to raise or reduce voltages and to isolate one circuit from
another.

One of the coils, typically drawn on the left of the diagram of a transformer, is designated as the
primary coil, and the other is called the secondary coil or winding. The primary coil is connected to the
energy source, and the secondary coil is connected to the load.

24 cos 4t V vo

+

–

+
–

4 H

6 H

10 H

FIGURE E 11.9-1

24 cos 4t V +
–

4 H

6 H

10 H vo

+

–

FIGURE E 11.9-2

24 cos 4t V io+
–

4 H

6 H

10 H

FIGURE E 11.9-3

24 cos 4t V io+
–

4 H

6 H

10 H

FIGURE E 11.9-4

Try it 
yourself 

in WileyPLUS
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An ideal transformer is a model of a transformer with a coupling coefficient equal to unity.

The symbol for the ideal transformer is shown in Figure 11.10-1, where N1 and N2 are the number of
turns in the primary and secondary coils. The time-domain representation of the transformer is shown in
Figure 11.10-1a. In the time domain, the two defining equations for an ideal transformer are

v2 tð Þ ¼ N2

N1
v1 tð Þ ð11:10-1Þ

and i1 tð Þ ¼ �N2

N1
i2 tð Þ ð11:10-2Þ

where N2=N1 ¼ n is called the turns ratio of the transformer. The use of transformers is usually limited
to non-dc applications because the primary and secondary windings behave as short circuits for a steady
current.

The frequency-domain representation of the transformer is shown in Figure 11.10-1b. The
operation of the ideal transformer is the same in the time domain as in the frequency domain. In the
frequency domain, the two defining equations for an ideal transformer are

V2 ¼ N2

N1
V1 ð11:10-3Þ

and I1 ¼ �N2

N1
I2 ð11:10-4Þ

The vertical bars in Figure 11.10-1 indicate the iron core, and we write ideal with the transformer to
ensure recognition of the ideal case. An ideal transformer can be modeled using dependent sources, as
shown in Figure 11.10-2.

(a)

i1(t)
N1 : N2

Ideal

i2(t)

v1(t)

+

–

v2(t)

+

–

(b)

I1
N1 : N2

Ideal

I2

V1

+

–

V2

+

–

FIGURE 11.10-1 Circuit symbol for an ideal transformer. The ideal transformer has the same representation in (a) the
time domain and (b) the frequency domain.

(a) (b)

i1(t) i1(t) i2(t)
N1 : N2

Ideal

i2(t)

v1(t)

+

–

v1(t)

+

–

v2(t)

+

–

v2(t)

+

–

i2(t)
N2

N1

N2

N1
v1(t)

+

–

FIGURE 11.10-2 (a) Ideal transformer and (b) an equivalent circuit.
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Notice that the voltage and current of both coils of the transformer in Figure 11.10-1 adhere to
the passive convention. The instantaneous power absorbed by the ideal transformer is

p tð Þ ¼ v1 tð Þi1 tð Þ þ v2 tð Þi2 tð Þ ¼ v1 tð Þ �ni2 tð Þð Þ þ nv1 tð Þð Þi2 tð Þ ¼ 0 ð11:10-5Þ

The ideal transformer is said to be lossless because instantaneous power absorbed by it is zero.
A similar argument shows that the ideal transformer absorbs zero complex power, zero
average power, and zero reactive power.

Figure 11.10-3 shows an ideal transformer that is used to connect a source to a load. The coil
connected to the source is called the primary coil, and the coil connected to the load is called the
secondary coil. Circuit 2 is connected to circuit 1 through the magnetic coupling of the transformer, but
there is no electrical connection between these two circuits. Because the ideal transformer is lossless, all
of the power delivered to the ideal transformer by circuit 1 is in turn delivered to circuit 2 by the ideal
transformer.

Let us consider the circuit of Figure 11.10-4, which has a load impedance Z2 magnetically
coupled to a voltage source, using an ideal transformer.

The input impedance of the circuit connected to the voltage source is

Z1 ¼ V1

I1
Z1 is called the impedance, seen at the primary of the transformer, or the impedance, seen by the

voltage source.
Using Eqs. 11.10-3 and 11.10-4, we can express Z1 as

Z 1 ¼
N1
N2

V2

� N2
N1

I 2
¼ � N1

N2

� �2 V2

I 2

The current and voltage of the load impedance, V2 and I2, do not adhere to the passive
convention, so

V2 ¼ �Z 2 I 2

Therefore, for Z1, we have

Z 1 ¼ N1

N2

� �2

Z 2

The source experiences the impedance Z1, which is equal to Z2 scaled by the factor (N 1/N 2)2. We
sometimes say that Z1 is the impedance Z2 reflected to the primary of the transformer.

i1(t) i2(t)

v1(t)

+

–

v2(t)

+

–

Circuit 1
(source)

Primary Secondary

Circuit 2
(load)

N1 : N2

Ideal

FIGURE 11.10-3 An ideal transformer used to couple two circuits
magnetically.

I1 I2
+
–V1 V2Z2

+

–

Primary Secondary

N1 : N2

Ideal

FIGURE 11.10-4 An ideal transformer used to couple an
impedance magnetically to a sinusoidal voltage source. This circuit
is represented in the frequency domain, using impedances and
phasors.
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Suppose we are going to connect a load impedance to a source. If we connect the load
impedance directly to the source, then the source sees the load impedance Z2. In contrast, if we
connect the load impedance to the source, using an ideal transformer, the source sees the impedance
Z1. In this context, we say that the transformer has changed the impedance seen by the source from
Z2 to Z1.

We can formalize this result as the circuit equivalence illustrated in Figure 11.10-5.
Figure 11.10-5a shows circuit 1 connected to the left-hand coil of an ideal transformer. An
impedance, Z(o), is connected in parallel with the right-hand coil of the ideal transformer. In
Figure 11.10-5b, the ideal transformer and impedance have been replaced by a single equivalent
impedance, Zeq(o). The equivalent impedance is related to the original impedance by

Zeq oð Þ ¼ N1

N2

� �2

Z oð Þ ¼ 1

n2
Z oð Þ

The two circuits in Figure 11.10-5 are equivalent. All the currents and voltages of circuit 1, including
I(o) and V(o), are the same in Figure 11.10-5b as they are in Figure 11.10-5a. We can determine
the values of I(o) and V(o) in Figure 11.10-5a by calculating values of I(o) and V(o) in Figure
11.10-5b.

Circuit 1

+

–

V( )ω Z( )ω

l( )ω
N1 : N2

(a)

Circuit 1

+

–

V( )ω

l( )ω

(b)

Zeq( ) =ω 2
 Z( )ω

N1
N2

FIGURE 11.10-5 The circuit shown in (b) is equivalent to the circuit shown in (a).

E X A M P L E 1 1 . 1 0 - 1 Maximum Power Transfer

Often, we can use an ideal transformer to represent a transformer that connects the output of a stereo amplifier V1 to
a stereo speaker, as shown in Figure 11.10-6. Find the value of the turns ratio n that is required to cause maximum
power to be transferred to the load when RL ¼ 8 V and Rs ¼ 48 V.

V1

Rs

RL
+
–

Ideal

1 : n

FIGURE 11.10-6 Output of an amplifier connected
to a stereo speaker with resistance RL.

Solution
The impedance seen at the primary due to RL is

Z1 ¼ RL

n2
¼ 8

n2

Try it 
yourself 

in WileyPLUS
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To achieve maximum power transfer, we require that

Z1 ¼ Rs

Because Rs ¼ 48 V, we require that Z1 ¼ 48 V, so

n2 ¼ 8

48
¼ 1

6

and, therefore,

N2

N1

� �2

¼ 1

6

or N1 ¼
ffiffiffi
6

p
N2

E X A M P L E 1 1 . 1 0 - 2 Transformer Circuit INTERACT IVE EXAMPLE

The input to the circuit shown in Figure 11.10-7 is the voltage of the voltage source vs(t). The output is the voltage
across the 9-H inductor, vo(t). Determine the output voltage vo(t).

Solution
The input voltage is a sinusoid. The output voltage is also a sinusoid and has the same frequency as the input
voltage. Apparently, the circuit is at steady state. Consequently, the circuit in Figure 11.10-7 can be represented in
the frequency domain, using phasors and impedances. Figure 11.10-8 shows the frequency-domain representation
of the circuit from Figure 11.10-7.

In Figure 11.10-8, the impedance of the inductor is connected in series with the impedance of the 30-V
resistor. This series impedance is connected in parallel with the right-hand coil of the transformer. Replace the
transformer and the series impedance with the equivalent impedance, as shown in Figure 11.10-9. The equivalent
impedance is given by

Zeq ¼ 3

2

� �2

30þ j36ð Þ ¼ 67:5þ j81 V

i(t) 8 Ω 30 Ω

9 H

3 : 2

+
– vs(t) = 75.5 cos (4t + 26°) V vo(t)

+

–

FIGURE 11.10-7 The circuit considered in Example 11.10-2.

8 Ω

j36 Ω

30 Ω
3 : 2

+
–

+

–

l( )ω

Vs( ) = 75.5ω 26° V Vo( )ω

FIGURE 11.10-8 The circuit from Figure 11.10-7, represented
in the frequency domain, using impedances and phasors.

8 Ω

+
–

l( )ω

Vs( ) = 75.5ω 26° V Zeq( ) =ω 2
 (30 + j36) Ω3

2
FIGURE 11.10-9 The circuit from Figure 11.10-8, after
replacing the transformer and the impedance of the series
resistor and inductor with the equivalent impedance.

Try it 
yourself 

in WileyPLUS
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In Figure 11.10-9, the impedance of the 8-V resistor is connected in series with the equivalent impedance
Zeq(o). The current I(o) is the current in this series impedance, and Vs(o) is the voltage across the series
impedance. Applying Ohm’s law gives

I oð Þ ¼ Vs oð Þ
8þ Zeq oð Þ ¼

75:5ff26�
8þ 67:5þ j81

¼ 75:5ff26�
110:73ff47� ¼ 0:682ff�21� A ð11:10-6Þ

Because the circuits in Figures 11.10-8 and 11.10-9 are equivalent, the current I(o) in Figure 11.10-10 is also
given by Eq. 11.10-6. Figure 11.10-10 shows the circuit from Figure 11.10-8 redrawn with the current I(o) labeled.

Also, the current in the right-hand coil of the transformer has been labeled as I2(o). Because I(o) and I2(o)
are the currents in the coils of the ideal transformer, they are related by the equations describing the transformer:

I2 oð Þ ¼ � 3

2

� �
I oð Þ ¼ �1:023ff�21� A

Notice that I2(o) and Vo(o), the current and voltage of the j36-V impedance in Figure 11.10-10, do not adhere to
the passive convention. Consequently,

Vo oð Þ ¼ �j36 I2 oð Þ ¼ j36ð Þð1:023ff�21�Þ ¼ ð36ff90�Þð1:023ff�21�Þ ¼ 36:82ff69� V
In the time domain, the output voltage is given by

vo tð Þ ¼ 36:82 cos 4t þ 69�ð Þ V

8 Ω

j36 Ω
30 Ω

3 : 2

+
–

+

–

Vs( ) = 75.5ω 26° V

I2( )ωl( ) = 0.682ω –21° A

Vo( )ω
FIGURE 11.10-10 The circuit from Figure 11.10-9
after determining the current I(o).

E X A M P L E 1 1 . 1 0 - 3 Complex Power in a Transformer Circuit

Determine the value of the power (a) supplied by the voltage source, (b) received by the impedance Z2, and
(c) received by the transformer in the circuit shown in Figure 11.10-11. (The source voltage in Figure 11.10-11 has
units of V rather than Vrms.)

+
–

1 : 5

125 + j 50 Ω

Z1 = 4 + j 8 Ω

I1 Z2 = 
120   15°  V

I2

+

–

V2

+

–

V1

FIGURE 11.10-11 The circuit considered in Example 11.10-3.

Solution
(a) Referring to Figure 11.10-5, we can replace the transformer and impedance Z2 by an equivalent impedance as

shown in Figure 11.10-12. The equivalent impedance in Figure 11.10-12 is given by

Z eq ¼ 1

5

� �2

125þ j50ð Þ ¼ 5þ j2 V

Try it 
yourself 

in WileyPLUS
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EXERCISE 11.10-1 Determine the impedance Zab for the circuit of Figure E 11.10-1. All the
transformers are ideal.

Z

ZZZ
a

b

1 : 2 3 : 1 1 : 2

Figure E 11.10-1

Answer: Zab ¼ 4.063Z

Using KVL and Ohm’s laws I 1 ¼ 120ff0�
4þ j8ð Þ þ 5þ j2ð Þ ¼ 8:92ff�48� A

The complex power delivered by the voltage source is given by

ð120ff15�Þð8:92ff�48�Þ*
2

¼ 358þ j398 VA

+
–

Z1 = 4 + j 8 Ω

I1
+

–

V1 Zeq120   15°  V

FIGURE 11.10-12 The circuit from Figure 11.10-3 after replacing the transformer
and impedance Z2 by an equivalent circuit.

(b) The current in the impedance Z2 in Figure 11.10-11, using Eq. 11.10-4:

I 2 ¼ � 1

5
I 1 ¼ � 1

5
ð8:92ff�48�Þ ¼ 1:784ff132� A

Notice that I2 and V2 , the current and voltage of Z2, do not adhere to the passive convention. Consequently, the
complex power received by the impedance Z2 is given by

� jI 1j 2
2

Z 2 ¼ � 1:7842

2
125þ j50ð Þ ¼ �198:9� j79:56 VA

(c) The voltage V2 in Figure 11.10-11 is given

V 2 ¼ �Z 2 I 2 ¼ � 125þ j50ð Þð1:784ff132�Þ ¼ 240:2ff�26:2� V

(Once again, the minus sign is needed because I2 and V2 do not adhere to the passive convention.) Using
Eq. 11.10-3, we calculate

V 1 ¼ 1

5
V 2 ¼ 240:2

5 ff�26:2� ¼ 48:0ff�26:2� V

Finally, the complex power delivered to the transformer is:

V 1 I 1*

2
þ V 2 I 2*

2
¼ ð48:0ff�26:2�Þð8:92ff�48�Þ*

2
þ ð240:2ff�26:2�Þð1:784ff132�Þ*

2
¼ ð214ff21:8�Þ þ ð214ff�158:2�Þ
¼ 0 VA
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11.11 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the specifica-
tions have been satisfied. In addition, computer output must be reviewed to guard against data-entry
errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

E X A M P L E 1 1 . 1 1 - 1 How Can We Check Power
in AC Circuits?

The circuit shown in Figure 11.11-1a has been analyzed using a computer, and the results are tabulated in Figure
11.11-1b. The labels Xp and Xs refer to the primary and secondary coils of the transformer. The passive convention
is used for all elements, including the voltage sources, which means that

30ð Þ 1:76ð Þ
2

cos 133� � 0ð Þ ¼ �18:00

is the average power absorbed by the voltage source. The average power supplied by the voltage source is
þ18.00 W.

How can we check that the computer analysis of this circuit is indeed correct?

Solution
Several things can be easily checked.

(1) The element current and voltage of each inductor should be 90� out of phase with each other so that the
average power delivered to each inductor is zero. The element current and voltage of both L1 and L2 satisfy
this condition.

(2) An ideal transformer absorbs zero average power. The sum of the average power absorbed by the
transformer primary and the secondary is

5:2ð Þ 1:76ð Þ
2

cos 9� � �47�ð Þð Þð Þ þ 7:8ð Þ 1:17ð Þ
2

cos 133� � 9�ð Þ ¼ 2:56þ �2:55ð Þ  0W

so this condition is satisfied.

+
– vin(t) = 30 cos 2t V R2 = 12 Ω

R1 = 10 Ω L1 = 5 H

0

1
3 4

5

2
2:3

Ideal

(a) (b)

Vin 30 ∠ 0       30 ∠ 0°        1.76 ∠ 133°
R1    17.6 ∠ –47°    1.76 ∠ –47°
L1  17.6 ∠ 43°       1.76 ∠ –47°   
Xp  5.2 ∠ 9°     1.76 ∠ 47° 
Xs  7.8 ∠ 9°     1.17 ∠ 133° 
R2    7.8 ∠ 9°      0.65 ∠ 9°    
L2

1
1
2
3
4
4
4 

0
2
3
0
5
5
5 

10
5
2
3

12
4   7.8 ∠ 9°    0.98 ∠ –81°

Element Voltage Current

L2 = 4 H

Steady-state response: = 2 rad/sω

FIGURE 11.11-1 (a) A circuit and (b) the results from computer analysis for the circuit.
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(3) All of the power delivered to the primary of the transformer is in turn delivered to the load. In this example,
the load consists of the inductor L2 and the resistor R2. Because the average power delivered to the inductor
is zero, all the power delivered to the transformer primary should be delivered by the secondary to the
resistor R2. The power delivered to the transformer primary is

5:2ð Þ 1:76ð Þ
2

cos 9� � �47�ð Þð Þ ¼ 2:56W

The power delivered to R2 is

7:8ð Þ 0:65ð Þ
2

cos 0ð Þ ¼ 2:53W

There seems to be some roundoff error in the voltages and currents provided by the computer. Nonetheless, it
seems reasonable to conclude that all the power delivered to the transformer primary is delivered by the
secondary to the resistor R2.

(4) The average power supplied by the voltage source should be equal to the average power absorbed by the
resistors. We have already calculated that the average power delivered by the voltage source is 18 W. The
average power absorbed by the resistors is

17:6ð Þ 1:76ð Þ
2

cos 0ð Þ þ 7:8ð Þ 0:65ð Þ
2

cos 0ð Þ ¼ 15:49þ 2:53ð Þ ¼ 18:02W

so this condition is satisfied.

Because these four conditions are satisfied, we are confident that the computer analysis of the circuit is correct.

1 1 . 1 2 D E S I G N E X A M P L E Maximum Power Transfer

The matching network in Figure 11.12-1 is used to interface the source with the load, which means that the
matching network is used to connect the source to the load in a desirable way. In this case, the purpose of the
matching network is to transfer as much power as possible to the load. This problem occurs frequently enough that
it has been given a name, the maximum power transfer problem.

An important example of the application of maximum power transfer is the connection of a cellular phone or
wireless radio transmitter to the cell’s antenna. For example, the input impedance of a practical cellular telephone
antenna is Z ¼ (10 þ j6.28) V.

Describe the Situation and the Assumptions
The input voltage is a sinusoidal function of time. The circuit is at steady state. The matching network is to be
designed to deliver as much power as possible to the load.

+
–

ωvs(t) = A cos ( t)
A = 10 V

= 2 × 105πω

Rs = 1 Ω

R = 10 Ωvo(t)

+

–

Ls = 1 Hμ L = 10 Hμ

Matching
network

Source Load

FIGURE 11.12-1 Design the matching network to transfer maximum power to the load where the load is
the model of an antenna of a wireless communication system.
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State the Goal
To achieve maximum power transfer, the matching network should match the load and source impedances. The
source impedance is

Zs ¼ Rs þ joLs ¼ 1þ j 2 
 p 
 105	 

10�6
	 
 ¼ 1þ j0:628 V

For maximum power transfer, the impedance Zin, shown in Figure 11.12-2, must be the complex conjugate of Zs.
That is,

Zin ¼ Z*
s ¼ 1� j 0:628 V

Generate a Plan
Let us use a transformer for the matching network as shown in Figure 11.12-3. The impedance Zin will be a function
of n, the turns ratio of the transformer. We will set Zin equal to the complex conjugate of Zs and solve the resulting
equation to determine the turns ratio, n.

Act on the Plan

Zin ¼ 1

n2
R þ joLð Þ ¼ 1

n2
10þ j6:28ð Þ

We require that
1

n2
10þ j6:28ð Þ ¼ 1� j0:628

This requires both
1

n2
10 ¼ 1 ð11:12-1Þ

and
1

n2
6:28 ¼ �0:628 ð11:12-2Þ

Selecting n ¼ 3:16

(for example, N2 ¼ 158 and N1 ¼ 50) satisfies Eq. 11.12-1 but not Eq. 11.12-2. Indeed, no positive value of n will
satisfy Eq. 11.12-2.

We need to modify the matching network to make the imaginary part of Zin negative. This can be
accomplished by adding a capacitor, as shown in Figure 11.12-4. Then,

Zin ¼ 1

n2
R þ joL � j

1

oC

� �
¼ 1

n2
10þ j6:28� j

1

2p 
 105 
 C

� �

+

–

10 Ω

j6.28 Ω

Matching
network

LoadZin

Vo( )ω

FIGURE 11.12-2 Zin is the impedance seen
looking into the matching network.

–

R = 10 Ω

1:n

Ideal

Load
Matching
network

Zin

+

μL = 10   H

Vo( )ω

FIGURE 11.12-3 Using an ideal transformer
as the matching network.
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11.13 SUMMARY

With the adoption of ac power as the generally used conven-
tional power for industry and the home, engineers became
involved in analyzing ac power relationships.
The instantaneous power delivered to this circuit element is
the product of the element voltage and current. Let v(t) and
i(t) be the element voltage and current, chosen to adhere to
the passive convention. Then p(t) ¼ v(t) i(t) is the instanta-
neous power delivered to this circuit element. Instantaneous
power is calculated in the time domain.

The instantaneous power can be a quite complicated function
of t. When the element voltage and current are periodic
functions having the same period, T, it is convenient to

calculate the average power P ¼ 1
T

Zt0þT

t0

i tð Þv tð Þ dt.

The effective value of a current is the constant (dc) current
that delivers the same average power to a 1-V resistor as the
given varying current. The effective value of a voltage is the

We require that

1

n2
10þ j6:28� j

1

2p 
 105 
 C

� �
¼ 1� j0:628

This requires both

1

n2
10 ¼ 1 ð11:12-3Þ

and
1

n2
6:28� 1

2p 
 105 
 C

� �
¼ � 0:628 ð11:12-4Þ

First, solving Eq. 11.12-3 gives

n ¼ 3:16

Next, solving Eq. 11.12-4 gives
C ¼ 0:1267 mF

and the design is complete.

Verify the Proposed Solution
When n ¼ 3.16 and C ¼ 0.1267 mF, the input impedance of the matching network is

Zin ¼ 1

n2
R þ joL þ 1

joC

� �

¼ 1

3:162
10þ j 2p	 105

	 

10�5
	 
þ 1

j 2p	 105
	 


0:1267	 10�6
	 


 !

¼ 1� j0:629

as required.

10 Ω

1:n

Ideal

Load
Matching
network

Zin

+

–

Vo( )ω

ω
j

–
C j6.28 Ω

FIGURE 11.12-4 The matching network is modified by adding a capacitor.
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constant (dc) voltage that delivers the same average power as
the given varying voltage.
Consider a linear circuit with a sinusoidal input that has
reached steady state. All the element voltages and currents
will be sinusoidal, with the same frequency as the input. Such
a circuit can be analyzed in the frequency domain, using
phasors and impedances. Indeed, we can calculate the power
generated or absorbed in a circuit or in any element of a
circuit, in the frequency domain, using phasors. Table 11.5.1
summarizes the equations used to calculate average power,
complex power, or reactive power in the frequency domain.

Because it is important to keep the current I as small as possible
in the transmission lines, engineers strive to achieve a power
factor close to 1. The power factor is equal to cos y, where y is
the phase angle difference between the sinusoidal steady-state
load voltage and current. A purely reactive impedance in
parallel with the load is used to correct the power factor.
Finally, we considered the coupled coils and transformers.
Coupled inductors and transformers exhibit mutual inductance,
which relates the voltage in one coil to the change in current in
another coil. The equations that describe coupled coils and
transformers are collected in Tables 11.13-1 and 11.13-2.

Table 11.13-1 Coupled Inductors

DEVICE SYMBOL (INCLUDING
REFERENCE DIRECTIONS OF
ELEMENT VOLTAGES AND

CURRENTS)

DEVICE EQUATIONS
IN THE TIME
DOMAIN

DEVICE EQUATIONS
IN THE

FREQUENCY DOMAIN

i1(t) i2(t)

v1(t) L1 L2

M
+

–

v2(t)

+

–

v1 = L1 + M
di1
dt

di2
dt

v2 = L2 + M
di2
dt

di1
dt

V1 = j L1I1 + jω MI2ω

V2 = j L2I2 + jω MI1ω

i1(t) i2(t)

v1(t) L1 L2

M
+

–

v2(t)

+

–

  1 = L1v – M
di1
dt

di2
dt

  2 = L2v – M
di2
dt

di1
dt

V1 = j L1I1 – jω MI2ω

V2 = j L2I2 – jω MI1ω

Table 11.13-2 Ideal Transformers

DEVICE SYMBOL
(INCLUDING REFERENCE
DIRECTIONS OF ELEMENT

VOLTANGES AND
CURRENTS)

DEVICE EQUATIONS
IN THE

FREQUENCY DOMAIN

i1(t)
N1 : N2

Ideal

i2(t)

v1(t)

+

–

v2(t)

+

–

V1 = V2
N1

N2

I1 = – I2
N2

N1

i1(t)
N1 : N2

Ideal

i2(t)

v1(t)

+

–

v2(t)

+

– I1 = I2
N2

N1

V1 = – V2
N1

N2
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PROBLEMS

Section 11.3 Instantaneous Power and Average

Power

P 11.3-1 An RLC circuit is shown in Figure P 11.3-1.
Find the instantaneous power delivered to the inductor when
is ¼ 1 cos ot A and o ¼ 6283 rad/s.

is 20 Ω 10 mH 10   Fμ

Figure P 11.3-1

P 11.3-2 Find the average power absorbed by the 0.6-kV
resistor and the average power supplied by the current source
for the circuit of Figure P 11.3-2.

√0.6 kΩ

1.8 kΩ

1 24 Fμ4  5 cos 104t mA

Figure P 11.3-2

P 11.3-3 Use nodal analysis to find the average power
absorbed by the 20-V resistor in the circuit of Figure
P 11.3-3.

Answer: P ¼ 200 W

1 30 F10 Ω

20 Ω
ix 3ix A

+
– 10 Ω100 cos 6t V

Figure P 11.3-3

P 11.3-4 Nuclear power stations have become very complex
to operate, as illustrated by the control room of the Kozloduy
Nuclear Power Plant shown in Figure P 11.3-4a. One control
circuit has the model shown in Figure P 11.3-4b. Find the
average power delivered to each element.

Answer: Psource current ¼ �12:8 W

P8V ¼ 6:4 W

PL ¼ 0 W

Pvoltage source ¼ 6:4 W

(b)

(a)

1 5 H

8 Ω+
–16 cos 20t V 2 cos (20t + 45°) A2

Figure P 11.3-4 (a) The control room of the Kozloduy Nuclear
Power Plant. Image from Wikipedia. Copyright # 2009 Yovko
Lambrev. Creative Commons Attribution. Some rights reserved.
(b) A reactor control circuit.

P 11.3-5 Find the average power delivered to each element for
the circuit of Figure P 11.3-5.

v1

+

–

–

+20 cos 100t A 3 2v1 V10 Ω

15 Ωμ500 F

Figure P 11.3-5

P 11.3-6 A student experimenter in the laboratory encounters
all types of electrical equipment. Some pieces of test equipment
are battery operated or operate at low voltage so that any hazard
is minimal. Other types of equipment are isolated from elec-
trical ground so that there is no problem if a grounded object
makes contact with the circuit. Some types of test equipment,
however, are supplied by voltages that can be hazardous or
have dangerous voltage outputs. The standard power supply
used in the United States for power and lighting in laboratories
is the 120, grounded, 60-Hz sinusoidal supply. This supply
provides power for much of the laboratory equipment, so an
understanding of its operation is essential in its safe use
(Bernstein, 1991).

Problem available in WileyPLUS at instructor’s discretion.
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Consider the case in which the experimenter has one
hand on a piece of electrical equipment and the other hand on a
ground connection, as shown in the circuit diagram of Figure
P 11.3-6a.

The hand-to-hand resistance is 200 V. Shocks with an
energy of 30 J are hazardous to humans. Consider the model
shown in Figure P 11.3-6b, which represents the human with R.
Determine the energy delivered to the human in 1 s.

120 V

Load

Metal
caseFault

Electrical
ground

120 Vrms
+
–

j200 
load

R 
Human

(b)

(a)

Figure P 11.3-6 Student experimenter touching an electrical
device.

P 11.3-7 An RLC circuit is shown in Figure P 11.3-7 with
a voltage source vs ¼ 7 cos 10t V.

(a) Determine the instantaneous power delivered to the circuit
by the voltage source.

(b) Find the instantaneous power delivered to the inductor.

Answers:

(a) p ¼ 7:54 þ 15:2 cos 20t � 60:3�ð Þ W
(b) p ¼ 28:3 cos 20t � 30:6�ð Þ W

4 Ω+
–

0.3 H

vs(t) 50 mF

Figure P 11.3-7

P 11.3-8

(a) Find the average power delivered by the source to the
circuit shown in Figure P 11.3-8.

(b) Find the power absorbed by resistor R1.

Answers: (a) 30 W (b) 20 W

1 Ω 1 H

R1 = 1 Ω

10 cos t V +
–

Figure P 11.3-8

Section 11.4 Effective Value of a Periodic Waveform

P 11.4-1 Find the rms value of the current i for (a) i ¼ 2 � 4
cos 2t A, (b) i ¼ 3 sin p t þ ffiffiffi

2
p

cos p t A, and (c)i ¼ 2 cos
2t þ 4

ffiffiffi
2

p
cos 2t þ 45�ð Þ þ 12 sin 2t A.

Answers: (a) 2
ffiffiffi
3

p
(b) 2.35 A (c) 5

ffiffiffi
2

p
A

P 11.4-2 Determine the rms value for each of the waveforms
shown in Figure P 11.4-2.

Answers: (a) 4.10 V (b) 4.81 V (c) 4.10

(a)

6
v (V)

t (s)2 5 7 10

2

(b)

6
v (V)

t (s)2 5 7 10

2

6

2

(c)

v (V)

t (s)3 5 8 10

Figure P 11.4-2

P 11.4-3 Determine the rms value for each of the waveforms
shown in Figure P 11.4-3.

Answers: (a) 4.16 V (b) 4.16 V (c) 4.16
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(a)

6
v (V)

t (s)1

2

4 7 10

(b)

6
v (V)

t (s)1

2

4 7 10

(c)

6
v (V)

t (s)

2

3 6 9

Figure P 11.4-3

P 11.4-4 Find the rms value for each of the waveforms of
Figure P 11.4-4.

Answers: V rms ¼ 1:225 V
Irms ¼ 5 mA

(a)

Sinusoid +
Constant

tT–T/2 T/20

2

v(t) V

10

5 10 150–5

Sinusoidal

(b)

i(t) mA

t (ms)

Figure P 11.4-4

P 11.4-5 Find the rms value of the voltage v(t) shown in
Figure P 11.4-5.

Answer: Vrms ¼ 4.24 V

0.1 0.2 0.3 0.4 0.5–0.3 –0.2 –0.1 0

v(t) (V)

t (s)

9

Figure P 11.4-5

P 11.4-6 Find the effective value of the current waveform
shown in Figure P 11.4-6.

Answer: Ieff ¼ 8.66

10

5

–1 0 1 2 3 4 5

t (s)

Figure P 11.4-6

P 11.4-7 Calculate the effective value of the voltage across the
resistance R of the circuit shown in Figure P 11.4-7 when
o ¼ 100 rad/s.

Hint: Use superposition.

Answer: Veff ¼ 4.82 V

5 A10 cos   t Aω 1 2 Ω6 sin    t Aω R

Figure P 11.4-7

Section 11.5 Complex Power

P 11.5-1 The complex power delivered by the voltage
source in Figure P 11.5-1 is S ¼ 3.6 þ j7.2 V A. Determine the
values of the resistance R and inductance L.

Answer: R ¼ 4 V and L ¼ 2 H
i(t) R

L
+
– 12 cos 4t V

Figure P 11.5-1
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P 11.5-2 The complex power delivered by the voltage source
in Figure P 11.5-2 is S ¼ 18 þ j9 VA. Determine the values of
the resistance R and inductance L.

Answers: R ¼ 4 V and L ¼ 2 H

i(t)

LR+
– 12 cos 4t V

Figure P 11.5-2

P 11.5-3 Determine the complex power delivered by the
voltage source in the circuit shown in Figure P 11.5-3.

Answer: S ¼ 7.2 þ j3.6 VA

i(t)

+
– 12 cos 4t V

4 Ω

8 Ω 2 H

Figure P 11.5-3

P 11.5-4 Many engineers are working to develop photovoltaic
power plants that provide ac power. An example of a photo-
voltaic system is shown in Figure P 11.5-4a. A model of one
portion of the energy conversion circuit is shown in Figure
P 11.5-4b. Find the average, reactive, and complex power
delivered by the dependent source.

Answer: S ¼ þ j8=9 VA

v1

+

–

1 800 F 1 8)v1–(
+

–

1 Ω

2 Ω

5 mH

5 cos 400t A

(b)

(a)

Figure P 11.5-4 (a) An installation of solar panels in rural
Mongolia. (b) Model of part of the energy conversion circuit.

P 11.5-5 For the circuit shown in Figure P 11.5-5,
determine I and the complex power S delivered by the source
when V ¼ 50ff120�V rms.

Answer: S ¼ 100 þ j75 VA

I
20 Ω–j10 Ω

12 Ω j20 Ω

V +
–

Figure P 11.5-5

P 11.5-6 For the circuit of Figure P 11.5-6, determine the
complex power of the R, L, and C elements and show that the
complex power delivered by the sources is equal to the complex
power absorbed by the R, L, and C elements.

+
–

10 Ω

2 H

6 cos 10t A 5 cos 10t V

50 mF

Figure P 11.5-6

P 11.5-7 A circuit is shown in Figure P 11.5-7 with an
unknown impedance Z. However, it is known that v(t) ¼ 100 cos
(100tþ 20�) V and i(t)¼ 25 cos (100t�10�) A. (a) Find Z. (b) Find
the power absorbed by the impedance. (c) Determine the type of
element and its magnitude that should be placed across the
impedance Z (connected to terminals a–b) so that the voltage
v(t) and the current entering the parallel elements are in phase.

Answers: (a) 4ff30� V (b) 1082.5 W (c) 1.25 mF

i(t)

v(t)

+

–

Z

a

b

Figure P 11.5-7

P 11.5-8 Find the complex power delivered by the voltage
source and the power factor seen by the voltage source for the
circuit of Figure P 11.5-8.

v1+ –

1 3 F3 4) v1(

4 Ω

1 Ω

+
–10 cos 2t V

Figure P 11.5-8

# Courtesy of Chinneeb
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P 11.5-9 The circuit in Figure P 11.5-9 consists of a
source connected to a load.

(a) Suppose R ¼ 9 V and L ¼ 5 H. Determine the average,
complex, and reactive powers delivered by the source to
the load.

(b) Suppose R ¼ 15 V and L ¼ 3 H. Determine the average,
complex, and reactive powers delivered by the source to
the load.

(c) Suppose the source delivers 8.47 þ j14.12 VA to the load.
Determine the values of the resistance, R, and the induc-
tance, L.

(d) Suppose the source delivers 14.12 þ j8.47 VA to the load.
Determine the values of the resistance, R, and the induc-
tance, L.

+
–

LoadSource

24 cos (3t + 75°) V

R

L

Figure P 11.5-9

P 11.5-10 The circuit in Figure P 11.5-10 consists of a source
connected to a load. Suppose the amplitude of the source
voltage is doubled so that vi(t) ¼ 48 cos (3t þ 75�) V. How
will each of the following change?

(a) The impedance of the load
(b) The complex power delivered to the load
(c) The load current

+
–

LoadSource

vi(t) = 24 cos (3t + 75°)  V

R

L

Figure P 11.5-10

P 11.5-11 The circuit in Figure P 11.5-11 consists of a source
connected to a load. Suppose the phase angle of the source
voltage is doubled so that vi (t) ¼ 24 cos (3t þ 150�) V. How
will the following change?

(a) The impedance of the load
(b) The complex power delivered to the load
(c) The load current

+
–

LoadSource

vi(t) = 24cos(3t + 75°)  V

R

L

Figure P 11.5-11

P 11.5-12 The circuit in Figure P 11.5-12 consists of a source
connected to a load. The complex power delivered by the
source to the load is S¼ 6.61þ j1.98 VA. Determine the values
of R and C.

+
–

LoadSource

12 cos 2t  V 4 H

R C

Figure P 11.5-12

P 11.5-13 Design the circuit shown in Figure P 11.5-13,
that is, specify values for R and L so that the complex power
delivered to the RL circuit is 8 þ j6 VA.

Answer: R ¼ 5.76 V and L ¼ 2.16 H

R

+
– L12 cos 2t

Figure P 11.5-13

P 11.5-14 The source voltage in the circuit shown in Figure
P 11.5-14 is Vs ¼ 24ff30� V. Consequently,

I1 ¼ 3:13ff25:4� A; I2 ¼ 1:99ff52:9� A and V4 ¼ 8:88ff�10:6� V

Determine (a) the average power absorbed by Z4, (b) the
average power absorbed by Z1, and (c) the complex power
delivered by the voltage source. (All phasors are given using
peak, not rms, values.)

I2

I1

V4

+

–I3

+ –V2+ –V1

+
– VS

Z2 = 5 + j5Ω

Z4

Z1 = 4 – j2Ω

Z3 = 3 + j8Ω

Figure P 11.5-14

Section 11.6 Power Factor

P 11.6-1 An industrial firm has two electrical loads
connected in parallel across the power source. Power is sup-
plied to the firm at 4000 V rms. One load is 30 kW of heating
use, and the other load is a set of motors that together operate as
a load at 0.6 lagging power factor and at 150 kVA. Determine
the total current and the plant power factor.

Answer: I ¼ 42.5 A rms and pf ¼ 1=
ffiffiffi
2

p

P 11.6-2 Two electrical loads are connected in parallel to a
400-V rms, 60-Hz supply. The first load is 12 kVA at 0.7
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lagging power factor; the second load is 10 kVA at 0.8 lagging
power factor. Find the average power, the apparent power, and
the power factor of the two combined loads.

Answer: Total power factor ¼ 0.75 lagging

P 11.6-3 The source of Figure P 11.6-3 delivers 50 VA
with a power factor of 0.8 lagging. Find the unknown imped-
ance Z.

Answer: Z ¼ 6:39ff26:6� V

0° V20

6 Ω

Z+
–

j8 Ω

Figure P 11.6-3

P 11.6-4 Manned space stations require several continu-
ously available ac power sources. Also, it is desired to keep the
power factor close to 1. Consider the model of one communi-
cation circuit, shown in Figure P 11.6-4. If an average power
of 500 W is dissipated in the 20-V resistor, find (a) Vrms,
(b) Is rms, (c) the power factor seen by the source, and (d) jVsj.

0° V+
–

Is

IL

I

–j20 Ω
j20 Ω 20 Ω

+

–
V = ⎜V ⎜Vs

Figure P 11.6-4

P 11.6-5 Two impedances are supplied by V ¼ 100ff160�Vrms, as shown in Figure P 11.6-5, where I ¼
2ff190� A rms. The first load draws P1 ¼ 23:2 W, and Q1

¼ 50 VAR. Calculate I1, I2, the power factor of each imped-
ance, and the total power factor of the circuit.

I

V

I1

+
– Z1

I2

Z2

Figure P 11.6-5

P 11.6-6 A residential electric supply three-wire circuit from a
transformer is shown in Figure P 11.6-6a. The circuit model is
shown in Figure P 11.6-6b. From its nameplate, the refrigerator
motor is known to have a rated current of 8.5 A rms. It is
reasonable to assume an inductive impedance angle of 45� for a
small motor at rated load. Lamp and range loads are 100 W and
12 kW, respectively.

(a) Calculate the currents in line 1, line 2, and the neutral wire.
(b) Calculate: (i) Prefrig, Qrefrig, (ii) Plamp, Qlamp, and (iii) Ptotal,

Qtotal, Stotal, and overall power factor.
(c) The neutral connection resistance increases, because of

corrosion and looseness, to 20 V. (This must be included as
part of the neutral wire.) Use mesh analysis and calculate
the voltage across the lamp.

0° Vrms120

0° Vrms120

(a)

(b)

7.2 kV

120 Vrms

120 Vrms

Refrig

Lamp

Kitchen
range

Line 1

Neutral

Line 2

+
–

+
–

Refrig

Lamp

Range

Figure P 11.6-6 Residential circuit with selected loads.

P 11.6-7 A motor connected to a 220-V supply line from
the power company has a current of 7.6 A. Both the current
and the voltage are rms values. The average power delivered
to the motor is 1317 W.

(a) Find the apparent power, the reactive power, and the power
factor when o ¼ 377 rad/s.

(b) Find the capacitance of a parallel capacitor that will result
in a unity power factor of the combination.

(c) Find the current in the utility lines after the capacitor is
installed.

Answers: (a) pf ¼ 0.788 (b) C ¼ 56.5 mF (c) I ¼ 6.0 A rms

P 11.6-8 Two loads are connected in parallel across a
1000-V rms, 60-Hz source. One load absorbs 500 kW at 0.6
power factor lagging, and the second load absorbs 400 kW and
600 kVAR. Determine the value of the capacitor that should be
added in parallel with the two loads to improve the overall
power factor to 0.9 lagging.

Answer: C ¼ 2.2 mF

P 11.6-9 A voltage source with a complex internal imped-
ance is connected to a load, as shown in Figure P 11.6-9. The load
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absorbs 1 kW of average power at 100 V rms with a power factor
of 0.80 lagging. The source frequency is 200 rad/s.

(a) Determine the source voltage V1.
(b) Find the type and value of the element to be placed in

parallel with the load so that maximum power is transferred
to the load.

V1

6.4 Ω 24 mH

+
–

ZL VL

+

–

Figure P 11.6-9

P 11.6-10 The circuit shown in Figure P 11.6-10a can be
represented in the frequency domain as shown in Figure
P 11.6-10b. In the frequency domain, the value of the mesh
current is I ¼ 1:076ff�8:3 A.

(a) Determine the complex power supplied by the voltage
source.

(b) Given that the complex power received by Z1 is 6.945 þ
j 13.89 VA, determine the values of R1 and L1.

(c) Given that the real power received by Z3 is 4.63 W at a power
factor of 0.56 lagging, determine the values of R3 and L3.

+
–

R1
R2

C2

L1

R3 L3

48 cos (6t) V

(a)

Z1 = R1 + jωL1 

Z2 = R2 − j
 

Z3 = R3 + jωL3 

48  0° V +
– I

1
ωC2

(b)

Figure P 11.6-10

P 11.6-11 The circuit in Figure P 11.6-11 consists of a source
connected to a load. The source delivers 14.12 W to the load at
a power factor of 0.857 lagging. What are the values of the
resistance R and the inductance L?

+
–

LoadSource

R

L24 cos (3t +75°) V

Figure P 11.6-11

P 11.6-12 The circuit in Figure P 11.6-12 consists of a source
connected to a load. Determine the impedance of the load and
the complex power delivered by the source to the load under
each of the following conditions:

(a) The source delivers 14.12 + j8.47 VA to load A and 8.47 +
j14.12 VA to load B.

(b) The source delivers 8.47 + j14.12 VA to load A, and the
impedance of load B is 15 + j9 V.

(c) The source delivers 14.12 W to load A at a power
factor of 0.857 lagging, and the impedance of load B is
9 + j15 V.

(d) The impedance of load A is 15 + j9V, and the impedance of
load B is 9 + j15 V.

+
–

LoadSource

24 cos (3t + 75°) V A B

Figure P 11.6-12

P 11.6-13 Figure P 11.6-13 shows two possible representa-
tions of an electrical load. One of these representations is used
when the power factor of the load is lagging, and the other is
used when the power factor is leading. Consider two cases:

(a) At the frequency o¼ 4 rad/s, the load has the power factor
pf ¼ 0.8 lagging.

(b) At the frequency o¼ 4 rad/s, the load has the power factor
pf ¼ 0.8 leading.

In each case, choose one of the two representations of the load.
Let R ¼ 6 V and determine the value of the capacitance C or the
inductance L.

L C

R R

Figure P 11.6-13

P 11.6-14 Figure P 11.6-14 shows two possible representa-
tions of an electrical load. One of these representations is used
when the power factor of the load is lagging, and the other is
used when the power factor is leading. Consider two cases:

(a) At the frequency o¼ 4 rad/s, the load has the power factor
pf ¼ 0.8 lagging.

(b) At the frequency o = 4 rad/s, the load has the power factor
pf ¼ 0.8 leading.

In each case, choose one of the two representations of the load.
Let R ¼ 6 V and determine the value of the capacitance C or the
inductance L.
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L CR R

Figure P 11.6-14

P 11.6-15 Figure P 11.6-15 shows two electrical loads.
Express the power factor of each load in terms of o, R, and L.

L

R

LR

(b)(a)

Figure P 11.6-15

P 11.6-16 Figure P 11.6-16 shows two electrical loads.
Express the power factor of each load in terms of o, R, and C.

CR

C

R

(b)(a)

Figure P 11.6-16

P 11.6-17 The source voltage in the circuit shown in Figure
P 11.6-17 is Vs ¼ 24ff30� V. Consequently,

II ¼ 3:13ff25:4� A; I2 ¼ 1:99ff52:9� A and V4 ¼ 8:88ff�10:6� V

Determine (a) the power factor of Z1, (b) the power factor of
Z3, and (c) the power factor of Z4. Include the indication of
leading or lagging.

I2

I1

V4

+

–I3

+ –V2+ –V1

+
– VS

Z2 = 5 + j5Ω

Z4

Z1 = 4 – j2Ω

Z3 = 3 + j8Ω

Figure P 11.6-17

P 11.6-18 The current source of the circuit shown in Figure
P 11.6-18 supplies 131.16 – j36.048 VA and the voltage
source supplies 64.2275 – 87.8481VA. Determine the values
of the impedances Z1 and Z2.

+ –

−30°  V

Z 2Z 115°  A2

100

Figure P 11.6-18

Section 11.7 The Power Superposition Principle

P 11.7-1 Find the average power absorbed by the 2-V resistor
in the circuit of Figure P 11.7-1.

Answer: P ¼ 413 W

1 10012 Ω

2 Ω

14 A

+ –

F

110 cos 20t V

0.2 H

Figure P 11.7-1

P 11.7-2 Find the average power absorbed by the 8-V resistor
in the circuit of Figure P 11.7-2.

Answer: P ¼ 22 W

+ –

1 8
8 Ω

mF 1 mH
40 cos 8000t V5 cos 2000t A

Figure P 11.7-2

P 11.7-3 For the circuit shown in Figure P 11.7-3, determine
the average power absorbed by each resistor, R1 and R2. The
voltage source is vs ¼ 10 þ 10 cos (5t þ 40�) V, and the current
source is is ¼ 4 cos (5t � 30�) A.

+
– vsΩ10

2 H

Ω5

1 10

6i2
F

i2

is
R1

R2

Figure P 11.7-3

P 11.7-4 For the circuit shown in Figure P 11.7-4, determine
the effective value of the resistor voltage vR and the capacitor
voltage vC.
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4 cos 10 t V +
– Ω2

6 sin 5 t V +
– 20 mF

+

–

+

–

vC

vR

Figure P 11.7-4

Section 11.8 The Maximum Power Transfer

Theorem

P 11.8-1 Determine values of R and L for the circuit shown in
Figure P 11.8-1 that cause maximum power transfer to the load.

Answer: R ¼ 800 V and L ¼ 1.6 H

+
–

4000 Ω

Source Load

μ0.5 F

R

L5 cos (1000t + 60°) V

Figure P 11.8-1

P 11.8-2 Is it possible to choose R and L for the circuit shown
in Figure P 11.8-2 so that the average power delivered to the
load is 12 mW?

Answer: Yes

25 kΩ

Source Load

μ0.2 F2.5 cos 100t mA

R

L

Figure P 11.8-2

P 11.8-3 The capacitor has been added to the load in the
circuit shown in Figure P 11.8-3 to maximize the power
absorbed by the 4000-V resistor. What value of capacitance
should be used to accomplish that objective?

Answer: 0.1 mF

800 Ω

4000 Ω

0.32 H

+
– 5 cos (5000t + 45°) V C

Source Load

Figure P 11.8-3

P 11.8-4 What is the value of the average power delivered to
the 2000-V resistor in the circuit shown in Figure P 11.8-4?
Can the average power delivered to the 2000-V resistor be
increased by adjusting the value of the capacitance?

Answers: 8 mW. No.

400 Ω

2000 Ω

0.8 H

+
–5 cos 1000t V

Source Load

μ1 F

Figure P 11.8-4

P 11.8-5 What is the value of the resistance R in Figure P 11.8-5
that maximizes the average power delivered to the load?

R

2000 Ω

0.8 H

+
–5 cos 1000t V

Source Load

μ1 F

Figure P 11.8-5

Section 11.9 Coupled Inductors

P 11.9-1 Two magnetically coupled coils are connected
as shown in Figure P 11.9-1. Show that an equivalent induc-
tance at terminals a–b is Lab ¼ L1 þ L2 � 2M.

L1

M

L2

a

b

Figure P 11.9-1

P 11.9-2 Two magnetically coupled coils are shown con-
nected in Figure P 11.9-2. Find the equivalent inductance Lab.

L1 L2
M

a

b

Figure P 11.9-2

P 11.9-3 The source voltage of the circuit shown in
Figure P 11.9-3 is vs ¼ 141.4 cos 100t V. Determine i1(t)
and i2(t).

Ω2

vs 0.4 H 1.6 H Ω200

M = 0.6 H

i1

i2

+
–

Figure P 11.9-3
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P 11.9-4 A circuit with a mutual inductance is shown in
Figure P 11.9-4. Find the voltage V2 when o ¼ 5000.

Ω10

Ω400
1 mH

M = 10 mH

V2V1 = 10 0° V +
– 100 mH

+

–

Figure P 11.9-4

P 11.9-5 Determine v(t) for the circuit of Figure P 11.9-5
when vs ¼ 10 cos 30t V.

Answer: v tð Þ ¼ 23 cos 30t þ 9�ð ÞV

v(t)vs

+

–

28 Ω

+
–

1 150 F

0.1 H

0.2 H0.3 H

Figure P 11.9-5

P 11.9-6 Find the total energy stored in the circuit shown in
Figure P 11.9-6 at t ¼ 0 if the secondary winding is (a) open-
circuited, (b) short-circuited, (c) connected to the terminals of a
7-V resistor.

Answers: (a) 15 J (b) 0 J (c) 5 J

12 Ω

10 cos 5t A 0.3 H 1.2 H

M = 0.6 H

Figure P 11.9-6

P 11.9-7 Find the input impedance Z of the circuit of
Figure P 11.9-7 when o ¼ 1000 rad/s.

Answer: Z ¼ 8:4ff14� V

1 6 mF

3 Ω

Z

8 mH

5 mH 6 mH

Figure P 11.9-7

P 11.9-8 A circuit with three mutual inductances is shown
in Figure P 11.9-8. When vs ¼ 10 cos 2t V, M1 ¼ 2 H, and M2 ¼
M3 ¼ 1 H, determine the capacitor voltage v(t).

+
–vs

Ω5 3 H

Ω6

1 10 F

4 H Ω2

+

–
v

M1

2 H

M2 M3

Figure P 11.9-8

P 11.9-9 The currents i1(t) and i2(t) in Figure P 11.9-9 are
mesh currents. Represent the circuit in the frequency domain
and write the mesh equations.

15 cos (25t + 30°) V

i1(t) i2(t)

8 H

40 Ω

80 Ω

5 H

+ –

0.25 mF 6 H

Figure P 11.9-9

P 11.9-10 Determine the mesh currents for the circuit shown
in Figure P 11.9-10.

+
–

i1 i2

v2

+

–

v1

+

–

10 Ω

20 Ω

50 Ω
12 cos 5t  V

4 H 6 H

3 H

Figure P 11.9-10

P 11.9-11 Determine the coil voltages v1, v2, v3, and v4 for
the circuit shown in Figure P 11.9-11.

v4

+

–

v3

+ –

+ –

v2

+– v1

4 H

6 H

3 H

4 H

5 H

5 H10 Ω

10 Ω

20 Ω

2 cos (5t + 45°) A

1.25 cos (5t − 45°) A 2.75 cos (5t) A

Figure P 11.9-11
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P 11.9-12 Figure P 11.9-12 shows three similar circuits. In
each, the input to the circuit is the voltage of the voltage source,
vs(t). The output is the voltage across the right-hand coil, vo(t).
Determine the steady-state output voltage vo(t) for each of the
three circuits.

2 H
5 H

4 H

5 Ω vo(t)

+

–

+ –

vs(t) = 5.94 cos  (3t + 140°) V

(b)

2 H
5 H

4 H

5 Ω vo(t)

+

–

+ –

vs(t) = 5.94  cos (3t + 140°) V

(c)

5 H

4 H

5 Ω vo(t)

+

–

+ –

vs(t) = 5.94 cos  (3t + 140°) V

(a)

Figure P 11.9-12

P 11.9-13 Figure P 11.9-13 shows three similar circuits.
In each, the input to the circuit is the voltage of the voltage source,

vs tð Þ ¼ 5:7 cos 4t þ 158�ð ÞV

The output in each circuit is the voltage across the right-hand
coil vo(t). Determine the steady-state output voltage vo(t) for
each of the three circuits.

(a)

5 H4 H

4 Ω

vo(t)

+

–

vs(t)
+
–

(b)

2 H

5 H4 H

4 Ω

vo(t)

+

–

vs(t)
+
–

2 H

5 H4 H

4 Ω

vo(t)

+

–

vs(t)

(c)

+
–

Figure P 11.9-13

P 11.9-14 The circuit shown in Figure P 11.9-14 is repre-
sented in the time domain. Determine coil voltages v1

and v2.

Answers: v1 ¼ 104:0 cos 6t þ 46:17�ð Þ V and v2 ¼ 100:6
cos 6t þ 63:43�ð Þ V

8 H

6 H

5 H

40 Ω

50 Ω

1.5cos (6t + 90°) A

2.5cos (6t) A

80 Ω

v1

+

–

v2

+

–

Figure P 11.9-14

P 11.9-15 The circuit shown in Figure P 11.9-15 is repre-
sented in the frequency domain. (For example, �j30 V is the
impedance due to the mutual inductance of the coupled coils.)
Suppose V oð Þ ¼ 70ff0� V. Then I1 oð Þ ¼ Bffy A and I2 oð Þ ¼
0:875ff�90� A. Determine the values of B and y.

Answers: B ¼ 1:75 A and y ¼ �90�

+
–

I1(ω) –j25 Ω

–j100 Ωj50 Ω j 40 Ω
j30 Ω

V (ω)

I2(ω)

Figure P 11.9-15
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P 11.9-16 Determine the values of the inductances L1 and L2

in the circuit shown in Figure P 11.9-16, given that

i tð Þ ¼ 0:319 cos 4t � 82:23�ð ÞA
and

v tð Þ ¼ 0:9285 cos 4t � 62:20�ð ÞV:

3 H
L1 v(t)L2

i (t)

+

–

4 Ω5cos 4t V +
–

Figure P 11.9-16

P 11.9-17 Determine the complex power supplied by the
source in the circuit shown in Figure P 11.9-17.

180 cos (20t) V

v1+ – v2+ –

50 Ω

20 Ω

4 H
5 H 6 H

+
– 40 Ω

1 mF

Figure P 11.9-17

P 11.9-18 The input to the circuit shown in Figure
P 11.9-18 is

v s tð Þ ¼ 12 cos 5 tð Þ V

The impedance of the load is 20þ j 15 V. Determine the
complex power (a) supplied by the source, (b) received by
the 20-V resistor, (c) received by the coupled inductors, and
(d) received by the load.

+

−

4 H 8 H

5  H

+
– Load

20 Ω

v1(t)

+

−

v2(t)

i1(t) i2(t)

vs(t)

Figure P 11.9-18

P 11.9-19 Figure P 11.9-19a shows a source connected to a
160-V load. In Figure P 11.9-19b, an ideal transformer and
capacitor have been inserted between the source and the load.

(a) Determine the value of the average power delivered to the
160-V load in Figure P 11.9-18a.

(b) Determine the values of n and C in Figure P11.9-18b that
maximize the average power in the load.

(c) Using the values of n and C from part (b), determine the
value of the average power delivered to the 160-V load in
Figure P 11.9-18b.

+
–

LoadSource

10 Ω8 mH

160 Ω120 cos (250 t ) V

+
–

Load

1 : n

Source

10 Ω8 mH

160 Ω
C

120 cos (250 t ) V

(b)

(a)

Figure P 11.9-19

Section 11.10 The Ideal Transformer

P 11.10-1 Find V1, V2, I1, and I2 for the circuit of Figure
P 11.10-1 when n ¼ 5.

0° V12 V1

+

–

V2

+

–

I1 I2
2 + 3j

100 – j75

1 : n

Ideal

+
–

Figure P 11.10-1

P 11.10-2 A circuit with a transformer is shown in Figure
P 11.10-2.

(a) Determine the turns ratio, n.
(b) Determine the value of Rab.
(c) Determine the current i supplied by the voltage source.

Answers: (a) n ¼ 5 (b) Rab ¼ 400 V

Rab

10 V rms

5 mA rms
1 : n

Ideal

+
– V0

+

–
10 kΩ

a

b

i

Figure P 11.10-2

P 11.10-3 Find the voltage Vc in the circuit shown in Figure
P11.10-3.Assumeanideal transformer.Theturnsratio isn¼1=3.

Answer: Vc ¼ 21:0ff�105:3�

1 : n

Ideal

+
––50° V80 Vc

+

–
–j8 Ω

5 Ω30 Ω j20 Ω

Figure P 11.10-3
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Problems 563

P 11.10-4 An ideal transformer is connected in the circuit
shown in Figure P 11.10-4, where vs ¼ 50 cos 1000t V and n ¼
N2=N1 ¼ 5. Calculate V1 and V2.

v1vs

+

–

v2

+

–

1 : 5

Ideal

+
– 200 Ω

2 Ω

Figure P 11.10-4

P 11.10-5 Figure P11.10-5 shows a load connected to a
source through an ideal transformer. The input to the circuit is

v s tð Þ ¼ 12 cos 5 tð Þ V

Determine

(a) The values of the turns ration n and load inductance L
required for maximum power transfer to the load.

(b) The complex power delivered to the transformer by the
source.

(c) The complex power delivered to the load by the
transformer.

+
–

10 mF

Load

L

1 : n

288 Ω

18 Ω

vs(t)

Source

Figure P 11.10-5

P 11.10-6 Find the Th�evenin equivalent at terminals a–b for
the circuit of Figure P 11.10-6 when v ¼ 16 cos 3t V.

+
–

2 Ω

v

2 Ω

6 Ω

a

b1:2

Ideal

Figure P 11.10-6

P 11.10-7 Find the input impedance Z for the circuit of
Figure P 11.10-7.

Answer: Z ¼ 6 V
2 Ω

6 Ω

2:1

Ideal
Z

Figure P 11.10-7

P 11.10-8 In less-developed regions in mountainous areas,
small hydroelectric generators are used to serve several resi-
dences (Mackay, 1990). Assume each house uses an electric
range and an electric refrigerator, as shown in Figure P 11.10-8.
The generator is represented as Vs operating at 60 Hz and
V2 ¼ 230ff0�V. Calculate the power consumed by each
home connected to the hydroelectric generator when n ¼ 5.

+
–

Ideal

Vs

Source and line

V2

Range

Ω20

Refrigerator

Ω10

20 mH

+

–

2 + j3
1 : n

Figure P 11.10-8

P 11.10-9 Three similar circuits are shown in Figure
P 11.10-9. In each of these circuits, vs(t) ¼ 5 cos (4t þ 45�) V.
Determine v2 (t) for each of the three circuits.

Answers: (a) v2 tð Þ ¼ 0 V
(b) v2 tð Þ ¼ 1:656 cos 4t þ 39�ð Þ V
(c) v2 tð Þ ¼ 2:88 cos 4t þ 45�ð Þ V

+
–

v1(t)

+

–

8 Ω

12 Ω4 H 3 Hvs(t)

i1(t)

v2(t)

+

–

i2(t)

(a)

+
–

v1(t)

+

–

8 Ω

12 Ω4 H 3 H

2 H

vs(t)

i1(t)

v2(t)

+

–

i2(t)

(b)

+
–

v1(t)

+

–

8 Ω

12 Ω

10:8.66

Ideal

vs(t)

i1(t)

v2(t)

+

–

i2(t)

(c)

Figure P 11.10-9

P 11.10-10 Find V1 and I1 for the circuit of Figure
P 11.10-10 when n ¼ 5.



+
–

Ideal

1 : n
I1 I2

V1

+

–

10  0° V

1 + j3

100 – j75

Figure P 11.10-10

P 11.10-11 Determine v2 and i2 for the circuit shown in
Figure P 11.10-11 when n ¼ 2. Note that i2 does not enter the
dotted terminal.

Answers: v2 ¼ 6:08 cos 10t þ 47:7�ð Þ V

i2 ¼ 3:34 cos 10t þ 42�ð Þ V

+
–

Ideal

1 : n

i1

i2

v1

+

–

v2

+

–

5 cos 10t V

20 mF

20 mH

5 Ω 2 Ω

Figure P 11.10-11

P 11.10-12 The circuit shown in Figure P 11.10-12 is
represented in the frequency domain. Given the line current
ILine ¼ 0:5761ff�75:88� A, determine PSource, the average
power supplied by the source; PLine, the average power
delivered to the line; and PLoad, the average power delivered
to the load.

Hint: Use conservation of (average) power to check your
answers.

Answer: PSource ¼ 42:15 W;PLine ¼ 0:6638 W; and PLoad ¼
41:49 W

P 11.10-13 The circuit shown in Figure P 11.10-13 is
represented in the frequency domain. Determine R and X,
the real and imaginary parts of the equivalent impedance Zeq.

Answer: R ¼ 180 V and X ¼ 110 V

j10 Ω

5 Ω–j 250 Ω
6 : 1

Zeq = R+ jX

Figure P 11.10-13

P 11.10-14 Figure P 11.10-14 shows a load connected to a
source through an ideal transformer. Determine the complex
power delivered to the transformer by the source.

Answer: S ¼ 698:3 þ j1745:7 VA

+
–

4 : 15

20 Ω
 12 cos (40 t + 15°) V 1.25 H

source load

Figure P 11.10-14

Section 11.11 How CanWe Check . . . ?

P 11.11-1 Computer analysis of the circuit shown in Figure
P 11.11-1 indicates that when

vs tð Þ ¼ 12 cos 4t þ 30�ð Þ V

4 Ω

Source transformer 1 transformer 2line load

j40 Ω

j10 Ω 10 Ω5 : 11 : 5

+
–0° V120

ISource ILine ILoad

Figure P 11.10-12
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the mesh currents are given by

i1 tð Þ ¼ 2:327 cos 4t � 25:22�ð Þ A
and

i2 tð Þ ¼ 1:229 cos 4t � 11:19�ð Þ A
Check the results of this analysis by checking that the average
power supplied by the voltage source is equal to the sum of
the average powers received by the other circuit elements.

2 Ω4 Ω

2 H 2 Hi1(t) i2(t)+
–v1(t)

Figure P 11.11-1

P 11.11-2 Computer analysis of the circuit shown in Figure
P 11.11-2 indicates that when

vs tð Þ ¼ 12 cos 4t þ 30�ð Þ V
the mesh currents are given by

i1 tð Þ ¼ 1:647 cos 4t � 17:92�ð Þ A
and

i2 tð Þ ¼ 1:094 cos 4t � 13:15�ð Þ A
Check the results of this analysis by checking that the complex
power supplied by the voltage source is equal to the sum of the
complex powers received by the other circuit elements.

2 Ω4 Ω

2 H 4 Hi1(t) i2(t)+
–vs(t)

Figure P 11.11-2

P 11.11-3 Computer analysis of the circuit shown in Figure
P 11.11-3 indicates that when

vs tð Þ ¼ 12 cos 4t þ 30�ð Þ V
the mesh currents are given by

i1 tð Þ ¼ 1:001 cos 4t � 47:01�ð Þ A
and

i2 tð Þ ¼ 0:4243 cos 4t � 15:00�ð Þ A
Check the results of this analysis by checking that the equations
describing currents and voltages of coupled coils are satisfied.

+
– 15 Ω4 H 6 H

3 H
vs(t) i1(t) i2(t)

Figure P 11.11-3

P 11.11-4 Computer analysis of the circuit shown in Figure
P 11.11-4 indicates that when

vs tð Þ ¼ 12 cos 4t þ 30�ð Þ V
the mesh currents are given by

i1 tð Þ ¼ 25:6 cos 4t þ 30�ð Þ mA
and

i2 tð Þ ¼ 64 cos 4t þ 30�ð Þ mA

Check the results of this analysis by checking that the equations
describing currents and voltages of ideal transformers are
satisfied.

+
– 75vs(t) i1(t) i2(t)

2:5

Figure P 11.11-4
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PSpice Problems

SP 11-1 The input to the circuit shown in Figure SP 11-1 is
the voltage of the voltage source

vs tð Þ ¼ 7:5 sin 5t þ 15�ð Þ V
The output is the voltage across the 4-V resistor vo(t). Use
PSpice to plot the input and output voltages.

Hint: Represent the voltage source, using the PSpice part
called VSIN.

+
–

8 Ω

4 Ω5 H 2 H

3 H

vs(t) vo(t)

+

–

Figure SP 11-1

SP 11-2 The input to the circuit shown in Figure SP 11-1 is
the voltage of the voltage source

vs tð Þ ¼ 7:5 sin 5t þ 15�ð Þ ¼ 7:5 cos 5t � 75�ð Þ V
The output is the voltage across the 4-V resistor vo(t). Use
PSpice to determine the average power delivered to the
coupled inductors.

Hint: Represent the voltage source, using the PSpice part
called VAC. Use printers (PSpice parts called IPRINT and
VPRINT) to measure the ac current and voltage of each coil.

SP 11-3 The input to the circuit shown in Figure SP 11-3 is
the voltage of the voltage source,

vs tð Þ ¼ 48 cos 4t þ 114�ð Þ V

The output is the voltage across the 9-V resistor vo(t). Use
PSpice to determine the average power delivered to the
transformer.

Hint: Represent the voltage source, using the PSpice part
called VAC.

i(t) 8 Ω

9 Ω

2:3

+
–

vs(t) vo(t)

+

–

Figure SP 11-3

SP 11-4 Determine the value of the input impedance Zt of
the circuit shown in Figure SP 11-4 at the frequency o ¼ 4
rad/s.

Hint: Connect a current source across the terminals of the
circuit. Measure the voltage across the current source. The
value of impedance will be equal to the ratio of the voltage to the
current.

8 Ω
5:2

2 Ω

4 H

Zt

Figure SP 11-4
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Design Problems

DP 11-1 A 100-kW induction motor, shown in Figure DP 11-1,
is receiving 100 kW at 0.8 power factor lagging. Determine the
additional apparent power in kVA that is made available by
improving the power factor to (a) 0.95 lagging and (b) 1.0.
(c) Find the required reactive power in kVAR provided by a set
of parallel capacitors for parts (a) and (b). (d) Determine the ratio
of kVA released to the kVAR of capacitors required for parts
(a) and (b) alone. Set up a table, recording the results of this
problem for the two values of power factor attained.

Capacitor

Induction motor

Distribution
line

Figure DP 11-1 Induction motor with parallel capacitor.

DP 11-2 Two loads are connected in parallel and supplied from
a 7.2-kV rms 60-Hz source. The first load is 50-kVA at 0.9
lagging power factor, and the second load is 45 kW at 0.91
lagging power factor. Determine the kVAR rating and capaci-
tance required to correct the overall power factor to 0.97 lagging.

Answer: C ¼ 1.01 mF

DP 11-3

(a) Determine the load impedance Zab that will absorb maxi-
mum power if it is connected to terminals a–b of the circuit
shown in Figure DP 11-3.

(b) Determine the maximum power absorbed by this load.
(c) Determinea modelof the loadand indicate theelementvalues.

+
– +

–

5 Ω 100 mHa

10 cos 100 t V vab

b

0.5 vab

+

–

Figure DP 11-3

DP 11-4 Select the turns ratio n necessary to provide maximum
power to the resistor R of the circuit shown in Figure DP 11-4.
Assume an ideal transformer. Select n when R ¼ 4 and 8 V.

Ω3

+
–Vs

Ideal

j3 Ω

R

j4 Ω
1 : n

Figure DP 11-4

DP 11-5 An amplifier in a short-wave radio operates at 100
kHz. The load Z2 is connected to a source through an ideal
transformer, as shown in Figure DP 11-5. The load is a series
connection of a 10-V resistance and a 10-mH inductance. The Zs

consists of a 1-V resistance and a 1-mH inductance.

(a) Select an integer n to maximize the energy delivered to the
load. Calculate I2 and the energy to the load.

(b) Add a capacitance C in series with Z2 to improve the energy
delivered to the load.

+
–

Zs

Vs Z2

Ideal

1 : n
I2

Figure DP 11-5

DP 11-6 Anewelectronic lamp(e-lamp)hasbeendevelopedthat
uses a radio-frequency sinusoidal oscillator and a coil to transmit
energy to a surrounding cloud of mercury gas as shown in Figure
DP 11-6a. The mercury gas emits ultraviolet light that is trans-
mitted to the phosphor coating, which, in turn, emits visible light.
A circuit model of the e-lamp is shown in Figure DP 11-6b. The
capacitance C and the resistance R are dependent on the lamp’s
spacing design and the type of phosphor. Select R and C so that
maximum power is delivered to R, which relates to the phosphor
coating (Adler, 1992). The circuit operates at o0 ¼ 107 rad/s.

+
–

(b)

(a)

V0 sin 0t V

100 Ω 1  mH

Coil

C Rω

Phosphorus
coating

Mercury
vapor

Coil

Figure DP 11-6 Electronic lamp.
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CHAPTER 12 Three-Phase
Circuits

I N T H I S C H A P T E R
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12.2 Three-Phase Voltages
12.3 The Y-to-Y Circuit
12.4 The D-Connected

Source and Load
12.5 The Y-to-D Circuit
12.6 Balanced Three-Phase

Circuits
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12.8 Two-Wattmeter
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12.9 How Can We
Check . . . ?

12.10 DESIGN
EXAMPLE—Power
Factor Correction

12.11 Summary
Problems
PSpice Problems
Design Problems

12.1 I n t r o d u c t i o n

In this chapter, we will begin to analyze three-phase circuits. These circuits consist of three parts:
a three-phase source, a three-phase load, and a transmission line. The three-phase source consists
of either three Y-connected sinusoidal voltage sources or three D-connected sinusoidal voltage
sources. Similarly, the circuit elements that comprise the load are connected to form either a Y or
a D. The transmission line is used to connect the source to the load and consists of either three or four
wires. These circuits are described using names that identify the way in which the source and the load
are connected. For example, the circuit shown in Figure 12.3-1 has a Y-connected three-phase source
and a Y-connected load. The circuit in Figure 12.3-1 is called a Y-to-Y circuit. The circuit in Figure
12.5-1 has a Y-connected three-phase source and a D-connected load. The circuit in Figure 12.5-1 is
called a Y-to-D circuit.

Notice that the Y-to-Y circuit in Figure 12.3-1 has been represented in the frequency domain,
using impedances and phasors. This is appropriate because the three voltage sources that comprise a
three-phase source are sinusoidal sources having the same frequency. Analysis of three-phase
circuits using phasors and impedances will determine the steady-state response of the three-phase
circuit.

Before beginning our analysis of three-phase circuits, it is helpful to recall why it is advantageous
to use phasors to find the steady-state response of linear circuits to sinusoidal inputs. Circuits that
contain capacitors or inductors are represented by differential equations in the time domain. We can
solve these differential equations, but it is a lot of work. Impedances and phasors represent the circuit in
the frequency domain. Linear circuits are represented by algebraic equations in the frequency domain.
These algebraic equations involve complex numbers, but they are still easier to solve than the
differential equations. Solving these algebraic equations provides the phasor corresponding to the
output voltage or current. We know that the steady-state output voltage or current will be sinusoidal and
will have the same frequency as the input sinusoid. The magnitude and phase angle of the phasor
corresponding to the output voltage or current provide the magnitude and phase angle of the output
sinusoid.

We will be particularly interested in the power the three-phase source delivers to the three-
phase load. Table 12.1-1 summarizes the formulas that can be used to calculate the power delivered
to an element when the element voltage and current adhere to the passive convention. Table 12.1-1
also provides the equations for the sinusoidal element current and voltage. In the table, Im and Vm568



are the magnitudes of the sinusoidal current and voltage, whereas Irms and Vrms are the
corresponding effective values of the current and voltage. Notice that the formulas for
power in terms of Irms and Vrms are simpler than the corresponding formulas in terms of Im and
Vm. In contrast, the equations giving the sinusoidal voltage and current are simpler when Im and Vm

are used. When engineers are interested primarily in power, they are likely to use Irms and Vrms.
On the other hand, when engineers are interested primarily in the sinusoidal currents and voltages,
they are likely to use Im and Vm. In this chapter, we are interested mainly in power and will use
effective values.

12.2 T h r e e - P h a s e V o l t a g e s

The generation and transmission of electrical power are more efficient in polyphase systems
employing combinations of two, three, or more sinusoidal voltages. In addition, polyphase circuits
and machines possess some unique advantages. For example, the power transmitted in a three-phase
circuit is constant or independent of time rather than pulsating, as it is in a single-phase circuit. In
addition, three-phase motors start and run much better than do single-phase motors. The most
common form of polyphase system employs three balanced voltages, equal in magnitude and
differing in phase by 360�=3 ¼ 120�.

An elementary ac generator consists of a rotating magnet and a stationary winding. The turns
of the winding are spread along the periphery of the machine. The voltage generated in each turn of
the winding is slightly out of phase with the voltage generated in its neighbor because it is cut
by maximum magnetic flux density an instant earlier or later. The voltage produced in the first
winding is vaa0.

If the first winding were continued around the machine, the voltage generated in the last turn
would be 180� out of phase with that in the first, and they would cancel, producing no useful effect.
For this reason, one winding is commonly spread over no more than one-third of the periphery; the
other two-thirds of the periphery can hold two more windings used to generate two other similar
voltages. A simplified version of three windings around the periphery of a cylindrical drum is shown
in Figure 12.2-1a. The three sinusoids (sinusoids are obtained with a proper winding distribution
and magnet shape) generated by the three similar windings are shown in Figure 12.2-1b. Defining vaa0

as the potential of terminal a with respect to terminal a0, we describe the voltages as

Table 12.1-1 Frequency Domain Power Relationships

RELATIONSHIP USING RELATIONSHIP USING
QUANTITY PEAK VALUES RMS VALUES UNITS

Element voltage, v(t) v tð Þ ¼ Vm cos ot þ yVð Þ v tð Þ ¼ V rms

ffiffiffi
2

p
cos ot þ yVð Þ V

Element current, i(t) i tð Þ ¼ Im cos ot þ yIð Þ i tð Þ ¼ Irms

ffiffiffi
2

p
cos ot þ yIð Þ A

Complex power, S S ¼ VmIm

2
cos yV � yIð Þ

þ j
VmIm

2
sin yv � yIð Þ

S ¼ V rmsIrms cos yV � yIð Þ
þ jV rmsIrms sin yV � yIð Þ

VA

Apparent power, jSj jSj ¼ VmIm

2
jSj ¼ V rmsIrms VA

Average power, P P ¼ VmIm

2
cos yV � yIð Þ P ¼ V rmsIrms cos yV � yIð Þ W

Reactive power, Q Q ¼ VmIm

2
sin yV � yIð Þ Q ¼ V rmsIrms sin yV � yIð Þ VAR
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naa0 ¼ Vm cos ot

nbb0 ¼ Vm cos ot � 120�ð Þ
ncc0 ¼ Vm cos ot � 240�ð Þ

ð12:2-1Þ

where Vm is the peak value.

A three-phase circuit generates, distributes, and uses energy in the form of three
voltages equal in magnitude and symmetric in phase.

The three similar portions of a three-phase system are called phases. Because the
voltage in phase aa0 reaches its maximum first, followed by that in phase bb0 and then by that
in phase cc0, we say the phase rotation is abc. This is an arbitrary convention; for any given
generator, the phase rotation may be reversed by reversing the direction of rotation. The six-
terminal ac generator is shown in Figure 12.2-2.

Using phasor notation, we may write Eq. 12.2-1 as

Vaa0 ¼ Vmff0�
Vbb0 ¼ Vmff�120�

Vcc0 ¼ Vmff�240� ¼ Vmff120�
ð12:2-2Þ

The three voltages are said to be balanced voltages because they have identical amplitude
Vm and frequency o and are out of phase with each other by exactly 120�. The phasor
diagram of the balanced three-phase voltages is shown in Figure 12.2-3. Examining
Figure 12.2-3, we find

Vaa0 þ Vbb0 þ Vcc0 ¼ 0 ð12:2-3Þ

For notational ease, we henceforth use Vaa0 ¼ Va, Vbb0 ¼ Vb, and Vcc0 ¼ Vc as the three
voltages.

The positive phase sequence is abc, as shown in Figure 12.2-3. The sequence acb is
called the negative phase sequence, as shown in Figure 12.2-4.

vaa' vbb' vcc'

v

0

(b)

a

a'

c

c'

b

b'

(a)

FIGURE 12.2-1 (a) The three windings on a cylindrical drum used to obtain three-phase
voltages (end view). (b) Balanced three-phase voltages.

vcc'

b

c a

a'

c'

vaa'

vbb'

b'

ac generator

+

+

+

–

–

–

FIGURE 12.2-2 Generator with six
terminals.

120°

120°
Vaa'

Vbb'

Vcc'

FIGURE 12.2-3 Phasor
representation
of the positive phase
sequence of the balanced
three-phase voltages.

120°
Va

Vc

Vb

FIGURE 12.2-4 The
negative phase sequence
acb in the Y connection.
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Often, the phase voltage in the Y connection is written as

Va ¼ Vmff0�
where Vm is the magnitude of the phase voltage.

Referring to the generator of Figure 12.2-2, there are six terminals and three voltages, va, vb,
and vc. We use phasor notation and assume that each phase winding provides a source voltage in
series with a negligible impedance. Under these assumptions, there are two ways of interconnecting
the three sources, as shown in Figure 12.2-5. The common terminal of the Y connection is called the
neutral terminal and is labeled n. The neutral terminal may or may not be available for connection.
Balanced loads result in no current in a neutral wire, and thus it is often not needed.

The connection shown in Figure 12.2-5a is called the Y connection, and theD connection is shown in
Figure 12.2-5b. The Y connection selects terminals a0, b0, and c0 and connects them together as neutral. Then
the line-to-line voltage Vab of the Y-connected sources is

Vab ¼ Va � Vb ð12:2-4Þ
as is evident by examining Figure 12.2-5a. Because Va ¼ Vmff0� and Vb ¼ Vmff�120�, we have

Vab ¼ Vm � Vm �0:5� j0:866ð Þ
¼ Vm 1:5þ j0:866ð Þ
¼ ffiffiffi

3
p

Vmff30�
ð12:2-5Þ

This relationship is also demonstrated by the phasor diagram of Figure 12.2-6. Similarly,

Vbc ¼
ffiffiffi
3

p
Vmff�90� ð12:2-6Þ

and Vca ¼
ffiffiffi
3

p
Vmff�210� ð12:2-7Þ

Therefore, in a Y connection, the line-to-line voltage is
ffiffiffi
3

p
times the phase voltage and is displaced 30�

in phase. The line current is equal to the phase current.

EXERCISE 12.2-1 The Y-connected three-phase voltage source has Vc ¼ 120ff�240� V rms.
Find the line-to-line voltage Vbc.

Answer: 207:8ff�90� V rms

–
+

Vab Vab

Ibc

Iab

Ic

Ica

Ia

IbVca

Vca

n

a
a

b

c
c

b

Vb

Va

Vc

Vbc

Vbc

–

–

–

+

+

+

+ –
+ – –+

+–

(b)(a)

+–

FIGURE 12.2-5 (a) Y-connected sources. The voltages Va, Vb, and Vc are
called phase voltages, and the voltages Vab, Vbc, and Vca are called line-to-line
voltages, (b) D-connected sources. The currents Ia, Ib, and Ic are called line
currents, and the currents Iab, Ibc, and Ica are called phase currents.

120°

30°

Va

Vb

Vab

FIGURE 12.2-6 The line-to-line voltage Vab

of the Y-connected source.
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12.3 T h e Y - t o - Y C i r c u i t

Consider the Y-to-Y circuit shown in Figure 12.3-1. This three-phase circuit consists of three parts: a three-
phase source, a three-phase load, and a transmission line. The three-phase source consists of three Y-
connected sinusoidal voltage sources. The impedances that comprise the load are connected to form a Y. The
transmission line used to connect the source to the load consists of four wires, including a wire connecting the
neutralnode of thesource to the neutralnode of the load.Figure12.3-2showsanotherY-to-Ycircuit. In Figure
12.3-2, the three-phase source is connected to the load using three wires, without a wire connecting the neutral
node of the source to the neutral node of the load. To distinguish between these circuits, the circuit in Figure
12.3-1 is called a four-wire Y-to-Y circuit, whereas the circuit in Figure 12.3-2 is called a three-wire Y-to-Y
circuit.

Analysis of the four-wire Y-to-Y circuit in Figure 12.3-1 is relatively easy. Each impedance of the
three-phase load is connected directly across a voltage source of the three-phase source. Therefore, the
voltage across the impedance is known, and the line currents are easily calculated as

IaA ¼ Va

ZA
; IbB ¼ Vb

ZB
; and IcC ¼ Vc

ZC
ð12:3-1Þ

The current in the wire connecting the neutral node of the source to the neutral node of the load is

INn ¼ IaA þ IbB þ IcC ¼ Va

ZA
þ Vb

ZB
þ Vc

ZC
ð12:3-2Þ

The average power delivered by the three-phase source to the three-phase load is calculated by
adding up the average power delivered to each impedance of the load.

P ¼ PA þ PB þ PC ð12:3-3Þ
where, for example, PA is the average power absorbed by ZA. PA is easily calculated once IaA is known.

For convenience, let the phase voltages of the Y-connected source be

Va ¼ Vpff0� V rms; Vb ¼ Vpff�120� V rms; and Vc ¼ Vpff120� V rms

Notice that we are using effective values because the units of Vp are V rms.
When ZA ¼ ZB ¼ ZC ¼ Z ¼ Zffy, the load is said to be a balanced load. In general, analysis of

balanced three-phase circuits is easier than analysis of unbalanced three-phase circuits. The line
currents in the balanced four-wire Y-to-Y circuit are given by

IaA ¼ Va

Z
¼ Vpff0�

Zffy ; IbB ¼ Vb

Z
¼ Vpff�120�

Zffy ; and IcC ¼ Vc

Z
¼ Vpff120�

Zffy

IcC

INn

IbB
ZB

ZC

ZA

IaA

Va

Vc

Vb

N

Cc

n

b
a

B

A
+

–+
–

+
–

FIGURE 12.3-1 A four-wire Y-to-Y circuit.
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+
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FIGURE 12.3-2 A three-wire Y-to-Y circuit.
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Then

IaA ¼ Vp

Z ff�y; IbB ¼ Vp

Z ff�y� 120�; and IcC ¼ Vp

Z ff�yþ 120� ð12:3-4Þ

The line currents have equal magnitudes and differ in phase by 120�. IbB and IcC can be calculated from
IaA by subtracting and adding 120� to the phase angle of IaA.

The current in the wire connecting the neutral node of the source to the neutral node of the load is

INn ¼ IaA þ IbB þ IcC ¼ Vp

Zffyðff10� þ 1ff�120� þ 1ff120�Þ
INn ¼ 0 ð12:3-5Þ

There is no current in the wire connecting the neutral node of the source to the neutral node of the load.
Because effective, or rms, values of the sinusoidal voltages and currents have been used instead of

peak values, the appropriate formulas for power are those given in the “rms values” column of Table
12.1-1. The average power delivered to the load is

P ¼ PA þ PB þ PC ¼ Vp
Vp

Z
cos �yð Þ þ Vp

Vp

Z
cos �yð Þ þ Vp

Vp

Z
cos �yð Þ

P ¼ 3
V2
p

Z
cos yð Þ ð12:3-6Þ

where, for example, PA is the average power absorbed by ZA. Equal power is absorbed by each
impedance of the three-phase load ZA, ZB, and ZC. It is not necessary to calculate PA, PB, and PC

separately. The average power delivered to the load can be determined by calculating PA and
multiplying by 3.

Next, consider the three-wire Y-to-Y circuit shown in Figure 12.3-2. The phase voltages of
the Y-connected source are Va ¼ Vpff0� V rms, Vb ¼ Vpff�120� V rms, and Vc ¼ Vpff120� V rms.
The first step in the analysis of this circuit is to calculate VNn, the voltage at the neutral node of the
three-phase load with respect to the voltage at the neutral node of the three-phase source. (This step wasn’t
needed when the four-wire Y-to-Y circuit was analyzed because the fourth wire forced VNn ¼ 0.) It is
convenient to select node n, the neutral node of the three-phase source, to be the reference node. Then Va,
Vb, Vc, and VNn are the node voltages of the circuit. Write a node equation at node N to get

0 ¼ Va � VNn

ZA
þ Vb � VNn

ZB
þ Vc � VNn

ZC

¼ ðVpff0�Þ � VNn

ZA
þ ðVpff�120�Þ � VNn

ZB
þ ðVpff120�Þ � VNn

ZC

ð12:3-7Þ

Solving for VNn gives

VNn ¼ ðVpff�120�ÞZAZC þ ðVpff120�ÞZAZB þ ðVpff0�ÞZBZC

ZAZC þ ZAZB þ ZBZC
ð12:3-8Þ

Once VNn has been determined, the line currents can be calculated using

IaA ¼ Va � VNn

ZA
; IbB ¼ Vb � VNn

ZB
; and IcC ¼ Vc � VNn

ZC
ð12:3-9Þ
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Analysis of the three-wire Y-to-Y circuit is much simpler when the circuit is balanced, that is,
when ZA ¼ ZB ¼ ZC ¼ Z ¼ Zffy. When the circuit is balanced, Eq. 12.3-8 becomes

VNn ¼ ðVPff�120�ÞZZ þ ðVPff120�ÞZZ þ ðVPff0�ÞZZ
ZZ þ ZZ þ ZZ

¼ ½ðVPff�120�Þ þ ðVPff120�Þ þ ðVPff0�Þ�=3
VNn ¼ 0 ð12:3-10Þ

When a three-wire Y-to-Y circuit is balanced, it is not necessary to write and solve a node equation to find
VNn because VNn is known to be zero. Recall that VNn ¼ 0 in the four-wire Y-to-Y circuit. The balanced
three-wire Y-to-Y circuit acts like the balanced four-wire Y-to-Y circuit. In particular, the line currents are
given by Eq. 12.3-4, and the average power delivered to the load is given by Eq. 12.3-6.

Ideally, the transmission line connecting the load to the source can be modeled using short
circuits. That’s what was done in both Figure 12.3-1 and Figure 12.3-2. Sometimes it is appropriate to
model the lines connecting the load to the source as impedances. For example, this is done when
comparing the power that is delivered to the load to the power that is absorbed by the transmission line.
Figure 12.3-3 shows a three-wire Y-to-Y circuit in which the transmission line is modeled by the line
impedances ZaA, ZbB, and ZcC. The line impedances do not significantly complicate the analysis of the
circuit because each line impedance is connected in series with a load impedance. After replacing series
impedances by equivalent impedances, the analysis proceeds as before. If the circuit is not balanced, a
node equation is written and solved to determine VNn. Once VNn has been determined, the line currents
can be calculated. Both the power delivered to the load and the power absorbed by the line can be
calculated from the line currents and the load and line impedances.

Analysis of balanced Y-to-Y circuits is simpler than analysis of unbalanced Y-to-Y circuits in
several ways:

1. VNn ¼ 0. It is not necessary to write and solve a node equation to determine VNn.

2. The line currents have equal magnitudes and differ in phase by 120�. IbB and IcC can be calculated
from IaA by subtracting and adding 120� to the phase angle of IaA.

3. Equal power is absorbed by each impedance of the three-phase load ZA, ZB, and ZC. It is not
necessary to calculate PA, PB, and PC separately. The average power delivered to the load can be
determined by calculating PA and multiplying by 3.

The key to analysis of the balanced Y-to-Y circuit is calculation of the line current IaA. The per-phase
equivalent circuit provides the information needed to the line current IaA. This equivalent circuit consists of
the voltage source and impedances in one phase of the three phases of the three-phase circuit. Figure 12.3-4
shows the per-phase equivalent circuit corresponding to the three-phase circuit shown in Figure 12.3-3.

IcC

VNn

IbB

ZbB

ZaA

ZcC

ZB

ZC

ZA

IaA

Va Vb

Vc

N

Cc

n

b
a

B
A

+
–+

–

+
–

– +

FIGURE 12.3-3 A three-wire Y-to-Y circuit with line impedances.

IaA

Va

n N

a AZaA

ZA
+
–

FIGURE 12.3-4 Per-phase equivalent circuit for the
three-wire Y-to-Y circuit with line impedances.
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The neutral nodes n and N are connected by a short circuit in the per-phase equivalent circuit to indicate that
VNn ¼ 0 in a balanced Y-to-Y circuit. The per-phase equivalent circuit can be used to analyze either three-
wire or four-wire balanced Y-to-Y circuits, but it can be used only for balanced circuits.

The behavior of a balanced Y-to-Y circuit is summarized in Table 12.3-1.

Table 12.3-1 The Balanced Y-to-Y Circuit

Phase voltages Va ¼ Vpff0�

Vb ¼ Vpff�120�

Vc ¼ Vpff�240�

Line-to-line voltages Vab ¼ ffiffiffi
3

p
Vpff30�

Vbc ¼
ffiffiffi
3

p
Vpff�90�

Vca ¼
ffiffiffi
3

p
Vpff�210�

VL ¼ ffiffiffi
3

p
Vp

Currents IL ¼ Ip line current ¼ phase currentð Þ
IA ¼ Va

ZY
¼ Ipff�y with Zp ¼ Zffy

IB ¼ IAff�120�

IC ¼ IAff�240�

Note: p ¼ phase, L ¼ line.

E X A M P L E 1 2 . 3 - 1 Four-Wire Unbalanced Y-Y Circuit

Determine the complex power delivered to the three-phase load of a four-wire Y-to-Y circuit such as the one shown in
Figure 12.3-1. The phase voltages of the Y-connected source are Va ¼ 110ff0� V rms, Vb ¼ 110ff�120� V rms, and
Vc ¼ 110ff120� V rms. The load impedances are ZA ¼ 50 þ j80 V;ZB ¼ j50 V, and ZC ¼ 100 þ j25 V.

Solution
The line currents of an unbalanced four-wire Y-to-Y circuit are calculated using Eq. 12.3-1. In this example,

IaA ¼ Va

ZA
¼ 110ff0�

50þ j80
; IbB ¼ Vb

ZB
¼ 110ff�120�

j50
; and IcC ¼ Vc

ZC
¼ 110ff120�

100þ j25

so

IaA ¼ 1:16ff�58� A rms; IbB ¼ 2:2ff150� A rms; and IcC ¼ 1:07ff106� A rms

The complex power delivered to ZA is

SA ¼ IaA� Va ¼ ð1:16ff�58�Þ� ð110ff0�Þ ¼ ð1:16ff58�Þð110ff0�Þ ¼ 68þ j109 VA

Similarly, we calculate the complex power delivered to ZB and ZC as

SB ¼ ð2:2ff150�Þ� ð110ff�120�Þ ¼ j242 VA

and

SC ¼ ð107ff106�Þ� ð110ff120�Þ ¼ 114þ j28 VA

The total complex power delivered to the three-phase load is

SA þ SB þ SC ¼ 182þ j379 VA

Try it 
yourself 

in WileyPLUS
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E X A M P L E 1 2 . 3 - 2 Four-Wire Balanced Y-Y Circuit

Determine the complex power delivered to the three-phase load of a four-wire Y-to-Y circuit such as the one shown
in Figure 12.3-1. The phase voltages of the Y-connected source are Va ¼ 110ff0� V rms,
Vb ¼ 110ff�120� V rms, and Vc ¼ 110ff120� V rms. The load impedances are ZA ¼ ZB ¼ ZC ¼ 50 þ j80 V.

Solution
This example is similar to the previous example. The important difference is that this three-phase circuit is
balanced. We need to calculate only one line current, IaA, and the complex power SA, delivered to only one of the
load impedances, ZA. The power delivered to the three-phase load is 3SA. We begin by calculating IaA as

IaA ¼ Va

ZA
¼ 110ff0�

50þ j80
¼ 1:16ff�58� A rms

The complex power delivered to ZA is

SA ¼ I�aAVa ¼ ð1:16ff�58�Þ� ð110ff0�Þ ¼ ð1:16ff58�Þð110ff0�Þ ¼ 68þ j109 VA

The total power delivered to the three-phase load is

3SA ¼ 204þ j326 VA

(The currents IbB and IcC can also be calculated using Eq. 12.3-1. Verify that IbB ¼ 1:16ff�177� A rms and
IcC ¼ 1:16ff62� A rms. Notice that IbB and IcC can be calculated from IaA by subtracting and adding 120� to the
phase angle of IaA. Also, check that the complex power delivered to ZB and to ZC is equal to the complex power
delivered to ZA. That is, SB ¼ 68 þ j109 VA and SC ¼ 68 þ j109 VA.)

E X A M P L E 1 2 . 3 - 3 Three-Wire Unbalanced Y-Y Circuit

Determine the complex power delivered to the three-phase load of a three-wire Y-to-Y circuit such as the one
shown in Figure 12.3-2. The phase voltages of the Y-connected source are Va ¼ 110ff0� V rms,
Vb ¼ 110ff�120� V rms, and Vc ¼ 110ff120� V rms. The load impedances are ZA ¼ 50 þ j80 V,
ZB ¼ j50 V, and ZC ¼ 100 þ j25 V.

Solution
This example seems similar to Example 12.3-1 but considers a three-wire Y-to-Y circuit instead of the four-wire
circuit considered in Example 12.3-1. Because the circuit is unbalanced, VNn is not known. We begin by writing
and solving a node equation to determine VNn. The solution of that node equation is given in Eq. 12.3-8 to be

VNn ¼ ð110ff�120�Þ 50þ j80ð Þ 100þ j25ð Þ þ ð110ff120�Þ 50þ j80ð Þ j50ð Þ þ ð110ff0�Þ j50ð Þ 100þ j25ð Þ
50þ j80ð Þ 100þ j25ð Þ þ 50þ j80ð Þ j50ð Þ þ j50ð Þ 100þ j25ð Þ

¼ 56ff�151� V rms

Now that VNn is known, the line currents are calculated as

IaA ¼ Va � VNn

ZA
¼ 110ff0� � 56ff�151�

50þ j80
¼ 1:71ff�48� A rms

IbB ¼ Vb � VNn

ZB
¼ 2:45ff3� A rms and IcC ¼ Vc � VNn

ZC
¼ 1:19ff79� A rms
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E X A M P L E 1 2 . 3 - 4 Three-Wire Balanced Y-Y Circuit

Determine complex power delivered to the three-phase load of a three-wire Y-to-Y circuit such as the one shown in
Figure 12.3-2. The phase voltages of the Y-connected source are Va ¼ 110ff0� V rms, Vb ¼ 110ff�120� V rms,
and Vc ¼ 110ff120� V rms. The load impedances are ZA ¼ ZB ¼ ZC ¼ 50 þ j80 V.

Solution
This example is similar to Example 12.3-3. The important difference is that this three-phase circuit is balanced, so
VNn ¼ 0. It is not necessary to write and solve a node equation to determine VNn.

Balanced three-wire Y-to-Y circuits and balanced four-wire Y-to-Y circuits are analyzed in the same way.
We need to calculate only one line current, IaA, and the complex power Sa, delivered to only one of the load
impedances, ZA. The power delivered to the three-phase load is 3Sa.

The line current is calculated as

IaA ¼ Va

ZA
¼ 110ff0�

50þ j80
¼ 1:16ff�58� A rms

The total power delivered to the three-phase load is

3SA ¼ 3I�aAVa ¼ 204þ j326 VA

The complex power delivered to ZA is

SA ¼ I�aAVa ¼ I�aA IaAZAð Þ ¼ ð1:71ff�48�Þ� ð1:71ff�48�Þ 50þ j80ð Þ ¼ 146þ j234 VA

Similarly, we calculate the complex power delivered to ZB and ZC as

SB ¼ I�bB IbBZBð Þ ¼ j94 VA and SC ¼ I�cC IcCZCð Þ ¼ 141þ j35 VA

The total complex power delivered to the three-phase load is

SA þ SB þ SC ¼ 287þ j364 VA

E X A M P L E 1 2 . 3 - 5 Line Losses

Figure 12.3-5a shows a balanced three-wire Y-to-Y circuit. Determine average power delivered by the three-phase
source, delivered to the three-phase load, and absorbed by the three-phase line.

Solution
The three-wire Y-to-Y circuit in Figure 12.3-5a looks different from the three-wire Y-to-Y circuit in Figure
12.3-2. One difference is cosmetic. The circuits are drawn differently, with all circuit elements drawn vertically or
horizontally in Figure 12.3-5a. A more important difference is that the circuit in Figure 12.3-2 is represented in the
frequency domain, using phasors and impedances, whereas the circuit in Figure 12.3-5a is represented in the time
domain. Because the circuit is represented in the time domain, the magnitude, rather than the effective value, of the
source voltage is given.

Because this three-phase circuit is balanced, it can be analyzed using a per-phase equivalent circuit. Figure
12.3-5b shows the appropriate per-phase equivalent circuit.

Try it 
yourself 

in WileyPLUS

Try it 
yourself 

in WileyPLUS
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The line current is calculated as

IaA oð Þ ¼ 100

50þ j 377ð Þ 0:045ð Þ ¼ 1:894ff�18:7� A

The phase voltage at the load is

VAN oð Þ ¼ 40þ j 377ð Þ 0:04ð Þð ÞIaA oð Þ ¼ 81ff2� V
Because peak values of the sinusoidal voltages and currents have been used instead of effective values, the
appropriate formulas for power are those given in the “peak values” column of Table 12.1-1. The power delivered
by the source is calculated as

IaA oð Þ ¼ 1:894ff�18:7� A and Van oð Þ ¼ 100ff0� V
so Pa ¼ 100ð Þ 1:894ð Þ

2
cos 18:7�ð Þ ¼ 89:7W

The power delivered to the load is calculated as

IaA oð Þ ¼ 1:894ff�18:7� A and RA ¼ 40 V; so PA ¼ 1:8942

2
40 ¼ 71:7W

The power lost in the line is calculated as

IaA oð Þ ¼ 1:894ff�18:7� A and RaA ¼ 10 V; so PaA ¼ 1:8942

2
10 ¼ 17:9W

The three-phase load receives 3PA ¼ 215:1 W, and 3PaA ¼ 53:7 W is lost in the line. A total of 80 percent of the
power supplied by the source is delivered to the load. The other 20 percent is lost in the line. The three-phase source
delivers 3Pa ¼ 269:1 W.

100 cos
(377t)

a A

Nn

+
–

10 Ω 40 Ω5 mH

40 mH

Line LoadSource

(b)

iaA(t)

vAN(t)

+

–

+–

+–

+–

10 Ω

100 cos
(377t)

40 Ω5 mH

a

b
n N

c

A

B

C

40 mH

10 Ω 40 Ω5 mH 40 mH

100 cos
(377t + 240)

100 cos
(377t +120)

10 Ω 40 Ω5 mH 40 mH

Line LoadSource

(a)

FIGURE 12.3-5 (a) A balanced three-wire Y-to-Y circuit and (b) the per-phase equivalent circuit.

E X A M P L E 1 2 . 3 - 6 Reducing Line Losses

As noted in Example 12.3-5, 80 percent of the power supplied by the source is delivered to the load, and the other
20 percent is lost in the line. The loss in the line can be reduced by reducing the current in the line. Reducing the
current in the load would reduce the power delivered to the load. Transformers provide a way of reducing the line
current without reducing the load current.
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In this example, two three-phase transformers are added to the three-phase circuit considered in Example
12.3-5. A transformer at the source steps up the voltage and steps down the current. Conversely, a transformer at the
load steps down the voltage and steps up the current. Because the turns ratios of these transformers are reciprocals
of each other, the voltage and current at the load are unchanged. The current in the line will be reduced to reduce the
power lost in line. The line voltage will increase. The higher line voltage will require increased insulation and
increased attention to safety.

Figure 12.3-6a shows the per-phase equivalent circuit of the balanced three-wire Y-to-Y circuit that includes
the two transformers. Determine the average power delivered by the three-phase source, delivered to the three-
phase load, and absorbed by the three-phase line.

Solution
To analyze the per-phase equivalent circuit in Figure 12.3-6a, notice that

1. The secondary voltage of the left-hand transformer is 10 times the primary voltage, that is, 1000 cos (377t).

2. The impedance connected to the secondary of the right-hand transformer can be reflected to the primary of this
transformer by multiplying by 100. The result is a 4000-V resistor in series with a 4-H inductor.

These observations lead to the one-mesh circuit shown in Figure 12.3-6b. The mesh current in this circuit is the line
current of the three-phase circuit. This line current is calculated as

IaA oð Þ ¼ 1000

4010þ j 377ð Þ 4:005ð Þ ¼ 0:2334ff�20:6� A

The current into the dotted end of the secondary of the left-hand transformer in Figure 12.3-6a is �IaA(o), so the
current into the dotted end of the primary of this transformer is

Ia oð Þ ¼ �10 �IaA oð Þð Þ ¼ 2:334ff�20:6� A

The current into the dotted end of the primary of the right-hand transformer is IaA(o), so the current into the dotted
end of the secondary is

IA oð Þ ¼ � �10 IaA oð Þð Þ ¼ 2:334ff�20:6� A

100 cos
(377t)

+
–

Load

N

Line

n

Source

1 : 10 10 : 1

(a)

iA(t)iaA(t)ia(t)

40 Ω10 Ωa A

40 mH

5 mH

1000
+
–

10 Ω 4000 Ωj (377) (0.005) Ω

 j (377)(4) Ω

(b)

IaA(w)0˚ V

FIGURE 12.3-6 (a) A
per-phase equivalent
circuit for a balanced
Y-to-Y circuit with
step-up and step-down
transformers and (b) the
corresponding
frequency-domain
circuit used to calculate
the line current.
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EXERCISE 12.3-1 Determine complex power delivered to the three-phase load of a four-wire
Y-to-Y circuit such as the one shown in Figure 12.3-1. The phase voltages of the Y-connected source
are Va ¼ 120ff0�V rms, Vb ¼ 120ff�120� V rms, and Vc ¼ 120 ff120�V rms. The load imped-
ances are ZA ¼ 80 þ j50 V; ZB ¼ 80 þ j80 V; and ZC ¼ 100 � j25 V.

Answer:SA ¼ 129 þ j81 VA; SB ¼ 90 þ j90 VA; SC ¼ 136 � j34 VA, and S ¼ 355þ j137 VA

EXERCISE 12.3-2 Determine complex power delivered to the three-phase load of a four-wire
Y-to-Y circuit such as the one shown in Figure 12.3-1. The phase voltages of the Y-connected source
are Va ¼ 120ff0� V rms, Vb ¼ 120ff�120� V rms, and Vc ¼ 120 ff120� V rms. The load imped-
ances are ZA ¼ ZB ¼ ZC ¼ 40 þ j30 V.

Answer: SA ¼ SB ¼ SC ¼ 230 þ j173 ¼ VA and S ¼ 691 þ j518 VA

EXERCISE 12.3-3 Determine complex power delivered to the three-phase load of a three-wire
Y-to-Y circuit such as the one shown in Figure 12.3-2. The phase voltages of the Y-connected source
are Va ¼ 120ff0� V rms, Vb ¼ 120ff�120� V rms, and Vc ¼ 120 ff120� V rms. The load imped-
ances are ZA ¼ 80 þ j50 V;ZB ¼ 80 þ j80 V; and ZC ¼ 100 � j25 V.

Intermediate Answer: VnN ¼ 28:89ff�150:5 V rms

Answer: S ¼ 392 þ j142 VA

EXERCISE 12.3-4 Determine complex power delivered to the three-phase load of a three-wire
Y-to-Y circuit such as the one shown in Figure 12.3-2. The phase voltages of the Y-connected source
are Va ¼ 120ff0� V rms, Vb ¼ 120ff�120� V rms, and Vc ¼ 120ff120� V rms. The load imped-
ances are ZA ¼ ZB ¼ ZC ¼ 40 þ j30 V.

Answer: SA ¼ SB ¼ SC ¼ 230 þ j173 VA and S ¼ 691 þ j518 VA

The phase voltage at the load is

VAN oð Þ ¼ 40þ j 377ð Þ 0:04ð Þð ÞIA oð Þ ¼ 99:77ff0� V
The power delivered by the source is calculated as

Ia oð Þ ¼ 2:334ff�20:6� A and

Van oð Þ ¼ 100ff0� V so Pa ¼ 100ð Þ 2:334ð Þ
2

cos 20:6�ð Þ ¼ 109:2W

The power delivered to the load is calculated as

IA oð Þ ¼ 2:334ff�20:6� A and RA ¼ 40 V; so PA ¼ 2:3342

2
40 ¼ 108:95W

The power lost in the line is calculated as

IaA oð Þ ¼ 0:2334ff�20:6� A and RaA ¼ 10 V; so PA ¼ 0:23342

2
10 ¼ 0:27W

Now 98 percent of the power supplied by the source is delivered to the load. Only 2 percent is lost in the line.
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12.4 T h e D- C o n n e c t e d S o u r c e a n d L o a d

The D-connected source is shown in Figure 12.2-5b. This generator connection, however, is seldom
used in practice because any slight imbalance in magnitude or phase of the three-phase voltages will not
result in a zero sum. The result will be a large circulating current in the generator coils that will heat the
generator and depreciate the efficiency of the generator. For example, consider the condition

Vab ¼ 120ff0�
Vbc ¼ 120:1ff�121�

Vca ¼ 120:2ff121�
ð12:4-1Þ

If the total resistance around the loop is 1 V, we can calculate the circulating current as
I ¼ Vab þ Vbc þ Vcað Þ=1

¼ 120þ 120:1 �0:515� j0:857ð Þ þ 120:2 �0:515þ j0:857ð Þ
ffi 120� 1:03 120:15ð Þ
ffi �3:75 A

ð12:4-2Þ

which would be unacceptable.
Therefore, we will consider only a Y-connected source as practical at the source side and consider

both the D-connected load and the Y-connected load at the load side.
The D-to-Y and Y-to-D transformations convert D-connected loads to equivalent Y-connected

loads and vice versa. These transformations are summarized in Table 12.4-1. Given the impedances Z1,
Z2, Z3 of a D-connected load, Table 12.4-1 provides the formulas that are required to determine the
impedances ZA, ZB, ZC of the equivalent Y-connected load. These three-phase loads are said to
be equivalent because replacing the D-connected load by the Y-connected load will not change any of
the voltages or currents of the three-phase source or three-phase line.

The D-to-Y and Y-to-D transformations are significantly simpler when the loads are balanced.
Suppose the D-connected load is balanced, that is, Z1 ¼ Z2 ¼ Z3 ¼ ZD. The equivalent Y-connected

Table 12.4-1 Y-to-D and D-to-Y Conversions

DESCRIPTION CIRCUIT
CONVERSION

FORMULAS (UNBALANCED)
CONVERSION

FORMULAS (BALANCED)

Y-connected load

ZC

A B

C

N

ZBZA

Z1Z3

Z1 + Z2 + Z3
ZA =

Z2Z3

Z1 + Z2 + Z3
ZB =

Z1Z2

Z1 + Z2 + Z3
ZC =

ZΔ
3

Z1 = Z2 = Z3 = ZΔ

When

ZA = ZB = ZC =
then

D-connected load

A B

C

Z2Z1

Z3

ZAZB + ZBZC + ZAZC

ZC
Z3 =

ZAZB + ZBZC + ZAZC

ZA 
Z2 =

ZAZB + ZBZC + ZAZC

ZB 
Z1 =

ZA = ZB = ZC = ZY

When

Z1 = Z2 = Z3 = 3ZY 
then
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load will also be balanced, so ZA ¼ ZB ¼ ZC ¼ ZY. Then, we have

ZY ¼ ZD

3
ð12:4-3Þ

Therefore, if we have a Y-connected source and a balanced D-connected load with ZD, we convert the D
load to a Y load with ZY ¼ ZD=3. Then the line current is

IA ¼ Va

ZY
¼ 3Va

ZD
ð12:4-4Þ

Thus, we will consider only the Y-to-Y configuration. If the Y-to-D configuration is encountered,
the D-connected load is converted to a Y-connected load equivalent, and the resulting currents and
voltages are calculated.

E X A M P L E 1 2 . 4 - 1 Y- and D-Connected Loads

Figure 12.4-1a shows a three-phase load that consists of a parallel connection of a Y-connected and D-connected
load. Convert this load to an equivalent Y-connected load.

(b)

80 + j60 Ω

82.5 + j100 Ω 108 + j99 Ω

110 + j133 Ω

80 + j80 Ω60 + j80 Ω

(a)

80 + j60 Ω
30 + j40 Ω

30 + j30 Ω

40 + j40 Ω

80 + j80 Ω60 + j80 Ω

A
B

C

A

B

C

(c) (d)

47 + j42.5 Ω
13 + j14.6 Ω

12.6 + j15 Ω

17 + j14 Ω

46 + j44 Ω35 + j44.5 Ω

A
B

C

A
B

C

FIGURE 12.4-1 Example of Y-D
conversions. (a) Parallel Y-connected
and D-connected loads. (b) The
Y-connected load is converted to a
D-connected load. (c) The parallel
D-connected loads are replaced by a
single equivalent D-connected load.
(d) The D-connected load is converted to
a Y-connected load.
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12.5 T h e Y - t o -D C i r c u i t

Now, let us consider the Y-to-D circuit as shown in Figure 12.5-1. Applying KCL at the nodes of the
D-connected load shows that the relation between the line currents and phase currents is

IaA ¼ IAB � ICA

IbB ¼ IBC � IAB
and IcC ¼ ICA � IBC ð12:5-1Þ

The goal is to calculate the line and phase currents for the load.
The phase currents in the D-connected load can be calculated from the line-to-line voltages. These

line-to-line voltages appear directly across the impedances of the D-connected load. For example, VAB

appears across Z3, so

IAB ¼ VAB

Z3
ð12:5-2Þ

Similarly, ICA ¼ VCA

Z2
and IBC ¼ VBC

Z1
ð12:5-3Þ

When the load is balanced, the phase currents in the load have the same magnitude and have
phase angles that differ by 120�. For example, if the three-phase source has the abc sequence and

+
–

+
–+

–

IbB

IAB

IBC

ICA

IcC

Cc

a

n

b
A

B

IaA

Vb

Z3

Z2Z1

Va

Vc

VAB +–

VBC VCA

+ –

– +

FIGURE 12.5-1 A Y-to-D three-phase circuit.

Solution
First, convert the Y-connected load to a D-connected load as shown in Figure 12.4-1b. Notice, for
example, that both of the D-connected loads in Figure 12.4-1b have an impedance connected
between terminals A and B. These impedances are in parallel and can be replaced by a single
equivalent impedance. Replace the parallel D-connected loads by a single equivalent D-connected load
as shown in Figure 12.4-1c. Finally, convert the D-connected load to a Y-connected load as shown in Figure
12.4-1d.

The Y-to-D Circuit 583



IAB ¼ Ifff, then ICA ¼ Ifffþ 120�. The line current IaA is calculated as

IaA ¼ IAB � ICA
¼ I cos fþ jI sin f� I cos fþ 120�ð Þ � jI sin fþ 120�ð Þ
¼ �2I sin fþ 60�ð Þ sin �60�ð Þ þ j2I cos fþ 60�ð Þ sin �60�ð Þ
¼ ffiffiffi

3
p

I [sin (fþ 60�)� j cos (fþ 60�)]
¼ ffiffiffi

3
p

I [cos (f� 30�)� j sin (f� 30�)]
¼ ffiffiffi

3
p

Ifff� 30� A

ð12:5-4Þ

Therefore, jIaAj ¼
ffiffiffi
3

p
jIj ð12:5-5Þ

or IL ¼
ffiffiffi
3

p
Ip

and the line current magnitude is
ffiffiffi
3

p
times the phase current magnitude. This result can also be

obtained from the phasor diagram shown in Figure 12.5-2. In a D connection, the line current is
ffiffiffi
3

p
times the phase current and is displaced �30� in phase. The line-to-line voltage is equal to the phase
voltage.

30°

120°

30°
120°

IAB
–ICA

ICA

IA

FIGURE 12.5-2 Phasor diagram for currents of a D load.

E X A M P L E 1 2 . 5 - 1 Balanced Y-D Circuit

Consider the three-phase circuit shown in Figure 12.5-1. The voltages of the Y-connected source are

Va ¼ 220ffiffiffi
3

p ff�30� V rms; Vb ¼ 220ffiffiffi
3

p ff�150� V rms; and Vc ¼ 220ffiffiffi
3

p ff90� V rms

The D-connected load is balanced. The impedance of each phase is ZD ¼ 10ff�50� V. Determine the phase and
line currents.

Solution
The line-to-line voltages are calculated from the phase voltages of the source as

VAB ¼ Va � Vb ¼ 220ffiffiffi
3

p ff�30� � 220ffiffiffi
3

p ff�150� ¼ 220ff0� V rms

VBC ¼ Vb � Vc ¼ 220ffiffiffi
3

p ff�150� � 220ffiffiffi
3

p ff90� ¼ 220ff�120� V rms

VCA ¼ Vc � Va ¼ 220ffiffiffi
3

p ff90� � 220ffiffiffi
3

p ff�30� ¼ 220ff�240� V rms
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The current and voltage relationships for a D load are summarized in Table 12.5-1.

EXERCISE 12.5-1 Consider the three-phase circuit shown in Figure 12.5-1. The voltages of the
Y-connected source are

Va ¼ 360ffiffiffi
3

p ff�30� V rms; Vb ¼ 360ffiffiffi
3

p ff�150� V rms; and Vc ¼ 360ffiffiffi
3

p ff90� V rms

The D-connected load is balanced. The impedance of each phase is ZD ¼ 180ff45� V. Determine the phase and
line currents when the line-to-line voltage is 360 V rms.

Partial Answer: IAB ¼ 2ff45� A rms and IaA ¼ 3:46ff15� A rms

The phase voltages of a D-connected load are equal to the line-to-line voltages. The phase currents are

IAB ¼ VAB

Z
¼ 220ff0�

10ff�50�
¼ 22ff50� A rms

IBC ¼ VBC

Z
¼ 220ff�120�

10ff�50�
¼ 22ff�70� A rms

ICA ¼ VCA

Z
¼ 220ff�240�

10ff�50�
¼ 22ff�190� A rms

The line currents are

IaA ¼ IAB � ICA ¼ 22ff50� � 22ff�190� ¼ 22
ffiffiffi
3

p ff20� A rms

Then IbB ¼ 22
ffiffiffi
3

p ff�100� A rms and IcC ¼ 22
ffiffiffi
3

p ff�220� A rms

Table 12.5-1 The Current and Voltage for a D Load

Phase voltages VAB ¼ VABff0�

Line-to-line voltages VAB ¼ VL linear voltage ¼ phase voltageð Þ
Phase currents

IAB ¼ VAB

ZP
¼ VL

ZD
¼ Ipff�y

with ZP ¼ Z=y

IBC ¼ IABff�120�

ICA ¼ IABff�240�

Line currents IA ¼ ffiffiffi
3

p
Ipff�y� 30�

IB ¼ ffiffiffi
3

p
Ipff�y� 150�

IC ¼ ffiffiffi
3

p
Ipff�yþ 90�

IL ¼ ffiffiffi
3

p
Ip

Note: L ¼ line, p ¼ phase.
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12.6 B a l a n c e d T h r e e - P h a s e C i r c u i t s

We have only two possible practical configurations for three-phase circuits, Y-to-Y and Y-to-D, and we
can convert the latter to a Y-to-Y form. Thus, a practical three-phase circuit can always be converted to
the Y-to-Y circuit.

Balanced circuits are easier to analyze than unbalanced circuits. Earlier, we saw that balanced
three-phase Y-to-Y circuits can be analyzed using a per-phase equivalent circuit.

The circuit shown in Figure 12.6-1a is a balanced Y-to-D circuit. Figure 12.6-1b shows the
equivalent Y-to-Y circuit in which

ZY ¼ ZD

3

This Y-to-Y circuit can be analyzed using the per-phase equivalent circuit shown in Figure
12.6-1c.

+
–

+
–

IbB

IAB

IBC ICA

IcC

Cc

a

n

b B
A

IaA

Vb

ZΔ

ZL

ZΔZΔ

Va

Vc

ZL

ZL

(a)

+
–

+
–

+
–

IbB

IcC

VNn

Cc

a

n

N

b B
A

IaA

Vb

ZL

Va

Vc

ZL

ZL

(b)

+
–

+–

ZY ZY

ZY
IaA

(c)

N

A

n

a ZL

ZY
+
–Va

VAN

+

–

FIGURE 12.6-1 (a) A Y-to-D circuit, (b) the equivalent Y-to-Y circuit, and (c) the per-phase equivalent circuit.

586 12. Three-Phase Circuits



E X A M P L E 1 2 . 6 - 1 Per-Phase Equivalent Circuit

Figure 12.6-1a shows a balanced Y-to-D three-phase circuit. The phase voltages of the Y-connected source are
Va ¼ 110ff0� V rms, Vb ¼ 110ff�120� V rms, and Vc ¼ 110ff120� V rms. The line impedances are each
ZL ¼ 10 þ j5 V. The impedances of the D-connected load are each ZD ¼ 75 þ j225 V. Determine the phase
currents in the D-connected load.

Solution
Convert the D-connected load to a Y-connected load using the D-to-Y transformation summarized in Table
12.4-1. The impedances of the balanced equivalent Y-connected load are

ZY ¼ 75þ j225

3
¼ 25þ j75 V

The per-phase equivalent circuit for the Y-to-Y circuit is shown in Figure 12.6-1c. The line current is
given by

IaA ¼ Va

ZL þ ZY
¼ 110ff0�

10þ j5ð Þ þ 25þ j75ð Þ ¼ 1:26ff�66� A rms ð12:6-1Þ

The line current IaA, calculated using the per-phase equivalent circuit, is also the line current IaA in the Y-to-
Y circuit, as well as the line current IaA in the Y-to-D circuit. The other line currents in the balanced Y-to-Y
circuit have the same magnitude but differ in phase angle by 120�. These line currents are

IbB ¼ 1:26ff�186� A rms and IcC ¼ 1:26ff54� A rms

(To check the value of IbB, apply KVL to the loop in the Y-to-Y circuit that starts at node n, passes through nodes b,
B, N, and returns to node n. The resulting KVL equation is

Vb ¼ ZLIbB þ ZYIbB þ VNn

Because the circuit is balanced, VNn ¼ 0. Solving for IbB gives

IbB ¼ Vb

ZL þ ZY
¼ 110ff�120�

10þ j5ð Þ þ 25þ j75ð Þ ¼ 1:26ff�186� A rms ð12:6-2Þ

Comparing Eqs. 12.6-1 and 12.6-2 shows that the line currents in the balanced Y-to-Y circuit have the same
magnitude but differ in phase angle by 120�.

The line currents of the Y-to-D circuit in Figure 12.6-1a are equal to the line currents of the Y-to-Y circuit in
Figure 12.6-1b because the Y-to-D and Y-to-Y circuits are equivalent.

The voltage VAN in the per-phase equivalent circuit is

VAN ¼ IaAZY ¼ ð1:26ff�66�Þ 25þ j75ð Þ ¼ 99:6ff5� V rms

The voltage VAN calculated using the per-phase equivalent circuit is also the phase voltage VAN of the Y-to-Y
circuit. The other phase voltages of the balanced Y-to-Y circuit have the same magnitude but differ in phase angle
by 120�. These phase voltages are

VBN ¼ 99:6ff�115� V rms and VCN ¼ 99:6ff125� V rms

Try it 
yourself 

in WileyPLUS
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EXERCISE 12.6-1 Figure 12.6-1a shows a balanced Y-to-D three-phase circuit. The phase

voltages of the Y-connected source are Va ¼ 110ff0� V rms, Vb ¼ 110ff�120� V rms, and Vc ¼
110ff120� V rms. The line impedances are each ZL ¼ 10 þ j25 V. The impedances of the D-connected
load are each ZD ¼ 150 þ j270 V. Determine the phase currents in the D-connected load.

Answer: IAB ¼ 0:49ff�32:5� A rms, IBC ¼ 0:49ff�152:5� A rms, ICA ¼ 0:49ff87:5� A rms

12.7 I n s t a n t a n e o u s a n d A v e r a g e P ow e r i n a B a l a n c e d
T h r e e - P h a s e L o a d

One advantage of three-phase power is the smooth flow of energy to the load. Consider a balanced load
with resistance R. Then the instantaneous power is

p tð Þ ¼ v2ab
R

þ v2bc
R

þ v2ca
R

ð12:7-1Þ
where vab ¼ V cos ot, and the other two-phase voltages have a phase of �120�, respectively.
Furthermore,

cos2 at ¼ 1þ cos 2að Þ=2
Therefore,

p tð Þ ¼ V2

2R
1þ cos 2ot þ 1þ cos 2 ot � 120�ð Þ þ 1þ cos 2 ot � 240�ð Þ½ �

¼ 3V2

2R
þ V2

2R
cos 2ot þ cos 2ot � 240�ð Þ þ cos 2ot � 480�ð Þ½ �

ð12:7-2Þ

The bracketed term is equal to zero for all time. Hence,

p tð Þ ¼ 3V2

2R

The line-to-line voltages of the Y-to-Y circuit are calculated as

VAB ¼ VAN � VBN ¼ 99:5ff5� � 99:5ff�115� ¼ 172ff35� V rms

VBC ¼ VBN � VCN ¼ 99:5ff�115� � 99:5ff125� ¼ 172ff�85� V rms

VCA ¼ VCN � VAN ¼ 99:5ff125� � 99:5ff5� ¼ 172ff155� V rms

The phase voltages of a D-connected load are equal to the line-to-line voltages. The phase currents are

IAB ¼ VAB

ZD
¼ 172ff35�

75þ j225
¼ 0:727ff�36� A rms

IBC ¼ VBC

ZD
¼ 172ff�85�

75þ j225
¼ 0:727ff�156� A rms

ICA ¼ VCA

ZD
¼ 172ff155�

75þ j225
¼ 0:727ff�84� A rms
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The instantaneous power delivered to a balanced three-phase load is a constant.

The total power delivered to a balanced three-phase load can be calculated using the per-phase
equivalent circuit. For example, we multiply the complex power delivered to a load in the per-phase
equivalent circuit by 3 to obtain the total complex power delivered to the corresponding balanced three-
phase load.

Consider, again, Figure 12.6-1. Figure 12.6-1a shows a balanced Y-to-D circuit. Figure
12.6-1b shows the equivalent Y-to-Y circuit, obtained using the D-to-Y transformation summarized
in Table 12.4-1. Figure 12.6-1c shows the per-phase equivalent circuit corresponding to the Y-to-Y
circuit. The voltage VAN ¼ VPffyAV and the current IaA ¼ ILffyAI are obtained using per-phase
equivalent circuit. The voltage VAN and the current IaA are the phase voltage and line current of the
Y-connected load in Figure 12.6-1b. The total average power delivered to the balanced Y-connected
load is given by

PY ¼ 3 PA ¼ 3 VPIL cos yAV � yAIð Þ ¼ 3 VPIL cos yð Þ ð12:7-3Þ
where y is the angle between the phase voltage and the line current, cos y is the power factor, and VP and
IP are effective values of the phase voltage and line current.

It is easier to measure the line-to-line voltage and the line current of a circuit. Also recall that the
line current equals the phase current and that the phase voltage is VP ¼ VL=

ffiffiffi
3

p
for the Y-load

configuration. Therefore,

P ¼ 3
VLffiffiffi
3

p IL cos y ¼
ffiffiffi
3

p
VLIL cos y ð12:7-4Þ

The total average power delivered to the D-connected load in Figure 12.6-1a is

P ¼ 3PAB ¼ 3VABIAB cos y ¼ 3
ffiffiffi
3

p
VP

� � ILffiffiffi
3

p cos y ¼ 3 VPIL cos y ð12:7-5Þ

In summary, the total average power delivered to the D-connected load in Figure 12.6-1a is equal
to the total average power delivered to the balanced Y-connected load in Figure 12.6-1b.
That’s appropriate because the two circuits are equivalent. Notice that the information required
to calculate the power delivered to a balanced load, Y or D, is obtained from the per-phase equivalent
circuit.

E X A M P L E 1 2 . 7 - 1 Power Delivered to the Load

Figure 12.6-1a shows a balanced Y-to-D three-phase circuit. The phase voltages of the Y-connected source are

Va ¼ 110ff0� V rms, Vb ¼ 110ff�120� V rms, and Vc ¼ 110ff120� V rms. The line impedances are each
ZL ¼ 10 þ j5 V. The impedances of the D-connected load are each ZD ¼ 75 þ j225 V. Determine the average
power delivered to the load.

Solution
This circuit was analyzed in Example 12.6-1. That analysis showed that

IaA ¼ 1:26ff�66� A rms
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and VAN ¼ 99:6ff5� V rms

The total average power delivered to the load is given by Eq. 12.7-3 as

P ¼ 3 99:6ð Þ 1:26ð Þ cos 5� � �66�ð Þð Þ ¼ 122:6W

E X A M P L E 1 2 . 7 - 3 Three-Phase Circuit

A balanced three-phase circuit consists of a Y-connected source connected to a balanced load. The line impedances
are each ZL ¼ 2 þ j0:5 V. The balanced three-phase load receives 15 kW at a power factor of 0.8 lagging, and the
line voltage at the load is 480 V rms. Determine the required source voltage and the complex power supplied by the
three-phase source.

Solution
The three-phase load in this example is the same load encountered in Example 12.7-2. Using the results of Example
12.7-2, we can represent this three-phase circuit, using the per-phase equivalent circuit shown in Figure 12.6-1c

E X A M P L E 1 2 . 7 - 2 Three-Phase Load

A balanced three-phase load receives 15 kW at a power factor of 0.8 lagging when the line voltage is 480 V rms.
Represent this load as a balanced Y-connected load.

Solution
We will represent the load as three Y-connected impedances. Each of these impedances will receive one third of
the power delivered to the three-phase load, 5 kW at 0.8 lagging. The complex power received by each impedance
will be

S ¼ P þ j
P

pf
sin cos�1 pfð Þ� � ¼ 5þ j

5

0:8
sin cos�1 0:8ð Þ� � ¼ 5þ j3:75 kVA

The voltage across each impedance of the load will be phase voltage

VP ¼ VLj jffiffiffi
3

p fff ¼ 480ffiffiffi
3

p fff ¼ 277fff V rms

The angle f of the phase voltage has not been specified. The voltages across each of the three impedances of the
load have the same magnitude but different angles. The current in each of the load impedances is given by

I ¼ S
VP

� ��
¼ 6250ff36:9�

277fff
 !�

¼ 22:56ff f� 36:9�ð ÞA rms

Finally, the load impedance is given by

Z ¼ VP

I
¼ 277fff

22:56ff f� 36:9�ð Þ ¼ 12:28ff36:9� ¼ 9:82þ j7:37V
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EXERCISE 12.7-1 Figure 12.6-1a shows a balanced Y-to-D three-phase circuit. The phase
voltages of the Y-connected source are Va ¼ 110ff0� V rms, Vb ¼ 110ff�120� V rms, and
Vc ¼ 110ff120� V rms. The line impedances are each ZL ¼ 10 þ j25 V. The impedances of
the D-connected load are each ZD ¼ 150 þ j 270 V. Determine the average power delivered to the
D-connected load.

Intermediate Answer: IaA ¼ 0:848ff�62:5� A rms and VAN ¼ 87:3ff�1:5� V rms

Answer: P ¼ 107:9 W

12.8 Two -W a t tm e t e r P ow e r M e a s u r em e n t

For many load configurations, for example, a three-phase motor, the phase current or voltage is
inaccessible. We may wish to measure power with a wattmeter connected to each phase. However,
because the phases are not available, we measure the line currents and the line-to-line voltages. A
wattmeter provides a reading of VLIL cos y where VL and IL are the rms magnitudes and y is the angle
between the line voltage V and the current I. We choose to measure VL and IL, the line voltage and
current, respectively. We will show that two wattmeters are sufficient to read the power delivered to the
three-phase load, as shown in Figure 12.8-1. We use cc to denote current coil and vc to denote voltage
coil.

Wattmeter 1 reads

P1 ¼ VABIA cos y1 ð12:8-1Þ
and wattmeter 2 reads

P2 ¼ VCBIC cos y2 ð12:8-2Þ
For the abc phase sequence for a balanced load,

y1 ¼ yþ 30�

and

y2 ¼ y� 30� ð12:8-3Þ

with ZL ¼ 2 þ j0:5 V and ZY ¼ 9:82 þ j7:37 V. As in Example 12.7-2, the line current depends on the power
received by the load and the line voltage at the load and is given by

IaA ¼ 22:56ff f� 36:9�ð ÞA rms

where f has not been specified. Using KVL, the required source voltage can then be expressed as

Va ¼ ZL þ ZYð ÞIaA ¼ 2þ j0:5þ 9:82þ j7:37ð Þ22:56ff f� 36:9�ð Þ ¼ 320:6ff f� 3:3�ð ÞV rms

The complex power delivered by the three-phase source is

Ssource ¼ 3VaI�aA ¼ 3ð320:6ff f� 3:3�ð ÞÞð22:56ff f� 36:9�ð ÞÞ� ¼ 21:7ff33:6�
¼ 18:1þ j12:0 kVA

It’s worth noticing that the power supplied by the three-phase source does not depend on the unspecified angle f.
At this point, it may be convenient to specify that f ¼ 3:3� so that the Y-connected voltage sources will have phase
angles of 0�, 120�, and �120�.
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where y is the angle between the phase current and the phase voltage for phase a of the three-phase
source.

Therefore,

P ¼ P1 þ P2 ¼ VLIL cos y þ 30�ð Þ þ VLIL cos y� 30�ð Þ
¼ VLIL cos y cos 30� � sin y sin 30� þ cos y cos 30� þ sin y sin 30�½ �
¼ 2 VLIL cos y cos 30� ¼ ffiffiffi

3
p

VLIL cos y

ð12:8-4Þ

which is the total average power of the three-phase circuit. The preceding derivation of Eq. 12.8-4 is for
a balanced circuit; the result is good for any three-phase, three-wire load, even unbalanced or
nonsinusoidal voltages.

The power factor angle y of a balanced three-phase system may be determined from the reading of
the two wattmeters shown in Figure 12.8-2.

The total power is obtained from Eqs. 12.8-1 through 12.8-3 as

P ¼ P1 þ P2 ¼ VLIL cos yþ 30�ð Þ þ cos y� 30�ð Þ½ �
¼ VLIL 2 cos y cos 30�

ð12:8-5Þ

Similarly, P1 � P2 ¼ VLIL �2 sin y sin 30�ð Þ ð12:8-6Þ

Dividing Eq. 12.8-5 by Eq. 12.8-6, we obtain

P1 þ P2

P1 � P2
¼ 2 cos y cos 30�

�2 sin y sin 30�
¼ � ffiffiffi

3
p

tan y

Therefore, tan y ¼
ffiffiffi
3

p P2 � P1

P2 þ P1
ð12:8-7Þ

where y ¼ power factor angle.

VAB

VCB

IA

IB

IC

ZZ

C

Z

cc

vc

+

Wattmeter 1

+

vc

cc+

Wattmeter 2

–

+

B

A

FIGURE 12.8-1 Two-wattmeter connection for a three-phase
Y-connected load.

C

Z

Z Z

B

B

C

IB

IA
A

+

–

A

VAC

W2

W1

FIGURE 12.8-2 The two-wattmeter
connection for Example 12.8-1.
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E X A M P L E 1 2 . 8 - 2 Two-Wattmeter Method

The two wattmeters in Figure 12.8-2 read P1 ¼ 60 kW and P2 ¼ 180 W, respectively. Find the power factor of the
circuit.

Solution
From Eq. 12.8-7, we have

tan y ¼
ffiffiffi
3

p P2 � P1

P2 þ P1
¼

ffiffiffi
3

p 120

240
¼

ffiffiffi
3

p

2
¼ 0:866

Therefore, we have y ¼ 40:9� and the power factor is

pf ¼ cos y ¼ 0:756

The positive angle y indicates that the power factor is lagging. If y is negative, then the power factor is leading.

E X A M P L E 1 2 . 8 - 1 Two-Wattmeter Method

The two-wattmeter method is used, as shown in Figure 12.8-2, to measure the total power delivered to the
Y-connected load when Z ¼ 10ff45� V and the supply line-to-line voltage is 220 V rms. Determine the reading of
each wattmeter and the total power.

Solution
The phase voltage is

VA ¼ 220ffiffiffi
3

p ff�30� V rms

Then we obtain the line current as

IA ¼ VA

Z
¼ 220ff�30�

10
ffiffiffi
3

p ff45� ¼ 12:7ff�75� A rms

Then the second line current is

IB ¼ 12:7ff�195� A rms

The line-to-line voltages VAB ¼ 220ff0� V rms, VCA ¼ 220ffþ120� V rms, and VBC ¼ 220ff�120� V rms. The
first wattmeter reads

P1 ¼ IAVAC cos y1 ¼ 12:7 220ð Þ cos 15� ¼ 2698W

Because VCA ¼ 220ffþ120�, VAC ¼ 220ff�60�. Therefore, the angle y1 lies between VAC and IA and is equal to
15�. The reading of the second wattmeter is

P2 ¼ IBVBC cos y2 ¼ 12:7 220ð Þ cos 75� ¼ 723W

where y2 is the angle between IB and VBC. Therefore, the total power is

P ¼ P1 þ P2 ¼ 3421W

We note that all of the preceding calculations assume that the wattmeter itself absorbs negligible power.
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EXERCISE 12.8-1 The line current to a balanced three-phase load is 24 A rms. The line-to-
line voltage is 450 V rms, and the power factor of the load is 0.47 lagging. If two wattmeters are
connected as shown in Figure 12.8-2, determine the reading of each meter and the total power to the
load.

Answers: P1 ¼ � 371 W; P2 ¼ 9162 W; and P ¼ 8791 W

EXERCISE 12.8-2 The two wattmeters are connected as shown in Figure 12.8-2 with P1 ¼
60 kW and P2 ¼ 40 kW, respectively. Determine (a) the total power and (b) the power factor.

Answers: (a) 100 kW (b) 0.945 leading

12.9 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the specifica-
tions have been satisfied. In addition, computer output must be reviewed to guard against data-entry
errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

E X A M P L E 1 2 . 9 - 1 How Can We Check Analysis of
Three-Phase Circuits?

Figure 12.9-1a shows a balanced three-phase circuit. Computer analysis of this circuit produced the
element voltages and currents tabulated in Figure 12.9-1b. How can we check that this computer analysis
is correct?

v1 = 10 cos (3t) V R1 = 9 Ω L1 = 4 H

v2 = 10 cos (3t + 120°) V

+–

R2 = 9 Ω L2 = 4 H

v3 = 10 cos (3t – 120°) V R3 = 9 Ω L3 = 4 H

(a) (b)

1

2
70

3

4

5

6

+–

V1  1  0  10 10 0.67
V2  2  0  10 10 0.67
V3  3  0  10 10 0.67
R1  1  4  9 6 0.67
R2  2  5  9 6 0.67
R3  3  6  9 6 0.67
L1  4  7  4 8 0.67
L2  5  7  4 8 0.67
L3  6  7  4 8 0.67

Element Voltage Current

+–

0
120
–120

0
120
–120
–53
67
–173
37
157
83

127
113
7
–53
67
–173
–53
67
–173

FIGURE 12.9-1 (a) A three-phase circuit. (b) The results of computer analysis.
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E X A M P L E 1 2 . 9 - 2 How Can We Check Unbalanced
Three-Phase Circuits?

Computer analysis of the circuit in Figure 12.9-3 shows that VNn oð Þ ¼ 12:67ff174:6� V. This computer analysis
did not use rms values, so 12.67 is the magnitude of the sinusoidal voltage vNn(t) rather than the effective value.
Verify that this voltage is correct.

+–

+

–

+–

10 Ω

100 cos
(377t)

40 Ω5 mH

a

b
n N

c

A

B

C

40 mH

10 Ω 50 Ω5 mH 30 mH

100 cos
(377t + 240)

100 cos
(377t +120)

10 Ω 30 Ω5 mH 50 mH

Line LoadSource

FIGURE 12.9-3 A three-phase circuit.

Solution
Because the three-phase circuit is balanced, it can be analyzed by using a per-phase equivalent circuit. The
appropriate per-phase equivalent circuit for this example is shown in Figure 12.9-2. This per-phase equivalent
circuit can be analyzed by writing a single-mesh equation:

10 ¼ 9þ j12ð ÞIL oð Þ
or

IL oð Þ ¼ 0:67e�j53�A

where IL(o) is the phasor corresponding to the inductor current. The voltage across the inductor is given by

VL oð Þ ¼ j12 IL oð Þ ¼ 8ej37�V

The voltage across the resistor is given by

VR oð Þ ¼ 9 IL oð Þ ¼ 6e�j53�V

These currents and voltages are the same as the values given in the computer analysis for the element currents and
voltages of R1 and L1. We conclude that the computer analysis of the three-phase circuit is correct.

+
–

9 Ω

10 V
j12 Ω

0.67 –53° A

FIGURE 12.9-2 The per-phase equivalent circuit.
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Solution
This result could be checked by writing and solving a node equation to calculate VNn(o), but it is easier to check
this result by verifying that KCL is satisfied at node N.

First, calculate the three line currents as

IA oð Þ ¼ 100� VNn oð Þ
60þ j 377ð Þ 0:035ð Þ ¼ 1:833ff�13� A

IB oð Þ ¼ 100ff120� � VNn oð Þ
50þ j 377ð Þ 0:045ð Þ ¼ 1:766ff94:9�A

IC oð Þ ¼ 100ff�120� � VNn oð Þ
40þ j 377ð Þ 0:055ð Þ ¼ 2:118ff�140:5� A

Next, apply KCL at node N to get

1:833ff�13� þ 1:766ff95:9� þ 2:118ff�140:5� ¼ 0A

Because KCL is satisfied at node N, the given node voltage is correct.
We can also check that average power is conserved. Recall that peak values, rather than effective values, are

being used in this example. First, determine the power delivered by the (three-phase) source:

IA oð Þ ¼ 1:833ff�13� A and Van oð Þ ¼ 100ff0� V; so Pa ¼ 100ð Þ 1:833ð Þ
2

cos 0� � �13�ð Þð Þ ¼ 89:3W

IB oð Þ ¼ 1:766ff94:9� A and Vbn oð Þ ¼ 100ff120� V; so Pb ¼ 100ð Þ 1:766ð Þ
2

cos 120� � 94:9�ð Þð Þ ¼ 80W

IC oð Þ ¼ 2:118ff�140:5� A and Vcn oð Þ ¼ 100ff240� V; so Pc ¼ 100ð Þ 2:118ð Þ
2

cos 0� þ 140:5�ð Þ ¼ 99:2W

The power delivered by the source is 89:3 þ 80 þ 99:2 ¼ 268:5 W.
Next, determine the power delivered to the (three-phase) load as

IA oð Þ ¼ 1:833ff�13� A and RA ¼ 50 V; so PA ¼ 1:8332

2
50 ¼ 84:0W

IB oð Þ ¼ 1:766ff94:9� A and RB ¼ 40 V; so PB ¼ 1:7662

2
40 ¼ 62:4W

IC oð Þ ¼ 2:118ff�140:5� A and RC ¼ 30 V; so PC ¼ 2:1182

2
30 ¼ 67:3W

The power delivered to the load is 84 þ 62:4 þ 67:3 ¼ 213:7 W.
Determine the power lost in the (three-phase) line as

IA oð Þ ¼ 1:833ff�13� A and RaA ¼ 10 V; so PaA ¼ 1:8332

2
10 ¼ 16:8W

IB oð Þ ¼ 1:766ff94:9� A and RbB ¼ 10 V; so PbB ¼ 1:7662

2
10 ¼ 15:6W

IC oð Þ ¼ 2:118ff�140:5� A and RcC ¼ 10 V; so PcC ¼ 2:1182

2
10 ¼ 22:4W

The power lost in the line is 16:8 þ 15:6 þ 22:4 ¼ 54:8 W.
The power delivered by the source is equal to the sum of the power lost in the line plus the power delivered to

the load. Again, we conclude that the given node voltage is correct.

596 12. Three-Phase Circuits



1 2 . 1 0 D E S I G N E X A M P L E Power Factor Correction

Figure 12.10-1 shows a three-phase circuit. The capacitors are added to improve the power factor of the load. We
need to determine the value of the capacitance C required to obtain a power factor of 0.9 lagging.

Describe the Situation and the Assumptions
1. The circuit is excited by sinusoidal sources all having the same frequency, 60 Hz or 377 rad/s. The circuit is at

steady state. The circuit is a linear circuit. Phasors can be used to analyze this circuit.

2. The circuit is a balanced three-phase circuit. A per-phase equivalent circuit can be used to analyze this circuit.

3. The load consists of two parts. The part comprising resistors and inductors is connected as a Y.
The part comprising capacitors is connected as a D. A D-to-Y transformation can be used to simplify the load.

The per-phase equivalent circuit is shown in Figure 12.10-2.

State the Goal
Determine the value of C required to correct the power factor to 0.9 lagging.

Generate a Plan
Power factor correction was considered in Chapter 11. A formula was provided for calculating the reactance X1

needed to correct the power factor of a load

X1 ¼ R2 þ X2

R tan cos�1 pfcð Þ � X

where R and X are the real and imaginary parts of the load impedance before the power factor is corrected and pfc is
the corrected power factor. After this equation is used to calculate X1, the capacitance C can be calculated from X1.
Notice that X1 will be the reactance of the equivalent Y-connected capacitors. We will need to calculate the D-
connected capacitor equivalent of the Y-connected capacitor.

va(t) = 100 cos (377t) V RL = 4 Ω R = 20 Ω

C

C

L = 0.2 HLL = 4 mH

vb(t) = 100 cos (377t + 120°) V

+–

+–

RL = 4 Ω R = 20 Ω L = 0.2 HLL = 4 mH

C
vc(t) = 100 cos (377t + 240°) V RL = 4 Ω R = 20 Ω L = 0.2 HLL = 4 mH

Source Line Load

+–

FIGURE 12.10-1 A balanced three-phase circuit.

+
– 377 • 3 • C100

Source LoadLine

– Ω

4 Ω 20 Ωj1.508 Ω

j75.4 Ω
j

0°

FIGURE 12.10-2 The per-phase
equivalent circuit.
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12.11 SUMMARY

The generation and transmission of electrical power are more
efficient in three-phase systems employing three voltages of
the same magnitude and frequency and differing in phase by
120� from each other.
The three-phase source consists of either three Y-connected
sinusoidal voltage sources or three D-connected sinusoidal
voltage sources. Similarly, the circuit elements that comprise
the load are connected to form either a Y or a D. The
transmission line connects the source to the load and consists
of either three or four wires.
Analysis of three-phase circuits using phasors and imped-
ances will determine the steady-state response of the three-
phase circuit. We are particularly interested in the power the
three-phase source delivers to the three-phase load. Table
12.1-1 summarizes the formulas that are used to calculate the
power delivered to an element when the element voltage and
current adhere to the passive convention.
The current in the neutral wire of a balanced Y-to-Y connection is
zero; thus, the wire may be removed if desired. The key to the
analysis of the Y-to-Y circuit is the calculation of the line currents.
When the circuit is not balanced, the first step in the analysis of

this circuit is to calculate VNn, the voltage at the neutral node of
the three-phase load with respect to the voltage at the neutral node
of the three-phase source. When the circuit is balanced, this step
isn’t needed because VNn ¼ 0. Once VNn is known, the line
currents can be calculated. The line current for a balanced Y-to-Y
connection is Va/Z for phase a, and the other two currents are
displaced by �120� from IA.
For a D load, we converted the D load to a Y-connected load
by using the relation D-to-Y transformation. Then we pro-
ceeded with the Y-to-Y analysis.
The line current for a balanced D load is

ffiffiffi
3

p
times the phase

current and is displaced �30� in phase. The line-to-line
voltage of a D load is equal to the phase voltage.
The power delivered to a balanced Y-connected load is PY ¼ffiffiffi

3
p

VABIA cos y where VAB is the line-to-line voltage, IA is
the line current, and y is the angle between the phase voltage
and the phase current ðZY ¼ ZffyÞ.
The two-wattmeter method of measuring three-phase power
delivered to a load was described. Also, we considered the
usefulness of the two-wattmeter method for determining the
power factor angle of a three-phase system.

Act on the Plan
We note that Z ¼ R þ jX ¼ 20 þ j75:4 V. Therefore, the reactance X1 needed to correct the power factor is

X1 ¼ 202 þ 75:42

20 tan cos�1 0:9ð Þ � 75:4
¼ �92:6

The Y-connected capacitor equivalent to the D-connected capacitor can be calculated from ZY ¼ ZD=3. Therefore,
the capacitance of the equivalent Y-connected capacitor is 3C.

Finally, because X1 ¼ 1= 3Coð Þ, we have

C ¼ 1

o 	 3 	 X1
¼ � 1

377 	 3 �92:6ð Þ ¼ 9:548 mF

Verify the Proposed Solution
When C ¼ 9:548 mF, the impedance of one phase of the equivalent Y-connected load will be

ZY ¼
1

j377
 3
 C
20þ j75:4ð Þ

1

j377
 3
 C
þ 20þ j75:4ð Þ

¼ 246:45þ j119:4

The value of the power factor is

pf ¼ cos tan�1 119:4

246:45

� �� �
¼ 0:90

so the specifications have been satisfied.
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PROBLEMS

Section 12.2 Three-Phase Voltages

P 12.2-1 A balanced three-phase Y-connected load has
one phase voltage:

Vc ¼ 277ff45� V rms

The phase sequence is abc. Find the line-to-line voltages
VAB, VBC, and VCA. Draw a phasor diagram showing the phase
and line voltages.

P 12.2-2 A three-phase system has a line-to-line voltage

VBA ¼ 12; 470ff�35� V rms

with a Y load. Find the phase voltages when the phase
sequence is abc.

P 12.2-3 A three-phase system has a line-to-line voltage

Vab ¼ 1500ff30� V rms

with a Y load. Determine the phase voltage.

Section 12.3 The Y-to-Y Circuit

P 12.3-1 Considera three-wireY-to-Ycircuit.Thevoltages
of the Y-connected source are Va ¼ 208=

ffiffiffi
3

p� � ff0� V rms,

Vb ¼ 208=
ffiffiffi
3

p� �ff�120� V rms, and Vc ¼ 208=
ffiffiffi
3

p� �
ff120� V rms. The Y-connected load isbalanced. The impedance

of each phase is Z ¼ 12ff30� V.

(a) Find the phase voltages.
(b) Find the line currents and phase currents.
(c) Show the line currents and phase currents on a phasor

diagram.
(d) Determine the power dissipated in the load.

P 12.3-2 A balanced three-phase Y-connected supply deliv-
ers power through a three-wire plus neutral-wire circuit in

a large office building to a three-phase Y-connected load.
The circuit operates at 60 Hz. The phase voltages of the
Y-connected source are Va ¼ 120ff0� V rms, Vb ¼ 120ff�120� V rms, and Vc ¼ 120ff120� V rms. Each transmis-
sion wire, including the neutral wire, has a 2-V resistance, and
the balanced Y load has a 10-V resistance in series with 100
mH. Find the line voltage and the phase current at the load.

P 12.3-3 A Y-connected source and load are shown in
Figure P 12.3-3. (a) Determine the rms value of the current ia(t).
(b) Determine the average power delivered to the load.

P 12.3-4 An unbalanced Y–Y circuit is shown in Figure
P 12.3-4. Find the average power delivered to the load.

Hint: VNn oð Þ ¼ 27:4ff�63:6 V

Answer: 436.4 W

+–

+

–

+–

10 Ω

100 cos
(377t)

40 Ω5 mH

a

b
n N

c

A

B

C

40 mH

10 Ω 20 Ω5 mH 60 mH

100 cos
(377t + 240°)

100 cos
(377t +120°)

10 Ω 60 Ω5 mH 20 mH

Line LoadSource

Figure P 12.3-4

P 12.3-5 A balanced Y–Y circuit is shown in Figure P 12.3-5.
Find the average power delivered to the load.

Problem available in WileyPLUS at instructor’s discretion.

–
+

+
–

+
–

ia(t)

10 cos (16t – 120°) V

10 cos (16t + 120°) V

10 cos 16t V

1 H

1 H

1 H

12 Ω

12 Ω

12 Ω
Source Load

Figure P 12.3-3
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+–

+

–

+–

10 Ω

100 cos
(377t)

20 Ω5 mH

a

b
n N

c

A

B

C

60 mH

10 Ω 20 Ω5 mH 60 mH

100 cos
(377t + 240°)

100 cos
(377t +120°)

10 Ω 20 Ω5 mH 60 mH

Line LoadSource

Figure P 12.3-5

P 12.3-6 An unbalanced Y–Y circuit is shown in Figure
P 12.3-6. Find the average power delivered to the load.

Hint: VNn oð Þ ¼ 1:755ff�29:5 V

Answer: 436.4 W

+–

+

–

+–

10 cos
(4t – 90°)

2 Ω

a

b
n N

c

A

B

C

2 H

4 Ω 1 H

10 cos
(4t + 30°)

10 cos
(4t + 150°)

4 Ω 2 H

Line LoadSource

Figure P 12.3-6

P 12.3-7 A balanced Y–Y circuit is shown in Figure
P 12.3-7. Find the average power delivered to the load.

+–

+

–

+–

10 cos
(4t – 90°)

4 Ω

a

b
n N

c

A

B

C

2 H

4 Ω 2 H

10 cos
(4t + 30°)

10 cos
(4t + 150°)

4 Ω 2 H

Line LoadSource

Figure P 12.3-7

Section 12.4 The D-Connected Source and Load

P 12.4-1 A balanced three-phase D-connected load has one
line current:

IB ¼ 50ff�40� A rms

Find the phase currents IBC, IAB, and ICA. Draw the phasor
diagram showing the line and phase currents. The source uses
the abc phase sequence.

P 12.4-2 A three-phase circuit has two parallel balanced D

loads, one of 5-V resistors and one of 20-V resistors. Find the
magnitude of the total line current when the line-to-line voltage
is 480 V rms.

Section 12.5 The Y-to-D Circuit

P 12.5-1 Considerathree-wireY-to-Dcircuit.Thevoltages

of the Y-connected source are Va ¼ 208=
ffiffiffi
3

p� �ff�30� V rms,

Vb ¼ 208/
ffiffiffi
3

p� �ff�150� V rms, and Vc ¼ 208/
ffiffiffi
3

p� �ff90� V
rms. The D-connected load is balanced. The impedance of

each phase is Z ¼ 12ff30� V. Determine the line currents and
calculate the power dissipated in the load.

Answer: P ¼ 9360 W

P 12.5-2 A balanced D-connected load is connected by
three wires, each with a 4-V resistance, to a Y source with

Va ¼ 480=
ffiffiffi
3

p� �ff�30� V rms, Vb ¼ 480=
ffiffiffi
3

p� �ff�150�

V rms, and Vc ¼ 480=
ffiffiffi
3

p� �ff90� V rms. Find the line

current IA when ZD ¼ 39ff�40� V.

Answer: IA ¼ 17ff0:9� A

P 12.5-3 The balanced circuit shown in Figure P 12.5-3
has Vab ¼ 380ff30� V rms. Determine the phase currents in the
load when Z ¼ 3 þ j4 V. Sketch a phasor diagram.

ZZ

A

B
C

Vab

Z

b
c

n

a

+
– +

–

+–

Figure P 12.5-3 A D-to-Y circuit.

P 12.5-4 The balanced circuit shown in Figure P 12.5-3 has
Vab ¼ 380ff0� V rms. Determine the line and phase currents in
the load when Z ¼ 9 þ j12 V.

Section 12.6 Balanced Three-Phase Circuits

P 12.6-1 The English Channel Tunnel rail link is
supplied at 25 kV rms from the United Kingdom and French
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grid systems. When there is a grid supply failure, each end is
capable of supplying the whole tunnel but in a reduced
operational mode.

The tunnel traction system is a conventional catenary
(overhead wire) system similar to the surface mainline elec-
tric railway system of the United Kingdom and France. What
makes the tunnel traction system different and unique is the
high density of traction load and the end-fed supply arrange-
ment. The tunnel traction load is considerable. For each half
tunnel, the load is 180 MVA (Barnes and Wong, 1991).

Assume that each line-to-line voltage of the
Y-connected source is 25 kV rms and the three-phase system
is connected to the traction motor of an electric locomotive.
The motor is a Y-connected load with Z ¼ 150ff25� V. Find
the line currents and the power delivered to the traction
motor.

P 12.6-2 A three-phase source with a line voltage of 45
kV rms is connected to two balanced loads. The Y-connected
load has Z ¼ 10 þ j20 V, and the D load has a branch
impedance of 50 V. The connecting lines have an impedance
of 2 V. Determine the power delivered to the loads and the
power lost in the wires. What percentage of power is lost in
the wires?

P 12.6-3 A balanced three-phase source has a Y-con-
nected source with va ¼ 5 cos 2t þ 30�ð Þ connected to a three-
phase Y load. Each phase of the Y-connected load consists of
a 4-V resistor and a 4-H inductor. Each connecting line has a
resistance of 2 V. Determine the total average power delivered
to the load.

Section 12.7 Instantaneous and Average Power in a

Balanced Three-Phase Load

P 12.7-1 Find the power absorbed by a balanced three-
phase Y-connected load when

VCB ¼ 208ff15� V rms and IB ¼ 3ff110� A rms

The source uses the abc phase sequence.

Answer: P ¼ 620 W

P 12.7-2 A three-phase motor delivers 20 hp operating from a
480-V rms line voltage. The motor operates at 85 percent
efficiency with a power factor equal to 0.8 lagging. Find the
magnitude and angle of the line current for phase A.

Hint: 1 hp ¼ 745:7 W

P 12.7-3 A three-phase balanced load is fed by a balanced
Y-connected source with a line-to-line voltage of 220 V rms. It
absorbs 1500 W at 0.8 power factor lagging. Calculate the
phase impedance if it is (a) D connected and (b) Y connected.

P 12.7-4 A 600-V rms three-phase Y-connected source has
two balanced D loads connected to the lines. The load imped-
ances are 40ff30� V and 50ff�60� V, respectively. Determine
the line current and the total average power.

P 12.7-5 A three-phase Y-connected source simultaneously
supplies power to two separate balanced three-phase loads.
The first total load is D connected and requires 39 kVA at
0.7 lagging. The second total load is Y connected and requires
15 kW at 0.21 leading. Each line has an impedance
0:038 þ j0:072 V/phase. Calculate the line-to-line source volt-
age magnitude required so that the loads are supplied with 208-V
rms line-to-line.

P 12.7-6 A building is supplied by a public utility at 4.16 kV
rms. The building contains three balanced loads connected to
the three-phase lines:

(a) D connected, 500 kVA at 0.85 lagging
(b) Y connected, 75 kVA at 0.0 leading
(c) Y connected; each phase with a 150-V resistor parallel to a

225-V inductive reactance

The utility feeder is five miles long with an impedance per phase
of 1:69 þ j0:78 V/mile. At what voltage must the utility supply
its feeder so that the building is operating at 4.16 kV rms?

Hint: 41.6 kV is the line-to-line voltage of the balanced
Y-connected source.

P 12.7-7 The diagram shown in P 12.7-7 has two three-
phase loads that form part of a manufacturing plant. They are
connected in parallel and require 4.16 kV rms. Load 1 is 1.5
MVA, 0.75 lag pf D connected. Load 2 is 2 MW, 0.8 lagging

0.4 Ω j0.8 Ω

0.4 Ω j0.8 Ω

Load 2

j0.8 Ω

Load 1

0.4 Ω

Three-phase
supply from

utility

Figure P 12.7-7 A three-phase circuit with a D load and a Y load.
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pf, Y connected. The feeder from the power utility’s substation
transformer has an impedance of 0:4 þ j0:8 V/phase. Deter-
mine the following:

(a) The required magnitude of the line voltage at the supply.
(b) The real power drawn from the supply.
(c) The percentage of the real power drawn from the supply that

is consumed by the loads.

P 12.7-8 The balanced three-phase load of a large commercial
building requires 480 kW at a lagging power factor of 0.8. The load
is supplied by a connecting line with an impedance of 5 þ j25 mV
for each phase. Each phase of the load has a line-to-line voltage of
600 V rms. Determine the line current and the line voltage at the
source. Also, determine the power factor at the source. Use the
line-to-neutral voltage as the reference with an angle of 0�.

Section 12.8 Two-Wattmeter Power Measurement

P 12.8-1 The two-wattmeter method is used to determine
the power drawn by a three-phase 440-V rms motor that is a
Y-connected balanced load. The motor operates at 20 hp at 74.6
percent efficiency. The magnitude of the line current is 52.5 A rms.
The wattmeters are connected in the A and C lines. Find the reading
of each wattmeter. The motor has a lagging power factor.

Hint: 1 hp ¼ 745:7 W

P 12.8-2 A three-phase system has a line-to-line voltage of
4000 V rms and a balanced D-connected load with
Z ¼ 40 þ j30 V. The phase sequence is abc. Use the two
wattmeters connected to lines A and C, with line B as the
common line for the voltage measurement. Determine the total
power measurement recorded by the wattmeters.

Answer: P ¼ 768 kW

P 12.8-3 A three-phase system with a sequence abc and a
line-to-line voltage of 200 V rms feeds a Y-connected load
with Z ¼ 70:7ff45� V. Find the line currents. Find the total
power by using two wattmeters connected to lines B and C.

Answer: P ¼ 400 W

P 12.8-4 A three-phase system with a line-to-line voltage
of 208 V rms and phase sequence abc is connected to a
Y-balanced load with impedance 10ff�30� V and a balanced
D load with impedance 15ff30� V. Find the line currents and the
total power using two wattmeters.

P 12.8-5 The two-wattmeter method is used. The wattmeter in
line A reads 920 W, and the wattmeter in line C reads 460 W.
Find the impedance of the balanced D-connected load. The
circuit is a three-phase 120-V rms system with an abc sequence.

Answer: ZD ¼ 27:1ff�30� V

P 12.8-6 Using the two-wattmeter method, determine the
power reading of each wattmeter and the total power for Problem
12.5-1 when Z ¼ 0:868 þ j4:924 V. Place the current coils in
the A-to-a and C-to-c lines.

Section 12.9 How CanWe Check . . . ?

P 12.9-1 A Y-connected source is connected to a Y-connected
load (Figure 12.3-1) with Z ¼ 10 þ j4 V. The line voltage is
VL ¼ 416 V rms. A student report states that the line current
IA ¼ 38:63 A rms and that the power delivered to the load is
16.1 kW. Verify these results.

P 12.9-2 A D load with Z ¼ 40 þ j30 V has a three-phase
source with VL ¼ 240 V rms (Figure 12.3-2). A computer anal-
ysis program states that one phase current is 4:8ff�36:9� A.
Verify this result.

PSpice Problems

SP 12-1 Use PSpice to determine the power delivered to the
load in the circuit shown in Figure SP 12-1.

+–

+

–

+–

5 Ω

110 cos
(377t)

20 Ω5 mH

a

b
n N

c

A

B

C

60 mH

5 Ω 20 Ω5 mH 60 mH

110 cos
(377t + 240°)

110 cos
(377t +120°)

5 Ω 20 Ω5 mH 60 mH

Line LoadSource

Figure SP 12-1

SP 12-2 Use PSpice to determine the power delivered to the
load in the circuit shown in Figure SP 12-2.

+–

+

–

+–

10 Ω

110 cos
(377t)

30 Ω5 mH

a

b
n N

c

A

B

C

25 mH

10 Ω 20 Ω5 mH 60 mH

110 cos
(377t + 240°)

110 cos
(377t +120°)

10 Ω 60 Ω5 mH 20 mH

Line LoadSource

Figure SP 12-2
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Design Problems

DP 12-1 A balanced three-phase Y source has a line voltage of
208 V rms. The total power delivered to the balanced D load is
1200 W with a power factor of 0.94 lagging. Determine the
required load impedance for each phase of the D load. Calculate
the resulting line current. The source is a 208-V rms ABC sequence.

DP 12-2 A three-phase 240-V rms circuit has a balanced
Y-load impedance Z. Two wattmeters are connected with cur-
rent coils in lines A and C. The wattmeter in line A reads 1440 W,
and the wattmeter in line C reads zero. Determine the value of the
impedance.

DP 12-3 A three-phase motor delivers 100 hp and operates at
80 percent efficiency with a 0.75 lagging power factor. Deter-
mine the required D-connected balanced set of three capacitors
that will improve the power factor to 0.90 lagging. The motor
operates from 480-V rms lines.

DP 12-4 A three-phase system has balanced conditions so that
the per-phase circuit representation can be used as shown in
Figure DP 12-4. Select the turns ratio of the step-up and step-
down transformers so that the system operates with an efficiency
greater than 99 percent. The load voltage is specified as 4 kV
rms, and the load impedance is 4=3 V.

+

–

+
–20 kV

+

–

V1 V2

2.5 Ω j40 Ω1 : n1 n2 : 1 

+

–

VL Load

IL

Figure DP 12-4
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CHAPTER 13 Frequency
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13.1 I n t r o d u c t i o n

Consider the experiment illustrated in Figure 13.1-1. Here a function generator provides the input to a
linear circuit and the oscilloscope displays the output, or response, of the linear circuit. The linear circuit
itself consists of resistors, capacitors, inductors, and perhaps dependent sources and/or op amps. The
function generator allows us to choose from several types of input function.

Suppose we select a sinusoidal input. The function generator permits us to adjust the amplitude,
phase angle, and frequency of the input. First, we notice that no matter what adjustments we make, the
(steady-state) response is always a sine wave at the same frequency as the input. The amplitude and
phase angle of the output differ from the input, but the frequency is always the same as the frequency of
the input.

After a little more experimentation, we find that at any fixed frequency, the following are true:

� The ratio of the amplitude of the output sinusoid to the amplitude of the input sinusoid is a constant.
� The difference between the phase angle of the output sinusoid and the phase angle of the input

sinusoid is also constant.

The situation is not as simple when we vary the frequency of the input. Now the amplitude and
phase angle of the output change in a more complicated way.

In this chapter, we will develop analytical tools that enable us to predict how the amplitude and
phase angle of the output sinusoid will change as we vary the frequency of the input sinusoid.

13.2 Ga i n , P h a s e S h i f t , a n d t h e
N e tw o r k F u n c t i o n

Gain, phase shift, and the network function are properties of linear circuits that describe the effect a
circuit has on a sinusoidal input voltage or current. We expect that the behavior of circuits that contain
reactive elements, that is, capacitors or inductors, will depend on the frequency of the input sinusoid.
Thus, we expect that the gain, phase shift, and network function will all be functions of frequency.
Indeed, we will see that this is the case.

We begin by considering the circuit shown in Figure 13.2-1. The input to this circuit is the voltage
of the voltage source, and the output, or response, of the circuit is the voltage across the 10-kV resistor.
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When the input is a sinusoidal voltage, the steady-state response will also be sinusoidal and will have
the same frequency as the input.

Suppose the voltages vin(t) and vout(t) are measured using an oscilloscope. Figure 13.2-2 shows
the waveforms that would be displayed on the screen of the oscilloscope. Notice that the scales are
shown, but the axes are not. It is customary to take the angle of the input signal to be 0�, that is,

vin tð Þ ¼ A cos ot

Then,

vout tð Þ ¼ B cos ot þ yð Þ

The gain of the circuit describes the relationship between the sizes of the input and output
sinusoids. In particular, the gain is the ratio of the amplitude of the output sinusoid to the
amplitude of the input sinusoid.

That is,

gain ¼ B

A

Oscilloscope

Function generator

Linear

circuit

FIGURE 13.1-1 Measuring the input and output of a linear circuit.

+
– vout(t)

vin(t)

5 kΩ 50 kΩ

2 nF

10 kΩ
+

–

–

+

FIGURE 13.2-1 An op amp circuit.

Voltage, 2 V/div

Time (125  ms/div)

FIGURE 13.2-2 Input and output sinusoids for the op amp circuit of
Figure 13.2-1.
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The phase shift of the circuit describes the relationship between the phase angles of the input
and output sinusoids. In particular, the phase shift is the difference between the phase angle of
the output sinusoid and the phase angle of the input sinusoid.

That is,

phase shift ¼ y� 0� ¼ y

To be more specific, we need analytic representations of the sinusoids shown in Figure 13.2-2. The
input voltage is the smaller of the two sinusoids and can be represented as

vin tð Þ ¼ 1 cos 6283t V

The steady-state response is the larger of the two sinusoids and can be represented as

vout tð Þ ¼ 8:47 cos 6283t þ 148�ð ÞV
The gain of this circuit at the frequency o ¼ 6283 rad/s is

gain ¼ output amplitude

input amplitude
¼ 8:47

1
¼ 8:47

This gain is unitless because both amplitudes have units of volts. Because the gain is greater than 1, the
output sinusoid is larger than the input sinusoid. This circuit is said to amplify its input. When the gain of
a circuit is less than 1, the output sinusoid is smaller than the input sinusoid. This circuit is said to
attenuate its input.

The phase shift of this circuit at the frequency o ¼ 6283 rad/s is

phase shift ¼ output phase angle� input phase angle ¼ 148� � 0� ¼ 148�

The phase shift determines the amount of time the output is advanced or delayed with respect to the
input. Notice that

B cos ot þ yð Þ ¼ B cos o t þ y
o

� �� �
¼ B cos o t þ t0ð Þð Þ

where y is the phase angle in radians and t0 ¼ y=o. The positive peaks of B cos (ot þ y) occur when

ot þ y ¼ n 2pð Þ
and, solving for t, we have

t ¼ n 2pð Þ
o

� t0 ¼ nT � t0

where n is any integer and T is the period of the sinusoid.

The positive peaks of A cos ot occur at t ¼ n 2pð Þ
o

and the positive peaks of B cos(ot þ y) occur at

t ¼ n 2pð Þ
o

� t0. A phase shift of y rad is seen to shift the output sinusoid by t0 seconds. When the

frequency is 6283 rad/s, a phase shift of 148�or 2.58 rad causes a shift in time equal to

t0 ¼ y
o

¼ 2:58 rad

6283 rad/s
¼ 410 ms

In Figure 13.2-2, the positive peaks of the input sinusoid occur at 0 ms, 1 ms, 2 ms,
3 ms, . . . . Positive peaks of the output sinusoid occur at 0.59 ms, 1.59 ms, 2.59 ms,
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3.59 ms, . . . . Peaks of the output sinusoid occur 410 ms before the next peak of the input sinusoid.
The output is advanced by 410 ms with respect to the input.

Notice that

vout tð Þ ¼ 8:47 cos 6283t þ 148�ð Þ ¼ 8:47 cos 6283t � 212�ð Þ

because a phase shift of 360� does not change the sinusoid. A phase shift of �212� or �3.70 rad causes
a shift in time of

t0 ¼ �3:70 rad

6283 rad/s
¼ �590 ms

Peaks of the output sinusoid occur 590 ms after the previous of the input sinusoid. The output is delayed
by 590 ms with respect to the input.

A phase shift that advances the output is called a phase lead. A phase shift that delays the
output is called a phase lag.

At the frequency o ¼ 6283 rad/s, this circuit amplifies its input by a factor of 8.47 and advances it
by 410 ms or, equivalently, delays it by 590 ms. The circuit of Figure 13.2-1 has a phase lead of 148� or,
equivalently, a phase lag of 212�.

Now let us consider this circuit when the frequency of the input is changed. When the input is

vin tð Þ ¼ 1 cos 3141:6t V

the steady-state response of this circuit can be found to be

vout tð Þ ¼ 9:54 cos 3141:6t þ 163�ð ÞV
The gain and phase shift of this circuit at the frequency o ¼ 3141:6 rad/s are

gain ¼ output amplitude

input amplitude
¼ 9:54

1
¼ 9:54

and phase shift ¼ output phase angle� input phase angle ¼ 163� � 0� ¼ 163�

Changing the frequency of the input has changed the gain and phase shift of this circuit. Apparently,
the gain and the phase shift of this circuit are functions of the frequency of the input. Table 13.2-1 shows
the values of the gain and phase shift corresponding to several choices of the input frequency.
As expected, the gain and phase shift changed when the input frequency changed. The network

Table 13.2-1 Frequency Response Data for a Circuit

f (Hz) o (rad/s) GAIN PHASE SHIFT

100 628.3 9.98 176�

500 3,141.6 9.54 163�

1,000 6,283 8.47 148�

5,000 31,416 3.03 108�

10,000 62,830 1.57 99�
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function describes the way the behavior of the circuit depends on the frequency of the input.
The network function is defined in the frequency domain. It is the ratio of the phasor corresponding
to the response sinusoid to the phasor corresponding to the input. Let X(o) be the phasor corresponding
to the input to the circuit and Y(o) be the phasor corresponding to the steady-state response of the
network. Then,

H oð Þ ¼ Y oð Þ
X oð Þ ð13:2-1Þ

is the network function. Notice that both X(o) and Y(o) could correspond to either a current or
a voltage. Both the gain and the phase shift can be expressed in terms of the network function.
The gain is

gain ¼ jH oð Þj ¼ jY oð Þj
jX oð Þj ð13:2-2Þ

and the phase shift is

phase shift ¼ ffH oð Þ ¼ ffY oð Þ � ffX oð Þ ð13:2-3Þ

Consider the problem of finding the network function of a given circuit. To solve such a
problem, we do two things. First, we represent the circuit in the frequency domain using impedances
and phasors. (We also represented the circuit in the frequency domain when we wanted to find
the steady-state response to a sinusoidal input. In that case, the frequency was represented as the
value of the frequency of the sinusoidal input, for example, 4 rad/s. When we find the network
function, the frequency is represented by a variable, o). Second, we analyze the circuit to determine
the ratio of the phasor corresponding to the circuit output to the phasor corresponding to the circuit
input. This analysis might involve mesh equations or node equations or equivalent impedances and
voltage or current division. In any case, the analysis is performed in the frequency domain.

Let’s find the network function for the circuit shown in Figure
13.2-1. The first step is to represent this circuit in the frequency domain
using impedances and phasors. Figure 13.2-3 shows the frequency-
domain circuit corresponding to the circuit in Figure 13.2-1. In this
example, the phasor corresponding to the input is Vin(o), and the phasor
corresponding to the output is Vout(o). We seek to find the network
function H(o) ¼ Vout=Vin. Write the node equation at the inverting input
node of the op amp and assume an ideal op amp. Then we have

Vin oð Þ
R1

þ Vout oð Þ
R2

þ joCVout oð Þ ¼ 0

This implies

H oð Þ ¼ Vout oð Þ
Vin oð Þ ¼ �R2

R1 þ joCR1R2

The gain of this circuit is

gain ¼ jH oð Þj ¼ H ¼ R2=R1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2C2R2

2

q

+
– Vout(w)

Vin(w)
+

–

–

+

R1

R3

R2

1
jwC

FIGURE 13.2-3 The frequency-domain
representation of the op amp circuit of
Figure 13.2-1.
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The phase shift of this circuit is

phase shift ¼ ffH oð Þ ¼ 180� � tan�1 oCR2ð Þ

When R1 ¼ 5 kV, R2 ¼ 50 kV, and C ¼ 2 nF,

H oð Þ ¼ �10

1þ jo=10; 000ð Þ

gain ¼ jH oð Þj ¼ 10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2=108

� �q

phase shift ¼ ffH oð Þ ¼ 180� � tan�1 o=10; 000ð Þ

Notice that the frequency of the input has been represented by a variable, o, rather than by
any particular value. As a result, the network function, gain, and phase shift describe the way in
which the behavior of the circuit depends on the input frequency. Earlier, we considered the case
when o ¼ 6283 rad/s. Substituting this frequency into the equations for the gain and phase shift
gives

gain ¼ 10ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 62832

108

s ¼ 8:47

and phase shift ¼ 180� � tan�1 6283=10; 000ð Þ ¼ 148�

These are the same results as were obtained earlier by examining the oscilloscope traces in Figure
13.2-2. Similarly, each line of Table 13.2-1 can be obtained by substituting the appropriate frequency
into the equations for the gain and phase shift.

Equations that represent the gain and phase shift as functions of frequency are called
the frequency response of the circuit. The same information can be represented by a table or
by graphs instead of equations. These tables or graphs are also called the frequency response of the
circuit.

To see that the network function really does represent the behavior of the circuit, suppose that

vin tð Þ ¼ 0:4 cos 5000t þ 45�ð ÞV
The frequency of the input sinusoid is o ¼ 5000 rad/s. Substituting this frequency into the network
function gives

H oð Þ ¼ �10

1þ j5000=10; 000ð Þ ¼ 8:94ff153�
Next; Vout oð Þ ¼ H oð ÞVin oð Þ ¼ ð8:94ff153�Þð0:4ff45�Þ ¼ 3:58ff198�
Back in the time domain, the steady-state response is

vout tð Þ ¼ 3:58 cos 5000t þ 198�ð ÞV

Notice that the network function contained enough information to enable us to calculate the steady-
state response from the input sinusoid. The network function does indeed describe the behavior of
the circuit.
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E X A M P L E 1 3 . 2 - 1 Network Function
of a Circuit

INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 13.2-4a. The input to the circuit is the voltage of the voltage source vi(t). The
output is the voltage vo(t) across the series connection of the capacitor and the 16-kV resistor. The network function
that represents this circuit has the form

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

1þ j
o
z

1þ j
o
p

ð13:2-4Þ

The network function depends on two parameters, z and p. The parameter z is called the zero of the circuit and
the parameter p is called the pole of the circuit. Determine the values of z and of p for the circuit in
Figure 13.2-4a.

+
–

vo(t)

+

–

8 kΩ

16 kΩ

0.23 mF

Vi(w) Vo(w)vi(t)

(a)

+
–

+

–

8 kΩ

16 kΩ

(b)

jw (0.23) MΩ
1

FIGURE 13.2-4 The circuit considered in Example 13.2-1 represented (a) in the time domain and (b) in the frequency domain.

Solution
We will analyze the circuit to determine its network function and then put the network function into the form given
in Eq. 13.2-4. A network function is the ratio of the output phasor to the input phasor. Phasors exist in the frequency
domain. Consequently, our first step is to represent the circuit in the frequency domain, using phasors and
impedances. Figure 13.2-4b shows the frequency-domain representation of the circuit from Figure 13.2-4a.

The impedances of the capacitor and the 16-kV resistor are connected in series in Figure 13.2-4b. The
equivalent impedance is

Ze oð Þ ¼ 16; 000þ 106

j 0:23ð Þo
The equivalent impedance is connected in series with the 8-kV resistor. Vi(o) is the voltage across the series
impedances, and Vo(o) is the voltage across the equivalent impedance Ze(o). Apply the voltage division principle
to get

Vo oð Þ ¼
16; 000þ 106

j 0:23ð Þo
8000þ 16; 000þ 106

j 0:23ð Þo
Vi oð Þ ¼ 106 þ j 0:23ð Þo 16; 000ð Þ

106 þ j 0:23ð Þo 24; 000ð ÞVi oð Þ

¼
106 þ j 3680ð Þo

106

106 þ j 5520ð Þo
106

Vi oð Þ ¼ 1þ j 0:00368ð Þo
1þ j 0:00552ð ÞoVi oð Þ

Divide both sides of this equation by Vi(o) to obtain the network function of the circuit

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

1þ j 0:00368ð Þo
1þ j 0:00552ð Þo ð13:2-5Þ

Try it 
yourself 

in WileyPLUS
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E X A M P L E 1 3 . 2 - 2 Network Function
of a Circuit

INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 13.2-5a. The input to the circuit is the voltage of the voltage source vi(t). The
output is the voltage vo(t) across the series connection of the inductor and the 2-V resistor. The network function
that represents this circuit is

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼ 0:2

1þ j
o
5

1þ j
o
25

ð13:2-6Þ

Determine the value of the inductance L.

+
–

vo(t)

+

–

8 Ω

2 Ω

Vi(w)

wLj

Vo(w)vi(t)

(a)

+
–

+

–

8 Ω

2 Ω

(b)

L

FIGURE 13.2-5 The circuit considered in Example 13.2-2 represented (a) in the time domain and (b) in the frequency domain.

Solution
The circuit has been represented twice, by a circuit diagram and by a network function. The unknown inductance L
appears in the circuit diagram but not in the given network function. We can analyze the circuit to determine its
network function. This second network function will depend on the unknown inductance. We will determine the
value of the inductance by equating the two network functions.

A network function is the ratio of the output phasor to the input phasor. Phasors exist in the frequency
domain. Consequently, our first step is to represent the circuit in the frequency domain, using
phasors and impedances. Figure 13.2-5b shows the frequency-domain representation of the circuit from
Figure 13.2-5a.

Equating the network functions given by Eq. 13.2-4 and 13.2-5 gives

1þ j 0:00368ð Þo
1þ j 0:00552ð Þo ¼

1þ j
o
z

1þ j
o
p

Comparing these network functions gives

z ¼ 1

0:00368
¼ 271:74 rad/s and p ¼ 1

0:00552
¼ 181:16 rad/s

Try it 
yourself 

in WileyPLUS
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E X A M P L E 1 3 . 2 - 3 Network Function
of a Circuit

INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 13.2-6. The input to the circuit is the voltage of the voltage source vi(t). The
output is the voltage across the capacitor, vo(t). The network function that represents this circuit is

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

3

1þ j
o
2

� �
1þ j

o
5

� � ð13:2-8Þ

Determine the value of the inductance L and of the gain A of the voltage-controlled voltage source (VCVS).

The impedances of the inductor and the 2-V resistor are connected in series in Figure 13.2-5b. The equivalent
impedance is

Ze oð Þ ¼ 2þ joL

The equivalent impedance is connected in series with the 8-V resistor. Vi(o) is the voltage across the series
impedances, and Vo(o) is the voltage across the equivalent impedance Ze(o). Apply the voltage division principle
to get

Vo oð Þ ¼ 2þ joL

8þ 2þ joL
Vi oð Þ ¼ 2þ joL

10þ joL
Vi oð Þ

Divide both sides of this equation by Vi(o) to obtain the network function of the circuit:

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

2þ joL

10þ joL

Next, we put the network function into the form specified by Eq. 13.2-6. Factoring 2 out of both terms in the
numerator and factoring 10 out of both terms in the denominator, we get

H oð Þ ¼
2 1þ jo

L

2

� �

10 1þ jo
L

10

� � ¼ 0:2
1þ jo

L

2

1þ jo
L

10

ð13:2-7Þ

Equating the network functions given by Eqs. 13.2-6 and 13.2-7 gives

0:2
1þ jo

L

2

1þ jo
L

10

¼ 0:2
1þ j

o
5

1þ j
o
25

Comparing these network functions gives

L

2
¼ 1

5
and

L

10
¼ 1

25

The values of L obtained from these equations must agree, and they do. (If they do not, we’ve made an error.)
Solving each of these equations gives L ¼ 0:4 H.

Try it 
yourself 

in WileyPLUS
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Solution
The circuit has been represented twice, by a circuit diagram and by the given network function. The unknown
parameters L and A appear in the circuit diagram but not in the given network function. We can analyze the circuit to
determine its network function. This version of the network function will depend on the unknown parameters. We will
determine the value of these parameters by equating the two versions of the network function.

A network function is the ratio of the output phasor to the input phasor. Phasors exist in the frequency
domain. Consequently, our first step is to represent the circuit in the frequency domain, using phasors and
impedances. Figure 13.2-7 shows the frequency-domain representation of the circuit from Figure 13.2-6.

The circuit in Figure 13.2-7 consists of two meshes. The mesh current of the left-hand mesh is labeled as
I1(o), and the mesh current of the right-hand mesh is labeled as I2(o). Apply Kirchhoff’s voltage law (KVL) to the
left-hand mesh to get

joLI1 oð Þ þ 4I1 oð Þ � Vi oð Þ ¼ 0

Solve for I1(o) to get

I1 oð Þ ¼ Vi oð Þ
joL þ 4

¼ 0:25

1þ jo
L

4

Vi oð Þ

Next, use Ohm’s law to represent Va(o) as

Va oð Þ ¼ 4I1 oð Þ ¼ 1

1þ jo
L

4

Vi oð Þ ð13:2-9Þ

Apply KVL to the right-hand mesh to get

4I2 oð Þ þ 20

jo
I2 oð Þ � AVa oð Þ ¼ 0

Solve for I2(o) to get

I2 oð Þ ¼ A

4þ 20

jo

Va oð Þ ¼ joA

jo 4þ 20
Va oð Þ ¼

jo
20

A

1þ j
o
5

Va oð Þ

The output voltage is obtained by multiplying the mesh current I2(o) by the impedance of the capacitor:

Vo oð Þ ¼ 20

jo
I2 oð Þ ¼ 20

jo
�

jo
20

A

1þ j
o
5

Va oð Þ ¼ A

1þ j
o
5

Va oð Þ ð13:2-10Þ

+
–

+

–
va(t)vi(t) A va(t)

+

–
vo(t)

+

–

4 Ω 50 mF

4 ΩL

FIGURE 13.2-6 The circuit considered in
Example 13.2-3.

+
–

+

–

+

–

+

–

4 Ω

4 Ω

Vi(w) A Va(w)Va(w) Vo(w)I1(w)

jwL

jw Ω
20

I2(w)
FIGURE 13.2-7 The circuit from Figure 13.2-6,
represented in the frequency domain, using
impedances and phasors.
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The circuit shown in Figure 13.2-1 is an example of a circuit called a first-order low-pass filter.
First-order low-pass filters have network functions of the form

H oð Þ ¼ H0

1þ j
o
o0

ð13:2-12Þ

The gain and phase shift of the first-order low-pass filter are

gain ¼ jH0jffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2

o2
0

s ð13:2-13Þ

and phase shift ¼ ffH0 � tan�1 o=o0ð Þ ð13:2-14Þ
The network function of the first-order low-pass filter has two parameters, H0 and o0. At low
frequencies, that is,o � o0, the gain is jH0j, so jH0j is called the dc gain. (When o ¼ 0, A cosot¼ A, a
constant or dc voltage.)

The other parameter of the network function, o0, is called the half-power frequency. To explain
this terminology, suppose that the input to the first-order filter in Figure 13.2-1 is

vin tð Þ ¼ A cos otð Þ
Suppose, for convenience, that H0 ¼ 1. Then the output of the first-order filter in Figure 13.2-1 is

vo tð Þ ¼ Affiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o2

o2
0

s cos o0t � tan�1 o
o0

� �� �

In Figure 13.2-1, the output voltage is the voltage across a 10-kV resistor. The average power delivered
to this resistor is

Pave ¼ A2

2 10� 103
� �

1þ o2

o2
0

� �

At low frequencies, that is, frequencies that satisfy o � o0, the average power is approximately

P1 ¼ A2

2 10� 103
� �

1þ 0ð Þ ¼
A2

2 10� 103
� �

At the frequency o ¼ o0, the average power is

P2 ¼ A2

2 10� 103
� �

1þ 1ð Þ ¼
P1

2

For this reason, o0 is called the half-power frequency.

Substituting the expression for Va(o) from Eq. 13.2-9 into Eq. 13.2-10 gives

Vo oð Þ ¼ 1

1þ jo
L

4

� A

1þ j
o
5

Vi oð Þ ¼ A

1þ jo
L

4

� �
1þ j

o
5

� �Vi oð Þ

Divide both sides of this equation by Vi(o) to obtain the network function of the circuit:

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

A

1þ jo
L

4

� �
1þ j

o
5

� � ð13:2-11Þ

Comparing the network functions given by Eqs. 13.2-8 and 13.2-11 gives A ¼ 3 V/V and L ¼ 2 H.
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In other words, suppose we hold the input amplitude constant while we vary the frequency o of
the input. We find that the value of the output power when o ¼ o0 is one-half of the value of the output
power when o � o0.

Next, consider the problem of designing a first-order low-pass filter. Suppose we are given the
following specifications:

dc gain ¼ 2

phase shift ¼ 120� when o ¼ 1000 rad/s

Before designing a circuit to meet these specifications, we need to pay more attention to the phase shift.
Consider Eq. 13.2-14. Both o and o0 will be positive, so tan�1(o=o0) will be between 0� and 90�.
Also,ffH0 will be 0� when H0 is positive and 180� when H0 is negative. As a result, only phase shifts
between �90�and 0�or between 90�and 180�can be achieved using a first-order low-pass filter. (Phase
shifts that cannot be obtained using a first-order low-pass filter can be obtained using other types of
circuit. That’s a story for another day.) Table 13.2-2 shows two first-order low-pass filters, one for
obtaining phase shifts between 90� and 180� and the other for obtaining phase shifts between �90�and
0�. Based on the phase shift, we select the circuit in the first row of Table 13.2-2. The specification on
the dc gain gives

2 ¼ jH0j ¼ R2

R1

The specification on phase shift gives

120� ¼ 180� � tan�1 1000R2Cð Þ

Table 13.2-2 First-Order Low-Pass Filter Circuits

PHASE SHIFT FIRST-ORDER LOW-PASS FILTER CIRCUIT DESIGN EQUATIONS

90� � phase shift � 180�
–

+

R1

R2

C
R2
R1

H0 = –

1
R2C  0 =ω

�90� � phase shift � 0�

+

–R1

R2

R3

R4

C

R2

R1 + R2

R1 + R2

R1R2C

H0 =
R3

R4
1 +

  0 =ω
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This is a set of two equations in the three unknowns R1, R2, and C. The solution is not unique. We will
have to pick a value for one of the unknowns and then solve for values of the other two unknowns. Let’s
pick a convenient value for the capacitor, C ¼ 0:1mF, and calculate the resistances.

R2 ¼ tan 60�ð Þ
1000� 0:1� 10�6 ¼ 17:32 kV

and

R1 ¼ R2

2
¼ 8:66 kV

We conclude that the circuit shown in the first row of Table 13.2-2 will have a dc gain ¼ 2 and a phase
shift ¼ 120� at o ¼ 1000 rad/s when R1 ¼ 8:66 kV, R2 ¼ 17:32 kV, and C ¼ 0:1mF.

EXERCISE 13.2-1 The input to the circuit shown in Figure E 13.2-1
is the source voltage vs and the response is the capacitor voltage vo. Suppose
R ¼ 10 kV and C ¼ 1mF. What are the values of the gain and phase shift
when the input frequency is o ¼ 100 rad/s?

Answer: 0.707 and �45�

EXERCISE 13.2-2 The input to the circuit shown in Figure E 13.2-2
is the source voltage vs and the response is the resistor voltage vo. R ¼ 30 V
and L ¼ 2 H. Suppose the input frequency is adjusted until the gain is equal
to 0.6. What is the value of the frequency?

Answer: 20 rad/s

EXERCISE 13.2-3 The input to the circuit shown in Figure E 13.2-2
is the source voltage vs and the response is the mesh current i. R ¼ 30 V and
L ¼ 2 H. What are the values of the gain and phase shift when the input
frequency is o ¼ 20 rad/s?
Answer: 0.02 A/V and �53.1�

EXERCISE 13.2-4 The input to the circuit shown in Figure E 13.2-1 is the source voltage vs and
the response is the capacitor voltage vo. Suppose C ¼ 1mF. What value of R is required to cause a phase
shift equal to �45� when the input frequency is o ¼ 20 rad/s?

Answer: R ¼ 50 kV

EXERCISE 13.2-5 The input to the circuit shown in Figure E 13.2-1 is the source voltage vs and
the response is the capacitor voltage vo. Suppose C ¼ 1mF. What value of R is required to cause a gain
equal to 1.5 when the input frequency is o ¼ 20 rad/s?

Answer: No such value of R exists. The gain of this circuit will never be greater than 1.

13.3 B o d e P l o t s

It is common to use logarithmic plots of the frequency response instead of linear plots. The logarithmic
plots are called Bode plots in honor of H. W. Bode, who used them extensively in his work with
amplifiers at Bell Telephone Laboratories in the 1930s and 1940s. A Bode plot is a plot of log-gain and

+
–vs

R

C vo

+

–

FIGURE E 13.2-1
An RC circuit.

+
–

vs

L

R vo

+

–i

FIGURE E 13.2-2 The
RL circuit.

Try it 
yourself 

in WileyPLUS

Try it 
yourself 

in WileyPLUS

Try it 
yourself 
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phase angle values versus frequency, using a log-frequency horizontal axis. The use of logarithms
expands the range of frequencies portrayed on the horizontal axis.

The network function H can be written as
H ¼ Hfff ¼ He jf ð13:3-1Þ

The logarithm of the magnitude is normally expressed in terms of the logarithm to the base 10, so we use

logarithmic gain ¼ 20 log10 H ð13:3-2Þ
and the unit is decibel (dB). The logarithmic gain is also called the gain in dB. A decibel conversion
table is given in Table 13.3-1.

The unit decibel is derived from the unit bel. Suppose P1 and P2 are two values of power. Both
P1=P2 and log (P1=P2) are measures of the relative sizes of P1 and P2. The ratio P1=P2 is unitless,
whereas log(P1=P2) has the bel as its unit. The name bel honors Alexander Graham Bell, the inventor of
the telephone.

The Bode plot is a chart of gain in decibels and phase in degrees versus the logarithm of
frequency.

Let us obtain the Bode plots corresponding to the network function

H ¼ 1

1þ j
o
o0

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o=o0ð Þp ff tan�1 o=o0ð Þ ¼ Hfff ð13:3-3Þ

The logarithmic gain is

20 log10 H ¼ 20 log10
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ o=o0ð Þ2
q

¼ 20 log10 1� 20 log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o=o0ð Þ2

q
¼ �20 log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o=o0ð Þ2

q

Table 13.3-1 A Decibel Conversion Table

MAGNITUDE, H 20 log H (dB)

0.1 �20.00

0.2 �13.98

0.4 �7.96

0.6 �4.44

1.0 0.0

1.2 1.58

1.4 2.92

1.6 4.08

2.0 6.02

3.0 9.54

4.0 12.04

5.0 13.98

6.0 15.56

7.0 16.90

10.0 20.00

100.0 40.00
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For small frequencies, that is, o � o0

1þ o=o0ð Þ2 ffi 1

so the logarithmic gain is approximately

20 log10 H ¼ �20 log10
ffiffiffi
1

p
¼ 0 dB

This is the equation of a horizontal straight line. Because this straight line approximates the logarithmic
gain for low frequencies, it is called the low-frequency asymptote of the Bode plot.

For large frequencies, that is, o 
 o0

1þ o=o0ð Þ2 ffi o=o0ð Þ2

so the logarithmic gain is approximately

20 log10 H ¼ �20 log10

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o=o0ð Þ2

q

¼ �20 log10 o=o0 ¼ 20 log10 o0 � 20 log10 o

This equation shows one of the advantages of using logarithms. The plot of 20 log10H versus log10o is a
straight line. This straight line is called the high-frequency asymptote of the Bode plot. Figures 13.3-1a,b

(a)

(b)

(c)

x1

y1

y2

y

b

x2

x

w1

Slope =

w2

Slope =

m =

20 log10|H(w2)| – 20 log10|H(w1)|
log10w2 – log10w1

20 log10|H(w2)| – 20 log10|H(w1)|
log10w2 – log10w1

20 log10|H(w2)|2
0

 lo
g 1

0
|H

(w
)|,

 d
B

log10 w1

log10w

log10 w2

20 log10|H(w1)|

20 log10|H(w2)|2
0

 lo
g 1

0
|H

(w
)|,

 d
B

20 log10|H(w1)|

w (logarithmic scale)

y2 – y1
x2 – x1

FIGURE 13.3-1 (a) Plot of y versus
x for the straight line y ¼ mx þ b.
(b) Plot of 20 logjH(o)j versus
log o for the straight line
20 logjH(o)j ¼ 20 log o0�20 log o.
(c) Plot of 20 logjH(o)j versus o
for the straight line 20 logjH(o)j ¼
20 log o0�20 log o.
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compare the equation of the high-frequency asymptote to the more familiar standard form of the
equation of a straight line, y ¼ mx þ b. The slope of the high-frequency asymptote can be calculated
from two points on the straight line. This slope is given using units of dB/decade. In Figure 13.3-1b
the gain in dB is plotted versus log o, whereas in Figure 13.3-1c, the gain in dB is plotted versus o
using a log scale. It is more convenient to label the frequency axis when a log scale is used for o.
The equation used to calculate the slope from two points on the line is the same in Figure 13.3-1c as it
is in Figure 13.3-1b.

Consider two frequencies, o1 and o2, with o2 = 10xo1. We say that o2 is larger than o1 by
x decades. Alternately, o2 is larger than o1 by x ¼ log10(o2=o1) decades. For example, 1000 rad/s is
2 decades larger than 10 rad/s, and 316 rad/s is 1.5 decades larger than 10 rad/s.

The slope of the high-frequency asymptote is

20 log10jH o2ð Þj � 20 log10jH o1ð Þj
log10o2 � log10o1

¼ 20 log10jH o2ð Þj � 20 log10jH o1ð Þj
log10 o2=o1ð Þ

The units of this slope are dB/decade. The high-frequency asymptote is characterized by

jH oð Þj ffi 1

o
o0

¼ o0

o
wheno 
 o0

The value of the slope of the high-frequency asymptote is

20 log10jH o2ð Þj � 20 log10jH o1ð Þj
log10 o2=o1ð Þ ¼ 20 log10 o0=o2ð Þ � 20 log10 o0=o1ð Þ

log10 o2=o1ð Þ
¼ �20 log10 o2=o1ð Þ

log10 o2=o1ð Þ ¼ �20 dB/decade

The intersection of the low-frequency asymptote with the high-frequency asymptote occurs when

0 ¼ 20 log10 o� 20 log10 o0

that is, when
o ¼ o0

The low- and high-frequency asymptotes form a corner where they intersect. Because the asymptotes
intersect at the frequency o ¼ o0, o0 is sometimes called the corner frequency.

Figure 13.3-2 shows the magnitude and phase Bode plots for this network function. The
asymptotic curve shown in Figure 13.3-2 is an approximation to the Bode plot. The asymptotic
Bode plot consists of the low-frequency asymptote for o < o0 and the high-frequency asymptote for
o > o0. The approximation used to obtain the asymptotic Bode plot is summarized by the following
equations:

jH oð Þj ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o=o0ð Þ2

q ffi 1 o < o0

o0=o o > o0

	

or

20 log10jH oð Þj ¼ 20 log10
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ o=o0ð Þ2
q ffi 0 o < o0

20 log10 o0 � 20 log10 o o > o0

	

The asymptotic Bode plot is a good approximation to the Bode plot when o � o0 or o 
 o0. Near
o ¼ o0, the asymptotic Bode plot deviates from the exact Bode plot. At o ¼ o0, the value of the
asymptotic Bode plot is 0 dB, whereas the value of the exact Bode plot is
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20 log10jH o0ð Þj ¼ 20 log10
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ o0=o0ð Þ2
q ¼ 20 log10

1ffiffiffi
2

p ¼ �3:01 dB

The magnitude characteristic does not exhibit a sharp break. Nevertheless, we designate the
frequency at which the magnitude is 1=

ffiffiffi
2

p
times the magnitude at o ¼ 0 as a special frequency.

On the Bode diagram, the magnitude drop of 1=
ffiffiffi
2

p
results in a logarithmic drop of approximately

�3 dB at o ¼ o0. The frequency o ¼ o0 is often called the break frequency or corner frequency.
Of course, H may take on forms other than that of Eq. 13.3-3. For example, consider the

circuit shown in Figure 13.3-3. The network function of this circuit is

H ¼ Vo

Vs
¼ R þ joL

Rs þ R þ joL

Let’s put this network function into the form

H ¼ k
1þ j

o
o1

1þ j
o
o2

¼ Hfff
This network function has three parameters: k, o1, and o2. All three parameters have names. The
frequencies o1 and o2 are corner frequencies. Corner frequencies that appear in the numerator of a
network function are called zeros, so o1 is a zero of the network function. Corner frequencies that
appear in the denominator of a network function are called poles, so o2 is a pole of the network
function. Because

k ¼ lim
o!0

H

the parameter k is called the low-frequency gain or the dc gain. The network function of this circuit can
be expressed as

H ¼ R

R þ Rs

� � 1þ j
oL

R

1þ j
oL

R þ Rs

–20

–10

10

0

0

–45

–90
0.1w0

2
0

 lo
g 1

0
H

, 
dB

φ(
ω

),
 d

eg
re

es

w0
w

10w0

Exact
curve

Asymptotic
curve

(b)

(a)

FIGURE 13.3-2 Bode diagram for H ¼ (1 þ jo=o0)�1. The dashed curve is the exact curve for the magnitude. The
solid curve for the magnitude is an asymptotic approximation.

+
–vs

Rs

L

R

vo

+

–

FIGURE 13.3-3 Source
voltage delivering power
to a load impedance
consisting of L and R.
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so the dc gain is

k ¼ R

R þ Rs

and the zero and pole frequencies are related by

o1 ¼ R

L
<

R þ Rs

L
¼ o2

The gain corresponding to a network function of this form is

H ¼ k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o

o1

� �2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ o

o2

� �2
s

To obtain the asymptotic Bode plot, we approximate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ o=o1ð Þ2

q
by 1 when o < o1 and by o=o1

when o > o1. Similarly, we approximate
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ o=o2ð Þ2

q
by 1 when o < o2 and by o=o2 when

o > o2. Thus,

H ffi

k o < o1

ko
o1

o1 < o < o2

ko2

o1
o2 < o

8>>>><
>>>>:

Next, the logarithmic gain is approximated by

20 log10 H ffi
20 log10 k o < o1

20 log10 k � 20 log10 o1ð Þ þ 20 log10 o o1 < o < o2

20 log10 k � 20 log10 o1ð Þ þ 20 log10 o2 o2 < o

8><
>:

These are the equations of the asymptotes of the Bode plot. When o < o1 and when o > o2, the
asymptotes are horizontal straight lines. The equations for these asymptotes don’t include a term
involving log10o, which means that the slope must be zero. When o1 < o < o2, the equation of the
asymptote does include a term involving log10 o. The coefficient of log10o is 20, indicating a slope of
20 dB/decade.

The effect of the dc gain k is limited to the term 20 log10 k, which appears in the equation of each
of the three asymptotes. Changing the value of k will shift the Bode plot up (increasing k) or down
(decreasing k) but will not change the shape of the Bode plot. For this reason, we sometimes normalize
the network function by dividing by the dc gain. The asymptotes of the Bode plot of the normalized
network function are given by

20 log10
H

k

� �
ffi

0 o < o1

20 log10 o� 20 log10 o1 o1 < o < o2

20 log10 o2 � 20 log10 o1 o2 < o

8><
>:

The phase angle of H is

f ¼ ffk þ 1þ j
o
o1

� �
� 1þ j

o
o2

� �
¼ 0þ tan�1 o

o1

� �
� tan�1 o

o2

� �
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The phase Bode plot and the asymptotic magnitude Bode plot are shown in Figure 13.3-4.
Notice that the slope of the asymptotic magnitude Bode plot changes as the frequency increases
past o1 and changes again as the frequency increases past o2. Zeros, like o1, cause the slope to
increase by 20 dB/decade. Poles, like o2, cause the slope to decrease by 20 dB/decade. The slope
of every asymptote will be an integer multiple of 20 dB/decade.

w1 w2

φ (ω)

wm
ω

0

20 log (H/k)
(dB)

20 log a
20 dB/dec

0°

90°

45°

FIGURE 13.3-4 Bode
diagram for the circuit of
Figure 13.3-3.

E X A M P L E 1 3 . 3 - 1 Bode Plot

Find the asymptotic magnitude Bode plot of

H oð Þ ¼ K
jo

1þ j
o
p

Solution
Approximate 1 þ j

o
p

� �
by 1 when o < p and by j

o
p

when o > p to get

H oð Þ ffi K joð Þ o < p

Kp o > p

	

The logarithmic gain is

20 log10jH oð Þj ffi 20 log10 K þ 20 log10o o < p

20 log10 Kpð Þ o > p

	

The asymptotic magnitude Bode plot is shown in Figure 13.3-5. The jo factor in the numerator of H(o) causes the
low-frequency asymptote to have a slope of 20 dB/decade. The slope of the asymptotic magnitude Bode plot
decreases by 20 dB/decade (from 20 dB/decade to zero) as the frequency increases past o ¼ p.

2020 log10(Kp)

2
0

 lo
g 1

0
|H

(w
)|,

 d
B

w  (logarithmic scale)

dB
decade

p

FIGURE 13.3-5 Asymptotic magnitude Bode plot for Example 13.3-1.
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E X A M P L E 1 3 . 3 - 2 Bode Plot
of a Circuit

INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 13.3-6a. The input to the circuit is the voltage of the voltage source vi(t). The output
is the node voltage at the output terminal of the op amp vo(t). The network function that represents this circuit is

H oð Þ ¼ Vo oð Þ
Vi oð Þ ð13:3-4Þ

The corresponding magnitude Bode plot is shown in Figure 13.3-6b. Determine the values of the capacitances
C1 and C2.

Solution
The network function provides a connection between the circuit and the Bode plot. We can determine the network
function from the Bode plot, and we can also analyze the circuit to determine its network function. The values of the
capacitances are determined by equating the coefficients of these two network functions.

Step 1: Let’s make some observations regarding the Bode plot shown in Figure 13.3-6b:

1. There are two corner frequencies, at 80 and 500 rad/s. The corner frequency at 80 rad/s is a pole because the
slope of the Bode plot decreases at 80 rad/s. The corner frequency at 500 rad/s is a zero because the slope
increases at 500 rad/s.

2. The corner frequencies are separated by log10
500
80

� �
¼ 0:796 decades. The slope of the Bode plot is

�15:9 � 15:9
0:796

¼ �40 dB/decade between the corner frequencies.

3. At low frequencies—that is, at frequencies smaller than the smallest corner frequency—the slope is �1 � 20
dB/decade, so the network function includes a factor joð Þ�1

Consequently, the network function corresponding to the Bode plot is

H oð Þ ¼ k joð Þ�1
1þ j

o
500

1þ j
o
80

0
B@

1
CA ¼ k

1þ j
o
500

jo 1þ j
o
80

� � ð13:3-5Þ

where k is a constant that is yet to be determined.

50080
ω, rad/sec
(log scale)

|H(ω)| (dB)

−15.9

15.9

(a) (b)

125 kΩ

10 kΩ

+

vo(t)vi(t)

C2

C1

–

+

–

+
–

FIGURE 13.3-6 The circuit and Bode plot considered in Example 13.3-2.
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Step 2: Next, we analyze the circuit shown in Figure 13.3-6a to determine its network function. A network
function is the ratio of the output phasor to the input phasor. Phasors exist in the frequency domain. Consequently,
our first step is to represent the circuit in the frequency domain, using phasors and impedances. Figure 13.3-7 shows
the frequency-domain representation of the circuit from Figure 13.3-6a.

–

+
125 kΩ

10 kΩ

Vi (ω)

+

–

+

–

Va(ω) Vo(ω)jωC1

1

jωC2

1

+
–

a

b

FIGURE 13.3-7 The circuit from Figure 13.3-6a,
represented in the frequency domain, using
impedances and phasors.

To analyze the circuit in Figure 13.3-7, we first write a node equation at the node labeled as node a. (The
current entering the noninverting input of the op amp is zero, so there are two currents in this node equation, the
currents in the impedances corresponding to 125-kV resistor and capacitor C1.)

Vi oð Þ � Va oð Þ
125� 103

¼ Va oð Þ
1

joC1

where Va(o) is the node voltage at node a. Doing a little algebra gives

Vi oð Þ
125� 103

¼ 1

125� 103
þ joC1

� �
Va oð Þ

then Vi oð Þ ¼ 1þ joC1 125� 103
� �� �

Va oð Þ ) Va oð Þ ¼ Vi oð Þ
1þ joC1 125� 103

� �
Next, we write a node equation at the node labeled as node b. (The current entering the inverting input of the op amp
is zero, so there are two currents in this node equation, the currents in the impedances corresponding to
10-kV resistor and capacitor C2.)

Va oð Þ
10� 103

þ Va oð Þ � Vo oð Þ
1

joC2

¼ 0

Doing some algebra gives

Va oð Þ þ joC2 10� 103
� �

Va oð Þ � Vo oð Þð Þ ¼ 0

1þ joC2 10� 103
� �� �

Va oð Þ ¼ joC2 10� 103
� �

Vo oð Þ

1þ joC2 10� 103
� �� � Vi oð Þ

1þ joC1 125� 103
� � ¼ joC2 10� 103

� �
Vo oð Þ

Finally; H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

1

C2 10� 103
� �

 !
1þ joC2 10� 103

� �
joð Þ 1þ joC1 125� 103

� �� � ð13:3-6Þ

Step 3: The network functions given in Eqs. 13.3-5 and 13.3-6 must be equal. That is,

k
1þ j

o
500

jo 1þ j
o
80

� � ¼ H oð Þ ¼ 1

C2 10� 103
� �

 !
1þ joC2 10� 103

� �
joð Þ 1þ joC1 125� 103

� �� �
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E X A M P L E 1 3 . 3 - 3 Bode Plot
of a Circuit

INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 13.3-8a. The input to the circuit is the voltage of the voltage source vi(t).
The output is the node voltage at the output terminal of the op amp vo(t). The network function that represents this
circuit is

H oð Þ ¼ Vo oð Þ
Vi oð Þ ð13:3-7Þ

The corresponding magnitude Bode plot is also shown in Figure 13.3-8b. Determine the values of the capacitances
C1 and C2.

400 kΩ
20 kΩ

+
vo(t)vi(t)

C2

+
–

–

+

C1

–
40

ω, rad/sec
(log scale)

|H(ω)| (dB)

26

160

(b)(a)

FIGURE 13.3-8 The circuit and Bode plot considered in Example 13.3-3.

Solution
The network function provides a connection between the circuit and the Bode plot. We can determine the network
function from the Bode plot, and we can also analyze the circuit to determine its network function. The values of the
capacitances are determined by equating the coefficients of these two network functions.

Step 1: First, we make some observations regarding the Bode plot shown in Figure 13.3-8b.

1. There are two corner frequencies, at 40 and 160 rad/s. Both corner frequencies are poles because the slope of
the Bode plot decreases at both the corner frequencies.

2. Between the corner frequencies, the gain is jH oð Þj ¼ 26 dB ¼ 1026/20 ¼ 20 V/V.

3. At low frequencies—that is, at frequencies smaller than the smallest corner frequency—the slope is 1 � 20 dB/
decade, so the network function includes a factor ( jo)1.

Equating coefficients gives

1

80
¼ C1 125� 103

� �
;

1

500
¼ C2 10� 103

� �
; and k ¼ 1

C2 10� 103
� � ¼ 500

so C1 ¼ 1

80 125� 103
� � ¼ 0:1 mF and C2 ¼ 1

500 10� 103
� � ¼ 0:2 mF

Try it 
yourself 
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Consequently, the network function corresponding to the Bode plot is

H oð Þ ¼ k joð Þ
1þ j

o
40

� �
1þ j

o
160

� � ð13:3-8Þ

Step 2: Next, we analyze the circuit shown in Figure 13.3-8a to determine its network function. A network
function is the ratio of the output phasor to the input phasor. Phasors exist in the frequency domain. Consequently,
our first step is to represent the circuit in the frequency domain, using phasors and impedances. Figure 13.3-9 shows
the frequency-domain representation of the circuit from Figure 13.3-8a.

To analyze the circuit in Figure 13.3-9, we write a node equation at the node labeled as node a. In doing so,

we will treat the series impedances, 20 kV and
1

joC1
, as a single equivalent impedance equal to 20 � 103 +

1
joC1

.

(The node voltage at node a is zero volts because the voltages at the input nodes of an ideal op amp are equal. The
current entering the inverting input of the op amp is zero, so there are three currents in this node equation.)

Vi oð Þ
20� 103 þ 1

joC1

þ Vo oð Þ
400� 103

þ Vo oð Þ
1

joC2

¼ 0

Doing some algebra gives

joC1ð ÞVi oð Þ
1þ joC1 20� 103

� �þ 1

400� 103
þ joC2

� �
Vo oð Þ ¼ 0

joC1ð Þ 400� 103
� �

Vi oð Þ
1þ joC1 20� 103

� � ¼ � 1þ joC2 400� 103
� �� �

Vo oð Þ

Finally,

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

�joC1 400� 103
� �

1þ joC1 20� 103
� �� �

1þ joC2 400� 103
� �� � ð13:3-9Þ

Step 3: The network functions given in Eqs. 13.3-8 and 13.3-9 must be equal. That is,

k joð Þ
1þ j

o
40

� �
1þ j

o
160

� � ¼ H oð Þ ¼ �joC1 400� 103
� �

1þ joC1 20� 103
� �� �

1þ joC2 400� 103
� �� �

Equating coefficients gives
1

40
¼ C1 20� 103

� �
;

1

160
¼ C2 400� 103

� �
; and k ¼ �C1 400� 103

� �

so C1 ¼ 1

40 20� 103
� � ¼ 1:25 mF and C2 ¼ 1

160 400� 103
� � ¼ 15:625 nF

and k ¼ �C1 400� 103
� � ¼ � 1:25� 10�6

� �
400� 103
� � ¼ �0:5

–

+

20 kΩ
400 kΩ

Vi (ω)
+

–
Vo(ω)

jωC2

1

jωC1

1

+
–

a

FIGURE 13.3-9 The circuit from Figure 13.3-8a, represented in
the frequency domain, using impedances and phasors.
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E X A M P L E 1 3 . 3 - 4 Network Function with Complex Poles

The network function of a second-order low-pass filter has the form

H oð Þ ¼ k o2
0

joð Þ2 þ j2zo0oþ o2
0

This network function depends on three parameters: the dc gain k; the corner frequency o0; and the damping ratio z. For
convenience, we consider the case where k ¼ 1. Then, using j 2 ¼ �1, we can write the network function as

H oð Þ ¼ o2
0

o2
0 � o2 þ j2zo0o

Determine the asymptotic magnitude Bode plot of the second-order low-pass filter when the dc gain is 1.

Solution
The denominator of H(o) contains a new factor, one that involves o2. The asymptotic Bode plot is based on the
approximation

o2
0 � o2

� �þ j2zo0o ffi o2
0 o < o0

�o2 o > o0

	

Using this approximation, we can express H(o) as

H oð Þ ffi
1 o < o0

�o2
0

o2
o > o0

8<
:

The logarithmic gain is

20 log10jH oð Þj ffi 0 o < o0

40 log10 o0 � 40 log10 o o > o0

	

The asymptotic magnitude Bode plot is shown in Figure 13.3-10. The actual magnitude Bode plot and the actual
phase Bode plot are shown in Figure 13.3-11. The asymptotic Bode plot is a good approximation to the actual Bode
plot when o � o0 or o 
 o0. Near o ¼ o0, the asymptotic Bode plot deviates from the actual Bode plot. At
o ¼ o0, the value of the asymptotic Bode plot is 0 dB, whereas the value of the actual Bode plot is

H o0ð Þ ¼ 1

2z

As this equation and Figure 13.3-11 both show, the deviation between the actual and asymptotic Bode plot near
o ¼ o0 depends on z. The frequency o0 is called the corner frequency. The slope of the asymptotic Bode plot
decreases by 40 dB/decade as the frequency increases past o ¼ o0. In terms of the asymptotic Bode plot, the
denominator of this network function acts like two poles at p ¼o0. If this factor were to appear in the numerator of
a network function, it would act like two zeros at z ¼ o0. The slope of the asymptotic Bode plot would increase by
40 dB/decade as the frequency increased past o ¼ o0.

0

w0

w  (rad/s, logarithmic scale)

2
0

 lo
g 1

0
|H

(w
)| ,

 d
B

40
dB

decade

FIGURE 13.3-10 The asymptotic magnitude Bode plot
of the second-order low-pass filter when the dc gain is 1.
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E X A M P L E 1 3 . 3 - 5 Magnitude Bode Plot for a
Complicated Network Function

Find the asymptotic magnitude Bode plot of

H oð Þ ¼ 5 1þ 0:1joð Þ
jo 1þ 0:5joð Þ 1þ 0:6

jo
50

� �
� o

50

� �2
 �

Solution
The corner frequencies of H(o) are z ¼ 10, p ¼ 2, and o0 ¼ 50 rad/s. The smallest corner frequency is p ¼ 2. When
o < 2, H(o) can be approximated as

H oð Þ ¼ 5

jo

/  0 = frequency ratioωω
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0.25

ζ

0.8
1.0

0.3
0.4

0.5
0.6

0.10
0.15
0.200.3
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FIGURE 13.3-11 Bode
diagram of H(jo) ¼ [1 þ
(2z/o0)jo þ (jo/o0)2]�1 for
two decades of frequency.
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E X A M P L E 1 3 . 3 - 6 Designing a Circuit to Have
a Specified Bode Plot

Let’s design the circuit shown in Figure 13.3-3 to satisfy the following specifications.

1. The low-frequency gain is 0.1.

2. The high-frequency gain is 1.

3. The corner frequencies lie in the range of 100 hertz to 2000 hertz.

Solution
We’re confronted with two problems. First, can these specifications be satisfied using this circuit? Second, if they
can, what values of R, Rs, and L are required?

Our earlier analysis of this circuit showed that the low-frequency gain is less than 1 and that the
high-frequency gain is equal to 1. This circuit can be used only to satisfy specifications that are consistent
with these facts. Fortunately, the given specifications are consistent with these facts. The first specification
requires

so the equation of the low-frequency asymptote is

20 log10jHj ¼ 20 log10 5� 20 log10 o

The slope of the low-frequency asymptote is �20 dB/decade. Let’s find a point on the low-frequency asymptote.
When o ¼ 1,

20 log10jHj ¼ 20 log10 5� 20 log10 1 ¼ 14 dB

The low-frequency asymptote is a straight line with a slope of �20 dB/decade passing through the point
o ¼ 1 rad/s, jHj ¼ 14 dB.

The slope of the asymptotic Bode plot will change as o increases past each corner frequency. The slope
decreases by 20 dB/decade at o ¼ p ¼ 2 rad/s, then increases by 20 dB/decade at o ¼ 10 rad/s, and finally
decreases by 40 dB/decade at o ¼ 50 rad/s. The asymptotic magnitude Bode plot is shown in Figure 13.3-12.

–60

–40

–20

0

20

40

0.1 1 2
  (rad/s)

10 50 100

dB

–20 dB/dec

–40 dB/dec

Pole Zero Two poles

–20 dB/dec

–60 dB/dec

ω

FIGURE 13.3-12 Asymptotic plot for Example 13.3-5.
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0:1 ¼ low-frequency gain ¼ k ¼ R

R þ Rs

Because this circuit has a high-frequency gain equal to 1, the second specification is satisfied.
Now let’s turn our attention to the specifications on the corner frequencies. The specified frequency range is

given using units of hertz, whereas the corner frequencies have units of radians/second. Because o1 > o2, the third
specification requires that

2pð Þ100 <
R

L
¼ o1

and

2pð Þ2000 >
R þ Rs

L
¼ o2

Our job is to find values of R, Rs, and L that satisfy these three requirements. We have no guarantee that appropriate
values exist. If an appropriate set of values does exist, it may well not be unique. Let’s try

R ¼ 100V

The specification on the low-frequency gain requires that

Rs ¼ 9R ¼ 900V

The specification on the zero will be satisfied if

L ¼ R

2pð Þ100 ¼ 0:159 H

It remains to verify that these values of R, Rs, and L satisfy the specification on the pole frequency. Because

R þ Rs

L
¼ 6289 < 12; 566 ¼ 2pð Þ2000

the specification is satisfied.
In summary, when

R ¼ 100V; Rs ¼ 900V; and L ¼ 0:159 H

the circuit shown in Figure 13.3-3 satisfies the specifications given above.
This solution is not unique. Indeed, when R ¼ 100 and Rs ¼ 900, any inductance in the range

0.0796 < L < 0.159 H can be used to satisfy these specifications.

E X A M P L E 1 3 . 3 - 7 Designing a Circuit to Have
a Specified Bode Plot

Design a circuit that has the asymptotic magnitude Bode plot shown in Figure 13.3-13a.

Solution
The slope of this Bode plot is 20 dB/decade for low frequencies, that is, o< 500 rad/s, so H(o) must have a jo
factor in its numerator. The slope decreases by 20 dB/decade (from 20 dB/decade to zero) as o increases past
o ¼ 500 rad/s, so H(o) must have a pole at o ¼ 500 rad/s. Based on these observations

H oð Þ ¼ �k
jo

1þ j
o
500

Try it 
yourself 

in WileyPLUS
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EXERCISE 13.3-1 (a) Convert the gainjVo=Vsj ¼ 2 to decibels. (b) Suppose jVo=Vsj ¼
�6.02 dB. What is the value of this gain “not in dB”?

Answers: (a) 6.02 dB (b) 0.5

EXERCISE 13.3-2 In a certain frequency range, the magnitude of the network function can be
approximated as H ¼ 1=o2. What is the slope of the Bode plot in this range, expressed in decibels per
decade?

Answer: �40 dB/decade

The gain of the asymptotic Bode plot is 34 dB ¼ 50 when o > 500 rad/s, so

50 ¼ �k
jo

j
o
500

¼ �k � 500

Thus, k ¼ �0.1 and

H oð Þ ¼ �0:1 � jo

1þ j
o
500

We need a circuit that has a network function of this form. Table 13.3-2 contains a collection of circuits and
corresponding network functions. Row 4 of Table 13.3-2 contains the circuit that we can use. The design equations
provided in row 4 of the table indicate that

0:1 ¼ R2C

500 ¼ 1

CR1

Because there are more unknowns than equations, the solution of these design equations is not unique. Pick
C ¼ 1mF. Then

R2 ¼ 0:1

10�6 ¼ 100 kV

R1 ¼ 1

500 � 10�6 ¼ 2 kV

The finished circuit is shown in Figure 13.3-13b.

2034

2
0

 lo
g 1

0
|H

( 
 )

|, 
dB

ω

(logarithmic scale)ω

dB
decade

500

(a) (b)
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+ +

–

vo

2 kΩ 100 kΩ

+
– vi

μ

RL

1   F

FIGURE 13.3-13 (a) An asymptotic magnitude Bode plot and (b) a circuit that implements that Bode plot.
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Table 13.3-2 A Collection of Circuits and Corresponding Network Functions

CIRCUIT NETWORK FUNCTION

–

+

C2

R2

C1

vi

RL

R1

+
–

vo

+

–

1 + j
H(  ) = – k

where

ω
1 + j

k =
R2

R1

z =
1

C1R1

p =
1

C2R2

ω
z
ω
p

–

+

C

R2

vi

RL

R1

+
–

vo

+

–

1 + j
H(  ) = –

where

ω k 

k =
R2

R1

p = 1
CR2

ω
p

–

+

R2

C

vi

RL

R1

+
–

v0

+

–

H(  ) = – k

where

ω ω

k =
R2

R1

z =
1

CR1

z
1 + j

–

+

R2

vi

RL

R1

+
–

v0

+

–

C

H(  ) = – k

where

ω
ω

k =

p =
1

CR1

1 + j

 j

 R2C

ω
p

C2

R2

–

+
vi

RL

R1 C1

+
–

v0

+

–

H(  ) = –

where

ω

k =

p1 =
1

C1R1

p2 =
1

C2R2

p1
1 + j

k(j   )

 C1R2

ω
p2

1 + j ω
ω
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EXERCISE 13.3-3 Consider the network function

H oð Þ ¼ joA

B þ joC

Find (a) the corner frequency, (b) the slope of the asymptotic magnitude Bode plot for o above the corner frequency
in decibels per decade, (c) the slope of the magnitude Bode plot below the corner frequency, and (d) the gain in
decibels for o above the corner frequency.

Answers: (a) o0 ¼ B/C (b) zero (c) 20 dB/decade (d) 20 log10 ¼ A

C

13.4 R e s o n a n t C i r c u i t s

In this section, we will study the behavior of some circuits called resonant circuits. We begin with an
example.

Consider the situation shown in Figure 13.4-1a. The input to this circuit is the current of the
current source, and the response is the voltage across the current source. Because the input to the circuit
is sinusoidal, we can use phasors to analyze this circuit. We know that the network function of the
circuit is the ratio of the response phasor to the input phasor. In this case, that network function will be
an impedance

Z ¼ V
I
¼ Affy

Bff0�
Figure 13.4-1b shows some data that were obtained by applying an input with an amplitude of 2 mA and
a frequency that was varied. Row 1 of this table describes the performance of this circuit when
o ¼ 200 rad/s. At this frequency, the impedance of the circuit is

Z ¼ 6:6ff48�
0:002

¼ 3300ff48� V
Let’s convert this impedance from polar to rectangular form:

Z ¼ 2208þ j2452V

This looks like the equivalent impedance of a series resistor and inductor. The resistance would be
2208 V. Because the frequency is o ¼ 200 rad/s, the inductance would be 12.26 H. Recall that in
rectangular form impedances are represented as

Z ¼ R þ jX

where R is called the resistance and X is called the reactance. When o ¼ 200 rad/s, we say that the
reactance of this circuit is inductive because the reactance is positive and therefore could have been
caused by a single inductor.

RLC
circuit

v(t) = B cos (   t +  )ω

ω

i(t) = A cos (   t)ω

+

–

θ

θA, A

0.002
0.002
0.002
0.002
0.002

 , rad/s

200
220
250
270
300

B, V

 6.6
 8.4
10.0
 9.3
 7.4

 48°
 33°
   0°
– 21°
– 43°

(b)(a)

FIGURE 13.4-1 (a) An RLC circuit with a sinusoidal input and (b) some frequency response data.
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The last row of the table describes the performance of this circuit when o ¼ 300 rad/s. Now

Z ¼ 7:4ff�43�

0:002
¼ 3700ff�43� ¼ 2706� j 2523V

Because the reactance is negative, it couldn’t have been caused by a single inductor. This impedance
looks like the equivalent impedance of a single resistor connected in series with a single capacitor:

R � j
1

oC
¼ 2706� j 2523V

Equating the real parts shows that the resistance is 2706 V. Equating imaginary parts shows that the
capacitance is 1.32 mF.

The reactance of this circuit is inductive at some frequencies and capacitive at other frequencies.
We can tell when the reactance will be inductive and when it will be capacitive by looking at the last
column of the table. When y is positive, the reactance is inductive and when y is negative, the reactance
is capacitive. The frequency o ¼ 250 rad/s is special. When the input frequency is less than 250 rad/s,
the reactance is inductive, but when the input frequency is greater than 250 rad/s, the reactance is
capacitive. This special frequency is called the resonant frequency and is denoted as o0. From the third
row of the table, we see that when o ¼ o0 ¼ 250 rad/s

Z ¼ 10ff0�
0:002

¼ 5000ff0� ¼ 5000� j 0V

The reactance is zero. At the resonant frequency, the impedance is purely resistive. Indeed, this fact can
be used to identify the resonant frequency.

Another observation can be made from Figure 13.4-1. The magnitude of the impedance is
maximum when o ¼ o0 ¼ 250 rad/s. When the frequency is reduced from o0 or increased from o0,
the magnitude of the impedance is decreased.

Next, consider the circuit shown in Figure 13.4-2. This circuit is called the parallel resonant
circuit. The equivalent impedance of the parallel resistor, inductor, and capacitor is

Z ¼ 1
1

R
þ joC þ 1

joL

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

R

� �2

þ oC � 1

oL

� �2
s � tan�1 R oC � 1

oL

� �
ð13:4-1Þ

This circuit exhibits some familiar behavior. The reactance will be zero when

oC � 1

oL
¼ 0

The frequency that satisfies this equation is the resonant frequency o0. Solving this equation gives

o0 ¼ 1ffiffiffiffiffiffi
LC

p

C L R

+

–

v(t)

v(t) = B cos (   t +  )ω
i(t) = A cos (   t)

i(t)

ω
θ FIGURE 13.4-2 The parallel resonant circuit.
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At o ¼ o0, Z ¼ R. The magnitude of Z decreases as o is either increased or decreased from o0. The
angle of Z is positive when o < o0 and negative when o > o0, so the reactance is inductive when
o < o0 and capacitive when o > o0.

The impedance can be put in the form

Z ¼ k

1þ jQ
o
o0

� o0

o

� � ð13:4-2Þ

where k ¼ R; Q ¼ R

ffiffiffiffi
C

L

r
; and o0 ¼ 1ffiffiffiffiffiffi

LC
p ð13:4-3Þ

The parameters k, Q, and o0 characterize the resonant circuit. The resonant frequency o0 is the
frequency at which the reactance is zero and where the magnitude of the impedance is maximum. The
parameter k is the value of the impedance when o ¼ o0, so k is the maximum value of the impedance. Q
is called the quality factor of the resonant circuit. The magnitude of the impedance will decrease as o is
reduced from o0 or increased from o0. The quality factor controls how rapidly jZj decreases. Figure
13.4-3 illustrates the importance of Q. Both k and o0 have been set equal to 1 in Figure 13.4-3 to
emphasize the relationship between Q and jZj.

Figure 13.4-3 shows that the larger the value of Q, the more sharply peaked is the frequency
response plot. We can quantify this observation by introducing the bandwidth of the resonant circuit. To
that end, let o1 and o2 denote the frequencies where

jZ oð Þj ¼ 1ffiffiffi
2

p jZ o0ð Þj ¼ kffiffiffi
2

p

There will be two such frequencies, one smaller than o0 and the other larger than o0. Let o1 < o0 and
o2 > o0. The bandwidth BW of the resonant circuit is defined as

BW ¼ o2 � o1

The frequencies o1 and o2 are solutions of the equation

kffiffiffi
2

p ¼ kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q 2 o=o0 � o0=oð Þ2

q

0

0.2

0.4

0.6

0.8

1

10–1 100

Frequency, rad/s

101

Q = 16

Q = 4

Q = 2

Q = 1

Q = 1/2

|Z
|, 

oh
m

s

FIGURE 13.4-3 The effect of Q on the frequency response of a resonant circuit.
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or
ffiffiffi
2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Q 2 o=o0 � o0=oð Þ2

q

Squaring both sides, we get

1 ¼ Q 2 o
o0

� o0

o

� �2

Now, taking the square root of both sides, we get

�1 ¼ Q
o
o0

� o0

o

� �

(The � sign is required because a2 ¼ b2 is satisfied if either a ¼ b or –a ¼ b.) This equation can be
rearranged to get the following quadratic equation:

o2  o0o
Q

� o2
0 ¼ 0

This equation has four solutions, but only two are positive. The positive solutions are

o1 ¼ �o0

2Q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o0

2Q

� �2

þ o2
0

s
and o2 ¼ o0

2Q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o0

2Q

� �2

þ o2
0

s

Finally, we are ready to calculate the bandwidth

BW ¼ o2 � o1 ¼ o0

Q
ð13:4-4Þ

This equation says that the bandwidth is smaller; that is, the frequency response plot is more sharply
peaked; when the value of Q is larger.

E X A M P L E 1 3 . 4 - 1 Series Resonant Circuit

Figure 13.4-4 shows a series resonant circuit. Determine the relationship between parameters k, Q, and o0 and the
element values R, L, and C for the series resonant circuit.

C

R L

v(t) = A cos (w t)+
–

i(t) = B cos (w t +  )θ

FIGURE 13.4-4 The series resonant circuit.

Solution
The input to this circuit is the voltage source, and the response is the current in the mesh. The network function is
the ratio of the response phasor to the input phasor. In this case, the network function is the equivalent admittance of
the series resistor, capacitor, and inductor:

Y ¼ I
V
¼ 1

R þ joL þ 1

joC

ð13:4-5Þ
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To identify k, Q, and o0, this network function must be rearranged so that it is in the form

Y ¼ k

1þ jQ
o
o0

� o0

o

� � ð13:4-6Þ

Rearranging Eq. 13.4-5 gives

Y ¼ 1

R þ j oL � 1

oC

� � ¼ 1

R þ j

ffiffiffiffi
L

C

r
o
1ffiffiffiffiffiffi
LC

p
�

1ffiffiffiffiffiffi
LC

p
o

0
BB@

1
CCA

¼
1

R

1þ j
1

R

ffiffiffiffi
L

C

r
o
1ffiffiffiffiffiffi
LC

p
�

1ffiffiffiffiffiffi
LC

p
o

0
BB@

1
CCA

Comparing this equation to Eq. 13.4-6 gives

k ¼ 1

R
; Q ¼ 1

R

ffiffiffiffi
L

C

r
; and o0 ¼ 1ffiffiffiffiffiffi

LC
p

E X A M P L E 1 3 . 4 - 2 Frequency Response of
a Resonant Circuit

Figure 13.4-5 shows the magnitude frequency response plot of a resonant circuit. What are the values of the
parameters k, Q, and o0?

0

1.0 K

2.0 K

3.0 K

4.0 K

5.0 K

2.0 Kh 3.0 Kh
Frequency

(2.2491 K, 3.9989 K)

(2.3322 K, 2.8220 K)

(2.1720 K, 2.8178 K)

|Z(w)|, ohms

FIGURE 13.4-5 The magnitude frequency
response of a resonant circuit.

Solution
The first step is to find the peak of the frequency response and determine the values of the frequency and the
impedance corresponding to that point. This frequency is the resonant frequency o0, and the impedance at this
frequency is k. This point on the frequency response is labeled in Figure 13.4-5. The frequency is

o0 ¼ 2pð Þ2249 ¼ 14,130 rad/s
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The impedance is

k ¼ 4000V

Next, the frequencies o1 and o2 are identified by finding the points on the frequency response where the value of
the impedance is k=

ffiffiffi
2

p ¼ 2828 V. These points have been labeled in Figure 13.4-5. (The plot shown in Figure
13.4-5 was produced using PSpice and Probe. The cursor function in Probe was used to label points on the
frequency response. Each label gives the frequency first, then the impedance. It was not possible to move the cursor
to the points where the impedance was exactly 2828 V, so the points where the impedance was as close to 2828 V
as possible were labeled.)

o1 ¼ 2pð Þ2172 ¼ 13,647 rad/s and o2 ¼ 2pð Þ2332 ¼ 14,653 rad/s

The quality factor Q is calculated as

Q ¼ o0

BW
¼ o0

o2 � o1
¼ 14,130

14,653� 13,647
¼ 14

Now that the values of the parameters k, Q, and o0 are known, the network function can be expressed as

Z oð Þ ¼ 4000

1þ j14
o

14,130
� 14,130

o

� �

E X A M P L E 1 3 . 4 - 3 Parallel Resonant Circuit

Design a parallel resonant circuit that has k ¼ 4000 V, Q ¼ 14, and o0 ¼ 14,130 rad/s.

Solution
Table 13.4-1 summarizes the relationship between parameters k, Q, and o0 and the element values R, L, and C for
the parallel resonant circuit. These relationships can be used to calculate R, L, and C from k, Q, and o0. First,

R ¼ k ¼ 4000V

Next;
1ffiffiffiffiffiffi
LC

p ¼ o0 ¼ 14,130

and R

ffiffiffiffi
C

L

r
¼ Q ¼ 14

Rearranging these last two equations gives

14
ffiffiffi
L

p

4000
¼

ffiffiffiffi
C

p
¼ 1

14,130
ffiffiffi
L

p

So; L ¼ 4000

14,130 14ð Þ ¼ 20 mH and C ¼ 1

14,1302 0:002ð Þ ¼ 0:25 mF

Try it 
yourself 

in WileyPLUS
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EXERCISE 13.4-1 For the RLC parallel resonant circuit when R ¼ 8 kV, L ¼ 40 mH, and
C ¼ 0:25mF, find (a) Q and (b) bandwidth.

Answers: (a) Q ¼ 20 (b) BW ¼ 500 rad/s

EXERCISE 13.4-2 A high-frequency RLC parallel resonant circuit is required to operate at
o0 ¼ 10 Mrad/s with a bandwidth of 200 krad/s. Determine the required Q and L when C ¼ 10 pF.

Answers: Q ¼ 50 and L ¼ 1 mH

Table 13.4-1 Series and Parallel Resonant Circuits

SERIES RESONANT CIRCUIT PARALLEL RESONANT CIRCUIT

Circuit
C

R L

v +
–

i

R Li C

+

–

v

Network function Y =
k

1 + jQ –ω
0ω ω

0ω
k

1 + jQ –ω
0ω ω

0ωZ =

Resonant frequency 0 =ω
 LC

 1

 LC

 1
0 =ω

Maximum magnitude k =
 R
 1

k = R

Quality factor
 C
 L

Q =
 R
 1

 L
 CQ = R

Bandwidth BW =
 L
 R

BW =
RC
 1

E X A M P L E 1 3 . 4 - 4 Designing Resonant Circuits

Figure 13.4-5 shows the magnitude frequency response plot of a resonant circuit. Design a circuit that has this
frequency response.

Solution
We have already solved this problem. Three things must be done to design the required circuit. First, the parameters
k, Q, and o0 must be determined from the frequency response. We did that in Example 13.4-2. Second, we notice
that the given resonant frequency response is an impedance rather than an admittance, and we choose the parallel
resonant circuit from Table 13.4-1. Third, the element values R, L, and C must be calculated from the values of k, Q,
and o0. We did that in Example 13.4-3.
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EXERCISE 13.4-3 A series resonant circuit has L ¼ 1 mH and C ¼ 10 mF. Find the required
Q and R when it is desired that the bandwidth be 15.9 Hz.

Answers: Q ¼ 100 and R ¼ 0:1 V

EXERCISE 13.4-4 A series resonant circuit has an inductor L ¼ 10 mH. (a) Select C and R so
that o0 ¼ 106 rad/s and the bandwidth is BW ¼ 103 rad/s. (b) Find the admittance Y of this circuit for a
signal at o ¼ 1:05 � 106 rad/s.

Answers: (a) C ¼ 100 pF, R ¼ 10 V

(b) Y ¼ 10
1 þ j97:6

13.5 F r e q u e n c y R e s p o n s e o f O p Amp C i r c u i t s

The gain of an op amp is not infinite; rather, it is finite and decreases with frequency. The gain A(o) of
the operational amplifier is a function of o given by

A oð Þ ¼ Ao

1þ jo=o1

where Ao is the dc gain and o1 is the corner frequency. The dc gain is normally greater than 104 and o1

is less than 100 rad/s. A circuit model of a frequency-dependent nonideal op amp is shown in Figure
13.5-1. This model is more accurate, but also more complicated, than the ideal op amp model.

Let us consider an example of an op amp circuit incorporating a frequency-dependent
op amp.

–

+ +

–

+

–

+

(a) (b)

V1(  )ω Vo(  )ωV2(  )ω

+

–

+

–
+

––

V1(  )ω

Vi(  )ω

V2(  )ω

Vo(  ) = –A(  ) Vi(  )ω ω ω+

–

FIGURE 13.5-1 (a) An operational
amplifier and (b) a frequency-dependent
model of an operational amplifier.

E X A M P L E 1 3 . 5 - 1 Frequency Response of
a Noninvert ing Amplifier

Consider the noninverting amplifier in Figure 13.5-2a. Replacing the op amp with a frequency-dependent op amp
gives the circuit shown in Figure 13.5-2b. Suppose that R2 ¼ 90 kV and R1 ¼ 10 kV and that the parameters of the
op amp are Ao ¼ 105 and o1 ¼ 10 rad/s. Determine the magnitude Bode plot for both the gain of the op amp A(o)
and the network function of the noninverting amplifier Vo=Vs.
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+

–

(b)(a)

vi

+

–

Vi(  )ω

Vs(  )ω

Vo = –A(  ) Vi(  )ω ω+

–

R1 R2
R1 R2

+
–vs(t)

+
–

–

+

FIGURE 13.5-2 (a) A noninverting amplifier and (b) an equivalent circuit incorporating the frequency-dependent model of the
operational amplifier.

Solution
The Bode plot of 20 logjA(o)j is shown in Figure 13.5-3. Note that the magnitude is equal to 1 (0 dB) at
o ¼ 106 rad/s.

Writing a node equation in Figure 13.5-2b gives

Vi þ Vs

R1
þ Vi þ Vs þ A oð ÞVi

R2
¼ 0

The frequency-dependent model of the op amp is described by

Vo ¼ �A oð ÞVi

Combining these equations gives

Vo

Vs
¼ A oð Þ

1þ A oð Þ
k

where k ¼ (R1+R2)=R1 is the gain of the noninverting amplifier when the op amp is modeled as an ideal op amp.
Substituting for A(o), we get

Vo

Vs
¼ Ao= 1þ jo=o1ð Þ

1þ Ao=kð Þ/ 1þ jo=o1ð Þ ¼
Ao

1þ jo=o1 þ Ao=k
¼ Ac

1þ jo= A2o1ð Þ

1 10 102 103 104 105 106
0

20

40

60

80

100

120

Op amp

20 log⎥ A(  )⎥
(dB)

ω

ω

Noninverting amplifier with k = 10

FIGURE 13.5-3 Bode magnitude diagram of the op amp
and the noninverting op amp circuit (in color).
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13.6 P l o t t i n g B o d e P l o t s U s i n g MAT L AB

MATLAB can be used to display the Bode plot or frequency response plot corresponding to a network
function. As an example, consider the network function

H oð Þ ¼
K 1þ j

o
z

� �

1þ j
o
p1

� �
1þ j

o
p2

� �

Figure 13.6-1 shows a MATLAB input file that can be used to obtain the Bode plot corresponding to
this network function. This MATLAB file consists of four parts.

In the first part, the MATLAB command log space is used to specify the frequency range for the
Bode plot. The command log space also provides a list of frequencies that are evenly spaced (on a log
scale) over this frequency range.

The given network has four parameters—the gain, K; the zero, z; and two poles, p1 and p2. The
second part of the MATLAB input file specifies values for these four parameters.

The third part of the MATLAB input file is a “for loop” that evaluates H(o), jH(o)j, andffH oð Þ at
each frequency in the list of frequencies produced by the command log space.

The fourth part of the MATLAB input file does the plotting. The command

semilogx w/ 2�pið Þ; 20�log10 magð Þð Þ
does several things. The command semilogx indicates that the plot is to be made using a logarithmic scale
for the first variable and a linear scale for the second variable. The first variable, frequency, is divided by 2p
to convert to Hz. The second variable, jH(o)j, is converted to dB.

The Bode plots produced using this MATLAB input file are shown in Figure 13.6-2.
The second and third parts of the MATLAB input file can be modified to plot the Bode plots for a

different network function.

where Ac is the dc gain of the noninverting amplifier defined as Ac ¼ Ao

1 þ Ao

k

and A2 ¼ 1 þ Ao

k
. Usually, 1 � Ao

k
, so

Ac ffi k and A2 ffi Ao

k
. Then

Vo

Vs
ffi k

1þ jo=o0ð Þ
where oo ¼ Aoo1=k is the corner frequency of the noninverting amplifier. Notice that the product of the dc gain and
the corner frequency is

o0k ¼ Aoo1

k
k ¼ Aoo1

This product is called the gain-bandwidth product. Notice it depends only on the op amp, not on R1 and R2.
For this example, k ¼ 10 and Ao ¼ 100 dB ¼ 105, and, thus, we have Ac ¼ 10, A2 ¼ 104, and o1A2 ¼ 105.

Therefore,

Vo

Vs
¼ 10

1þ j10�5o

This circuit has a magnitude Bode plot as shown in color in Figure 13.5-3. Note that the noninverting op amp
has a low-frequency gain of 20 dB and a break frequency of 105 rad/s. The gain-bandwidth product remains
106 rad/s.
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FIGURE 13.6-1 MATLAB input file used to plot the Bode plots corresponding to a network function.
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FIGURE 13.6-2 The Bode plots produced using the MATLAB input file given in Figure 13.6-1.
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13.7 U s i n g P S p i c e t o P l o t a F r e q u e n c y
R e s p o n s e

To use PSpice to plot the frequency response of a circuit, we do the following:

1. Draw the circuit in the OrCAD Capture workspace.

2. Specify an AC Sweep\Noise simulation.

3. Run the simulation.

4. Plot the simulation results.

The frequency axis of a frequency response plot can be either a linear axis or a logarithmic axis.
When a logarithmic axis is used for the frequency variable, the plots are referred to as Bode diagrams or
Bode plots. We encounter the terms octave and decade when working with logarithmic scales. The
frequency doubles in an octave and increases by a factor of ten in a decade. (The log of the frequency
increases by 1 as the frequency increases by a decade.)

Let Affy be the phasor of the node voltage at node 2 of a circuit. PSpice uses the notation:

V 2ð ÞffVp(2) ¼ Affy
That is, V(2) denotes the magnitude of the phasor and Vp(2) denotes the angle of the phasor. PSpice
gives the angle in degrees. Similarly, V(R2) represents the magnitude of the voltage across resistor R2,
whereas Vp(R2) denotes the angle. PSpice indicates that the units are decibels by inserting “dB” into the
name of a signal just before the parenthesis. For example, VdB(2) denotes the magnitude of the node
voltage phasor in dB.

E X A M P L E 1 3 . 7 - 1 Using PSpice to Plot
a Frequency Response

The input to the circuit shown in Figure 13.7-1 is the voltage source voltage vs(t). The response is the voltage vo(t)
across the 20-kV resistor. Use PSpice to plot the frequency response of this circuit.

Solution
We begin by drawing the circuit in the OrCAD workspace as shown in Figure 13.7-2 (see Appendix A). Two nodes
of this circuit have been named using a PSpice part called an off-page connector. The particular off-page connector
used in Figure 13.7-1 is called an OFFPAGELEFT-R part and is found in the part library named CAPSYM.

–

+

R2 = 40 kΩ
R1 = 10 kΩ

C = 0.2 μF
+
– vs(t)

R3 = 20 kΩ

+

–

vo(t)

FIGURE 13.7-1 The circuit considered in Example 13.7-1.
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To label a node, select Place/Off-Page Connector . . . from the OrCAD capture menus to pop up the Place
Off-Page Connector dialog box. Select the library CAPSYM from the list of libraries and then choose
OFFPAGELEFT-R. The new connector will be labeled OFFPAGELEFT-R. Use the property editor to
change this name to something descriptive, such as Vo. Wire the connector to the appropriate node of the circuit
to name that node Vo.

We will perform an AC Sweep\Noise simulation. (Select PSpice\New Simulation Profile from the OrCAD
Capture menu bar; then select AC Sweep\Noise from the Analysis Type drop-down list. Set the Start Frequency to
1 and End Frequency to 1000. Select a Logrithmic Sweep and set the Points/Decade to 100.) Select PSpice\Run
Simulation Profile from the OrCAD Capture menu bar to run the simulation.

After a successful ACSweep\Noise simulation, OrCAD Capture will automatically open a Schematics
window. Select Plot/Add plot from the Schematics menus to add a second plot. Two empty plots will appear, one
above the other. Select the top plot by clicking the top plot.

Select Trace=Add Trace from the Schematics menus to pop up the Add Traces dialog box. Select first
V(Vo) and then V(Vs) from the list of Simulation Output Variables. The Trace Expression, near the bottom of the
dialog box, will be V(Vo)V(Vs). Edit the trace expression to be Vdb(Vo) � Vdb(Vs). Vdb(Vo) � Vdb(Vs) is the
gain in decibels. Close the Add Traces dialog box.

Select the bottom plot by clicking the bottom plot. Select Trace/Add Trace to pop up the Add Traces dialog
box. Select first V(Vo) and then V(Vs) from the list of Simulation Output Variables. The Trace Expression, near
the bottom of the dialog box, will be be V(Vo)V(Vs). Edit the trace expression to be Vp(Vo) � Vp(Vs). Vp(Vo) �
Vp(Vs) is the phase shift in degrees. Close the Add Traces dialog box.

Figure 13.7-3 shows resulting plots after labeling some points.

20

0

–30
SEL

(1.1235, 12.027) (19.850, 9.0410)

(19.850, 135.065)
175d

150d

125d

100d

1.0Hz 10Hz 100Hz 1.0KHz

Frequency
Vp(Vo) – Vp(Vs)

Vdb(Vo) – Vdb(Vs)

FIGURE 13.7-3 The gain and phase Bode plots.
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V1
1Vac
0Vdc

+

+

U1
OPAMP

OUT

C1 0.2uF

40k

Vo

R3
20k

0

R2

–

–

R1

10k

FIGURE 13.7-2 The circuit of Figure 13.7-1 as drawn in
the OrCAD workspace.
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13.8 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the
specifications have been satisfied. In addition, computer output must be reviewed to guard against
data-entry errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

E X A M P L E 1 3 . 8 - 1 How Can We Check Bode Plots?

Figure 13.8.1a shows a laboratory setup for measuring the frequency response of a circuit. A sinusoidal input is
connected to the input of a circuit having the network function H(o). An oscilloscope is used to measure the input
and output sinusoids. The input voltage is used to trigger the oscilloscope so the phase angle of the input is zero.
Frequency response data are collected by varying the input frequency and measuring the amplitude of the input
voltage and the amplitude and phase of the output voltage.

In this example, the desired frequency response is specified by the Bode plot shown in Figure 13.8.1b. Figure
13.8.1c shows frequency response data from laboratory measurements. In this example, the amplitude, but not the
phase angle, of the output voltage was measured. How can we check that the circuit does indeed have the specified
Bode plot?

Vi( )
Vo( )

H( ) =

ω

ω

ω
ω

ω

+

–

14

200

(rad/s)

–20 dB/decade

2
0

 lo
g 1

0
|H

| (
dB

)

(b) (c)

20
50

100
200
500

1,000
2,000

10,000

1
1
1
1
1
1
1
1

A B

5
4.9
4.5
3.5
1.8
0.5
0.2
0.05

(a)

vo(t) = B cos (  t +   )ω θvi(t) = A cos    tω +
–

FIGURE 13.8-1 (a) A circuit, (b) Bode plot, and (c) frequency response data.
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E X A M P L E 1 3 . 8 - 2 How Can We Check Gain
and Phase Shift?

Your lab notes indicate that the circuit shown in Figure 13.8.2 was built using R1 ¼ 10 kV, R2 ¼ 50 kV, and
C ¼ 10 nF. The gain and phase shift of this circuit were measured to be 2.7 and 125�at 500 hertz. How can we
check whether this information is consistent?

–

+

C

R2

vi

RL

R1

+
–

vo

+

–

FIGURE 13.8-2 An op amp circuit.

Solution
The Bode plot has three features that we can look for in the frequency response data.

1. The dc gain is 14 dB.

2. The slope of the Bode plot is �20 dB/decade when o 
 200 rad/s.

3. The corner frequency is 200 rad/s.

The lowest frequency at which frequency response data was taken is 20 rad/sec. At this frequency, the gain
was measured to be

jH 20ð Þj ¼ B

A
¼ 5

1
¼ 14 dB

which is equal to the dc gain specified by the Bode plot.
To identify the corner frequency from the frequency response data, we look for the frequency at which the

gain is

dc gainffiffiffi
2

p ¼ 5ffiffiffi
2

p ¼ 3:536

The frequency response data indicate that the gain is 3.5 at a frequency of 200 rad/s. That agrees with the corner
frequency of 200 rad/s of the specified Bode plot.

The slope of the frequency response at high frequencies is given by

20 log10 0:05ð Þ � 20 log10 0:5ð Þ
log10 10; 000ð Þ � log10 1000ð Þ ¼ �20 dB/decade

which is the same as the slope of the Bode plot.
The frequency response data confirm that the circuit does indeed have the specified Bode plot.
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Solution
The network function of this circuit is

H oð Þ ¼ �
1

joC
k R2

R1
¼

�R2

R1

1þ joR2C

¼
� 50 � 103
10 � 103

1þ j 2p � 500ð Þ 50 � 103� �
10 � 10�9
� � ¼ 2:685ff122:5�

The calculated gain and phase shift agree with the measured gain and phase shift. The lab notes are consistent.

E X A M P L E 1 3 . 8 - 3 How Can We Check
Frequency Response?

An old lab report from a couple of years ago includes the following data about a particular circuit:

1. The magnitude and phase frequency responses are as shown in Figure 13.8-3.

2. When the input to the circuit was

vin ¼ 4 cos 2p1200tð ÞV
the steady-state response was

vout ¼ 6:25 cos 2p1200t þ 110�ð ÞV
How can we check whether these data are consistent?

Solution
Three things need to be checked: the frequencies, the amplitudes, and the phase angles. The frequencies of both
sinusoids are the same, which is good because the circuit must be linear if it is to be represented by a frequency
response, and the steady-state response of a linear circuit to a sinusoidal input is a sinusoid at the same frequency as
the input. The frequency of the input and output sinusoids is

o ¼ 2 � p � 1200 rad/s

or f ¼ 1200 Hz

Fortunately, the gain and phase shift at 1200 Hz have been labeled on the frequency response plots shown in
Figure 13.8-3. The gain at 1200 Hz is labeled as 3.9 dB, which means that

jVoutj
jVinj ¼ 3:9 dB ¼ 1:57

where Vin and Vout are the phasors corresponding to vin(t) and vout(t). Let us check this against the data about the
input and output sinusoids. Because the magnitudes of the phasors are equal to the amplitudes of the corresponding
sinusoids,

jVoutj
jVinj ¼

6:25

4
¼ 1:56

This is very good agreement for experimental work.
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Next, consider the phase shift. The frequency response indicates that the phase shift at 1200 Hz is �110�,
which means

ffVout �ffVin ¼ �110�

Let us check this against the data about the input and output sinusoids. Because the angles of the phasors are equal
to the phase angles of the corresponding sinusoids,

ffVout �ffVin ¼ 110� � 0� ¼ 110�

The signs of the phase angles do not match. At a frequency of 1200 Hz, a phase angle of 110� indicates that the
peaks of the output sinusoid will follow the peaks of the input sinusoid by

t0 ¼ 110�

360�
� 1

1200
¼ 0:255 ms

whereas a phase angle of �110� indicates that the peaks of the output sinusoid will precede the peaks of the input
sinusoid by 0.255 ms. It is likely that the angle of the output sinusoid was entered incorrectly in the lab data.

We have found an error in the old lab report and proposed an explanation for the error.

–150

–100

–50  (   )
(deg)

0

50

100 Hz 300 Hz 1.0 kHz 2.0 kHz

Frequency (Hz)

(501.187, –33.795)

(299.227, –18.193)

(1.2023k, –110.330)

(1.4997k, –129.790)

ωφ

(b)

–8.0

–4.0

0dB

4.0

8.0

100 Hz 300 Hz 1.0 kHz 2.0 kHz

Frequency (Hz)

(300.608, 6.3931)

(501.187, 6.9255)

(1.1991k, 3.9004)

(1.5043k, 0.1568)

(a)

FIGURE 13.8-3 The (a) magnitude and (b) phase
frequency response of the circuit.
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1 3 . 9 D E S I G N E X A M P L E Radio Tuner

Three radio stations broadcast at three different frequencies, 700 kHz, 1000 kHz, and 1400 kHz. Figure 13.9-1
shows a simplified diagram of a radio receiver. The antenna receives signals from all three stations, so the input to
the tuner will be a sum of these signals. Suppose this voltage is described by

vi tð Þ ¼ sin 2p � 7 � 105t þ 135�
� �þ sin 2p � 106t� �þ sin 2p � 1:4 � 106t þ 300�

� � ð13:9-1Þ

vi(t) vo(t) Power
amplifierTunerAmplifier

Speaker

Antenna

FIGURE 13.9-1 A simplified diagram of a radio receiver.

Consider the problem of tuning to the station that broadcasts at 1000 kHz. The tuner
must eliminate the first and third terms of vi(t) to produce the output signal

vo tð Þ ¼ sin 2p � 106t þ y
� �

Describe the Situation and the Assumptions
Let H(o) be the network function of the tuner. The tuner must have a gain
approximately equal to 1 at 1000 kHz jH 2p � 106

� �j ffi 1
� �

and approximately equal
to zero at 700 kHz and at 1400 kHz jH 2p�ðð 7 � 105Þj ffi 0 and j H(2p � 1.4 � 106)j ffi 0.
The tuner output will be

vo tð Þ ¼ jH 2p � 7 � 105� �j sin ð2p � 7 � 105t þ 135�

þffH 2p � 7 � 105� �þ jH 2p 106
� �j sin ð2p 106t þffH 2p106

� �
þ jH 2p � 1:4 � 106� �j sin ð2p � 1:4 � 106t þ 300�

þffH 2p � 1:4 � 106� �Þ 13:9-2ð Þ

or vo tð Þ ffi sin 2p � 106t þ y
� �

where y ¼ ffH 2p � 106� �

State the Goal
The goal is to design a circuit consisting of resistors, capacitors, and op amps that has a
gain equal to 1 at 1000 kHz and equal to zero at 700 and 1400 kHz.

Generate a Plan
The tuner will be based on a resonant circuit having o0 ¼ 2p106 ¼ 6:283 � 106 rad/s and
Q ¼ 15. Figure 13.9-2 shows an op amp circuit called a simulated inductor. This circuit acts like a grounded
inductor having an inductance equal to

L ¼ C2R1R3R5

R4
ð13:9-3Þ

(b)

(a)

R1

R3

C2

R4

R5

C2R1R3R5

R4
L =

+

–

+

–

FIGURE 13.9-2 (a) An op
amp circuit called a
simulated inductor and
(b) the equivalent
inductor.
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Figure 13.9-3 shows how a parallel resonant circuit can be used to design the tuner. A parallel resonant circuit is
shown in Figure 13.9-3a. The parallel resonant circuit must be modified if it is to be used for the tuner. The input to
the tuner is a voltage, but the input to the parallel resonant circuit is a current. A source transformation is used to
obtain a circuit that has a voltage input, shown in Figure 13.9-3b. Next, the inductor is replaced by the simulated
inductor to produce the circuit shown in Figure 13.9-3c. This is the circuit that will be used as the tuner.

The design will be completed in two steps. First, values of L, R, and C will be calculated so that the parallel
resonant circuit has o0 ¼ 6:283 � 106 rad/s and Q ¼ 15. Next, the capacitor and resistors of the simulated inductor
will be selected to satisfy Eq. 13.9-3.

Act on the Plan
First, design the resonant circuit to have o0 ¼ 6:283 � 106 rad/s and Q ¼ 15. Pick a convenient value for the
capacitance, C ¼ 0:001mF. Then,

L ¼ 1

o2
0C

¼ 1

6:283 � 106� �2 � 10�9
¼ 25:33 mH

and

R ¼ Q

ffiffiffiffi
L

C

r
¼ 15

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
25:33 � 10�6

10�9

s
¼ 2387V

Next, design the simulated inductor to have an inductance of L ¼ 25.33 mH. There are many ways to do this.
Let’s pick C2 ¼ 0.001 mF, R1 ¼ 1:5 kV, R3 ¼ 1:5 kV, and R4 ¼ 80 kV. Then

(c)

(b)

+

–

+

–

+
– vo

+

–

R

vs = Ris LC

+
– vo

+

–

R

vs C
(a)

vo

+

–

Ris

R1

C2

R3

R4

R5

LC

FIGURE 13.9-3 (a) A resonant circuit. (b) A band-pass filter. (c) An RC op amp band-pass filter.
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13.10 SUMMARY

Gain, phase shift, and the network function are properties of
linear circuits that describe the effect that a circuit has on a
sinusoidal input voltage or current.
The gain of the circuit describes the relationship between the
sizes of the input and output sinusoids. The gain is the ratio of
the amplitude of the output sinusoid to the amplitude of the
input sinusoid.
The phase shift of the circuit describes the relationship
between the phase angles of the input and output sinusoids.
The phase shift is the difference between the phase angle
of the output sinusoid and the phase angle of the input
sinusoid.
The network function describes the way the behavior of the
circuit depends on the frequency of the input. The network
function is defined in the frequency domain. It is the ratio of
the phasor corresponding to the response sinusoid to the
phasor corresponding to the input.

Table 13.3-2 tabulates the network functions of several
common op amp circuits.
The frequency response describes the way the gain and phase
shift of a circuit depend on frequency. Equations, tables, or
plots are each used to express the frequency response.
Bode plots represent the frequency response as plots of the
gain in decibels and the phase using a logarithmic scale for
frequency. Asymptotic magnitude Bode plots are approxi-
mate Bode plots that are easy to draw. The terms corner
frequency and break frequency are routinely used to describe
linear circuits. These terms describe features of the asymp-
totic Bode plot.
Some linear circuits exhibit a phenomenon called resonance.
These circuits contain reactive elements but act as if they
were purely resistive at a particular frequency, called the
resonant frequency. Resonant circuits are described using
the resonant frequency, quality factor, and bandwidth.

R5 ¼ R4L

C2R1R3
¼ 80 � 103 � 25:33 � 10�6

10�9 � 1:5 � 103 � 1:5 � 103 ¼ 900V

Verify the Proposed Solution
Figure 13.9-4 shows the results of a PSpice simulation of the tuner. The input to the circuit is vi(t) described by
Eq. 13.9-1. This signal is not sinusoidal. The output of the filter is a sinusoid with an amplitude of approximately
1 and a frequency of 1000 kHz, as required by Eq. 13.9-2. Thus, the design specifications are satisfied.

Time

9 μs 10 μs 11 μs 12 μs 13 μs 14 μs 

–2.0 V

–1.0 V

0.0 V

1.0 V

2.0 V

3.0 V

FIGURE 13.9-4 PSpice simulation of the radio tuner.
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PROBLEMS

Section 13-2 Gain, Phase Shift, and the Network

Function

P 13.2-1 The input to the circuit shown in Figure P 13.2-1
is the voltage of the voltage source vi(t). The output is the
voltage vo(t) across the parallel connection of the capacitor
and 10-V resistor. Determine the network function H(o) ¼
Vo(o)=Vi(o) of this circuit.

Answer: H oð Þ ¼ 0:2
1 þ j4o

+
–vi(t) vo(t)

+

–

40 Ω

0.5 F 10 Ω

Figure P 13.2-1

P 13.2-2 The input to the circuit shown in Figure P 13.2-2
is the voltage of the voltage source vi(t). The output is the
voltage vo(t) across the series connection of the capacitor and
160-kV resistor. Determine the network function H(o) ¼
Vo(o)=Vi(o) of this circuit.

Answer: H oð Þ ¼ 1 þ j 0:004ð Þo
1 þ j 0:005ð Þo

+
–

vo(t)

+

–

40 kΩ

160 kΩ

0.025 μF

vi(t)

Figure P 13.2-2

P 13.2-3 The input to the circuit shown in Figure P 13.2-3
is the voltage of the voltage source vi(t). The output is the
voltage vo(t) across the 6-V resistor. Determine the network
function H(o) ¼ Vo(o)=Vi(o) of this circuit.

+
–vi(t) vo(t)

+

–

4 Ω

6 Ω
8 H

Figure P 13.2-3

P 13.2-4 The input to the circuit shown in Figure P 13.2-4 is
the voltage of the voltage source vi(t). The output is the
voltage vo(t) across the series connection of the inductor and
60-V resistor. The network function that represents this
circuit is

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼ 0:6ð Þ

1þ j
o
12

1þ j
o
20

Determine the values of the inductance L and of the resistance R.

Answers: L ¼ 5 H and R ¼ 40 V

+
–

vo(t)

+

–

R

60 Ω

vi(t)

L

Figure P 13.2-4

P 13.2-5 The input to the circuit shown in Figure P 13.2-5
is the voltage of the voltage source vi(t). The output is the
voltage vo(t) across the parallel connection of the capacitor
and 2-V resistor. The network function that represents this
circuit is

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

0:2

1þ j4o

Table 13.4-1 summarizes the properties of series and parallel
resonant circuits.
The gain of operational amplifiers depends on the frequency
of the input. Using an op amp model that includes a
frequency-dependent gain makes our analysis more accurate
but also more complicated. We use the more complicated

model when we need the additional accuracy, and we use the
simpler model when we don’t.
PSpice can be used to analyze a circuit and display its
frequency response.
MATLAB can be used to display the frequency response of a
network function.

Problem available in WileyPLUS at instructor’s discretion.
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Determine the values of the capacitance Candof the resistance R.

Answers: C ¼ 2.5 F and R ¼ 8 V

+
–vi(t) vo(t)

+

–

R

C 2 Ω

Figure P 13.2-5

P 13.2-6 The input to the circuit shown in Figure P 13.2-6 is
the voltage of the voltage source vi(t). The output is the voltage
vo(t) across the capacitor. Determine the network function
H(o) ¼ Vo(o)=Vi(o) of this circuit.

Answer: H oð Þ ¼ 0:6
joð Þ 1 þ j 0:2ð Þoð Þ

+
–vi(t) 3ia(t) vo(t)

+

–

0.25 F

20 Ω

4 H
ia(t)

Figure P 13.2-6

P 13.2-7 The input to the circuit shown in Figure P 13.2-7
is the voltage of the voltage source vi(t). The output is the
voltage vo(t) across the 30-kV resistor. The network function of
this circuit is

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

4

1þ j
o
100

Determine the value of the capacitance C and the value of the
gain A of the VCVS.

Answers: C ¼ 5mF and A ¼ 6 V/V

+
–

+

–
vi(t) A vC(t)vC(t) C vo(t)

+

–

+

–

2 kΩ

30 kΩ

15 kΩ

Figure P 13.2-7

P 13.2-8 The input to the circuit shown in Figure P 13.2-8
is the source voltage vi(t), and the response is the voltage across
RL, vo(t). Find the network function.

Answer: H(o) ¼ �5=(1 þ jo=10)

+
–

μ

RL vo(t)

vi(t) +

–

–

+

2  F

50 kΩ10 kΩ

Figure P 13.2-8

P 13.2-9 The input to the circuit shown in Figure P 13.2-9 is
the source voltage vi(t) and the response is the voltage across
RL, vo(t). Express the gain and phase shift as functions of the
radian frequency o.

+
–

μ

RL vo(t)

vi(t) +

–

–

+

2  Fμ4  F

10 kΩ 50 kΩ

Figure P 13.2-9

P 13.2-10 The input to the circuit shown in Figure P 13.2-10
is the source voltage vi(t), and the response is the voltage across
RL, vo(t). The resistance R1 is 10 kV. Design this circuit to
satisfy the following two specifications:

(a) The gain at low frequencies is 5.
(b) The gain at high frequencies is 2.

Answers: R2 ¼ 20 kV and R3 ¼ 30 kV

+
–

μ

RL vo(t)

R3R1 R2

vi(t) +

–

–

+

C = 0.1  F

Figure P 13.2-10
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P 13.2-11 The input to the circuit shown in Figure P 13.2-11
is the source voltage vi(t), and the response is the voltage across RL,
vo(t). Design this circuit to satisfy the following two specifications:

(a) The phase shift at o ¼ 1000 rad/s is 135�.
(b) The gain at high frequencies is 10.
Answers: R1 ¼ 1 kV and R2 ¼ 10 kV

+
–

μ

RL vo(t)

R1 R2

vi(t) +

–

–

+

C = 0.1   F

Figure P 13.2-11

P 13.2-12 The input to the circuit shown in Figure P 13.2-12
is the source voltage vi(t), and the response is the voltage across RL,
vo(t). Design this circuit to satisfy the following two specifications:

(a) The phase shift at o ¼ 1000 rad/s is 225�.
(b) The gain at high frequencies is 10.

Answers: R1 ¼ 10 kV and R2 ¼ 100 kV

+
–

μ

RL vo(t)

R1 R2

vi(t) +

–

–

+

C = 0.1  F

Figure P 13.2-12

P 13.2-13 The input to the circuit of Figure P 13.2-13 is

vs ¼ 50þ 30 cos 500t þ 115�ð Þ � 20 cos 2500t þ 30�ð ÞmV

Find the steady-state output voltage vo for (a) C ¼ 0.1mF and
(b) C ¼ 0.01mF. Assume an ideal op amp.

+
–

vo

vs

C

+

–

10 kΩ

100 kΩ

5 kΩ

–

+

μ1   F

Figure P 13.2-13

P 13.2-14 The source voltage vs shown in the circuit of
Figure P 13.2-14a is a sinusoid having a frequency of
500 Hz and an amplitude of 8 V. The circuit is in steady state.
The oscilloscope traces show the input and output waveforms
as shown in Figure P 13.2-14b.

(a) Determine the gain and phase shift of the circuit at 500 Hz.
(b) Determine the value of the capacitor.
(c) If the frequency of the input is changed, then the

gain and phase shift of the circuit will change. What are
the values of the gain and phase shift at the frequency
200 Hz? At 2000 Hz? At what frequency will the
phase shift be �45�? At what frequency will the phase
shift be �135�?

(d) What value of capacitance would be required to make the
phase shift at 500 Hz be �60�? What value of
capacitance would be required to make the phase shift
at 500 Hz be �300�?

(e) Suppose the phase shift had been �120�at 500 Hz. What
would be the value of the capacitor?

Answers: (b) C ¼ 0:26mF (e) This circuit can’t be designed
to produce a phase shift ¼ �120�.

(a)

Oscilloscope

+
–vs(t) vo(t)C

+

–

1000 Ω

Time (0.25 ms/div)

Voltage
(2 V/div)

(b)
Figure P 13.2-14

P 13.2-15 The input to the circuit in Figure P 13.2-15 is the
voltage of the voltage source vi(t). The output is the voltage
vo(t). The network function of this circuit is
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H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

�0:1ð Þjo
1þ j

o
p

� �
1þ j

o
125

� �

Determine the values of the capacitance C and the pole p.

20 kΩ
8 kΩ

5 μF

+

vo(t)vi(t)

C

–

+
–

–

+

Figure P 13.2-15

P 13.2-16 The input to the circuit in Figure P 13.2-16 is the
voltage of the voltage source vs(t). The output is the voltage
vo(t). The network function of this circuit is

H oð Þ ¼ Vo oð Þ
Vs oð Þ ¼ k

1þ j
o
z

1þ j
o
p

Determine expressions that relate the network function parameters
k, z, and p to the circuit parameters R1, R2, L, N1, and N2.

N1:N2

Ideal

+
–

L

R2

R1

+

–

i1(t) i2(t) vo(t)vs(t)

Figure P 13.2-16

P 13.2-17 The input to the circuit in Figure P 13.2-17 is the
voltage of the voltage source vs(t). The output is the voltage
vo(t). The network function of this circuit is

H oð Þ ¼ Vo oð Þ
Vs oð Þ ¼ k

jo

1þ j
o
p

Determine expressions that relate the network function param-
eters k and p to the circuit parameters R1, R2, M, L1, and L2.

+
– R2

R1

+

–

i1(t) i2(t) vo(t)vs(t) L1 L2

M

Figure P 13.2-17

P 13.2-18 The input to the circuit in Figure P 13.2-18 is the
voltage of the voltage source vi(t). The output is the voltage
vo(t). The network function of this circuit is

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼ k

jo

1þ j
o
p1

� �
1þ j

o
p2

� �

Determine expressions that relate the network function param-
eters k, p1, and p2 to the circuit parameters R1, R2, R3, R4, A, C,
and L.

+
–

+

–
Av2(t) vo(t)

+

–

+

–

R3

R4 Lvi(t) v2(t)

R1

R2C

Figure P 13.2-18

P 13.2-19 The input to the circuit shown in Figure
P 13.2-19 is the voltage of the voltage source vs. The output
of the circuit is the capacitor voltage vo. Determine the values of
the resistances R1, R2, R3, and R4 required to cause the network
function of the circuit to be

H oð Þ ¼ Vo oð Þ
Vs oð Þ ¼

21

1þ j
o
5

� �
1þ j

o
200

� �

+
–

–

+

vo

+

–

vs

R2 R3

R1
R4

va

+

–

vb

+

–

1 μF 1 μF

Figure P 13.2-19

P 13.2-20 The input to the circuit shown in Figure
P 13.2-20 is the voltage of the voltage source vs. The output
of the circuit is the voltage vo. Determine the network function

H oð Þ ¼ Vo oð Þ
Vs oð Þ

of the circuit.
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+
–

–

+

vo

+

–

vs

1 μF

200 kΩ

50 kΩ

Figure P 13.2-20

P 13.2-21 The input to the circuit shown in Figure P 13.2-21
is the voltage of the voltage source vs. The output of the circuit
is the capacitor voltage vo. Determine the network function

H oð Þ ¼ Vo oð Þ
Vs oð Þ

of the circuit.

+
– vo

+

–

vs

1 μF

1 μF

100 kΩ
100 kΩ

Figure P 13.2-21

P 13.2-22 The input to the circuit shown in Figure
P 13.2-22 is the voltage of the voltage source vs. The output
of the circuit is the capacitor voltage vo. The network function
of the circuit is

H oð Þ ¼ Vo oð Þ
Vs oð Þ ¼

Ho

1þ j
o
p

Determine the values of Ho and p.

+
–

ia

+

–
4ia

8 Ω 8 Ω

25 mF vo

+

–

vs

Figure P 13.2-22

P 13.2-23 The input to thecircuit showninFigure P13.2-23
is the current of the current source is. The output of the circuit is the
resistor current io. The network function of the circuit is

H oð Þ ¼ Io oð Þ
Is oð Þ ¼

0:8

1þ j
o
40

Determine the values of the resistances R1 and R2.

io
0.2va

va

+

–

1 mFis R1 R2

Figure P 13.2-23

P 13.2-24 The input to the circuit shown in Figure P 13.2-24
is the voltage of the voltage source vs. The output of the circuit
is the resistor voltage vo. Specify values for L1, L2, R, and K that
cause the network function of the circuit to be

H oð Þ ¼ Vo oð Þ
Vs oð Þ ¼

1

1þ j
o
20

� �
1þ j

o
50

� �

+
–

+

–
ia

Kia

L1 L2

vo

+

–

vs R

Figure P 13.2-24

P 13.2-25 The input to the circuit shown in Figure
P 13.2-25 is the voltage of the voltage source vs. The output
of the circuit is the resistor voltage vo. Specify values for R and
C that cause the network function of the circuit to be

H oð Þ ¼ Vo oð Þ
Vs oð Þ ¼

�8

1þ j
o
250

20 kΩ

20 kΩ20 kΩ
–

++
–

vo

+

–

vs

R

C

Figure P 13.2-25

P 13.2-26 The network function of a circuit is H oð Þ ¼
Vo oð Þ
Vs oð Þ ¼

j40o
120þj20o. When the input to this circuit is vs tð Þ ¼

5 cos 5t þ 15�ð ÞV, the output is vo(t)¼A cos (5tþ65:194�Þ V.
On the other hand, when the input to this circuit is
vs tð Þ ¼ 5 cos 8t þ 15�ð Þ V, the output is vo tð Þ ¼ 8 cos

8t þ uð ÞV. Determine the values of A and y.

Answers: A ¼ 6:4018 V and u ¼ 51:87 �

P 13.2-27 The network function of a circuit is H oð Þ ¼
Vo oð Þ
Vs oð Þ ¼ k

1þj oP
where k > 0 and p > 0. When the input to
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this circuit is

vs tð Þ ¼ 12 cos 120t þ 30�ð ÞV
the output is

vo tð Þ ¼ 42:36 cos 120t � 48:69�ð ÞV

Determine the values of k and p

Answers: k ¼ 18 and p ¼ 24 rad/s

P 13.2-28 The network function of a circuit is H oð Þ ¼ 20
8þjo.

When the input to this circuit is sinusoidal, the output is also
sinusoidal. Let o1 be the frequency at which the output
sinusoid is twice as large as the input sinusoid and let o2 be
the frequency at which output sinusoid is delayed by one tenth
period with respect to the input sinusoid. Determine the values
of o1 and o2.

P 13.2-29 The input to the circuit in Figure P 13.2-29 is the
voltage source voltage vs(t). The output is the voltage vo(t).
When the input is vs tð Þ ¼ 8 cos 40tð ÞV, the output is
vo tð Þ ¼ 2:5 cos 40t þ 14�ð Þ V. Determine the values of the
resistances R1 and R2.

+

–

vo(t)+
– R2L = 1 H

R1

vs(t)

Figure P 13.2-29

P 13.2-30 The input to the circuit shown in Figure P 13.2-30
is the voltage source voltage vs(t). The output is the voltage
vo(t). The input vs tð Þ ¼ 2:5 cos 1000tð Þ V causes the output to
be vo tð Þ ¼ 8 cos 1000t þ 104�ð Þ V. Determine the values of
the resistances R1 and R2.

Answers: R1 ¼ 1515 V and R2 ¼ 20 kV

+
–

R2

C = 0.2 µF

–

+

R1

vs(t)

R3

+

–

vo(t)

Figure P 13.2-30

Section 13.3 Bode Plots

P 13.3-1 Sketch the magnitude Bode plot of H oð Þ ¼
4 5 þ joð Þ
1 þ j

o
50

.

P 13.3-2 Compare the magnitude Bode plots of H1 oð Þ ¼
10 5þjoð Þ

50þjo and H2 oð Þ ¼ 100 5þjoð Þ
50þjo .

P 13.3-3 The input to the circuit shown in Figure P 13.3-3
is the source voltage vin (t), and the response is the voltage
across R3, vout(t). The component values are R1 ¼ 5 kV,
R2 ¼ 10 kV, C1 ¼ 0.1 mF, and C2 ¼ 0.1 mF. Sketch
the asymptotic magnitude Bode plot for the network function.

C2

C1R1
R2

R3
vin(t) vout(t)

+

–

–

+

+
–

Figure P 13.3-3

P 13.3-4 The input to the circuit shown in Figure P 13.3-4 is
the source voltage vs(t), and the response is the voltage across
R3, vo(t). Determine H(o) and sketch the Bode diagram.

+
–

vo

vs
+

–

–

+

R1 R2

R3

C1 C2

Figure P 13.3-4

P 13.3-5 The input to the circuit shown in Figure P 13.3-5a
is the voltage vi(t) of the independent voltage source. The output
is thevoltage vo(t) across thecapacitor. Design this circuit to have
the Bode plot shown in Figure P 13.3-5b.

Hint: First, show that the network function of the circuit is
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H oð Þ ¼ Vo oð Þ
Vi oð Þ

¼
jo

ALR4

R1 R3 þ R4ð Þ
� �

1þ jo
L R1 þ R2ð Þ

R1R2

� �
1þ jo

CR3R4

R3 þ R4

� �

P 13.3-6 The input to the circuit shown in Figure P 13.3-6b is
the voltage of the voltage source vi(t). The output is the voltage
vo(t). The network function of this circuit is H(o) ¼ Vo(o)=
Vi(o). Determine the values of R2, C1, and C2 that are required to
make this circuit have the magnitude Bode plot shown in Figure
P 13.3-6a.

Answers: R2 ¼ 400 kV, C1 ¼ 25 nF, and C2 ¼ 6.25 nF

(a)

12

40 400 4 k 40 k

32

ω (rad/s, log scale)

2
0

 lo
g 1

0
|H

(ω
)| ,

 d
B

(b)

vo(t)
+

–

–

+

+
–

R1 = 10 kΩ R2

C1 C2

v1(t)

10 kΩ

Figure P 13.3-6

P 13.3-7 The input to the circuit shown in Figure
P 13.3-7b is the voltage of the voltage source vi(t).
The output is the voltage vo(t). The network function of
this circuit is H(o) ¼ Vo(o)=Vi(o). The magnitude Bode
plot is shown in Figure P 13.3-7a. Determine values of the
corner frequencies z and p. Determine the value of the low-
frequency gain, k.

(a)

20 log10(k)

z p

0

ω (rad/s, log scale)

ω
)| ,

 d
B

2
0

 lo
g 1

0
|H

(

+
–

vo(t)

+

–

8 Ω

2 Ω

vi(t)

(b)

0.4 H

Figure P 13.3-7

P 13.3-8 Determine H( jo) from the asymptotic Bode dia-
gram in Figure P 13.3-8.

+
–

(a)

v1(t)

R1

R2L v2(t)
+

–
Av2(t)

R3

Cvo(t)
+
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+
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R4

(b)

0

20 200 20k 200k
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2
0

 lo
g 1

0
|H

(ω
)| ,

 (
dB

)

Figure P 13.3-5
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P 13.3-9 A circuit has a network function

H oð Þ ¼ k 1þ jo=zð Þ
jo

(a) Find the high- and low-frequency asymptotes of the mag-
nitude Bode plot.

(b) The high- and low-frequency asymptotes comprise the
magnitude Bode plot. Over what ranges of frequencies
is the asymptotic magnitude Bode plot of H(o) within
1 percent of the actual value of H(o)?

P 13.3-10 Physicians use tissue electrodes to form the
interface that conducts current to the target tissue of
the human body. The electrode in tissue can be modeled
by the RC circuit shown in Figure P 13.3-10. The value of
each element depends on the electrode material and
physical construction as well as the character of the tissue
being probed. Find the Bode diagram for Vo=Vs ¼ H( jo)
when R1 ¼ 1 kV, C ¼ 1mF, and the tissue resistance is
Rt ¼ 5 kV.

+
–vs vo

+

–

R1

Rt
C

Figure P 13.3-10

P 13.3-11 Figure P 13.3-11 shows a circuit and corresponding
asymptotic magnitude Bode plot. The input to this circuit shown
is the source voltage vin(t), and the response is the voltage vo(t).
The component values are R1 ¼ 80 V, R2 ¼ 20 V, L1 ¼ 0.03 H,
L2 ¼ 0.07 H, and M ¼ 0:01 H. Determine the values of K1, K2,
p, and z.

Answers: K1 ¼ 0:75, K2 ¼ 0:2, z ¼ 333 rad/s, and p ¼
1250 rad/s

| H
 (

  
 )

| , 
dB

ω

ω

20 log10 (K1)

20 log10 (K2)

z p
, rad/sec

+
–

L2

R2

L1R1

M

vo(t)vin(t)

+

–

Figure P 13.3-11

P 13.3-12 The input to the circuit shown in Figure P 13.3-12
is the source voltage vin(t), and the response is the voltage
across R3, vout(t). The component values are R1 ¼ 10 kV, C1 ¼
0.025 mF, and C2 ¼ 0.05 mF. Sketch the asymptotic magnitude
Bode plot for the network function.

C2C1

R3

vin(t)
vout(t)

+

–

–

+
+
–

R1

Figure P 13.3-12

1 10 100 1000 10,000
–40

–20

0

20

40

dB

(rad/s)ω
0.1

Figure P 13.3-8
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P 13.3-13 Design a circuit that has the asymptotic
magnitude Bode plot shown in Figure P 13.3-13.

ω

14

200 500
(rad/s logarithmic scale)
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 lo
g 1

0
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)|,

 d
B

ω

20
dB
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Figure P 13.3-13

P 13.3-14 Design a circuit that has the asymptotic magnitude
Bode plot shown in Figure P 13.3-14.

ω

34

500
(rad/s logarithmic scale)

2
0

 lo
g 1

0
|H

( 
  

)|,
 d
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Figure P 13.3-14

P 13.3-15 Design a circuit that has the asymptotic magnitude
Bode plot shown in Figure P 13.3-15.

ω

14

200 500
(rad/s logarithmic scale)

2
0

 lo
g 1

0
|H

( 
  

)|,
 d

B
ω

20
dB

decade

Figure P 13.3-15

P 13.3-16 Design a circuit that has the asymptotic
magnitude Bode plot shown in Figure P 13.3-16.
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 d
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ω

20
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40
dB
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Figure P 13.3-16

P 13.3-17 The cochlear implant is intended for patients with
deafness due to malfunction of the sensory cells of the
cochlea in the inner ear (Loeb, 1985). These devices use a
microphone for picking up sound and a processor for con-
verting it to electrical signals, and they transmit these signals
to the nervous system. A cochlear implant relies on the
fact that many of the auditory nerve fibers remain intact in
patients with this form of hearing loss. The overall transmis-
sion from microphone to nerve cells is represented by the gain
function

H joð Þ ¼ 10 jo=50þ 1ð Þ
jo=2þ 1ð Þ jo=20þ 1ð Þ jo=80þ 1ð Þ

Plot the magnitude Bode diagram for H(jo) for 1 � o � 100.

P 13.3-18 An operational amplifier circuit is shown in Figure
P 13.3-18, where R2 ¼ 5 kV and C ¼ 0:02 mF.

(a) Find the expression for the network function H ¼ Vo=Vs

and sketch the asymptotic Bode diagram.
(b) What is the gain of the circuit, jVo =Vsj, for o ¼ 0?
(c) At what frequency does jVo=Vsj fall to 1=

ffiffiffi
2

p
of its low-

frequency value?

Answers: (b) 20 dB and (c) 10,000 rad/s

–

+

R2

C

+

–

+
– vo

vs

500 Ω

Figure P 13.3-18

P 13.3-19 Determine the network function H(o) for the
op amp circuit shown in Figure P 13.3-19 and plot the Bode
diagram. Assume ideal op amps.
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+

vo

+

–

vs
+
–

–

+

–

μ1   F

μ1   F

0.8 MΩ
1.25 MΩ

Figure P 13.3-19

P 13.3-20 The network function of a circuit is

H oð Þ ¼ �3 5þ joð Þ
jo 2þ joð Þ

Sketch the asymptotic magnitude Bode plot corresponding to H.

P 13.3-21 The network function of a circuit is

H oð Þ ¼ joð Þ3
4þ j2oð Þ

Sketch the asymptotic magnitude Bode plot corresponding to H.

P 13.3-22 The network function of a circuit is

H oð Þ ¼ 2 j2oþ 5ð Þ
4þ j3oð Þ joþ 2ð Þ

Sketch the asymptotic magnitude Bode plot corresponding to H.

P 13.3-23 The network function of a circuit is

H oð Þ ¼ 4 20þ joð Þ 20; 000þ joð Þ
200þ joð Þ 2000þ joð Þ

Sketch the asymptotic magnitude Bode plot corresponding to H.

P 13.3-24 The input to the circuit shown in Figure P 13.3-24a is
the voltage of the voltage source vs. The output of the circuit is the
capacitor voltage vo. The network function of the circuit is

H oð Þ ¼ Vo oð Þ
Vs oð Þ

Determine the values of the resistances R1, R2, R3, and R4 required
to cause the network function of the circuit to correspond to the
asymptotic Bode plot shown in Figure P 13.3-24b.
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Figure P 13.3-24

P 13.3-25 The input to the circuit shown in Figure
P 13.3-25a is the voltage of the voltage source, vs. The output
ofthecircuit isthevoltage,vo.Thenetworkfunctionof thecircuit is

H oð Þ ¼ Vo oð Þ
Vs oð Þ

Determine the values of the resistances R1, R2, and R3 required
to cause the network function of the circuit to correspond to the
asymptotic Bode plot shown in Figure P 13.3-25b.

ω
500

(rad/s logarithmic scale)

2
0

 lo
g 1

0
|H

(ω
)| 
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B
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−20
dB

decade
18

(b)

20 kΩ
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++
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vo
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–

vs

R1 R2 R3

0.2 μF

(a)

Figure P 13.3-25

P 13.3-26 The input to the circuit shown in Figure
P 13.3-26a is the voltage of the voltage source vs. The output
of thecircuit is thevoltagevo.Thenetwork functionof thecircuit is

H oð Þ ¼ Vo oð Þ
Vs oð Þ

(a) Determine the values of the resistances R1 and R2 required to
cause the network function of the circuit to correspond to the
asymptotic Bode plot shown in Figure P 13.3-26b.
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(b) Determine the values of the gains K1 and K2 in Figure
P 13.3-26b.
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Figure P 13.3-26

P 13.3-27 The input to the circuit shown in Figure
P 13.3-27a is the voltage of the voltage source vs. The output
of thecircuit is the voltagevo.Thenetwork functionof thecircuit is

H oð Þ ¼ Vo oð Þ
Vs oð Þ

Determine the values of R, C, R1, and R2 required to cause the
network function of the circuit to correspond to the asymptotic
Bode plot shown in Figure P 13.3-27b.
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Figure P 13.3-27

P 13.3-28 The input to the circuit shown in Figure
P 13.3-28a is the current of the current source is. The output of
the circuit is the current io. The network function of the circuit is

H oð Þ ¼ Io oð Þ
Is oð Þ

Determine the values of G, C, R1, and R2 required to cause the
network function of the circuit to correspond to the asymptotic
Bode plot shown in Figure P 13.3-28b.
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Figure P 13.3-28

P 13.3-29 Afirst-order circuit is shown in Figure P 13.3-29.
Determine the ratio Vo=Vs and sketch the Bode diagram when
RC ¼ 0.1 and R1=R2 ¼ 3.

Answer: H ¼ 1 þ R1

R2

� �
1

1 þ jo RC

R
+

vo

R1

vs
+
–

–

+

R2

C –

Figure P 13.3-29

P 13.3-30 (a) Draw the Bode diagram of the network function
Vo =Vs for the circuit of Figure P 13.3-30. (b) Determine vo(t)
when vs ¼ 10 cos 20t V.

Answer: (b) vo ¼ 4.18 cos (20t � 24.3�) V

+
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4 Ω

30 mF

+

vo

–

vs
2 Ω

Figure P 13.3-30
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P 13.3-31 Draw the asymptotic magnitude Bode
diagram for

H oð Þ ¼ 10 1þ joð Þ
jo 1þ j0:5oð Þð1þ j0:6 o=50ð Þ þ ðjo=50Þ2Þ

Hint: At o ¼ 0:1 rad/s, the value of the gain is 40 dB and the
slope of the asymptotic Bode plot is �20 dB/decade. There is
a zero at 1 rad/s, a pole at 2 rad/s, and a second-order pole at
50 rad/s. The slope of the asymptotic magnitude Bode diagram
increases by 20 dB/decade as the frequency increases past
the zero, decreases by 20 dB/decade as the frequency increases
past the pole, and, finally, decreases by 40 dB/decade as the
frequency increases past the second-order pole.

Section 13.4 Resonant Circuits

P 13.4-1 For a parallel RLC circuit with R ¼ 10 kV,
L ¼ 1=120 H, and C ¼ 1/30 mF, find o0, Q, o1, o2, and the
bandwidth BW.

Answers: o0 ¼ 60 krad/s, Q ¼ 20, o1 ¼ 58:519 krad/s, o2 ¼
61:519 krad/s, and BW ¼ 3 krad/s

P 13.4-2 A parallel resonant RLC circuit is driven by a current
source is ¼ 20 cos ot mA and shows a maximum response of 8 V
at o ¼ 1000 rad/s and 4 V at 897.6 rad/s. Find R, L, and C.

Answers: R ¼ 400 V, L ¼ 50 mH, and C ¼ 20 mF

P 13.4-3 A series resonant RLC circuit has L ¼ 10 mH,
C ¼ 0:01mF, and R ¼ 100 V. Determine o0, Q, and BW.

Answers: o0 ¼ 105, Q ¼ 10, and BW ¼ 104

P 13.4-4 A quartz crystal exhibits the property that when
mechanical stress is applied across its faces, a potential difference
develops across opposite faces. When an alternating voltage is
applied, mechanical vibrations occur and electromechanical reso-
nance is exhibited. A crystal can be represented by a series RLC
circuit. A specific crystal has a model with L ¼ 1 mH, C ¼ 10mF,
and R ¼ 1 V. Find o0, Q, and the bandwidth.

Answers: o0 ¼ 104 rad/s, Q ¼ 10, and BW ¼ 103 rad/s

P 13.4-5 Design a parallel resonant circuit to have o0 ¼
2500 rad/s, Z(o0) ¼ 100 V, and BW ¼ 500 rad/s.

Answers: R ¼ 100 V, L ¼ 8 mH, and C ¼ 20 mF

P 13.4-6 Design a series resonant circuit to have o0 ¼
2500 rad/s, Y(o0) ¼ 1=100 V, and BW ¼ 500 rad/s.

Answers: R ¼ 100 V, L ¼ 0:2 H, and C ¼ 0:8 mF

P 13.4-7 The circuit shown in Figure P 13.4-7 represents a
capacitor, coil, and resistor in parallel. Calculate the resonant
frequency of the circuit.

Coil
resistance

μ10   H

600 pF 22 kΩ
1.8 Ω

a

b

Figure P 13.4-7

P 13.4-8 Consider the simple model of an electric power
system as shown in Figure P 13.4-8. The inductance L ¼
0:25 H represents the power line and transformer. The custom-
er’s load is RL ¼ 100 V, and the customer adds C ¼ 25 mF to
increase the magnitude of Vo. The source is vs ¼ 1000 cos 400t
V, and it is desired that jVoj also be 1000 V.

(a) Find jV0j for RL ¼ 100 V.
(b) When the customer leaves for the night, he turns off much

of his load, making RL ¼ 1 kV, at which point, sparks and
smoke begin to appear in the equipment still connected to
the power line. The customer calls you in as a consultant.
Why did the sparks appear when RL ¼ 1 kV?

+
– vovs C

L

RL

+

 –

Customer
load

Power line

Power
plant

Figure P 13.4-8 Model of an electric power system.

P 13.4-9 Consider the circuit in Figure P 13.4-9. R1 ¼ R2 ¼
1 V. Select C and L to obtain a resonant frequency of
o0 ¼ 100 rad/s.

C

a

b R1

L

R2

Figure P 13.4-9

P 13.4-10 For the circuit shown in Figure P 13.4-10, (a)
derive an expression for the magnitude response jZinj versus o,
(b) sketch jZinj versus o, and (c) find jZinj at o ¼ 1=

ffiffiffiffiffiffi
LC

p
.

L

R

C

Zin

Figure P 13.4-10

P 13.4-11 The circuit shown in Figure P 13.4-11 shows an
experimental setup that could be used to measure the parame-
ters k, Q, and o0 of this series resonant circuit. These param-
eters can be determined from a magnitude frequency response
plot for Y ¼ I=V. It is more convenient to measure
node voltages than currents, so the node voltages V and V2

have been measured. Express jYj as a function of V and V2.

Hint: Let V ¼ A and V2 ¼ Bffy.

Then I ¼ A � B cos yð Þ � jB sin y
R
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Answer: jYj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A � B cos yð Þ2 þ B sin yð Þ2

q
AR

Oscilloscope

+
–

i
v C

LR
v2

+

–

Figure P 13.4-11

Section 13.6 Plotting Bode Plots Using MATLAB

P 13.6-1 The input to the circuit shown in Figure P 13.6-1
is the voltage of the voltage source vs. The output of the circuit
is the voltage vo. Use MATLAB to plot the gain and phase shift
of this circuit as a function of frequency for frequencies in the
range of 1 < o < 1000 rad/s.

10 Ω
20 Ω

vo+ –+
– vs

0.5 H
1 mF

Figure P 13.6-1

P 13.6-2 The input to the circuit shown in Figure P 13.6-2 is
the voltage of the voltage source vs. The output of the circuit is
the voltage vo. Use MATLAB to plot the gain and phase shift of
this circuit as a function of frequency for frequencies in the
range of 1 < o < 1000 rad/s.

10 Ω
20 Ω

+
–

vs

0.5 H

1 mF vo

+

–

Figure P 13.6-2

P 13.6-3 The input to the circuit shown in Figure P 13.6-3
is the voltage of the voltage source vs. The output of the circuit
is the voltage vo. Use MATLAB to plot the gain and phase shift
of this circuit as a function of frequency for frequencies in the
range of 1 < o < 1000 rad/s.
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vo
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vs
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25 Ω
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25 mF

0.2 H

Figure P 13.6-3

Section 13.8 How CanWe Check . . . ?

P 13.8-1 Circuit analysis contained in a lab report indicates
that the network function of a circuit is

H oð Þ ¼
1þ j

o
630

10 1þ j
o

6300

� �

This lab report contains the following frequency response
data from measurements made on the circuit. Do these data
seem reasonable?

o, rad/s 200 400 795 1585 3162
jH(o)j 0.105 0.12 0.16 0.26 0.460
o, rad/s 6310 12,600 25,100 50,000 100,000
jH(o)j 0.71 1.0 1.0 1.0 1.0

P 13.8-2 A parallel resonant circuit (see Figure 13.4-2) has
Q ¼ 70 and a resonant frequency o0 ¼ 10; 000 rad/s. A report
states that the bandwidth of this circuit is 71.43 rad/s. Verify
this result.

P 13.8-3 A series resonant circuit (see Figure P 13.4-4) has
L ¼ 1 mH, C ¼ 10 mF, and R ¼ 0:5 V. A software program
report states that the resonant frequency is f0 ¼ 1.59 kHz and
the bandwidth is BW ¼ 79.6 Hz. Are these results correct?

P 13.8-4 An old lab report contains the approximate Bode
plot shown in Figure P 13.8-4 and concludes that the network
function is

H oð Þ ¼
40 1þ j

o
200

� �

1þ j
o
800

� �

Do you agree?

| H
 (

  
 )

| , 
dB

ω

ω

32

20

200 800
, rad/sec

log scale  

Figure P 13.8-4
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PSpice Problems

SP 13-1 The input to the circuit shown in Figure SP 13-1 is the
voltage of the voltage source vi(t). The output is the voltage vo(t)
across the parallel connection of the capacitor and 1-kV resistor.
The network function that represents this circuit is

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

k

1þ j
o
p

Use PSpice to plot the frequency response of this circuit.
Determine the values of the pole, p, and of the dc gain, k.

Answers: p ¼ 250 rad/s and k ¼ 0.2 V/V

+
– vo(t)

+

–

vi(t) 5 1 kΩ

4 kΩ

Fμ

Figure SP 13-1

SP 13-2 The input to the circuit shown in Figure SP 13-2 is the
voltage of the voltage source vi(t). The output is the voltage vo(t)
across the series connection of the inductor and 60-V resistor.
The network function that represents this circuit is

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼ k

1þ j
o
z

1þ j
o
p

Use PSpice to plot the frequency response of this circuit. Deter-
mine the values of the pole, p, of the zero, z, and of the dc gain, k.

Answers: p ¼ 20 rad/s, z ¼ 12 rad/s, and k ¼ 0.6 V/V

+
– vo(t)

+

–

vi(t)

5 H

60 Ω

40 Ω

Figure SP 13-2

SP 13-3 The input to the circuit shown in Figure SP 13-3 is
the voltage of the voltage source vi(t). The output is the voltage
vo(t) across 30-kV resistor. The network function that repre-
sents this circuit is

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

k

1þ j
o
p

Use PSpice to plot the frequency response of this circuit.
Determine the values of the pole, p, and of the dc gain, k.

Answers: p ¼ 100 rad/s and k ¼ 4V/V

+
–

+

–
vo(t)vi(t) 6 vC(t)5 F

+

–

vC(t)
+

–

2 kΩ 15 kΩ

30 kΩμ

Figure SP 13-3

SP 13-4 The input to the circuit shown in Figure SP 13-4 is
the voltage of the voltage source vi(t). The output is the voltage
vo(t) across 20-kV resistor. The network function that repre-
sents this circuit is

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

k

1þ j
o
p

Use PSpice to plot the frequency response of this circuit.
Determine the values of the pole, p, and of the dc gain, k.

Answers: p ¼ 10 rad/s and k ¼ 5 V/V

+
–

–

+ +

–

20 kΩ

50 kΩ

10 kΩ

vi(t)

vo(t)

2 Fμ

Figure SP 13-4

SP 13-5 Figure SP 13-5 shows a circuit and a frequency
response. The frequency response plots were made using
PSpice and Probe. V(R3:2) and Vp(R3:2) denote the magni-
tude and angle of the phasor corresponding to vo(t). V(V1:þ)
and Vp(V1:þ) denote the magnitude and angle of the phasor
corresponding to vi(t). Hence, V(R3:2)=V(V1:þ) is the gain of
the circuit and Vp(R3:2) – Vp(V1:þ) is the phase shift of the
circuit.

Determine values for R and C required to make the
circuit correspond to the frequency response.

Hint:PSpice and Probe use m for milli or 10�3. Hence, the label
(159.513, 892.827 m) indicates that the gain of the circuit is
892.827�10�3 ¼ 0.892827 at a frequency of 159.513 Hz �
1000 rad/sec.

Answers: R ¼ 5 kV and C ¼ 0:2 mF
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SP 13-6 Figure SP 13-6 shows a circuit and a frequency
response. The frequency response plots were made using
PSpice and Probe. V(R2:2) and Vp(R2:2) denote the magni-
tude and angle of the phasor corresponding to vo(t). V(V1:þ)

and Vp(V1:þ) denote the magnitude and angle of the phasor
corresponding to vi(t). Hence V(R2:2)=V(V1:þ) is the gain of
the circuit, and Vp(R2:2) – Vp(V1:þ) is the phase shift of the
circuit.

(b)

1.0

0

2.0

V(R3:2)/V(V1:+)

Vp(R3:2)– Vp(V1:+)

(31.878, 1.8565)

(31.878, 158.169)

(159.513, 892.827 m)

(159.513, 116.515)

(318.784, 484.412 m)

(318.784, 104.017)

175 d

150 d

125 d

100 d

30 Hz10 Hz 100 Hz

Frequency

300 Hz 1.0 KHz

+
–

–

+ +

–

20 kΩ

10 kΩ

R

C

vi(t)

vo(t)

(a)

Figure SP 13-5 (a) A circuit and (b) the corresponding frequency response.

200 m

0

400 m

V(R2:2)/V(V1:+)

Vp(R2:2)– Vp(V1:+)

(79.239, 256.524 m)

(159.268, 171.406 m)

(316.228, 96.361 m)

(79.239, –39.685)

(159.268, –59.055)

(316.228, –73.197)

0 d

–50 d

–100 d
100 Hz10 Hz

Frequency

1.0 KHz 10 KHz

(b)(a)

+
–

+

–

10 kΩ

R

Cvi(t) vo(t)

Figure SP 13-6 (a) A circuit and (b) the corresponding frequency response.
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Determine values for R and C required to make the
circuit correspond to the frequency response.

Hint:PSpice and Probe use m for milli or 10�3. Hence, the label
(159.268, 171.408 m) indicates that the gain of the circuit is

171.408�10�3¼0.171408 at a frequency of 159.268 Hz�1000
rad/sec.

Answers: R ¼ 20 kV and C ¼ 0:25 mF

Design Problems

DP 13-1 Design a circuit that has a low-frequency gain of 2, a
high-frequency gain of 5, and makes the transition of H ¼ 2 to
H ¼ 5 between the frequencies of 1 kHz and 10 kHz.

DP 13-2 Determine L and C for the circuit of Figure DP 13-2 to
obtain a low-pass filter with a gain of �3 dB at 100 kHz.

+

–

1 kΩ+
–

vs

L

voC

Figure DP 13-2

DP 13-3 British Rail has constructed an instrumented railcar
that can be pulled over its tracks at speeds up to 180 km/hr and
will measure the track-grade geometry. Using such a railcar,
British Rail can monitor and track gradual degradation of the rail
grade, especially the banking of curves, and permit preventive
maintenance to be scheduled as needed well in advance of track-
grade failure.

The instrumented railcar has numerous sensors, such as
angular-rate sensors (devices that output a signal proportional to
rate of rotation) and accelerometers (devices that output a signal
proportional to acceleration), whose signals are filtered and
combined in a fashion to create a composite sensor called a
compensated accelerometer (Lewis, 1988). A component of this
composite sensor signal is obtained by integrating and high-pass
filtering an accelerometer signal. A first-order low-pass filter will
approximate an integrator at frequencies well above the break
frequency. This can be seen by computing the phase shift of the
filter-transfer function at various frequencies. At sufficiently
high frequencies, the phase shift will approach 90�, the phase
characteristic of an integrator.

A circuit has been proposed to filter the accelerometer
signal, as shown in Figure DP 13-3. The circuit is composed of
three sections, labeled A, B, and C. For each section, find an
expression for and name the function performed by that section.
Then find an expression for the gain function of the entire circuit
Vo =Vs. For the component values, evaluate the magnitude and
phase of the circuit response at 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1.0,
2.0, 5.0, and 10.0 Hz. Draw a Bode diagram. At what frequency
is the phase response approximately equal to 0�? What is the
significance of this frequency?

μ vo

vs +

–
866 kΩ 499 kΩ

1 MΩ

2.37 MΩ
8.06 kΩ

10 kΩ

Circuit C

Circuit A

Circuit
B

0.1   F

μ0.47   F

–

+
+
–

–

+

–

+

Figure DP 13-3

DP 13-4 Design a circuit that has the network function

H oð Þ ¼ 10
jo

1þ j
o
200

� �
1þ j

o
500

� �

Hint: Use two circuits from Table 13.4-1. Connect the circuits in
cascade. That means that the output of one circuit is used as the
input to the next circuit. H(o) will be the product of the network
functions of the two circuits from Table 13.3-2.

DP 13-5 Strain-sensing instruments can be used to measure
orientation and magnitude of strains running in more than one
direction. The search for a way to predict earthquakes focuses on
identifying precursors, or changes, in the ground that reliably
warn of an impending event. Because so few earthquakes have
occurred precisely at instrumented locations, it has been a slow
and frustrating quest. Laboratory studies show that before rock
actually ruptures—precipitating an earthquake—its rate of inter-
nal strain increases. The material starts to fail before it actually
breaks. This prelude to outright fracture is called “tertiary creep”
(Brown, 1989).

The frequency of strain signals varies from 0.1 to 100
rad/s. A circuit called a band-pass filter is used to pass these
frequencies. The network function of the band-pass filter is

H oð Þ ¼ Kjo

1þ j
o
o1

� �
1þ j

o
o2

� �

Specify o1, o2, and K so that the following are the case:
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1. The gain is at least 17 dB over the range 0.1 to 100 rad/s.

2. The gain is less than 17 dB outside the range 0.1 to 100 rad/s.

3. The maximum gain is 20 dB.

DP 13-6 Is it possible to design the circuit shown in Figure DP
13-6 to have a phase shift of �45�and a gain of 2 V/V both at a
frequency of 1000 radians/second using a 0.1 microfarad capac-
itor and resistors from the range of 1 k ohm to 200 k ohm?

R3

C

R2

R1

+
–

vo(t)

+

–

–

+

θA cos (   t +   )ω 100 kΩ

Figure DP 13-6

DP 13-7 Design the circuit shown in Figure DP 13-7a to have
the asymptotic Bode plot shown in Figure DP 13-7b.

+
–

R1 R2

C

vout(t)vin(t)
–

+

+

–

100 kΩ

0.5   Fμ

(a)

| H
( 

  )
| , 

dB
ω

ω

32

20

200 800
, rad/sec

log scale  

(b)

Figure DP 13-7

DP 13-8 For the circuit of Figure DP 13-8, select R1 and R2

so that the gain at high frequencies is 10 V/V and the phase
shift is 195� at o ¼ 1000 rad/s. Determine the gain at
o ¼ 10 rad/s.

+

–
vo

vs
+
–

R1 R2

–

+

μ0.1   F

Figure DP 13-8
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CHAPTER 14 The Laplace
Transform

I N T H I S C H A P T E R
14.1 Introduction
14.2 Laplace Transform
14.3 Pulse Inputs
14.4 Inverse Laplace

Transform
14.5 Initial and Final Value

Theorems
14.6 Solution of

Differential Equations
Describing a Circuit

14.7 Circuit Analysis
Using Impedance and
Initial Conditions
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Impedance

14.9 Convolution
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14.11 Partial Fraction
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Check . . . ?

14.13 DESIGN
EXAMPLE—Space
Shuttle Cargo Door

14.14 Summary
Problems
PSpice Problems
Design Problems

14.1 I n t r o d u c t i o n

Circuits that have no capacitors or inductors can be represented by algebraic equations.

� Chapters 1–6 described circuits without capacitors or inductors. We learned many things about such
circuits, including how to represent them by mesh current equations or node voltage equations.

� Capacitors and inductors are described in Chapter 7.

Circuits that contain capacitors and/or inductors are represented by differential equations. In general,
the order of the differential equation is equal to the number of capacitors plus the number of inductors in
the circuit. Writing and solving these differential equations can be challenging.

� In Chapter 8, we analyzed first-order circuits.
� In Chapter 9, we analyzed second-order circuits.

The response of a circuit containing capacitors and/or inductors can be separated into two parts: the
steady-state response and the transient part of the response.

� In Chapters 10–13, we studied the steady-state response of circuits with sinusoidal inputs. We found
that we could analyze such circuits by representing them in the frequency domain. We did not restrict
our attention to first- or second-order circuits.

� In this chapter, we find the complete response, transient part plus steady-state part, of circuits with
capacitors and/or inductors. We will not restrict our attention to first- or second-order circuits or to
circuits with sinusoidal inputs.

In this chapter, we introduce a very powerful tool for the analysis of circuits. The Laplace
transform enables the circuit analyst to transform the set of differential equations describing a circuit
to the complex frequency domain, where they become a set of linear algebraic equations. Then, using
straightforward algebraic manipulation, we solve for the variables of interest. Finally, we use the
inverse Laplace transform to go back to the time domain and express the desired response in terms of
time. This is a powerful tool indeed!
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Next, we learn how to represent the circuit itself in the complex frequency domain. After doing
so, we can analyze the circuit by writing and solving a set of algebraic equations, for example, mesh
current equations or node voltage equations. In other words, using the complex frequency domain
eliminates the need to write the differential equation that represents the circuit.

Finally, we learn how to represent a linear circuit by its transfer function, step response, or
impulse response.

14.2 L a p l a c e T r a n s f o rm

As we have seen in earlier chapters, it is useful to transform the equations describing a circuit from the
time domain into the frequency domain, then perform an analysis and, finally, transform the problem’s
solution back to the time domain. You will recall that in Chapter 10 we defined the phasor as a
mathematical transformation to simplify finding the steady-state response of a circuit to a sinusoidal
input. Using the phasor transformation, we solved algebraic equations having complex coefficients
instead of solving differential equations, albeit with real coefficients. The transform method is
summarized in Figure 14.2-1.

In this chapter, we will use the Laplace transform, rather than the phasor transformation, to
transform differential equations to algebraic equations. This will enable us to determine the complete
response to a variety of input functions instead of the steady-state response to sinusoidal inputs.
(The complete response consists of the steady-state response together with the transient part of the
response. We will have more to say about this later.) Pierre-Simon Laplace, who is shown in Figure
14.2-2, is credited with the transform that bears his name.

The (one-sided or unilateral) Laplace transform is defined as

F sð Þ ¼l f tð Þ½ � ¼
Z 1
0

f tð Þe�stdt ð14:2-1Þ

where s is a complex variable given by

s ¼ sþ jo ð14:2-2Þ

Solution expressed
in the time domain Solution expressed

in the frequency domain

Solution of
algebraic
equations

Solution of
differential
equations

Transformation into
the frequency domain

Complex Frequency DomainTime Domain

Transformation into
the time domain

Circuit described
in the time domain

by differential equations

Circuit described in the
frequency domain by
algebraic equations

FIGURE 14.2-1 The transform method.
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The exponent st of e in Eq. 14.2-1 must be dimensionless. Consequently, s has units of
frequency. It is customary to refer to s as complex frequency. The lower limit of the integral in
Eq. 14.2-1 is 0�, a time just before t ¼ 0. As a result, the Laplace transform includes the effects
of any discontinuity in f tð Þ occurring at time t ¼ 0. In contrast, the Laplace transform does not
include the effect of that part of f tð Þ occurring for time t < 0.

The notation l f tð Þ½ � indicates taking the Laplace transform of f tð Þ. The result, F sð Þ,
is called the Laplace transform of f tð Þ. The function f tð Þ is said to exist in the time domain,
whereas the function F sð Þ is said to exist in the complex-frequency domain or the s-domain.
(Occasionally, the complex-frequency domain is referred to casually as the frequency
domain when the context makes it clear that frequency domain is short for complex-frequency
domain.)

The inverse Laplace transform is defined by the complex inversion integral

f tð Þ ¼l�1 F sð Þ½ � ¼ 1

2pj

Z aþj1

a�j1
F sð Þe stds ð14:2-3Þ

The integral in Eq. 14.2-3 is a contour integration in the complex plane. Evaluation of this integral
requires complex analysis and is beyond the scope of this book. Instead of evaluating the integral in
Eq. 14.2-3, we rely on the fact that the inverse Laplace transform is indeed the inverse of the Laplace
transform. That is, if F sð Þ ¼l f tð Þ½ �, then also f tð Þ ¼l�1 F sð Þ½ �. We say that f tð Þ and F sð Þ comprise a
Laplace transform pair and denote this fact as

f tð Þ $ F sð Þ ð14:2-4Þ

Recalling that the part of f tð Þ occurring for time t < 0 had no effect on F sð Þ, we see that l�1 F sð Þ½ �
provides f tð Þ only for t > 0. (Sometimes the uncertainty about f tð Þ for t < 0 is resolved by requiring
that f tð Þ ¼ 0 for t < 0 for all time domain functions.)

FIGURE 14.2-2 Pierre-
Simon Laplace (1749–
1827) is credited with
the transform that bears
his name.

Photo by Universal History
Archive/Getty Images

E X A M P L E 1 4 . 2 - 1 Laplace Transform Pairs

(a) Find the Laplace transform of f tð Þ ¼ e�at , where a > 0.
(b) Find the Laplace transform of g tð Þ ¼ e�atu tð Þ, where a > 0 and u tð Þ is the unit step function.

Solution
(a) Using Eq. 14.2-1, we have

F sð Þ ¼l f tð Þ½ � ¼l e�at½ � ¼
Z 1
0�

e�ate�stdt ¼ �e� sþað Þt

sþ a

����
1

0�
¼ 1

sþ a

(b) Again using Eq. 14.2-1, we have

G sð Þ ¼l g tð Þ½ � ¼l e�atu tð Þ½ � ¼
Z 1
0�

e�atu tð Þe�stdt ¼
Z 1
0�

e�ate�stdt ¼ �e� sþað Þt

sþ a

����
1

0�
¼ 1

sþ a

In this example, f tð Þ 6¼ g tð Þ when t < 0, but f tð Þ ¼ g tð Þ when t > 0. Consequently, F sð Þ ¼ G sð Þ. The inverse
Laplace transform of F sð Þ ¼ G sð Þ only provides f tð Þ or g tð Þ for t > 0. We can summarize the results of this
example by the Laplace transform pair:

e�at for t > 0 $ 1

sþ a
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We should stop and ask under what conditions the integral of Eq. 14.2-1 converges to a finite
value. It can be shown that the integral converges whenZ 1

0�
f tð Þj je�s1tdt <1

for some real positive s1. If the magnitude of f tð Þ is f tð Þj j < Meat for all positive t, the integral will
converge for s1 > a. The region of convergence is therefore given by1 > s1 > a, and s1 is known as
the abscissa of absolute convergence. Functions of time, f tð Þ, that are physically possible always have a
Laplace transform.

Linearity is an important property of the Laplace transform. Consider

f tð Þ ¼ a1 f 1 tð Þ þ a2 f 2 tð Þ
for arbitrary constants a1 and a2. Using Eq. 14.2-1, we have

F sð Þ ¼l f tð Þ½ � ¼l a1 f 1 tð Þ þ a2 f 2 tð Þ½ � ¼
Z 1
0�

a1 f 1 tð Þ þ a2 f 2 tð Þð Þe�stdt

¼ a1

Z 1
0�

f 1 tð Þe�stdt þ a2

Z 1
0�

f 2 tð Þe�stdt

¼ a1F1 sð Þ þ a2F2 sð Þ
where F1 sð Þ and F2 sð Þ are the Laplace transforms of the time functions f 1 tð Þ and f 2 tð Þ, respectively.
We can summarize linearity as

a1 f 1 tð Þ þ a2 f 2 tð Þ $ a1F1 sð Þ þ a2F2 sð Þ ð14:2-5Þ

E X A M P L E 1 4 . 2 - 2 Lineari ty

Find the Laplace transform of sin ot.

Solution
Use Euler’s identity to write

sinot ¼ 1

2j
e jot � e�jot
� �

From Example 14.2-1, we have

e�at for t > 0$ 1

sþ a

so e�jot for t > 0$ 1

sþ jo

and e jot for t > 0$ 1

s� jo

Using superposition, we then have

l sinot½ � ¼ 1

2j
l e jot � e�jot
� � ¼ 1

2j

1

s� ot
� 1

sþ ot

� �
¼ sþ joð Þ � s� joð Þ

2j s� oð Þ sþ joð Þ ¼
o

s2 þ o2

We can summarize the results of this example by the Laplace transform pair

sinot for t > 0$ o
s2 þ o2
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Let us obtain the transform of the first derivative of f tð Þ. We have

l
df

dt

	 

¼
Z 1
0�

df

dt
e�stdt

In anticipation of integrating by parts, take u ¼ e�st and dv ¼ df

dt

� �
dt ¼ df . Then du ¼ �se�st and

v ¼ f . Now integrating by parts gives

l
df

dt

	 

¼ s

Z 1
0

f e�stdt þ f e�st

����
1

0

¼ sF sð Þ � f 0�ð Þ

We can summarize differentiation in the time domain as

df

dt
$ sF sð Þ � f 0�ð Þ ð14:2-6Þ

Thus, the Laplace transform of the derivative of a function is s times the Laplace transform of the
function minus the initial condition.

Thus, we use the definition of the Laplace transform given in Eq. 14.2-1 to obtain both
Laplace transform pairs and properties of the Laplace transform. Table 14.2-1 provides a
collection of important Laplace transform pairs. Table 14.2-2 lists important properties of the Laplace
transform.

E X A M P L E 1 4 . 2 - 3 Differentiat ion in the Time Domain

Find the Laplace transform of cos ot.

Solution
The cosine is proportional to the derivative of the sine

cosot ¼ 1

o
d

dt
sinot

Using linearity, l cosot½ � ¼ 1

o
l

d

dt
sinot

	 


Using Eq 14:2-6; l
d

dt
sinot

	 

¼ s l sinot½ � � sin 0 ¼ s l sinot½ � � 0

From Example 14:2-2; l sinot½ � ¼ o
s2 þ o2

Combining these results gives

l cosot½ � ¼ 1

o
sð Þ o

s2 þ o2
¼ s

s2 þ o2

674 14. The Laplace Transform



Table 14.2-2 Laplace Transform Properties

PROPERTY f tð Þ; t > 0 F sð Þ ¼l f tð Þu tð Þ½ �
Linearity a1 f 1 tð Þ þ a2 f 2 tð Þ a1F1 sð Þ þ a2F2 sð Þ

Time scaling f atð Þ; where a > 0
1
a

F
s

a

� �

Time integration

Z t

0
f tð Þdt 1

s
F sð Þ

Time differentiation
df tð Þ

dt
sF sð Þ � f 0�ð Þ

d2f tð Þ
dt2

s2F sð Þ � sf 0�ð Þ þ df 0�ð Þ
dt

� �

dnf tð Þ
dtn

snF sð Þ �Pn
k¼1

sn�k dk�1f 0�ð Þ
dtk�1

Time shift f t � að Þu t � að Þ e�asF sð Þ
Frequency shift e�atf tð Þ F sþ að Þ

Time convolution f 1 tð Þ�f 2 tð Þ ¼
Z t

0
f 1 tð Þf 2 t � tð Þdt F1 sð ÞF2 sð Þ

Frequency integration f tð Þ
t

Z 1
s

F lð Þdl

Frequency differentiation tf tð Þ � dF sð Þ
ds

Initial value f 0þð Þ lim
s!1 sF sð Þ

Final value f 1ð Þ lim
s! 0

sF sð Þ

Table 14.2-1 Laplace Transform Pairs

f tð Þ for t > 0 F sð Þ ¼l f tð Þu tð Þ½ �
d tð Þ 1

u tð Þ 1
s

e�at
1

sþ a

t
1
s2

t n
n!

snþ1

e�at t n
n!

sþ að Þnþ1

sin otð Þ o
s2 þ o 2

cos otð Þ s

s2 þ o 2

e�at sin otð Þ o

sþ að Þ2 þ o 2

e�at cos otð Þ sþ a

sþ að Þ2 þ o 2
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E X A M P L E 1 4 . 2 - 5 Laplace Transform Pairs and Propert ies

Find the Laplace transform of 10 e�4t cos 20t þ 36:9�ð Þ.

Solution
Table 14.2-1 has entries for cos otð Þ and sin otð Þ but not for cos ot þ yð Þ. We can use the trigonometric

identity A cos ot þ yð Þ ¼ A cos yð Þ cos otð Þ � A sin yð Þ sin otð Þ

to write 10 cos 20t þ 36:9�ð Þ ¼ 8 cos 20tð Þ � 6 sin 20tð Þ
Now use linearity to write

l 10e�4tcos 20t þ 36:9�ð Þ½ � ¼ l e�4t 8 cos 20tð Þ � 6 sin 20tð Þð Þ½ �
¼ 8l e�4t cos 20tð Þ½ � � 6l e�4t sin 20tð Þ½ �

Using frequency shifts from Table 14.2-2 with f tð Þ ¼ cos 20tð Þ gives

l e�4t cos 20tð Þ� � ¼l e�4t f tð Þ� � ¼ F sþ 4ð Þ

where F sð Þ ¼l f tð Þ½ � ¼l cos 20tð Þ½ � ¼ s

s2 þ 202
¼ s

s2 þ 400

Next; F sþ 4ð Þ ¼ F sð Þjs sþ4

E X A M P L E 1 4 . 2 - 4 Laplace Transform Pairs and Propert ies

Find the Laplace transform of 5� 5e�2t 1þ 2tð Þ.

Solution
From linearity; l 5� 5e�2t 1þ 2tð Þ� � ¼ 5l 1½ � � 5l e�2t 1þ 2tð Þ� �
Using frequency shift from Table 14.2-2 with f tð Þ ¼ 1þ 2t gives

l e�2t 1þ 2tð Þ� � ¼l e�2t f tð Þ� � ¼ F sþ 2ð Þ

where F sð Þ ¼l f tð Þ½ � ¼l 1þ 2 t½ � ¼l 1½ � þ 2l t½ � ¼ 1

s
þ 2

1

s2

� �

Next; F sþ 2ð Þ ¼ F sð Þjs sþ2
That is, we must replace each s in F sð Þ by s + 2 to obtain F sþ 2ð Þ:

F sþ 2ð Þ ¼ 1

s
þ 2

1

s2

� �� �����
s sþ2

¼ 1

sþ 2
þ 2

1

sþ 2ð Þ2
 !

¼ sþ 2þ 2 1ð Þ
sþ 2ð Þ2 þ sþ 4

s2 þ 4sþ 4

Putting it all together gives

l 5� 5e�2t 1þ 2tð Þ� � ¼ 5
1

s

� �
� 5

sþ 4

s2 þ 4sþ 4

� �
¼ 5 s2 þ 4sþ 4ð Þ � 5s sþ 4ð Þ

s s2 þ 4sþ 4ð Þ ¼ 20

s s2 þ 4sþ 4ð Þ

Try it 
yourself 

in WileyPLUS

Try it 
yourself 

in WileyPLUS
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14.3 P u l s e I n p u t s

The step function shown in Figure 14.3-1a and represented as

u tð Þ ¼ 0 t < 0

1 t > 0


ð14:3-1Þ

makes an abrupt transition from 0 to 1 at time t ¼ 0. Define the impulse function d tð Þ to be

d tð Þ ¼ d

dt
u tð Þ ¼

0 t < 0

undefined t ¼ 0

0 t > 0

8><
>: ð14:3-2Þ

Because d tð Þ is undefined at time 0, we consider the function ue tð Þ shown in Figure 14.3-1b. This
function makes the transition from 0 to 1 over the time interval from 0 to e. Notice that

lim
e!0

ue tð Þ ¼ u tð Þ

Let de tð Þ ¼ d

dt
ue tð Þ ¼

0 t < 0
1

e
0 < t < e

0 t > e

8><
>:

E X A M P L E 1 4 . 2 - 5 Laplace Transform Pairs and Propert ies

Find the Laplace transform of 2d tð Þ þ 3þ 4u tð Þ.

Solution

From linearity; l 2d tð Þ þ 3þ 4u tð Þ½ � ¼ 2l d tð Þ½ � þ 3l 1½ � þ 4l u tð Þ½ �

Because 1 ¼ u tð Þ for t � 0; l 1½ � ¼l u tð Þ½ �. Using Table 14.2-1 gives

l 2d tð Þ þ 3þ 4u tð Þ½ � ¼ 2l d tð Þ½ � þ 3l 1½ � þ 4l u tð Þ½ � ¼ 2 1ð Þ þ 3
1

s

� �
þ 4

1

s

� �
¼ 2þ 7

s

That is, we must replace each s in F sð Þ by sþ 4 to obtain F sþ 4ð Þ:

l e�4t cos 20tð Þ� � ¼ F sþ 4ð Þ ¼ s

s2 þ 400

����
s sþ4

¼ sþ 4

sþ 4ð Þ2 þ 400
¼ sþ 4

s2 þ 8sþ 416

Similarly, l e�4t sin 20tð Þ� � ¼ 20

s2 þ 400

����
s sþ4

¼ 20

sþ 4ð Þ2 þ 400
¼ 20

s2 þ 8sþ 416

Putting it all together gives

l 10e�4t cos 20t þ 36:9�ð Þ� � ¼ 8
sþ 4

s2 þ 8sþ 416

� �
� 6

20

s2 þ 8sþ 416

� �
¼ 8s� 88

s2 þ 8sþ 416

Try it 
yourself 

in WileyPLUS
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We see that de tð Þ is the pulse function shown in Figure 14.3-1c. Notice that for any value of e, the area
under the pulse is given by

Z þ1
�1

de tð Þdt ¼
Z e

0

1

e
dt ¼ 1

Now; let d tð Þ ¼ lim
e!0

de tð Þ

This definition of d tð Þ is consistent with the definition given in Eq. 14.3-2. We see that d tð Þ is a
pulse having infinite magnitude, infinitesimal duration, and area equal to 1. We can’t readily
draw such a pulse, so we represent d tð Þ by an arrow as shown in Figure 14.3-1d, The height of
the arrow is equal to the area of the impulse function. (The area of the impulse function is sometimes
called the strength of the impulse. Also, the impulse function is sometimes called the delta function.)

An important property of the impulse function is

Z þ1
�1

f tð Þd tð Þdt ¼ f 0ð Þ ð14:3-3Þ

Letting f tð Þ ¼ 1 gives

Z þ1
�1

d tð Þdt ¼ 1

showing once again that the area under the impulse function is 1. More interesting, Eq. 14.3-3 can be
used to determine the Laplace transform of the impulse function

l d tð Þ½ � ¼
Z 1
0�

e�std tð Þdt ¼ e0 ¼ 1

Next, we consider some techniques that are useful for finding Laplace transforms of other pulse
functions. We can delay a function f tð Þ by time t by replacing each occurrence of t by t � t.

Consider the function f tð Þ ¼ mt þ b

shown in Figure 14.3-2a. Suppose we wish to shift (delay) it to t seconds later. This function has a
single occurrence of t, so we replace it by t � t to obtain

f t � tð Þ ¼ m t � tð Þ þ b ¼ mt þ b� mtð Þ

shown in Figure 14.3-2b. Next, consider the function

g tð Þ ¼ f tð Þu tð Þ ¼ mt þ bð Þu tð Þ

(a)

u(t)

t

1

0

(b)

ue(t)

te

1

0

(c)

de(t)

te

ε
1

0

(d)

d(t)

t

1

0

FIGURE 14.3-1 (a) A step function, (b) an approximation to the step function, (c) a pulse function and, (d) the impulse
function.
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This function, shown in Figure 14.3-2c, is identical to f tð Þ when t > 0 but g tð Þ ¼ 0 when t < 0.
Suppose we wish to delay g tð Þ by t seconds. The function g tð Þ contains two occurrences of t, and we
must replace each occurrence of t by t � t.

g t � tð Þ ¼ m t � tð Þ þ bð Þu t � tð Þ

Shown in Figure 14.3-2d, g t � tð Þ is indeed a delayed copy of g tð Þ. Notice that f t � tð Þ u t � tð Þ is
different than both f t � tð Þu tð Þ and f tð Þu t � tð Þ.

Figure 14.3-3 shows how these techniques can be used to represent pulse functions. Starting with
f tð Þ ¼ 1:5 t, a straight line that passes through the origin in Figure 14.3-3a, we multiply by a step
function so that the product is 0 for time t < 0. The function f tð Þu tð Þ, together with a delayed copy,
f t � 10ð Þu t � 10ð Þ, is shown in Figure 14.3-3b. Subtracting the delayed copy gives

g tð Þ ¼ f tð Þ u tð Þ � f t � 10ð Þ u t � 10ð Þ ¼ 1:5 t u tð Þ � 1:5 t � 10ð Þ u t � 10ð Þ ð14:3-4Þ

f (t− τ) = m (t−  τ) + b

t

b

m+b

f (t) = mt + b

t1

b

m+b

τ τ + 1

(a) (b)

f (t) u(t)

t1

b

m+b

f (t− τ) u(t− τ)

t

b

m+b

τ τ + 1

(c) (d)
FIGURE 14.3-2 (a) A function, (b) a delayed copy of the function, (c) a new function formed by multiplying f tð Þ by a step
function, and (d) a delayed copy of the new function.

(a) (b)

f (t) = 1.5t 

t10

15

1.5 t u(t)

t2010

15

1.5(t−10) u(t−10) 

(c)

15

g(t) = 1.5t u(t) − 1.5(t− 10) u(t− 10)

t2010

(d)

h(t) = g(t) − 15u(t− 10)

t10

15

(e)

15

k(t) = g(t) − 3(t− 15) u(t− 15)

t1510 20

+ 3(t− 20) u(t− 20)

FIGURE 14.3-3 (a) A function, (b) a ramp function and a delayed copy of the ramp function, (c) a new function formed
by subtracting the delayed ramp from the ramp, (d) a triangular pulse, and (e) a trapezoidal pulse.
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shown in Figure 14.3-3c. Subtracting an appropriately scaled and delayed step function yields the pulse
shown in Figure 14.3-3d:

h tð Þ ¼ g tð Þ � 15 u t � 10ð Þ ¼ 1:5 t u tð Þ � 1:5 t � 10ð Þu t � 10ð Þ � 15u t � 10ð Þ ð14:3-5Þ
Alternately, starting with g tð Þ and then subtracting and adding appropriately scaled and delayed copies
of tu(t) yields the pulse shown in Figure 14.3-3e:

k tð Þ ¼ g tð Þ � 3:0 t � 15ð Þ u t � 15ð Þ þ 3:0 t � 20ð Þ u t � 20ð Þ ð14:3-6Þ
(Subtracting 3:0 t � 15ð Þu t � 15ð Þ causes k tð Þ to begin to decrease at t ¼ 15 s. Adding 3:0 t � 20ð Þ
u t � 20ð Þ causes k tð Þ to level off at t ¼ 20 s. Without this last term, k tð Þ would continue to decrease.)

To obtain the transform of the time-shifted function, we use the definition of the transform to
obtain

l f t � tð Þu t � tð Þ½ � ¼
Z 1
0

f t � tð Þu t � tð Þe�stdt ¼
Z 1
t

f t � tð Þe�stdt

Now let t � t ¼ x to obtain

l f t � tð Þu t � tð Þ½ � ¼
Z 1
0

f xð Þe�s tþxð Þdx ¼ e�st
Z 1
t

f xð Þe�sxdx ¼ e�stF sð Þ

This result is summarized as

f t � tð Þu t � tð Þ $ e�stF sð Þ ð14:3-7Þ

14.4 I n v e r s e L a p l a c e T r a n s f o rm

We will frequently want to find the inverse Laplace transform of a function represented as a ratio of
polynomials in s. Consider:

E X A M P L E 1 4 . 3 - 1 Laplace Transforms of Pulse Functions

Find the Laplace transforms of g tð Þ, h tð Þ and, k tð Þ shown in Figure 14.3-3.

Solution
After obtaining Eqs. 14.3-4, 14.3-5, and 14.3-6, we can easily determine the required Laplace transforms using
Eq. 14.3-7:

G sð Þ ¼l g tð Þ½ � ¼ l 1:5t u tð Þ½ � �l 1:5 t � 10ð Þ u t � 10ð Þ½ �
¼ 1:5

1

s2

� �
� e�10s 1:5

1

s2

� �� �
¼ 1:5 1� e�10sð Þ

s2

H sð Þ ¼l h tð Þ½ � ¼l g tð Þ½ � �l 15 u t � 10ð Þ½ � ¼ 1:5 1� e�10sð Þ
s2

� e�10s 15

s

� �

K sð Þ ¼ l k tð Þ½ � ¼l g tð Þ½ � �l 3:0 t � 15ð Þ u t � 15ð Þ½ � þl 3:0 t � 20ð Þ u t � 20ð Þ½ �

¼ 1:5 1� e�10sð Þ
s2

� e�15s 3:0

s2

� �
þ e�20s 3:0

s2

� �
¼ 1:5 1� e�10s � 2e�15s þ 2e�20sð Þ

s2
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F sð Þ ¼ N sð Þ
D sð Þ ¼

bmsm þ bm�1sm�1 þ � � � þ b1sþ b0

sn þ an�1sn�1 þ � � � þ a1sþ a0
ð14:4-1Þ

where the coefficients of the polynomials are real numbers. The function F sð Þ is said to be a rational
function of s because it is the ratio of two polynomials in s. Usually, we have n > m, in which case, F sð Þ
is called a proper rational function.

The roots of the denominator polynomial D sð Þ are the roots of the equation D sð Þ ¼ 0 and are
called the poles of F sð Þ. Factoring D sð Þ, we obtain

D sð Þ ¼ sn þ an�1sn�1 þ � � � þ a1sþ a0 ¼ s� p1ð Þ s� p2ð Þ � � � s� pnð Þ
The poles, pi, may be either real or complex. Complex poles appear in complex conjugate pairs;

that is, if p1 ¼ aþ jb is a pole of F sð Þ, then F sð Þ will also have a pole, pi ¼ p�1 ¼ a� jb. A pole pi of
F sð Þ is said to be a simple pole of F sð Þ if none of the other poles of F sð Þ are equal to pi. In contrast, pi is a
repeated pole of F sð Þ if at least one of the other poles of F sð Þ is equal to pi. The multiplicity of a repeated
pole pi is the number of equal poles, including pi itself. The roots of the numerator polynomial N sð Þ are
called the zeros of F sð Þ.

We will find the inverse Laplace transform of a proper rational function F sð Þ in three steps. First,
we perform a partial fraction expansion to express F sð Þ as a sum of simpler functions, Fi sð Þ.

F sð Þ ¼ F1 sð Þ þ F2 sð Þ þ � � � þ Fi sð Þ þ � � � þ Fn sð Þ
Next, we use the transform pairs in Table 14.2-1 and properties in Table 14.2-2 to find the inverse
Laplace transform of each Fi sð Þ. Finally, using linearity, we sum the inverse transforms of the Fi sð Þ to
obtain the inverse Laplace transform of F sð Þ.

When all of the poles of a proper rational function, F sð Þ, are simple poles, the partial fraction
expansion of F sð Þ is

F sð Þ ¼ N sð Þ
D sð Þ ¼

bmsm þ bm�1sm�1 þ � � � þ b1sþ b0

sn þ an�1sn�1 þ � � � þ a1sþ a0

¼ R1

s� p1
þ R2

s� p2
þ � � � þ Ri

s� pi
þ � � � þ Rn

s� pn

ð14:4-2Þ

The partial fraction expansion has one term corresponding to each simple pole of F sð Þ. The coefficients
Ri are called residues. Each residue, Ri, corresponds to the pole, pi, in the same term of Eq. 14.4-2. The
residue corresponding to a real pole is a real number. The residues corresponding to complex conjugate
poles are themselves complex conjugates. The values of the residues of simple poles are calulated as

Ri ¼ s� pið ÞF sð Þjs¼pi
ð14:4-3Þ

E X A M P L E 1 4 . 4 - 1 Inverse Laplace Transform:
Simple, Real Poles

Find the inverse Laplace transform of F sð Þ ¼ sþ 3
s2 þ 7sþ 10

.

Solution
The given F sð Þ is indeed a proper rational function. Factor the denominator and perform a partial fraction
expansion.

F sð Þ ¼ sþ 3

s2 þ 7sþ 10
¼ sþ 3

sþ 2ð Þ sþ 5ð Þ ¼
R1

sþ 2
þ R2

sþ 5

Try it 
yourself 

in WileyPLUS
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Suppose F sð Þ has a pair of simple complex conjugate poles p1 ¼ �aþ jb and p2 ¼ �a� jb.
The corresponding residues in the partial fraction expansion will also be complex conjugates, say
R1 ¼ cþ jd and R2 ¼ c� jd. The partial fraction expansion of F sð Þ is

F sð Þ ¼ R1

s� p1
þ R2

s� p2
þ F3 sð Þ ¼ cþ jd

s� �aþ jbð Þ þ
c� jd

s� �a� jbð Þ þ F3 sð Þ ð14:4-4Þ

where F3 sð Þ is the sum of the terms of the partial fraction expansion due to other poles of F sð Þ. Next,
combine the first two terms, using a common denominator, to get

F sð Þ ¼ cþ jd

sþ a� jb
þ c� jd

sþ aþ jb
þ F3 sð Þ

¼ cþ jdð Þ sþ a� jbð Þ þ c� jdð Þ sþ a� jbð Þ
sþ a� jbð Þ sþ aþ jbð Þ þ F3 sð Þ

¼ 2c sþ 2 a c� b dð Þ
s2 þ 2 a sþ a2 þ b2 þ F3 sð Þ

¼ 2 c sþ að Þ � 2 b d

sþ að Þ2 þ b2
þ F3 sð Þ

¼ 2c
sþ a

sþ að Þ2 þ b2
� 2d

b

sþ að Þ2 þ b2
þ F3 sð Þ

Notice that the partial fraction expansion of F sð Þ can be expressed as

F sð Þ ¼ K1sþ K2

s2 þ 2 a sþ a2 þ b2 þ F3 sð Þ ð14:4-5Þ

where K1 ¼ 2 c and K2 ¼ 2 a c� b dð Þ.
Taking the inverse Laplace transform of the first two terms of the partial fraction expansion gives

l�1 2 c
sþ a

sþ að Þ2 þ b2

" #
¼ 2 c l�1 sþ a

sþ að Þ2 þ b2

" #
¼ 2 c e�at l�1

s

s2 þ b2

	 

¼ 2 c e�at cos btð Þ

where R1 ¼ sþ 2ð Þ sþ 3

sþ 2ð Þ sþ 5ð Þ
� �����

s¼�2
¼ sþ 3

sþ 5

����
s¼�2

¼ �2þ 3

�2þ 5
¼ 1

3

and R2 ¼ sþ 5ð Þ sþ 3

sþ 2ð Þ sþ 5ð Þ
� �����

s¼�5
¼ sþ 3

sþ 2

����
s¼�5

¼ �5þ 3

�5þ 2
¼ 2

3

Then F sð Þ ¼
1

3
sþ 2

þ
2

3
sþ 5

Using linearity and taking the inverse Laplace transform of each term gives

F tð Þ ¼l�1 F sð Þ½ � ¼l�1
1

3
sþ 2

þ
2

3
sþ 5

2
64

3
75 ¼ 1

3
l�1 1

sþ 2

	 

þ 2

3
l�1 1

sþ 5

	 

¼ 1

3
e�2t þ 2

3
e�5t for t � 0
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and

l�1 2 d
b

sþ að Þ2 þ b2

" #
¼ 2 d l�1

b

sþ að Þ2 þ b2

" #
¼ 2 d e�at l�1 b

s2 þ b2

	 

¼ 2 d e�at sin btð Þ

Using linearity, we have

l�1 F sð Þ½ � ¼ 2 c e�atcos btð Þ � 2 d e�atsin btð Þ þl�1 F3 sð Þ½ � ð14:4-6Þ

E X A M P L E 1 4 . 4 - 2 Inverse Laplace Transform:
Simple Complex Poles

Find the inverse Laplace transform of F sð Þ ¼ 10
s2 þ 6sþ 10ð Þ sþ 2ð Þ.

Solution
The roots of the quadratic s2 þ 6sþ 10ð Þ are complex, and we may write F sð Þ as

F sð Þ ¼ 10

sþ 3� jð Þ sþ 3þ jð Þ sþ 2ð Þ
Using a partial fraction expansion, we have

F sð Þ ¼ 10

sþ 3� jð Þ sþ 3þ jð Þ sþ 2ð Þ ¼
R1

s� �3þ jð Þ þ
R2

s� �3� jð Þ þ
R3

sþ 2

Using Eq. 14.4-3,

R1 ¼ sþ 3� jð Þ 10

sþ 3� jð Þ sþ 3þ jð Þ sþ 2ð Þ
� �����

s¼�3þj

¼ 10

sþ 3þ jð Þ sþ 2ð Þ
����
s¼�3þj

¼ 10

�3þ jþ 3þ jð Þ �3þ jþ 2ð Þ ¼ �
5

2
þ j

5

2

Comparing to Eq. 14.4-4, we see that a ¼ 3; b ¼ 1; c ¼ �2:5; and d ¼ 2:5. Next,

R2 ¼ sþ 3þ jð Þ 10

sþ 3� jð Þ sþ 3þ jð Þ sþ 2ð Þ
� �����

s¼�3�j

¼ 10

sþ 3� jð Þ sþ 2ð Þ
����
s¼�3�j

¼ 10

�3� jþ 3� jð Þ �3� jþ 2ð Þ ¼ �
5

2
� j

5

2

and R3 ¼ sþ 2ð Þ 10

sþ 3� jð Þ sþ 3þ jð Þ sþ 2ð Þ
� �����

s¼�2
¼ 10

s2 þ 6sþ 10

����
s¼�2

¼ 5

Finally, using Eq. 14.4-6,

f tð Þ ¼l�1 10

s2 þ 6sþ 10ð Þ sþ 2ð Þ
	 


¼ 2 c e�at cos btð Þ � 2 d e�at sin btð Þ þl�1 5

sþ 2

	 


¼ 2 �2:5ð Þe�3t cos 1tð Þ � 2 2:5ð Þe�3t sin 1tð Þ þ 5e�2t

¼ �5e�3t cos tð Þ � 5e�3t sin tð Þ þ 5 e�2t for t � 0

Try it 
yourself 

in WileyPLUS
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Next, suppose F sð Þ has repeated poles, that is,

F sð Þ ¼ N sð Þ
D sð Þ ¼

bmsm þ bm�1sm�1 þ � � � þ b1sþ b0

sn þ an�1sn�1 þ � � � þ a1sþ a0
¼ bmsm þ bm�1sm�1 þ � � � þ b1sþ b0

s� p1ð Þq s� pqþ1
� � � � � s� pnð Þ

where the integer q is called the multiplicity of the repeated pole p1. In this case, the partial fraction
expansion of F sð Þ that includes all powers of the term s� p1ð Þ up to the multiplicity.

F sð Þ ¼ R1

s� p1
þ R2

s� p1ð Þ2 þ � � � þ
Rq

s� p1ð Þq þ
Rqþ1

s� pqþ1
þ � � � þ Rn

s� pn
ð14:4-8Þ

Alternate Solution
Using Eq. 14.4-5, we can express F sð Þ as

F sð Þ ¼ 10

s2 þ 6sþ 10ð Þ sþ 2ð Þ ¼
K1 sþ K2

s2 þ 6sþ 10
þ F3 sð Þ ¼ K1sþ K2

s2 þ 6sþ 10
þ R3

sþ 2

Using Eq. 14.4-3, we calulate

R3 ¼ sþ 2ð Þ 10

s2 þ 6sþ 10ð Þ sþ 2ð Þ
� �����

s¼�2
¼ 10

s2 þ 6sþ 10

����
s¼�2

¼ 5

Then
10

s2 þ 6sþ 10ð Þ sþ 2ð Þ ¼
K1sþ K2

s2 þ 6sþ 10
þ 5

sþ 2
ð14:4-7Þ

Multiplying both sides of this equation by the denominator of F sð Þ gives

10 ¼ K1 þ 5ð Þs2 þ 2K1 þ K2 þ 30ð Þsþ 2K2 þ 50

The coefficients of s2, s1, and s0 on the right side of this equation must each be equal to the corresponding
coefficients on the left side. (The coefficients of s2 and s1 on the left side are zero.) Equating corresponding
coefficients gives

0 ¼ K1 þ 5; 0 ¼ 2K1 þ K2 þ 30 and 10 ¼ 2K2 þ 50

Solving these equations gives K1 ¼ �5 and K2 ¼ �20. Substituting into Eq 14.4-7 gives
10

s2 þ 6sþ 10ð Þ sþ 2ð Þ ¼
�5s� 20

s2 þ 6sþ 10
þ 5

sþ 2

Next,
�5s� 20

s2 þ 6sþ 10
¼ �5s� 20

s2 þ 6sþ 9ð Þ þ 1
¼ �5s� 20

sþ 3ð Þ2 þ 1
¼ �5 sþ 3ð Þ � 5

sþ 3ð Þ2 þ 1
¼ �5 sþ 3

sþ 3ð Þ2 þ 1

 !
� 5

1

sþ 3ð Þ2 þ 1

 !

Then
l�1 �5s� 20

s2 þ 6sþ 10

	 

¼ �5l�1 sþ 3

sþ 3ð Þ2 þ 1

" #
� 5l�1 1

sþ 3ð Þ2 þ 1

" #

¼ �5e�3t cos tð Þ � 5e�3t sin tð Þ
Using superposition,

f tð Þ ¼l�1 10

s2 þ 6sþ 10ð Þ sþ 2ð Þ
	 


¼ �5e�3t cos tð Þ � 5e�3t sin tð Þ þ 5e�2t for t � 0

as before.
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The residues corresponding to the repeated poles are given by

Rq�k ¼ 1

k!

dk

dsk
s� p1ð ÞqF sð Þ

	 
����
s¼p1

for k ¼ q� 1; q� 2; . . . ; 2; 1; 0 ð14:4-9Þ

That is,

R1 ¼ 1

q� 1ð Þ!
dq�1

dsq�1 s� p1ð ÞqF sð Þ
	 
����

s¼p1

;

R2 ¼ 1

q� 2ð Þ!
dq�2

dsq�2 s� p1ð ÞqF sð Þ
	 
����

s¼p1

; . . .

Rq ¼ s� p1ð ÞqF sð Þ½ �js¼p1

E X A M P L E 1 4 . 4 - 3 Inverse Laplace Transform:
Repeated Poles

Find the inverse Laplace transform of F sð Þ ¼ 4

sþ 1ð Þ2 sþ 2ð Þ.

Solution
Using Eq. 14.4-8, we can express F sð Þ as

F sð Þ ¼ 4

sþ 1ð Þ2 sþ 2ð Þ ¼
R1

sþ 1
þ R2

sþ 1ð Þ2 þ
R3

sþ 2

Using Eq. 14.4-3,

R3 ¼ sþ 2ð Þ 4

sþ 1ð Þ2 sþ 2ð Þ

�����
s¼�2

¼ 4

sþ 1ð Þ2
�����
s¼�2

¼ 4

�2þ 1ð Þ2 ¼ 4

Using Eq. 14.4-9,

R1 ¼ d

ds
sþ 1ð Þ2 4

sþ 1ð Þ2 sþ 2ð Þ

 !�����
s¼�1

¼ d

ds

4

sþ 2

����
s¼�1

¼ �4
sþ 2ð Þ2

�����
s¼�1

¼ �4

and R2 ¼ sþ 1ð Þ2 4

sþ 1ð Þ2 sþ 2ð Þ

�����
s¼�1

¼ 4

sþ 2

����
s¼�1
þ 4

�1þ 2
¼ 4

Then; F sð Þ ¼ 4

sþ 1ð Þ2 sþ 2ð Þ ¼
�4

sþ 1
þ 4

sþ 1ð Þ2 þ
4

sþ 2

Next, using the frequency shift property from Table 14.2-2, we get

l�1 4

sþ 1ð Þ2
" #

¼ e�t l�1 4

s2

	 

¼ 4 t e�t

Finally; using linearity; f tð Þ ¼ �4 e�t þ 4 t e�t þ 4e�2t for t � 0

Try it 
yourself 

in WileyPLUS
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Alternate Solution
Using Eq:14:4-8; F sð Þ ¼ 4

sþ 1ð Þ2 sþ 2ð Þ ¼
R1

sþ 1
þ R2

sþ 1ð Þ2 þ
R3

sþ 2

As before; R3 ¼ sþ 2ð Þ 4

sþ 1ð Þ2 sþ 2ð Þ

�����
s¼�2

¼ 4

sþ 1ð Þ2
�����
s¼�2

¼ 4

�2þ 1ð Þ2 ¼ 4

and R2 ¼ sþ 1ð Þ2 4

sþ 1ð Þ2 sþ 2ð Þ

�����
s¼�1

¼ 4

sþ 2

����
s¼�1

¼ 4

�1þ 2
¼ 4

so
4

sþ 1ð Þ2 sþ 2ð Þ ¼
R1

sþ 1
þ 4

sþ 1ð Þ2 þ
4

sþ 2

Multiplying both sides by sþ 1ð Þ2 sþ 2ð Þ gives

4 ¼ R1 sþ 1ð Þ sþ 2ð Þ þ 4 sþ 2ð Þ þ 4 sþ 1ð Þ2 ¼ R1 þ 4ð Þs2 þ 3R1 þ 4þ 8ð Þsþ 2R1 þ 8þ 4

The coefficients of s2, s1, and s0 on the right side of this equation must each be equal to the corresponding
coefficients on the left side. (The coefficients of s2 and s1 on the left side are zero.) Equating corresponding
coefficients gives

0 ¼ R1 þ 4; 0 ¼ 3 R1 þ 4þ 8 and 4 ¼ 2 R1 þ 8þ 4

Solving these equations gives R1 ¼ �4. Substituting gives

F sð Þ ¼ 4

sþ 1ð Þ2 sþ 2ð Þ ¼
�4

sþ 1
þ 4

sþ 1ð Þ2 þ
4

sþ 2

As before, f tð Þ ¼ �4e�t þ 4t e�t þ 4 e�2t for t � 0

E X A M P L E 1 4 . 4 - 4 Inverse Laplace Transform:
Improper Rational Function

Find the inverse Laplace transform of F sð Þ ¼ 4 s3 þ 15 s2 þ sþ 30
s2 þ 5 sþ 6

.

Solution
Compare this F sð Þwith F sð Þ in Eq. 14.4-1 to see that m¼ 3 and n¼ 2. Because m is not less than n, we perform the

long division s2 þ 5sþ 6 Þ4s3 þ 15s2 þ sþ 30 to obtain

F sð Þ ¼ 4s� 5þ 2s

s2 þ 5sþ 6

The last term on the right side is a proper rational function, so we perform partial fraction expansion to get

F sð Þ ¼ 4s� 5þ 2s

s2 þ 5sþ 6
¼ 4s� 5þ 2s

sþ 3ð Þ sþ 2ð Þ ¼ 4s� 5þ 6

sþ 3
� 4

sþ 2

Using the time differentiation property from Table 14.4-4 gives l�1 s½ � ¼ d

dt
d tð Þ. Using linearity, we get

l�1 4s3 þ 15s2 þ sþ 30

s2 þ 5sþ 6

	 

¼ 4

d

dt
d tð Þ � 5d tð Þ þ 6e�3t � 4e�2t for t � 0

Try it 
yourself 

in WileyPLUS
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14.5 I n i t i a l a n d F i n a l V a l u e T h e o r em s

The initial value of a function f tð Þ is the value at t ¼ 0, provided that f tð Þ is continuous at t ¼ 0. If f tð Þ is
discontinuous at t ¼ 0, the initial value is the limit as t ! 0þ, where t approaches t ¼ 0 from positive time.

A function’s initial value may be found using

f 0þð Þ ¼ lim
t!0þ

f tð Þ ¼ lim
s!1 sF sð Þ ð14:5-1Þ

This equation is called the initial value theorem. To prove the initial value theorem, we start with the
time differentiation property from Table 14.2-2:

sF sð Þ � f 0�ð Þ ¼l
df

dt

	 

¼
Z 1
0�

df

dt
e�stdt

Taking the limit as s!1, we get

lim
s!1 sF sð Þ � f 0�ð Þ½ � ¼ lim

s!1

Z 0þ

0�

df

dt
e�stdt þ lim

s!1

Z 1
0þ

df

dt
e�stdt

The first integral on the right is equal to f 0þð Þ � f 0�ð Þ because e�st ¼ 1 for t between 0� and 0+. The
second integral on the right vanishes because e�st ! 0 for s!1. On the left side, lim

s!1 f 0�ð Þ ¼
f 0�ð Þ because f 0�ð Þ is independent of s. Thus,

lim
s!1 sF sð Þ � f 0�ð Þ ¼ f 0þð Þ � f 0�ð Þ

Adding f 0�ð Þ to each side confirms the initial value theorem given in Eq. 14.5-1.
The final value of a function f tð Þ is lim

t!1 f tð Þ where

f 1ð Þ ¼ lim
t!1 f tð Þ ¼ lim

s!0
sF sð Þ ð14:5-2Þ

This equation is called the final value theorem. To prove the final value theorem, we again start
with the time differentiation property from Table 14.2-2:

sF sð Þ � f 0�ð Þ ¼l
df

dt

	 

¼
Z 1
0

df

dt

� �
e�stdt

and we take the limit as s! 0 for both sides to obtain

lim
s!0

sF sð Þ � f 0�ð Þ½ � ¼ lim
s!0

Z 1
0

df

dt

� �
e�stdt ¼

Z 1
0

df

dt

� �
e�0tdt ¼ f 1ð Þ � f 0�ð Þ

On the left side, lim
s!0

f 0�ð Þ ¼ f 0�ð Þ because f 0�ð Þ is independent of s. Thus,

lim
s!0

sF sð Þ � f 0�ð Þ ¼ f 1ð Þ � f 0�ð Þ

Adding f 0�ð Þ to each side confirms the final value theorem given in Eq. 14.5-2.

E X A M P L E 1 4 . 5 - 1 Init ial and Final Value Theorems

Consider the situation in which we build a circuit in the laboratory and analyze the same circuit, using Laplace
transforms. Figure 14.5-1 shows a plot of the circuit output v tð Þ obtained by laboratory measurement. Suppose our
circuit analysis gives

V sð Þ ¼l v tð Þ½ � ¼ 2s2 þ 30sþ 136

s s2 þ 9sþ 34ð Þ ð14:5-3Þ

Does the circuit analysis agree with the laboratory measurement?
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Solution
Determining the inverse Laplace transform of V sð Þ requires a partial fraction expansion. Before we do that work,
let’s use the initial- and final value theorems to see whether it is possible that V sð Þ, given in Eq. 14.5-3, can be the
Laplace transform v tð Þ shown in Figure 14.5-1.

From Figure 14.5-1, we see that the initial and final values are

v 0þð Þ ¼ lim
t!0þ

v tð Þ ¼ 2 V and v 1ð Þ ¼ lim
t!1 v tð Þ ¼ 4 V ð14:5-4Þ

Next, we calculate

v 0ð Þ ¼ lim
s!1 s

2s2 þ 30sþ 136

s s2 þ 9sþ 34ð Þ
� �

¼ lim
s!1

2s2 þ 30sþ 136

s2 þ 9sþ 34
¼ lim

s!1

2s2

s2
þ 30s

s2
þ 136

s2

s2

s2
þ 9s

s2
þ 34

s2

¼ 2

1
¼ 2 V

and

v 1ð Þ ¼ lim
s!0

s
2s2 þ 30sþ 136

s s2 þ 9sþ 34ð Þ
� �

¼ lim
s!0

2s2 þ 30sþ 136

s2 þ 9sþ 34
¼ 136

24
¼ 4 V

Because these initial and final values agree, it is possible that V sð Þ, given in Eq. 14.5-3, can be the Laplace
transform of v tð Þ shown in Figure 14.5-1. It is now appropriate to determine the inverse Laplace transform of V sð Þ.

We can express V sð Þ as

V sð Þ ¼ 2s2 þ 30sþ 136

s s2 þ 9sþ 34ð Þ ¼
K1sþ K2

s2 þ 9sþ 34
þ R3

s

where R3 ¼ s
2s2 þ 30sþ 136

s s2 þ 9sþ 34ð Þ
� �����

s¼0
¼ 2s2 þ 30sþ 136

s2 þ 9sþ 34

����
s¼0
¼ 4

Then V sð Þ ¼ 2s2 þ 30sþ 136

s s2 þ 9sþ 34ð Þ ¼
K1sþ K2

s2 þ 9sþ 34
þ 4

s

1

0.5 1 1.5 2

2

3

4

t, s

v(t), V

FIGURE 14.5-1
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14.6 S o l u t i o n o f D i f f e r e n t i a l E q u a t i o n s
D e s c r i b i n g a C i r c u i t

We can solve a set of differential equations describing an electric circuit, using the Laplace transform of
a variable and its derivatives. Here’s the procedure:

1. Use Kirchhoff’s laws and the element equations to represent the circuit by a differential equation or
set of differential equations.

2. Transform each differential equation into an algebraic equation by taking the Laplace transform of
both sides of the equation.

3. Solve the algebraic equations to obtain the Laplace transform of the output of the circuit.

4. Take the inverse Laplace transform to obtain the circuit output itself.

The following example illustrates this procedure.

Multiplying both sides s s2 þ 9sþ 34ð Þ gives

2s2 þ 30sþ 136 ¼ s K1sþ K2ð Þ þ 4 s2 þ 9sþ 34
� � ¼ K1 þ 4ð Þs2 þ K2 þ 36ð Þsþ 136

Equating the coefficients of s2 and s1 gives K1 ¼ �2 and K2 ¼ �6. Then,

V sð Þ ¼ 2s2 þ 30sþ 136

s s2 þ 9sþ 34ð Þ ¼
4

s
� 2sþ 6

s2 þ 9sþ 34
¼ 4

s
� 2 sþ 3ð Þ

sþ 3ð Þ2 þ 25

Taking the inverse Laplace transform gives

v tð Þ ¼l�1 4

s
� 2 sþ 3ð Þ

sþ 3ð Þ2 þ 25

" #
¼ 4� 2 e�3tcos 5tð Þ for � 0

which is indeed the equation representing the function shown in Figure 14.5-1.

E X A M P L E 1 4 . 6 - 1 Laplace Transforms of
Differential Equations

Find vC tð Þ for the circuit shown in Figure 14.6-1 when iL 0�ð Þ ¼ 0:5 A and vC 0�ð Þ ¼ 2:5 V.

+
–

R1 = 15Ω L= 2.5 H 

vC(t)

+

–

iL(t)

R2 = 5 Ω C= 10 mF vi (t) =10 + 10u(t)

FIGURE 14.6-1 The circuit considered in Example 14.6-1.

Solution
Apply KCL at the top node of R2 to get

iL tð Þ ¼ vC tð Þ
R2
þ C

d vC tð Þ
dt

ð14:6-1Þ

Try it 
yourself 

in WileyPLUS
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14.7 C i r c u i t A n a l y s i s U s i n g Im p e d a n c e
a n d I n i t i a l C o n d i t i o n s

We have seen that we can represent a circuit in the time domain by differential equations and then use
the Laplace transform to transform the differential equations into algebraic equations. In this section, we
will see that we can represent a circuit in the frequency domain, using the Laplace transform, and then
analyze it using algebraic equations. This method will eliminate the need to write differential equations
to represent the circuit.

The v–i relationship for the resistor is Ohm’s law:

v tð Þ ¼ i tð ÞR ð14:7-1Þ
Therefore, the Laplace transform relationship for a resistor R is

V sð Þ ¼ I sð ÞR ð14:7-2Þ

Apply KVL to the left mesh to get

v1 tð Þ ¼ R1iL tð Þ þ L
diL tð Þ

dt
þ vC tð Þ ð14:6-2Þ

Recall this Laplace transform property from Table 14.2-2:

df

dt
$ sF sð Þ � f 0�ð Þ

Take the Laplace transform of both sides of Eq. 14.6-1 to get

IL sð Þ ¼ VC sð Þ
R2
þ C VC sð Þ � vC 0�ð Þð Þ ð14:6-3Þ

Take the Laplace transform of both sides of Eq. 14.6-2 to get

V i sð Þ ¼ R1IL sð Þ þ L IL sð Þ � iL 0�ð Þð Þ þ VC sð Þ ð14:6-4Þ
Substitute the expression for IL sð Þ from Eq. 14.6-3 into Eq. 14.6-4 and simplify to get

V i sð Þ ¼ LCs2 þ L

R2
þ R1C

� �
sþ 1þ R1

R2

� �
VC sð Þ � LCsþ R1Cð ÞvC 0�ð Þ � LiL 0�ð Þ ð14:6-5Þ

Noticing that vi ¼ 20 V for t > 0, we determine V i sð Þ ¼l 20½ � ¼ 20
s

. Then, using the given values of the initial
conditions and of the circuit parameters, we obtain

20

s
¼ s2 þ 26sþ 160
� �

VC sð Þ � sþ 6ð Þ 2:5ð Þ � 2:5 0:5ð Þ
Solving for VC sð Þ gives

VC sð Þ ¼ 2:5s2 þ 65sþ 800

s s2 þ 26sþ 160ð Þ ¼
2:5s2 þ 65sþ 800

s sþ 10ð Þ sþ 16ð Þ
Performing partial fraction expansion gives

VC sð Þ ¼ 2:5s2 þ 65sþ 800

s sþ 10ð Þ sþ 16ð Þ ¼
5

s
þ 4:17

sþ 16
� 6:67

sþ 10

Taking the inverse Laplace transform gives

vC tð Þ ¼ 5þ 4:17e�16t � 6:67e�10t V for t > 0
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Figure 14.7.1 shows the representation of the resistor in (a) the time domain and (b) the
complex frequency domain, using the Laplace transform. As the above equations suggest, the
time- and complex frequency-domain representations of the resistor are very similar.

The impedance of an element is defined to be

Z sð Þ ¼ V sð Þ
I sð Þ ð14:7-3Þ

provided all initial conditions are zero. Notice that the impedance is defined in the complex
frequency domain, not in the time domain.

In the case of the resistor, there is no initial condition to set to zero. Comparing
Eqs. 14.7-1 and 14.7-2 shows that the impedance of the resistor is equal to the resistance.

A capacitor is represented by its time-domain equation

v tð Þ ¼ 1

C

Z t

0
i tð Þdtþ v 0ð Þ ð14:7-4Þ

The Laplace transform of Eq. 14.7-4 is

V sð Þ ¼ 1

Cs
I sð Þ þ v 0ð Þ

s
ð14:7-5Þ

To determine the impedance of the capacitor, set the initial condition v(0) to zero. Then, using
Eq. 14.7-3, we obtain

ZC sð Þ ¼ 1

Cs

as the impedance of the capacitor.
Equation 14.7-5 is used to represent the capacitor in the complex frequency domain, as shown in

Figure 14.7-2b. The series connection of elements in Figure 14.7-2b corresponds to the sum of voltages
in Eq. 14.7-5. The current through the impedance in Figure 14.7-2b produces the first voltage on the
right side of Eq. 14.7-5, whereas the voltage source in Figure 14.7-2b supplies the second voltage on the
right side of Eq. 14.7-5.

Solving Eq. 14.7-5 for I(s) gives

I sð Þ ¼ CsV sð Þ � Cv 0ð Þ ð14:7-6Þ

Equation 14.7-6 represents the capacitor in the complex frequency domain, as shown in Figure
14.7-2c. The parallel connection of elements in Figure 14.7-2c corresponds to the sum of currents
in Eq. 14.7-6. The voltage across the impedance in Figure 14.7-2b produces the first current on the

v(t)

i(t)

–

+

(a)

V(s)

I(s)

–

+

(b)

R R

FIGURE 14.7-1 A
resistor represented
(a) in the time domain
and (b) in the frequency
domain using the
Laplace transform.

+
–

1
V(s)Cs

–

+

I(s)

V(s)

I(s)

–

+

(b) (c)

Cv(0)
v(0)

1
Cs

s

v(t)

i(t)

–

+

(a)

C

FIGURE 14.7-2 A capacitor represented (a) in the time domain and (b) in the complex frequency domain, using the
Laplace transform. (c) An alternate frequency-domain representation.
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right side of Eq. 14.7-6, whereas the current source in Figure 14.7-2b supplies the current on the
right side of Eq. 14.7-6. Notice that the reference direction for the current source in Figure 14.7-2b
was chosen to correspond to the minus sign in Eq. 14.7-6.

An inductor is represented by its time-domain equation,

v tð Þ ¼ L
d

dt
i tð Þ ð14:7-7Þ

The Laplace transform of Eq. 14.7-7 is

V sð Þ ¼ LsI sð Þ � Li 0ð Þ ð14:7-8Þ

To determine the impedance of the inductor, set the initial condition i(0) to zero. Then, using
Eq. 14.7-3, we obtain

ZL sð Þ ¼ Ls

as the impedance of the inductor.
Equation 14.7-8 represents the inductor in the complex frequency domain, as shown in Figure

14.7-3b. The series connection of elements in Figure 14.7-3b corresponds to the sum of voltages in
Eq. 14.7-8.

Solving Eq. 14.7-8 for I(s) gives

I sð Þ ¼ 1

Ls
V sð Þ þ i 0ð Þ

s
ð14:7-9Þ

Equation 14.7-9 represents the inductor in the complex frequency domain, as shown in Figure
14.7-3c. The parallel connection of elements in Figure 14.7-3c corresponds to the sum of currents
in Eq. 14.7-9.

Table 14.7-1 tabulates the time- and frequency-domain representation of circuit elements. In
addition to resistors, capacitors, and inductors, Table 14.7-1 shows the frequency-domain representa-
tions of independent and dependent sources and of op amps. Independent sources are specified by
functions of time, i(t) and v(t), in the time domain and by the corresponding Laplace transforms, I(s) and
V(s), in the complex frequency domain. Dependent sources and op amps operate the same way in the
frequency domain as they do in the time domain.

To represent a circuit in the complex frequency domain, we replace the time-domain represen-
tation of each circuit element by its complex frequency-domain representation.

To find the complete response of a linear circuit, we first represent the circuit in the complex
frequency domain, using the Laplace transform. Next, we analyze the circuit, perhaps by writing
mesh or node equations. Finally, we use the inverse Laplace transform to represent the response in
the time domain.

+
–

V(s)

–

+

I(s)

V(s)

I(s)

–

+

(b) (c)

Li(0)

Ls

Lsv(t)

i(t)

–

+

(a)

L
i(0)

s

FIGURE 14.7-3 An inductor represented (a) in the time domain and (b) in the complex frequency domain, using the
Laplace transform. (c) An alternate frequency-domain representation.
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Table 14.7-1 Time-Domain and Complex Frequency-Domain Representations of Circuit Elements

NAME TIME DOMAIN FREQUENCY DOMAIN

Current source v(t) i(t)

–

+

V(s) I(s)

–

+

Voltage source +
–v(t)

i(t)

+
–V(s)

I(s)

Resistor

i(t)

R

–

+

v(t) V(s)

I(s)

–

+

R

Capacitor v(t)

i(t)

–

+

C
+
–

1
V(s)Cs

–

+

I(s)

V(s)

I(s)

–

+

Cv(0)
v(0)

1
Cs

s

or

Inductor v(t)

i(t)

–

+

L

+
–

V(s)

–

+

I(s)

V(s)

I(s)

–

+

i(0)

Li(0)

Ls

Ls sor

Dependent source

i(t)

v(t) = Kic(t)ic(t)
+

–

I(s)

V(s) = KIc(s)Ic(s)
+

–

Op amp

–

+

i(t)

v(t)

–

+

0 A

0 A

0 V
+

–

–

+

I(s)

V(s)

–

+

0 A

0 A

0 V
+

–
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E X A M P L E 1 4 . 7 - 1 Circuit Analysis
Using the Laplace
Transform

INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 14.7-4. The input to the circuit is the voltage of the voltage source 24 V.
The output of this circuit, the voltage across the capacitor, is given by

vo tð Þ ¼ 16� 12e�0:6t V when t > 0 ð14:7-10Þ

Determine the value of the capacitance C.

Solution
Before the switch closes, the circuit will be at steady state. Because the only input to this circuit is the constant
voltage of the voltage source, all of the element currents and voltages, including the capacitor voltage, will have
constant values. Closing the switch disturbs the circuit by shorting out the 18-V resistor. Eventually, the
disturbance dies out and the circuit is again at steady state. All the element currents and voltages will again
have constant values but, probably, different constant values than they had before the switch closed.

During the disturbance, the element voltages and currents are not constant. For example, Eq. 14.7-10
describes the capacitor voltage after the switch closes. Notice that there are two parts to the capacitor voltage. One
part, 12 e�0.6t, dies out as the value of t increases. That part is called the transient part of the response, or just the
transient response. The other part, 16, does not die out and is the steady-state response. The sum of the transient
response and the steady-state response is called the complete response. The output voltage described by
Eq. 14.7-10 is a complete response of this circuit.

Figure 14.7-5 shows a plot of the capacitor voltage given by Eq. 14.7-10. Notice that the capacitor voltage is
continuous. This is expected because, in the absence of unbounded currents, the voltage of a capacitor must be
continuous. In particular, the value of the capacitor voltage immediately after the switch is closed is equal to the
value immediately before the switch is closed. From Figure 14.7-5, we see that at time t ¼ 0, when the switch
closes, the value of the capacitor voltage is vo 0ð Þ ¼ 4 V.

How does the value of the capacitance C affect the capacitor voltage? To answer this question, we must
analyze the circuit. Because we want to determine the complete response, we will analyze the circuit using Laplace
transforms. Figure 14.7-6 shows the frequency-domain representation of the circuit. The closed switch is
represented by a short circuit. That short circuit is connected in parallel with the 18-V resistor. A short circuit
in parallel with a resistor is equivalent to a short circuit, so the closed switch and 18-V resistor have been replaced
by a single short circuit. The frequency-domain model of the capacitor consists of two parts, an impedance and a

+
–

vo(t)

+

–2 Ω

18 Ω
4 Ω C

t = 0

24 V

FIGURE 14.7-4 The circuit considered in Example 14.7-1.

vo(t), V

t (s)2 4 6 8

4

8

12

16

FIGURE 14.7-5 The capacitor voltage vo(t) from the circuit
shown in Figure 14.7-4.
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voltage source. The voltage of the voltage source depends on the
initial condition of the capacitor, that is, vo 0ð Þ ¼ 4 V.

We can analyze the circuit in Figure 14.7-6 by writing and
solving two mesh equations.

Apply KVL to the left mesh to get

4 I1 sð Þ � I2 sð Þð Þ þ 2I1 sð Þ � 24

s
¼ 0

Solving for I1(s) gives

I1 sð Þ ¼ 2

3
I2 sð Þ þ 4

s
ð14:7-11Þ

Apply KVL to the right mesh to get

1

Cs
I2 sð Þ þ 4

s
� 4 I1 sð Þ � I2 sð Þð Þ ¼ 0

Collecting the terms involving I2(s) gives

1

Cs
þ 4

� �
I2 sð Þ ¼ � 4

s
þ 4I1 sð Þ

Substituting the expression for I1(s) from Eq. 14.7-11 gives

1

Cs
þ 4

� �
I2 sð Þ ¼ � 4

s
þ 4

2

3
I2 sð Þ þ 4

s

� �
¼ 12

s
þ 8

3
I2 sð Þ

Collecting the terms involving I2(s) gives

1

Cs
þ 4

3

� �
I2 sð Þ ¼ 12

s

Multiply both sides of this equation by
3
4

s to get

sþ 3

4C

� �
I2 sð Þ ¼ 9

Solving for I2(s) gives

I2 sð Þ ¼ 9

sþ 3

4C

ð14:7-12Þ

Referring to Figure 14.7-6, we see that the capacitor voltage is related to the mesh current of the right mesh by

Vo sð Þ ¼ 1

Cs
I2 sð Þ þ 4

s

Substituting the expression for I2(s) from Eq. 14.7-12 gives

Vo sð Þ ¼ 1

Cs

� �
9

sþ 3

4C

þ 4

s
¼

9

C

s sþ 3

4C

� �þ 4

s

+
–

+
–

24
s

1
Cs

4
s

Vo(s)

+

–

4 Ω

2 Ω

V I1(s) I2(s)

FIGURE 14.7-6 The circuit represented in the
frequency domain, using the Laplace
transform.
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Performing partial fraction expansion gives

Vo sð Þ ¼ 12

s
� 12

sþ 3

4C

þ 4

s
¼ 16

s
� 12

sþ 3

4C

ð14:7-13Þ

Recall that vo(t) is given in Eq. 14.7-10. Taking the Laplace transform of vo(t) gives

Vo sð Þ ¼l vo tð Þ½ � ¼l 16� 12e�0:6t
� �

u tð Þ� � ¼ 16

s
� 12

sþ 0:6
ð14:7-14Þ

Comparing Eqs. 14.7-13 and 14.7-14 shows that

0:6 ¼ 3

4C
) C ¼ 1:25 F

E X A M P L E 1 4 . 7 - 2 Circuit Analysis
Using the Laplace
Transform

INTERACT IVE EXAMPLE

Consider the circuit shown in Figure 14.7-7. The input to the circuit is
the voltage of the voltage source, 24 V. The output of this circuit, the
voltage across the 6-V resistor, is given by

vo tð Þ ¼ 12� 6 e�0:35t V when t > 0 ð14:7-15Þ

Determine the value of the inductance L and of the resistances
R1 and R2.

Solution
Before the switch closes, the circuit will be at steady state. Because the only input to this circuit is the
constant voltage of the voltage source, all of the element currents and voltages, including the inductor
current, will have constant values. Closing the switch disturbs the circuit by shorting out the resistor R1.
Eventually, the disturbance dies out and the circuit is again at steady state. All the element currents and
voltages will again have constant values but, probably, different constant values than they had before the switch
closed.

Equation 14.7-15 describes the output voltage after the switch closes. Notice that there are two parts to this
voltage. One part, �6 e�0.35t, dies out as the value of t increases. That part is called the transient part of the
response, or just the transient response. The other part, 12, does not die out and is the steady-state response. The
sum of the transient response and the steady-state response is called the complete response. The output voltage
described by Eq. 14.7-15 is the complete response of this circuit.

How do the values of the circuit parameters L, R1, and R2 affect the output voltage? To answer this question,
we must analyze the circuit. Because we want to determine the complete response, we will analyze using Laplace
transforms. The frequency-domain model of the inductor consists of two parts, an impedance and a voltage or
current source. The value of the voltage source voltage or current source current depends on the initial condition of
the inductor, that is, the inductor current at time t ¼ 0. We need to find the initial inductor current before we can
represent the circuit, using Laplace transforms.

+
–

vo(t)

i(t)

+

–

R1

L

R2

6 Ω

t = 0

24 V

FIGURE 14.7-7 The circuit considered in
Example 14.7-2.
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Referring to Figure 14.7-7, we see that the inductor current is equal to the current in the 6-V resistor.
Consequently,

i tð Þ ¼ v tð Þ
6
¼ 12� 6e�0:35t

6
¼ 2� e�0:35t A when t > 0 ð14:7-16Þ

In the absence of unbounded voltages, the current in any inductor is continuous. Consequently, the value of the
inductor current immediately before t ¼ 0 is equal to the value immediately after t ¼ 0. To find the initial inductor
current, we set t ¼ 0 in Eq. 14.7-16 to get i 0ð Þ ¼ 1 A.

Figure 14.7-8 shows the frequency-domain representation of the
circuit. We selected the model of the inductor that uses a voltage source to
account for the initial condition in anticipation of writing a mesh equation.
The voltage of this voltage source is

Li 0ð Þ ¼ Lð Þ 1ð Þ ¼ L

In Figure 14.7-8, the closed switch is represented by a short circuit. That
short circuit is connected in parallel with resistor R1. A short circuit in
parallel with a resistor is equivalent to a short circuit, so the closed switch
and R1 have been replaced by a single short circuit.

To analyze the circuit in Figure 14.7-8, we write and solve a single
mesh equation. Apply KVL to the mesh to get

R2 þ 6þ Lsð ÞI sð Þ ¼ Lþ 24

s

Solving for I sð Þ gives I sð Þ ¼
Lþ 24

s
Lsþ R2 þ 6

¼
sþ 24

L

s sþ R2 þ 6

L

� �

Using Ohm’s law gives Vo sð Þ ¼ 6I sð Þ ¼
6sþ 6ð Þ 24ð Þ

L

s sþ R2 þ 6

L

� �

Partial fraction expansion gives Vo sð Þ ¼
6ð Þ 24ð Þ
R2 þ 6

s
�
6 18� R2ð Þ

R2 þ 6

sþ R2 þ 6

L

ð14:7-17Þ

Recall that vo(t) is given in Eq. 14.7-15. Taking the Laplace transform of vo(t) gives

Vo sð Þ ¼l vo tð Þ½ � ¼l 12� 6 e�0:35t
� �

u tð Þ� � ¼ 12

s
� 6

sþ 0:35
ð14:7-18Þ

Comparing Eqs. 14.7-17 and 14.7-18 shows that

6ð Þ 24ð Þ
R2 þ 6

¼ 12 ) R2 ¼ 6V

and 0:35 ¼ R2 þ 6

L
¼ 12

L
) L ¼ 12

0:35
¼ 34:29 H

6 ΩV I(s)+
–

+ –

24
s

Ls L

R2

Vo(s)

+

–

FIGURE 14.7-8 The circuit represented in
the frequency domain, using the Laplace
transform.
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How can we find R1? Resistor R1 is removed from the circuit
by closing the switch, but R1 was part of the circuit before the switch
closed. The initial inductor current depends on the value of the
resistance R1. The only input to the circuit in Figure 14.7-9 is a
constant, 24 V. Consequently, when the circuit is at steady state, the
inductor will act like a short circuit. Figure 14.7-9 shows the steady-
state circuit when the switch is open. The open switch is modeled as
an open circuit. The inductor is modeled as short circuit. Writing and
solving a mesh equation gives

i tð Þ ¼ 24

R1 þ 6þ 6

Letting t ¼ 0 gives

24

R1 þ 6þ 6
¼ i 0ð Þ ¼ 1 ) R1 ¼ 12V

+
–

vo(t)

i(t)

+

–

R1

6 Ω
6 Ω

24 V

FIGURE 14.7-9 The circuit at steady state
before the switch closes.

E X A M P L E 1 4 . 7 - 3 Circuit Analysis Using
the Laplace Transform

Consider the circuit shown in Figure 14.7-10a. The input to the circuit is the voltage of the voltage source 12 V.
The output of this circuit is the current in the inductor iL(t). Determine the current in the inductor iL(t), for t > 0.

Solution
Let’s write and solve mesh equations. The series circuits that represent the capacitor and inductor in the frequency
domain contain voltage sources rather than current sources. It’s easier to account for voltage sources than current
sources when writing mesh equations, so we choose the series representation for both the capacitor and inductor.
From Figure 14.7-10b, the initial conditions are vc 0ð Þ ¼ 8 V and iL(0) ¼ 4 A. Figure 14.7-11b shows the
frequency-domain representation of the circuit.

The mesh current equations are

1þ 1

s

� �
I1 sð Þ � 1

s
I2 sð Þ ¼ 12

s
� 8

s

and � 1

s
I1 sð Þ þ 1þ sþ 1

s

� �
I2 sð Þ ¼ 4þ 8

s

Solving for I2(s), we obtain

I2 sð Þ ¼ 4 s2 þ 3sþ 3ð Þ
s s2 þ 2sþ 2ð Þ

The convenient partial fraction expansion is

I2 sð Þ
4
¼ s2 þ 3sþ 3

s s2 þ 2sþ 2ð Þ ¼
A

s
þ Bsþ D

s2 þ 2sþ 2
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Then, we determine that A ¼ 1:5; B ¼ �0:5; and D ¼ 0. Then, we can state

I2 sð Þ
4
¼ 1:5

s
þ �0:5s

sþ 1ð Þ2 þ 1
Using the Laplace transform Table 14.2-1, we obtain

iL tð Þ ¼ i2 tð Þ ¼ f6þ 2
ffiffiffi
2
p

e�t sin t � 45�ð ÞgA for t > 0

Checking the initial value of i2, we get i2 0ð Þ ¼ iL 0ð Þ ¼ 4 A, which verifies the correct initial value. The final value
is i2 1ð Þ ¼ 6 A.

+
–

(a)

vc(t)

iL(t)

+

–

1 Ω 1 Ω

1 Ω

t = 0

12 V 1 F 1 H

+
–

(b)

iL(0)

1 Ω 1 Ω 1 Ω

12 V vc(0)
+

–

FIGURE 14.7-10 (a) The circuit considered in Example 14.7-3. (b) The steady-state circuit before the switch closes.

+
– 1 F12 V 1 Hi2i1

1 Ω 1 Ω

+
–

+
– –

+ 4

1 s

I2(s)I1(s)

1 Ω 1 Ω

12
s 8

s

1
s

(a)

(b)

FIGURE 14.7-11 (a) Circuit with mesh currents. (b) Laplace transform model of circuit.

E X A M P L E 1 4 . 7 - 4 Circuit Analysis Using the Laplace Transform

The switch in the circuit shown in Figure 14.7-12a closes at time t ¼ 0. Determine the voltage v(t) after the switch
closes.

V(s)

–

+
+
–V

2 Ω

2s Ω Ω2
s

8
s

12
s A

(b)

v(t)

–

+
+
– 2 H 0.125 F12 V

2 Ω4 Ω

t = 0

(a)

i(t)

FIGURE 14.7-12 The circuit of Example 14.7-4 represented in the (a) time domain and (b) frequency domain, using Laplace
transforms.
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EXERCISE 14.7-1 Determine the voltage vC(t) and the current iC(t)
for t � 0 for the circuit of Figure E 14.7-1.
Hint: vC 0ð Þ ¼ 4 V

Answer: vC tð Þ ¼ 6� 2e�0:67t
� �

u tð ÞV and iC tð Þ ¼ 2
3

e�0:67tu tð ÞA

14.8 T r a n s f e r F u n c t i o n a n d Im p e d a n c e

The transfer function of a circuit is defined as the ratio of the Laplace transform of the
response of the circuit to the Laplace transform of the input to the circuit when the initial
conditions are zero.

For the circuit in Figure 14.8-1a, the input is the voltage source voltage v1(t), and the response is the
resistor voltage vo(t). The transfer function of this circuit, denoted by H(s), is then expressed as

H sð Þ ¼ Vo sð Þ
V1 sð Þ ð14:8-1Þ

provided all initial conditions are equal to zero. In this case, the only initial condition is the inductor
current, so we require i 0ð Þ ¼ 0.

Ls

R
+
–

+

–
I(s)

V1(s) Vo(s)

a

b

(b)

+
–v1(t) vo(t)

i(t)

L

R

a

b

+

–

(a)

FIGURE 14.8-1 A circuit
represented (a) in the time domain
and (b) in the frequency domain,
using the Laplace transform.

Solution
Let’s write and solve node equations. In the frequency domain, we will use the parallel model for the capacitor and
inductor because the parallel models contain current sources rather than voltage sources. The initial conditions are
i 0ð Þ ¼ 2 A and v 0ð Þ ¼ 0 V. Because v 0ð Þ ¼ 0, the current of the current source in the frequency-domain
representation of the capacitor is zero. A zero current source is equivalent to an open circuit. Figure 14.7-12b
shows the frequency-domain representation of the circuit after the switch has closed.

Apply KCL at the top node of the inductor to get the node equation

V sð Þ � 12

s
2

þ V sð Þ
2s
þ 2

s
þ V sð Þ

8

s

¼ 0

Solving for V sð Þ gives V sð Þ ¼ 32

s2 þ 4sþ 4
¼ 32

sþ 2ð Þ2

Finally, take the inverse Laplace transform to obtain v(t)

v tð Þ ¼l�1 32

sþ 2ð Þ2
" #

¼ 32te�2tu tð ÞV

vC(t)

iC(t)

–

+

3 Ω

6 Ω

2 A 0.5 F

t = 0

FIGURE E 14.7-1
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We can write Eq. 14.8-1 as

Vo sð Þ ¼ H sð ÞV1 sð Þ ð14:8-2Þ
which says that the Laplace transform of the response is equal to the transfer function times the Laplace
transform of the input, provided all initial conditions are equal to zero. We are going to get tired of
saying “provided all initial conditions are equal to zero.” A response subject to the requirement that all
initial conditions be zero is called a zero-state response. With this terminology, we can read Eq. 14.8-1
as “the transfer function is the ratio of the Laplace transform of the zero-state response to the Laplace
transform of the input.” Similarly, we can read Eq. 14.8-2 as “the Laplace transform of the zero-state
response is the product of the transfer function and the Laplace transform of the input.”

Two special cases are very significant. When the input is a unit step function, then

V1 sð Þ ¼l u tð Þ½ � ¼ 1

s
and Eq. 14.8-2 becomes

Vo sð Þ ¼ H sð Þ
s

In this case, the zero-state response is called the step response, that is,

step response ¼l�1 H sð Þ
s

	 

ð14:8-3Þ

When the input is an impulse function, then

V1 sð Þ ¼l d tð Þ½ � ¼ 1

and Eq. 14.8-2 becomes
Vo sð Þ ¼ H sð Þ

In this case, the zero-state response is called the impulse response, that is,

impulse response ¼l�1 H sð Þ½ � ð14:8-4Þ
It is important to notice that both the step response and the impulse response are zero-state responses;
that is, all initial conditions are set to zero.

Both the input to a circuit and the response of the circuit can be either a current or a voltage. When
the input is a current and the response is a voltage, the transfer function is called an impedance.
Similarly, when the input is a voltage and the response is a current, the transfer function is called an
admittance. This terminology is consistent with our previous use of the term impedance. For example,
consider the row of Table 14.7-1 corresponding to the capacitor. Consider the frequency-domain
representation of the capacitor that contains a voltage source. The restriction that the initial condition be
zero, v 0ð Þ ¼ 0, causes the voltage source to be a zero voltage source, that is, a short circuit. The
frequency-domain representation of the capacitor is reduced to a single element. When capacitor current
is the input and the capacitor voltage is the response, then the impedance of the capacitor is

ZC sð Þ ¼ V sð Þ
I sð Þ ¼

1

Cs
ð14:8-5Þ

Next, consider the frequency-domain representation of the capacitor that contains a current source. The
restriction that the initial condition be zero, v 0ð Þ ¼ 0, causes the current source to be a zero current source, that
is, an open circuit. The frequency-domain representation of the capacitor is again reduced to a single element.
Once again, the impedance of the capacitor is given by Eq. 14.8-5.

A similar argument shows that setting the initial conditions to zero simplifies the frequency-
domain representation of the inductor to the single impedance,

ZL sð Þ ¼ Ls ð14:8-6Þ
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E X A M P L E 1 4 . 8 - 1 Transfer Function and Step Response

The input to the circuit shown in Figure 14.8-2 is the voltage vi (t), and the output is the voltage vo (t). Determine the
step response of the circuit shown in Figure 14.8-2.

+
–

+

–

100 mH

vi(t)

+

–

va(t)

+

–

vo(t)8va(t)10 Ω

10 kΩ

1 mF

FIGURE 14.8-2 The circuit considered in Example 14.8-1.

Solution
To find the step response, represent the circuit from Figure 14.8-2 in the complex frequency domain as shown in
Figure 14.8-3.

+
–

+

–

0.1 s  Ω

+

–

Va(s )

+

–

Vo(s )8Va(s ) s
106

10 kΩ

10 Ω Ω
s
1

V
FIGURE 14.8-3 The complex frequency domain circuit used to
calculate the step response.

Figure 14.8-3 takes advantage of the definition of the step response in two ways:

1. The input vi(t) is a step function, so V i sð Þ ¼l u tð Þ½ � ¼ 1
s

V.

2. The initial conditions are zero, so the capacitor and inductor are represented as impedances without the need for
voltage or current sources to account for initial conditions.

Next, using voltage division twice in Figure 14.8-3, we write

Vo sð Þ ¼
106

s
106

s
þ 104

8Va sð Þ and Va sð Þ ¼ 10

10þ 0:1s

1

s

� �

Combining these equations and doing a little bit of algebra gives

V o sð Þ ¼ 80000

sþ 100ð Þ2
1

s

� �
¼ 80000

s sþ 100ð Þ2

Performing a partial fraction expansion gives

V o sð Þ ¼ 80000

s sþ 100ð Þ2 ¼
8

s
þ 8

sþ 100ð Þ �
800

sþ 100ð Þ2

Finally, taking the inverse Laplace transform gives

v o tð Þ ¼ 8� 8 1þ 100 tð Þe�100 t
� �

u tð Þ
Alternate Solution
Instead of calculating the step response directly, we can first determine the transfer function of the circuit in
Figure 14.8-2 and then calculate step response from the transfer function using Eq. 14.8-3. To find the transfer
function, represent the circuit in the complex frequency domain as shown in Figure 14.8-4. (The circuit in
Figure 14.8-4 is similar to the circuit in Figure 14.8-3. The input voltages are labeled differently because we
haven’t assumed that vi(t) is a step function in Figure 14.8-4.)
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Using voltage division twice in Figure 14.8-4 and doing a little algebra, we determine the transfer function
to be

H sð Þ ¼ V o sð Þ
V i sð Þ ¼

80000

sþ 100ð Þ2

Now the step response is calculated from the transfer function using Eq. 14.8-3:

step response ¼l�1 H sð Þ
s

	 

¼l�1 80000

s sþ 100ð Þ2
" #

¼ 8� 8 1þ 100 tð Þe�100 t
� �

u tð Þ

E X A M P L E 1 4 . 8 - 2 Transfer Function and Step Response

The input to the circuit shown in Figure 14.8-5a is the voltage vi(t), and the output is the voltage vo(t). Design the
circuit shown in Figure 14.8-5a to have the step response

vo tð Þ ¼ 4� e�2t 4cos 4tð Þ � 2sin 4tð Þð Þ� �
u tð Þ

+
–

–

+

R1

R2

R

C

L

vi(t)

vo(t)

+
–

–

+

R1

R2

R

Vi(s)

Vo(s)

Cs
1

Ls

+

–

Va(s)

(b)(a)

FIGURE 14.8-5 The circuit
considered in Example 14.8-2
represented in (a) the time domain and
(b) the complex frequency domain.

Solution
We’ll attempt to solve this problem by finding the transfer function twice, once from the circuit and once from the
step response. Next, we’ll compare the two transfer functions and try to choose values for R, L, C, R1, and R2 that
cause the two transfer functions to be equal to each other.

We’ll begin by determining the transfer function of the circuit from Figure 14.8-5a. Since all the initial
conditions are set to zero when determining the transfer function, we represent the circuit from Figure 14.8-5a in
complex frequency domain as shown in Figure 14.8-5b.

Try it 
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+
–

+

–

0.1s  Ω

Vi(s)

+

–

Va(s)

+

–

Vo(s)8Va(s) s
106

10 kΩ

10 Ω Ω
FIGURE 14.8-4 The complex frequency domain circuit
used to calculate the transfer function.
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Using voltage division, we write

Va sð Þ ¼
Rþ 1

Cs

Lsþ Rþ 1

Cs

V i sð Þ ¼
R

L
sþ 1

LC

s2 þ R

L
sþ 1

LC

Vi sð Þ ð14:8-7Þ

Recognizing the combination of R1, R2 and the op amp as an noninverting amplifier, we write

Vo sð Þ ¼ 1þ R 2

R1

� �
Va sð Þ ð14:8-8Þ

Combining Eqs. 14.8-7 and 14.8-8 provides the transfer function:

H sð Þ ¼ Vo sð Þ
V1 sð Þ ¼ 1þ R 2

R1

� � R

L
sþ 1

LC

s2 þ R

L
sþ 1

LC

ð14:8-9Þ

Next, using Eq. 14.8-3, we calculate the transfer function from the given step response:

H sð Þ
s
¼ l 4� e�2t 4 cos 4tð Þ � 2 sin 4tð Þð Þ½ �

¼ 4

s
� 4

s

s2 þ 16
� 2

4

s2 þ 16

	 

s sþ2

¼ 4

s
� 4

sþ 2

sþ 2ð Þ2 þ 16
� 8

sþ 2ð Þ2 þ 16

" #
¼ 4

s
� 4s

s2 þ 4sþ 20
¼ 16sþ 80

s s2 þ 4sþ 20ð Þ
Finally,

H sð Þ ¼ 16sþ 80

s2 þ 4sþ 20
ð14:8-10Þ

Comparing Eqs. 14.8-9 and 14.8-10, we see that the two transfer functions will be equal to each other when

R

L
¼ 4,

1

LC
¼ 20, and 1þ R 2

R1

� �
¼ 4

These equations do not have a unique solution. One solution is

L ¼ 0:5 H, C ¼ 0:1 F, R ¼ 2 V, R1 ¼ 10 kV, and R2 ¼ 30 kV

E X A M P L E 1 4 . 8 - 3 Transfer Function and Step Response

The input to the circuit shown in Figure P 14.8-6a is the voltage vi(t) and the output is the voltage vo(t). Design the
circuit shown in Figure 14.8-6a to have the step response

vo tð Þ ¼ 1� 104t þ 1
� �

e�10,000t
� �

u tð Þ V

+
–

vo

+

–

vi

R

i
9i C

L

+
–

Vo

+

–

Vi

R

I
9I

Ls

Cs
1

10I

(b)(a)

FIGURE 14.8-6 The circuit
considered in Example 14.8-3
represented in (a) the time
domain and (b) the complex
frequency domain.
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Solution
As in Example 14.8-2, we’ll find the transfer function twice, once from the circuit and once from the step response.
We’ll compare the two transfer functions and try to chose values for R, L and C that cause the two transfer functions
to be equal to each other.

We’ll begin by determining the transfer function of the circuit from Figure 14.8-6a. Since all the initial
conditions are set to zero when determining the transfer function, we represent the circuit from Figure 14.8-6a in
complex frequency domain as shown in Figure 14.8-6b.

We’ve already used KCL in Figure 14.8-6b to express the current in the impedance of the capacitor as 10I.
Now applying KVL to the outside loop, we write

V i ¼ L s I þ R I þ 1

Cs
10 Ið Þ ) I ¼ 1

L sþ Rþ 10

Cs

V i ð14:8-11Þ

The voltage and current of the impedance of the capacitor are related by

Vo ¼ 1

Cs
10 Ið Þ ð14:8-12Þ

The transfer function is H ¼ Vo

V i
¼

10

C s

Lsþ Rþ 10

Cs

¼
10

C L

s2 þ R

L
sþ 10

C L

ð14:8-13Þ

Next, using Eq. 14.8-3, we calculate the transfer function from the given step response:

H

s
¼ l 1� 104t þ 1

� �
e�10,000t

� �

¼ 1

s
� 1

s
þ 104

s2

	 

s sþ10,000

¼ 1

s
þ �1

sþ 10,000
þ �104

sþ 10,000ð Þ2

¼ 1 sþ 10,000ð Þ2 � 1s sþ 10,000ð Þ � 104

s sþ 10,000ð Þ2 ¼ 108

s sþ 10,000ð Þ2

ð14:8-14Þ

Finally H ¼ 108

s2 þ 20,000þ 108
ð14:8-15Þ

Equating transfer functions in Eqs. 14.8-13 and 14.8-14 gives
10

C L

s2 þ R

L
sþ 10

C L

¼ 108

s2 þ 20,000þ 108
ð14:8-16Þ

Eq:14:8-16 requires
R

L
¼ 20,000 and

10

C L
¼ 108 ð14:8-17Þ

These equations don’t have a unique solution. One solution is

R ¼ 200 V, L ¼ 10 mH and C ¼ 10 mF
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EXERCISE 14.8-1 The transfer function of a circuit is H sð Þ ¼ �5s

s2 þ 15sþ 50
. Determine the

impulse response and step response of this circuit.

Answers: (a) impulse response ¼l�1 5
sþ 5

� 10
sþ 10

	 

¼ 5e�5t � 10e�10t
� �

u tð Þ

(b) step response ¼l�1 1
sþ 10

� 1
sþ 5

	 

¼ e�10t � e�5t
� �

u tð Þ

EXERCISE 14.8-2 The impulse response of a circuit is h tð Þ ¼ 5e�2t sin 4tð Þu tð Þ. Determine the
step response of this circuit.

Hint: H sð Þ ¼l 5e�2t sin 4tð Þu tð Þ½ � ¼ 5 4ð Þ
sþ 2ð Þ2 þ 42

¼ 20
s2 þ 4sþ 20

Answer: step response ¼ l�1 H sð Þ
s

	 

¼l�1 1

s
� sþ 4

s2 þ 4sþ 20

	 


¼ 1� e�2t cos 4t þ 1
2

sin 4t

� �� �
u tð Þ

14.9 C o n v o l u t i o n

In this section, we consider the problem of determining the response of a
linear, time-invariant circuit to an arbitrary input, x tð Þ. This situation is
illustrated in Figure 14.9-1, in which x tð Þ is the input to the circuit, y tð Þ is the
output of the circuit, and h tð Þ is the impulse response of the circuit. We will
assume that x tð Þ ¼ 0 when t < 0 because t ¼ 0 is the time at which the input
is first applied to the circuit and that h tð Þ ¼ 0 when t < 0 because the impulse
response cannot precede the impulse that caused it.

It’s important to us that the circuit is both linear and time-invariant. To see why, let’s use the
notation

x tð Þ ! y tð Þ
to indicate that the input x tð Þ causes the output y tð Þ. Let k be any constant. Because the circuit is linear,

k x tð Þ ! k y tð Þ

(Suppose k ¼ 2. The input 2x tð Þ is twice as large as the input x tð Þ, and it causes an output twice as large as the
output caused by x tð Þ.) Next, let t any constant. Because the circuit is time-invariant,

x t � tð Þ ! y t � tð Þ

(Suppose t ¼ 4 s. The input x t� 4ð Þ is delayed by 4 s with respect to x tð Þ and causes an output that is
delayed by 4 s with respect to y tð Þ.) Because the circuit is both linear and time-invariant, we have

k x t � tð Þ ! k y t � tð Þ

Next, we use the fact that h tð Þ is the impulse response of the circuit. Consequently, when the input to the
circuit is x tð Þ ¼ d tð Þ, the output is y tð Þ ¼ h tð Þ. That is,

y(t)h(t)x(t)

FIGURE 14.9-1
A linear, time-invariant
circuit.
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d tð Þ ! h tð Þ

Finally; k d t � tð Þ ! k h t � tð Þ ð14:9-1Þ
Consider the arbitrary input waveform x tð Þ shown in Figure 14.9-2(a). This waveform can be

approximated by a series of pulses as shown in Figure 14.9-2(b). The times, t1; t2; t3; . . . are uniformly
spaced, that is,

tiþ1 ¼ ti þ Dt for i ¼ 1; 2; 3; . . .

where the increment Dt is independent of the index i. The error in the approximation is small when the
increment Dt is chosen to be small.

Figure 14.9-3(a) shows one of the pulses from the approximation of the input waveform. Notice
that the area of the pulse is x tið ÞDt. When the time increment Dt is chosen to be small, this pulse can be
approximated by the impulse function having the same area, x tið ÞDtd t � tið Þ. That impulse function is
illustrated in Figure 14.9-3(b).

The input waveform is represented by the sum of the impulse functions approximating the pulses
in Figure 14.9-2(b),

x tð Þ ¼
X1
i¼0

x tið ÞDtd t � tið Þ ð14:9-2Þ

Because the circuit is linear, the response to this sum of impulse inputs is equal to the sum of the
responses to the responses to the individual impulse inputs. From Eq. 4.9-1, the responses to the
individual impulses inputs are given by

x(t)

t
τi τi + Δτ

(a)

x(τi)

x(t)

t
τi

(b)

Δτ x(τi)

FIGURE 14.9-3 (a) A pulse from the approximation of an input waveform and (b) the corresponding impulse.
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x(t)

t

x(t)

t
τ1 τ2 τ3 τ4 τ5 τ6 τ7

(a) (b)

FIGURE 14.9-2 The arbitrary input waveform shown in (a) can be approximated, a sequence of pulses as
shown in (b).



x tið ÞDtð Þd t � tið Þ ! x tið ÞDtð Þh t � tið Þ for i ¼ 0; 1; 2; 3; . . .

The response of the circuit is

y tð Þ ¼
X1
i¼0

x tið ÞDt h t � tið Þ ¼
X1
i¼0

x tið Þh t � tið ÞDt ð14:9-3Þ

In the limit as Dt goes to zero, the summation becomes an integral, and we have

y tð Þ ¼
Z 1
0

x tð Þh t � tð Þdt ð14:9-4Þ

The integral on the right side of Equation 14.9-4 is called the convolution integral and is denoted as
x tð Þ�h tð Þ. That is,

y tð Þ ¼ x tð Þ�h tð Þ ð14:9-5Þ
Equation 14.9-5 indicates that the output of the linear circuit in Figure 14.9-1 can be obtained as the
convolution of the input and the impulse response.

MATLAB provides a function called conv that performs convolution. The next example uses this
MATLAB function to obtain a plot of the output of a linear, time-invariant circuit.

E X A M P L E 1 4 . 9 - 1 Convolution

Plot the output y tð Þ for the circuit shown in Figure 14.9-1 when the input x tð Þ
is the triangular waveform shown in Figure 14.9-4 and the impulse response
of the circuit is

h tð Þ ¼ 5

4
e�t � e�5t
� �

u tð Þ

Solution
Figure 14-9.5 shows a MATLAB script that produces the required plot.
The comments included in the MATLAB script indicate that the problem is
solved in four steps:

1. Obtain a list of equally spaced instants of time.

2. Obtain the input x tð Þ and the impulse response h tð Þ.
3. Perform the convolution.

4. Plot the output y tð Þ.
A couple of remarks are helpful for understanding the MATLAB script. First, using the equations of the straight
lines that comprise the triangular input waveform, we can write

x tð Þ ¼

0 when t 	 2

4t � 8 when 2 	 t 	 5

�4t þ 42 when 5 	 t 	 7

0 when t � 7

8>>><
>>>:

x (t)

t

2 5 7

12

FIGURE 14.9-4 The input for
Example 14.9-1.

708 14. The Laplace Transform



This equation is implemented by an “if-then-else” block in the MATLAB script. For any time, ti, this equation
produces the corresponding value x tið Þ. From Eq. 14.9-2, we see that the strengths of the impulse inputs are x tið ÞDt
rather than x tið Þ. It is necessary to multiply the values x tið Þ by the time increment, and that is accomplished by the
line “x = x�dt” in the MATLAB script.
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��
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��
���	&	2�&�)���"	�&	'''
��
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������&5	5'
������&5�&	'5'

FIGURE 14.9-5 The MATLAB script for Example 14.9-1.
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14.10 S t a b i l i t y

A circuit is said to be stable when the response to a bounded input signal is a bounded output
signal. A circuit that is not stable is said to be unstable.

Producing a bounded response to a bounded input is pretty reasonable behavior. As a general rule of
thumb, stable circuits are potentially useful, and unstable circuits are potentially dangerous. When we
analyze a circuit to see whether it is stable, we are probably trying to do one of two things. First, we may
be checking a circuit to see whether it is useful. We will reject the circuit if it is unstable. Second, we
may be trying to specify values of the circuit parameters in such a way as to make the circuit stable.

Consider a circuit represented by the transfer function H(s). Factoring the denominator of the
transfer function gives

H sð Þ ¼ N sð Þ
s� p1ð Þ s� p2ð Þ � � � s� pNð Þ

The pi are the poles of the transfer function, also called the poles of the circuit. The poles may have real
values or complex values. Complex poles appear in complex conjugate pairs; for example, if�2þ j3 is
a pole, then �2 � j3 must also be a pole.

A circuit is stable if, and only if, all of its poles have negative real parts.

Next, the MATLAB plot function requires two lists of values, t and y, in our case. These lists are required to
have the same number of values, but in our case, y is longer than t. The MATLAB expression “(1:length(t))”
truncates the list y, so that truncated list is the same length as t.

Finally, the plot produced by the MATLAB script is shown in Figure 14.9-6.

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

8

9

t

y(
t)

FIGURE 14.9-6 The output for Example 14.9-1.
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(Real poles must have negative values.) Another way of saying the same thing is that a circuit is stable
if, and only if, all of its poles lie in the left half of the s-plane.

We can also use the impulse response h(t) to determine whether a circuit is stable. A circuit is
stable if, and only if, its impulse response satisfies

lim
t!1 jh tð Þj ¼ 0

Let’s check that our two tests for stability, one in terms of H(s) and the other in terms of h(t), are
equivalent. For convenience, suppose that all of the poles of H(s) have real values. The corresponding
impulse response is given by

h tð Þ ¼l�1 H sð Þ½ � ¼l�1 N sð Þ
s� p1ð Þ s� p2ð Þ � � � s� pNð Þ

	 

¼
XN

i¼1

Aie
pitu tð Þ

If the circuit is unstable, then at least one of the poles has a positive value, for example, p4 ¼ 6.
Consequently, the impulse response includes the term A4e6t and A4e6t

�� ��!1 as t !1, so
lim
t!1 jh tð Þj ¼ 1. On the other hand, if the circuit is stable, all of the poles have negative values.

Each jAie pitj ! 0 as t ! 1, so lim
t!1 jh tð Þj ¼ 0.

The network function H(o) of a stable circuit can be obtained from its transfer function H(s) by
letting s ¼ jo.

H oð Þ ¼ jH sð Þjs¼jo

(This is true only for stable circuits. In general, unstable circuits don’t reach a steady state, so they don’t
have steady-state responses or network functions.)

E X A M P L E 1 4 . 1 0 - 1 Stabil i ty

The input to the circuit shown in Figure 14.10-1 is the voltage vi(t) of the independent voltage source. The output is
the voltage vo(t) of the dependent voltage source. The transfer function of this circuit is

H sð Þ ¼ Vo sð Þ
V i sð Þ ¼

k

RC
s

s2 þ 4� k

RC
sþ 2

R2C2

¼ ks

s2 þ 4� kð Þsþ 2

Determine the following:

(a) The steady-state response when vi tð Þ ¼ 5 cos 2t V and the gain of the VCVS is k ¼ 3 V/V.
(b) The impulse response when k ¼ 4� 2

ffiffiffi
2
p ¼ 1:17 V/V.

(c) The impulse response when k ¼ 4þ 2
ffiffiffi
2
p ¼ 6:83 V/V.

vi(t) va(t)

vo(t) = k va(t)+

–

R = 100 kΩ

R = 100 kΩ

R = 100 kΩ

C = 10 μF

C = 10 μF+
–

+

–

FIGURE 14.10-1 The circuit considered in
Example 14.10-1.
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EXERCISE 14.10-1 The input to a circuit is the voltage vi(t). The output is the voltage vo(t).
The transfer function of this circuit is

H sð Þ ¼ Vo sð Þ
V i sð Þ ¼

ks

s2 þ 3� kð Þsþ 2

Solution

The poles of the transfer function are p1;2 ¼
� 4� kð Þ 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4� kð Þ2 � 8

q

2

(a) When k ¼ 3 V/V, the poles are p1;2 ¼
�1
 ffiffiffiffiffiffiffi�7

p

2
¼ �1
 j 7

2
, so the circuit is stable. The transfer

function is

H sð Þ ¼ Vo sð Þ
V i sð Þ ¼

3s

s2 þ sþ 2

The circuit is stable when k ¼ 3 V/V, so we can determine the network function from the transfer function by
letting s ¼ jo.

Vo oð Þ
Vi oð Þ ¼ H oð Þ ¼ H sð Þs¼jo ¼

3s

s2 þ sþ 2

����
s¼jo
¼ 3jo

2þ o2ð Þ þ jo

The input is vi tð Þ ¼ 5 cos 2t V. The phasor of the steady-state response is determined by multiplying the
network function evaluated at o ¼ 2 rad/s by the phasor of the input:

Vo oð Þ ¼ H oð Þjo¼2 � Vi oð Þ ¼ 3jo
2� o2ð Þ þ jo

����
o¼2

� �
ð5ff0�Þ ¼ j6

�2þ j2

� �
ð5ff0�Þ ¼ 10:61ff�45�

The steady-state response is vo tð Þ ¼ 10:61 cos 2t � 45�ð ÞV.

(b) When k ¼ 4� 2
ffiffiffi
2
p

, the poles are p1;2 ¼
�2

ffiffiffi
2
p 
 ffiffiffi

0
p

2
¼ �

ffiffiffi
2
p

, � ffiffiffi
2
p

, so the circuit is stable. The transfer
function is

H sð Þ ¼ 1:17s

sþ ffiffiffi
2
p� �2 ¼ 1:17

sþ ffiffiffi
2
p� �� 1:17

ffiffiffi
2
p

sþ ffiffiffi
2
p� �2

The impulse response is

h tð Þ ¼l�1 H sð Þ½ � ¼ 1:17e�
ffiffi
2
p

t 1�
ffiffiffi
2
p

t
� �

u tð Þ
We see that when k ¼ 4� 2

ffiffiffi
2
p

, the circuit is stable, and lim
t!1 h tð Þj j ¼ 0.

(c) When k ¼ 4þ 2
ffiffiffi
2
p

, the poles are p1;2 ¼
2
ffiffiffi
2
p 
 ffiffiffi

0
p

2
¼

ffiffiffi
2
p

;
ffiffiffi
2
p

, so the circuit is not stable. The transfer
function is

H sð Þ ¼ 6:83s

s� ffiffiffi
2
p� �2 ¼ 6:83

s� ffiffiffi
2
p� �þ 6:83

ffiffiffi
2
p

s� ffiffiffi
2
p� �2

The impulse response is

h tð Þ ¼l�1 H sð Þ½ � ¼ 6:83e
ffiffi
2
p

t 1þ
ffiffiffi
2
p

t
� �

u tð Þ
We see that when k ¼ 4þ 2

ffiffiffi
2
p

, the circuit is unstable, and lim
t!1 h tð Þj j ¼ 1.
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Determine the following:

(a) The steady-state response when vi(t) ¼ 5 cos 2t V and the gain of the VCVS is k ¼ 2 V/V.

(b) The impulse response when k ¼ 3� 2
ffiffiffi
2
p ¼ 0:17 V/V.

(c) The impulse response when k ¼ 3þ 2
ffiffiffi
2
p ¼ 5:83 V/V.

Answers: (a) vo tð Þ ¼ 7:07 cos 2t � 45�ð ÞV

(b) h tð Þ ¼ 0:17 e�
ffiffi
2
p

t 1� ffiffiffi
2
p

t
� �

u tð Þ
(c) h tð Þ ¼ 5:83 e

ffiffi
2
p

t 1þ ffiffiffi
2
p

t
� �

u tð Þ

14.11 P a r t i a l F r a c t i o n E x p a n s i o n
U s i n g MAT L AB

MATLAB provides a function called residue that performs the partial fraction expansion of a transfer
function. Consider a transfer function

H sð Þ ¼ b3s3 þ b2s2 þ b1s1 þ b0s0

a3s3 þ a2s2 þ a1s1 þ a0s0
ð14:11-1Þ

In Eq. 14.11-1, the transfer function is represented as a ratio of two polynomials in s. In MATLAB, the
transfer function given in Eq. 14.11-1 can be represented by two lists. One list specifies the coefficients
of the numerator polynomial, and the other list specifies the coefficients of the denominator polynomial.
For example,

num ¼ b3 b2 b1 b0½ �
and den ¼ a3 a2 a1 a0½ �
(In this case, both polynomials are third-order polynomials, but the order of these polynomials could be
changed.)

Partial fraction expansion can represent H(s) as

H sð Þ ¼ R1

s� p1
þ R2

s� p2
þ R3

s� p3
þ k sð Þ ð14:11-2Þ

R1, R2, and R3 are called residues, and p1, p2, and p3 are the poles. In general, both the residues and poles
can be complex numbers. The term k(s) will, in general, be a polynomial in s. MATLAB represents this
form of the transfer function by three lists:

R ¼ R1 R2 R3½ �
is a list of the residues,

p ¼ p1 p2 p3½ �
is a list of the poles, and

k ¼ c2 c1 c0½ �
is a list of the coefficients of the polynomial k(s).

The MATLAB command

R, p, k½ � ¼ residue num, denð Þ
performs the partial fraction expansion, calculating the poles and residues from the coefficients of the
numerator and denominator polynomials. The MATLAB command

n, d½ � ¼ residue R, p, kð Þ
performs the reverse operation, calculating the coefficients of the numerator and denominator
polynomials from the poles and residues.
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Figure 14.11-1 shows a MATLAB screen illustrating this procedure. In this example,

H sð Þ ¼ s3 þ 2s2 þ 3sþ 4

s3 þ 6s2 þ 11sþ 6
is represented as

H sð Þ ¼ �7
sþ 3

þ 2

sþ 2
þ 1

sþ 1
þ 1

by performing the partial fraction expansion.
The following examples illustrate the use of MATLAB for finding the inverse Laplace transform

of functions having complex or repeated poles.

FIGURE 14.11-1 Using MATLAB
to perform partial fraction expansion.

E X A M P L E 1 4 . 1 1 - 1 Repeated Real Poles

Find the inverse Laplace transform of

V sð Þ ¼ 12

s s2 þ 8sþ 16ð Þ

Solution
First, we will do this problem without using MATLAB. Noticing that s2 þ 8sþ 16 ¼ sþ 4ð Þ2, we begin the partial
fraction expansion:
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Partial Fraction Expansion Using MATLAB 715

V sð Þ ¼ 12

s s2 þ 8sþ 16ð Þ ¼
12

s sþ 4ð Þ2 ¼
k

sþ 4
þ �3

sþ 4ð Þ2 þ
3

4
s

Next, the constant k is evaluated by multiplying both sides of the last equation by s sþ 4ð Þ2.

12 ¼ ks sþ 4ð Þ � 3sþ 3

4
sþ 4ð Þ2 ¼ 3

4
þ k

� �
s2 þ 3þ 4kð Þsþ 12 ) k ¼ � 3

4

Finally,

v tð Þ ¼l�1
� 3

4
sþ 4

þ �3
sþ 4ð Þ2 þ

3

4
s

2
664

3
775 ¼ 3

4
� e�4t 3

4
þ 3t

� �� �
u tð ÞV

Next, we perform the partial fraction expansion, using the MATLAB function residue:

>>num = [12 ];
>>den = [1 8 16 0 ];
>>[r, p ] = residue(num, den)

MATLAB responds

r =
�0.7500
�3.0000
0.7500

P =
�4
�4
0

A repeated pole of multiplicity m is listed m times corresponding to the m terms

r1
s� p

;
r2

s� pð Þ2 ; . . .
rm

s� pð Þm

listed in order of increasing powers of s� p. The constants, r1; r2 . . . ; rm are the corresponding residues, again
listed in order of increasing powers of s� p. In our present case, the pole p ¼ �4 has multiplicity 2, and the first
two terms of the partial fraction expansion are

�0:75
s� �4ð Þ þ

�3
s� �4ð Þð Þ2 ¼

�0:75
sþ 4

þ �3
sþ 4ð Þ2

The entire partial fraction expansion is

�0:75
s� �4ð Þ þ

�3
s� �4ð Þð Þ2 þ

0:75

s� 0ð Þ ¼
�0:75
sþ 4

þ �3
sþ 4ð Þ2 þ

0:75

s

Finally, as before,

v tð Þ ¼l�1 �0:75
sþ 4

þ �3
sþ 4ð Þ2 þ

0:75

s

" #
¼ 0:75� e�4t 0:75þ 3tð Þ� �

u tð ÞV



E X A M P L E 1 4 . 1 1 - 2 Complex Poles

Find the inverse Laplace transform of

V sð Þ ¼ 12sþ 78

s2 þ 8sþ 52

Solution
First, we will do this problem without using MATLAB. Notice that the denominator does not factor any further in
the real numbers. Let’s complete the square in the denominator

V sð Þ ¼ 12sþ 78

s2 þ 8sþ 52
¼ 12sþ 78

s2 þ 8sþ 16ð Þ þ 36
¼ 12sþ 78

sþ 4ð Þ2 þ 36
¼ 12 sþ 4ð Þ þ 30

sþ 4ð Þ2 þ 36
¼ 12 sþ 4ð Þ

sþ 4ð Þ2 þ 62
þ 5 6ð Þ

sþ 4ð Þ2 þ 62

Now, use the property e�atf tð Þ $ F sþ að Þ and the Laplace transform pairs

sinot for t � 0 $ o
s2 þ o2

and cosot for t � 0$ s

s2 þ o2

to find the inverse Laplace transform:

v tð Þ ¼ e�4t l�1 12s

s2 þ 62
þ 5 6ð Þ

s2 þ 62

	 

¼ e�4t 12 cos 6tð Þ þ 5 sin 6tð Þ½ � for t > 0

Next, we will use MATLAB to do the partial fraction expansion. First, enter the numerator and denominator
polynomials as vectors listing the coefficients in order of decreasing power of s:

>>num = [12 78 ];
>>den = [1 8 52 ];

Now the command

>>[r, p ] = residue(num, den)

tells MATLAB to do the partial fraction expansion return p, a list of the poles of V sð Þ, and r, a list of the
corresponding residues. In the present case, MATLAB returns

r =
6.0000 � 2.5000i
6.0000 þ 2.5000i

p =
�4.0000 þ 6.0000i
�4.0000 � 6.5000i

indicating

V sð Þ ¼ 6� j 2:5

s� �4þ j6ð Þ þ
6þ j 2:5

s� �4� j6ð Þ
Notice that the first residue corresponds to the first pole and the second residue corresponds to the second pole.
(Also, we expect complex poles to occur in pairs of complex conjugates and for the residues corresponding to
complex conjugate poles to themselves be complex conjugates.) Taking the inverse Laplace transform, we get

v tð Þ ¼ 6� j 2:5ð Þe� �4þj6ð Þt þ 6þ j 2:5ð Þe� �4�j6ð Þt

This expression, containing as it does complex numbers, isn’t very convenient. Fortunately, we can use Euler’s
identity to obtain an equivalent expression that does not contain complex numbers. Because complex poles occur
quite frequently, it’s worthwhile to consider the general case:

V sð Þ ¼ aþ jb

s� cþ jdð Þ þ
a� jb

s� c� jdð Þ
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The inverse Laplace transform is

v tð Þ ¼ aþ jbð Þe cþjdð Þt þ a� jbð Þe c�jdð Þt

¼ e ct aþ jbð Þ e j dt þ aþ jbð Þe�j dt
� � ¼ ect 2a

e j dt þ e�j dt

2

� �
� 2b

e j dt � e�j dt

2j

� �	 


Euler's identity says
e j dt þ e�j dt

2
¼ cos dtð Þ and

e j dt � e�j dt

2j
¼ sin dtð Þ

Consequently,
v tð Þ ¼ ect 2a cos dtð Þ � 2b sin dtð Þ½ �

Thus, we have the following Laplace transform pair

ect 2a cos dtð Þ � 2b sin dtð Þ½ � $ aþ jb

s� cþ jdð Þ þ
a� jb

s� c� jdð Þ
In the present case, a ¼ 6; b ¼ �2:5; c ¼ �4; and d ¼ 6, so we have

v tð Þ ¼ e�4t 12 cos 6tð Þ þ 5 sin 6tð Þ½ � for t > 0

It’s sometimes convenient to express this answer in a different form. First, express the sine term as an equivalent
cosine:

v tð Þ ¼ e�4t 12 cos 6tð Þ þ 5 cos 6t � 90�ð Þ½ � for t > 0

Next, use phasors to combine the cosine terms

V oð Þ ¼ 12ff0� þ 5ff�90� ¼ 12� j5 ¼ 13ff�22:62�
Now v tð Þ is expressed as

v tð Þ ¼ 13e�4tcos 6t � 22:62�ð Þ for t > 0

E X A M P L E 1 4 . 1 1 - 3 Both Real and Complex Poles

Find the inverse Laplace transform of

V sð Þ ¼ 105sþ840
s2 þ 9:5sþ 17:5ð Þ s2 þ 8sþ 80ð Þ

Solution
Using MATLAB,

>> num = [105 840 ];
>> den = conv( [1 9.5 17.5 ], [1 8 80 ]);
>> [r,p ] = residue (num, den)
r =

�0.8087 þ 0.2415i
�0.8087 � 0.2415i
�0.3196
1.9371

P =
�4.0000 þ 8.0000i
�4.0000 � 8.0000i
�7.0000
�2.5000
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14.12 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the specifica-
tions have been satisfied. In addition, computer output must be reviewed to guard against data-entry
errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

Consequently,

V sð Þ ¼ �0:8087þ j0:2415

s� �4þ j8ð Þ þ �0:8087� j0:2415

s� �4� j8ð Þ þ �0:3196
s� �7ð Þ þ

1:9371

s� �2:5ð Þ
Using the Laplace transform pair,

ect 2 a cos dtð Þ � 2b sin dtð Þ½ � $ aþ jb

s� cþ jdð Þ þ
a� jb

s� c� jdð Þ
with a ¼ �0:8087, b ¼ 0:2415, c ¼ �4, and d ¼ 8, we have

l�1 �0:8087þ j0:2415

s� �4þ j8ð Þ þ �0:8087� j0:2415

s� �4� j8ð Þ
	 


¼ e�4t �1:6174 cos 8tð Þ þ 0:483 sin 8tð Þ½ �

Taking the inverse Laplace transform of the remaining terms of V sð Þ, we get

v tð Þ ¼ e�4t �1:6174 cos 8tð Þ þ 0:483 sin 8tð Þ½ � � 0:3196e�7t þ 1:9371e�2:5t for t > 0

E X A M P L E 1 4 . 1 2 - 1 How Can We Check
Transfer Functions?

A circuit is specified to have a transfer function of

H sð Þ ¼ Vo sð Þ
V1 sð Þ ¼

25

s2 þ 10sþ 125
ð14:12-1Þ

and a step response of

vo tð Þ ¼ 0:1 2� e�5t 3 cos 10t þ 2 sin 10tð Þ� �
u tð Þ ð14:12-2Þ

How can we check that these specifications are consistent?

Solution
If the specifications are consistent, then the unit step response and the transfer function will be related by

l vo tð Þ½ � ¼ H sð Þ 1
s

ð14:12-3Þ
where V1(s) ¼ 1=s.

This equation can be verified either by calculating the Laplace transform of vo(t) or by calculating the inverse
Laplace transform of H(s)=s. Both of these calculations involve a bit of algebra. The final and initial value theorems
provide a quicker, though less conclusive, check. (If either the final or initial value theorem is not satisfied, then we
know that the step response is not consistent with the transfer function. The step response could be inconsistent with
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E X A M P L E 1 4 . 1 2 - 2 How Can We Check
Transfer Functions?

A circuit is specified to have a transfer function of

H sð Þ ¼ Vo sð Þ
V1 sð Þ ¼

25

s2 þ 10sþ 125
ð14:12-10Þ

and a unit step response of
vo tð Þ ¼ 0:1 2� e�5t 2 cos 10t þ 3 sin 10tð Þ� �

u tð Þ ð14:12-11Þ
How can we check that these specifications are consistent? (This step response is a slightly modified version of the
step response considered in Example 14.12-1.)

Solution
The reader is invited to verify that both the final and initial value theorems are satisfied. This suggests, but does not
guarantee, that the transfer function and step response are consistent. To guarantee consistency, it is necessary to
verify that

l vo tð Þ½ � ¼ H sð Þ 1
s

ð14:12-12Þ

How Can We Check . . . ? 719

the transfer function even if both the final and initial value theorems are satisfied.) Let us see what the final and
initial value theorems tell us.

The final value theorem requires that

vo 1ð Þ ¼ lim
s!0

s H sð Þ 1
s

	 

ð14:12-4Þ

From Eq. 14.12-1, we substitute H(s), obtaining

lim
s!0

s
25

s2 þ 10sþ 125
� 1

s

	 

¼ lim

s!0

25

s2 þ 10sþ 125

	 

¼ 25

125
¼ 0:2 ð14:12-5Þ

From Eq. 14.12-2, we evaluate at t ¼ 1, obtaining

vo 1ð Þ ¼ 0:1 2� e�1 2 cos1þ sin1ð Þð Þ ¼ 0:1 2� 0ð Þ ¼ 0:2 ð14:12-6Þ
so the final value theorem is satisfied.

Next, the initial value theorem requires that

vo 0ð Þ ¼ lim
s!1 s H sð Þ 1

s

	 

ð14:12-7Þ

From Eq. 14.12-1, we substitute H(s), obtaining

lim
s!1 s

25

s2 þ 10sþ 125
� 1

s

	 

¼ lim

s!1
25=s2

1þ 10=sþ 125=s2
¼ 0

1
¼ 0 ð14:12-8Þ

From Eq. 14.12-1, we evaluate at t ¼ 0 to obtain

vo 0ð Þ ¼ 0:1 2� e�0 3 cos 0þ 2 sin 0ð Þð Þ
¼ 0:1 2� 1 3þ 0ð Þð Þ
¼ �0:1

ð14:12-9Þ

The initial value theorem is not satisfied, so the step response is not consistent with the transfer function.



EXERCISE 14.12-1 A circuit is specified to have a transfer function of

H sð Þ ¼ 25

s2 þ 10sþ 125

and a unit step response of

vo tð Þ ¼ 0:1 2� e�5t 2 cos 10t þ sin 10tð Þ� �
u tð Þ

Verify that these specifications are consistent.

either by calculating the Laplace transform of vo(t) or by calculating the inverse Laplace transform of H(s)=s. Recall
the input is a unit step, so V1 sð Þ ¼ 1=s. We will calculate the Laplace transform of v0(t) as follows:

l 0:1 2� e�5t 2 cos 10t þ 3 sin 10tð Þð Þu tð Þ½ � ¼ 0:1
2

s
� 2 sþ 5ð Þ

sþ 5ð Þ2 þ 102
� 3

10

sþ 5ð Þ2 þ 102

" #

¼ 0:1
2

s
� 2sþ 40

s2 þ 10sþ 125

	 


¼ �2sþ 25

s s2 þ 10sþ 125ð Þ
Because this is not equal to H(s)=s, Eq. 14.12-12 is not satisfied. The step response is not consistent with the
transfer function even though the initial and final values of vo(t) are consistent.

1 4 . 1 3 D E S I G N E X A M P L E Space Shutt le Cargo Door

The U.S. space shuttle docked with Russia’s Mir space station several times. The electromagnet for opening a cargo
door on the NASA space shuttle requires 0.1 A before activating. The electromagnetic coil is represented by L, as
shown in Figure 14.13-1. The activating current is designated i1(t). The time period required for i1 to reach 0.1 A is
specified as less than 3 s. Select a suitable value of L.

4 Ω 1 H 

4 Ω1 V
1 V

+
– +

–

b

a

L

F1 2

i1t = 0

t = 0

FIGURE 14.13-1 The control circuit for a cargo door on the NASA space shuttle.

Describe the Situation and the Assumptions
1. The two switches are thrown at t ¼ 0, and the movement of the second switch from terminal a to terminal b

occurs instantaneously.

2. The switches prior to t ¼ 0 were in position for a long time.
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State the Goal
Determine a value of L so that the time period for the current i1(t) to attain a value of 0.1 A is less than 3 s.

Generate a Plan
1. Determine the initial conditions for the two inductor currents and the capacitor voltage.

2. Designate two mesh currents and write the two mesh KVL equations, using the Laplace transform of the
variables and the impedance of each element.

3. Select a trial value of L and solve for I1(s).

4. Determine i1(t).

5. Sketch i1(t) and determine the time instant t1 when i1(t1) ¼ 0.1 A.

6. Check whether t1 < 3 s, and, if not, return to step 3 and select another value of L.

Act on the Plan
First, the circuit with the switches in position at t ¼ 0� is shown in Figure 14.13-2. Clearly, the inductor currents
are i1 0�ð Þ ¼ 0 and i2 0�ð Þ ¼ 0. Furthermore, we have

vc 0ð Þ ¼ 1 V

Second, redraw the circuit for t > 0 as shown in Figure 14.13-3 and designate the two mesh currents i1 and i2 as
shown.

Recall that the impedance is Ls for an inductor and 1=Cs for a capacitor. We must account for the initial
condition for the capacitor. Recall that the capacitor voltage may be written as

vc tð Þ ¼ vc 0ð Þ þ 1

C

Z t

0
ic tð Þdt

The Laplace transform of this equation is

V c sð Þ ¼ vc 0ð Þ
s
þ 1

Cs
Ic sð Þ

where Ic(s)¼ I1(s)� I2(s) in this case. We now may write the two KVL equations for the two meshes for t� 0 with
vc 0ð Þ ¼ 1 V as

mesh 1: � V1 sð Þ þ 4þ Lsð ÞI1 sð Þ þ V c sð Þ ¼ 0

mesh 2: 4þ 1sð ÞI2 sð Þ � Vc sð Þ ¼ 0

GOAL EQUATION NEED INFORMATION

Determine the initial
conditions at t ¼ 0

i 0ð Þ ¼ i 0�ð Þ
vc 0ð Þ ¼ vc 0�ð Þ

Prepare a sketch of the
circuit at t ¼ 0�.
Find i1 0�ð Þ,
i2 0�ð Þ, vc 0�ð Þ.

Designate two mesh
currents and write the
mesh KVL equations.

I1(s), I2(s); the initial
conditions i1(0),
i2(0)

Solve for I1(s) and
select L.

Cramer’s rule

Determine i1(t). i1 tð Þ ¼l�1 I1 sð Þ½ � Use a partial fraction
expansion.

Sketch i1(t) and find t1. i1 t1ð Þ ¼ 0:1 A

Design Example 721



The Laplace transform of the input voltage is

V1 sð Þ ¼ 1

s

Also, note that for the capacitor we have

Vc sð Þ ¼ 1

s
þ 1

Cs
I1 sð Þ � I2 sð Þð Þ

Substituting V1 and Vc into the mesh equations, we have (when C ¼ 1=2 F)

4þ Lsþ 2

s

� �
I1 sð Þ � 2

s

� �
I2 sð Þ ¼ 0

and

� 2

s

� �
I1 sð Þ þ 4þ sþ 2

s

� �
I2 sð Þ ¼ 1

s

The third step requires the selection of the value of L and then solving for I1(s). Examine Figure 14.13-3; the two
meshes are symmetric when L ¼ 1 H. Then, trying this value and using Cramer’s rule, we solve for I1(s), obtaining

I1 sð Þ ¼
2

s

� �
1

s

4þ sþ 2

s

� �2

� 2

s

� �2 ¼
2

s s3 þ 8s2 þ 20sþ 16ð Þ

Fourth, to determine i1(t), we will use a partial fraction expansion. Rearranging and factoring the denominator of
I1(s), we determine that

I1 sð Þ ¼ 2

s sþ 4ð Þ sþ 2ð Þ2

Hence, we have the partial fraction expansion

I1 sð Þ ¼ A

s
þ B

sþ 4
þ C

sþ 2ð Þ2 þ
D

sþ 2

Then, we readily determine that A ¼ 1=8, B ¼ �1=8, and C ¼ �1=2. To find D, we use Eq. 14.4-9 to obtain

D ¼ 1

2� 1ð Þ!
d

ds
sþ 2ð Þ2I1 sð Þ

	 

s¼�2

¼ �2 2sþ 4ð Þ
s4 þ 8s3 þ 16s2

����
s¼�2

¼ 0

4 Ω 1 H 

4 Ω
1 V+

–

+

–

L

i1 i2

vc

FIGURE 14.13-2 The circuit of Figure14.13-1 at t ¼ 0�.

4 Ω 1 H 

4 Ωv1 = 1V +
–

+

–

L

vc
i1(t) i2(t)

F1 2

FIGURE 14.13-3 The circuit of Figure 14.13-1 for t > 0.
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14.14 SUMMARY

Pierre-Simon Laplace is credited with a transform that bears
his name. The Laplace transform is defined as

l f tð Þ½ � ¼
Z 1
0�

f tð Þe�st dt

The Laplace transform transforms the differential equation
describing a circuit in the time domain into an algebraic
equation in the complex frequency domain. After solving the
algebraic equation, we use the inverse Laplace transform to
obtain the circuit response in the time domain. Figure14.2-1
illustrates this process.
Tables 14.2-1 tabulates frequently used Laplace transform
pairs. Table 14.2-2 tabulates some properties of the Laplace
transform.
The inverse Laplace transform is obtained using partial
fraction expansion.
Table 14.7-1 shows that circuits can be represented in the
frequency domain in a manner that accounts for the initial
conditions of capacitors and inductors.
To find the complete response of a linear circuit, we first
represent the circuit in the frequency domain using the Laplace
transform. Next, we analyze the circuit, perhaps by writing mesh
or node equations. Finally, we use the inverse Laplace transform
to represent the response in the time domain.

The transfer function H(s) of a circuit is defined as the ratio of
the response Y(s) of the circuit to an excitation X(s) expressed
in the complex frequency domain.

H sð Þ ¼ Y sð Þ
X sð Þ

This ratio is obtained assuming all initial conditions are
equal to zero.

The step response is the response of a circuit to a step input
when all initial conditions are zero. Then step response is
related to the transfer function by

step response ¼l�1 H sð Þ
s

	 


The impulse response is the response of a circuit to an
impulse input when all initial conditions are zero. The
impulse response is related to the transfer function by

impulse response ¼l�1 H sð Þ½ �

A circuit is said to be stable when the response to a bounded
input signal is a bounded output signal. All the poles of the
transfer function of a stable circuit lie in the left-half s-plane.
MATLAB performs partial fraction expansion.

Therefore, using the inverse Laplace transform for each term, we obtain
i1 tð Þ ¼ 1=8� 1=8ð Þe�4t � 1=2ð Þte�2t A t � 0

Verify the Proposed Solution
The sketch of i1(t) is shown in Figure 14.13-4. It is clear that i1(t) has essentially reached a steady-state value of
0.125 A by t ¼ 4 seconds.

To find t1 when
i1 t1ð Þ ¼ 0:1 A

we estimate that t1 is approximately 2 seconds. After evaluating i1(t) for a few selected values of t near 2 seconds,
we find that t1¼ 1.8 seconds. Therefore, the design requirements are satisfied for L¼ 1 H. Of course, other suitable
values of L can be determined that will satisfy the design requirements.

0

0.05

0.10

0.125

0 1 2 3 4

i1(t)
(A)

t (s)t1 FIGURE 14.13-4 The response of i1(t).
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PROBLEMS

Section 14.2 Laplace Transform

P 14.2-1 Determine the Laplace Transform of

v(t) ¼ (17 e�4t � 14 e�5t) u(t) V

Answer: V sð Þ ¼ 3 sþ 29
s2 þ 9 sþ 20

P 14.2-2 Determine the Laplace Transform of

v(t) ¼ 13 cos (6t � 22:62�)V

Answer: V sð Þ ¼ 12 sþ 30
s2 þ 36

P 14.2-3 Determine the Laplace Transform of

v(t) ¼ 10e�5t cos (4t þ 36:86�) u(t) V

Answer: V sð Þ ¼ 8 sþ 16
s2 þ 25 sþ 41

P 14.2-4 Determine the Laplace Transform of

v(t) ¼ 3t e�2t u(t) V

Answer: V sð Þ ¼ 3
s2 þ 4 sþ 4

P 14.2-5 Determine the Laplace Transform of

v(t) ¼ 16(1� 2t) e�4t u(t) V

Answer: V sð Þ ¼ 16 sþ 2ð Þ
s2 þ 8 sþ 16

Section 14.3 Pulse Inputs

P 14.3-1 Determine the Laplace transform of f(t) shown in
Figure P 14.3-1.

Hint: f tð Þ ¼ 5� 5
3

t

� �
u tð Þ þ 5

3
t � 21

5

� �
u t � 21

5

� �

Answer: F sð Þ ¼ 5e�4:2s þ 15s� 5
3s2

–2
0

5

3 t

f (t)

Figure P 14.3-1

P 14.3-2 Use the Laplace transform to obtain the trans-
form of the signal f(t) shown in Figure P 14.3-2.

Answer: F sð Þ ¼ 3 1� e�2sð Þ
s

0 2

3

t

f (t)

Figure P 14.3-2

P 14.3-3 Determine the Laplace transform of f(t) shown in
Figure P 14.3-3.

Answer: F sð Þ ¼ 5
2s2

1� e�2s � 2se�2s
� �

0 2

5

t

f (t)

1

Figure P 14.3-3

P 14.3-4 Consider the pulse shown in Figure P 14.3-4, where the
time function follows eat for 0 < t < T. Find F(s) for the pulse.

Answer: F sð Þ ¼ 1� e� s�að ÞT

s� a

t
0

1

T

eat

f (t)

Figure P 14.3-4

P 14.3-5 Find the Laplace transform for g tð Þ ¼ e�tu t � 0:5ð Þ.
P 14.3-6 Find the Laplace transform for

f tð Þ ¼ � t � Tð Þ
T

u t � Tð Þ

Answer: F sð Þ ¼ �1e�sT

Ts2

Section 14.4 Inverse Laplace Transform

P 14.4-1 Find f(t) when

F sð Þ ¼ sþ 3

s3 þ 3s2 þ 6sþ 4

Answer: f tð Þ ¼ 2
3

e�t � 2
3

e�t cos
ffiffiffi
3
p

t þ 1ffiffiffi
3
p e�t � sin

ffiffiffi
3
p

t;
t � 0

Problem available in WileyPLUS at instructor’s discretion.
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P 14.4-2 Find f(t) when

F sð Þ ¼ s2 � 2sþ 1

s3 þ 3s2 þ 4sþ 2

P 14.4-3 Find f(t) when

F sð Þ ¼ 5s� 1

s3 � 3s� 2

Answer: f tð Þ ¼ �e�t þ 2te�t þ e2t; t � 0

P 14.4-4 Find the inverse transform of

Y sð Þ ¼ 1

s3 þ 3s2 þ 4sþ 2

Answer: y tð Þ ¼ e�t 1� costð Þ, t � 0

P 14.4-5 Find the inverse transform of

F sð Þ ¼ 2sþ 6

sþ 1ð Þ s2 þ 2sþ 5ð Þ
P 14.4-6 Find the inverse transform of

F sð Þ ¼ 2sþ 6

s s2 þ 3sþ 2ð Þ

Answer: f tð Þ ¼ 3� 4e�t þ e�2t½ �u tð Þ
P 14.4-7 Find the inverse transform of F(s), expressing f(t) in
cosine and angle forms.

(a) F sð Þ ¼ 8s� 3
s2 þ 4sþ 13

(b) F sð Þ ¼ 3e�s

s2 þ 2sþ 17

Answers: (a) f tð Þ ¼ 10:2e�2t cos 3t þ 38:4�ð Þ; t � 0

(b) f tð Þ ¼ 3
4

e� t�1ð Þ sin 4 t � 1ð Þ½ �, t � 1

P 14.4-8 Find the inverse transform of F(s).

(a) F sð Þ ¼ s2 � 5

s sþ 1ð Þ2

(b) F sð Þ ¼ 4s2

sþ 3ð Þ3
Answers: (a) f tð Þ ¼ �5þ 6e�t þ 4te�t; t � 0

(b) f tð Þ ¼ 4e�3t � 24te�3t þ 18t2e�3t ; t � 0

Section 14.5 Initial and Final Value Theorems

P 14.5-1 A function of time is represented by

F sð Þ ¼ 2s2 � 3sþ 4

s3 þ 3s2 þ 2s

(a) Find the initial value of f(t) at t ¼ 0.
(b) Find the value of f(t) as t approaches infinity.

P 14.5-2 Find the initial and final values of v(t) when

V sð Þ ¼ sþ 16ð Þ
s2 þ 4sþ 12

Answer: v 0ð Þ ¼ 1, v 1ð Þ ¼ 0 V

P 14.5-3 Find the initial and final values of v(t) when

V sð Þ ¼ sþ 10ð Þ
3s3 þ 2s2 þ 1sð Þ

Answers: v 0ð Þ ¼ 0, v 1ð Þ ¼ 10 V

P 14.5-4 Find the initial and final values of f(t) when

F sð Þ ¼ �2 sþ 7ð Þ
s2 � 2sþ 10

Answer: initial value = �2; final value does not exist

P 14.5-5 Given that l v tð Þ½ � ¼ a sþ b

s2 þ 8s
where v tð Þ is the

voltageshowninFigureP14.5-5,determine thevaluesofaandb.

0 0.375

12
11.6

4

v(t), V

t, s

Figure P 14.5-5

P 14.5-6 Given that l v tð Þ½ � ¼ a sþ b

2s2 þ 40s
where v tð Þ is the

voltageshowninFigureP14.5-6,determine thevaluesofaandb.

0

10

6

2

v(t), V

t, s

0.06931

4

Figure P 14.5-6

Section 14.6 Solution of Differential Equations

Describing a Circuit

P 14.6-1 The circuit shown in Figure P 14.6-1 is at steady
state before the switch closes at time t ¼ 0. Determine the
inductor current i(t) after the switch closes.

+
– 2 Ω

i (t )

4 Ω

2 H

t = 0

12 V

Figure P 14.6-1
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P 14.6-2 The circuit shown in Figure P 14.6-2 is represented
by the differential equation

d 2v tð Þ
dt 2

þ 7
d v tð Þ

dt
þ 10v tð Þ ¼ 120

after time t ¼ 0. The initial conditions are

i 0ð Þ ¼ 0 and v 0ð Þ ¼ 4V

Determine the capacitor voltage v(t) after time t = 0.

+
–

i (t ) 7 Ω

1 H

4 + 8u(t ) V

+

–

0.1 F v (t )

Figure P 14.6-2

P 14.6-3 The circuit shown in Figure P 14.6-3 is at steady
state before time t ¼ 0. The input to the circuit is

v s tð Þ ¼ 2:4u tð Þ V

Consequently, the initial conditions are i1(0)¼ 0 and i2(0)¼ 0.
Determine the inductor current i2(t) after time t = 0.

+
– vs(t ) 12 Ω

2 H
i2 (t )i1(t )

12 Ω 12 Ω

12 Ω2 H

Figure P 14.6-3

P 14.6-4 The circuit shown in Figure P 14.6-4 is at steady
state before the switch opens at time t ¼ 0. Determine the
capacitor voltage v(t) after the switch opens.

+
–

3 Ω

i (t )

9 Ω

1 H

t = 0

16 V

+

–

v (t )0.5 F

Figure P 14.6-4

P 14.6-5 The circuit shown in Figure P 14.6-5 is at steady
state before the switch closes at time t ¼ 0. Determine the
capacitor voltage v(t) after the switch closes.

+
– v (t )2 mF

t = 0

12 V

+

–

30 kΩ10 kΩ

10 kΩ

Figure P 14.6-5

Section 14.7 Circuit Analysis Using Impedance and

Initial Conditions

P 14.7-1 Figure P 14.7-1a shows a circuit represented in the
time domain. Figure P 14.7-1b shows the same circuit, now
represented in the complex frequency domain. Figure P 14.7-1c
shows a plot of the inductor current.

0 0.5

8

4.54
4

i(t), A

t, s

30 Ω12−6 u(t)  A

R2

L
i(t)

30 Ω
R2

Ls
s
D

I(s)
s
E

(a)

(b)

(c)

Figure P 14.7-1

Determine the values of D and E, used to represent the circuit in
the complex frequency domain. Determine the values of the
resistance R2 and the inductance L.

P 14.7-2 Figure P 14.7-2a shows a circuit represented in the
time domain. Figure P 14.7-2b shows the same circuit, now
represented in the complex frequency domain. Figure P 14.7-2c
shows a plot of the inductor current.
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(a)

+
– 30 Ω C6+12 u(t)  V

+

–

v(t)

R1

(b)

+
– 30 Ω

+

–

V(s)

R1

s
E

Cs
1

+
–

s
D

(c)

0 0.375

12
11.6

4

v(t), V

t, s

Figure P 14.7-2

Determine the values of D and E, used to represent the circuit in
the complex frequency domain. Determine the values of the
resistance R1 and the capacitance C.

P 14.7-3 Figure P 14.7-3a shows a circuit represented in the
time domain. Figure P 14.7-3b shows the same circuit, now
represented in the complex frequency domain. Determine the
values of a, b, and d, used to represent the circuit in the complex
frequency domain.

(a)

v(t)
+

–

4 Ω

8 Ω

6 H

+
–

i(t)

24 − 36 u(t)  V 0.125 F

(b)

6s

+
–s

b
s
a

+–

d
4 Ω

8 Ω+
–

I(s)
s
8

V(s)

+

–

Figure P 14.7-3

P 14.7-4 The input to the circuit shown in Figure P 14.7-4 is the
voltage of the voltage source, 12 V. The output of this circuit is the
voltage vo(t) across the capacitor. Determine vo(t) for t > 0.

Answer: vo tð Þ ¼ � 4þ 2e�t/2ð ÞV for t > 0

–
+ vo(t)

+

–6 Ω

6 Ω
6 Ω 0.5 F

t = 0

12 V

Figure P 14.7-4

P 14.7-5 The input to the circuit shown in Figure P 14.7-5 is the
voltage of the voltage source, 12 V. The output of this circuit is
the current i(t) in the inductor. Determine i(t) for t > 0.

Answer: i tð Þ ¼ �3 1þ e�0:8tð ÞA for t > 0

–
+

2 Ω

5 H

2 Ω

t = 0

i(t)
12 V

Figure P 14.7-5

P 14.7-6 The input to the circuit shown in Figure P 14.7-6 is
the voltage of the voltage source, 18 V. The output of this
circuit, the voltage across the capacitor, is given by

vo tð Þ ¼ 6þ 12e�2t V when t > 0

Determine the value of the capacitance C and the value of the
resistance R.

vo(t)

+

–

R

3 Ω C

t = 0

18 V +
–

Figure P 14.7-6

P 14.7-7 The input to the circuit shown in Figure P 14.7-7 is
the voltage source voltage

vs tð Þ ¼ 3� u tð ÞV
The output is the voltage

vo tð Þ ¼ 10þ 5e�100t V for t � 0
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Determine the values of R1 and R2.

+

–

1 kΩ

+
–

v(t)

+

–

vo(t)

+

–

vs(t)

R2

R1

C=1 mF

Figure P 14.7-7

P 14.7-8 Determine the inductor current iL(t) in the circuit
shown in Figure P 14.7-8 for each of the following cases:

(a) R ¼ 2 V; L ¼ 4:5 H; C ¼ 1=9 F; A ¼ 5 mA; B ¼�2 mA
(b) R ¼ 1 V; L ¼ 0:4 H; C ¼ 0:1 F; A ¼ 1 mA; B ¼ �2 mA
(c) R ¼ 1 V; L ¼ 0:08 H; C ¼ 0:1 F; A ¼ 0:2 mA; B ¼
�2 mA

CLR

+

–
vC(t)i(t) = B+Au(t) iL(t)

Figure P 14.7-8

P 14.7-9 Determine the capacitor current ic(t) in the circuit
shown in Figure P 14.7-9 for each of the following cases:

(a) R ¼ 3 V; L ¼ 2 H; C ¼ 1=24 F; A ¼ 12 V

(b) R ¼ 2 V; L ¼ 2 H; C ¼ 1=8 F; A ¼ 12 V

(c) R ¼ 10 V; L ¼ 2 H; C ¼ 1=40 F; A ¼ 12 V

C

L

R

+

–
vC(t)vs(t) = A

iL(t)

+
–

R

iC(t)

t = 0

Figure P 14.7-9

P 14.7-10 The voltage source voltage in the circuit shown in
Figure P 14.7-10 is

vs tð Þ ¼ 12� 6u tð ÞV
Determine v(t) for t � 0.

+
–

8 Ω

4 Ωva

0.75va

–

+
v(t)

+

–

3/40 Fvs(t)

Figure P 14.7-10

P 14.7-11 Determine the output voltage vo(t) in the circuit
shown in Figure P 14.7-11.

20 kΩ

40 kΩ10 kΩ

–

++
–

vo(t)

+

–

50 kΩ

2 mF2+10u(t) V

Figure P 14.7-11

P 14.7-12 Determine the capacitor voltage v(t) in the circuit
shown in Figure P 14.7-12.

+ –

5+15u(t) V

96 Ω 32 Ω

30 Ω120 Ω

v(t)

+

–

12.5 mF

Figure P 14.7-12

P 14.7-13 Determine the voltage vo(t) for t � 0 for the circuit
of Figure P 14.7-13.

Hint: vC 0ð Þ ¼ 4 V

Answer: vo tð Þ ¼ 24e0:75t u tð ÞV This circuit is unstable:ð Þ

2 – 2u(t)

iC(t)

vC(t)
vo(t) =
4iC(t)

–

+

6 Ω

3 Ω

2 F
+

–

Figure P 14.7-13

P 14.7-14 Determine the current iL(t) for t � 0 for the circuit
of Figure P 14.7-14.

Hint: vC 0ð Þ ¼ 8 V and iL 0ð Þ ¼ 1 A
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Answer: iL tð Þ ¼ e�t cos 2t þ 1
2

e�t sin 2t

� �
u tð ÞA

vC(t)

iL(t)

–

+

+
–

4 Ω

8 Ω

12 V

t = 0

0.05 F

4 H

Figure P 14.7-14

P 14.7-15 The circuit shown in Figure P 14.7-15 is at steady
state before the switch opens at time t ¼ 0. Determine the
voltage v tð Þ for t > 0.

+
– 4 V v(t)

+

–

0.5 Η

4 Ω125 mF

t = 0

Figure P 14.7-15

P 14.7-16 The circuit shown in Figure P 14.7-16 is at steady
state before time t ¼ 0. Determine the voltage v tð Þ for t > 0.

+
– v(t)

+

–

5 Ω

6 Η
30
1 F10−10u(t) V

i(t)

Figure P 14.7-16

P 14.7-17 The input to the circuit shown in Figure P 14.7-17
is the voltage source voltage

vi tð Þ ¼ 10þ 5u tð ÞV ¼ 10 V when t < 0

15 V when t > 0



+

–

+
–vi(t) vo(t)2 mF

8 mF

5 Ω

v1(t)+ –

Figure P 14.7-17

Determine the response vo tð Þ. Assume that the circuit is at
steady state when t < 0. Sketch vo tð Þ as a function of t.

P 14.7-18 The input to the circuit shown in Figure P 14.7-18
is the current source current

i tð Þ ¼ 25� 15u tð ÞmA ¼ 25 mA when t < 0

10 mA when t > 0



i(t)
i2(t)

5 H1.25 H
i1(t)

25 Ω

Figure P 14.7-18

Determine the response i2 tð Þ. Assume that the circuit is at
steady state when t < 0. Sketch i2 tð Þ as a function of t.

P 14.7-19 All new homes are required to install a device
called a ground fault circuit interrupter (GFCI) that will
provide protection from shock. By monitoring the current
going to and returning from a receptacle, a GFCI senses
when normal flow is interrupted and switches off the power
in 1=40 second. This is particularly important if you are
holding an appliance shorted through your body to ground.
A circuit model of the GFCI acting to interrupt a short is shown
in Figure P 14.7-19. Find the current flowing through the
person and the appliance, i(t), for t � 0 when the short is
initiated at t ¼ 0. Assume v ¼ 160 cos 400t and the capacitor
is intially uncharged.

v 

the person and
the appliance

i

1 Ω

100 Ω

t = 0

1 mF 
+
–

Figure P 14.7-19 Circuit model of person and appliance shorted
to ground.

P 14.7-20 Using the Laplace transform, find vc(t) for t > 0
for the circuit shown in Figure P 14.7-20. The initial condi-
tions are zero.

Hint: Usea source transformation toobtaina singlemesh circuit.

Answer: vc ¼ �5e�2t þ 5 cos 2t þ sin 2tð ÞV

(2 cos 2t) u(t) mA 5 kΩ

10 kΩ

+

–
1 30 vcmF

Figure P 14.7-20

P 14.7-21 Determine the inductor current i(t) in the circuit
shown in Figure P 14.7-21.
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0.4 H

+
–

i(t)

t = 0

v(t)

+

–

16 Ω 4 Ω

9 Ω25 mF

20 V

Figure P 14.7-21

P 14.7-22 Find v2(t) for the circuit of Figure P 14.7-22
for t � 0.

Hint: Write the node equations at a and b in terms of v1 and v2.
The initial conditions are v1 0ð Þ ¼ 10 V and v2 0ð Þ ¼ 25 V. The
source is vs ¼ 50 cos 2t u tð ÞV.

Answer: v2 tð Þ ¼ 23
3 e�t þ 16

3 e�4t þ 12 cos 2t þ 12 sin 2t V
t � 0

24 Ω

20 Ω

30 Ω

b

a

F1 48

F1 24

v1

v2vs
+
–

+
–

+

–

Figure P 14.7-22

P 14.7-23 The motor circuit for driving the snorkel shown in
Figure P 14.7-23a is shown in Figure P 14.7-23b. Find the
motor current I2(s) when the initial conditions are i1(0�) ¼ 2 A
and i2(0�) ¼ 3 A. Determine i2(t) and sketch it for 10 s. Does
the motor current smoothly drive the snorkel?

(a)

Ω2

Ω1
M = 1 H

i2

5u(t) V 3 H

2 H

i1

+
–

(b)

Figure P 14.7-23 Motor drive circuit for snorkel device.

P 14.7-24 Using Laplace transforms, find vo tð Þ for t > 0 for
the circuit shown in Figure P 14.7-24.

+
–

+

–
vC(t) 3vC(t)

+

–

vo(t)

+

–

12 ΩF

10 Ω 4 H

1 202 + 6u(t)

iL(t)

Figure P 14.7-24

P 14.7-25 The circuit shown in Figure P 14.7-25 is at steady
state before the switch opens at time t ¼ 0. Determine the
inductor voltage v tð Þ for t > 0.

+
–

3 V v(t)

+

–10 Ω

5 Η

40 Ω

3.846 mF

t = 0

Figure P 14.7-25

P 14.7-26 The circuit shown in Figure P 14.7-26 is at steady
state before the switch opens at time t ¼ 0. Determine the
voltage v tð Þ for t > 0.

+
–12 V

v(t)+ –

2.4 Η

12 Ω

8.59 mF
t = 0

t = 0

Figure P 14.7-26

Section 14.8 Transfer Functions

P 14.8-1 The input to the circuit shown in Figure P 14.8-1 is
the voltage vi(t), and the output is the voltage vo(t). Determine
the values of L, C, k, R1, and R2 that cause the step response of
this circuit to be:

v o tð Þ ¼ 5þ 20e�5000 t � 25e�4000 t
� �

u tð Þ V

Answer:One solution is R1¼ 400V, L¼ 0.1 H, k¼ 5 V/V, C¼
0.1 mF, R1 ¼ 2 kV
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+
–

+

–

L

Cvi(t)

+

–

va(t)

+

–

vo(t)R1

R2

kva(t)

Figure P 14.8-1

P 14.8-2 The input to the circuit shown in Figure P 14.8-2 is
the voltage vi(t), and the output is the voltage vo(t). Determine
the step response of this circuit.

+
–

–

+

v i (t )

vo(t )

25 mF

10 kΩ

90 kΩ

800 mH

160 Ω

Figure P 14.8-2

P 14.8-3 The input to the circuit shown in Figure P 14.8-3 is
the voltage vi(t), and the output is the voltage vo(t). Determine
the impulse response of this circuit.

+
–

–

+

v i (t )

vo(t )

25 Ω

0.05 F

5 H

Figure P 14.8-3

P 14.8-4 The input to the circuit shown in Figure P 14.8-4 is
the voltage vi(t), and the output is the voltage vo(t). Determine
the step response of this circuit.

Answer: step response ¼ (5� (5 + 20t) e� 4t)u(t)

+
–

–

+

v i (t )

vo(t )

0.1 F

5 kΩ

20 kΩ

625 mH 5 Ω

Figure P 14.8-4

P 14.8-5 The input to the circuit shown in Figure P 14.8-5
is the voltage vi(t) of the independent voltage source. The output
is the voltage vo(t) across the 5-kV resistor. Specify values of the
resistance R the capacitance C and the inductance L such that the
transfer function of this circuit is given by

H sð Þ ¼ Vo sð Þ
Vi sð Þ ¼

15� 106

sþ 2000ð Þ sþ 5000ð Þ
Answers: R ¼ 5k V; C ¼ 0:5 mF; and L ¼ 1 H (one possible
solution)

vi(t)
vo(t)

+

–

1 kΩ

10 kΩ

5 kΩ

R

C

L–

+

+
–

Figure P 14.8-5

P 14.8-6 The input to the circuit shown in Figure P 14.8-6
is the voltage vi(t) of the independent voltage source. The
output is the voltage vo(t) across the 10-kV resistor. Specify
values of the resistances R1 and R2, such that the step response
of this circuit is given by

vo tð Þ ¼ �4 1� e�250t
� �

u tð ÞV
Answers: R1 ¼ 10 kV and R2 ¼ 40 kV

–

+
vi(t)

R2
R1

vo(t)
+

–
10 kΩ

0.1 μF

+
–

Figure P 14.8-6

P 14.8-7 The input to the circuit shown in Figure P 14.8-7 is
the voltage vi(t), and the output is the voltage vo(t). Determine
the step response of this circuit.

Answer: vo tð Þ ¼ 4� 103
� �

tu tð ÞV

–

+

vi(t )

vo(t )

0.1 mF

30 kΩ

+
–

30 kΩ

10 kΩ

10 kΩ

Figure P 14.8-7
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P 14.8-8 The input to the circuit shown in Figure P 14.8-8 is
the voltage vi(t), and the output is the voltage vo(t). Determine
the step response of this circuit.

Answer: v o tð Þ ¼ 2� 4
3

e�1000 t þ 2
3

e�4000 t

� �	 

u tð Þ V

–

+

vi(t )
vo(t )

0.1 mF

2 kΩ

500 mH

10 kΩ

10 kΩ

+
–

+

–

Figure P 14.8-8

P 14.8-9 The input to the circuit shown in Figure P 14.8-9
is the voltage vi(t) of the independent voltage source. The
output is the voltage vo(t). The step response of this circuit is

vo tð Þ ¼ 0:5 1þ e�4t
� �

u tð ÞV
Determine the values of the inductance L and the resistance R.

Answers: L ¼ 6 H and R ¼ 12 V

+
–

vo(t)

+

–

12 Ω

R

vi(t)

L

Figure P 14.8-9

P 14.8-10 An electric microphone and its associated circuit
can be represented by the circuit shown in Figure P 14.8-10.
Determine the transfer function H(s) ¼ V0(s)=V(s).

Answer:
Vo sð Þ
V sð Þ ¼

RCs

R1Csþ 2ð Þ 2RCsþ 1ð Þ � 1

C

R

v(t) +
–

+

vo(t)

–

R

CR1

Figure P 14.8-10 Microphone circuit.

P 14.8-11 Engineers had avoided inductance in long-
distance circuits because it slows transmission. Oliver Heavi-
side proved that the addition of inductance to a circuit could
enable it to transmit without distortion. George A. Campbell of

the Bell Telephone Company designed the first practical induc-
tance loading coils, in which the inducedfield of each winding of
wire reinforced that of its neighbors so that the coil supplied
proportionally more inductance than resistance. Each one of
Campbell’s 300 test coils added 0.11 H and 12V at regular
intervals along 35 miles of telephone wire (Nahin, 1990). The
loading coil balanced the effect of the leakage between the
telephone wires represented by R and C in Figure P 14.8-11.
Determine the transfer function V2(s)=V1(s).

Answer:
V2 sð Þ
V1 sð Þ ¼

R

RLCs2 þ Lþ RxRCð Þsþ Rx þ R

+

12 Ω

R
v2Cv1

– –

+

0.11 H

Rx
L

Loading coil

Leakage
path

Figure P 14.8-11 Telephone and load coil circuit.

P 14.8-12 The input to the circuit shown in Figure P 14.8-12
is the current i(t), and the output is the voltage v(t). Determine
the impulse response of this circuit.

40 Ω

i (t ) 20 mH v (t )

+

–

10 Ω

Figure P 14.8-12

P 14.8-13 The input to the circuit shown in Figure P 14.8-13
is the current i(t), and the output is the voltage v(t). Determine
the impulse response of this circuit.

Answer: v(t) ¼ 1.25� 107(e� 5000t� e� 25000t)u(t) V

–

+
i (t )

0.1 mF

2 kΩ

5 kΩ v(t )

+

–

200 mH

Figure P 14.8-13

P 14.8-14 AseriesRLCcircuit isshowninFigureP14.8-14.
Determine (a) the transfer function H(s), (b) the impulse response,
and (c) the step response for each set of parameter values given in
the table below.
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+

–

+
–

vs vo

L R

C

Figure P 14.8-14

L C R

a 2 H 0.025 F 18 V
b 2 H 0.025 F 8 V
c 1 H 0.391 F 4 V

d 2 H 0.125 F 8 V

P 14.8-15 A circuit is described by the transfer function

Vo

V1
¼ H sð Þ ¼ 9sþ 18

3s3 þ 18s2 þ 39s

Find the step response and impulse response of the circuit.

P 14.8-16 The input to thecircuit showninFigure P14.8-16
is the voltage of the voltage source vi(t), and the output is the
voltage vo(t) across the 15-kV resistor.

(a) Determine the steady-state response vo(t) of this circuit
when the input is vi(t) ¼ 1.5 V.

(b) Determine the steady-state response vo(t) of this circuit
when the input is vi(t) ¼ 4 cos (100t þ 30�) V.

(c) Determine the step response vo(t) of this circuit.

+
–

μ

vo(t)

vi(t) +

–

–

+

1  F

10 kΩ

4 kΩ

15 kΩ

Figure P 14.8-16

P 14.8-17 The input to the circuit shown in Figure P 14.8-17 is
thevoltageofthevoltagesourcevi(t),andtheoutputisthecapacitor
voltage vo(t). Determine the step response of this circuit.

+
– vi(t) vo(t)

+

–

10 mF

50 Ω
8 Ω

4 H

Figure P 14.8-17

P 14.8-18 The input to the circuit shown in Figure P 14.8-18
is the voltage of the voltage source vi(t), and the output is the
resistor voltage vo(t). Specify values for L1, L2, R, and K that
cause the step response of the circuit to be

vo tð Þ ¼ 1þ 0:667e�50t � 1:667e�20t
� �

u tð ÞV

+
–

+

–

ia

Kia

L1 L2 +

–

R vo(t)vi(t)

Figure P 14.8-18

P 14.8-19 The input to the circuit shown in Figure P 14.8-19
is the voltage of the voltage source vi(t), and the output is the
capacitor voltage vo(t). Determine the step response of this
circuit.

+
–

R1

R2

L +

–

C vo(t)vi(t)

Figure P 14.8-19

P 14.8-20 The input to the circuit shown in Figure P 14.8-20
is the voltage of the voltage source vi(t), and the output is the
inductor current io(t). Specify values for L, C, and K that cause
the step response of the circuit to be

vo tð Þ ¼ 3:2� 3:2e�5t þ 16te�5t
� �� �

u tð ÞV

+ –va(t)

C

+
–

vi(t)
40 Ω

10 Ω

+ –

Kva(t)

20 Ω

L

io(t)

Figure P 14.8-20

P 14.8-21 The input to a circuit is the voltage vi(t) and the
output is the voltage vo(t). The impulse response of the circuit is

vo tð Þ ¼ 6:5e�2tcos 2t þ 22:6�ð Þu tð ÞV
Determine the step response of this circuit.

P 14.8-22 The input to a circuit is the voltage vi(t), and the
output is the voltage vo(t). The step response of the circuit is

vo tð Þ ¼ 1� e�t 1þ 3tð Þ½ �u tð ÞV
Determine the impulse response of this circuit.
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P 14.8-23 The input to the circuit shown in Figure P 14.8-23
is the voltage of the voltage source vi(t), and the output is the
voltage vo(t). Determine the step response of the circuit.

+

–

vo(t)

50 mF

+
–

vi(t)
40 Ω

10 Ω

+ –

20ia(t)

20 Ω ia(t)
4 H

Figure P 14.8-23

P 14.8-24 The transfer function of a circuit is H sð Þ¼
12

s2 þ 8sþ 16
. Determine the step response of this circuit.

P 14.8-25 The transfer function of a circuit is H sð Þ¼
80s

s2 þ 8sþ 25
. Determine the step response of this circuit.

P 14.8-26 The input to the circuit shown in Figure P 14.8-26
is the current i(t), and the output is the current io(t). Determine
the impulse response of this circuit.

i o(t )

450 Ωi (t ) 1 mF

50 mH

Figure P 14.8-26

P 14.8-27 The input to the circuit shown in Figure P 14.8-27
is the voltage vi(t), and the output is the voltage vo(t). Determine
the impulse response of this circuit.

Answer: h(t) ¼ 10323(e� 10,000t� e� 320,000t) u(t) V

–

+

+
–

40 kΩ

2.5 nF

25 mH

+

–

vo(t )v i (t ) 8 kΩ

Figure P 14.8-27

P 14.8-28 The input to the circuit shown in Figure P 14.8-28
is the voltage vi(t), and the output is the voltage vo(t). Determine
the impulse response of this circuit.

Answer: h(t) = (10323 e� 320,000t� 322.6e� 10,000t) u(t) V

+
–

+

–

40 kΩ

2.5 nF

8 kΩ

25 mHv i (t )
vo(t )

–

+

Figure P 14.8-28

P 14.8-29 The input to the circuit shown in Figure P 14.8-29
is the voltage vi(t), and the output is the voltage vo(t). Determine
the impulse response of this circuit.

Answer: h(t)¼d(t) + (322.6e� 10,000t� 330323e� 320,000t) u(t) V

–

+

+
–

2.5 nF
8 kΩ

25 mH

+

–

vo(t )v i (t ) 40 kΩ

Figure P 14.8-29

Section 14.9 Convolution

P 14.9-1 The input to the circuit shown in Figure P 14.9-1a is
the voltage vi(t) shown in Figure P 14.9-1b. Plot the output vo(t)
of the circuit.

+
– vo(t)

+

–

5 Ω

6 Η

30
1 Fv i (t)

i (t)

v i (t), V

t, s

2 3 5

10

−5

4 6

(b)

(a)

Figure P 14.9-1

P 14.9-2 Theinput to thecircuit showninFigureP14.9-2a is the
voltage vi(t) shown in Figure P 14.9-2b. (Perhaps vi(t) represents
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the binary sequence 1101 which, in turn, might represent the
decimal number 13.) Plot the output vo(t) of the circuit.

v i (t), V

t, s

2 4 8

5

0
6

+
– vo(t)

+

–

25 Ω

0.02Fv i (t)

(b)

(a)

Figure P 14.9-2

Section 14.10 Stability

P 14.10-1 The input to the circuit shown in Figure P 14.10-1
is the voltage vi(t) of the independent voltage source. The
output is the voltage vo(t) across the resistor labeled R. The step
response of this circuit is

vo tð Þ ¼ 3=4ð Þ 1� e�100t
� �

u tð ÞV

(a) Determine the value of the inductance L and the value of
the resistance R.

(b) Determine the impulse response of this circuit.
(c) Determine the steady-state response of the circuit when the

input is vi(t) ¼ 5 cos 100 t V.

+
–vi(t) vo(t)

+

–

5 Ω

R

L

Figure P 14.10-1

P 14.10-2 The input to the circuit shown in Figure P 14.10-2
is the voltage vi(t) of the independent voltage source. The
output is the voltage, vo(t), across the capacitor. The step
response of this circuit is

vo tð Þ ¼ 5� 5e�2t 1þ 2tð Þ� �
u tð ÞV

Determine the steady-state response of this circuit when the
input is

vi tð Þ ¼ 5 cos 2t þ 45�ð ÞV
Answer: vo tð Þ ¼ 12:5 cos 2t � 45�ð ÞV

P 14.10-3 The input to a linear circuit is the voltage vi(t) and
the response is the voltage vo(t). The impulse response h(t) of
this circuit is

h tð Þ ¼ 30te�5tu tð ÞV
Determine the steady-state response of this circuit when the
input is

vi tð Þ ¼ 10 cos 3tð ÞV
Answer: vo tð Þ ¼ 8:82 cos 3t � 62�ð ÞV

P 14.10-4 The input to a circuit is the voltage vs. The output is
the voltage vo. The step response of the circuit is

vo tð Þ ¼ 40þ 1:03e�8t � 41e�320t
� �

u tð Þ
Determine the network function

H oð Þ ¼ Vo oð Þ
Vs oð Þ

of the circuit and sketch the asymptotic magnitude Bode plot.

P 14.10-5 The input to a circuit is the voltage vs. The
output is the voltage vo. The step response of the circuit is

vo tð Þ ¼ 60 e�2t � e�6t
� �

u tð Þ
Determine the network function

H oð Þ ¼ Vo oð Þ
Vs oð Þ

of the circuit and sketch the asymptotic magnitude Bode plot.

P 14.10-6 The input to a circuit is the voltage vs. The output is
the voltage vo. The step response of the circuit is

vo tð Þ ¼ 4þ 32e�90t
� �

u tð Þ

Determine the network function

H oð Þ ¼ Vo oð Þ
Vs oð Þ

of the circuit and sketch the asymptotic magnitude Bode plot.

+
–

+

–
va(t)vi(t) vb(t) = k va(t)

+

–
vo(t)

+

–

4 Ω

6 ΩL

C

Figure P 14.10-2
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P 14.10-7 The input to a circuit is the voltage vs. The
output is the voltage vo. The step response of the circuit is

vo tð Þ ¼ 5

3
e�5t � e�20t
� �

u tð ÞV

Determine the steady-state response of the circuit when the
input is

vs tð Þ ¼ 12 cos 30tð ÞV
P 14.10-8 The input to a circuit is the voltage vs. The output is
the voltage vo. The impluse response of the circuit is

vo tð Þ ¼ e�5t 10� 50tð Þu tð ÞV
Determine the steady-state response of the circuit when the
input is

vs tð Þ ¼ 12 cos 10tð ÞV
P 14.10-9 The input to a circuit is the voltage vs. The output is
the voltage vo. The step response of the circuit is

vo tð Þ ¼ 1� e�20t cos 4tð Þ þ 0:5 sin 4tð Þð Þ� �
u tð ÞV

Determine the steady-state response of the circuit when the
input is

vs tð Þ ¼ 12 cos 4tð ÞV
P 14.10-10 The transfer function of a circuit is if H sð Þ ¼

20
sþ 8

. When the input to this circuit is sinusoidal, the output is

also sinusoidal. Let o1 be the frequency at which the output
sinusoid is twice as large as the input sinusoid, and let o2 be the
frequency at which output sinusoid is delayed by one
tenth period with respect to the input sinusoid. Determine
the values of o1 and o2.

P 14.10-11 The input to a linear circuit is the voltage vi. The
output is the voltage vo. The transfer function of the circuit is

H sð Þ ¼ Vo sð Þ
V i sð Þ

The poles and zeros of H sð Þ are shown on the pole-zero
diagram in Figure P 14.10-11. (There are no zeros.) The dc
gain of the circuit is

H 0ð Þ ¼ 5

jIm[s]

Re[s]
−2−5

Figure P 14.10-11

Determine the step response of the circuit.

P 14.10-12 The input to a linear circuit is the voltage vi.
The output is the voltage vo. The transfer function of the
circuit is

H sð Þ ¼ Vo sð Þ
V i sð Þ

The poles and zeros of H sð Þ are shown on the pole-zero
diagram in Figure P 14.10-12. At o ¼ 5 rad/s, the gain of the
circuit is

H 5ð Þ ¼ 10

jIm[s]

Re[s]

−j3

−4

+j3

Figure P 14.10-12

Determine the step response of the circuit.

P 14.10-13 The input to a linear circuit is the voltage vi. The
output is the voltage vo. The transfer function of the circuit is

H sð Þ ¼ Vo sð Þ
V i sð Þ

The poles and zeros of H sð Þ are shown on the pole-zero
diagram in Figure P 14.10-13. (There is a double pole at
s ¼ �4.) The dc gain of the circuit is

H 0ð Þ ¼ 5

jIm[s]

Re[s]

−j2

−4

+j2

−2

Figure P 14.10-13

Determine the step response of the circuit.
P 14.10-14 The input to a circuit is the voltage vi. The step
response of the circuit is

vo ¼ 5e�4tsin 2tð Þu tð ÞV
Sketch the pole-zero diagram for this circuit.

P 14.10-15 The input to a circuit is the voltage vi. The step
response of the circuit is

vo ¼ 5te�4tu tð ÞV
Sketch the pole-zero diagram for this circuit.
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P 14.10-16 The input to the circuit shown in Figure P
14.10-16 is the voltage vi of the voltage source. The output
is the voltage vo across resistor R3. The transfer function of this
circuit is

H sð Þ ¼ 120 s

s 2 þ 24 sþ 208

(a) Determine values of circuit parameters A, R, R2, R3, L, and
C that cause the circuit to have the specified transfer
function.

(b) Determine the step response of this circuit.
(c) Determine the steady-state response of the circuit to the

input vi(t) = 3.2 cos(10t + 30�) V.

+
– va

+

–

R
C Lv i

+

–
A va vo

+

–

R2
R3

Figure P 14.10-16

Section 14.11 Partial Fraction Expansion Using

MATLAB

P 14.11-1 Find the inverse Laplace transform of

V sð Þ ¼ 11:6s2 þ 91:83sþ 186:525

s3 þ 10:95s2 þ 35:525sþ 29:25

P 14.11-2 Find the inverse Laplace transform of

V sð Þ ¼ 8s3 þ 139s2 þ 774sþ 1471

s4 þ 12s3 þ 77s2 þ 296sþ 464

P 14.11-3 Find the inverse Laplace transform of

V sð Þ ¼ s2 þ 6sþ 11

s3 þ 12s2 þ 48sþ 64
¼ s2 þ 6sþ 11

sþ 4ð Þ3

P 14.11-4 Find the inverse Laplace transform of

V sð Þ ¼ �60
s2 þ 5sþ 48:5

P 14.11-5 Find the inverse Laplace transform of

V sð Þ ¼ �30
s2 þ 25

P 14.11-6 The input to the circuit shown in Figure P 14.11-6
is the voltage vi(t), and the output is the voltage vo(t).
Determine the output when the input is

v i tð Þ ¼ 5cos 4000 tð Þu tð Þ mV

+
–

–

+

vi(t )

vo(t )

1 mF

10 kΩ

30 kΩ

40 mH20 Ω

Figure P 14.11-6

Section 14.12 How CanWe Check . . . ?

P 14.12-1 Computer analysis of the circuit of Figure P 14.12-1
indicates that

vC tð Þ ¼ 6þ 3:3e�2:1t þ 2:7e�15:9t Vand
iL tð Þ ¼ 2þ 0:96e�2:1t þ 0:04e�15:9t A

vC(t)

–

+
vR1(t)

iR2(t)

iR3(t)

iL(t)

–

+ 6 Ω

12 Ω 6 Ω

t = 0

+
– F

3 H
a b

12 V 1 75

Figure P 14.12-1

after the switch opens at time t ¼ 0. Verify that this analysis is
correct by checking that (a) KVL is satisfied for the mesh
consisting of the voltage source, inductor, and 12-V resistor
and (b) KCL is satisfied at node b.

Hint: Use the given expressions for iL(t) and vC(t) to determine
expressions for vL(t), iC(t), vR1(t), iR2(t), and iR3(t).

P 14.12-2 Analysis of the circuit of Figure P 14.12-2 when
vC(0) ¼ �12 V indicates that

i1 tð Þ ¼ 18e0:75t A and i2 tð Þ ¼ 20e0:75t A

after t ¼ 0. Verify that this analysis is correct by representing
this circuit, including i1(t) and i2(t), in the frequency domain,
using Laplace transforms. Use I1(s) and I2(s) to calculate the
element voltages and verify that these voltages satisfy KVL for
both meshes.

i1(t)vC(t)

–

+

6 Ω

3 Ω

2 F 4i1(t)+

–
i2(t)

Figure P 14.12-2
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P 14.12-3 Figure P 14.12-3 shows a circuit represented in
(a) the time domain and (b) the frequency domain, using
Laplace transforms. An incorrect analysis of this circuit
indicates that

IL sð Þ ¼ sþ 2

s2 þ sþ 5
and VC sð Þ ¼ �20 sþ 2ð Þ

s s2 þ sþ 5ð Þ
(a) Use the initial and final value theorems to identify the error
in the analysis. (b) Correct the error.

Hint: Apparently, the error occurred as VC(s) was calculated
from IL(s).

Answer: VC sð Þ ¼ � 20
s

sþ 2
s2 þ sþ 5

� �
þ 8

s

vC(t)

iL(t)

–

+

(b)(a)

+
–

20
s

8
s

4 Ω

8 Ω

Ω

8 Ω

4s Ω

12 V

+
–

+
–

4 V

t = 0

0.05 F

iL(s)

4 H

V

Figure P 14.12-3

PSpice Problems

SP 14-1 The input to the circuit shown in Figure SP 14-1 is
the voltage of the voltage source vi(t). The output is the voltage
across the capacitor vo(t). The input is the pulse signal specified
graphically by the plot. Use PSpice to plot the output vo(t) as a
function of t.

Hint: Represent the voltage source using the PSpice part
named VPULSE.

vi(t) vo(t)
+

–

2 kΩ4

4

vi(V)

t (ms)20 24

–1
1 μF+

–

Figure SP 14-1

SP 14-2 The circuit shown in Figure SP 14-2 is at steady state
before the switch closes at time t ¼ 0. The input to the circuit is
the voltage of the voltage source, 12 V. The output of this
circuit is the voltage across the capacitor v(t). Use PSpice to
plot the output v(t) as a function of t. Use the plot to obtain an
analytic representation of v(t), for t > 0.

Hint: We expect v tð Þ ¼ Aþ B e�t/t for t > 0, where A, B, and
t are constants to be determined.

+
– v(t)

+

–

30 kΩ

10 kΩ
60 kΩ

t = 0

12 V 2 μF

Figure SP 14-2

SP 14-3 The circuit shown in Figure SP 14-3 is at steady state
before the switch closes at time t ¼ 0. The input to the circuit is
the current of the current source, 4 mA. The output of this
circuit is the current in the inductor, i(t). Use PSpice to plot the
output i(t) as a function of t. Use the plot to obtain an analytic
representation of i(t) for t > 0.

Hint: We expect i tð Þ ¼ Aþ B e�t/t for t > 0, where A, B, and t
are constants to be determined.
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4 mA 1 kΩ 5 mH

t = 0
i(t)

Figure SP 14-3

SP 14-4 The input to the circuit shown in Figure SP 14-4 is
the voltage of the voltage source vi(t). The output is the voltage
across the capacitor vo(t). The input is the pulse signal specified
graphically by the plot. Use PSpice to plot the output vo(t) as a
function of t for each of the following cases:

(a) C ¼ 1 F; L ¼ 0:25 H; R1 ¼ R2 ¼ 1:309 V

(b) C ¼ 1 F; L ¼ 1 H; R1 ¼ 3 V; R2 ¼ 1 V
(c) C ¼ 0:125 F; L ¼ 0:5 H; R1 ¼ 1 V; R2 ¼ 4 V

Plot the output for these three cases on the same axis.

Hint: Represent the voltage source, using the PSpice part
named VPULSE.

vi(t) vo(t)
+

–

R1

R2 C

L

5

5

vi(V)

t (s)10 15

0

+
–

Figure SP 14-4

SP 14-5 The input to the circuit shown in Figure SP 14-5 is
the voltage of the voltage source vi(t). The output is the voltage
vo(t) across resistor R2. The input is the pulse signal specified
graphically by the plot. Use PSpice to plot the output vo(t) as a
function of t for each of the following cases:

(a) C ¼ 1 F; L ¼ 0:25 H; R1 ¼ R2 ¼ 1:309 V
(b) C ¼ 1 F; L ¼ 1 H; R1 ¼ 3 V; R2 ¼ 1 V

(c) C ¼ 0:125 F; L ¼ 0:5 H; R1 ¼ 1 V; R2 ¼ 4 V

Plot the output for these three cases on the same axis.

Hint: Represent the voltage source, using the PSpice part
named VPULSE.

vi(t) vo(t)
+

–

R1

R2

5

5

vi(V)

t (s)10 15

0

+
–

L

C

Figure SP 14-5

Design Problems

DP 14-1 Design the circuit in Figure DP 14-1 to have a step
response equal to

vo ¼ 5te�4tu tð ÞV
Hint: Determine the transfer function of the circuit in Figure DP
14-1 in terms of k, R, C, and L. Then determine the Laplace
transform of the step response of the circuit in Figure DP 14-1.
Next, determine the Laplace transform of the given step
response. Finally, determine values of k, R, C, and L that cause
the two step responses to be equal.

Answer: Pick L ¼ 1 H; then k ¼ 0:625 V/V; R ¼ 8 V; and
C ¼ 0:0625 F. (This answer is not unique.)

vxvs

–

+

vo

–

+

R

L

1 Ω+
–

+

–

C

kvx

Figure DP 14-1

DP 14-2 Design the circuit in Figure DP 14-1 to have a step
response equal to

vo ¼ 5e�4tsin 2tð Þu tð ÞV

Design Problems 739



Hint: Determine the transfer function of the circuit in Figure DP
14-1 in terms of k, R, C, and L. Then determine the Laplace
transform of the step response of the circuit in Figure DP 14-1.
Next, determine the Laplace transform of the given step
response. Finally, determine values of k, R, C, and L that cause
the two step responses to be equal.

Answer: Pick L ¼ 1 H; then k ¼ 1:25 V/V; R ¼ 8 V; and C ¼
0:05 F. (This answer is not unique.)

DP 14-3 Design the circuit in Figure DP 14-1 to have a step
response equal to

vo ¼ 5 e�2t � e�4t
� �

u tð ÞV
Hint: Determine the transfer function of the circuit in Figure DP
14-1 in terms of k, R, C, and L. Then determine the Laplace
transform of the step response of the circuit in Figure DP 14-1.
Next, determine the Laplace transform of the given step
response. Finally, determine values of k, R, C, and L that cause
the two step responses to be equal.

Answer: Pick L ¼ 1 H; then k ¼ 1:667 V/V; R ¼ 6 V; and
C ¼ 0:125 F. (This answer is not unique.)

DP 14-4 Show that the circuit in Figure DP 14-1 cannot be
designed to have a step response equal to

vo ¼ 5 e�2t þ e�4t
� �

u tð ÞV
Hint: Determine the transfer function of the circuit in Figure
DP 14-1 in terms of k, R, C, and L. Then determine the Laplace
transform of the step response of the circuit in Figure DP 14-1.
Next, determine the Laplace transform of the given step response.
Notice that these two functions have different forms and so cannot
be made equal by any choice of values of k, R, C, and L.

DP 14-5 The input to the circuit shown in Figure DP 14-5 is the
current i(t), and the output is the current io(t). Determine the values
of R, L, and C that cause the impulse response of this circuit to be

i o tð Þ ¼ k 1 e�2000t þ k 1 e�8000t
� �

u tð Þ A

where k1 and k2 are unspecified constants.
Answer:OnesolutionisL¼125mH,R¼1250V,andC¼0.5mF.

io(t )

Ri (t ) C

L

Figure DP 14-5

DP 14-6 The input to each of the circuits shown in Figure DP
14-6 is the voltage vi(t), and the output is the voltage vo(t).
Choose one of the circuits shown in Figure DP 14-6 and design it
to have the step response

v o tð Þ ¼ 4

3
e�20 t � 1

3
e�5 t

� �
u tð Þ V

Answer: One solution is to choose Circuit b with L ¼ 1 H,
R ¼125 V, C ¼ 2 mF, and k ¼ 4 A/A.

+
–

vo

+

–

vi

R

i
ki C

L

+
–

vo

+

–

vi

R

i
ki

C

L +
–

vo

+

–

vi R
i

ki

L C

(c)

(a)

(b)

Figure DP 14-6

DP 14-7 The input to each of the circuits shown in Figure DP
14-6 is the voltage vi(t), and the output is the voltage vo(t).
Choose one of the circuits shown in Figure DP 14-6 and design it
to have the step response

v o tð Þ ¼ 5 e�10t � e�15t
� �

u tð Þ V

DP 14-8 The input to each of the circuits shown in Figure DP
14-6 is the voltage vi(t), and the output is the voltage vo(t).
Choose one of the circuits shown in Figure DP 14-6 and design it
to have the step response

v o tð Þ ¼ 1� e�20t � 20 t e�20t
� �

u tð Þ V

DP 14-9 The input to each of the circuits shown in Figure DP
14-6 is the voltage vi(t), and the output is the voltage vo(t).
Choose one of the circuits shown in Figure DP 14-6 and design it
to have the step response

v o tð Þ ¼ e�10t sin 40 tð Þu tð Þ V

Answer: One solution is to choose Circuit c with L ¼ 1/2 H,
R ¼ 4 V, C ¼ 1 mF, and k ¼ 4 A/A.

DP 14-10 The input to each of the circuits shown in Figure DP
14-6 is the voltage vi(t), and the output is the voltage vo(t).
Choose one of the circuits shown in Figure DP 14-6 and design it
to have the step response

v o tð Þ ¼ e�10t cos 40 tð Þu tð Þ V

Answer: None of the circuits in Figure DP 14-6 can produce the
required step response.
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15.1 I n t r o d u c t i o n

This chapter introduces the Fourier series and the Fourier transform. The Fourier series represents a
nonsinusoidal periodic waveform as a sum of sinusoidal waveforms. The Fourier series is useful to
us in two ways:

� The Fourier series shows that a periodic waveform consists of sinusoidal components at different
frequencies. That allows us to think about the way in which the waveform is distributed in frequency.
For example, we can give meaning to such expressions as “the high-frequency part of a square wave.”

� We can use superposition to find the steady-state response of a circuit to an input represented by a
Fourier series and, thus, determine the steady-state response of the circuit to the periodic waveform.

We obtain the Fourier transform as a generalization of the Fourier series, taking the limit as the period of a
periodic wave becomes infinite. The Fourier transform is useful to us in two ways:

� The Fourier transform represents an aperiodic waveform in the frequency domain. That allows us to
think about the way in which the waveform is distributed in frequency. For example, we can give
meaning to such expressions as “the high-frequency part of a pulse.”

� We can represent both the input to a circuit and the circuit itself in the frequency domain: the input
represented by its Fourier transform and the circuit represented by its network function. The
frequency-domain representation of circuit output is obtained as the product of the Fourier transform
of the input and the network function of the circuit.

15.2 T h e F o u r i e r S e r i e s

Baron Jean-Baptiste-Joseph Fourier proposed in 1807 that any periodic function could be expressed
as an infinite sum of simple sinusoids. This surprising claim predicts that even discontinuous 741



periodic waveforms, such as square waves, can be represented using only sinusoids. In 1807,
Fourier’s claim was controversial. Such famous mathematicians as Pierre Simon de Laplace and
Joseph Louis Lagrange doubted the validity of Fourier’s representation of periodic functions. In
1828, Johann Peter Gustav Lejeune Dirichlet presented a set of conditions sufficient to guarantee the
convergence of Fourier’s series. Today, the Fourier series is a standard tool for scientists and
engineers.

Let’s consider periodic functions. The function f (t) is periodic if there exists a delay t such that

f tð Þ ¼ f t � tð Þ ð15:2-1Þ
for every value of t. This value of t not unique. In particular, if t satisfies Eq. 15.2-1, then every
integer multiple of t also satisfies Eq. 15.2-1. In other words, if t satisfies Eq 15.2-1 and k is any
integer, then

f tð Þ ¼ f t � ktð Þ

for every value of t. To uniquely define the period T of the periodic function f (t), we let T be the
smallest positive value of t that satisfies Eq. 15.2-1.

Next, we use the period T to define the fundamental frequency o0 of the periodic function f (t),

o0 ¼ 2p
T

ð15:2-2Þ

The fundamental frequency has units of rad/s. Integer multiples of the fundamental frequency are called
harmonic frequencies.

A periodic function f (t) can be represented by an infinite series of harmonically related sinusoids,
called the (trigonometric) Fourier series, as follows:

f tð Þ ¼ a0 þ
X1
n¼1

an cos n o0t þ
X1
n¼1

bn sin n o0t ð15:2-3Þ

where o0 is the fundamental frequency and the (real) coefficients, and a0, an, and bn are called the Fourier
trigonometric coefficients. The Fourier trigonometric coefficients can be calculated using

a0 ¼ 1

T

Z Tþt0

t0

f tð Þdt ¼ the average value of f tð Þ ð15:2-4Þ

an ¼ 2

T

Z Tþt0

t0

f tð Þ cos n o0t dt n > 0 ð15:2-5Þ

bn ¼ 2

T

Z Tþt0

t0

f tð Þ sin n o0t dt n > 0 ð15:2-6Þ

The conditions presented by Dirichlet are sufficient to guarantee the convergence of the trigono-
metric Fourier series given in Eq. 15.2-3. The Dirichlet conditions require that the periodic function
f (t) satisfies the following mathematical properties:

1. f (t) is a single-valued function except at possibly a finite number of points.

2. f (t) is absolutely integrable, that is,
Z t0þT

t0

f tð Þj jdt < 1 for any t0.
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3. f (t) has a finite number of discontinuities within the period T.

4. f (t) has a finite number of maxima and minima within the period T.

For our purposes, f (t) will represent a voltage or current waveform, and any voltage or current
waveform that we can actually produce will certainly satisfy the Dirichlet conditions. We shall assume
that the Dirichlet conditions previously listed are always satisfied for periodic voltage or current
waveforms.

A Fourier series is an accurate representation of a periodic signal and consists of the sum of
sinusoids at the fundamental and harmonic frequencies.

Given a periodic voltage or current waveform, we can obtain the Fourier representation of that
voltage or current in four steps:

Step 1 Determine the period T and the fundamental frequency o0.

Step2 Represent the voltage or current waveform as a function of t over one complete period.

Step 3 Use Eqs. 15.2-4, 5 and 6 to determine the Fourier trigonometric coefficients a0, an,
and bn.

Step 4 Substitute the coefficients a0, an, and bn obtained in Step 3 into Eq. 15.2-3.

The following example illustrates this four-step procedure.

E X A M P L E 1 5 . 2 - 1 Fourier Series of a Full-wave
Rectified Cosine

Figure 15.2-1 shows a full-wave rectifier having a cosine input. The output of a full-wave input is the absolute value
of its input, shown in Figure 15.2-2. A full-wave rectifier is an electronic circuit often used as a component of such
diverse products as power supplies and AM radio receivers. Determine the Fourier series of the periodic waveform
shown in Figure 15.2-2.

Solution
Step 1: From Figure 15.2-2, we see that the period of vo(t) is

T ¼ 3p
40

� p
40

¼ p
20

s

The fundamental radian frequency is

o0 ¼ 2p
T

¼ 40 rad/s

vi (t) = 5 cos 20t V vo (t) = | vi (t)|
Full-Wave
Rectifier

FIGURE 15.2-1 The circuit considered in Example 15.2-1.
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Step 2: Equations 15.2-4, 5, and 6 require integration over one full period of vo(t). We are free to choose the starting
point of that period, to, to make the integration as easy as possible. Often, we choose to integrate either from 0 to T
or from �T=2 to T=2. In this example, the periodic waveform can be represented as

vo tð Þ ¼
5 cos 20tð Þ when� p

40
� t � p

40

�5 cos 20tð Þ when
p
40

� t � 3p
40

8><
>:

Consider the calculation of a0, using Eq. 15.2.4. If we choose to integrate form 0 to T, we have

a0 ¼ 20

p

Z p=20

0
vo tð Þdt ¼ 20

p

Z p=40

0
5 cos 20tð Þdt þ 20

p

Z p=20

p=40
�5 cos 20tð Þdt

On the other hand, if we choose to integrate from �T=2 to T=2, we have

a0 ¼ 20

p

Z p=40

�p=40
vo tð Þdt ¼ 20

p

Z p=40

�p=40
5 cos 20tð Þdt

The second equation is simpler, so we choose to integrate from �T=2 to þT=2 for convenience.

Step 3: Now we will use Eqs. 15.2-4, 5, and 6 to determine the Fourier trigonometric coefficients a0, an, and bn. First,

a0 ¼ 20

p

Z p=40

�p=40
5 cos 20tð Þdt ¼ 100

p
1

20
sin 20tð Þjp=40�p=40

� �
¼ 5

p
sin

p
2

� �
� sin � p

2

� �� �
¼ 10

p

Next,

an ¼ 40

p

Z p=40

�p=40
5 cos 20tð Þ cos n o0tð Þdt ¼ 40

p

Z p=40

�p=40
5 cos 20tð Þ cos 40ntð Þdt

Using a trigonometric identity,

cos 20tð Þ cos 40ntð Þ ¼ 1

2
cos 20t þ 40ntð Þ þ cos 20t þ 40ntð Þð Þ

¼ 1

2
cos 1þ 2nð Þ20tð Þ þ cos 1� 2nð Þ20tð Þð Þ

5

40
–

40 40 40

t, s

5p3ppp

vo (t), V

FIGURE 15.2-2 A full-wave rectified cosine.
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Then,

an ¼ 100

p

Z p=40

�p=40
cos 1þ 2nð Þ20tð Þ þ cos 1� 2nð Þ20tð Þð Þdt

¼ 100

p
sin 1þ 2nð Þ20tð Þ

1þ 2nð Þ20
����
p=40

�p=40
þ sin 1� 2nð Þ20tð Þ

1� 2nð Þ20
����
p=40

�p=40

 !

¼ 5

p

sin 1þ 2nð Þ p
2

� �
� sin � 1þ 2nð Þp

2

� �

1þ 2nð Þ þ
sin 1� 2nð Þ p

2

� �
� sin � 1� 2nð Þp

2

� �

1� 2nð Þ

0
@

1
A

¼ 5

p
2 �1ð Þn

1þ 2nð Þ þ
2 �1ð Þn

1� 2nð Þ
� �

¼ 20 �1ð Þn

p 1� 4n2ð Þ

Similarly,

bn ¼ 40

p

Z p=40

�p=40
5 cos 20tð Þ sin 40 ntð Þdt

¼ 100

p

Z p=40

�p=40
sin 2n þ 1ð Þ20tð Þ þ sin 2n � 1ð Þ20tð Þð Þdt

¼ 100

p
� cos 1þ 2nð Þ20tð Þ

1þ 2nð Þ20
����
p=40

�p=40
þ� cos 1� 2nð Þ20tð Þ

1� 2nð Þ20
����
p=40

�p=40

 !
¼ 0

In summary,

a0 ¼ 10

p
; an ¼ 20 �1ð Þn

p 1� 4n2ð Þ and bn ¼ 0 ð15:2-7Þ

Step 4: Substitute the coefficients a0, an, and bn given in Eq. 15.2-7 into Eq. 15.2-3:

vo tð Þ ¼ 10

p
þ 20

p

X1
n¼1

�1ð Þn

1� 4n2
cos 40 ntð Þ ð15:2-8Þ

Equation 15.2-8 represents the rectified cosine by its Fourier series, but this equation is complicated enough to
make us wonder what we have accomplished. How can we be sure that Eq. 15.2-8 actually represents a rectified
cosine? Figure 15.2-3 shows a MATLAB script that plots the Fourier series given in Eq. 15.2-8. In particular, notice
how the coefficients a0, an, and bn determined in step 3 are used in the MATLAB script. The plot produced by this
MATLAB script is shown in Figure 15.2-4. The waveform in Figure 15.2-4 is indeed a rectified cosine having the
correct amplitude, 5 volts, and correct period, p

20 ffi 0:16 seconds. Thus, we see that Eq. 15.2-8 does indeed
represent the rectified cosine.
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FIGURE 15.2-3
MATLAB script to
plot the rectified
cosine.

0 0.05 0.1 0.15 0.2
time, s

Full-Wave Rectified Cosine

0.25 0.3

6

5

4

3

2

1

0

v(
t)

 V

FIGURE 15.2-4 MATLAB plot of the full-wave
rectified cosine.
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Next, we obtain an alternate representation of the trigonometric Fourier series. The Fourier series,
given in Eq 15.2-3, can be written as:

f tð Þ ¼ a0 þ
X1
n¼1

an cos n o0t þ bn sin n o0tð Þ ð15:2-9Þ

Using a trigonometric identity, the nth term of this series can be written as

an cos n o0t þ bn sin n o0t ¼ an cos n o0t þ bn cos n o0t � 90�ð Þ ð15:2-10Þ
Using phasors, we can represent the right-hand side of Eq 15.2-10 in the frequency domain. Performing
a rectangular-to-polar conversion, we obtain

anff0þ bnff�90� ¼ an � jbn ¼ cnffyn

where

cn �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

n þ b2
n

q
and yn ¼

�tan�1 bn

an

� �
if an > 0

180� � tan�1 bn

an

� �
if an < 0

8>>><
>>>:

ð15:2-11Þ

and

an ¼ cn cos yn and bn ¼ �cn sin yn

Back in the time domain, the corresponding sinusoid is

cn cos n o0t þ ynð Þ
After defining c0 to be

c0 ¼ a0 ¼ average value of f tð Þ ð15:2-12Þ
The Fourier series is represented as

f tð Þ ¼ c0 þ
X1
n¼1

cn cos n o0t þ ynð Þ ð15:2-13Þ

To distinguish between the two forms of the trigonometric Fourier series, we will refer to the series
given in Eq. 15.2-3 as the sine-cosine Fourier series and to the series given in Eq. 15.2-13 as the
amplitude-phase Fourier series.

In general, it is easier to calculate an and bn than it is to calculate the coefficients cn and yn. We will
see in Section 15.3 that this is particularly true when f (t) is symmetric. On the other hand, the Fourier
series involving cn is more convenient for calculating the steady-state response of a linear circuit to a
periodic input.

E X A M P L E 1 5 . 2 - 2 Fourier Series of a Pulse Waveform

Determine the Fourier series of the pulse waveform shown in Figure 15.2-5.

Solution
Step 1: From Figure 15.2-5, we see that the period of vo(t) is

T ¼ p
10

s
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The fundamental frequency is

o0 ¼ 2p
T

¼ 20 rad/s

Step 2: Over the period from 0 to p=10, the pulse waveform is given by

v tð Þ ¼
5 when 0 � t � p

40

0 when
p
40

� t � p
10

8><
>:

Step 3: Next, we will determine the Fourier coefficients a0, an, and bn. First, we will calculate a0 as the average
value of v(t):

a0 ¼ area under the curve for the one period

one period; T
¼

5
p
40

� �
þ 0

3p
40

� �

p
10

¼ 1:25 V

Next,

an ¼ 20

p

Z p=40

0
5 cos n o0tð Þdt þ 20

p

Z p=10

p=40
0 cos n o0tð Þdt ¼ 20

p

Z p=40

0
5 cos 20ntð Þdt

¼ 20 5ð Þ
p

sin 20ntð Þ
20n

����
p=40

0

 !
¼ 5

np
sin

np
2

� �

Similarly,

bn ¼ 20

p

Z p=40

0
5 sin n o0tð Þdt ¼ 20

p

Z p=40

0
5 sin 20ntð Þdt ¼ 20 5ð Þ

p
� cos 20ntð Þ

20n

����
p=40

0

 !
¼ 5

np
1� cos

np
2

� �� �

In summary,

a0 ¼ 1:25; an ¼ 5

np
sin

np
2

� �
and bn ¼ 5

np
1� cos

np
2

� �� �
ð15:2-14Þ

Step 4: Substitute the coefficients a0, an, and bn given in Eq. 15.2-7 into Eq. 15.2-3:

vo tð Þ ¼ 1:25þ 5

np

X1
n¼1

sin
np
2

� �
cos 20ntð Þ þ 1� cos

np
2

� �� �
sin 20ntð Þ

� �
ð15:2-15Þ

Figure 15.2-6 shows a MATLAB script that plots the Fourier series given in Eq. 15.2-15. In particular, notice how
the coefficients a0, an, and bn given in Eq. 15.2-14 are used in the MATLAB script. The plot produced by this
MATLAB script is shown in Figure 15.2-7. The waveform in Figure 15.2-7 is indeed a pulse waveform having the

correct amplitude, 5 volts, and correct period,
p
10

ffi 0:32 seconds.

 
40
π  

10
π  

8
π

v (t), V

t, s

5

FIGURE 15.2-5 A pulse waveform.
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Pulse Waveform

time, s

v(
t)

 V

6

5

4

3

2

1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 FIGURE 15.2-7 MATLAB plot of the full-wave

rectified cosine.
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FIGURE 15.2-6
MATLAB script to
plot the pulse
waveform.
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EXERCISE 15.2-1 Suppose f1(t) and f2(t) are periodic functions having the same period, T. Then
f1(t) and f2(t) can be represented by the Fourier series

f 1 tð Þ ¼ a10 þ
X1
n¼1

a1n cos no0tð Þ þ b1n sin no0tð Þð Þ

and

f 2 tð Þ ¼ a20 þ
X1
n¼1

a2n cos no0tð Þ þ b2n sin no0tð Þð Þ

Determine the Fourier series of the function

f tð Þ ¼ k1 f 1 tð Þ þ k2 f 2 tð Þ

Answer: f tð Þ ¼ k1a10 þ k2a20ð Þ þ P1
n¼1

k1a1n þ k2a2nð Þ cos no0tð Þð
þ k1b1n þ k2b2nð Þ sin no0tð ÞÞ

EXERCISE 15.2-2 Determine the Fourier series when f (t) ¼ K, a constant.

Answer: a0 ¼ K and an ¼ bn ¼ 0 for n � 1

EXERCISE 15.2-3 Determine the Fourier series when f tð Þ ¼ A cos o0t.

Answer: a0 ¼ 0, a1 ¼ A, an ¼ 0 for n > 1, and bn ¼ 0

15.3 S ymme t r y o f t h e F u n c t i o n f ( t )

Four types of symmetry can be readily recognized and then used to simplify the task of calculating
the Fourier coefficients. They are the following:

1. Even-function symmetry.

2. Odd-function symmetry.

3. Half-wave symmetry.

4. Quarter-wave symmetry.

A function is even when f tð Þ ¼ f �tð Þ, and a function is odd when f tð Þ ¼ �f �tð Þ. The function
shown in Figure 15.2-2 is an even function. For even functions, all bn ¼ 0 and

an ¼ 4

T

Z T=2

0
f tð Þ cos no0t dt

For odd functions, all an ¼ 0 and

bn ¼ 4

T

Z T=2

0
f tð Þ sin no0t dt

An example of an odd function is sin o0t. Another odd function is shown in Figure 15.3-1.
Half-wave symmetry for a function f (t) is obtained when

f tð Þ ¼ �f t � T

2

� �
ð15:3-1Þ

In these half-wave symmetric waveforms, the second half of each period looks like the first half turned
upside down. The function shown in Figure 15.3-2 has half-wave symmetry. If a function has half-wave

750 15. Fourier Series and Fourier Transform



symmetry, then both an and bn are zero for even values of n. We see that a0 ¼ 0 for half-wave symmetry
because the average value of the function over one period is zero.

Quarter-wave symmetry describes a function that has half-wave symmetry and, in addition, has
symmetry about the midpoint of the positive and negative half-cycles. An example of an odd function
with quarter-wave symmetry is shown in Figure 15.3-1. If a function is odd and has quarter-wave
symmetry, then a0 ¼ 0; an ¼ 0 for all n, bn ¼ 0 for even n. For odd n, bn is given by

bn ¼ 8

T

Z T=4

0
f tð Þ sin no0t dt

If a function is even and has quarter-wave symmetry, then a0 ¼ 0; bn ¼ 0 for all n, and an ¼ 0 for
even n. For odd n, an is given by

an ¼ 8

T

Z T=4

0
f tð Þ cos no0t dt

The calculation of the Fourier coefficients and the associated effects of symmetry of the
waveform f (t) are summarized in Table 15.3-1. Often, the calculation of the Fourier series can be
simplified by judicious selection of the origin (t ¼ 0) because the analyst usually has the choice to select
this point arbitrarily.

t3T
 4

T

f (t)
1

–1

3T
8

T
2

T
8

T
4

T
4

T
2

–3T
 4

– –

FIGURE 15.3-1 An odd function with
quarter-wave symmetry.

Table 15.3-1 Fourier Series and Symmetry

SYMMETRY FOURIER COEFFICIENTS

1. Odd function
f tð Þ ¼ �f �tð Þ

an ¼ 0 for all n

bn ¼ 4
T

Z T=2

0
f tð Þ sin no0t dt

2. Even function
f tð Þ ¼ f �tð Þ

bn ¼ 0 for all n

an ¼ 4
T

Z T=2

0
f tð Þ cos no0t dt

3. Half-wave symmetry

f tð Þ ¼ �f t � T

2

� � a0 ¼ 0

an ¼ 0 for even n

bn ¼ 0 for even n

an ¼ 4
T

Z T=2

0
f tð Þ cos no0t dt for odd n

bn ¼ 4
T

Z T=2

0
f tð Þ sin no0t dt for odd n

4. Quarter-wave symmetry. (Half-wave
symmetry and symmetry about the
midpoints of the positive and negative
half cycles)

A. Odd function: a0 ¼ 0; an ¼ 0 for all n

bn ¼ 0 for even n

bn ¼ 8
T

Z T=4

0
f tð Þ sin no0t dt for odd n

B. Even function: a0 ¼ 0; bn ¼ 0 for all n

an ¼ 0 for even n

an ¼ 8
T

Z T=4

0
f tð Þ cos no0t dt for odd n
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E X A M P L E 1 5 . 3 - 1 Symmetry and the Fourier Series

Determine the Fourier series for the triangular waveform v(t) shown
in Figure 15.3-2.

Solution
Step 1: From Figure 15.3-2, we see that the period of vo(t) is

T ¼ p
4
� � p

4

� �
¼ p

2
s

The fundamental frequency is

o0 ¼ 2p
T

¼ 4 rad/s

Step 2: If we don’t take advantage of the symmetry of the triangle waveform, determining the Fourier coefficients
a0, an, and bn will require integration over a full period—either from 0 to T or from �T=2 to T=2. Accordingly, we
can represent v(t) from time �T=2 to T, that is, from �p=8 to p=2 seconds. By writing equations for the various
straight-line segments that comprise the triangle waveform, we can represent v(t) as

v tð Þ ¼

� 32

p
t � 8 when � 3p

8
� t � p

8
32

p
t when � p

8
� t � p

8

� 32

p
t þ 8 when

p
8
� t � 3p

8
32

p
t � 16 when

3p
8

� t � 5p
8

8>>>>>>>>>><
>>>>>>>>>>:

If we take advantage of symmetry, we will need to integrate only from 0 to T=2, that is, from 0 to p=8 seconds. If we
need to represent v(t) only from 0 to p=8 seconds, we don’t have to write equations for so many straight-line
segments. In this case, we need to write the equation only for one straight line to represent v(t) as

v tð Þ ¼ 32

p
t when � p

8
� t � p

8
Step 3: Next, we will determine the Fourier coefficients a0, an, and bn. First, the average value of the triangle
waveform is 0 volt

a0 ¼ the average value of v tð Þ ¼ 0

The triangle waveform has odd symmetry. From entry 1 of Table 15.3-1, an ¼ 0 for all n and

bn ¼ 4

T

Z T=2

0
v tð Þ sin no0t dt ¼ 8

p

Z p=4

0
v tð Þ sin 4nt dt

¼ 8

p

Z p=8

0

32

p
t

� �
sin 4nt dt þ

Z p=4

p=8
� 32

p
t þ 8

� �
sin 4nt dt

" #

Noticing that the triangle waveform has quarter-wave symmetry provides a simpler equation for determining bn.
Using entry 4A of Table 15.3-1, we see that bn ¼ 0 for even n. For odd n,

bn ¼ 8

T

Z T=4

0
v tð Þ sin no0t dt ¼ 512

p2

Z p=8

0
t sin 4nt dt ¼ 512

p2
sin 4nt � 4nt cos 4nt

16n2

� 	p=8
0

¼ 32

p2n2
sin n

p
2

� �
� 0� n

p
2
cos n

p
2

� �
þ 0

� �

Because cos n
p
2

� �
¼ 0 for odd n, we obtain

bn ¼ 32

p2n2
sin n

p
2

� �
for odd n

4–

–

–
4 –4

4

8 8

t, s
p3p

8
3p

8
p

p p

v(t), V

FIGURE 15.3-2 An odd function with
half-wave symmetry.
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In summary,

a0 ¼ 0; an ¼ 0 for all n; and bn ¼
32

p2n2
sin n

p
2

� �
for odd n

0 for even n

8<
:

Step 4: The Fourier series is

vðtÞ ¼ 32
p2

X1
odd n¼1

1
n2

sin
np
2

� �
sin ð4ntÞ ð15:3-2Þ

Notice the notation used in Eq. 15.3-2 to indicate that the summation includes only terms corresponding to the odd
values of n.

Figure 15.3-3 shows a MATLAB script that plots the Fourier series given in Eq. 15.3-2. The plot produced by
this MATLAB script is shown in Figure 15.2-3. The waveform in Figure 15.2-4 is indeed a triangle having the
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EXERCISE 15.3-1 Determine the Fourier series for the waveform f (t) shown in Figure
E 15.3-1. Each increment of time on the horizontal axis is p=8 s, and the maximum and minimum
are þ1 and �1, respectively.

0
8

– p
8
p

1

–1

f (t)

t (s)

T

FIGURE E 15.3-1 The period T ¼ p
2

s.

Answer: f tð Þ ¼ 4
p

XN

n¼1

1
n

sin no0t and n odd;o0 ¼ 4 rad/s

EXERCISE 15.3-2 Determine the Fourier series for the waveform f (t) shown in Figure
E 15.3-2. Each increment of time on the horizontal grid is p=6 s, and the maximum and minimum
values of f (t) are 2 and �2, respectively.

0

–2

2
p

2

f (t)

t (s)

T

FIGURE E 15.3-2 The period T ¼ p s.

Answer: f tð Þ ¼ �24
p2

XN

n¼1

1
n2

sin np=3ð Þ sin no0t and n odd;o0 ¼ 2 rad/s

correct amplitude, 8 volts peak-to-peak, and correct period,
p
2
ffi 1:6 seconds. Thus, we see that Eq. 15.3-2 does

indeed represent the triangle waveform.

0 0.5 1
time, s

v(
t)

 V
Triangle Waveform

1.5 2

5

0

–5

FIGURE 15.3-4 MATLAB output.

754 15. Fourier Series and Fourier Transform



EXERCISE 15.3-3 For the periodic signal f (t) shown in Figure E 15.3-3, determine whether
the Fourier series contains (a) sine and cosine terms and (b) even harmonics and (c) calculate the
dc value.

1

–p p 2p

2

–1

–2

f (t)

t (s)

FIGURE E 15.3-3

Answers: (a) Yes, both sine and cosine terms; (b) no even harmonics; (c) a0 ¼ 0

15.4 F o u r i e r S e r i e s o f S e l e c t e d Wa v e f o rm s

Table 15.4-1 provides the trigonometric Fourier series for several frequently encountered waveforms.
Each of the waveforms in Table 15.4-1 is represented using two parameters: A is the amplitude of the
waveform, and T is the period of the waveform.

Figure 15.4-1 shows a voltage waveform that is similar to, but not exactly the same as, a
waveform in Table 15.4-1. To obtain a Fourier series for the voltage waveform, we select the Fourier
series of the similar waveform from Table 15.4-1 and then do four things:

1. Set the value of A equal to the amplitude of the voltage waveform.

2. Add a constant to the Fourier series of the voltage waveform to adjust its average value.

Table 15.4-1 The Fourier Series of Selected Waveforms

FUNCTION TRIGONOMETRIC FOURIER SERIES

T
2

T0

A

f (t)

t

Square wave : o0 ¼ 2p
T

f tð Þ ¼ A

2
þ 2A

p

X1
n¼1

sin 2n � 1ð Þo0tð Þ
2n � 1

f (t)

t

 
2

 
 2

A

Td d–

Pulse wave : o0 ¼ 2p
T

f tð Þ ¼ Ad

T
þ 2A

p

X1
n¼1

sin
npd

T

� �

n
cos no0tð Þ

(continued)
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3. Set the value of T equal to the period of the voltage waveform.

4. Replace t by t � to when the voltage waveform is delayed by time to with respect to the waveform
in Table 15.4-1. After some algebra, the delay can be represented as a phase shift in the Fourier
series of the voltage waveform.

E X A M P L E 1 5 . 4 - 1

Determine the Fourier series of the voltage waveform shown in Figure 15.4-1.

t, ms

–2

3

v(t),V

–2 62–6

FIGURE 15.4-1 A voltage waveform.

Solution
The voltage waveform is similar to the square wave in Table 15.4-1. The Fourier series of the square is

f tð Þ ¼ A

2
þ 2A

p

X1
n¼1

sin 2n � 1ð Þo0tð Þ
2n � 1

Table 15.4-1 (Continued )

FUNCTION TRIGONOMETRIC FOURIER SERIES

f (t)

t

A

T
2

3T
2

T0

Half-wave rectified sine wave : o0 ¼ 2p
T

f tð Þ ¼ A

p
þ A

2
sin o0t � 2A

p

X1
n¼1

cos 2n o0tð Þ
4n2 � 1

f (t) = ⏐A sin ω t⏐

t

A

T 2T–T 0

Full-wave rectified sine wave : o0 ¼ 2p
T

f tð Þ ¼ 2A

p
� 4A

p

X1
n¼1

cos n o0tð Þ
4n2 � 1

f (t)

–2T

A

–T T 2T

t

0

Sawtooth wave : o0 ¼ 2p
T

f tð Þ ¼ A

2
� A

p

X1
n¼1

sin n o0tð Þ
n

f (t)

T
2

–T

A

2TT

t

0

Triangle wave : o0 ¼ 2p
T

f tð Þ ¼ A

2
� 4A

p2

X1
n¼1

cos 2n � 1ð Þo0tð Þ
2n � 1ð Þ2

Try it 
yourself 

in WileyPLUS
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15.5 E x p o n e n t i a l F o rm o f t h e F o u r i e r S e r i e s

Using Euler’s identity, we can derive the exponential form of the Fourier series from the trigono-
metric Fourier series. Recall from Eq. 15.2-13 that the amplitude-phase form of the Fourier series is
given by

f tð Þ ¼ c0 þ
X1
n¼1

cn cos no0t þ ynð Þ ð15:5-1Þ

Euler’s identity is

e jy ¼ cos yþ j sin y ð15:5-2Þ

Step 1: The amplitude of the voltage waveform is 3 � �2ð Þ ¼ 5 V. After setting A ¼ 5, the Fourier series becomes

2:5 þ 10

p

X1
n¼1

sin 2n � 1ð Þo0tð Þ
2n � 1

Step 2: The average value of the Fourier series is 2.5, the value of the constant term. The average value of the
voltage waveform is 3 þ �2ð Þð Þ=2 ¼ 0:5 V. We change the constant term of the Fourier series from 2.5 to 0.5 to
adjust its average value. This is equivalent to subtracting 2 from the Fourier series, corresponding to shifting the
waveform downward by 2 V:

0:5 þ 10

p

X1
n¼1

sin 2n � 1ð Þo0tð Þ
2n � 1

Step 3: The period of the voltage waveform is T ¼ 6 � �2ð Þ ¼ 8 ms. The corresponding fundamental frequency is

o0 ¼ 2p
0:008

¼ 250 p rad/s

After setting o0 ¼ 250 p rad/s, the Fourier series becomes

0:5þ 10

p

X1
n¼1

sin 2n � 1ð Þ250 ptð Þ
2n � 1

Step 4: The square wave in Table 15.4-1 has a rising edge at time 0. The corresponding rising edge of the voltage
waveform occurs at �2 ms. The voltage waveform is advanced by 2 ms or, equivalently, delayed by �2 ms.
Consequently, we replace t by t � �0:002ð Þ ¼ t þ 0:002 in the Fourier series. We notice that

sin 2n � 1ð Þ250 p t þ 0:002ð Þð Þ ¼ sin 2n � 1ð Þ 250 pt þ p
2

� �� �
¼ sin 2n � 1ð Þ 250 pt þ 90�ð Þð Þ

After replacing t by t þ 0:002, the Fourier series becomes

v tð Þ ¼ 0:5 þ 10

p

X1
n¼1

sin 2n � 1ð Þ 250 pt þ 90�ð Þð Þ
2n � 1
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A consequence of Euler’s identity is

cos y ¼ 1

2
e jy þ e�jy
 � ð15:5-3Þ

Using Euler’s identity, the nth term of the Fourier series is written as

cn cos no0t þ ynð Þ ¼ cn
e j no0tþynð Þ þ e�j no0tþynð Þ

2

� �
¼ cn

2
e j no0tþynð Þ þ e�j no0tþynð Þ
� �

ð15:5-4Þ

Using Eq. 15.5-4 in Eq. 15.5-1 gives

f tð Þ ¼ c0 þ
X1
n¼1

cn

2
e j no0tþynð Þ þ e�j no0tþynð Þ
� �

¼ c0 þ
X1
n¼1

cn

2
e jyn

� �
e jno0t þ

X1
n¼1

cn

2
e�jyn

� �
e�jno0t

ð15:5-5Þ
Define

C0 ¼ c0; Cn ¼ cn

2
e jyn ; and C�n ¼ cn

2
e�jyn ð15:5-6Þ

Then f (t) can be expressed as

f tð Þ ¼ C0 þ
X1
n¼1

Cne jno0t þ
X1
n¼1

C�ne�jno0t ð15:5-7Þ

Introducing the notation

C0 ¼ C0e
j0 ¼ C0

we can write Eq. 15.5-7 as

f tð Þ ¼
X1

n¼�1
Cne jno0t ð15:5-8Þ

Equation 15.5-8 represents f (t) as an exponential Fourier series. The complex coefficients Cn of the
exponential Fourier series can be calculated directly from f (t) using

Cn ¼ 1

T

Z t0þT

t0

f tð Þe�jno0tdt ð15:5-9Þ

Referring to Eq. 15.5-6, we notice that C�n is the complex conjugate of Cn, that is, Cn ¼ C	
�n. Using

Eqs. 15.5-6 and 15.2-11, we see that the coefficients of the exponential Fourier series are obtained from
the coefficients of the sine-cosine Fourier series, using

Cn ¼ cne jyn

2
¼ an � jbn

2
and C�n ¼ cne�jyn

2
¼ an þ jbn

2
ð15:5-10Þ

Equivalently, the coefficients of the sine-cosine Fourier series are obtained from the coefficients of the
exponential Fourier series, using

an ¼ Cn þ C�n and bn ¼ j Cn � C�nð Þ ð15:5-11Þ
The coefficients of the exponential Fourier series of selected waveforms are given in Table 15.5-1.
Recall that bn ¼ 0 when f (t) is an even function. Consequently, C�n ¼ Cn when f (t) is an even
function. Similarly, C�n ¼ �Cn when f (t) is an odd function.
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Table 15.5-1 Complex Fourier Coefficients for Selected Waveform

WAVEFORM
NAME OFWAVEFORM
AND EQUATION SYMMETRY Cn

T
2

T
2

0

A

–A

f (t)1.

–

Square wave

f tð Þ ¼
A;

�T

4
< t <

T

4

�A;
T

4
< t <

3T

4

8><
>:

Even ¼ A
sin np=2

np=2
; n odd

¼ 0; n ¼ 0 and n even

 
2

 
 2

0

A

Tδ δ

2.

–

Rectangular pulse

f tð Þ ¼ A;
�d
2

< t <
d
2

Even ¼ A
d
T

sin npd=Tð Þ
npd=Tð Þ

T
4

T
2

A

–A

T
2

3.

–

Triangular wave Even ¼ A
sin 2 np=2ð Þ

np=2ð Þ2 ; n 6¼ 0

¼ 0; n ¼ 0

4.

T
2

A

–A

T
2

T–

Sawtooth wave

f tð Þ ¼ 2At=T
�T

2
< t <

T

2

Odd ¼ Aj �1ð Þn=np; n 6¼ 0

¼ 0; n ¼ 0

5.

1

T
2

T0

Half-wave rectified sinusoid

f tð Þ ¼ sin o0t; 0 � t � T=2

0; �T=2 � t � 0

� None ¼ 1=p 1 � n2ð Þ; n even

¼ �j=4; n ¼ 
1

¼ 0; otherwise

6.
1

T
2

0T
2

–

Full-wave rectified sinusoid
f (t) ¼ jsin o0tj

Even ¼ 2=p 1 � n2ð Þ; n even

¼ 0; otherwise
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E X A M P L E 1 5 . 5 - 1 Exponential Fourier Series

Determine the exponential Fourier series for the function v(t) shown in Figure 15.5-1.

v(t)

t
–5 5

–6

6

FIGURE 15.5-1 A square wave.
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FIGURE 15.5-2
MATLAB m-file
used in Example
15.5-1.
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MATLAB has a built-in function called FFT (Fast Fourier Transform) that can be used to
calculate the coefficients of the exponential Fourier series. Figure 15.5-4 shows a MATLAB function
called EFS (for Exponential Fourier Series) that uses FFT to calculate the coefficients of the exponential
Fourier series of a periodic function. (EFS follows closely the discussion of Fourier series in Chapter 22
of Hanselman and Littlefield, 2005.) Notice that EFS does not include a description of the periodic
function. Instead, EFS calls a MATLAB function named my_periodic_function. We describe our
periodic function f (t) in the MATLAB function my_periodic_function. As a result, EFS can be used,
unchanged, to find the Fourier series coefficients of a variety of periodic functions when we make
appropriate changes to my_periodic_function.

The word function is being used in two different ways. First, we have the mathematical function,
for instance, f (t) as a function of t. Second, we have the MATLAB function, a type of computer
program. Although different, these two types of function can be related. In the present case, the
MATLAB function my_periodic_function implements the mathematical function f (t) by providing the
value of f corresponding to any particular value of t.

The following examples show how to use the MATLAB function EFS to find the exponential
Fourier series of periodic functions.

Solution
The average value of v(t) is zero, so C0 = 0. Then, using Eq. 15.5-9, with t0 ¼ �T=2, we obtain

Cn ¼ 1

T

Z T=2

�T=2
v tð Þe�jno0tdt ¼ 1

T

Z �T=4

�T=2
�Ae�jno0tdt þ 1

T

Z T=4

�T=4
Ae�jno0tdt þ 1

T

Z T=2

�T=4
�Ae�jno0t

¼ A

jno0T
e�jno0t

���T=4

�T=2
� e�jno0t

��T=4
�T=4

þ e�jno0t
��T=2
T=4

� �

¼ A

jno0T
2e jnp=2 � 2e�jnp=2 þ e�jnp � e jnp
� �

¼ A

2pn
4 sin

np
2

� �
� 2 sin npð Þ

� �
¼

0 for even n

2A

np
sin n

p
2

� �
for odd n

8<
:

Notice that f (t) is an even function, so we expect C�n ¼ Cn. In particular, we calculate

C�1 ¼ C1 ¼ A sin p=2
p=2

¼ 2A

p
; C�2 ¼ C2 ¼ A

sin p
p

¼ 0 and C�3 ¼ C3 ¼ A sin 3p=2ð Þ
3p=2

¼ �2A

3p

Figure 15.5-2 shows a MATLAB script that plots v(t) using its the exponential Fourier series. The plot produced by
this MATLAB script is shown in Figure 15.5-3. The waveform in Figure 15.5-3 is indeed a square having the
correct amplitude and correct periods.

Square Wave

time, s

v(
t)

 V

6

4

2

0

–2

–4

–6

–10 –5 0 5 10 15
FIGURE 15.5-3 MATLAB output.
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E X A M P L E 1 5 . 5 - 2 Exponential Fourier Series
Using MATLAB

Determine the exponential Fourier series for the function f (t) shown in Figure 15.5-1, using MATLAB.

Solution
We need to write the MATLAB function, my_periodic_function, shown in Figure 15.5-5. The inputs to this
function are t, a list of times distributed evenly over one period, and T, the period. Let t(k) denote the kth time in the
list t and let f(k) denote the value of the periodic function at time t(k). The output of my_periodic_function is a list f
of the k values f(k). The for-loop in Figure 15.5-5 indexes through the k times, t(k), and the if-block determines the
value of f(k) corresponding to each t(k).
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��
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��
���2,�1

��	
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FIGURE 15.5-4 MATLAB function to calculate the coefficients of the exponential Fourier series.

762 15. Fourier Series and Fourier Transform



�����������	�
������������������������
�������������������
��������������������

�	��
���� 	!"���#�����
���������� �$�%&�'��� �()*�%&���� �	��
�������������� �(�%&�+��� �$)*�%&���� �	,��
����������� �	�-�
�������
���

FIGURE 15.5-5 my_periodic_function for Example 15.5-2.
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FIGURE 15.5-6 MATLAB script to plot f (t), using the coefficients of the exponential Fourier series.
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E X A M P L E 1 5 . 5 - 3 Exponential Fourier Series
Using MATLAB

Determine the exponential Fourier series for the half-wave rectified sine shown in Figure 15.5-7, using MATLAB.

10

8

20

f (t)

t

FIGURE 15.5-7 The periodic function for Example 15.5-3.

Solution
We need to do only a couple of things: rewrite the MATLAB function my_periodic_function shown in Figure 15.5-8,
change the value of the period T in testEFS.m, and then run testEFS.m to get the plot shown in Figure 15.5-9.

�����������	�
������������������������
���������������������������������
���������
�������������

�	��� �!
�	"!
����#	$%���&�����
����������#�'� �����#�	����������#��!
������������#�	(!
�������
��� FIGURE 15.5-8 my_periodic_function

for Example 15.5-3.

The values of f (t) at times T=4 and 3T=4 aren’t obvious because f (t) is discontinuous at these times. In
general, when f (t) is discontinuous at time t, we will take f tð Þ to be the average of the limits of f (t) as t approaches t
from above and from below. In the present case,

f tð Þ ¼
lim

t!tþ f tð Þ þ lim
t!t� f tð Þ

2
� A � A

2
¼ 0 when t ¼ T

4
or

3T

4

Then, from Figure 15.5-1,

f tð Þ ¼
A when t < T=4 or t > 3T=4

�A when t > T=4 and t < 3T=4

0 otherwise

8><
>:

This equation is implemented by the MATLAB function, my_periodic_function, shown in Figure 15.5-5.
Figure 15.5-6 shows a MATLAB script that plots f (t), using the coefficients of the exponential Fourier series.

Placing EFS.m, my_periodic_function.m, and testEFS.m in the MATLAB working directory and running
testEFS.m produces the same plot obtained in Example 15.5-1 and shown in Figure 15.5-3.
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EXERCISE 15.5-1 Find the exponential Fourier coefficients for the function shown in Figure
E 15.5-1.

t (s)

–1

1

f (t)

0 1 2

FIGURE E 15.5-1

Answer: Cn ¼ 0 for even n and Cn ¼ 2
jnp

for odd n

EXERCISE 15.5-2 Determine the complex Fourier coefficients for the waveform shown in
Figure E 15.5-2.

T
4

T
4

0

1

t–T T–
FIGURE E 15.5-2

15.6 T h e F o u r i e r S p e c t r um

If we plot the complex Fourier coefficients Cn as a function of angular frequency o ¼ no0, we obtain a
Fourier spectrum. Because Cn may be complex, we have

Cn ¼ Cnj jffyn ð15:6-1Þ
and we plot Cnj j and ffyn as the amplitude spectrum and the phase spectrum, respectively. The
Fourier spectrum exists only at the fundamental and harmonic frequencies and, therefore, is called a

Half-Wave Rectified Sine

time, s

10

8

6

4

2

0

–2
–20 –10 0 10 20 30

v(
t)

 V

FIGURE 15.5-9 MATLAB output for Example 15.5-3.
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discrete or line spectrum. The amplitude spectrum appears on a graph as a series of equally spaced
vertical lines with heights proportional to the amplitudes of the respective frequency components.
Similarly, the phase spectrum appears as a series of equally spaced lines with heights proportional to
the value of the phase at the appropriate frequency. The word spectrum was introduced into physics
by Isaac Newton (1664) to describe the analysis of light by a prism into its different color
components or frequency components.

The Fourier spectrum is a graphical display of the amplitude and phase of the complex
Fourier coefficients at the fundamental and harmonic frequencies.

E X A M P L E 1 5 . 6 - 1 Fourier Spectrum

Determine the Fourier spectrum for the pulse waveform v(t) shown in Figure 15.6-1.

 
2

 
 2

0

A

d d

v(t)

T–T

t

–

d

FIGURE 15.6-1 A pulse waveform.

Solution
The Fourier coefficients are

Cn ¼ 1

T

Z T=2

�T=2
v tð Þe�jno0tdt ð15:6-2Þ

For n 6¼ 0, we have

Cn ¼ A

T

Z d=2

�d=2
e�jno0tdt ¼ �A

jno0T
e�jno0d=2 � ejno0d=2
� �

¼ 2A

no0T
sin

no0d

2

� �
¼ Ad

T
sin

no0d=2

no0d=2

� �
¼ Ad

T

sin x

x

where x ¼ no0d=2ð Þ and n 6¼ 0. When n ¼ 0, we have

C0 ¼ 1

T

Z d=2

�d=2
A dt ¼ Ad

T

One may show that sin xð Þ=x ¼ 1 for x = 0 by using L’Hôpital’s rule. In summary,

Cn ¼ Ad

T

sin no0d=2ð Þ
no0d=2

for all n ð15:6-3Þ
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The coefficients Cn correspond to the discrete frequencies no0 where o0 is the fundamental frequency, determined
from the period T of the periodic function. The amplitude spectrum appears on a graph as a series of equally spaced
vertical lines corresponding to the equally spaced frequencies no0. The height of each line represents the amplitude

Cnj j ¼ Ad

T

sin no0d=2ð Þ
no0d=2

����
����

The amplitude spectrum, a plot Cnj j versus o ¼ no0, is shown in Figure 15.6-2a for n up to 
15. Also,
sin xð Þ=xj j is shown in Figure 15.6-2a in color. Notice that (sin x)=x is zero whenever x is an integer multiple of

p, that is,

sin npð Þ
np

¼ 0 n ¼ 1; 2; 3; . . .

The phase spectrum, a plot of yn ¼ ffCn versus o ¼ no0, is shown in Figure 15.6-2b. The phase spectrum appears
on a graph as a series of equally spaced vertical lines corresponding to the no0. The height of each line represents
the angle yn. In general, the Cn coefficients have complex values, but we see in Eq. 15.6-3 that, in this case, the Cn

coefficients have real values. Consequently yn ¼ 0 when Cn is positive and yn ¼ p radians ¼ 180� when Cn is
negative.

6 p
d d d d d d

6 p4 p 4 p2 p

p

2 p

w = n wO

w = n wO

qn,(rad)

⎜Cn ⎜, V

0

(a)

6 p
d d d d d d

6 p4 p 4 p2 p 2 p0

(b)

sin x

T
Ad x

– – –

– – –

FIGURE 15.6-2 The (a) amplitude and (b) phase Fourier spectra of the waveform.
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Figure 15.6-3 shows a MATLAB program using FFT to plot the Fourier spectrum of a periodic
function (Hanselman and Littlefield, 2005).
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FIGURE 15.6-3 MATLAB program to the Fourier spectrum.

E X A M P L E 1 5 . 6 - 2 Using MATLAB to Plot the Fourier Spectrum

Use MATLAB to plot the amplitude spectrum for the pulse waveform v(t) in Figure 15.6-1 when A ¼ 8 V, T ¼ 20
seconds, and d ¼ T=10.

Solution
We can use the MATLAB program shown in Figure 15.6-3 to plot the spectrum after doing the following three things:

1. Specify the values of T and N in the second and third lines. T is the period in seconds and N determines
the number of harmonic frequencies used when plotting the spectrum. The n in no0 varies from �N to N.
The values given in Figure 15.6-3 do not need to be changed.
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15.7 C i r c u i t s a n d F o u r i e r S e r i e s

It is often desired to determine the response of a circuit excited by a periodic input signal vs(t). We can
represent vs(t) by a Fourier series and then find the response of the circuit to the fundamental and each
harmonic. Assuming the circuit is linear and the principle of superposition holds, we can consider that
the total response is the sum of the response to the dc term, the fundamental, and each harmonic.

2. Provide a MATLAB function named my_periodic_function that describes the pulse train shown in Figure
15.6-1. Figure 15.6-4 provides the required MATLAB function. The inputs to this function are t, a list of time
distributed evenly over one period, and T, the period. Let t(k) denote the kth time in the list t and let f(k) denote
the value of the periodic function at time t(k). The output of my_periodic_function is a list f of the k values f(k).
The for-loop indexes through the k times t(k), and the if-block determines the value of f(k) corresponding to
each t(k). (When f (t) is discontinuous at time t, we will take f tð Þ to be the average of the limits of f (t) as t
approaches t from above and from below.)

3. Make any desired changes to the plotting statements at the end of the program. The statement

stem �N : N;abs Cnð Þð Þ
plots the amplitude spectrum. Change abs(Cn) to angle(Cn) to plot the angle spectrum. Also, the plot labels can
be changed as desired. In this case, no changes are required.

Figure 15.6-5 shows the amplitude spectrum plotted using MATLAB.

Magnitude Spectrum of a Pulse Train

n
-60
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0.6

0.5
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0
-40 -20 0 20 40 60

|C
n|

FIGURE 15.6-5 MATLAB output for Example 15.6-2.

�����������	�
������������������������
�	������
�	��
�����	�����������
������������ ��!�"�����#�$��!������	��
������%���������#��!�&����� �$��!�������	��
������%������	���!�
�������
��� FIGURE 15.6-4 my_periodic_

function for Example l5.6-2.
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E X A M P L E 1 5 . 7 - 1 Steady-State Response to a Periodic Input

Find the steady-state response vo(t) of the RC circuit shown in Figure 15.7-1b. The input vs(t) is the square wave
shown in Figure 15.7-1a.

+

–

+
–

vs(t)

vs(t) vo(t)C = 2 F

R = 1 Ω

t

1

0π
2

– π
4

π
4

π
4

π3π
4

–

(a) (b)

FIGURE 15.7-1 The (a) square wave and (b) circuit considered in Example 15.7-1.

Solution
Using Table 15.4-1 and proceeding as in Example 15.4-1, we represent vs(t) by the Fourier series

vs tð Þ ¼ 1

2
þ 2

p

X1
n¼1

sin 2n � 1ð Þ 2t þ 90�ð Þð Þ
2n � 1

In this example, we will represent this square wave by the first four terms of its Fourier series

vs tð Þ ¼ 1

2
þ 2

p
cos 2t � 2

3p
cos 6t þ 2

5p
cos 10t

We will find the steady-state response vo(t) using superposition. It is helpful to let vsn(t) denote the term of vs(t)
corresponding to n. In this example, vs(t) has four terms, corresponding to n ¼ 0, 1, 3, and 5. Then,

vs tð Þ ¼ vs0 tð Þ þ vs1 tð Þ þ vs3 tð Þ þ vs5 tð Þ

where vs0 tð Þ ¼ 1

2
; vs1 tð Þ ¼ 2

p
cos 2t;

vs3 tð Þ ¼ � 2

3p
cos 6t; and vs5 tð Þ ¼ 2

5p
cos 10t

Figure 15.7-2 illustrates the way superposition is used in this example. First, because the series connection of
the voltage sources with voltages vs0(t), vs1(t), vs3(t), and vs5(t) is equivalent to a single voltage source having
voltage vs(t) ¼ vs0(t) þ vs1(t) þ vs3(t) þ vs5(t), the circuit shown in Figure 15.7-2b is equivalent to the circuit shown
in Figure 15.7-2a.

Next, the principle of superposition is invoked to break the problem up into four simpler problems, as
shown in Figure 15.7-2c. Each circuit in Figure 15.7-2c is used to calculate the steady-state response to a
single one of the voltage sources from Figure 15.7-2b. (When calculating the response to one voltage source,
the other voltage sources are set to zero; that is, they are replaced by short circuits.) For example, the voltage
vo3(t) is the steady-state response to vs3(t) alone. Superposition tells us that the response to all four voltage
sources working together is the sum of the responses to the four voltage sources working separately, that is,

vo tð Þ ¼ vo0 tð Þ þ vo1 tð Þ þ vo3 tð Þ þ vo5 tð Þ

Try it 
yourself 

in WileyPLUS
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The advantage of breaking the problem up into four simpler problems is that the input to each of the four
circuits in Figure 15.7-2c is a sinusoid. The problem of finding the steady-state response to a periodic input has been
reduced to the simpler problem of finding the steady-state response to a sinusoidal input. The steady-state response
of a linear circuit to a sinusoidal input can be found using phasors. In Figure 15.7-2d, the four circuits from Figure
15.7-2c have been redrawn using phasors and impedances. The impedance of the capacitor is

Zc ¼ 1

jno0C
for n ¼ 0; 1; 3; 5

Each of the four circuits corresponds to a different value of n, so the impedance of the capacitor is different in each
of the circuits. (The frequency of the input sinusoid is no0, so each of the circuits corresponds to a different
frequency.) Notice that when n ¼ 0, Zc ¼ 1 and, therefore, the capacitor acts like an open circuit. The four circuits
shown in Figure 15.7-2d are very similar. In each case, voltage division can be used to write

Von ¼ 1= jno0Cð Þ
R þ 1= jno0Cð ÞVsn for n ¼ 0; 1; 3; 5

where Vsn is the phasor corresponding to vsn(t) and Von is the phasor corresponding to von(t). So,

Von ¼ Vsn

1 þ jno0CR
for n ¼ 0; 1; 3; 5

In this example, o0CR ¼ 4, so

Von ¼ Vsn

1 þ j4n
for n ¼ 0; 1; 3; 5

+

–

+
–

(b)

vs0(t)

+
–vs1(t)

+
–vs3(t)

+
–vs5(t)

vo(t)C
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+

–

+
–

(a)

vs(t) vo(t)C

R

+

–

+
–vs0(t) vo0(t)C

R

+

–

+
–vs1(t) vo1(t)C

R

+

–

+
–vs3(t) vo3(t)C

R

+

–

+
–

(c)

vs5(t) vo5(t)C

R

+

–

+
–Vs0 Vo0

R

+

–

+
–Vs1 Vo1

R

+

–

+
–Vs3 Vo3

R

+

–

+
–

(d)

Vs5 Vo5

R

1
j3   0Cω

1
j   0Cω

1
j5   0Cω

FIGURE 15.7-2 (a) An RC circuit excited by a periodic voltage vs(t). (b) An equivalent circuit. Each voltage source is a term of the
Fourier series of vs(t). (c) Using superposition. Each input is a sinusoid. (d) Using phasors to find steady-state responses to the
sinusoids.
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EXERCISE 15.7-1 Find the response of the circuit of Figure 15.7-2 when R ¼ 10 kV,
C ¼ 0:4 mF, and vs is the triangular wave considered in Example 15.3-1 (Figure 15.3-3). Include
all terms that exceed 2 percent of the fundamental term.

Answer: vo tð Þ � 0:20 sin 4t � 86�ð Þ � 0:008 sin 12t � 89�ð Þ V

15.8 U s i n g P S p i c e t o D e t e rm i n e t h e F o u r i e r S e r i e s

The circuit simulation program PSpice (Perry, 1998) provides built-in procedures that make it easy to
find the Fourier series of any periodic voltage or current in a simulated circuit. To find a Fourier series
using PSpice, we will need to do five things:

Next, the steady-state response can be written as

von tð Þ ¼ jVonj cos ðno0t þ ffVonÞ
¼ jVsnjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 þ 16n2
p cos ðno0t þ ffVsn � tan�1 4nÞ

In this example,

jVs0j ¼ 1

2

jVsnj ¼ 2

np
for n ¼ 1; 3; 5

ffVsn ¼ 0 for n ¼ 0; 1; 5 and ffVsn ¼ 180� for n ¼ 3

Therefore; vo0 tð Þ ¼ 1

2

von tð Þ ¼ 2

np
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ 16n2

p cos ðn2t þ ffVsn � tan�1 4nÞ for n ¼ 1; 3; 5

Doing the arithmetic yields

vo0 tð Þ ¼ 1

2
vo1 tð Þ ¼ 0:154 cos 2t � 76�ð Þ
vo3 tð Þ ¼ 0:018 cos 6t þ 95�ð Þ
vo5 tð Þ ¼ 0:006 cos 10t � 87�ð Þ

Finally, the steady-state response of the original circuit vo(t) is found by adding up the partial responses,

vo tð Þ ¼ 1

2
þ 0:154 cos 2t � 76�ð Þ þ 0:018 cos 6t þ 95�ð Þ þ 0:006 cos 10t � 87�ð Þ

It is important to notice that superposition justifies adding the functions of time vo0(t), vo1(t), vo3(t), and vo5(t) to get
vo(t). The phasors Vo0, Vo1, Vo3, and Vo5 each correspond to a different frequency. A sum of these phasors has no
meaning.
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Step 1 Represent the circuit and its input in the PSpice workspace.

Step 2 Specify a time domain simulation having a duration that is long enough to include one
full period after all transients have died out.

Step 3 Request that the Fourier series coefficients be calculated and printed in the PSpice
output file.

Step 4 Simulate the circuit.

Step 5 Interpret the PSpice output.

The following example illustrates this procedure.

E X A M P L E 1 5 . 8 - 1 Fourier Series Using PSpice

Consider the circuit shown in Figure 15.8-1a. The input to this circuit is the voltage of the voltage source vi(t). The
output of the circuit is the voltage vo(t) across the 10-kV resistor. The input vi(t) is the periodic voltage shown in
Figure 15.8-1b. The output vo(t) will also be a periodic voltage. Use PSpice to represent both vi(t) and vo(t) by
Fourier series.

vi(t) vo(t)

vi(t), V

+

–

R1 = 13.33 kΩ

R2 = 26.67 kΩ

C = 0.1 mF

10 kΩ

–

+
+
–

–9 –6 –3

–3

–6

2

2

4 7 10 16 t, ms

(a)

(b)
FIGURE 15.8-1 (a) A circuit and (b) a periodic
input voltage.

Solution
Step 1: Represent the circuit and its input in the PSpice workspace.

PSpice refers to circuit elements as parts. Open a new project in PSpice. Place the parts in the PSpice
workspace, adjust the resistance and capacitance values, and wire the parts together (Svoboda, 2007). The resulting
PSpice circuit is shown in Figure 15.8-2. The voltage source in Figure 15.8-1a corresponds to a PSpice part called
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VPULSE. Figure 15.8-3 shows the symbol for this part together with the voltage waveform that it produces. A
VPULSE part is specified by providing values for the parameters v1, v2, td, tr, tf, pw, and per. The meaning of each
parameter is seen by examining Figure 15.8-3b. The pulse waveform will simulate the triangle wave when pw is
specified to make the time that voltage remains equal to v2 negligibly small, and per is specified to make the time
that voltage remains equal to v1 negligibly small. An appropriate set of parameter values to simulate the input
voltage vi(t) is

v1 ¼ 2 V; v2 ¼ �6 V; td ¼ 2 ms; tr ¼ 8 ms; tf ¼ 8 ms; pw ¼ 1 ns; and per ¼ 16 ms:

(PSpice requires pw > 0 so we cannot use pw = 0. Instead, a value much smaller than both tr and tf is used.)

FIGURE 15.8-2 The circuit as described in the PSpice workspace.

td tr pw tf
per

V1 =
V2 =
TD =
TR =
TF =
PW =
PER =

V?

v2

v1

0

(b)(a)

FIGURE 15.8-3 The (a) symbol and (b) voltage waveform of a VPULSE part.
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Step 2: Specify a time domain simulation having a duration that is long enough to include one full period after all
transients have died out.

Select PSpice/New Simulation Profile from the PSpice menus to pop up the New Simulation dialog box.
Specify a simulation name and then select Create to pop up the Simulation Settings dialog box as shown in Figure
15.8-4. Select Time Domain(Transient) as the analysis type. Specify the Run To Time as 64 ms to run the
simulation for four full periods of the input waveform.
Step 3: Request that the Fourier series coefficients be calculated and printed in the PSpice output file.

Click the Output File Options button to pop up the Transient Output File Options dialog box shown in Figure
15.8-5. Select the Perform Fourier Analysis box. PSpice represents the trigonometric Fourier series using the sine
rather than the cosine, that is,

v tð Þ ¼ c0 þ
XN

n¼1

cn sin no0t þ ynð Þ ð15:8-1Þ

FIGURE 15.8-4 The Simulation Settings dialog box.

FIGURE 15.8-5 Requesting calculation of the Fourier series coefficients.
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Enter the fundamental frequency f 0 ¼ o0=2p, using units of Hertz, in the Center Frequency text box and N in the
Number of Harmonics text box. Enter the PSpice names for voltages or currents that are to be represented by their
Fourier series in the Output Variables text box. Click OK to close the Transient Output File Options dialog box and then
click OK to close the Simulation Settings dialog box and return to the PSpice workspace.

Step 4: Simulate the circuit.
Select PSpice/Run from the PSpice menus to run the simulation.

Step 5: Interpret the PSpice output.
After a successful Time Domain(Transient) simulation, Probe, the graphical post-processor for PSpice, will

open automatically in a Schematics window. Select View/Output File from the Schematics menus. Scroll through
the output file to find the Fourier coefficients of the input voltage shown in Figure 15.8-6. (PSpice changed the
name of the input voltage. We used the name V(V1:+) in the Output Variables text box in the Transient Output File
Options dialog box in Figure 15.8-5. Nonetheless, PSpice used the name V(N00230) in Figure 15.8-6.) The table in
Figure 15.8-6 has six columns and eight rows. The eight rows correspond to the eight coefficients c1, c2, c3, . . . c8.
(There are eight rows because N ¼ 8 was the number entered in the Number of Harmonics text box in the Transient
Output File Options dialog box in Figure 15.8-5.) The first column labels the rows with the subscripts, n, of these
coefficients. The second column lists the frequencies, no0, using units of Hertz. The third column lists the
coefficients c1, c2, c3, . . . c8. The fourth column lists the normalized coefficients c1=c1 ¼ 1; c2=c1,
c3=c1; . . . c8=c1. The fifth column lists the phase angles y1; y2; y3; . . . y8. The sixth column lists the normalized
coefficients y1 � y1 ¼ 0; y2 � y1; y3 � y1; . . . y8 � y1.

We expect the even coefficients, c2, c4, c6, . . . c8, to be zero. They are much smaller than the odd
coefficients, so we will interpret them to be zero. The coefficient c0 is the dc component of the Fourier series and is
written above the table in Figure 15.8-5. Finally, PSpice represents the Fourier series, using sine instead of cosine,
so the coefficients in Figure 15.8-6 indicate that vi(t) is represented by the Fourier series

vi tð Þ ¼ �2:000199þ 3:242 sin 393t þ 45�ð Þ þ 0:3602 sin 1178t � 45�ð Þ þ 0:1297 sin 1963t � 135�ð Þ
þ 0:06613 sin 2749t þ 135�ð Þ þ . . .

FIGURE 15.8-6 The coefficients of the Fourier series of vi(t).
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15.9 T h e F o u r i e r T r a n s f o rm

The Fourier transform is closely related to the Fourier series and the Laplace transform. Recall that a
periodic waveform f (t) possesses a Fourier series. As we increase the period T, the fundamental
frequency o0 becomes smaller because

o0 ¼ 2p
T

The difference between two consecutive harmonic frequencies is Do¼ (n þ 1)o0 � no0 ¼o0 ¼ 2p/T.
Therefore, as T approaches infinity, Do approaches do, an infinitesimal frequency increment.
Furthermore, the number of frequencies in any given frequency interval increases as Do decreases.
Thus, in the limit, no0 approaches the continuous variable o.

We can represent the series, using cosine, by subtracting 90� from each phase angle. Then,

vi tð Þ ¼ �2:000199þ 3:242 cos 393t � 45�ð Þ þ 0:3602 cos 1178t � 135�ð Þ
þ 0:1297 cos 1963t � 225�ð Þ þ 0:06613 cos 2749t þ 45�ð Þ þ . . .

ð15:8-2Þ

Scroll through the output file to find the Fourier coefficients of the output voltage shown in Figure 15.8-7. Figure
15.8-7 indicates that the Fourier series of vo(t) is

vo tð Þ ¼ 4:001551þ 4:444 cos 393t þ 88:4�ð Þ þ 0:2112 cos 1178t � 24:06�ð Þ
þ 0:04794 cos 1963t � 118:8�ð Þ þ 0:02040 cos 2749t � 227�ð Þ þ . . .

ð15:8-3Þ

FIGURE 15.8-7 The coefficients of the Fourier series of vo(t).
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Consider the exponential Fourier series

f tð Þ ¼
Xn¼1

n¼�1
Cne jno0t ð15:9-1Þ

and Cn ¼ 1

T

Z T=2

�T=2
f tð Þe�jno0t dt ð15:9-2Þ

Multiplying Eq. 15.9-2 by T and letting T approach infinity, we have

CnT ¼
Z 1

�1
f tð Þe�jot dt ð15:9-3Þ

Let CnT equal a new frequency function F(jo) so that

F joð Þ ¼
Z 1

�1
f tð Þe�jot dt ð15:9-4Þ

where F(jo) is the Fourier transform of f (t). The inverse process is found from Eq. 15.9-1, where we let
CnT ¼ F joð Þ so that

f tð Þ ¼ lim
T!1

X1
n¼�1

CnTe jno0t 1

T
¼ lim

T!1

X1
n¼�1

F joð Þe jno0t o0

2p

because 1=T ¼ o0=2p. As T ! 1, the sum becomes an integral, and the increment Do ¼ o0 becomes
do. Then, we have

f tð Þ ¼ 1

2p

Z 1

�1
F joð Þe jot do ð15:9-5Þ

Equation 15.9-5 is called the inverse Fourier transform. This pair of equations (Eqs. 15.9-4 and 15.9-5),
called the Fourier transform pair, permits us to complete the Fourier transformation to the frequency
domain and the inverse process to the time domain.

A given function of time f (t) has a Fourier transform if
Z 1

�1
f tð Þ dt < 1

and if the number of discontinuities in f (t) is finite. From a practical point of view, all pulses of finite
duration in which we are interested have Fourier transforms.

The Fourier transform pair is summarized in Table 15.9-1.

Table 15.9-1 The Fourier Transform Pair

EQUATION NAME PROCESS

F joð Þ ¼
Z 1

�1
f tð Þ e�jot dt

Transform Time domain to frequency domain
Conversion of f (t) into F(jo)

f tð Þ ¼ 1
2p

Z 1

�1
F joð Þejot do

Inverse transform Frequency domain to time domain
Conversion of F(jo) into f (t)
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EXERCISE 15.9-1 Determine the Fourier transform of f tð Þ ¼ e�atu tð Þ, where u(t) is the unit step
function.

Answer: F joð Þ ¼ 1
a þ jo

E X A M P L E 1 5 . 9 - 1 Fourier Transform of a Pulse

Derive the Fourier transform of the aperiodic pulse shown in Figure 15.9-1.

Solution
Using the transform, we have

F joð Þ ¼
Z D=2

�D=2
Ae�jot dt ¼ A

�jo
e�jot

����
D=2

�D=2

¼ A

�jo
e�joD=2 � e joD=2
� �

¼ AD
sin oD=2ð Þ
oD=2

ð15:9-6Þ

Thus, the Fourier transform is of the form (sin x)=x, where x ¼ oD=2, as shown in Figure 15.9-2. Note
that sin xð Þ=x ¼ 0 when x ¼ oD=2 ¼ np or o ¼ 2np=D, as shown in Figure 15.9-2. We will denote sin xð Þ=x ¼
Sa xð Þ.

Let us consider the shifted version of the rectangular pulse of Figure 15.9-1 where A ¼ 1=D and the width of
the pulse approaches zero, D!0, whereas the area of the rectangle remains equal to 1. Then, we have the unit
impulse d t � t0ð Þ so that

Z b

a
d t � t0ð Þdt ¼ 1 a � t0 � b

0 otherwise

�
ð15:9-7Þ

We obtain the Fourier transform for a unit impulse at t0 as

F joð Þ ¼
Z t0 þ

t0�
d t � t0ð Þe�jot dt ¼ e�jot0 ð15:9-8Þ

When t0 ¼ 0, we have the special case,

F joð Þ ¼ 1 ð15:9-9Þ
Thus, we note that F joð Þ ¼ 1. The Fourier Transform of a unit impulse located at the origin is constant and equal to
1 for all frequencies.

A

t– Δ
2

Δ
2

0

FIGURE 15.9-1 An aperiodic pulse.

–
Δ

AΔ

2 0π
Δ
2π ω–

Δ
4π

Δ
4π

FIGURE 15.9-2 The Fourier transform for the rectangular aperiodic pulse is shown as a
function of o.
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15.10 F o u r i e r T r a n s f o rm P r o p e r t i e s

We can derive some properties of the Fourier transform by writing F(jo) in complex form as

F joð Þ ¼ X oð Þ þ jY oð Þ
Alternatively, we have

F joð Þ ¼ jF oð Þje jy

where y ¼ tan�1(Y=X). Note that we use F(jo) ¼ F(o) interchangeably. Furthermore,

F �oð Þ ¼ F	 oð Þ
where F	(o) is the complex conjugate of F(o).

If we have the Fourier transform of f (t), we write

f f tð Þ½ � ¼ F oð Þ
where the script f implies the Fourier transform. Then the inverse transform is written as

f�1 F oð Þ½ � ¼ f tð Þ
Repeating the transformation equation, we have (Table 15.9-1)

F oð Þ ¼
Z 1

�1
f tð Þe�jot dt ð15:10-1Þ

Then, if f[af1(t)] ¼ aF1(o) and f[bf2(t)] ¼ bF2(o), we have

f a f 1 þ b f 2½ � ¼
Z 1

�1
a f 1 þ b f 2½ �e�jot dt

¼
Z 1

�1
a f 1e�jotdt þ

Z 1

�1
b f 2e�jotdt

¼ aF1 oð Þ þ bF2 oð Þ
This is known as the linearity property.

We now use the definition of the Fourier transform, Eq. 15.10-1, in the following examples to find
several other properties.

E X A M P L E 1 5 . 1 0 - 1 Fourier Transform Property

Find the Fourier transform of a time-shifted function f(t � t0).

Solution

f f t � t0ð Þ½ � ¼
Z 1

�1
f t � t0ð Þe�jot dt

If we let x ¼ t � t0, we have

f f t � t0ð Þ½ � ¼
Z 1

�1
f xð Þe�jo x þ t0ð Þ dx ¼ e�jot0F oð Þ

where F oð Þ ¼ f f tð Þ½ �.
Selected properties of the Fourier transform are summarized in Table 15.10-1. We can use these properties to

derive Fourier transform pairs.
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With the aid of the properties of the Fourier transform and the original defining equation, we can
derive useful transform pairs and develop a table of these relationships. We have already derived
the first three entries in Table 15.10-2, and we will add several more by using the properties of
Table 15.10-1 and/or the original definition of the transformation.

E X A M P L E 1 5 . 1 0 - 2 Fourier Transform

Find the Fourier transform of f tð Þ ¼ Ae�aj t j, which is shown in Figure 15.10-1.

A

t0

Aeat Ae–at

FIGURE 15.10-1 Waveform of Example 15.10-2.

Solution
We will break the function into two symmetric waveforms and use the linearity property. Then,

f tð Þ ¼ f 1 tð Þ þ f 2 tð Þ ¼ Ae�atu tð Þ þ Aeatu �tð Þ
We have, from entry 3 of Table 15.10-2,

F1 oð Þ ¼ A

a þ jo
From property 10 of Table 15.10-1, we obtain

F2 oð Þ ¼ F1 �oð Þ ¼ A

a � jo
Using the linearity property, we have

F oð Þ ¼ F1 oð Þ þ F2 oð Þ ¼ A

a þ jo
þ A

a � jo
¼ 2Aa

a2 þ o2
ð15:10-2Þ

This result is entry 4 in Table 15.10-2. Note that F(o) is an even function.

Table 15.10-1 Selected Properties of the Fourier Transform

NAME OF PROPERTY FUNCTION OF TIME FOURIER TRANSFORM

1. Definition f (t) F(o)

2. Multiplication by constant Af(t) AF(o)

3. Linearity af1 þ bf2 aF1(o) þ bF2(o)

4. Time shift f(t � t0) e�jot0 F oð Þ
5. Time scaling f(at), a > 0

1
a

F
o
a

� �

6. Modulation e jo0 t f tð Þ F(o � o0)

7. Differentiation dnf tð Þ
dtn

(jo)nF(o)

8. Convolution
R1
�1 f 1 xð Þf 2 t � xð Þdx F1(o)F2(o)

9. Time multiplication tnf (t) jð Þn dnF oð Þ
don

10. Time reversal f(�t) F(�o)

11. Integration
R t
�1 f tð Þ dt

F oð Þ
jo

þ pF 0ð Þd oð Þ
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Table 15.10-2 Fourier Transform Pairs

f (t) WAVEFORM f (o)

1. Pulse

f 1 tð Þ ¼ Au t þ D

2

� �
� Au t � D

2

� � A

– Δ
2

Δ
2

0

ADSa
oD
2

� �

2. Impulse
d t � t0ð Þ

t0

(t – t0)δ

e�jot0

3. Decaying exponential
Ae�atu tð Þ A

0 t

A

a þ jo

4. Symmetric decaying exponential
Ae�a tj j A

0 t

2aA

a2 þ o2

5. Tone burst (gated cosine)
Af 1 tð Þ cos o0t A

– Δ
2

Δ
2

t

AD

2
Sa o� o0ð Þ þ Sa oþ o0ð Þ½ �

6. Triangular pulse
A

–Δ Δ

A DSa2 oD
2

� �

7. A Sa btð Þ ¼ A
sin bt

bt A

0 t

π
b

Ap
b

oj j < b

0 oj j > b

(

8. Constant dc
f tð Þ ¼ A A

0 t

2pA d oð Þ

9. Cosine wave
A cos o0t A

t

pA d oþ o0ð Þ þ d o� o0ð Þ½ �
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Table 15.10-2 (Continued )

f (t) WAVEFORM f (o)

10. Signum

f tð Þ ¼ þ1 t > 0
�1 t < 0

�

t

1

–1

2
jo

11. Step input
Au tð Þ

0 t

A

A pd oð Þ þ 1
jo

� 	

Note: Sa xð Þ ¼ sin xð Þ=x.

E X A M P L E 1 5 . 1 0 - 3 Fourier Transform

Find the Fourier transform of the gated cosine waveform f (t) ¼ f1(t) cos o0t, where f1(t) is the rectangular pulse
shown in Figure 15.9-1.

Solution
The Fourier transform of the rectangular pulse is entry 1 in Table 15.10-2 and is written as

F1 oð Þ ¼ AD sin xð Þ=x

where x ¼ oD=2. The cosine function can be written as

coso0t ¼ 1

2
e jo0t þ e�jo0t

 �

Therefore; f tð Þ ¼ 1

2
f 1 tð Þe jo0t þ 1

2
f 1 tð Þe�jo0t

Using the modulation property (entry 6) of Table 15.10-1, we obtain

F oð Þ ¼ 1

2
F1 o� o0ð Þ þ 1

2
F1 o þ o0ð Þ

Therefore, using F1(o) from Eq. 15.9-6, we have

F oð Þ ¼ AD

2

sin o� o0ð ÞD=2½ �
o� o0ð ÞD=2 þ AD

2

sin o þ o0ð ÞD=2½ �
o þ o0ð ÞD=2

or, using Sa(x) ¼ (sin x)=x, we have

F oð Þ ¼ AD

2
Sa o� o0ð ÞD

2

� 	
þ AD

2
Sa o þ o0ð ÞD

2

� 	
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EXERCISE 15.10-1 Find the Fourier transform of f(at) for a > 0 when F oð Þ ¼ f f tð Þ½ �.

Answer:f f atð Þ½ � ¼ 1
a

F
o
a

� �

EXERCISE 15.10-2 Show that the Fourier transform of a constant dc waveform f (t) ¼ A for
�1 � t � 1 is F oð Þ ¼ 2pAd oð Þ by obtaining the inverse transform of F(o).

15.11 T h e S p e c t r um o f S i g n a l s

The spectrum, also called the spectral density, of a signal f (t) is its Fourier transform F(o). We
can plot F(o) as a function of o to show the spectrum. For example, for a rectangular pulse
signal of Figure 15.9-1, we found that

F oð Þ ¼ ADSa oD=2ð Þ
which is plotted in Figure 15.9-2. The spectrum of the rectangular pulse is real.

The Fourier transform of an impulse d(t) is (entry 2 of Table 15.10-2)

F oð Þ ¼ 1

Thus, the spectrum of an impulse contains all frequencies, and a plot of the spectrum of the
impulse is shown in Figure 15.11-1.

The Fourier transform of a constant dc signal of magnitude A is

F oð Þ ¼ 2pAd oð Þ
which has a spectrum as shown in Figure 15.11-2. The integral of the impulse d(o) has value
unity. The symbol for the impulse is a vertical line with an arrowhead.

For completeness, let us examine a function that has a Fourier transform that is complex.
When f (t) ¼ Ae�atu(t),

F oð Þ ¼ A

a þ jo

To plot the spectrum, we calculate the magnitude and phase of F(o) as

jF oð Þj ¼ A

a2 þ o2ð Þ1=2
and f oð Þ ¼ �tan�1o=a

The Fourier spectrum is shown in Figure 15.11-3.

0 ω

ωF(   )

1

FIGURE 15.11-1
Spectrum of impulse
f (t) ¼ d(t).

0 ω

2  Aπ

FIGURE 15.11-2
Spectrum of constant dc
signal of magnitude A.
The symbol for an
impulse is a vertical line
with an arrowhead.

0

90°

–90°

ω ω– ω ω–

A
a

A
a

FIGURE 15.11-3 The Fourier spectrum for f tð Þ ¼ Ae�atu tð Þ.
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The Fourier spectrum of a signal is a graph of the magnitude and phase of the Fourier
transform of the signal.

EXERCISE 15.11-1 Calculate the Fourier transform and draw the Fourier spectrum for f (t)
shown in Figure E 15.11-1, where f (t) ¼ A cos o0t for all t.

t

f(t)

A

–A

FIGURE E 15.11-1

Answer: F oð Þ ¼ pAd oþ o0ð Þ þ pAd o� o0ð Þ

15.12 C o n v o l u t i o n a n d C i r c u i t R e s p o n s e

A circuit with an impulse response h(t) and an input f (t) has a response y(t) that may be
determined from the convolution integral. For the circuit shown in Figure 15.12-1, the
convolution integral is

y tð Þ ¼
Z 1

�1
h xð Þf t � xð Þ dx

If we use the Fourier transform of the convolution integral, we have

y tð Þ½ � ¼
Z 1

�1

Z 1

�1
h xð Þf t � xð Þ dx e�jot dt

¼
Z 1

�1
h xð Þ

Z 1

�1
f t � xð Þ e�jot dt dx

Let u ¼ t � x to obtain

f y tð Þ½ � ¼
Z 1

�1
h xð Þ

Z 1

�1
f uð Þe�jo u þ xð Þ du dx

¼
Z 1

�1
h xð Þe�jox dx

Z 1

�1
f uð Þe�jou du

or Y oð Þ ¼ H oð ÞF oð Þ ð15:12-1Þ
Thus, convolution in the time domain corresponds to multiplication in the frequency domain. When the
input is an impulse, f (t) ¼ d(t), because F(o) ¼ 1, we obtain the impulse response

Y oð Þ ¼ H oð Þ
When the input is a sinusoid, the Fourier transform of the output is the steady-state response to that
sinusoidal driving function.

y(t)

Y(  )

h(t)

H(  )

f(t)

F(  )

Circuit

ω ω ω

FIGURE 15.12-1
A linear circuit.
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E X A M P L E 1 5 . 1 2 - 2 Circuit Analysis Using the Fourier Transform

Determine and plot the spectrum of the response Vo(o) of the circuit of Figure 15.12-3 when v ¼ 10e�2tu tð Þ V.

v(t) vo(t)

–

+

1 Ω

1 F+
–

FIGURE 15.12-3 Circuit of Example 15.12-2.

E X A M P L E 1 5 . 1 2 - 1 Circuit Analysis Using
the Fourier Transform

Find the response vo(t) of the RL circuit shown in Figure 15.12-2 when v(t) ¼ 4e�2tu(t)V. The initial condition is zero.

v(t) vo(t)

–

+

5 Ω

1 H

+
–

FIGURE 15.12-2 Circuit of Example 15.12-1.

Solution
Because v(t) ¼ 4e�2tu(t), we obtain V(o) as

V oð Þ ¼ 4

2 þ jo

The circuit is represented by H(o), and, using the voltage divider principle, we have

H oð Þ ¼ R

R þ joL
¼ 5

5 þ jo

Then, we have

Vo oð Þ ¼ H oð ÞV oð Þ ¼ 20

5 þ joð Þ 2 þ joð Þ
Expand, using partial fractions, to obtain1

Vo oð Þ ¼ �20=3

5 þ jo
þ 20=3

2 þ jo

Using the inverse transform for each term (entry 3 of Table 15.10-2), we have

vo tð Þ ¼ 20

3
e�2t � e�5t

 �

u tð ÞV
The time-domain responses obtained in this manner are responses of initially relaxed circuits. (No initial energy is
stored.)

1See Chapter 14, Section 14.4, for a review of partial fraction expansion.
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Solution
The input signal v(t) has a Fourier transform

V oð Þ ¼ 10

2 þ jo
¼ 10

4 þ o2ð Þ1=2ff�tan�1 o=2

The circuit transfer function is

H joð Þ ¼ 1= joCð Þ
R þ 1= joCð Þ ¼

1

1 þ jo
¼ 1

1 þ o2ð Þ1=2ff�tan�1o

Then, the output is

Vo oð Þ ¼ H oð ÞV oð Þ ¼ 10

2 þ joð Þ 1 þ joð Þ

Therefore; jVoj ¼ 10

4 þ o2ð Þ 1 þ o2ð Þ½ �1=2

and f oð Þ ¼ Vo oð Þ ¼ �tan�1 o
2
� tan�1 o

The calculated magnitude and phase for Vo(o) are recorded in Table 15.12-1. For negative o, jVo(o)j ¼
jVo(�o)j and

f �oð Þ ¼ �f oð Þ
Therefore, the Fourier spectrum of Vo(o) is represented by the plot shown in Figure 15.12-4.

Table 15.12-1 Fourier Response for Example 15.12-2

o 0 1 2 3 5 1
jVoj 5 3.16 1.58 0.88 0.36 0

f(o) 0� �71.6� �108.4� �127.9� �146.9� �180�

(  )

ω

ω

ω

180°

0–1–2–3–4–5 1 2 3 4 5

–180°

1

0 1 2 3 4 5–1–2–3–4–5

3

5

⏐Vo(  )⏐

ωφ

FIGURE 15.12-4 The amplitude and phase versus o of
the output voltage for Example 15.12-2.
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EXERCISE 15.12-1 An ideal band-pass filter passes all frequencies between 24 rad/s and 48
rad/s without attenuation and completely rejects all frequencies outside this passband.

(a) Sketch jVoj2 for the filter output voltage when the input voltage is

v tð Þ ¼ 120e�24tu tð ÞV

(b) What percentage of the input signal energy is available in the signal at the output of the ideal filter?
Answer: (b) 20.5%

15.13 T h e F o u r i e r T r a n s f o rm a n d t h e
L a p l a c e T r a n s f o rm

The table of Laplace transforms, Table 14.2-1, developed in Chapter 14, can be used to obtain the
Fourier transform of a function f (t). Of course, the Fourier transform formally exists only when the
Fourier integral, Eq. 15.9-4, converges. The Fourier integral will converge when all the poles of F(s) lie
in the left-hand s-plane, not on the jo-axis or at the origin.

If f (t) is zero for t� 0 and
R1

0 f tð Þ dt < 1, we can obtain the Fourier transform from the Laplace
transform of f (t) by replacing s by jo. Then

F oð Þ ¼ F sð Þjs ¼ jo ð15:13-1Þ
where F sð Þ ¼ l f tð Þ½ �
For example, if (entry 3 of Table 15.10-2)

f tð Þ ¼ Ae�atu tð Þ
then, from Table 14.2-1,

F sð Þ ¼ A

s þ a

Therefore, with s ¼ jo we obtain the Fourier transform:

F oð Þ ¼ A

a þ jo

If f (t) is a real function with a nonzero value for negative time only, then we can reflect f (t) to
positive time, find the Laplace transform, and then find F(o) by setting s ¼�jo. Therefore, when f (t) ¼
0 for t � 0 and f (t) exists only for negative time, we have

F oð Þ ¼ l f �tð Þ½ �js¼�jo ð15:13-2Þ
For example, consider the exponential function

f tð Þ ¼ 0 t � 0

¼ eat t < 0

Then, reversing the time function, we have

f �tð Þ ¼ e�at t > 0

and, therefore,

F sð Þ ¼ 1

s þ a

Hence, setting s ¼ �jo, we obtain

F oð Þ ¼ 1

a � jo
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Functions that are nonzero over all time can be divided into positive time and negative time
functions. We then use Eqs. 15.13-1 and 15.13-2 to obtain the Fourier transform of each part. The
Fourier transform of f (t) is the sum of the Fourier transforms of the two parts.

For example, consider the function f (t) with a nonzero value over all time where

f tð Þ ¼ Ae�ajtj

which is entry 4 in Table 15.10-2. The positive time portion of the function will be called f +(t), and the
negative time portion will be called f �(t). Then,

f tð Þ ¼ f þ tð Þ þ f � tð Þ
Hence F oð Þ ¼ l f þ tð Þ½ �s¼jo þ l f � �tð Þ½ �s¼�jo

In this case,

f þ tð Þ ¼ Ae�at t > 0

and f � tð Þ ¼ Aeat t < 0

Note that f �(�t) ¼ Ae�at. Then,

Fþ sð Þ ¼ A

s þ a
and F� sð Þ ¼ A

s þ a

We obtain the total F(o) as

F oð Þ ¼ Fþ sð Þs¼jo þ F� sð Þs¼�jo ¼ A

a þ jo
þ A

a � jo
¼ 2aA

o2 þ a2

The use of the Laplace transform to find the Fourier transform is summarized in Table 15.13-1.
Remember that the method summarized cannot be used for sin ot, cos ot, or u(t) because the poles of
F(s) lie on the jo-axis or at the origin.

EXERCISE 15.13-1 Derive the Fourier transform for

f tð Þ ¼ te�at t � 0

¼ teat t � 0

Answer:
�j4ao

a2 þ o2ð Þ2

Table 15.13-1 Obtaining the Fourier Transform Using the Laplace Transform

CASE METHOD

Step

A. f (t) nonzero for positive time only and f (t) ¼ 0, t < 0 1. F(s) ¼l[f (t)]
2. F(o) ¼ F(s)js ¼ jo

Step

B. f (t) nonzero for negative time only and f (t) ¼ 0, t > 0 1. F(s) ¼l[f(�t)]
2. F(o) ¼ F(s)js ¼ �jo

Step

C. f (t) nonzero over all time 1. f (t) ¼ f +(t) þ f �(t)
2. F +(s) ¼l[f +(t)]

F �(s) ¼l[f �(�t)]
3. F(o) ¼ F +(s)js ¼ jo þ F�(s)js ¼ �jo

Note: The poles of F(s) must lie in the left-hand s-plane.
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15.14 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the specifica-
tions have been satisfied. In addition, computer output must be reviewed to guard against data-entry
errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

E X A M P L E 1 5 . 1 4 - 1 How Can We Check Fourier Series?

Figure 15.14-1 shows the transfer characteristic of the saturation nonlinearity. Suppose that the input to this
nonlinearity is

vin tð Þ ¼ A sinot

a

–a

a–a

vo (V)

vin (V)

FIGURE 15.14-1 The saturation nonlinearity.

where A > a. How can we check that the output of the nonlinearity will be a periodic function that can be
represented by the Fourier series

vo tð Þ ¼ b1 sinot þ
XN

n¼3
odd

bn sin not ð15:14-1Þ

where (Graham, 1971)

B ¼ sin�1 a

A

� �

b1 ¼ 2

p
A B þ a

A

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

A

� �2r" #

and bn ¼ 4A

p 1� n2ð Þ
a

A

cos nBð Þ
n

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a

A

� �2r
sin nBð Þ

" #

Solution
The output voltage vo(t) will be a clipped sinusoid. We need to verify that Eq. 15.14-1 does indeed represent a
clipped sinusoid. A straightforward, but tedious, way to do this is to plot vo(t) versus t directly from Eq. 15.14-1.
Several computer programs, such as spreadsheets and equation solvers, are available to reduce the work required to
produce this plot. Mathcad is one of these programs. In Figure 15.14-2, Mathcad is used to plot vo(t) versus t. This
plot verifies that the Fourier series in Eq. 15.14-1 does indeed represent a clipped sinusoid.
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FIGURE 15.14-2 Using Mathcad to verify the Fourier series of a clipped sinusoid.
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1 5 . 1 5 D E S I G N E X A M P L E DC Power Supply

A laboratory power supply uses a nonlinear circuit called a rectifier to convert a sinusoidal voltage input into a dc
voltage. The sinusoidal input

vac tð Þ ¼ A sino0t

comes from the wall plug. In this example, A ¼ 160 V and o0 ¼ 377 rad/s (f0 ¼ 60 Hz).
Figure 15.15-1 shows the structure of the power supply. The output of the rectifier is the absolute value of its input,
that is,

vs tð Þ ¼ jA sino0tj
The purpose of the rectifier is to convert a signal that has an average value equal to zero into a signal that has an
average value that is not zero. The average value of vs(t) will be used to produce the dc output voltage of the power
supply.

The rectifier output is not a sinusoid but a periodic signal with fundamental frequency equal to 2o0. Periodic
signals can be represented by Fourier series. The Fourier series of vs(t) will contain a constant, or dc, term and some
sinusoidal terms. The purpose of the filter shown in Figure 15.15-1 is to pass the dc term and attenuate the sinusoidal
terms. The output of the filter, vo(t), will be a periodic signal and can be represented by a Fourier series. Because we are
designing a dc power supply, the sinusoidal terms in the Fourier series of vo(t) are undesirable. The sum of these
undesirable terms is called the ripple of vo(t).

The challenge is to design a simple filter so that the dc term of vo(t) is at least 90 V and the size of the ripple is
no larger than 5 percent of the size of the dc term.

Describe the Situation and the Assumptions
1. From Table 15.4-1, the Fourier series of vs(t) is

vs tð Þ ¼ 320

p
�
XN

n¼1

640

p 4n2 � 1ð Þ cos 2  n  377  tð Þ

Let vsn(t) denote the term of vs(t) corresponding to the integer n. Using this notation, we can write the Fourier
series of vs(t) as

vs tð Þ ¼ vs0 þ
XN

n¼1

vsn tð Þ

2. Figure 15.15-2 shows a simple filter. The resistance Rs models the output resistance of the rectifier. We have
assumed that the input resistance of the regulator is large enough to be ignored. (The input resistance of the
regulator will be in parallel with R and will probably be much larger than R. In this case, the equivalent
resistance of the parallel combination will be approximately equal to R.)

vac(t) vs(t) vo(t) vdc
+
–

Full-wave
rectifier

Simple
low-pass

filter
Regulator

+

–

+

–

+

–

FIGURE 15.15-1 Diagram of a power supply.
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3. The filter output vo(t) will also be a periodic signal and will be represented by the Fourier series

vo tð Þ ¼ vo0 þ
XN

n¼1

von tð Þ
4. Most of the ripple in vo(t) will be due to vo1(t), the fundamental term of the Fourier series. The specification

regarding the allowable ripple can be stated as

amplitude of the ripple � 0:05  dc output

Equivalently, we can state that we require

max
XN

n¼1

von tð Þ
 !

� 0:05  vo0 ð15:15-1Þ

For ease of calculation, we replace Eq. 15.15-1 with the simpler condition

vo1 tð Þ � 0:04  vo0

That is, the amplitude vo1(t) must be less than 4 percent of the dc term of the output (vo0 ¼ dc term of the
output).

State the Goal
Specify values of R and L so that

dc output ¼ vo0 � 90

and vo1 tð Þ � 0:04  vo0

Generate a Plan
Use superposition to calculate the Fourier series of the filter output. First, the specification

dc output ¼ vo0 � 90 V

can be used to determine the required value of R. Next, the specification

jvo1 tð Þj � 0:04  vo0

can be used to calculate L.

Act on the Plan
First, we will find the response to the dc term of vs(t). When the filter input is a constant and the circuit is at steady
state, the inductor acts like a short circuit. Using voltage division

vo0 ¼ R

R þ Rs
vs0 ¼ R

R þ 10
 320
p

The specification that vo0 � 90 V requires

90 � R

R þ 10
 320
p

or R � 75:9

+
–

Rs = 10 Ω L

R vo(t)vs(t)
+

–

Rectifier Filter

FIGURE 15.15-2 A simple RL low-pass
filter connected to the rectifier.
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Let us select

R ¼ 80V

When R ¼ 80 V,

vo0 ¼ 90:54 V

Next, we find the steady-state response to a sinusoidal term vsn(t). Phasors and impedances can be used to find
this response. By voltage division,

Von ¼ R

R þ Rs þ j2no0L
Vsn

We are particularly interested in Vo1:

Vo1 ¼ R

R þ Rs þ j2o0L
Vs1 ¼ 80

90 þ j754L
 640
p  3

The amplitude of vo1(t) is equal to the magnitude of the phasor Vo1. The specification on the amplitude of vo1(t)
requires that

80ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
902 þ 7542L2

p  640
p  3 � 0:04 vo1

� 0:04  90:54
That is,

L � 1:986 H

Selecting L ¼ 2 H

completes the design.

Verify the Proposed Solution
Figure 15.15-3a displays a plot of vs(t) and vo(t), the input and output voltages of the circuit in Figure 15.15-2.
Figure 15.15-3b shows the details of the output voltage. This plot indicates that the average value of the output
voltage is greater than 90 V and that the ripple is no greater than 
4 V. Therefore, the specifications have been
satisfied.

v s
, v

o 
V

vs

vo

t, ms

0

20

40
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100

120

140

160

180

0 5 10 15 20 25 30 35 40
85

86

87

88

89

90

91

92

93

94

95

0 5 10 15 20 25 30 35 40

v o
, 
V

t (s)

(b)(a)

FIGURE 15.15-3 (a) Mathcad simulation of the circuit shown in Figure 15.15-2. (b) Enlarged plot of the output
voltage.
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15.16 SUMMARY

Periodic waveforms arise in many circuits. For example, the
form of the load current waveforms for selected loads is
shown in Figure15.16-1. Whereas the load current for motors
and incandescent lamps is of the same form as that of the
source voltage, it is significantly altered for the power
supplies, dimmers, and variable-speed drives as shown in
Figures 15.16-1b,c. Electrical engineers have long been
interested in developing the tools required to analyze circuits
incorporating periodic waveforms.

(b)

(a)

(c)

FIGURE 15.16-1 Load current waveforms for (a) motors and
incandescent lights, (b) switch-mode power supplies, and (c)
dimmers and variable-speed drives. The vertical axis is current,
and the horizontal axis is time. Source: Lamarre, 1991.

The brilliant mathematician-engineer Jean-Baptiste-Joseph
Fourier proposed in 1807 that a periodic waveform could be
represented by a series consisting of cosine and sine terms
with the appropriate coefficients. The integer multiple fre-
quencies of the fundamental are called the harmonic fre-
quencies (or harmonics).
The trigonometric form of the Fourier series is

f tð Þ ¼ a0 þ
XN

n¼1

an cos no0 t þ
XN

n¼1

bn sin no0 t

The coefficients of the trigonometric Fourier series can be
obtained from

a0 ¼ 1

T

Z T þ t0

t0

f tð Þ dt

an ¼ 2

T

Z T þ t0

t0

f tð Þ cos no0t dt n > 0

bn ¼ 2

T

Z T þ t0

t0

f tð Þ sin no0t dt n > 0

An alternate form of the trigonometric form of the Fourier
series is

f tð Þ ¼ c0 þ
XN

n¼1

cn cos no0t þ ynð Þ

where c0 ¼ a0 ¼ average value of f (t) and

cn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2n þ b2n

q
and yn ¼

�tan�1 bn

an

� �
if an > 0

180� � tan�1 bn

an

� �
if an < 0

8>>><
>>>:

The Fourier coefficients of some common periodic signals
are tabulated in 15.4-1.
Symmetry can simplify the task of calculating the Fourier
coefficients.
The exponential form of the Fourier series is

f tð Þ ¼
X1
�1

Cne jno0 t

where Cn is the complex coefficients defined by

Cn ¼ 1

T

Z t0 þ T

t0

f tð Þ e�jno0t dt

The line spectra consisting of the amplitude and phase of the
complex coefficients of the Fourier series when plotted
against frequency are useful for portraying the frequencies
that represent a waveform.
The practical representation of a periodic waveform consists
of a finite number of sinusoidal terms of the Fourier series.
The finite Fourier series exhibits the Gibbs phenomenon; that
is, although convergence occurs as n grows large, there
always remains an error at the points of discontinuity of
the waveform.
To determine the response of a circuit excited by a periodic
input signal vs(t), we represent vs(t) by a Fourier series and
then find the response of the circuit to the fundamental and
each harmonic. Assuming the circuit is linear and the princi-
ple of superposition holds, we can consider that the total
response is the sum of the response to the dc term, the
fundamental, and each harmonic.
The Fourier transform provides a frequency-domain descrip-
tion of an aperiodic time-domain function.
A circuit with an impulse response h(t) and an input f (t) has a
response y(t) that may be determined from the convolution
integral.
The table of Laplace transforms, Table 14.2-1, developed in
Chapter 14, can be used to obtain the Fourier transform of a
function f (t).
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PROBLEMS

Section 15.2 The Fourier Series

P 15.2-1 Find the trigonometric Fourier series for a periodic
function f (t) that is equal to t2 over the period from t ¼ 0 to t ¼ 2.

P 15.2-2 A “staircase” periodic waveform is described by its
first cycle as

f tð Þ ¼
1 0 < t < 0:25

2 0:25 < t < 0:5

0 0:5 < t < 1

8><
>:

Find the Fourier series for this function.

P 15.2-3 Determine the Fourier series for the sawtooth func-
tion shown in Figure P 15.2-3.

A

0 T 2T
t

f(t)

Figure P 15.2-3 Sawtooth wave.

P 15.2-4 Find the Fourier series for the periodic function f (t)
that is equal to t over the period from t ¼ 0 to t ¼ 2 s.

Section 15.3 Symmetry of the Function f (t )

P 15.3-1 Determine the Fourier series of the voltage wave-
form shown in Figure P 15.3-1.

Answer: vd tð Þ ¼
X1
n¼1

12
np

sin n
p
2

t
� �

6

–4

vd(t) (V)

t (s)–2 2 4 6

–6

Figure P 15.3-1

P 15.3-2 Determine the Fourier series of the voltage wave-
form shown in Figure P 15.3-2.

–3

vc(t) (V)

t (s)–1 1 3 5 7

–12

–9

Figure P 15.3-2

Hint: vc(t) ¼ vd(t � 1) � 6, where vd(t) is the voltage
considered in problem Figure P 15.3-1.

Answer: vc tð Þ ¼ �6 þ P1
n¼1

12
np

sin n
p
2

t � n
p
2

� �

P 15.3-3 Determine the Fourier series of the voltage wave-
form shown in Figure P 15.3-3.

Answer: va tð Þ ¼ 1
2
þ
X1
n¼1

18
n2p2

1 � cos
np
3

� �� �

cos n
1000p

3
t

� �

va(t) (V)

t (ms)–5 –4 –3 –2 –1 1 2 3 4 5

3

1

Figure P 15.3-3

P 15.3-4 Determine the Fourier series of the voltage wave-
form shown in Figure P 15.3-4.

Hint: vb(t) ¼ va(t � 0.002) � 1, where va(t) is the voltage
considered in Problem P 15.4-3.

Answer: vb tð Þ ¼ � 1
2

þ
X1
n¼1

18
n2p2

1 � cos
np
3

� �� �

cos n
1000p

3
t � n

2p
3

� �

vb(t) (V)

t (ms)–3 –1 1 2 3 4 5 6 7

2

1

–1

Figure P 15.3-4

P 15.3-5 Find the trigonometric Fourier series of the
sawtooth wave f (t) shown in Figure P 15.3-5.

Problem available in WileyPLUS at instructor’s discretion.
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π

π–

π–2 π– π π2

f (t)

t0

Figure P 15.3-5 Sawtooth wave.

P 15.3-6 Determine the Fourier series for the waveform
shown in Figure P 15.3-6. Calculate a0, a1, a2, and a3.

t (s)

–2 –1 1 2 3 4 5 6 7

2

f (t)

1

0

–1

8 9 10

Figure P 15.3-6

P 15.3-7 Determine the Fourier series for

f tð Þ ¼ A cosotj j
P 15.3-8 Find the trigonometric Fourier series for the
function of Figure P 15.3-8. The function is the positive portion
of a cosine wave.

0–0.1 0.1 0.2 0.3 0.4

A

t

f (t)

Figure P 15.3-8 Half-wave rectified cosine wave.

P 15.3-9 Determine the Fourier series for f (t) shown in
Figure P 15.3-9.

Answer: an ¼ a0 ¼ 0; bn ¼ 0 for even n, ¼ 8=(n2p2), for n ¼ 1,
5, 9, and ¼ � 8=(n2p2) for n ¼ 3, 7, 11

1

–1

1–2 2 4 5 t (s)

f (t)

–1 3

Figure P 15.3-9

P 15.3-10 Determine the Fourier series for the periodic signal
shown in Figure P 15.3-10.

Answer:

f tð Þ ¼ 1
2

þ 2
p

sin t þ 1
3

sin 3t þ 1
5

sin 5t þ . . .

� �

1

f (t)

0 π π2 t (s)π–

Figure P 15.3-10

Section 15.5 Exponential Form of the Fourier Series

P 15.5-1 Determine the exponential Fourier series of the
function

f tð Þ ¼ jA sin ptð Þj
shown in Figure P 15.5-1.

A

–1

f (t)

t (s)0 1 2 3

Figure P 15.5-1

P 15.5-2 Determine the exponential Fourier series of the
function f (t) shown in Figure P 15.5-2.

Answer: f tð Þ ¼ A

2
þ j

A

2p

Xn¼1

n¼�1
n 6¼0

1
n

e jn2pt=T

A

–T

f (t)

t (s)0 T 2T 3T

Figure P 15.5-2
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P 15.5-3 Determine the exponential Fourier series of the
function f (t) shown in Figure P 15.5-3.

Answer: Cn ¼ Ad

T

� � sin
npd

T

� �

npd

T

A

–T

f (t)

t (s)0 T 2T 3Td
2

d
2

–

d T

Figure P 15.5-3

P 15.5-4 Consider two periodic functions f̂ tð Þ and f (t) that
have the same period and are related by

f̂ tð Þ ¼ af t � tdð Þ þ b

where a, b, and td are real constants. Let Ĉn denote the
coefficients of the exponential Fourier series of f̂ tð Þ and let
Cn denote the coefficients of the exponential Fourier series of
f (t). Determine the relationship between Ĉn and Cn.

Answer: Ĉ0 ¼ aC0 þ b and Ĉn ¼ ae�jno0td Cn n 6¼ 0

*P 15.5-5 Determine the exponential form of the Fourier
series for the waveform of Figure P 15.3-6.

P 15.5-6 Determine the exponential Fourier series for the
waveform of Figure P 15.5-6.

v(t)
(V)

–9

–12

–3 –1 1 3 5 7 t (ms)

Figure P 15.5-6

*P 15.5-7 A periodic function consists of rising and decaying
exponentials of time constants of 0.2 s each and durations of 1 s
each as shown in Figure 15.5-7. Determine the exponential
Fourier series for this function.

Answer: Cn ¼ 5
jpnð Þ 5 þ jpnð Þ ; n ¼ 1; 3; 5

0

1

–1 1 2 t (s)

Figure P 15.5-7

Section 15.6 The Fourier Spectrum

P 15.6-1 Determine the cosine-sine Fourier series for the
sawtooth waveform shown in Figure P 15.6-1. Draw the
Fourier spectra for the first four terms, including magnitude
and phase.

T
2

T
2

2A

0 

–2A

t

–

f (t)

Figure P 15.6-1

P 15.6-2 The load current waveform of the variable-speed
motor drive depicted in Figure 15.16-1c is shown in Figure
P 15.6-2. The current waveform is a portion of A sin o0t.
Determine the Fourier series of this waveform and draw the line
spectra of jCnj for the first 10 terms.

0 TT
4

t3T
16

T
2

3T
 4

Portion of a 
sine wave

Figure P 15.6-2 The load current of a variable-speed drive.
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P 15.6-3 The input to a low-pass filter is

vi tð Þ ¼ 10 cos t þ 10 cos 10t þ 10 cos 100t V

The output of the filter is the voltage vo(t). The network
function of the low-pass filter is

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

2

1 þ j
o
5

� �2

Plot the Fourier spectrum of the input and the output of the low-
pass filter.

P 15.6-4 Draw the Fourier spectra for the waveform shown in
Figure P 15.6-4.

f (t)

1

–1 1 2
t (s)

Figure P 15.6-4

Section 15.7 Circuits and Fourier Series

P 15.7-1 Determine the steady-state response vo(t) for the
circuit shown in Figure P 15.7-1. The input to this circuit is the
voltage vc(t) shown in Figure P 15.3-2.

Answer: vo tð Þ ¼ �6 þ P1
n¼1

240

np
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
400 þ n2p2

p

sin n
p
2

t � n
p
2

þ tan�1 np
20

� �� �� �

vc(t) vo(t)
+

–

10 Ω

0.01 F+
–

Figure P 15.7-1

P 15.7-2 Determine the steady-state response vo(t) for the
circuit shown in Figure P 15.7-2. The input to this circuit is the
voltage vb(t), shown in Figure P 15.3-4.

vb(t) vout(t)
+

–

1 kΩ
2 kΩ

5 kΩ

–

+
+
–

1 μF

1 μF

Figure P 15.7-2

P 15.7-3 The input to the circuit shown in Figure P 15.7-3
is the voltage of the voltage source

vin tð Þ ¼ 2 þ 4 cos 100tð Þ þ 5 cos 400t þ 45�ð Þ V

The output is the voltage across the 5-kV resistor

vout tð Þ ¼ �5þ 7:071 cos 100t þ 135�ð Þ þ c4 cos 400t þ y4ð Þ V

Determine the values of the resistance R, the capacitance C, the
coefficient c4, and the phase angle y4.

Answers: R ¼ 25 kV; C ¼ 0.4 mF, c4 ¼ 3.032 V, and y4 ¼ 149�

vin(t) vout(t)
+

–

10 kΩ

5 kΩ

–

+
+
–

C

R

Figure P 15.7-3

P 15.7-4 The input to a circuit is the voltage

vi tð Þ ¼ 2 þ 4 cos 25tð Þ þ 5 cos 100t þ 45�ð Þ V

The output is the voltage

vo tð Þ ¼ 5 þ 7:071 cos 25t � 45�ð Þ þ c4 cos o4t þ y4ð Þ V

The network function that represents this circuit is

H oð Þ ¼ Vo oð Þ
Vi oð Þ ¼

Ho

1 þ j
o
p

Determine the values of the dc gain Ho, the pole p, the
coefficient c4, and the phase angle y4.

Answers:Ho¼2.5V/V,p¼25rad/s,c4¼3.032V,andy4¼�31�

P 15.7-5 The input to the circuit in Figure P 15.7-5 is the
voltage of the independent voltage source

vi tð Þ ¼ 6 þ 4 cos 1000tð Þ þ 5 cos 3000t þ 45�ð Þ V

The output is the voltage across a 500-V resistor

vo tð Þ ¼ 3:75þ2:34cos 1000t � 20:5�ð Þþc3 cos 3000tþy3ð Þ V

Determine the values of the resistance R1, the capacitance C,
the coefficient c3, and the phase angle y3.
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Answer: R1 ¼ 300 V, C ¼ 2 mF, c3 ¼ 2.076 V, and y3 ¼�3.4�

R1

vo(t)vi(t)
+

–

+
– 500 ΩC

Figure P 15.7-5

P 15.7-6 Find the steady-state response for the output voltage
vo for the circuit of Figure P 15.7-6 when v(t) is as described in
Figure P 15.5-6.

+
–

1 H

10 kΩ

10 nF

vov(t)
+

–

Figure P 15.7-6 An RLC circuit.

P 15.7-7 Determine the value of the voltage vo(t) at t ¼ 4 ms
when vin is shown in Figure P 15.7-7a and the circuit is shown
in Figure P 15.7-7b.

(a)

(b)

+
– vout(t)

vin(t)

1 kΩ 2 kΩ

1   F

5 kΩ
+

–

–

+

μ

1   Fμ

1

2

–1

–3 3 4 5 6 721–1

vin(t)
(V)

t (ms)

Figure P 15.7-7

Section 15.9 The Fourier Transform

P 15.9-1 Find the Fourier transform of the function

f tð Þ ¼ �u �tð Þ þ u tð Þ
as shown in Figure P 15.9-1. This is called the signum function.

t

f(t)

0

1

–1

Figure P 15.9-1

P 15.9-2 Find the Fourier transform of f (t) ¼ Ae�atu(t) when
a > 0.

Answer: F oð Þ ¼ A

a þ jo

P 15.9-3 Find the Fourier transform of the waveform
shown in Figure P 15.9-3.

t

2

0

A

–A

T

2
T

–

Figure P 15.9-3

P 15.9-4 Determine the Fourier transform of f (t) ¼ 10 cos 50 t.

Answer: F(o) ¼ 10pd(o � 50) þ 10pd(o þ 50)

P 15.9-5 Determine the Fourier transform of the pulse shown
in Figure P 15.9-5.

Answer:
F joð Þ ¼ 2

o sin o� sin 2oð Þ þ j2
o cos o� cos 2oð Þ

f(t)

0

–2

1 2

t (s)

Figure P 15.9-5

P 15.9-6 Determine the Fourier transform of a signal with
f (t) ¼ At=B between t ¼ 0 and t ¼ B and f (t) ¼ 0 elsewhere.

Answer: F joð Þ ¼ A

B

�B

jo
e�joB þ 1

o2
e�joB � 1

o2

� 	

P 15.9-7 Determine the Fourier transform of the waveform
f (t) shown in Figure P 15.9-7.

Answer: F joð Þ ¼ 2
o

sin 2o� sin oð Þ
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f(t)

t(s)1 20–1–2

1

Figure P 15.9-7

Section 15.12 Convolution and Circuit Response

P 15.12-1 Find the current i(t) in the circuit of Figure
P 15.12-1 when is(t) is the signum function, so that

is tð Þ ¼ þ 40 A t > 0

�40 A t < 0

�

Also, sketch i(t).

is(t)
i

3 Ω

1 Ω
1 H

Figure P 15.12-1

P 15.12-2 Repeat Problem 15.12-1 when is ¼ 100 cos 3t A.

P 15.12-3 The voltage source of Figure P 15.12-3 is v(t)¼
10 cos 2t for all t. Calculate i(t) using the Fourier transform.

v(t)

i(t)

2 Ω

+
– 1 H

Figure P 15.12-3

P 15.12-4 Find the output voltage vo(t) using the Fourier
transform for the circuit of Figure P 15.12-4 when v(t) ¼
etu(�t) þ u(t) V.

v(t) vo(t)

–

+

1 Ω

Ω+
– 1 F 1 2

Figure P 15.12-4

P 15.12-5 The voltage source of the circuit of Figure P 15.12-5
is v(t) ¼ 15e�5t V. Find the resistance R when it is known that the
energy available in the output signal is two-thirds of the energy of
the input signal.

R

v vo

–

+

+
– μ10   F

Figure P 15.12-5

P 15.12-6 The pulse signal shown in Figure P 15.12-6a is the
source vs(t) for the circuit of Figure P 15.12-6b. Determine the
output voltage vo using the Fourier transform.

(b)

(a)

4 Ωvs vo

–

+

+
–

1 H

t(s)0 1

8

vs(t)
(V)

Figure P 15.12-6

Section 15.14 How CanWe Check . . . ?

P 15.14-1 The Fourier series of vin(t) shown in Figure
P 15.7-7 is given as

vin tð Þ ¼ 1

2
þ
X1
n¼1

18

n2p
1� cos

np
3

� �
cos n

p
3

t � n
2p
3

� �
V

Is this the correct Fourier series?

Hint: Check the average value and the fundamental frequency.

Answer: The given Fourier series is not correct.

P 15.14-2 The Fourier series of v(t) shown in Figure P 15.14-2
is given as

v tð Þ ¼ 9 þ
X1
n¼1

40

np
sin

np
5

� �
cos n

p
5

t � n
p
5

� �
V

Is this the correct Fourier series?

Hint: Check the average value and the fundamental frequency.

Answer: The given Fourier series is not correct.
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t  (ms)
1

25

20

15

10

2 3 4 5–1–3–5

5

v(t)  (V)

Figure P 15.14-2

P 15.14-3 The Fourier series of v(t) shown in Figure
SP 15-2 in the next section is given as

v tð Þ ¼ 2
X1
n¼1

�1ð Þn

np
cos n2ptð Þ V

Is this the correct Fourier series?

Hint: Check the average value and the fundamental fre-
quency. Check for symmetry.

Answer: The given Fourier series is not correct.

PSpice Problems

SP 15-1 Use PSpice to determine the Fourier coefficients for
v(t) shown in Figure SP 15-1.

5

10

15

20

25

–5 –3–4 –1–2 1 2 3 4 5

v(t)
(V)

t (s)

Figure SP 15-1

SP 15-2 Use PSpice to determine the Fourier coefficients for
v(t) shown in Figure SP 15-2.

1

–1

1–1 – t (s)

v(t)

1
2

1
2

3
2

–3
2

Figure SP 15-2

Design Problems

DP 15-1 A periodic waveform shown in Figure DP 15-1a is
the input signal of the circuit shown in Figure DP 15-1b. Select
the capacitance C so that the magnitude of the third harmonic
of v2(t) is less than 1.4 V and greater than 1.3 V. Write the
equation describing the third harmonic of v2(t) for the value of
C selected.

(a)

(b)

C

v1 v216 Ω

+

–

+

–

2

10

2

0 π π
2
π3

v1

t (s)

(V)

Figure DP 15-1
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DP 15-2 A dc laboratory power supply uses a nonlinear circuit
to convert a sinusoidal voltage obtained from the wall plug to a
constant dc voltage. The wall plug voltage is A sin o0t, where
f0 ¼ 60 Hz and A ¼ 160 V. The voltage is then rectified so that
vs ¼ jA sin o0tj. Using the filter circuit of Figure DP 15-2,
determine the required inductance L so that the magnitude of
each harmonic (ripple) is less than 4 percent of the dc component
of the output voltage.

+
–vs

L

vo

+

–

1 Ω

Figure DP 15-2 An RL circuit.

DP 15-3 A low-pass filter is shown in Figure DP 15-3. The
input vs is a half-wave rectified sinusoid with o0 ¼ 800p
(item 5 of Table 15.4-1). Select L and C so that the peak value
of the first harmonic is 1=20 of the dc component for the
output vo.

+
–

+

–

75 kΩvs vo

L

C

Figure DP 15-3 An RLC circuit.
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CHAPTER 16 Filter Circuits

I N T H I S C H A P T E R
16.1 Introduction
16.2 The Electric Filter
16.3 Filters
16.4 Second-Order

Filters
16.5 High-Order Filters

16.6 Simulating Filter
Circuits Using PSpice

16.7 How Can We
Check . . . ?

16.8 DESIGN
EXAMPLE—

Anti-Aliasing
Filter

16.9 Summary
Problems
PSpice Problems
Design Problems

16.1 I n t r o d u c t i o n

Transfer functions are used to characterize linear circuits. In a previous chapter, we learned how to
analyze a circuit so that we could determine its transfer function. In this chapter, we learn how to design
a circuit to have a specified transfer function. This design problem does not have a unique solution.
There are many ways to obtain a circuit from a specified transfer function. A popular strategy is to
design the circuit to be a cascade connection of second-order filter stages. This is the strategy we will
use in this chapter.

The problem of designing a circuit that will have a specified transfer function is called filter
design. In this chapter we will learn the vocabulary of filter design and describe second-order filter
stages. Finally, we will learn how to connect these filter stages to obtain a circuit that has a specified
transfer function.

16.2 T h e E l e c t r i c F i l t e r

The concept of a filter was conceived early in human history. A paper filter was used to remove dirt and
unwanted substances from water and wine. A porous material, such as paper, can serve as a mechanical
filter. Mechanical filters are used to remove unwanted constituents, such as suspended particles, from a
liquid. In a similar manner, an electric filter can be used to eliminate unwanted constituents, such as
electrical noise, from an electrical signal.

The electrical filter was independently invented in 1915 by George Campbell in the United States
and K. W. Wagner in Germany. With the rise of radio between 1910 and 1920, a need emerged to
reduce the effect of static noise at the radio receiver. As regular radio broadcasting emerged in
the 1920s, Campbell and others developed the RLC filter, using inductors, capacitors, and resistors.
These filters are called passive filters because they consist of passive elements. The theory required
to design passive filters was developed in the 1930s by S. Darlington, S. Butterworth, and
E. A. Guillemin. The Butterworth low-pass filter was reported in Wireless Engineering in 1930
(Butterworth, 1930).

When active devices, typically op amps, are incorporated into an electric filter, the filter is
called an active filter. Because inductors are relatively large and heavy, active filters are usually
constructed without inductors—using, for example, only op amps, resistors, and capacitors. The first
practical active-RC filters were developed during World War II and were documented in a classic paper
by R. P. Sallen and E. L. Key (Sallen and Key, 1955).
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16.3 F i l t e r s

We begin by considering an ideal filter. For convenience, suppose that both the input and output of this
filter are voltages. This ideal filter separates its input voltage into two parts. One part is passed,
unchanged, to the output; the other part is eliminated. In other words, the output of an ideal filter is an
exact copy of part of the filter input.

This is a familiar use of the word filter. For example, we expect an automotive oil filter to separate
a mixture of oil and dirt into two parts: oil and dirt. Ideally, the oil filter passes one part of its input, the
oil, to its output without changing it in any way. The other part of the input, the dirt, should be
completely eliminated. The oil filter stops the dirt from getting to the output.

To understand how an electric filter works, consider an input voltage:

vi tð Þ ¼ coso1t þ coso2t þ coso3t

This input consists of a sum of sinusoids, each at a different frequency. (For example, periodic voltages
can be represented in this way using the Fourier series.) The filter separates the input voltage into two
parts, using frequency as the basis for separation. There are several ways of separating this input into
two parts and, correspondingly, several types of ideal filter. Table 16.3-1 illustrates the common filter
types. Consider the ideal low-pass filter, shown in row 1 of the table. The network function of the ideal
low-pass filter is

H oð Þ ¼ 1ff0� o < oc

0 o > oc

(
ð16:3-1Þ

The frequencyoc is called the cutoff frequency. The cutoff frequency separates the frequency rangeo<oc,
called the pass-band, from the frequency rangeo>oc, called the stop-band. Those components of the input
that have frequencies in the pass-band experience unity gain and zero phase shift. These terms are passed,
unchanged, to the output of the filter. Components of the input that have frequencies in the stop-band
experience a gain equal to zero. These terms are eliminated or stopped. An ideal filter separates its input into

Table 16.3-1 Ideal Filters

FILTER TYPE IDEAL FREQUENCY RESPONSE FILTER INPUT AND OUTPUT

Low-pass HL(   )
1

ω

ω1 ω2ωc ω ω3

HL(   )ω
vi(t) = cos   1t

+ cos   2t
+ cos   3t

ω
ωω

ω
vo(t) = cos   1t

High-pass HH(   )
1

ω

ω1 ω2 ωc ω ω3

vo(t) = cos   3tHH(   )ω
vi(t) = cos   1t

+ cos   2t
+ cos   3t

ω
ωω

ω

Band-pass HB(   )
1

ω

ω1 ω2ωa ωb ω ω3

vo(t) = cos   2tHB(   )ω
vi(t) = cos   1t

+ cos   2t
+ cos   3t

ω
ωω

ω

Band-stop (notch) HN(   )
1

ω

ω1 ω2ωa ωb ω ω3

vo(t) = cos   1t
       + cos   3t

HN(   )ω
vi(t) = cos   1t

+ cos   2t
+ cos   3t

ω ω
ωω

ω
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two parts: those terms that have frequencies in the pass-band and those terms that have frequencies in the stop-
band. The output of the filter consists of those terms with frequencies in the pass-band.

Unfortunately, ideal filter circuits don’t exist. (This fact can be proved by calculating the impulse
response of the ideal filter by taking the inverse Laplace transform of the transfer function. The impulse
response of an idealfilter would have to exist before the impulse itself. That is, the response would have to
occur before the input that caused the response. Because that can’t happen, ideal filter circuits don’t exist.)
Filters are circuits that approximate ideal filters. Filters divide their inputs into two parts, the terms in the
pass-band and the terms in the stop-band. The terms in the pass-band experience a gain that is
approximately 1 and experience some phase shift. These terms are passed to the output, but they are
changed a little. The terms in the stop-band experience a small gain that isn’t quite zero. Because these
terms aren’t eliminated entirely, some small residue of these terms shows up in the filter output.

Butterworth transfer functions have magnitude frequency responses that approximate the
frequency response of an ideal filter. Butterworth low-pass transfer functions are given by

HL sð Þ ¼ �1

D sð Þ ð16:3-2Þ

We can choose either þ1 or �1 for the numerator of HL(s). The polynomial D(s) depends on the cutoff
frequency and on the order of the filter. These polynomials, called Butterworth polynomials, are
tabulated in Table 16.3-2 for oc ¼ 1 rad/s. There is a trade-off involving the order of the filter. The
higher the order, the more accurately the filter frequency response approximates the frequency response
of an ideal filter; that’s good. The higher the filter order, the more complicated the circuit required to
build the filter; that’s not good.

Table 16.3-2 Denominators of Butterworth Low-Pass Filters with a Cutoff Frequency vc ¼ 1 rad/s

ORDER DENOMINATOR, D (s)

1 s þ 1

2 s2 þ 1:414s þ 1

3 s þ 1ð Þ s2 þ s þ 1ð Þ
4 s2 þ 0:765s þ 1ð Þ s2 þ 1:848s þ 1ð Þ
5 s þ 1ð Þ s2 þ 0:618s þ 1ð Þ s2 þ 1:618s þ 1ð Þ
6 s2 þ 0:518s þ 1ð Þ s2 þ 1:414s þ 1ð Þ s2 þ 1:932s þ 1ð Þ
7 s þ 1ð Þ s2 þ 0:445s þ 1ð Þ s2 þ 1:247s þ 1ð Þ s2 þ 1:802s þ 1ð Þ
8 s2 þ 0:390s þ 1ð Þ s2 þ 1:111s þ 1ð Þ s2 þ 1:663s þ 1ð Þ s2 þ 1:962s þ 1ð Þ
9 s þ 1ð Þ s2 þ 0:347s þ 1ð Þ s2 þ s þ 1ð Þ s2 þ 1:532s þ 1ð Þ s2 þ 1:879s þ 1ð Þ

10 s2 þ 0:313s þ 1ð Þ s2 þ 0:908s þ 1ð Þ s2 þ 1:414s þ 1ð Þ s2 þ 1:782s þ 1ð Þ s2 þ 1:975s þ 1ð Þ

E X A M P L E 1 6 . 3 - 1 Fil ter Order

We wish to design a low-pass filter that will approximate an ideal low-pass filter with oc ¼ 1 rad/s. Compare the
fourth-order Butterworth low-pass filter to the eighth-order Butterworth low-pass filter.

Solution
The fourth row of Table 16.3-2 indicates that the transfer of the fourth-order Butterworth filter is

H4 sð Þ ¼ 1

s2 þ 0:765s þ 1ð Þ s2 þ 1:848s þ 1ð Þ ¼
1

s2 þ 0:765s þ 1ð Þ �
1

s2 þ 1:848s þ 1ð Þ
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E X A M P L E 1 6 . 3 - 2 Frequency Scaling

Determine the transfer function of a third-order Butterworth low-pass filter having a cutoff frequency equal to 500 rad/s.

Solution
Equation 16.3-2 and Table 16.3-2 provide a third-order Butterworth low-pass filter with a cutoff frequency equal to
1 rad/s:

Hn sð Þ ¼ 1

s þ 1ð Þ s2 þ s þ 1ð Þ
A technique called frequency scaling is used to adjust the cutoff frequency to oc ¼ 500 rad/s. Frequency scaling
can be accomplished by replacing each s in Hn(s) by s/oc. That is,

H sð Þ ¼ 1

s

oc
þ 1

� �
s

oc

� �2

þ s

oc
þ 1

 !

Similarly, the eighth row of Table 16.3-2 indicates that the transfer function of the eighth-order Butterworth filter is

H8 sð Þ ¼ 1

s2 þ 0:390s þ 1ð Þ s2 þ 1:111s þ 1ð Þ s2 þ 1:663s þ 1ð Þ s2 þ 1:962s þ 1ð Þ
¼ 1

s2 þ 0:390s þ 1ð Þ �
1

s2 þ 1:111s þ 1ð Þ �
1

s2 þ 1:663s þ 1ð Þ �
1

s2 þ 1:962s þ 1ð Þ
Figure 16.3-1 shows the magnitude frequency
response plots for these two filters. Both fre-
quency responses show unity gain when o� 1
and a gain of zero when o � 1. Thus, both
filters approximate an ideal low-pass filter with
oc ¼ 1 rad/s. The eighth-order filter makes the
transition from the pass-band to the stop-band
more quickly, providing a better approximation
to the ideal low-pass filter.

The transfer function of the fourth-order
filter has been expressed as the product of two
second-order transfer functions, whereas the
transfer function of the eighth-order filter has
been expressed as the product of four second-
order transfer functions. Each of these second-
order transfer functions will be implemented by
a second-order circuit. Because all of these
second-order circuits will be quite similar, it
is reasonable to expect that the eighth-order
circuit will be about twice as large as the
fourth-order filter. That means twice as many parts, twice the power consumption, twice the assembly cost, twice
the space, and so on.

The eighth-order filter performs better, but it costs more. In some applications, the improved performance of
the eighth-order filter justifies the additional cost, whereas in other applications, it does not.

0

0.2

0.4

0.6

0.8

1

10–1 100

, rad/s

101

|H(  )|ω

ω

Eighth-order filter Fourth-order filter

FIGURE 16.3-1 A comparison of the frequency responses of fourth-
order and eighth-order Butterworth low-pass filters with oc ¼ 1 rad/s.

Filters 807



EXERCISE 16.3-1 Find the transfer function of a first-order Butterworth low-pass filter having a
cutoff frequency equal to 1250 rad/s.

Answer: H sð Þ ¼ 1
s

1250
þ 1

¼ 1250
s þ 1250

16.4 S e c o n d - O r d e r F i l t e r s

Second-order filters are important for two reasons. First, they provide an inexpensive approximation to
ideal filters. Second, they are used as building blocks for more expensive filters that provide more
accurate approximations to ideal filters.

The frequency response of second-order filters is characterized by three filter parameters: the gain
k, the corner frequency o0, and the quality factor Q. Filter circuits are designed by choosing the values
of the circuit elements in such a way as to obtain the required values of k, o0, and Q.

A second-order low-pass filter is a circuit that has a transfer function of the form

HL sð Þ ¼ ko0
2

s2 þ o0

Q
s þ o0

2
ð16:4-1Þ

This transfer function is characterized by three parameters: the dc gain k, the corner frequency o0, and
the quality factor Q. When this circuit is stable, that is, when both o0 > 0 and Q > 0, the network
function can be obtained by letting s ¼ jo.

HL oð Þ ¼ ko0
2

�o2 þ j
o0

Q
oþ o0

2

The gain of the filter is given by

jHL oð Þj ¼ ko0
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

o2
0 � o2

� �2 þ o0

Q
o

� �2
s

ffi
k o � o0

0 o � o0

(

In this case, oc ¼ 500 rad/s, so

H sð Þ ¼ 1
s

500
þ 1

� � s

500

� �2
þ s

500
þ 1

� �

¼ 5003

s þ 500ð Þ s2 þ 500s þ 5002
� �

¼ 125,000,000

s þ 500ð Þ s2 þ 500s þ 250,000ð Þ
H(s) is the transfer function of a third-order Butterworth low-pass filter having a cutoff frequency equal to 500 rad/s.
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When k ¼ 1, this frequency response approximates the frequency response of an ideal low-pass
filter with a cutoff frequency of oc ¼ o0. When k 6¼ 1, the low-pass filter approximates an ideal low-
pass filter together with an amplifier having gain equal to k. The quality factor Q controls the shape of
the frequency response during the transition from pass-band to stop-band. Figure 16.4-1 shows the
frequency response of a second-order low-pass filter (k ¼ 1 and oc ¼ o0 ¼ 1) for several choices of Q.
A Butterworth approximation to the ideal low-pass filter is obtained by choosing Q ¼ 0:707.

0

0.5

1

1.5

2

2.5

10–1 100

, rad/s

101

|H(  )|ω

ω

Q = 1

Q = 2

Q = 0.707

Q = 1.5

FIGURE 16.4-1 Frequency responses of
second-order low-pass filters with four
values of Q (oc ¼ 1 rad/s).

Table 16.4-1 Second-Order RLC Filters

FILTER TYPE CIRCUIT TRANSFER FUNCTION DESIGN EQUATIONS

Low-pass
+
–vi(t) vo(t)C

R L

+

–

H(s) =
s2 s ++ 1

LC
R
L

1
LC

0 =ω
 LC

 1

Q  = 

k = 1 

1
R

L
C

High-pass
+
–vi(t) vo(t)L

C R

+

–

H(s) =
s2

s2

s ++ 1
LC

R
L

0 =ω
 LC

 1

Q  = 

k = 1 

1
R

L
C

Band-pass
+
–vi(t) vo(t)R

C L

+

–

H(s) =
s2 s ++ 1

LC
R
L

sR
L

0 =ω
 LC

 1

Q  = 

k = 1 

1
R

L
C

Band-stop (notch)
C+

–vi(t) vo(t)

R L

+

–

H(s) =
s2 +

s2 s ++ 1
LC

R
L

1
LC

0 =ω
 LC

 1

Q  = 

k = 1 

1
R

L
C
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Table 16.4-1 provides RLC circuits that can be used as second-order filters. Consider the low-pass
filter shown in the first row of the table. The transfer function of this circuit is

H sð Þ ¼
1

LC

s2 þ R

L
s þ 1

LC

ð16:4-2Þ

The relationship between the circuit parameters R, L, and C and the filter parameters k, o0, and Q is
obtained by comparing Eq. 16.4-2 to Eq. 16.4-1. First, compare the constant terms in the denominators
to see that the cutoff frequency of the filter is given by

o0 ¼ 1ffiffiffiffiffiffi
LC

p

Next, compare the coefficients of s in the denominators to see that

o0

Q
¼ R

L

Solving these two equations for Q gives

Q ¼ 1

R

ffiffiffiffi
L

C

r

Finally, comparing the numerators gives

ko0
2 ¼ 1

LC

So the dc gain is

k ¼ 1

Notice that o0 and Q are determined by the values of R, L, and C but that k is always 1.
Many different circuits are used to build second-order filters. One of the popular filter circuits

is called the Sallen-Key filter. Table 16.4-2 provides the information required to design Sallen-Key
filters.

Table 16.4-2 Sallen-Key Filters

FILTER TYPE CIRCUIT DESIGN EQUATIONS

Low-pass

C

C

R R

R

vo(t)

+

–

vi(t)

+

–

+

–

(A – 1)R
1

3 – A
Q =

k = A

1
RC  0 =ω

(continued )
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High-pass

R

R

C C

R

vo(t)

+

–

vi(t)

+

–

+

–

(A – 1)R
1

3 – A
Q =

k = A

1
RC  0 =ω

Band-pass

R

2R

R C

R

C vo(t)

+

–

vi(t)

+

–

(A – 1)R

+

–

1
3 – A

Q =

k = AQ

1
RC  0 =ω

Band-stop (notch)

2C

R R

R

vo(t)

+

–

vi(t)

+

–

C
(A – 1)R

C

R
2

+

–

1
4 – 2A

Q =

k = A

1
RC  0 =ω

E X A M P L E 1 6 . 4 - 1 RLC Low-Pass Fil ter

Design a Butterworth second-order low-pass filter with a cutoff frequency of 1000 hertz.

Solution
Second-order Butterworth filters have Q ¼ 1ffiffiffi

2
p ¼ 0:707. The corner frequency is equal to the cutoff frequency,

that is,

o0 ¼ oc ¼ 2p 
 1000 ¼ 6283 rad/s

Try it 
yourself 

in WileyPLUS

Table 16.4-2 (Continued )

FILTER TYPE CIRCUIT DESIGN EQUATIONS
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E X A M P L E 1 6 . 4 - 2 Sallen-Key Band-Pass Fil ter

Design a second-order Sallen-Key band-pass filter with a center frequency of 500 hertz and a bandwidth of
100 hertz.

Solution
The transfer function of the second-order band-pass filter is

H sð Þ ¼
k
o0

Q
s

s2 þ o0

Q
s þ o0

2

The corresponding network function is

H oð Þ ¼
jk
o0

Q
o

o0
2 � o2 þ j

o0

Q
o

Dividing numerator and denominator by j
o0

Q
o gives

H oð Þ ¼ k

1þ jQ
o
o0

� o0

o

� �

We have seen network functions like this one earlier, when we discussed resonant circuits in Chapter 13. The gain
jH(o)j will be maximum at the corner frequency o0. In the case of this band-pass transfer function, o0 is also called

The RLC circuit shown in the first row of Table 16.4-1 can be used to design the required low-pass filter. The design
equations are

1ffiffiffiffiffiffi
LC

p ¼ o0 ¼ 6283 rad/s

and 1

R

ffiffiffiffi
L

C

r
¼ Q ¼ 1ffiffiffi

2
p

The third design equation indicates that k ¼ 1. This last design equation does not constrain the values of R, L, and
C. Because we have two equations in three unknowns, the solution is not unique. One way to proceed is to choose a
convenient value for one circuit element, say C ¼ 0:1 mF, and then calculate the resulting values of the other circuit
elements

L ¼ 1= o0
2C

� � ¼ 0:253 H

and
R ¼

ffiffiffiffiffiffi
2L

C

r
¼ 2251V

If we are satisfied with this solution, the filter design is complete. Otherwise, we adjust our choice of the value of C
and recalculate L and R. For example, if the inductance is too large, say L ¼ 1000 H, or the resistance is too small,
say R ¼ 0:03 V, it will be hard to obtain the parts to build these circuits. Because there is no such problem in this
example, we conclude that the circuit shown in the first row of Table 16.4-1 with C ¼ 0:1 mF, L ¼ 0:253 H, and
R ¼ 2251 V is the required low-pass filter.

Try it 
yourself 

in WileyPLUS
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the center frequency and the resonant frequency. The gain at the center frequency will be

jH o0ð Þj ¼ k

Two frequencies, o1 and o2, are identified by the property

jH o1ð Þj ¼ jH o2ð Þj ¼ kffiffiffi
2

p

These frequencies are called the half-power frequencies or the 3 dB frequencies. The half-power frequencies are
given by

o1 ¼ � o0

2Q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o0

2Q

� �2

þ o0
2

s
and o2 ¼ o0

2Q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
o0

2Q

� �2

þ o0
2

s

The bandwidth of the filter is calculated from the half-power frequencies

BW ¼ o2 � o1 ¼ o0

Q

The Sallen-Key band-pass filter is shown in the third row of Table 16.4-2. Our specifications require that

o0 ¼ 2p 
 500 ¼ 3142 rad/s

and
Q ¼ o0

BW
¼ 5

From Table 16.4-2, the design equations for the Sallen-Key band-pass filter are

1

RC
¼ o0 ¼ 3142

and
A ¼ 3� 1

Q
¼ 2:8

Pick C ¼ 0:1 mF. Then

R ¼ 1

Co0
¼ 3183V

Because k ¼ AQ, the gain of this band-pass filter at the
center frequency is 14. Also, one of the resistances is
given by

A � 1ð ÞR ¼ 5729V

The Sallen-Key band-pass filter is shown in Figure 16.4-2.

vo(t)

+

–

vi(t)

+

–

+
–

0.1  F

0.1  F

6366 Ω

3183 Ω

3183 Ω

3183 Ω

5729 Ω

μ

μ

FIGURE 16.4-2 A Sallen-Key band-pass filter.

E X A M P L E 1 6 . 4 - 3 Sallen-Key Band-Stop Fil ter

Design a second-order band-stop filter with a center frequency of 1000 rad/s and a bandwidth of 100 rad/s.

Solution
The transfer function of the second-order band-stop filter is

H sð Þ ¼ k s2 þ o0
2ð Þ

s2 þ o0

Q
s þ o0

2
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Notice that the transfer functions of the second-order band-pass and band-stop filters are related by

k s2 þ o0
2ð Þ

s2 þ o0

Q
s þ o0

2
¼ k �

k
o0

Q
s

s2 þ o0

Q
s þ o0

2

The network function of the band-stop filter is

H oð Þ ¼ k o0
2 � o2ð Þ

o0
2 � o2 þ j

o0

Q
o

When o � o0 or o�o0, the gain is jH oð Þj ¼ k. At o ¼ o0, the gain is zero. The half-power frequencies o1 and
o2 are identified by the property

jH o1ð Þj ¼ jH o2ð Þj ¼ kffiffiffi
2

p

The bandwidth of the filter is given by

BW ¼ o2 � o1 ¼ o0

Q

The Sallen-Key band-stop filter is shown in the last row of Table 16.4-2. Our specifications require that o0 ¼
1000 rad/s and

Q ¼ o0

BW
¼ 10

Table 16.4-2 indicates that the design equations for the Sallen-Key band-stop filter are
1

RC
¼ o0 ¼ 1000

and
A ¼ 2� 1

2Q
¼ 1:95

Pick C ¼ 0:1 mF. Then

R ¼ 1

Co0
¼ 10 kV

The Sallen-Key band-stop filter is shown in
Figure 16.4-3.

vo(t)

+

–

vi(t)

+

–

μ0.2  F

μ0.1  F μ0.1  F

+
– 10 kΩ5 kΩ

10 kΩ

9.5 kΩ

10 kΩ

FIGURE 16.4-3 A Sallen-Key band-stop filter.

E X A M P L E 1 6 . 4 - 4 Tow-Thomas Fil ter

Figure 16.4-4 shows another circuit that can be used to build a second-order filter. This circuit is called a Tow-
Thomas filter. This filter can be used as either a band-pass or low-pass filter. When the output is the voltage v1(t), the
transfer function is

HL sð Þ ¼
� 1

RkRC2

s2 þ 1

RQC
s þ 1

R2C2

ð16:4-3Þ

Try it 
yourself 

in WileyPLUS
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and the filter is a low-pass filter. If, instead, the voltage v2(t) is used as the filter output, the network function is

HB sð Þ ¼
� 1

RkC
s

s2 þ 1

RQC
s þ 1

R2C2

ð16:4-4Þ

and the Tow-Thomas filter functions as a band-pass filter. Design a Butterworth Tow-Thomas low-pass filter with a
dc gain of 5 and a cutoff frequency of 1250 hertz.

Solution
Because the Tow-Thomas filter will be used as a low-pass filter, the transfer function is given by Eq. 16.4-3. Design
equations are obtained by comparing this transfer function to the standard form of the second-order low-pass
transfer function given in Eq. 16.4-1. First, compare the constant terms (that is, the coefficients of s0) in the
denominators of these transfer functions to get

o0 ¼ 1

RC
ð16:4-5Þ

Next, compare the coefficients of s1 in the denominators of these transfer functions to get

Q ¼ RQ

R
ð16:4-6Þ

Finally, compare the numerators to get

k ¼ R

Rk
ð16:4-7Þ

Designing the Tow-Thomas filter requires that values be obtained for R, C, RQ, and Rk. Because there are four
unknowns and only three design equations, we begin by choosing a convenient value for one of the unknowns,
usually the capacitance. Let C ¼ 0:01 mF. Then,

R ¼ 1

o0C
¼ 1

2pð Þ 1250ð Þ 0:01ð Þ 10�6
� � ¼ 12,732V

A second-order Butterworth filter requires Q ¼ 0:707, so

RQ ¼ QR ¼ 0:707ð Þ 12,732ð Þ ¼ 9003V

Finally

Rk ¼ R

k
¼ 2546V

and the design is complete.

–

+

–

+

–

+
+
–

v1(t)

+

 –

+

 –

C R

RQ

vs(t)

v2(t)

Rk R R RC

FIGURE 16.4-4 The
Tow-Thomas filter.
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16.5 H i g h - O r d e r F i l t e r s

In this section, we turn our attention to filters that have an order greater than 2. These filters are called
high-order filters. A popular strategy for designing high-order filters uses a cascade connection of
second-order filters. The cascade connection is shown in Figure 16.5-1. In this figure, the transfer
functions H1(s), H2(s), . . . , Hn(s) represent second-order filters that are connected together to build a
high-order filter. We refer to the second-order filter as filter stages to distinguish them from the high-
order filter. That is, the high-order filter is a cascade connection of second-order filter stages. (When the
order of the high-order filter is odd, a first-order filter stage is needed. Nonetheless, we talk about
designing high-order filters as a cascade of second-order stages.)

The cascade connection is characterized by the fact that the output of one filter stage is used as the
input to the next stage. Unfortunately, the behavior of a stage will sometimes change when another
stage is connected to it. We call this phenomenon loading, and we say that the second stage loaded the
first. Generally, loading is undesirable, and we try to avoid it. Figure 16.5-2 shows a model of a filter

E X A M P L E 1 6 . 4 - 5 Tow-Thomas High-Pass Fil ter

Use the Tow-Thomas circuit to design a Butterworth high-pass filter with a high-frequency gain of 5 and a cutoff
frequency of 1250 hertz.

Solution
The Tow-Thomas circuit does not implement the high-pass filter, but it does implement the low-pass filter and the
band-pass filter. The transfer functions of the second-order high-pass, band-pass, and low-pass filters are related by

HH sð Þ ¼ ks2

s2 þ 1

RQC
s þ 1

R2C2

¼ k þ
� 1

RkC
s

s2 þ 1

RQC
s þ 1

R2C2

þ
� 1

RkRC2

s2 þ 1

RQC
s þ 1

R2C2

¼ k þ HB sð Þ þ HL sð Þ

ð16:4-8Þ

A high-pass filter can be constructed using a Tow-Thomas filter and a summing amplifier. Both the band-pass
and low-pass outputs of the Tow-Thomas filter are used. Equation 16.4-8 indicates that the band-pass and low-pass
filters must have the same values of k, Q, and o0 as the high-pass filter. Thus, we require a Tow-Thomas filter
having k ¼ 5, Q ¼ 0:707, and o0 ¼ 7854 rad/s. Such a filter was designed in Example 16.4-4. The high-pass filter
is obtained by adding a summing amplifier as shown in Figure 16.4-5.

–

+

–

+

–

+
+
–

–

+ +

 –

vs(t)

vo(t)

+

 –
v2(t)

+

 –
v1(t)

0.01  F 0.01  Fμμ

2546 kΩ 9003 kΩ 12732 kΩ 12732 kΩ 12732 kΩ 50 kΩ

50 kΩ
12,732 kΩ

10 kΩ

50 kΩ

FIGURE 16.4-5
A Tow-Thomas
high-pass filter.

816 16. Filter Circuits



stage that is appropriate for investigating loading. This model includes the input and output impedance
of the filter stage as well as the transfer function.

Figure 16.5-3 shows a high-order filter consisting of the cascade connection of two filter stages.
Let’s calculate the transfer function of the high-order filter. Starting at the output of the high-order filter,
notice that there is no current in the output impedance Zo2(s) of the second stage. Consequently, there is
no voltage across Zo2(s), so

V3 sð Þ ¼ H2 sð ÞV2 sð Þ ð16:5-1Þ
Next, we use voltage division to find V2(s).

V2 sð Þ ¼ Z i2

Zo1 þ Z i2
H1 sð ÞV1 sð Þ ð16:5-2Þ

Connecting the second filter stage to the first stage has changed the output of the first stage. Without the
second stage, there would be no current in Zo1(s). Consequently, there would be no voltage across
Zo1(s), and the output of the first stage would be V2(s) ¼ H1(s)V1(s). The second stage is said to load the
first stage. This loading can be eliminated by making the input impedance of the second stage infinite,
Z i2(s) ¼ 1, or the output impedance of the first stage zero, Zo1(s) ¼ 0.

Combining Eqs. 16.5-1 and 16.5-2 gives

V3 sð Þ ¼ H2 sð Þ Z i2

Zo1 þ Z i2
H1 sð ÞV1 sð Þ

Finally, the transfer function of the high-order filter is

H sð Þ ¼ V3 sð Þ
V1 sð Þ ¼ H2 sð Þ Z i2

Zo1 þ Z i2
H1 sð Þ ð16:5-3Þ

This equation simplifies to

H sð Þ ¼ H2 sð ÞH1 sð Þ ð16:5-4Þ
when either the input impedance of the second stage is infinite, Z i2(s) ¼ 1, or the output impedance of
the first stage is zero, Zo1(s) ¼ 0. In other words, Eq. 16.5-4 can be used when the second stage does not
load the first stage, but Eq. 16.5-3 must be used when the second stage does load the first stage. We will
prove that the Sallen-Key filters have output impedances equal to zero. Therefore, there is no loading
when Sallen-Key filter stages are cascaded. The transfer function of the high-order filter is the product of
the transfer functions of the individual Sallen-Key filter stages. In contrast, the filters based on the series
RLC circuit shown in Table 16.4-1 do not have output impedances that are equal to zero or input
impedances that are infinite. If these filter stages were cascaded, the transfer function of the high-order
filter would not be equal to the product of the transfer functions of the individual filter stages. Thus, we can
use cascaded Sallen-Key filter stages to design high-order filters without introducing loading.

+
– V2(s)V1(s) H1(s) H2(s)

+

–

V3(s) Hn(s)

+

–

Vn + 1(s)

+

–

Vn(s)

+

–

+

– ...

...

FIGURE 16.5-1 A cascade circuit of n stages.

Vi(s) Zi(s)

Zo(s)

H (s) Vi(s)

+

–

+
–

FIGURE 16.5-2 A model of one filter stage.

V1(s) Zi1(s)

Zo1(s) Zo2(s)

H1(s)V1(s) V2(s)

+

–

+

–

+
–

H2(s)V2(s) V3(s)

+

–

+
–

Zi2(s)+
– FIGURE 16.5-3

Cascade connection of
two filter stages.
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Next, consider calculating the output impedance of a Sallen-Key band-pass filter. Table 16.5-1
shows how the parameters of the model of a filter stage can be calculated or measured. The second row of
this table indicates that to calculate the output impedance, a short circuit should be connected to the filter
input, and a current source should be connected to the filter output. The voltage across the current source is
calculated, and the ratio of this voltage to the current of the current source is the output impedance. Figure
16.5-4 shows a Sallen-Key filter with a short circuit across its input and a current source connected to its
output. This circuit can be analyzed by writing node equations at nodes 1, 2, and T:

V1

R
þ CsV1 þ V1 � VT

R
þ V1 � V2ð ÞCs ¼ 0

� V1 � V2ð ÞCs þ V2

2R
¼ 0

V2

R
þ V2 � VT

A � 1ð ÞR ¼ 0

Solving these node equations for VT gives

½ RCsð Þ2 þ 3� Að ÞRCs þ 1� VT ¼ 0

Because the factor in brackets is not zero, this equation indicates that VT ¼ 0. The output impedance of
the Sallen-Key band-pass filter is

Zo ¼ VT

IT
¼ 0

IT
¼ 0

Similarly, each of the Sallen-Key filters shown in Table 16.4-2 has an output impedance equal to zero.
High-order filters can be designed as a cascade connection of second-order filter stages. Filter

stages that have an output impedance equal to zero are used so that the transfer function of the high-
order filter will be the product of the transfer functions of the cascaded filter stages.

Table 16.5-1 Measuring the Parameters of a Filter Stage

PARAMETER DEFINITION MEASUREMENTS

Input impedance
Vi(s)

IT(s)
Zi(s) =

Vi(s)IT(s) Zi(s)

Zo(s)

+

–

H(s)Vi(s)
+
–

Output impedance
VT(s)

IT(s)
Zo(s) =

Vi(s) = 0 IT(s)VT(s)Zi(s)

Zo(s)

+

–

+

–

H(s)Vi(s)
+
–

Transfer function
Vo(s)

Vi(s)
H(s) =

Vi(s) Zi(s)

Zo(s)

Vo(s)

+

–

H(s)Vi(s)
+
–

+
–
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E X A M P L E 1 6 . 5 - 1 Cascade Connection of Fil ter Stages

Design a third-order Butterworth low-pass filter having a cutoff frequency of oc ¼ 500 rad/s and a dc gain equal to 1.

Solution
Equation 16.3-2 and Table 16.3-2 provide a third-order Butterworth low-pass filter having a cutoff frequency equal
to 1 rad/s.

Hn sð Þ ¼ 1

s þ 1ð Þ s2 þ s þ 1ð Þ
Frequency scaling is used to adjust the cutoff frequency so that oc ¼ 500 rad/s.

H sð Þ ¼ 1
s

500
þ 1

� � s

500

� �2
þ s

500
þ 1

� �

¼ 5003

s þ 500ð Þ s2 þ 500s þ 5002
� �

R

2R

R

R VT(s) IT(s)

+

–

V2(s)

+

–

V1(s)

+

–

+

–

(A – 1)R

1
Cs

1
Cs

1

2

T

FIGURE 16.5-4 Calculating the output
impedance of a Sallen-Key band-pass filter.
Circled numbers are node numbers.

Table 16.5-2 First-Order Filter Stages

FILTER TYPE FIRST-ORDER CIRCUIT DESIGN EQUATION

Low-pass
–

+

R1 R2

C

vo(t)
+

 –

vi(t)

+

 –

–k
s + p

H(s) =

1
R2C

p =
where

1
R1C

k =

and

High-pass

C

–

+

R1 R2

+

 –

vi(t)

+

 –
vo(t)

–ks
s + p

H(s) =

1
R1C

p =
where

R2

R1
k =

and

Try it 
yourself 

in WileyPLUS
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H(s) is the transfer function of a third-order Butterworth low-pass filter having a cutoff frequency equal to 500 rad/s.
This transfer function can be expressed as

H sð Þ ¼ �250,000

s2 þ 500s þ 250,000

 �500

s þ 500
¼ H1 sð Þ 
 H2 sð Þ ð16:5-5Þ

A Sallen-Key low-pass filter can be designed to implement the second-order low-pass transfer function H1(s).
Table 16.5-2 provides circuits and design equations for first-order filter stages. The circuit shown in the first row of
this table can be used to implement H2(s). The first-order filter stages in Table 16.5-2 have output impedances equal
to zero. Cascading these filter stages will not cause loading. Cascading the Sallen-Key filter with the first-order filter
stage will produce a third-order filter with the transfer function H(s).

First, let’s design the Sallen-Key filter with transfer function

H1 sð Þ ¼ �250,000

s2 þ 500s þ 250,000

Values of the filter parameters k, o0, and Q are determined by comparing H1(s) with the standard form of the
second-order low-pass transfer function given in Eq. 16.4-1. From the constant term in the denominator,

o0
2 ¼ 250,000

Next, from the coefficient of s in the denominator,

o0

Q
¼ 500

Finally, from the numerator,

k 
 o0
2 ¼ 250,000

So o0 ¼ 500 rad/s, Q ¼ 1, and k ¼ 1. The Sallen-Key low-pass filter is shown in row 1 of Table 16.4-2. Designing
this filter requires finding values of R, C, and A. The design equations given in row 1 of the table indicate that

o0 ¼ 1

RC
ð16:5-6Þ

Q ¼ 1

3� A
ð16:5-7Þ

k ¼ A ð16:5-8Þ
Equation 16.5-7 gives

A ¼ 3� 1

Q
¼ 3� 1

1
¼ 2

but Eq. 16.5-8 gives

A ¼ k ¼ 1

Apparently, we can select A to get the correct value of Q, or we can select A to get the correct value of k, but not
both. The dc gain is easy to adjust later, so we pick A ¼ 2 to make Q ¼ 1 and settle for k ¼ 2. Equation 16.5-6 is
satisfied by taking C ¼ 0:1 mF and

R ¼ 1

Co0
¼ 1

0:1� 10�6
� �

500ð Þ ¼ 20 kV

The Sallen-Key filter stage is shown in Figure 16.5-5a. The transfer function of this stage is

H3 sð Þ ¼ �500,000

s2 þ 500s þ 250,000
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The Sallen-Key filter stage achieved the desired values of o0 and Q ¼ 1 but not the desired value of the dc gain. To
compensate, we will adjust the dc gain of the first-order filter. The desired transfer function of the third-order filter
can be expressed as

H sð Þ ¼ �500,000

s2 þ 500s þ 250,000

 H4 sð Þ

which requires

H4 sð Þ ¼ �250

s þ 500

The design equations in row 1 of Table 16.5-2 indicate that

500 ¼ 1

R2C
and

250 ¼ 1

R1C

Choose C ¼ 0:1 mF. Then

R2 ¼ 1

500 
 C
¼ 1

500ð Þ 0:1� 10�6
� � ¼ 20 kV

+

–

0.1  Fμ

0.1  Fμ

0.1  Fμ

(a)

+

–

0.1  Fμ

0.1  Fμ

(c)

(b)

–

+

0.1  Fμ

–

+

+
– vo(t)

vi(t)

+

 –

20 kΩ20 kΩ

20 kΩ

20 kΩ
40 kΩ 20 kΩ

40 kΩ 20 kΩ

20 kΩ

20 kΩ

20 kΩ 20 kΩ

FIGURE 16.5-5 (a) A
Sallen-Key filter stage, (b) a
first-order filter stage, and
(c) a third-order Butterworth
filter.
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16.6 S im u l a t i n g F i l t e r C i r c u i t s U s i n g P S p i c e

PSpice provides a convenient way to verify that a filter circuit does indeed have the correct transfer
function. Figure 16.6-1 illustrates a method of testing a filter design. The filter that is being tested here is
a fourth-order notch filter consisting of two Sallen-Key notch filter stages and an inverting amplifier.
This filter was designed to have the transfer function

H sð Þ ¼ 4 s2 þ 62,500ð Þ2
s2 þ 250s þ 62,500ð Þ2

The voltage source voltage vi(t) is used as the input to two separate circuits. One of these circuits is the
filter circuit consisting of the Sallen-Key stages and the inverting amplifier. The response of this circuit
is the node voltage vo1(t). The other “circuit” implements H(s) directly using a feature of PSpice. The
response of this circuit is vo2(t). A single PSpice simulation produces the frequency responses
corresponding to the transfer functions of both of these circuits; Vo1(s)=Vi(s) and Vo2(s)=Vi(s).
Next, we use Probe, the graphical post processor included with PSpice, to display both frequency
responses on the same axis. If these frequency responses are identical, we know that the filter circuit
does indeed implement the transfer function H(s).

Figure 16.6-2 shows the PSpice input file corresponding to Figure 16.6-1. Two aspects of this
file require some explanation. First, notice that parameters are used in the subcircuit that represents
the Sallen-Key filter stage. The line

.subckt sk_n in out params: C=.1uF w0 = 1 krad/s Q = 0.707

Sallen-Key
notch

filter stage
  0 = 250, Q = 1

Sallen-Key
notch

filter stage
  0 = 250, Q = 1

4(s2 + 62,500)2

(s2 + 250s + 62,500)2

10 kΩ 17.78 kΩ

ωω –

+
+
–

H(s) =

vo2(t)

vo1(t)

vi(t)

FIGURE 16.6-1 Verifying the transfer function of a fourth-order notch filter using PSpice.

and R1 ¼ 1

250 
 C
¼ 1

250ð Þ 0:1� 10�6
� � ¼ 40 kV

The first-order filter stage is shown in Figure 16.5-5b. Cascading the Sallen-Key stage and the first-order stage
produces the third-order Butterworth filter shown in Figure 16.5-5c.

822 16. Filter Circuits



marks the beginning of the subcircuit named sk_n. (PSpice allows us to name, rather than number, nodes.
The nodes “in” and “out” will connect this subcircuit to the rest of the circuit.) Three parameters are
defined: C, w0, and Q. All are given default values, as required by PSpice. Expressions involving these
parameters replace the values of some of the devices that comprise the subcircuit; for example, the line

R1 in 2 {1/C/w0}

indicates that resistor R1 is connected to nodes “in” and 2 and that the resistance of R1 is given by 1/C/w0.
The values of parameters like C and w0 are given when the subcircuit is used. Consider the line

XSK2 2 3 sk_n params : C =.1uf w0 = 250 Q = 1

which indicates that device XSK2 is a subcircuit sk_n. This line provides values for C, w0, and Q.
These values will be used to calculate the resistance R1 that is used when sk_n implements XSK2.
Different values of C, w0, and Q can be used each time the subcircuit sk_n is used to implement a
different device. Table 16.6-1 provides PSpice subcircuits for the four Sallen-Key filter stages.
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FIGURE 16.6-2 PSpice input file used to test the fourth-order notch filter.
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Table 16.6-1 PSpice Subcircuits for Sallen-Key Filter Stages

FILTER STAGE PSPICE SUBCIRCUIT

C

C

R R

R

vo(t)

+

–

vi(t)

+

–

+

–

(A – 1)R

.subckt sk_lp in out params: C = .1uF
w0 = 1krad/s Q = 0.707
R1       in     2      {1/C/w0}
R2       2      3      {1/C/w0}
C1       3      0      {C}
C2       2      out   {C}
XOA     5      3      out      op_amp
R3       5      0     10kOhm
R4      out    5      {(2 – 1/Q) *10kOhm}
.ends sk_lp

R

R

C C

R

vo(t)

+

–

vi(t)

+

–

+

–

(A – 1)R

.subckt sk_hp in out params: C = .1uF
w0 = 1krad/s Q = 0.707
R1       3      0       {1/C/w0}
R2       2      out    {1/C/w0}
C1       in     2       {C}
C2       2      3       {C}
XOA     5      3       out     op_amp
R3       5     0      10kOhm
R4      out    5       {(2 – 1/Q) *10kOhm}
.ends sk_hp

R

2R

R C

R

C vo(t)

+

–

vi(t)

+

–

+

–

(A – 1)R

.subckt sk_bp in out params: C = .1uF
w0 = 1krad/s Q = 0.707
R1       in     2     {1/C/w0}
R2       2     out   {1/C/w0}
C1       2      3     {C}
C2       2      0     {C}
R3       3      0     {2/C/w0}
XOA     5      3     out      op_amp
R4       5      0     10kOhm
R5      out    5      {(2 – 1/Q)*10kOhm}
.ends sk_bp

2C

R R

R

vo(t)

+

–

vi(t)

+

–

+

–

C
(A – 1)R

C

R
2

.subckt sk_n in out params: C = .1uF
w0 = 1krad/s Q = 0.707
R1       in     2      {1/C/w0}
R2       2      3      {1/C/w0}
C1       in     6      {C}
C2       6      3      {C}
C3       2      out   {2*C}
R3       6      0     {1/2/C/w0}
XOA     5      3     out      op_amp
R4       5      0     10kOhm
R5      out    5      {(1 – 1/Q/2)*10kOhm}
.ends sk_n
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Next, consider the subcircuit

.subckt 4 th_order_notch_filter in out
R1 in 0 1G
R2 out 0 1G
E1 out 0 LAPLACE {V(in)} = {4* (s*s + 62500)* (s*s + 62500)/
+ (s*s + 250*s + 62500) (s*s + 250*s + 62500)}
.ends 4th_order_notch_filter

The keyword LAPLACE indicates that controlled voltage of the VCVS is related to the controlling voltage,
using a transfer function. The controlling voltage of the VCVS is identified inside the first set of braces. The
transfer function is given inside the second set of braces. The transfer function was too long to fit on the line
describing the VCVS. The þ sign at the beginning of the fourth line indicates that this line is a continuation
of the previous line. Table 16.6-2 provides subcircuits describing second-order transfer functions.

Figure 16.6-3 shows the frequency responses produced using the PSpice input file shown in
Figure 16.6-2. The frequency responses are identical and overlap exactly. The filter circuit does indeed
implement the specified transfer function.

Table 16.6-2 PSpice Subcircuits for Second-Order Transfer Functions

TRANSFER FUNCTION PSPICE SUBCIRCUIT

Low-pass

.subckt 1p_filter_stage in out params: w0 = 1 krad/s Q = 0.707 k = 1
R1 in 0 1G
R2 out 0 1G
E out 0 LAPLACE {V(in)} = {(k*w0*w0)/(s*s + w0*s/Q + w0*w0)}
.ends lp_filter_stage

High-pass

.subckt hp_filter_stage in out params: w0 = 1 krad/s Q = 0.707 k = 1
R1 in 0 1G
R2 out 0 1G
E out 0 LAPLACE {V(in)} = {(k*s*s)/(s*s + w0*s/Q + w0*w0)}
.ends hp_filter_stage

Band-pass

.subckt bp_filter_stage in out params: w0 = 1krad/s Q = 0.707 k = 1
R1 in 0 1G
R2 out 0 1G
E out 0 LAPLACE {V(in)} = {(k*w0*s/Q)/(s*s + w0*s/Q + w0*w0)}
.ends bp_filter_stage

Band-stop (notch)

.subckt n_filter_stage in out params: w0 = 1krad/s Q = 0.707 k = 1
R1 in 0 1G
R2 out 0 1G
E out 0 LAPLACE {V(in)} = {(k*(s*s + w0*w0)/(s*s + w0*s/Q + w0*w0)}
.ends n_filter_stage
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–40
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40
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VDB(5)–VDB(1)
VDB(6)–VDB(1)

FIGURE 16.6-3 Frequency response plots used
to verify the transfer function of the fourth-order
notch filter.
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16.7 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the specifica-
tions have been satisfied. In addition, computer output must be reviewed to guard against data-entry
errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following examples illustrate techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

E X A M P L E 1 6 . 7 - 1 How Can We Check Fil ter
Frequency Response?

Figure 16.7-1 shows the frequency response
of a band-pass filter obtained using PSpice.
Such a filter can be represented by

Vo oð Þ
Vin oð Þ ¼ H oð Þ ¼ H0

1þ jQ
o
o0

� o0

o

� �

where Vin(o) and Vo(o) are the input and
output of the filter. This filter was designed
to satisfy the specifications

o0 ¼ 2p1000 rad/s; Q ¼ 10; H0 ¼ 10

How can we check that the specifications
are satisfied?

Solution
The frequency response was obtained by analyzing the filter using PSpice. The vertical axis of Figure 16.7-1 gives
the magnitude of H(o) in decibels. The horizontal axis gives the frequency in hertz. Three points on the frequency
response have been labeled, giving the frequency and magnitude at each point. We want to use this information
from the frequency response to check the filter to see whether it has the correct values of o0, Q, and H0.

The three labeled points on the frequency response have been carefully selected. One of these labels indicates
that the magnitude of H(o) and frequency at the peak of the frequency response are 20 dB and 1000 Hz. This peak
occurs at the resonant frequency, so

o0 ¼ 2p1000 rad/s
The magnitude at the resonant frequency is H0, so

20 log10H0 ¼ 20

or H0 ¼ 10

The other two labeled points were chosen so that the magnitudes are 3 dB less than the magnitude at the peak. The
frequencies at these points are 951 Hz and 1051 Hz. The difference of these two frequencies is the bandwidth BW of
the frequency response. Finally, Q is calculated from the resonant frequency o0 and the bandwidth BW:

Q ¼ o0

BW
¼ 2p1000

2p 1051� 951ð Þ ¼ 10

In this example, three points on the frequency response were used to verify that the band-pass filter satisfied
the specifications for its resonant frequency, gain, and quality factor.
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15

20

25

500 Hz 1.0 kHz 2.0 kHz

Frequency

dB

(1.0000 k, 19.991)

(951.373, 17.001) (1.0511 k, 17.001)

FIGURE 16.7-1 A band-pass frequency response.

Try it 
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in WileyPLUS
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E X A M P L E 1 6 . 7 - 2 How Can We Check Fil ter Transfer Function?

ELab is a circuit analysis program that can be used to calculate the transfer function of a filter circuit (Svoboda,
1997). Figure 16.7-2 shows the result of using ELab to analyze the Sallen-Key band-pass filter shown in Figure
16.4-2. This Sallen-Key filter was designed in Example 16.4-2 to have o0 ¼ 3142 rad/s, Q ¼ 5, and k ¼ 14. How
can we check that the filter does indeed have the required values of o0, Q, and k?
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FIGURE 16.7-2 Using ELab to determine the transfer function of a band-pass filter.

Solution
The coefficients of the transfer function of the filter are given in the upper left-hand portion of Figure 16.7-2. The
coefficients indicate that the transfer function of this filter is

H sð Þ ¼ 8800s

s2 þ 629s þ 9:87� 106
ð16:7-1Þ

The general form transfer function of the second-order band-pass filter is

H sð Þ ¼
k
o0

Q
s

s2 þ o0

Q
s þ o2

0

ð16:7-2Þ

Notice that the coefficient of s2 in the denominator polynomial is 1 in both of these transfer functions. Values of o0,
Q, and k are determined by comparing the coefficients of the transfer functions in Eqs. 16.7-1 and 16.7-2.

The square root of the constant term of the denominator polynomial is equal to o0. Therefore,

o0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9:87� 106

p
¼ 3142 rad/s

Next, the coefficient of s in the denominator polynomial is equal to o0/Q. Therefore,

Q ¼ o0

629
¼ 3142

629
¼ 5

Finally, the ratio of the coefficient of s in the numerator polynomial to the coefficient of s in the denominator
polynomial is equal to k. Therefore,

k ¼ 8880

629
¼ 14

The Sallen-Key band-pass filter shown in Figure 16.4-2 does indeed have the required values of o0, Q, and k.

How Can We Check . . . ? 827



1 6 . 8 D E S I G N E X A M P L E Anti-Aliasing Fil ter

Digital signal processing (DSP) frequently involves sampling a voltage and converting the samples to digital
signals. After the digital signals are processed, the output signal is converted back into an analog voltage.
Unfortunately, a phenomenon called aliasing can cause errors to occur during digital signal processing. Aliasing is
a possibility whenever the input voltage contains components at frequencies greater than one-half of the sampling
frequency. Aliasing occurs when these components are mistakenly interpreted to be components at a lower
frequency. Anti-aliasing filters are used to avoid these errors by eliminating those components of the input voltage
that have frequencies greater than one-half of the sampling frequency.

An anti-aliasing filter is needed for a DSP application. The filter is specified to be a fourth-order Butterworth
low-pass filter having a cutoff frequency of 500 hertz and a dc gain equal to 1. This filter is to be implemented as an
RC op amp circuit.

Describe the Situation and the Assumptions
The anti-aliasing filter will be designed as a cascade circuit consisting of two Sallen-Key low-pass filters and
perhaps an amplifier. The amplifier will be included if it is necessary to adjust the dc gain of the anti-aliasing filter.

The operational amplifiers in the Sallen-Key filter stages will be modeled as ideal operational amplifiers.
Resistances will be restricted to the range of 2 kV to 500 kV, and capacitances will be restricted to the range of 1 nF
to 10 mF.

State the Goal
The transfer function of a fourth-order Butterworth low-pass filter having a cutoff frequency of 500 hertz and a dc
gain equal to 1 can be obtained in two steps. First, the transfer function of a fourth-order Butterworth low-pass filter
is given by Eq. 16.3-2 and Table 16.3-2 to be

Hn sð Þ ¼ 1

s2 þ 0:765s þ 1ð Þ s2 þ 1:848s þ 1ð Þ ð16:8-1Þ

Hn(s) is the transfer function of a filter having a cutoff frequency equal to 1 rad/s. Next, frequency scaling can be
used to adjust the cutoff frequency to 500 hertz ¼ 3142 rad/s. Frequency scaling can be accomplished by replacing

s by
s

oc
¼ s

3142
in Hn(s).

H sð Þ ¼ 1
s

3142

� �2
þ 0:765

s

3142

� �
þ 1

� �
s

3142

� �2
þ 1:848

s

3142

� �
þ 1

� �

¼ 31424

s2 þ 2403:6s þ 31422
� �

s2 þ 5806:4s þ 31422
� �

ð16:8-2Þ

The goal is to design a filter circuit that has this transfer function.

Generate a Plan
We will express H(s) as the product of two second-order low-pass transfer functions. For each of these second-
order transfer functions, we will do the following:

1. Determine the values of the filter parameters k, o0, and Q.

2. Design a Sallen-Key low-pass filter to have the required values of o0 and Q.

It’s likely that the Sallen-Key filters won’t have the desired values of the dc gain, so an amplifier will be required to
adjust the dc gain. The anti-aliasing filter will consist of a cascade connection of the Sallen-Key filter stages and the
amplifier.
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Act on the Plan
Consider the first factor of the denominator of H(s). From the constant term,

o2
0 ¼ 31422

So o0 ¼ 3142 rad/s. Next, from the coefficient of s in the denominator,
o0

Q
¼ 2403:6

so Q ¼ 3142

2403:6
¼ 1:31

Next, design a Sallen-Key low-pass filter with o0 ¼ 3142 rad/s and Q ¼ 1:31. The design equations given in row 1
of Table 16.4-2 indicate that

o0 ¼ 1

RC

and Q ¼ 1

3� A
Pick C ¼ 0:1 mF. Then,

R ¼ 1

o0C
¼ 1

3142 
 10�7 ¼ 3183V

Also; A ¼ 3� 1

Q
¼ 3� 1

1:31
¼ 2:24

The dc gain of this filter stage is k ¼ A ¼ 2:24, so the transfer function of this stage is

H1 sð Þ ¼ 2:24 
 31422
s2 þ 2403:6s þ 31422

Next, consider the second factor in the denominator of H(s). Once again, the constant term indicates that
o0 ¼ 3142 rad/s. Now Q can be calculated from the coefficient of s to be

Q ¼ 3142

5806:4
¼ 0:541

We require a Sallen-Key low-pass filter with o0 ¼ 3142 rad/s and Q ¼ 0:541. Pick C ¼ 0:1 mF. Then,

R ¼ 1

o0C
¼ 1

3142 
 10�7 ¼ 3183V

and A ¼ 3� 1

Q
¼ 3� 1

0:541
¼ 1:15

The dc gain of this filter stage is k ¼ A ¼ 1:15, so the transfer function of this stage is

H2 sð Þ ¼ 1:15 
 31422
s2 þ 5806:4s þ 31422

The product of the gains of the filter stages is

H1 sð Þ 
 H2 sð Þ ¼ 2:576 
 H sð Þ
so H sð Þ ¼ 0:388 
 H1 sð Þ 
 H2 sð Þ
The third stage of the anti-aliasing filter is an inverting amplifier having gain equal to 0.388. The anti-aliasing filter
is shown in Figure 16.8-1.

Verify the Proposed Solution
Section 16.14 describes a procedure for verifying that a circuit has a specified transfer function. This procedure
consists of using PSpice to plot the frequency response of both the circuit and the transfer function. These two
frequency responses are compared. If they are the same, the transfer function of the circuit is indeed the specified
transfer function.
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FIGURE 16.8-2 The PSpice input file used to verify that the circuit shown in Figure 16.8-1 has the specified
transfer function.
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μ
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FIGURE 16.8-1 The anti-aliasing filter.
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FIGURE 16.8-3 The frequency response of the circuit shown in Figure 16.8-1 and frequency response corresponding to the transfer
function given in Eq. 16.8-2 are identical.

Figure 16.8-2 shows the PSpice input file used to plot the frequency responses of both the circuit shown in
Figure 16.8-1 and the transfer function given in Eq. 16.8-2. These frequency responses are shown in Figure 16.8-3.
These frequency responses overlap exactly so that the two plots appear to be a single plot. Therefore, the filter does
indeed have the required transfer function.

16.9 SUMMARY

An ideal filter separates its input into two parts. One part is
passed, unchanged, to the output; the other part is eliminated.
In other words, the output of an ideal filter is an exact copy of
part of the filter input.
There are several ways of separating the filter input into two
parts and, correspondingly, several types of ideal filter.
Table16.3-1 illustrates the common filter types.
Unfortunately, ideal filter circuits don’t exist. Filters are
circuits that approximate ideal filters.
Butterworth transfer functions have magnitude frequency
responses that approximate the frequency response of an
ideal filter.
The frequency response of second-order filters is character-
ized by three filter parameters: a gain k, the corner frequency

o0, and the quality factor Q. Filter circuits are designed by
choosing the values of the circuit elements in such a way as
to obtain the required values of k, o0, and Q.
1. Table 16.4-1 provides the information required to design

second-order RLC filters.
2. Table 16.4-2 provides the information required to design

Sallen-Key filters.
High-order filters are filters that have an order greater than 2.
A popular strategy for designing high-order filters uses a
cascade connection of second-order filters.
PSpice provides a convenient way to verify that a filter
circuit does indeed have the correct transfer function.
PSpice subcircuits reduce the complexity of simulations of
high-order filters. Table 16.6-1 provides PSpice subcircuits
for the four Sallen-Key filter stages.

PROBLEMS

Section 16.3 Filters

P 16.3-1 Obtain the transfer function of a third-order
Butterworth low-pass filter having a cutoff frequency equal to
100 hertz.

Answer: HL sð Þ ¼ 6283

s þ 628ð Þ s2 þ 628s þ 6282
� �

P 16.3-2 A dc gain can be incorporated into Butterworth low-
pass filters by defining the transfer function to be

HL sð Þ ¼ �k

D sð Þ
where D(s) denotes the polynomials tabulated in Table 16.3-2
and k is the dc gain. The dc gain k is also called the pass-band

Problem available in WileyPLUS at instructor’s discretion.
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gain. Obtain the transfer function of a third-order Butterworth
low-pass filter having a cutoff frequency equal to 100 rad/s and
a pass-band gain equal to 5.

P 16.3-3 High-pass Butterworth filters have transfer
functions of the form

HH sð Þ ¼ �ksn

Dn sð Þ
where n is the order of the filter, Dn(s) denotes the nth order
polynomial in Table 16.3-2, and k is the pass-band gain. Obtain
the transfer function of a third-order Butterworth high-pass
filter having a cutoff frequency equal to 100 rad/s and a pass-
band gain equal to 5.

Answer: HH sð Þ ¼ 5 
 s3

s þ 100ð Þ s2 þ 100s þ 10000ð Þ
P 16.3-4 High-pass Butterworth filters have transfer functions
of the form

HH sð Þ ¼ �ksn

Dn sð Þ
where n is the order of the filter, Dn(s) denotes the nth order
polynomial in Table 16.3-2, and k is the pass-band gain. Obtain
the transfer function of a fourth-order Butterworth high-pass
filter having a cutoff frequency equal to 500 hertz and a pass-
band gain equal to 5.

P 16.3-5 A band-pass filter has two cutoff frequencies, oa

and ob. Suppose that oa is quite a bit smaller than ob, say
oa < ob=10. Let HL(s) be a low-pass transfer function having a
cutoff frequency equal to ob and HH(s) be a high-pass transfer
function having a cutoff frequency equal to oa. A band-pass
transfer function can be obtained as a product of low-pass and
high-pass transfer functions, HB(s) ¼ HL(s) 
 HH(s). The order
of the band-pass filter is equal to the sum of the orders of the
low-pass and high-pass filters. We usually make the orders
of the low-pass and high-pass filter equal, in which case the
order of the band-pass is even. The pass-band gain of the band-
pass filter is the product of pass-band gains of the low-pass and
high-pass transfer functions. Obtain the transfer function of a
fourth-order band-pass filter having cutoff frequencies equal to
100 rad/s and 2000 rad/s and a pass-band gain equal to 4.

Answer:
HB sð Þ ¼ 16,000,000 
 s2

s2 þ 141:4s þ 10,000ð Þ s2 þ 2828s þ 4,000,000ð Þ
P 16.3-6 In some applications, band-pass filters are used to
pass only those signals having a specified frequency o0. The
cutoff frequencies of the band-pass filter are specified to satisfyffiffiffiffiffiffiffiffiffiffiffi
oaob

p ¼ o0. The transfer function of the band-pass filter is
given by

HB sð Þ ¼ k

o0

Q
s

s2 þ o0

Q
s þ o0

2

0
B@

1
CA

m

The order of this band-pass transfer function is n ¼ 2m. The
pass-band gain is k. Transfer functions of the type are readily

implemented as the cascade connection of identical second-
order filter stages. Q is the quality factor of the second-order
filter stage. The frequency o0 is called the center frequency of
the band-pass filter. Obtain the transfer function of a fourth-
order band-pass filter having a center frequency equal to 250
rad/s and a pass-band gain equal to 4. Use Q ¼ 1.

Answer: HB sð Þ ¼ 250,000s2

s2 þ 250s þ 62,500ð Þ2

P 16.3-7 A band-stop filter has two cutoff frequencies, oa and
ob. Suppose thatoa is quite a bit smaller thanob, sayoa <ob/10.
Let HL(s) be a low-pass transfer function having a cutoff
frequency equal tooa and HH(s) be a high-pass transfer function
having a cutoff frequency equal to ob. A band-stop transfer
function can be obtained as a sum of low-pass and high-pass
transfer functions, HN(s) ¼ HL(s) þ HH(s). The order of the
band-pass filter is equal to the sum of the orders of the low-pass
and high-pass filters. We usually make the orders of the low-
pass and high-pass filter equal, in which case, the order of the
band-stop is even. The pass-band gains of both the low-pass and
high-pass transfer functions are set equal to the pass-band gain
of the band-stop filter. Obtain the transfer function of a fourth-
order band-stop filter having cutoff frequencies equal to 100
rad/s and 2000 rad/s and a pass-band gain equal to 2.

Answer:

HN sð Þ ¼ 2s4 þ 282:8s3 þ 40,000s2 þ 56; 560,000s þ 8 
 1010
s2 þ 141:4s þ 10,000ð Þ s2 þ 2828s þ 4,000,000ð Þ

P 16.3-8 In some applications, band-stop filters are used to
reject only those signals having a specified frequency o0. The
cutoff frequencies of the band-stop filter are specified to satisfyffiffiffiffiffiffiffiffiffiffiffi
oaob

p ¼ o0. The transfer function of the band-pass filter is
given by

HN sð Þ ¼ k � HB sð Þ ¼ k � k

o0

Q
s

s2 þ o0

Q
s þ o0

2

0
B@

1
CA

m

The order of this band-stop transfer function is n ¼ 2m. The
pass-band gain is k. Transfer functions of the type are readily
implemented using a cascade connection of identical second-
order filter stages. Q is the quality factor of the second-order
filter stage. The frequency o0 is called the center frequency of
the band-stop filter. Obtain the transfer function of a fourth-
order band-stop filter having a center frequency equal to 250
rad/s and a pass-band gain equal to 4. Use Q ¼ 1.

Answer: HN sð Þ ¼ 4 s2 þ 62,500ð Þ2

s2 þ 250s þ 62,500ð Þ2

P 16.3-9 Transfer functions of the form

HL sð Þ ¼ k
o0

2

s2 þ o0

Q
s þ o0

2

0
B@

1
CA

m

are low-pass transfer functions. (This is not a Butterworth transfer
function.) The order of this low-pass transfer function is n ¼ 2m.
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The pass-band gain is k. Transfer functions of this type are readily
implemented using a cascade connection of identical second-
order filter stages. Q is the quality factor of the second-order filter
stage. The frequency o0 is the cutoff frequency oc of the low-
pass filter. Obtain the transfer function of a fourth-order low-pass
filter having a cutoff frequency equal to 250 rad/s and a pass-
band gain equal to 4. Use Q ¼ 1.

P 16.3-10 Transfer functions of the form

HH sð Þ ¼ k
s2

s2 þ o0

Q
s þ o0

2

0
B@

1
CA

m

are high-pass transfer functions. (This is not a Butterworth
transfer function.) The order of this high-pass transfer function
is n ¼ 2m. The pass-band gain is k. Transfer functions of the type
are readily implemented using a cascade connection of identical
second-order filter stages. Q is the quality factor of the second-
order filter stage. The frequency o0 is the cutoff frequency oc of
the high-pass filter. Obtain the transfer function of a fourth-order
high-pass filter having a cutoff frequency equal to 250 rad/s and a
pass-band gain equal to 4. Use Q ¼ 1.

Section 16.4 Second-Order Filters

P 16.4-1 The circuit shown in Figure P 16.4-1 is a
second-order band-pass filter. Design this filter to have k ¼ 1,
o0 ¼ 1000 rad/s, and Q ¼ 1.

+
– vo(t)vs(t)

R

LC

+

 –

Figure P 16.4-1

P 16.4-2 The circuit shown in Figure P 16.4-2 is a second-
order low-pass filter. Design this filter to have k ¼ 1,
o0 ¼ 200 rad/s, and Q ¼ 0:707.

io(t)is(t) R LC

Figure P 16.4-2

P 16.4-3 The circuit shown in Figure P 16.4-3 is a second-
order low-pass filter. This filter circuit is called a multiple-loop
feedback filter (MFF). The output impedance of this filter is zero,
so the MFF low-pass filter is suitable for use as a filter stage in a
cascade filter. The transfer function of the low-pass MFF filter is

HL sð Þ ¼
� 1

R1R3C1C2

s2 þ 1

R1C1
þ 1

R2C1
þ 1

R3C1

� �
s þ 1

R2R3C1C2

Design this filter to have o0 ¼ 2000 rad/s and Q ¼ 8. What is
the value of the dc gain?

Hint: Let R2 ¼ R3 ¼ R and C1 ¼ C2 ¼ C. Pick a convenient
value of C and calculate R to obtaino0 ¼ 2000 rad/s. Calculate
R1 to obtain Q ¼ 8.

–

+

R3

R2

R1

C2

C1vi(t)
+

 –
vo(t)

+

 –

Figure P 16.4-3

P 16.4-4 The circuit shown in Figure P 16.4-4 is a second-
order band-pass filter. This filter circuit is called a multiple-
loop feedback filter (MFF). The output impedance of this filter
is zero, so the MFF band-pass filter is suitable for use as a filter
stage in a cascade filter. The transfer function of the band-pass
MFF filter is

HB sð Þ ¼
� s

R1C2

s2 þ 1

R2C1
þ 1

R2C2

� �
s þ R1 þ R3

R1R2R3C1C2

To design this filter, pick a convenient value of C and then use

R1 ¼ Q

ko0C
; R2 ¼ 2Q

o0C
; and R3 ¼ 2Q

o0C 2Q 2 � kð Þ
Design this filter to have k ¼ 5, o0 ¼ 2000 rad/s, and Q ¼ 8.

–

+

C1

C2

R1

R2

R3vi(t)

+

 –

vo(t)

+

 –

Figure P 16.4-4

P 16.4-5 The circuit shown in Figure P 16.4-5 is a low-
pass filter. The transfer function of this filter is

HL sð Þ ¼
1

R1R2C1C2

s2 þ 1

R1C1
s þ 1

R1R2C1C2

Design this filter to have k ¼ 1, o0 ¼ 1000 rad/s, and Q ¼ 1.
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vo(t)C2

C1

R2

R1 +

 –
vi(t)

+

 –

–

+

–

+

Figure P 16.4-5

P 16.4-6 The CR:RC transformation is used to transform low-
pass filter circuits into high-pass filter circuits and vice versa.
This transformation is applied to RC op amp filter circuits.
Each capacitor is replaced by a resistor, when each resistor is
replaced by a capacitor. Apply the CR:RC transformation to the
low-pass filter circuit in Figure P 16.4-5 to obtain the high-pass
filter circuit shown in Figure P 16.4-6. Design a high-pass filter
to have k ¼ 1, o0 ¼ 1000 rad/s, and Q ¼ 1.

vo(t)R2

R1

C2

C1

+

 –

vi(t)

+

 –

–

+
–

+

Figure P 16.4-6

P 16.4-7 We have seen that transfer functions can be
frequency scaled by replacing s by s=kf each time that it occurs.
Alternately, circuits can also be frequency scaled by dividing
each capacitance and each inductance by the frequency scaling
factor kf. Either way, the effect is the same. The frequency
response is shifted to the right by kf. In particular, all cutoff,
corner, and resonant frequencies are multiplied by kf. Suppose
that we want to change the cutoff frequency of a filter circuit
from oold to onew. We set the frequency scale factor to

kf ¼ onew

oold

and then divide each capacitance and each inductance by kf.
Use frequency scaling to change the cutoff frequency of the
circuit in Figure P 16.4-7 to 250 rad/s.

Answer: kf ¼ 0.05.

vo(t)vi(t)

+

 –

+
–

25 Ω 10mH

μ4   F

Figure P 16.4-7

P 16.4-8 Impedance scaling is used to adjust the imped-
ances of a circuit. Let km denote the impedance scaling factor.
Impedance scaling is accomplished by multiplying each im-
pedance by km. That means that each resistance and each
inductance is multiplied by km, but each capacitance is divided
by km. Transfer functions of the form H sð Þ ¼ Vo sð Þ

V i sð Þ or H sð Þ ¼
Io sð Þ
Ii sð Þ are not changed at all by impedance scaling. Transfer
functions of the form H sð Þ ¼ Vo sð Þ

Ii sð Þ are multiplied by km,
whereas transfer functions of the form H sð Þ ¼ Io sð Þ

V i sð Þ are divided
by km. Use impedance scaling to change the values of the
capacitances in the filter shown in Figure P 16.4-8 so that
the capacitances are in the range of 0.01 mF to 1.0 mF. Calculate
the transfer function before and after impedance scaling.

–

+
vi(t)

+

 –

vo(t)

+

 –

100  Fμ

500  F

10 Ω

20 Ω μ

Figure P 16.4-8

P 16.4-9 A band-pass amplifier has the frequency response
shown in Figure P 16.4-9. Find the transfer function H(s).

Hint: o0 ¼ 2p(10 MHz), k ¼ 10 dB ¼ 3.16, BW ¼ 0.2 MHz,
Q ¼ 50

1

2

7

10

9.7 9.8 9.9 10 10.1 10.2 10.3

(MHz)
2

2
0

 lo
g 

H
 (

dB
)

ω
π

Figure P 16.4-9 A band-pass amplifier.

P 16.4-10 A band-pass filter can be achieved using the circuit
of Figure P 16.4-10. Find (a) the magnitude of H ¼ Vo/Vs,
(b) the low- and high-frequency cutoff frequencies o1 and o2,
and (c) the pass-band gain when o1 � o � o2.

Answers:
(b) o1 ¼ 1

R1C1
and o2 ¼ 1

R2C2

(c) pass-band gain ¼ R2
R1
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R2

R1 C1

C2

vs
vo

+

 –

+
–

+

–

Figure P 16.4-10 A band-pass filter.

P 16.4-11 A unity gain, low-pass filter is obtained from the
operational amplifier circuit shown in Figure P 16.4-11.
Determine the network function H(o) ¼ Vo=Vs.

+
– vovs

+

–

–

+

R
C 

nC 
mR 

Figure P 16.4-11

P 16.4-12 A particular acoustic sensor produces a sinusoidal
output having a frequency equal to 5 kHz. The signal from the
sensor has been corrupted with noise. Figure P 16.4-12 shows a
band-pass filter that was designed to recover the sensor signal
from the noise. The voltage vs represents the noisy signal from
the sensor. The filter output vo should be a less noisy signal.
Determine the center frequency and bandwidth of this band-
pass filter.

+

–

vs
+
–

200 kΩ

100 Ω

+
vo
–

μ0.2   F

50 pF

Figure P 16.4-12

Section 16.5 High-Order Filters

P 16.5-1 Design a low-pass filter circuit that has the transfer
function

HL sð Þ ¼ 6283

s þ 628ð Þ s2 þ 628s þ 6282
� �

Answer: See Figure SP 16-1.

P 16.5-2 Design a filter that has the transfer function

HH sð Þ ¼ 5 
 s3

s þ 100ð Þ s2 þ 100s þ 10,000ð Þ
Answer: See Figure SP 16-2.

P 16.5-3 Design a filter that has the transfer function

HB sð Þ ¼ 16,000,000 
 s2

s2 þ 141:4s þ 10,000ð Þ s2 þ 2828s þ 4,000,000ð Þ
Answer: See Figure SP 16-3.

P 16.5-4 Design a filter that has the transfer function

HB sð Þ ¼ 250,000s2

s2 þ 250s þ 62,500ð Þ2

Answer: See Figure SP 16-4.

P 16.5-5 Design a filter that has the transfer function

HN sð Þ ¼ 2s2

s2 þ 2828s þ 4,000,000ð Þ þ
20,000

s2 þ 141:4s þ 10,000ð Þ
Answer: See Figure SP 16-5.

P 16.5-6 Design a filter that has the transfer function

HN sð Þ ¼ 4 s2 þ 62,500ð Þ2
s2 þ 250s þ 62,500ð Þ2

Answer: See Figure SP 16-6.

P 16.5-7

(a) For the circuit of Figure P 16.5-7a, derive an expression for
the transfer function Ha(s) ¼ V1=Vs.

(b) For the circuit of Figure P 16.5-7b, derive an expression for
the transfer function Hb(s) ¼ V2=V1.

(c) Each of the above filters is a first-order filter. The circuit of
Figure P 16.5-7c is the cascade connection of the circuits of
Figure P 16.5-7a and Figure P 16.5-7b. Derive an expres-
sion for the transfer function Hc(s) ¼ V2=Vs of the second-
order circuit in Figure P 16.5-7c.

(d) Why doesn’t Hc(s) ¼ Ha(s)Hb(s)?
Hint: Consider loading.

R2

v1 v2L

+

–

+

–

R2

vs v2L

+

–

+

–

R1

R1

C

C

vs v1

+

–

+

–

(b)

(c)

(a)

Figure P 16.5-7 (a) Circuit for Ha. (b) Circuit for Hb. (c) Circuit
for Hc.
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P 16.5-8 Two amplifiers are connected in cascade as
shown in Figure P 16.5-8. The transfer function of each
amplifier is of the form

H sð Þ ¼ As

1þ s=oLð Þ 1þ s=oHð Þ
Determine the transfer function of the fourth-order filter.
(Assume that there is no loading.)

Amplifier 1

A = Gain = 100
–3 dB at

fL = 100 Hz
fh = 10 kHz

Amplifier 2

A = Gain = 20
–3 dB at

fL = 10 Hz
fh = 2 kHz

vs vo

+

–

+
–

Figure P 16.5-8 Two cascaded amplifiers.

P 16.5-9 A second-order filter uses two identical first-order
filter stages as shown in Figure P 16.5-9. Each filter stage is
specified to have a cutoff frequency at oc ¼ 1000 rad/s and a
pass-band gain of 0 dB. (a) Find the required R1, R2, and C.
(b) Find the gain of the second-order filter at o ¼ 10,000 rad/s
in decibels.

–

+

R1
R1

R2

C

–

+

R2

C

+

–

+
– vo

vs

Figure P 16.5-9

Section 16.7 How CanWe Check . . . ?

P 16.7-1 The specifications for a band-pass filter require
that o0 ¼ 100 rad/s, Q ¼ 5, and k ¼ 3. The transfer function
of a filter designed to satisfy these specifications is

H sð Þ ¼ 75s

s2 þ 25s þ 10,000

Does this filter satisfy the specifications?

P 16.7-2 The specifications for a band-pass filter require that
o0 ¼ 100 rad/s, Q ¼ 4, and k ¼ 3. The transfer function of a
filter designed to satisfy these specifications is

H sð Þ ¼ 75s

s2 þ 25s þ 10,000

Does this filter satisfy the specifications?

P 16.7-3 The specifications for a low-pass filter require
that o0 ¼ 20 rad/s, Q ¼ 0:8, and k ¼ 1:5. The transfer function
of a filter designed to satisfy these specifications is

H sð Þ ¼ 600

s2 þ 25s þ 400

Does this filter satisfy the specifications?

P 16.7-4 The specifications for a low-pass filter require that
o0 ¼ 25 rad/s, Q ¼ 0:4, and k ¼ 1:2. The transfer function of a
filter designed to satisfy these specifications is

H sð Þ ¼ 750

s2 þ 62:5s þ 625

Does this filter satisfy the specifications?

P 16.7-5 The specifications for a high-pass filter require
that o0 ¼ 12 rad/s, Q ¼ 4, and k ¼ 5. The transfer function of
a filter designed to satisfy these specifications is

H sð Þ ¼ 5s2

s2 þ 30s þ 144

Does this filter satisfy the specifications?

PSpice Problems

SP 16-1 The filter circuit shown in Figure SP 16-1 was
designed to have the transfer function

HL sð Þ ¼ 6283

s þ 628ð Þ s2 þ 628s þ 6282
� �

+

–

vo(t)

+

–

vi(t)
–

+

–

+

15,920 Ω

15,920 Ω15,920 Ω
31,840 Ω 15,920 Ω

0.1   F0.1   Fμ

μ

μ

0.1   F

15,920 Ω

Figure SP 16-1

Use PSpice to verify that the filter circuit does indeed
implement this transfer function.

SP 16-2 The filter circuit shown in Figure SP 16-2
was designed to have the transfer function

HH sð Þ ¼ 5 
 s3

s þ 100ð Þ s2 þ 100s þ 10,000ð Þ
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Use PSpice to verify that the filter circuit does indeed implement
this transfer function.

+

–

vo(t)

+

–

v1(t) –

+

–

+

0.1   Fμ μ
μ

0.1   F
0.1   F

100 kΩ

100 kΩ
100 kΩ

100 kΩ 250 kΩ

100 kΩ

Figure SP 16-2

SP 16-3 The filter circuit shown in Figure SP 16-3 was
designed to have the transfer function

HB sð Þ ¼ 16,000,000 
 s2

s2 þ 141:4s þ 10,000ð Þ s2 þ 2828s þ 4,000,000ð Þ
Use PSpice to verify that the filter circuit does indeed implement
this transfer function.

+

–

vi(t)

–

+

0.1   F

μ

μ

0.1   F

0.1   F

0.1   F

100 kΩ

100 kΩ
58.6 kΩ

5 kΩ 5 kΩ

100 kΩ

–

+

5 kΩ

2.93 kΩ

+

–

vo(t)
–

+

15.9 kΩ10 kΩ
μ

μ

Figure SP 16-3

SP 16-4 The filter circuit shown in Figure SP 16-4 was
designed to have the transfer function

HB sð Þ ¼ 250,000s2

s2 þ 250s þ 62,500ð Þ2
Use PSpice to verify that the filter circuit does indeed implement
this transfer function.

+

–

vi(t)

–

+

0.1   F

0.1   F

0.1   F

80 kΩ

40 kΩ

40 kΩ
40 kΩ

40 kΩ –

+

80 kΩ 40 kΩ

40 kΩ

40 kΩ

40 kΩ

+

–

vo(t)0.1   F

μ

μ
μ

μ

Figure SP 16-4
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SP 16-5 The filter circuit shown in Figure SP 16-5 was
designed to have the transfer function

HN sð Þ ¼ 2s2

s2 þ 2828s þ 4,000,000ð Þ þ
20,000

s2 þ 141:4s þ 10,000ð Þ
Use PSpice to verify that the filter circuit does indeed implement
this transfer function.

+

–

vi(t)

–

+

0.1   F

0.1   F

0.1   F0.1   F

5 kΩ

5 kΩ

5 kΩ
2.93 kΩ

–

+

–

+
58.6 kΩ

10 kΩ

100 kΩ

100 kΩ

+

–

vo(t)

100 kΩ
10 kΩ 12.6 kΩ

μ μ

μ

μ

Figure SP 16-5

SP 16-6 The filter circuit shown in Figure SP 16-6 was
designed to have the transfer function

HN sð Þ ¼ 4 s2 þ 62,500ð Þ2
s2 þ 250s þ 62,500ð Þ2

Use PSpice to verify that the filter circuit does indeed implement
this transfer function.

+

–

vi(t)

0.2   F

0.1   F0.1   F

–

+

–

+
20 kΩ

40 kΩ
10 kΩ

20 kΩ

+

–

vo(t)
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0.2   F

0.1   F0.1   F

–
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Figure SP 16-6
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SP 16-7 A notch filter is shown in Figure SP 16-7. The output
of a two-stage filter is v1, and the output of a three-stage filter is
v2. Plot the Bode diagram of V1=Vs and V2=Vs and compare the
results when L ¼ 10 mH and C ¼ 1mF.

200 Ω

+
– L

C

100 Ω

L

C

50 Ω

L

C

+

v1

+

– –

v2

vs

Figure SP 16-7

SP 16-8 An acoustic sensor operates in the range of 5 kHz to
25 kHz and is represented in Figure SP 16-8 by vs. It is specified that
the band-pass filter shown in the figure passes the signal in the
frequency range within 3 dB of the center frequency gain. Determine
the bandwidth and center frequency of the circuit when the op amp
has Ri ¼ 500 kV, Ro ¼ 1 kV, and A ¼ 106.

+

–

vs
+
–

200 kΩ

100 Ω

+
vo
–

μ0.2   F

50 pF

Figure SP 16-8

SP 16-9 Frequently, audio systems contain two or more loud-
speakers that are intended to handle different parts of the audio-
frequency spectrum. In a three-way setup, one speaker, called a
woofer, handles low frequencies. A second, the tweeter, handles
high frequencies, and a third, the midrange, handles the middle
range of the audio spectrum.

A three-way filter, called a crossover network, splits the
audio signal into the three bands of frequencies suitable for each
speaker. There are many and varied designs. A simple one is based
on series LR, CR, and resonant RLC circuits as shown in Figure
SP 16-9. All speaker impedances are assumed resistive. The
conditions are (1) woofer, at the crossover frequency: XL1 ¼ RW;

(2) tweeter, at the crossover frequency: XC3 ¼ RT; and (3) midrange,
with components C2, L2, and RMR forming a series resonant circuit
with upper and lower cutoff frequencies fu and fL, respectively.
The resonant frequency ¼ (fu fL)1/2.

When all the speaker resistances are 8 V, determine the
frequency response and the cutoff frequencies. Plot the Bode
diagram for the three speakers. Determine the bandwidth of
the midrange speaker section.

μ34.82 C2

C3
L2
0.364 mH

RT
tweeter
8 Ω

RMR
mid-range
8 Ω

RW
woofer
8 Ω

L1
2.5 mH

F

μ5 F

Amplifier

Figure SP 16-9 Three-way filter for a speaker system.

Design Problems

DP 16-1 Design a band-pass filter with a center frequency of
100 kHz and a bandwidth of 10 kHz, using the circuit shown in
Figure DP 16-1. Assume that C ¼ 100 pF and find R and R3. Use
PSpice to verify the design.

+

–

vi
+
–

R3C
R

R

C

+

–

vo

Figure DP 16-1

DP 16-2 A communication transmitter requires a band-pass
filter to eliminate low-frequency noise from nearby traffic.
Measurements indicate that the range of traffic rumble is

2 < o < 12 rad/s. A designer proposes a filter as

H sð Þ ¼ 1þ s=o1ð Þ2 1þ s=o3ð Þ
1þ s=o2ð Þ3

where s ¼ jo.
It is desired that signals with o > 100 rad/s pass with less

than 3-dB loss, whereas the traffic rumble be reduced by 46 dB
or more. Select o1, o2, and o3 and plot the Bode diagram.

DP 16-3 A communication transmitter requires a band-stop
filter to eliminate low-frequency noise from nearby auto traffic.
Measurements indicate that the range of traffic rumble is
2 rad/s < o < 12 rad/s. A designer proposes a filter as

H sð Þ ¼ 1þ s=o1ð Þ2 1þ s=o3ð Þ2
1þ s=o2ð Þ2 1þ s=o4ð Þ2

where s ¼ jo. It is desired that signals above 130 rad/s pass with
less than 4-dB loss, whereas the traffic rumble be reduced by 35 dB
or more. Select o1, o2, o3, and o4 and plot the Bode diagram.
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CHAPTER 17 Two-Port and
Three-Port
Networks

I N T H I S C H A P T E R
17.1 Introduction
17.2 T-to-P

Transformation and
Two-Port Three-
Terminal Networks

17.3 Equations of Two-
Port Networks

17.4 Z and Y Parameters
for a Circuit with
Dependent Sources

17.5 Hybrid and
Transmission
Parameters

17.6 Relationships
Between Two-Port
Parameters

17.7 Interconnection of
Two-Port Networks

17.8 How Can We
Check . . . ?

17.9 DESIGN
EXAMPLE—
Transistor
Amplifier

17.10 Summary
Problems
Design Problems

17.1 I n t r o d u c t i o n

Many practical circuits have just two ports of access, that is, two places where signals may be input or
output. For example, a coaxial cable between Boston and San Francisco has two ports, one at each of
those cities. The object here is to analyze such networks in terms of their terminal characteristics
without particular regard to the internal composition of the network. To this end, the network will be
described by relationships between the port voltages and currents.

We study two-port networks and the parameters that describe them for a number of reasons.
Most circuits or systems have at least two ports. We may put an input signal into one port and obtain
an output signal from the other. The parameters of the two-port network completely describe its
behavior in terms of the voltage and current at each port. Thus, knowing the parameters of a two-port
network permits us to describe its operation when it is connected into a larger network. Two-port
networks are also important in modeling electronic devices and system components. For example, in
electronics, two-port networks are employed to model transistors, op amps, transformers, and
transmission lines.

A two-port network is represented by the network shown in Figure 17.1-1. A four-terminal
network is called a two-port network when the current entering one terminal of a pair exits the other
terminal in the pair. For example, I1 enters terminal a and exits terminal b of the input terminal pair
a�b. It will be assumed in our discussion that there are no independent sources or nonzero initial
conditions within the linear two-port network. Two-port networks may or may not be purely resistive
and can in general be formulated in terms of the s-variable or the jo-variable.

A two-port network has two access points appearing as terminal pairs. The current entering
one terminal of a pair exits the other terminal in the pair.
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17.2 T - t o -Π T r a n s f o rm a t i o n a n d Two - P o r t
T h r e e - T e rm i n a l N e tw o r k s

Two networks that occur frequently in circuit analysis are the T and P networks, as shown in Figure
17.2-1. When redrawn, they can appear as the Y or delta (D) networks of Figure 17.2-2.

If a network has mirror-image symmetry with respect to some centerline, that is, if a line can be
found to divide the network into two symmetrical halves, the network is a symmetrical network. The T
network is symmetrical when Z1 ¼ Z2, and the P network is symmetrical when ZA ¼ ZB. Furthermore,
if all the impedances in either the T or P network are equal, then the T or P network is completely
symmetrical.

Note that the networks shown in Figure 17.2-1 and Figure 17.2-2 have two access ports and three
terminals. For example, one port is obtained for the terminal pair a–c and the other port is b–c.

We can obtain equations for direct transformation or conversion from a T network to a P
network, or from a P network to a T network, by considering that, for equivalence, the two networks
must have the same impedance when measured between the same pair of terminals. For example, at port
1 (at a–c) for the two networks of Figure 17.2-2, we require

Z1 þ Z3 ¼ ZA ZB þ ZCð Þ
ZA þ ZB þ ZC

To convert a P network to a T network, relationships for Z1, Z2, and Z3 must be obtained in terms of the
impedances ZA, ZB, and ZC. With some algebraic effort, we can show that

Z1 ¼ ZAZC

ZA þ ZB þ ZC
ð17:2-1Þ

Z2 ¼ ZBZC

ZA þ ZB þ ZC
ð17:2-2Þ

Z3 ¼ ZAZB

ZA þ ZB þ ZC
ð17:2-3Þ

+

V2Circuit
+

V1
Output

port
Input
port

I1

I1

I2

I2

a

b

––
FIGURE 17.1-1 A
two-port network.

+

V2

+

V1

Z1 Z2

Z3

(a)

+

V2

+

V1

ZC

ZA

(b)

ZB

– –

– –

FIGURE 17.2-1 (a) T network and (b) P network.

Z3

c

(a)

ZC

ZA ZB

a b

c

(b)

Z1 Z2

a b

FIGURE 17.2-2 (a) Y network and (b) D network.
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Similarly, we can obtain the relationships for ZA, ZB, and ZC as

ZA ¼ Z1Z2 þ Z2Z3 þ Z3Z1

Z2
ð17:2-4Þ

ZB ¼ Z1Z2 þ Z2Z3 þ Z3Z1

Z1
ð17:2-5Þ

ZC ¼ Z1Z2 þ Z2Z3 þ Z3Z1

Z3
ð17:2-6Þ

Each T impedance equals the product of the two adjacent legs of the P network divided by the
sum of the three legs of the P network. On the other hand, each leg of the P network equals the sum of
the possible products of the T impedances divided by the opposite T impedance.

When a T or a P network is completely symmetrical, the conversion equations reduce to

ZT ¼ ZP

3
ð17:2-7Þ

and

ZP ¼ 3ZT ð17:2-8Þ
where ZT is the impedance in each leg of the T network and ZP is the impedance in each leg of the P
network.

E X A M P L E 1 7 . 2 - 2 P- to T-Transformation

Find the T network equivalent to the P network shown in Figure 17.2-4 in the s-domain
using the Laplace transform. Then, for s ¼ j1, find the elements of the T network.

Solution
First, using Eq. 17.2-1, we have

Z1 ¼ 1ð Þ 1=sð Þ
s þ 1þ 1=s

¼ 1

s2 þ s þ 1

1 Ω
1

3

2

3

1 F 1 H

FIGURE 17.2-4 P circuit of
Example 17.2-2.

E X A M P L E 1 7 . 2 - 1 T- to P-Transformation

Find the P form of the T circuit given in Figure 17.2-3a.

Solution
The first impedance of the P network, using Eq. 17.2-4, is

ZA ¼ Z1Z2 þ Z2Z3 þ Z3Z1

Z2
¼ j5 �j5ð Þ þ �j5ð Þ1þ 1 j5ð Þ

�j5
¼ j5 V

Similarly, the second impedance, using Eq. 17.2-5, is

ZB ¼ �j5 V

and the third impedance, using Eq. 17.2-6, is

ZC ¼ 25 V

The P equivalent circuit is shown in Figure 17.2-3b.

j5 Ω

1 Ω

–j5 Ω
1

3

2

3

j5 Ω

25 Ω

–j5 Ω

1

3

2

3

(a)

(b)

FIGURE 17.2-3 (a) T circuit of Example
17.2-1. (b) P equivalent of T circuit.

Try it 
yourself 

in WileyPLUS

842 17. Two-Port and Three-Port Networks



EXERCISE 17.2-1 Find the T circuit equivalent to the P circuit shown in Figure E 17.2-1.

25 Ω

100 Ω 125 Ω

FIGURE E 17.2-1

Answer: R1 ¼ 10V, R2 ¼ 12:5V, and R3 ¼ 50V

17.3 E q u a t i o n s o f Tw o - P o r t N e tw o r k s

Let us consider the two-port network of Figure 17.1-1. By convention, I1 and I2 are assumed to be
flowing into the network as shown. The variables are V1, V2, I1, and I2. Within the two-port network,
two variables are independent and two are dependent, and we may select a set of two independent
variables from the six possible sets: (V1, V2), (I1, I2), (V1, I2), (I1, V2), (V1, I1), and (V2, I2). We will also
assume linear elements.

The possibilities for independent (input) variables and the associated dependent variables are
summarized in Table 17.3-1. The names of the associated six sets of circuit parameters are also identified
in Table 17.3-1. For the case of phasor transforms or Laplace transforms with the circuit of Figure 17.1-1, we

Then, using Eq. 17.2-2, we have

Z2 ¼ 1 sð Þ
s þ 1þ 1=s

¼ s2

s2 þ s þ 1

Finally, the third impedance is (Eq. 17.2-3)

Z3 ¼ s 1=sð Þ
s þ 1þ 1=s

¼ s

s2 þ s þ 1

To find the elements of the T network at s ¼ j1, we substitute s ¼ j1 and
determine each impedance. Then, we have

Z1 ¼ �j; Z2 ¼ j; Z3 ¼ 1

Therefore, the equivalent T network is as shown in Figure 17.2-5 for the value
s ¼ j1.

1 Ω

1

3

2

3

1 F 1 H

FIGURE 17.2-5 T circuit
equivalent of the original P
circuit of Example 17.2-2
for s ¼ j1.

Table 17.3-1 Six Circuit-Parameter Models

INDEPENDENT DEPENDENT
VARIABLES (INPUTS) VARIABLES (OUTPUTS) CIRCUIT PARAMETERS

I1, I2 V1, V2 Impedance Z

V1, V2 I1, I2 Admittance Y

V1, I2 I1, V2 Inverse hybrid g

I1, V2 V1, I2 Hybrid h

V2, I2 V1, I1 Transmission T

V1, I1 V2, I2 Inverse transmission T 0

Try it 
yourself 

in WileyPLUS
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have the familiar impedance equations in which the output variables are V1 and V2, as follows:

V1 ¼ Z11I1 þ Z12I2 ð17:3-1Þ
V2 ¼ Z21I1 þ Z22I2 ð17:3-2Þ

The equations for the admittances are

I1 ¼ Y11V1 þ Y12V2 ð17:3-3Þ
I2 ¼ Y21V1 þ Y22V2 ð17:3-4Þ

It is appropriate, if preferred, to use lowercase letters z and y for the coefficients of Eqs. 17.3-1 through
17.3-4. The equations for the six sets of two-port parameters are summarized in Table 17.3-2.

For linear elements and no dependent sources or op amps within the two-port network, we can
show by the theorem of reciprocity that Z12 ¼ Z21 and Y21 ¼ Y12. One possible arrangement of a
passive circuit as a T circuit is shown in Figure 17.3-1. Writing the two mesh equations for Figure
17.3-1, we can readily obtain Eqs. 17.3-1 and 17.3-2. Therefore, the circuit of Figure 17.3-1 can
represent the impedance parameters. A possible arrangement of the admittance parameters as a P circuit
is shown in Figure 17.3-2.

Examining Eq. 17.3-1, we see that we can measure Z11 by obtaining

Z11 ¼ V1

I1

����
I2¼0

Of course, I2 ¼ 0 implies that the output terminals are open-circuited. Thus, the Z parameters are often
called open-circuit impedances.

The Y parameters can be measured by determining

Y12 ¼ I1
V2

����
V1¼0

In general, the admittance parameters are called short-circuit admittance parameters.

Table 17.3-2 Equations for the Six Sets of Two-Port Parameters

Impedance Z
V1 ¼ Z11I1 þ Z12I2

V2 ¼ Z21I1 þ Z22I2

�

Admittance Y
I1 ¼ Y11V1 þ Y12V2

I2 ¼ Y21V1 þ Y22V2

�

Hybrid h
V1 ¼ h11I1 þ h12V2

I2 ¼ h21I1 þ h22V2

�

Inverse hybrid g
I1 ¼ g11V1 þ g12I2

V2 ¼ g21V1 þ g22I2

�

Transmission T
V1 ¼ AV2 � BI2

I1 ¼ CV2 � DI2

�

Inverse transmission T 0
V2 ¼ A0V1 � B0I1

I2 ¼ C0V1 � D0I1

(

+

V2

+

V1 Z12 = Z21

Z11 – Z12 Z22 – Z21 I2I1

– –

FIGURE 17.3-1 A T circuit representing the impedance
parameters.

+

V2

+

V1

–Y12 = –Y21

Y11 + Y12 Y22 + Y21

I1 I2

– –

FIGURE 17.3-2 A P circuit representing the admittance
parameters.
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E X A M P L E 1 7 . 3 - 1 Admittance Parameters
and Impedance Parameters

Determine the admittance and the impedance parameters of the T
network shown in Figure 17.3-3.

Solution
The admittance parameters use the output terminals shorted and

Y11 ¼ I1
V1

����
V2¼0

Then, the two 8-V resistors are in parallel and V1 ¼ 28I1. Therefore, we have

Y11 ¼ 1

28
S

For Y12, we have

Y12 ¼ I1
V2

����
V1¼0

so we short-circuit the input terminals. Then we have the circuit as
shown in Figure 17.3-4.

Employing current division, we have

�I1 ¼ I2
8

8þ 24

� �

and I2 ¼ V2

8þ 8 24ð Þ= 8þ 24ð Þ½ � ¼
V2

14

Therefore, Y12 ¼ I1
V2

¼ � V2=14ð Þ 1=4ð Þ
V2

¼ � 1

56
S

Furthermore,

Y21 ¼ Y12 ¼ � 1

56
S

Finally, Y22 is obtained from Figure 17.3-4 as

Y22 ¼ I2
V2

����
V1¼0

where I2 ¼ V2

8þ 8 24ð Þ= 8þ 24ð Þ½ � ¼
V2

14

Therefore; Y22 ¼ 1

14
S

Thus, in matrix form, we have I ¼ YV or

I1

I2

� �
¼

1

28
� 1

56

� 1

56

1

14

2
64

3
75 V1

V2

� �

24 Ω
I1 I2

8 Ω

8 Ω

+

V2

+

V1

– –

FIGURE 17.3-3 Circuit for Example 17.3-1.

24 Ω
I1 I2

8 Ω

8 Ω

+

V2

–

FIGURE 17.3-4 Circuit of Example 17.3-1
with the input terminals shorted.

Try it 
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EXERCISE 17.3-1 Find the Z and Y parameters of the
circuit of E 17.3-1.

Answer: Z ¼ 18 6

6 9

� �
; Y ¼

1
14

� 1
21

� 1
21

1
7

2
64

3
75

17.4 Z a n d Y P a r am e t e r s f o r a C i r c u i t
w i t h D e p e n d e n t S o u r c e s

When a circuit incorporates a dependent source, it is easy to use the methods of Table 17.3-3 or Table
17.3-4 to determine the Z or Y parameters. When a dependent source is within the circuit, Z21 6¼ Z12 and
Y12 6¼ Y21.

Now, let us find the impedance parameters. We have

Z11 ¼ V1

I1

����
I2¼0

The output terminals are open-circuited, so we have the circuit of Figure 17.3-3. Then,

Z11 ¼ 24þ 8 ¼ 32 V

Similarly, Z22 ¼ 16 V and Z21 ¼ Z12 ¼ 8 V. Then, in matrix form, we have V ¼ ZI or

V1

V2

� �
¼ 32 8

8 16

� �
I1
I2

� �

The general methods for finding the Z parameters and the Y parameters are summarized in Tables 17.3-3 and
17.3-4, respectively.

Table 17.3-4 Method for Obtaining the Y Parameters of a Circuit

Step IA To determine Y11 and Y21, connect a current source I1 to the input terminals and short-circuit the output terminals (V2 ¼ 0).

Step IB Find V1 and I2 and then Y11 ¼ I1=V1 and Y21 ¼ I2=V1.

Step IIA To determine Y22 and Y12, connect a current source I2 to the output terminals and short-circuit the input terminals (V1 ¼ 0).

Step IIB Find I1 and V2 and then Y22 ¼ I2=V2 and Y12 ¼ I1=V2.

Note: Y12 ¼ Y21 only when there are no dependent sources or op amps within the two-port network.

Table 17.3-3 Method of Obtaining the Z Parameters of a Circuit

Step IA To determine Z11 and Z21, connect a voltage source V1 to the input terminals and open-circuit the output terminals.

Step IB Find I1 and V2 and then Z11 ¼ V1=I1 and Z21 ¼ V2=I1.

Step IIA To determine Z22 and Z12, connect a voltage source V2 to the output terminals and open-circuit the input terminals.

Step IIB Find I2 and V1 and then Z22 ¼ V2=I2 and Z12 ¼ V1=I2.

Note: Z12 ¼ Z21 only when there are no dependent sources or op amps within the two-port network.

21 Ω

42 Ω 10.5 Ω

+

V1

+

V2

– –

FIGURE E 17.3-1

Try it 
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E X A M P L E 1 7 . 4 - 1 Impedance Parameters

Determine the Z parameters of the circuit of Figure 17.4-1 when
m ¼ 2=3.

Solution
We determine the Z parameters using the method of Table 17.3-3.
Connect a voltage source V1 and open-circuit the output terminals as
shown in Figure 17.4-2a.

KCL at node a leads to

I1 � mV2 � I ¼ 0 ð17:4-1Þ
KVL around the outer loop is

V1 ¼ 4I1 þ 5I ð17:4-2Þ
Furthermore, V2 ¼ 3I, so I ¼ V2=3. Substituting I ¼ V2=3 into Eq. 17.4-1, we have

I1 ¼ mV2 þ V2

3
¼ m þ 1=3ð ÞV2 ð17:4-3Þ

Therefore; Z21 ¼ V2

I1
¼ 1 V

Substituting I ¼ V2=3 into Eq. 17.4-2, we obtain

V1 ¼ 4I1 þ 5V2

3
¼ 4I1 þ 5

3
I1 ð17:4-4Þ

Therefore; Z11 ¼ V1

I1
¼ 17

3
V

To obtain Z22 and Z12, we connect a voltage source V2 to the output terminals and open-circuit the input terminals,
as shown in Figure 17.4-2b. We can write two mesh equations for the assumed current directions, shown as

V1 þ 5I4 � 3I2 ¼ 0 ð17:4-5Þ
and V2 þ 3I4 � 3I2 ¼ 0 ð17:4-6Þ
Furthermore, I4 ¼ mV2, so substituting into Eq. 17.4-6, we have

V2 þ 3mV2 � 3I2 ¼ 0

or V2 ¼ 3

3
I2

Therefore; Z22 ¼ V2

I2
¼ 1 V

2 Ω

mV2

+

V1

+

V2

4 Ω

3 Ω

I1 I2

– –

FIGURE 17.4-1 Circuit of Example 17.4-1.

2 Ω

mV2V1

+

V2

4 Ω

3 Ω

I1 = 0 I2

+
–I4 I2

(b)

–

2 Ω

mV2V1

+

V2

4 Ω

3 Ω

I1 I2 = 0

+
– I

a

(a)

–

FIGURE 17.4-2 Circuit for determining (a) Z11 and Z21 and (b) Z22 and Z12.

Try it 
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EXERCISE 17.4-1 Determine the Y parameters of the circuit of Figure 17.4-1.

Answer: Y ¼
1
6

1
18

�1
6

17
18

2
664

3
775

17.5 H y b r i d a n d T r a n sm i s s i o n P a r am e t e r s

The two-port hybrid parameter equations are based on V1 and I2 as the output variables, so that

V1 ¼ h11I1 þ h12V2 ð17:5-1Þ
I2 ¼ h21I1 þ h22V2 ð17:5-2Þ

or, in matrix form,

V1

I2

� �
¼ h11 h12

h21 h22

� �
I1
V2

� �
¼ H

I1
V2

� �
ð17:5-3Þ

These parameters are used widely in transistor circuit models. The
hybrid circuit model is shown in Figure 17.5-1.

The inverse hybrid parameter equations are

I1 ¼ g11V1 þ g12I2 ð17:5-4Þ

V2 ¼ g21V1 þ g22I2 ð17:5-5Þ
or, in matrix form,

I1

V2

� �
¼ g11 g12

g21 g22

� �
V1

I2

� �
¼ G

V1

I2

� �
ð17:5-6Þ

The inverse hybrid circuit model is shown in Figure 17.5-2.
The hybrid and inverse hybrid parameters include both imped-

ance and admittance parameters and are thus called hybrid. The
parameters h11, h12, h21, and h22 represent the short-circuit input

Substituting I4 ¼ mV2 into Eq. 17.4-5, we have

V1 þ 5mV2 ¼ 3I2

or V1 þ 5mI2 ¼ 3I2

Therefore; Z12 ¼ V1

I2
¼ 3� 5mð Þ ¼ � 1

3
V

Then, in summary, we have

Z ¼
17

3
�1

3
1 1

2
4

3
5

Note that Z21 6¼ Z12, because a dependent source is present within the circuit.

V1

+

I1 h11

+

–
h12V2 V2

+

I2

h22h21I1

––

FIGURE 17.5-1 The h-parameter model of a
two-port circuit.

V2

+

I1 g22

+

–

g21V1
V1

+

I2

g12I2

g11

––

FIGURE 17.5-2 The inverse hybrid circuit
(g-parameter) model.
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impedance, the open-circuit reverse voltage gain, the short-circuit forward current gain, and the open-
circuit output admittance, respectively. The parameters g11, g12, g21, and g22 represent the open-circuit
input admittance, the short-circuit reverse current gain, the open-circuit forward voltage gain, and the
short-circuit output impedance, respectively.

The transmission parameters are written as

V1 ¼ AV2 � BI2 ð17:5-7Þ
I1 ¼ CV2 � DI2 ð17:5-8Þ

or, in matrix form, as

V1

I1

� �
¼ A B

C D

� �
V2

�I2

� �
¼ T

V2

�I2

� �
ð17:5-9Þ

Transmission parameters are used to describe cable, fiber, and line transmission. The transmission
parameters A, B, C, and D represent the open-circuit reverse voltage gain, the negative short-circuit
transfer impedance, the open-circuit transfer admittance, and the negative short-circuit reverse current
gain, respectively. The transmission parameters are often referred to as the ABCD parameters. We are
primarily interested in the hybrid and transmission parameters because they are widely used.

E X A M P L E 1 7 . 5 - 1 Hybrid Parameters and
Transmission Parameters

(a) Find the h parameters for the T circuit of Figure 17.5-3 in terms of R1, R2,
and R3.

(b) Evaluate the parameters when R1 ¼ 1 V;R2 ¼ 4 V, and R3 ¼ 6 V.

Solution
(a) First, we find h11 and h21 by short-circuiting the output terminals and

connecting an input current source I1, as shown in Figure 17.5-4a.
Therefore,

h11 ¼ V1

I1

����
V2¼0

¼ R1 þ R2R3

R2 þ R3

Then, using the current divider principle, we have

I2 ¼ �R2

R2 þ R3
I1

Therefore; h21 ¼ I2
I1

����
V2¼0

¼ �R2

R2 þ R3

R1
I1 I2

R2

+

V2

+

V1

R3

––

FIGURE 17.5-3 The T circuit of
Example 17.5-1.

(b)

I1 = 0

R2

R1 R3
I2

V2V1
+
–

+

–

I1 R2

R1 R3
I2

V2 = 0V1

(a)

+

–

FIGURE 17.5-4 The circuits for determining (a) h11 and h21 and (b) h22 and h12.

Try it 
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EXERCISE 17.5-1 Find the hybrid parameter model of the
circuit shown in Figure E 17.5-1.

Answers: h11 ¼ 0:9 V, h12 ¼ 0:1, h21 ¼ 4:4, and h22 ¼ 0:6 S

17.6 R e l a t i o n s h i p s B e tw e e n
Two - P o r t P a r am e t e r s

If all the two-port parameters for a circuit exist, it is possible to relate one set of parameters to another
because the variables V1, I1, V2, and I2 are interrelated by the parameters. First, let us consider the
relation between the Z parameters and the Y parameters. The matrix equation for the Z parameters is
V ¼ ZI or

V1

V2

� �
¼ Z

I1
I2

� �
ð17:6-1Þ

Similarly, the equation for the Y parameters is I ¼ YV or

I1
I2

� �
¼ Y

V1

V2

� �
ð17:6-2Þ

The next step is to redraw the circuit with I1 ¼ 0 and to connect the voltage source V2 as shown in
Figure 17.5-4b. Then we may determine h12 by using the voltage divider principle, as follows:

h12 ¼ V1

V2

����
I1¼0

¼ R2

R2 þ R3

Finally, we determine h22 from Figure 17.5-4b as

h22 ¼ I2
V2

����
I1¼0

¼ 1

R2 þ R3

It is a property of a passive circuit (no op amps or dependent sources within the two-port network) that
h12 ¼ �h21.

(b) When R1 ¼ 1 V;R2 ¼ 4 V; and R3 ¼ 6 V, we have

h11 ¼ R1 þ R2R3

R2 þ R3
¼ 3:4 V

h21 ¼ �R2

R2 þ R3
¼ �0:4

h12 ¼ R2

R2 þ R3
¼ 0:4

h22 ¼ 1

R2 þ R3
¼ 0:1 S

+

V1

+

V2

i

9 Ω

5i
1 Ω

– –

FIGURE E 17.5-1
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Substituting for I from Eq. 17.6-2 into Eq. 17.6-1, we obtain

V ¼ ZYV

or Z ¼ Y�1 ð17:6-3Þ

Thus, we can obtain the matrix Z by inverting the Y matrix. Of course, we can likewise obtain the Y
matrix if we invert a known Z matrix. It is possible that a two-port network has a Y matrix or a Z matrix
but not both. In other words, Z�1 or Y�1 may not exist for some networks.

If we have a known Y matrix, we obtain the Z matrix by finding the determinant of the Y matrix as
DY and the adjoint of the Y matrix as

adj Y ¼ Y22 �Y12

�Y21 Y11

� �

Then Z ¼ Y�1 ¼ adj Y
DY

ð17:6-4Þ

where DY ¼ Y11 Y22 � Y12 Y21.
The two-port parameter conversion relationships for the Z, Y, h, g, and T parameters are

provided in Table 17.6-1.

Table 17.6-1 Parameter Relationships

Z Y h g T

Z

Z11 Z12

Z21 Z22

Y22

DY

�Y12

DY
�Y21

DY

Y11

DY

Dh

h22

h12

h22

�h21

h22

1
h22

1
g11

�g12

g11

g21

g11

Dg

g11

A

C

DT

C
1
C

D

C

Y

Z22

DZ

�Z12

DZ
�Z21

DZ

Z11

DZ

Y11 Y12

Y21 Y22

1
h11

�h12

h11

h21

h11

Dh

h11

Dg

g22

g12

g22

�g21

g22

1
g22

D

B

�DT

B
�1
B

A

B

h

DZ

Z22

Z12

Z22

�Z21

Z22

1
Z22

1
Y11

�Y12

Y11

Y21

Y11

DY

Y11

h11 h12

h21 h22

g22

Dg

g12

Dg
�g21

Dg

g11

Dg

B

D

DT

D
�1
D

C

D

g

1
Z11

�Z12

Z11

Z21

Z11

DZ

Z11

DY

Y22

Y12

Y22

�Y21

Y22

1
Y22

h22

Dh

�h12

Dh
�h21

Dh

h11

Dh

g11 g12

g21 g22

C

A

�DT

A
1
A

B

A

T

Z11

Z21

DZ

Z21

1
Z21

Z22

Z21

�Y22

Y21

�1
Y21

�DY

Y21

�Y11

Y21

�Dh

h21

�h11

h21

�h22

h21

�1
h21

1
g21

g22

g21

g11

g21

Dg

g21

A B

C D

DZ ¼ Z11Z22 � Z12Z21; DY ¼ Y11Y22 � Y12Y21; Dg ¼ g11g22 � g12g21; Dh ¼ h11h22 � h12h21;DT ¼ AD � BC
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EXERCISE 17.6-1 Determine the Z parameters if the Y parameters are

Y ¼
2

15

�1

5
�1

10

2

5

2
666664

3
777775

The units are siemens.
Answers: Z11 ¼ 12 V; Z12 ¼ 6 V; Z21 ¼ 3 V, and Z22 ¼ 4 V

EXERCISE 17.6-2 Determine the T parameters from the Y parameters of Exercise 17.6-1.

Answer: A ¼ 4; B ¼ 10 V; C ¼ 1=3 S, and D ¼ 4=3

17.7 I n t e r c o n n e c t i o n o f Tw o - P o r t N e tw o r k s

It is common in many circuits to have several two-port networks interconnected in parallel or in
cascade. The parallel connection of two two-ports shown in Figure 17.7-1 requires that the V1 of each
two-port be equal.

E X A M P L E 1 7 . 6 - 1 Two-Port Parameter Conversion

Determine the Y and h parameters if

Z ¼ 18 6

6 9

� �

Solution
First, we will determine the Y parameters by calculating the determinant as

DZ ¼ Z11Z22 � Z12Z21 ¼ 18 9ð Þ � 6 6ð Þ ¼ 126

Then, using Table 17.6-1, we obtain

Y11 ¼ Z22

DZ
¼ 9

126
¼ 1

14
S

Y12 ¼ Y21 ¼ �Z12

DZ
¼ �1

21
S

Y22 ¼ Z11

DZ
¼ 18

126
¼ 1

7
S

h11 ¼ DZ

Z22
¼ 126

9
¼ 14 V

h12 ¼ Z12

Z22
¼ 6

9
¼ 2

3

h21 ¼ �Z21

Z22
¼ �6

9
¼ �2

3

h22 ¼ 1

Z22
¼ 1

9
S

Try it 
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Similarly, at the output port V2 is the output voltage of both two-port networks. The defining
matrix equation for network Na is

Ia ¼ YaVa ð17:7-1Þ
and, for network Nb, we have

Ib ¼ YbVb ð17:7-2Þ
In addition, we have the total current I as

I ¼ Ia þ Ib
Furthermore, because Va ¼ Vb ¼ V

I ¼ YaV þ YbV ¼ Ya þ Ybð ÞY ¼ YV

Therefore, the Y parameters for the total network of two parallel two-ports are described by
the matrix equation

Y ¼ Ya þ Yb ð17:7-3Þ
For example,

Y11 ¼ Y11a þ Y11b

Hence, to determine the Y parameters for the total network, we add the Y parameters of each network. In
general, the Y-parameter matrix of the parallel connection is the sum of the Y-parameter matrices of the
individual two-ports connected in parallel.

The series interconnection of two two-port networks is shown in Figure 17.7-2. We will use the Z
parameters to describe each two-port and the series combination. The two networks are described by the
matrix equations

Va ¼ ZaIa ð17:7-4Þ
and Vb ¼ ZbIb ð17:7-5Þ
The terminal currents are

I ¼ Ia ¼ Ib
Therefore, because V ¼ Va þ Vb, we have

V ¼ ZaIa þ ZbIb
¼ Za þ Zbð ÞI ¼ ZI

or Z ¼ Za þ Zb ð17:7-6Þ
Therefore, the Z parameters for the total network are equal to the
sum of the Z parameters for the networks.

When the output of one network is connected to the input port
of the following network, as shown in Figure 17.7-3, the networks
are said to be cascaded. Because the output variables of the first
network become the input variables of the second network, the
transmission parameters are used. The first two-port, Na, is repre-
sented by the matrix equation

V1a

I1a

� �
¼ Ta

V2a

�I2a

� �

Two-port

Two-port

+

I2

V2
+

I1

V1
– –

Nb

Na

FIGURE 17.7-1 Parallel connection of two two-port
networks.

Na

Nb

+

V2

+

I1

V1

V1a–

+

I1a

V1b V2b

V2a–

+

+ +

I1b

– –– –

I2b

I2a I2

FIGURE 17.7-2 Series connection of two two-port
networks.

+

V2

+

V1 V2a

I1b
I1

V1b

I2a
I2

+ +
Na Nb

– –––

FIGURE 17.7-3 Cascade connection of two two-port
networks.
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For Nb, we have

V1b

I1b

� �
¼ Tb

V2b

�I2b

� �

Furthermore, we note that at the input and output, we have

V1

I1

� �
¼ V1a

I1a

� �
and

V2b

�I2b

� �
¼ V2

�I2

� �

At the intermediate connection, we have

V2a

�I2a

� �
¼ V1b

I1b

� �

Therefore;
V1

I1

� �
¼ TaTb

V2

�I2

� �

and T ¼ TaTb ð17:7-7Þ
Hence, the transmission parameters for the overall network are derived by matrix multiplication,
observing the proper order.

All of the preceding calculations for interconnected networks assume that the interconnection
does not disturb the two-port nature of the individual subnetworks.

E X A M P L E 1 7 . 7 - 1 Parallel and Cascade Connections
of Two-Port Networks

For the T network of Figure 17.7-4, (a) find the Z, Y, and T parameters and (b)
determine the resulting parameters after connecting two two-ports in parallel and in
cascade. Both two-ports are identical as in Figure 17.7-4.

Solution
First, we find the Z parameters of the T network. Examining the network, we have

Z12 ¼ Z21 ¼ 1 V

Z22 ¼ Z11 ¼ 2 V

Then, using the conversion factors of Table 17.6-1, we find

Y ¼
2

3

�1

3
�1

3

2

3

2
666664

3
777775

and T ¼ 2 3

1 2

� �

Two identical networks connected in parallel will have a total Y matrix of

Y ¼ Ya þ Yb

1 Ω

1 Ω 1 Ω

FIGURE 17.7-4 T network of
Example 17.7-1.
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EXERCISE 17.7-1 Determine the total transmission parameters of the cascade connection of
three two-port networks shown in Figure E 17.7-1.

12 Ω

6 Ω

3 Ω

Na Nb Nc
FIGURE E 17.7-1

Answers: A ¼ 3, B ¼ 21 V, C ¼ 1=6 S, and D ¼ 3=2

17.8 H ow C a n We C h e c k . . . ?

Engineers are frequently called upon to check that a solution to a problem is indeed correct. For
example, proposed solutions to design problems must be checked to confirm that all of the specifica-
tions have been satisfied. In addition, computer output must be reviewed to guard against data-entry
errors, and claims made by vendors must be examined critically.

Engineering students are also asked to check the correctness of their work. For example,
occasionally just a little time remains at the end of an exam. It is useful to be able to quickly identify
those solutions that need more work.

The following example illustrates techniques useful for checking the solutions of the sort of
problem discussed in this chapter.

E X A M P L E 1 7 . 8 - 1 How Can We Check Circuits with Two-Port Networks?

The circuit shown in Figure 17.8.1a was designed to have a transfer function given by

Vo sð Þ
V in sð Þ ¼

2s � 10

s2 þ 27s þ 2

How can we check that the circuit satisfies this specification?

Because Ya ¼ Yb, we have

Y ¼ 2Ya ¼
4

3

�2

3
�2

3

4

3

2
666664

3
777775

Finally, when two identical networks are connected in cascade, we have a total T matrix of

T ¼ TaTb ¼
2 3

1 2

� �
2 3

1 2

� �
¼ 7 12

4 7

� �
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EXERCISE 17.8-1 Verify that the circuit shown in Figure E 17.8-1 does indeed have the transfer
function

Vo sð Þ
V in sð Þ ¼

2s � 10

s2 þ 27s þ 2

(The circuits in Figures 17.8-1a and E 17.8-1 differ only in the sign of h21.)

+
–

+

–
vovin

2 Ω
F1 2

F1 4H =
2

10

0

0.25

FIGURE E 17.8-1 A modified version of the circuit
from Figure 17.8-1.

Solution
The h-parameter model from Figure 17.5-1 can be used to redraw the circuit as shown in Figure 17.8-1b. This
circuit can be represented by node equations

1þ s

2

� 	
�s

2

�5� s

2

� 	 3s

4
þ 1

4

� �
2
664

3
775

V1 sð Þ
Vo sð Þ

" #
¼

V in sð Þ
2
0

2
4

3
5

where 10I1(s) ¼ 5V1(s) has been used to express the current of the dependent source in terms of the node voltages.
Applying Cramer’s rule gives

Vo sð Þ
V in sð Þ ¼

1

2
5þ s

2

� 	

1þ s

2

� 	 3s

4
þ 1

4

� �
� s

2

s

2
þ 5

� 	 ¼ 2s þ 20

s2 � 13s þ 2

This is not the required transfer function, so the circuit does not satisfy the specification.

+
–

+

–

(b)

v1

+

–
vovin

i1

–10i1
2 Ω 4 Ω

F2 Ω 1 2

F1 4

+
–

(a)

+

–
vovin

2 Ω
F1 2

F1 4H =
2

–10

0

0.25

FIGURE 17.8-1 (a) A circuit including a two-port network. (b) Using the h-parameter model to represent the two-port network.
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1 7 . 9 D E S I G N E X A M P L E Transistor Amplifier

Figure 17.9-1 shows the small signal equivalent circuit of a transistor amplifier. The data
sheet for the transistor describes the transistor by specifying its h parameters to be

hie ¼ 1250 V; hoe ¼ 0; hfe ¼ 100; and hre ¼ 0

The value of the resistance Rc must be between 300 V and 5000 V to ensure that the
transistor will be biased correctly. The small signal gain is defined to be

Av ¼ vo
vin

The challenge is to design the amplifier so that

Av ¼ �20

(There is no guarantee that these specifications can be satisfied. Part of the problem is to decide whether it is
possible to design this amplifier so that Av ¼ �20.)

Describe the Situation and the Assumptions
1. Rc must be between 300 V and 5000 V.

2. The transistor is represented by h parameters. Figure 17.9-2a shows that the transistor can be configured to be a
two-port network and represented by h parameters. Figure 17.9-2b shows an equivalent circuit for the
transistor. This equivalent circuit is based on the h parameters. For this particular transistor, the values of the h
parameters are

hie ¼ 1000 V; hoe ¼ 0; hfe ¼ 100; and hre ¼ 0

Because
1

hoe
¼ 1

ib

vce

ic

hfeibhrevce

hie

+

–

vbe

+

–

+

–
1 hoe

(b)

–

+

ib ic

vce

–

+

vbe
hie

hfe

hre

hoe

(a)

=
ib

vce

vbe

ic

ib

vce

ic

hfeib

hie

+

–

vbe

+

–

(c)

FIGURE 17.9-2 (a) Using h parameters to describe a transistor. (b) An equivalent circuit. (c) A simplified
equivalent circuit for hre ¼ 0 and hoe ¼ 0.

+
–

–

+

Rb = 23 kΩ

vin Rc vo

FIGURE 17.9-1 A
transistor amplifier.
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the resistor at the right side of the equivalent circuit is an open circuit. Because

hre ¼ 0

the dependent voltage source is a short circuit. Figure 17.9-2c shows the equivalent circuit after these
simplifications are made.

3. The voltage gain must be Av ¼ �20.

State the Goal
Select Rc so that Av ¼ �20.

Generate a Plan
Replace the transistor in Figure 17.9.1 by the equivalent circuit in Figure 17.9-2c. Analyze the resulting circuit to
obtain a formula for the voltage gain Av. This formula will involve Rc. Determine the value of Rc that will make
Av ¼�20. If this value of Rc is between 300 V and 5000 V, the amplifier design is complete. On the other hand, if
this value of Rc is not between 300 V and 5000 V, the specifications cannot be satisfied.

Act on the Plan
Figure 17.9-3 shows the amplifier after the transistor has been replaced by the equivalent circuit. Applying Ohm’s
law to Rc gives

vo ¼ �Rc100ib

where the minus sign is due to reference directions. Next, apply KVL to the left mesh to get

vin ¼ 23,000ib þ 1000ib

Then Av ¼ vo
vin

¼ �100Rc

24,000

Finally, set Av ¼ �20, obtaining

�20 ¼ �100Rc

24,000

Now solve for Rc to determine

Rc ¼ 4800 V

Verify the Proposed Solution
First, the resistance Rc ¼ 4800 V is indeed between 300 V and 5000 V. Second, the gain of the circuit shown in
Figure 17.9-3 is

vo
vin

¼ �hfeRc

Rb þ hie
¼ � 100� 4800

23,000þ 1000
¼ �20

Therefore, both specifications have been satisfied.

ib

vo

ic

hfeib

hie

+

–

vbevin

+

–

vce Rc

Rb = 23 kΩ

+

–

+
–

FIGURE 17.9-3 An equivalent circuit
for the transistor amplifier.
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17.10 SUMMARY

A port is a pair of terminals together with the restriction that
the current directed into one terminal be equal to the current
directed out of the other terminal.
Two-port models of circuits or devices are useful for
describing the performance of the circuit or device in terms
of the currents and voltages at its ports. The internal details of
the circuit or device are not included in the two-port model,
so the two-port model of a circuit may be considerably
simpler than the circuit itself.
The two-port model involves four signals—the current and
voltage at each port. Two of these signals are treated as
inputs, and the other two are treated as outputs. There are six

ways of separating the four signals into input and output
signals, and so there are six sets of two-port parameters. The
six sets of two-port parameters are called the impedance,
admittance, hybrid, inverse hybrid, transmission, and inverse
transmission parameters. Table 17.3-2 summarizes the six
sets of two-port parameters.
Table 17.6-1 summarizes the equations used to convert one
set of two-port parameters into another, for example, to
convert impedance parameters into hybrid parameters.
We may use two-port parameters to describe the performance
of the parallel, series, or cascade connection of two or more
circuits.

PROBLEMS

Section 17.2 T-to-P Transformation and Two-Port

Three-Terminal Networks

P 17.2-1 Determine the equivalent resistance Rab of the
network of Figure P 17.2-1. Use the P-to-T transformation as
one step of the reduction.

Answer: Rab ¼ 3.2 V

a

3 Ω

b

1 Ω

6 Ω 4 Ω

10 Ω

Figure P 17.2-1

P 17.2-2 Repeat problem P 17.2-1 when the 6-V resistance
is changed to 4 V and the 10-V resistance is changed to
12 V.

P 17.2-3 The two-port network of Figure 17.1-1 has an
input source Vs with a source resistance Rs connected to the
input terminals so that V1 ¼ Vs � I1Rs and a load resistance
connected to the output terminals so that V2 ¼ �I2 RL ¼ ILRL.
Find Rin ¼ V1=I1, Av ¼ V2=V1, Ai ¼ �I2=I1, and Ap ¼
�V2 I2=(V1 I1) by using the Z-parameter model.

P 17.2-4 Using the D-to-Y transformation, determine the
current I when R1 ¼ 15 V and R ¼ 20 V for the circuit shown
in Figure P 17.2-4.

Answer: I ¼ 385 mA

+
–

+
–

R1

4 Ω 

6 Ω 

6 Ω R1

R

R1

R
R

I

30 V

50 V

Figure P 17.2-4

P 17.2-5 Use the Y-to-D transformation to determine Rin

of the circuit shown in Figure P 17.2-5.

Answer: Rin ¼ 673.85 V

800 Ω

200 Ω 200 Ω
1000 Ω 1000 Ω

Rin

Figure P 17.2-5

Section 17.3 Equations of Two-Port Networks

P 17.3-1 Find the Y parameters and Z parameters for the
two-port network of Figure P 17.3-1.

12 Ω

6 Ω

3 Ω

Figure P 17.3-1

Problem available in WileyPLUS at instructor’s discretion.
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P 17.3-2 Determine the Z parameters of the ac circuit shown
in Figure P 17.3-2.

Answer: Z11 ¼ 2 � j4 V, Z12 ¼ Z21 ¼ �j4 V, Z22 ¼ �j2 V

2 Ω

– j4 Ω

j2 Ω

Figure P 17.3-2

P 17.3-3 Find the Y parameters of the circuit of Figure P 17.3-3
when b ¼ 4, G1 ¼ 2 S, G2 ¼ 1 S, and G3 ¼ 3 S.

+

V1

+

V2G1 

+ –

G2 bV1 
G3 

– –

Figure P 17.3-3

P 17.3-4 Find the Y parameters for the circuit of Figure
P 17.3-4.

Answers: Y11 ¼ 0.3 S, Y21 ¼ Y12 ¼ �0.1 S, and Y22 ¼ 0.15 S

10 Ω 

20 Ω  5 Ω 

+

V1

+

V2

– –

Figure P 17.3-4

P 17.3-5 Find the Y parameters of the circuit shown in
Figure P 17.3-5.

100 kΩ

50 kΩ75 kΩ

+

V1

+

V2

– –

Figure P 17.3-5

P 17.3-6 Find the Z parameters for the circuit shown in Figure
P 17.3-6 for sinusoidal steady-state response at o ¼ 3 rad/s.

Answers: Z11 ¼ 3 þ j V, Z12 ¼ Z21 ¼�j2 V, and Z22 ¼�j2 V

3 Ω

+

V1

+

V2

1 H

1 6 F

– –

Figure P 17.3-6

P 17.3-7 Determine the impedance parameters in
the s-domain (Laplace domain) for the circuit shown in Figure
P 17.3-7.

Answers:Z11¼ (4sþ1)=s,Z12¼Z21¼1=s, andZ22¼ (2s2þ1)=s

4 Ω

1 F 

2 H

+

V1

+

V2

– –

Figure P 17.3-7

P 17.3-8 Determine a two-port network that is represented by
the Y parameters:

Y ¼
s þ 1

s
�1

�1 s þ 1ð Þ

2
4

3
5

P 17.3-9 Find a two-port network incorporating one
inductor, one capacitor, and two resistors that will give the
following impedance parameters:

Z ¼ 1

D

s2 þ 2s þ 2ð Þ 1

1 s2 þ 1ð Þ

" #

where D ¼ s2 þ s þ 1.

P 17.3-10 An infinite two-port network is shown in Figure
P 17.3-10. When the output terminals are connected to the circuit’s
characteristic resistance Ro, the resistance looking down the line
from each section is the same. Calculate the necessary Ro.

Answer: Ro ¼ ffiffiffi
3

p � 1
� �

R

. . .

. . .

R R R R

R R R R

RR R R Ro

Figure P 17.3-10 Infinite two-port network.

Section 17.4 Z and Y Parameters for a Circuit with

Dependent Sources

P 17.4-1 Determine the Y parameters of the circuit shown
in Figure P 17.4-1.

+ –

b i
R2

R1

i

+ +

– –

v1 v2

Figure P 17.4-1

P 17.4-2 An electronic amplifier has the circuit shown in
FigureP17.4-2.Determinetheimpedanceparameters for thecircuit.

Answers: Z11 ¼ 4, Z12 ¼ 3(1 + a), Z21 ¼ 3, and Z22 ¼ 5 + 3a
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1 Ω

+

v1

+

v23 Ω

i1 i2

i2α

2 Ω

– –

Figure P 17.4-2

P 17.4-3

(a) For the circuit shown in Figure P 17.4-3, determine the
two-port Y model using impedances in the s-domain.

(b) Determine the response v2(t) when a current source i1 ¼
1 u(t) A is connected to the input terminals.

+

v1

+

v21 F

i1

2v1

1 F

1 Ω 1 F 1 Ω
– –

Figure P 17.4-3

P 17.4-4 One form of a heart-assist device is shown in Figure
P 17.4-4a. The model of the electronic controller and pump/
drive unit is shown in P 17.4-4b. Determine the impedance
parameters of the two-port model.

1 Ω 

1 Ω 

1 2  Ω 

1 2  Ω v2v1

+ +4v1

(b)

(a)

Ventricular assist device

Heart

Electronic
controller

Belt skin
transformer Battery

pack

Pump/drive
unit

– –

Figure P 17.4-4 (a) Heart-assist device and (b) model of
controller and pump.

P 17.4-5 Determine the Y parameters for the circuit shown
in Figure P 17.4-5.

Answer: Y12 ¼ � 1
R2

and Y21 ¼ � 1þbð Þ
R2

+

–

+–

v2

+

–

v1
bv1

R3R1

R2

Figure P 17.4-5

Section 17.5 Hybrid and Transmission Parameters

P 17.5-1 Find the transmission parameters of the circuit of
Figure P 17.5-1.

Answers: A ¼ 1.2, B ¼ 6.8 V, C ¼ 0.1 S, and D ¼ 1.4

2 Ω 4 Ω

10 Ω

+

V1

+

V2

– –

Figure P 17.5-1

P 17.5-2 An op amp circuit and its model are shown in
Figure P 17.5-2. Determine the h-parameter model of the circuit
and the H matrix when Ri ¼ 100 kV, R1 ¼ R2 ¼ 1 MV, Ro ¼
1 kV, and A ¼ 104.

Answer:h11¼600 kV, h12¼1=2, h21¼�106, and h22¼10�3 S

+

V1

+

V2

I1

+–

+

R2

R1

+

–
R1

Ro

Ri R2

Avi

vi
+–

(b)

(a)

V2

+

V1

– –

––

Figure P 17.5-2 (a) Op amp circuit and (b) circuit model.

P 17.5-3 Determine the h parameters for the ideal
transformer of Section 11.10.

P 17.5-4 Determine the h parameters for the T circuit of
Figure P 17.5-4.
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R1 R3 

R2 

+

V1

+

V2

– –

Figure P 17.5-4

P 17.5-5 A simplified model of a bipolar junction
transistor is shown in Figure P 17.5-5. Determine the h
parameters of this circuit.

950 Ω v
+

–

50 Ω 

0.1v 10 kΩ 

Figure P 17.5-5 Model of bipolar junction transistor.

Section 17.6 Relationships Between Two-Port

Parameters

P 17.6-1 Derive the relationships between the Y parameters
and the h parameters by using the defining equations for both
parameter sets.

P 17.6-2 Determine the Y parameters if the Z parameters are
(in ohms):

Z ¼ 3 2

2 6

� �

P 17.6-3 Determine the h parameters when the Y parame-
ters are (in siemens):

Y ¼ 0:1 0:1

0:4 0:5

� �

P 17.6-4 A two-port has the following Y parameters: Y12 ¼
Y21 ¼ �0.4 S, Y11 ¼ 0.5 S, and Y22 ¼ 0.6 S. Determine the h
parameters.

Answers: h11 ¼ 2 V, h21 ¼ �0.8, h12 ¼ 0.8, and h22 ¼ 0.28 S

Section 17.7 Interconnection of Two-Port Networks

P 17.7-1 Connect in parallel the two circuits shown in
Figure P 17.7-1 and find the Y parameters of the parallel
combination.

Answers: Y11 ¼ 17=6, Y12 ¼ Y21 ¼ �4=3, and Y22 ¼ 5=3

1 Ω 

3 Ω 2 Ω 

a b

c

3 Ω 

1 Ω 

a b

c

c

c

(b)

(a)

Figure P 17.7-1

P 17.7-2 For the T network of Figure P 17.7-2, find the Y and
T parameters and determine the resulting parameters after the
two two-ports are connected in (a) parallel and (b) cascade.
Both two-ports are identical as defined in Figure P 17.7-2

+

–

v2

+

–

v1

2 Ω 4 Ω

6 Ω

Figure P 17.7-2

P 17.7-3 Determine the Y parameters of the parallel
combination of the circuits of Figures P 17.7-3a, b.

+

–

v2

+

– ––

v1

C

L L

(a)

+

v2

+

v1

G3

G1 G2

(b)

Figure P 17.7-3

Section 17.8 How CanWe Check . . . ?

P 17.8-1 A laboratory report concerning the circuit of
Figure P 17.8-1 states that Z12 ¼ 15 V and Y11 ¼ 24 mS. Verify
these results.

125 Ω

50 Ωv1

+

–

v2

+

–

75 Ω

Figure P 17.8-1

P 17.8-2 A student report concerning the circuit of Figure
P 17.8-2 has determined the transmission parameters as A ¼ 2
(s + 10)/s, D ¼ A, C ¼ 10/s, and B ¼ 3s2 þ 80sþð Þ400/s2:
Verify these results when M ¼ 0.1 H.

2 Ω 2 Ω

0.2 H0.2 Hv1

+

v2

+

– –

M

Figure P 17.8-2
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Design Problems

DP 17-1 Select R1 and R so that Rin ¼ 16.6 V for the circuit of
Figure DP 17-1. A design constraint requires that both R1 and R
be less than 10 V.

R

Rin

R1

10 Ω14 Ω

20 Ω2 Ω

Figure DP 17-1

DP 17-2 The bridge circuit shown in Figure DP 17-2 is said to
be balanced when I ¼ 0. Determine the required relationship for
the bridge resistances when balance is achieved.

I

R1 R2

R3 R4

+
–V

R

Figure DP 17-2 Bridge circuit.

DP 17-3 A hybrid model of a common-emitter transistor
amplifier is shown in Figure DP 17-3. The transistor parameters
are h21 ¼ 80, h11 ¼ 45 V, h22 ¼ 12.5 mS, and h12 ¼ 5 � 10�4.
Select RL so that the current gain i2/i1 ¼ 79 and the input
resistance of the amplifier is less than 10 V.

v2

+

–

+

–
+
– h22 RL

h21i1
h12v2

i1

h11

v1

i2

Figure DP 17-3 Model of transistor amplifier.

DP 17-4 A two-port network connected to a source vs and a
load resistance RL is shown in Figure DP 17-4.

(a) Determine the impedance parameters of the two-port
network.

(b) Select RL so that maximum power is delivered to RL.

4 Ω 8 Ω

4 Ω2 Ω

RL
+
–vs

Two-port network

Figure DP 17-4

DP 17-5

(a) Determine the ABCD (transmission matrix) of the two-port
networks shown in Figures DP 17-5a and DP 17-5b.

(b) Using the results of part (a), find the s-domain ABCD matrix
of the network shown in DP 17-5c.

(c) Given L1 ¼ (10=p) mH, L2 ¼ (2.5=p) mH, C1 ¼ (0.78=p) mF,
C2 ¼ C3 ¼ (1=p) mF, and RL ¼ 100 V, find the open-circuit
voltage gain V2=V1 and the short-circuit current gain I2=I1

under sinusoidal-state conditions at the following frequencies:
2.5 kHz, 5.0 kHz, 7.5 kHz, 10 kHz, and 12.5 kHz.

Hint:Use the appropriate entries of the ABCD matrix. Also, note
the resonant frequencies of the circuit.

+

–

(b)(a)

(c)

+

–

V1

C1

RL V2

L1

L2

+

–

V1(s)

+

–

+

–

+

–

V2(s) V2(s)V1(s)

Z(s)

Y(s)

C2

C3

Figure DP 17-5
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APPENDIX A Getting Started
with PSpice

A.1 P S p i c e

SPICE, an acronym for Simulation Program with Integrated Circuit Emphasis, is a computer program
used for numerical analysis of electric circuits. Developed in the early 1970s at the University of
California at Berkeley, it is generally regarded as the most widely used circuit simulation program
(Perry, 1998). PSpice is a version of SPICE, designed for personal computers, developed by MicroSim
Corporation in 1984 (Tuinenga, 88). SPICE was a text-based program that required the user to describe
the circuit using only text, and the simulation results were displayed as text. MicroSim provided a
graphical postprocessor, Probe, to plot the results of SPICE simulations. Later, MicroSim also provided
a graphical interface called Schematics that allowed users to describe circuits graphically. The name of
the simulation program was changed from PSpice to PSpice A/D when it became possible to simulate
circuits that contained both analog and digital devices. MicroSim was acquired by ORCAD1, which
was in turn acquired by Cadence1. ORCAD improved Schematics and renamed it Capture. “Using
PSpice” loosely refers to using ORCAD Capture, PSpice A/D, and Probe to analyze an electric circuit
numerically.

A.2 G e t t i n g S t a r t e d

Begin by starting the ORCAD Capture program. Figure A.1 shows the opening screen of ORCAD
Capture. (If necessary, maximize the Session Log window.) The top line of the screen shows the title of
the program, ORCAD Capture CIS – Demo Edition. A menu bar providing menus called File, View,
Edit, Options, Window, and Help is located under the title line. A row of buttons is located under the
menu bar, and a ruler is located below the row of buttons. A workspace is located beneath the ruler. The
circuit to be simulated is described by drawing it in this workspace. A line containing two message
fields is located under the workspace. The left message field is of particular interest because it provides
information about the Capture screen. For example, move the cursor to one of the buttons. The left
message field describes the function of the button. Save Active Document is the function of the third
button from the left.

Select File/New/Project from the Capture menus, as shown in Figure A.2. The New Project dialog
box, shown in Figure A.3, will pop up. Select Analog Or Mixed A/D, as shown. The New Project
dialog box requires a project name and a location. The location is the name of the directory or
folder in which Capture should store the project file. The name will be the file name of the project file.
ORCAD Capture uses OPJ as a suffix for project files, so choosing Name to be ExampleCircuit
and Location to be c:\PSpiceCircuits causes ORCAD to store a file named ExampleCircuit.opj in the
c:\PSpiceCircuits folder. Notice that long file names are supported, making it easier to give descriptive
names to projects.

Click OK in the New Project dialog box to close the New Project dialog box and pop up the
Create PSpice Project dialog box shown in Figure A.4. Select Create a blank project and then click OK
to return to the ORCAD Capture screen. The Capture screen has changed: Place, Macro, PSpice, and
Accessories have been added to the menu bar; there are more buttons; and there is a grid on the
workspace. 865



FIGURE A.3 New Project dialog box.

FIGURE A.1 The opening screen of ORCAD Capture CIS demo edition version 15.7.

FIGURE A.2 Opening a new project in ORCAD Capture.
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We are ready to begin our first PSpice simulation. In that first simulation, we will simulate the
circuit shown in Figure A.5 to determine its node voltages. We start by drawing the circuit in the
ORCAD Capture workspace.

A.3 D r aw i n g a C i r c u i t i n t h e O R CAD C a p t u r e
Wo r k s p a c e

Drawing a circuit in the ORCAD workspace requires three activites:

1. Placing the circuit elements in the ORCAD Capture workspace.

2. Adjusting the values of the circuit element parameters, for example the resistances of the
resistors.

3. Wiring the circuit to connect the circuit elements.

To begin, select Part/Place from the Capture menus to pop up the Place Part dialog box shown
in Figure A.6. To obtain a resistor, select ANALOG from the list of libraries and R from the list of
parts. Click OK to close the Place Part dialog box and return to the Capture screen. Upon returning to
the Capture screen, the cursor will be dragging the symbol for a resistor. Place the resistor, as desired,
with a click. The cursor will now be dragging a second resistor symbol. A right-click produces the
menu shown in Figure A.7. Selections from this menu will flip or rotate the resistor. Select End Mode
to stop placing resistors. (If ANALOG is not listed among the available libraries in the Place Part
dialog box, click the Add Library button. ORCAD Capture provides several libraries containing parts
for circuits. File names of parts libraries use the suffix OLB. Select the analog.olb and source.olb
libraries.)

SPICE requires every circuit to include a ground node. Select Part/Ground from the Capture
menus to pop up the Place Ground dialog box. The ground node is a PSpice part called 0 that is

FIGURE A.4 Create PSpice Project dialog box.

6 Ω 2 Α+
– 24 V

3 Ω

FIGURE A.5 The example circuit.
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contained in the SOURCE library. (It may be necessary to add this library. Click the Add Library button
to pop up a Browse File dialog box. The library file is called source.olb and resides in the PSpice folder.
Select the source.olb library; then click Open to make this library available and to return to the Place
Ground dialog box.) Place the ground node in the Capture workspace. Figure A.8 shows the Capture
screen after the parts have been placed.

FIGURE A.7 A right-click while placing parts pops up this menu.

FIGURE A.6 The Place Part dialog box.
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The resistances of the resistors each has its default value 1k. Click the 1k of the vertical
resistor to select it; then right-click anywhere in the Capture workspace to obtain the menu shown
in Figure A.9. Choose Edit Properties to pop up the Display properties dialog box shown in
Figure A.10. Change the value from 1k to 3. Figure A.11 shows the Capture workspace after the
parameter values of the parts have been adjusted.

FIGURE A.9 The value 1k is shown highlighted. Right-clicking anywhere in the Capture workspace pops up
this menu.

FIGURE A.8 ORCAD Capture screen after placing the parts.
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Select Parts/Wire to wire the parts together. In Figure A.11, notice that the terminals of each
part are marked with small squares. To wire two terminals together, click and hold one terminal, drag
the mouse to the other terminal, and then release the mouse. The path of the wire will generally
follow the path of the mouse, but wires will be drawn using straight horizontal and vertical lines.
Wires can also connect part terminals to wires or connect wires to wires. To stop wiring, right-click
and then select End Mode from the menu that appears. Figure A.12 shows the circuit after it has
been wired.

FIGURE A.11 Capture screen after adjusting the values of the circuit parameters.

FIGURE A.10 The Display Properties dialog box.
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A.4 S p e c i f y i n g a n d R u n n i n g t h e S im u l a t i o n

Select PSpice/New Simulation Profile from the ORCAD Capture menus to pop up the New Simulation
dialog box. Provide a name, such as dc analysis, and then click Create. The Simulation Settings dialog
box will pop up. Select Bias Point from the Analysis type list and select General Settings under Options.
Click OK to close the Simulation Settings dialog box. Select PSpice/Run from the ORCAD menu bar to
run the simulation. Figure A.13 shows the simulation results.

FIGURE A.13 ORCAD Capture labels node voltages after performing a PSpice simulation.

FIGURE A.12 The circuit of Figure A.5 as described in Capture.
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APPENDIX B MATLAB,
Matrices, and
Complex
Arithmetic

It has become commonplace for engineers to use the MATLAB1 computer program to perform
a variety of technical calculations. MATLAB, short for MATrix LABoratory, is produced and
supported by the company named The Math Works, which provides demos and application notes
at its Web site, www.mathworks.com. In addition, MATLAB has extensive built-in help, as shown
in Figure B.1.

In this appendix, we will first use MATLAB as a powerful calculator, then use it to solve
equations involving matrices or complex numbers and, finally, use it to plot functions.

B.1 U s i n g MAT L A B a s a C a l c u l a t o r

Consider the equation

C � D ¼ 4 A þ B ) D ¼ 4 A þ B

C

Let’s use MATLAB to evaluate D when A ¼ 4; B ¼ 7, and C ¼ 6. To do so, we write the
equations representing A, B, C, and D in the MATLAB workspace, using the arithmetic operations
and functions available in MATLAB. Tables B.1 and B.2 list the arithmetic operations and some of the
functions available in MATLAB.

FIGURE B.1 MATLAB Help is accessed by clicking Help on the MATLAB menu bar.
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Figure B.2 shows the MATLAB workspace. The symbol � is the MATLAB cursor. To
indicate that A ¼ 4, we type

A = 4;<Enter>

after the cursor. (<Enter> indicates the Enter key. If we omit the semicolon, MATLAB will tell us
the value of A. Because we already know the value of A, we include the semicolon to save space.)
MATLAB responds to <Enter> by providing another cursor. We type the equations for B, C, and
then D similarly. (MATLAB uses the usual order of precedence for the arithmetic operations.

FIGURE B.2 Using MATLAB as a
calculator.

Table B.2 Built-in Functions

FUNCTION EQUATION MATLAB

sine sin (x) sin (x)
cosine cos (x) cos (x)
tangent tan (x) tan (x)
arc sine sin �1 xð Þ asin (x)
arc cosine cos �1 xð Þ acos (x)
arc tangent tan �1 xð Þ atan (x)
logarithm log10 (x) log10(x)
natural logarithm ln (x) log (x)
exponential ex exp (x)
square root

ffiffiffi
x

p
sqrt (x)

absolute value jxj abs (x)

Table B.1 Arithmetic Operations

OPERATION SYMBOL EQUATION MATLAB

Addition þ 4 þ x 4 þ x
Subtraction � 4 � x 4 � x
Multiplication * 4 x 4 * x
Division / 4/x 4 / x
Power ^ 4x 4^x
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Consequently, parentheses are used in the equation representing D to ensure that the addition is
performed before the division.) Notice that the semicolon was omitted from the equation
representing D, so MATLAB responded to <Enter> by providing the value of D.

B.2 Ma t r i c e s , D e t e rm i n a n t s , a n d S im u l t a n e o u s
E q u a t i o n s

There are many situations in circuit analysis in which we have to deal with rectangular arrays of
numbers. The rectangular array of numbers

A ¼
a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. ..

.

am1 am2 � � � amn

2
6664

3
7775

is known as a matrix. The numbers aij are called elements of the matrix, with the subscript i denoting the
row and the subscript j denoting the column.

A matrix with m rows and n columns is said to be a matrix of order m � n or, alternatively, an
m � n matrix. (We read “m � n” as “m by n.”) When the number of the columns equals the number of
rows, m ¼ n, the matrix is called a square matrix of order n. It is common to use boldface capital letters
to denote an m � n matrix.

A matrix consisting of only one column, that is, an m � 1 matrix, is known as a column matrix or,
more commonly, a column vector. We represent a column vector with boldface lowercase letters as

x ¼
x1
x2
..
.

xm

2
6664

3
7775

E X A M P L E B . 1 Trigonometric Functions

Evaluate

y ¼ sin �1 cos (72�ð Þ)

Solution
The trigonometric functions sin, cos, and tan expect an angle in radians, and the inverse trigonometric functions
asin, acos, and atan produce an angle in radians. Because we were given an angle in degrees, let’s determine the
value of y in degrees. The MATLAB command

>> theta = (180/pi) * asin(cos(72*pi/180))

produces the result theta = 18.0000

The multipliers pi/180 and 180/pi convert units of angles from degrees to radians and vice versa. As a check, the
MATLAB command

>> phi = (180/pi) * acos(sin(theta*pi/180))
produces the result

phi = 72
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The addition of two matrices is possible for matrices of the same order. The sum of two
matrices is obtained by adding the corresponding elements. Thus, if the elements of A are aij and the
elements of B are bij, and if

C ¼ A þ B

then the elements of C are obtained as

cij ¼ aij þ bij

Matrix addition is commutative, that is,

A þ B ¼ B þ A

Also, the addition operation is associative, so that

A þ Bð Þ þ C ¼ A þ B þ Cð Þ

To perform the operation of multiplying matrix A by a constant a, every element of the matrix is
multiplied by the constant. Therefore, we can write

aA ¼
aa11 aa12 � � � aa1n

aa21 aa22 � � � aa2n

..

. ..
. ..

.

aam1 aam2 � � � aamn

2
6664

3
7775

Matrix multiplication is defined in such a way as to assist in the solution of simultaneous linear
equations. The multiplication of two matrices AB requires the number of columns of A to be equal to
the number of rows of B. Thus, if A is of order m � n and B is of order n � q, the product is a matrix of
order m � q. The elements of a product

C ¼ AB

are found by multiplying the ith row of A and the jth column of B and summing these products to give
the element cij. That is,

cij ¼ ai1b1j þ ai2b2j þ � � � þ aiqbqj ¼
Xq

k¼1

aikbkj

Thus we obtain c11, the first element of C, by multiplying the first row of A by the first column of B and
summing the products of the elements. We should note that, in general, matrix multiplication is not
commutative, that is,

AB 6¼ BA

E X A M P L E B . 2 Matrices in MATLAB

Evaluate

2 1
4 2

� �
þ 6 1

3 1

� �
;

2 1
4 2

� �
� 6 1

3 1

� �
and

2 1
4 2

� �
*

6 1
3 1

� �
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A set of simultaneous equations

a11x1 þ a12x2 þ � � � þ a1nxn ¼ b1

a21x1 þ a22x2 þ � � � þ a2nxn ¼ b2

..

. ..
. ..

. ..
.

an1x1 þ an2x2 þ � � � þ annxn ¼ bn

ðB-1Þ

can be written in matrix form as
Ax ¼ b ðB-2Þ

where A ¼
a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. ..

.

an1 an2 � � � ann

2
6664

3
7775; x ¼

x1
x2
..
.

xn

2
6664

3
7775 and b ¼

b1

b2

..

.

bn

2
6664

3
7775

Frequently, we will want to solve a set of simultaneous equations such as Equation B-1. In other words,
given the values of the coefficients aij and bi, we will want to determine the values of the variables xi.
Using MATLAB, we express the equation in matrix form as shown in Equation B-2, entering matrices
A and b and then giving the MATLAB command

>> x = A\b

MATLAB will respond with the value of the matrix x.

Solution
Figure B.3 shows how to do these calculations, using MATLAB. First,
two matrix variables

A ¼ 2 1
4 2

� �
and B ¼ 6 1

3 1

� �

are defined. Figure B.3 shows two ways of defining a matrix variable in
MATLAB. The command

>>A = [2 1; 4 2]

uses a space to separate the elements in each row of the matrix and a
semicolon to separate the rows of the matrix. The command

>> B = [6 1
2 1]

uses a space to separate the elements in a row of the matrix and an
<Enter> to separate the rows of the matrix. (After the <Enter>, spaces
are used to line up the columns of matrix B.) Both commands use the
bracket symbols, [ and ], to indicate the beginning and end of the
matrix.

Figure B.3 shows that operations listed in Table B.1 can be used
to perform matrix arithmetic. We see that

2 1

4 2

� �
þ 6 1

3 1

� �
¼ 8 2

7 3

� �
;

2 1

4 2

� �
� 6 1

3 1

� �
¼ �4 0

1 1

� �

and
2 1

4 2

� �
*

6 1

3 1

� �
¼ 15 3

30 6

� �
FIGURE B.3 Matrix arithmetic.
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We can also solve simultaneous equations using Cramer’s rule, which involves determinants,
minors, and cofactors. The determinant of a matrix is a number associated with a square matrix.
We define the determinant of a square matrix A as D, where

D ¼
a11 a12 � � � a1n

a21 a22 � � � a2n

..

. ..
. ..

.

an1 an2 � � � ann

��������

��������
For example, the determinant of a 2 � 2 matrix

D ¼ a11 a12

a21 a22

����
���� ¼ a11a22 � a12a21

Similarly, the determinant of a 3 � 3 matrix is

D ¼
a11 a12 a13

a21 a22 a23

a31 a32 a33

������

������ ¼ a11a22a33 þ a12a23a31 þ a13a32a21ð Þ � a13a22a31 þ a23a32a11 þ a33a21a12ð Þ

E X A M P L E B . 3 Solving Simultaneous Equations Using MATLAB

Solve the simultaneous equations:

x1 � 2x2 þ 3x3 ¼ 12
4x2 � 2x3 ¼ �1

6x1 � x2 � x3 ¼ 0

Solution
First, write the simultaneous equations as

Ax ¼ b

where

A ¼
1 �2 3
0 4 �2
6 �1 �1

2
4

3
5; b ¼

12
�1
0

2
4

3
5 and x ¼

x1
x2
x3

2
4

3
5

Next, enter matrices A and b in the MATLAB command window as
shown in Figure B.4. Then, issue the MATLAB command

>> x = A\b

MATLAB provides the result

x ¼
1:2407
2:3148
5:1296

2
4

3
5

indicating that

x1 ¼ 1:2407; x2 ¼ 2:3148, and x1 ¼ 5:1296

FIGURE B.4 Solving simultaneous
equations.
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In general, we are able to determine the determinant D in terms of cofactors and minors. The
determinant of a submatrix of A obtained by deleting from A the ith row and the jth column is called the
minor of the element aij and denoted as mij.

The cofactor cij is a minor with an associated sign, so that

cij ¼ �1ð Þ iþjð Þmij

The rule for evaluating the determinant D using the ith row of an n � n matrix is

D ¼
Xn

j¼1

aijcij

for a selected value of i. Alternatively, we can obtain D by using the jth column and, thus,

D ¼
Xn

j¼1

aijcij

for a selected value of j.
Cramer’s rule states that the solution for the unknown, xk, of the simultaneous equations of

Equation B-1 is

xk ¼ Dk

D

where D is the determinant of A and Dk is the determinant formed by replacing the kth column of A by
the column vector b.

B.3 C omp l e x N umb e r s a n d C omp l e x A r i t hm e t i c

We can represent the complex number c as

c ¼ a þ jb ðB-3Þ
where a and b are real numbers and j ¼ ffiffiffiffiffiffiffi�1

p
. It’s useful to associate this complex number with a point

in the complex plane as shown in Figure B.5a. Figure B.5a shows that the real numbers a and b in
Equation B-3 are the projections of the point unto the real and imaginary axes. Consequently, a is called
the real part of c, and b is called the imaginary part of c. We write

a ¼ Refcg and b ¼ Imfcg
Figure B.5b illustrates an alternate representation of the complex number c, in which a line segment
is drawn from the origin of the complex plane to the point representing the complex number. The
angle of this line segment, y, measured counterclockwise from the real axis, is called the angle of
the complex number. The length of the line segment, r, is called the magnitude of the complex number.

Real axis
0

b

a

Imaginary axis

c = a + jb θ

0
Real axis

0

Imaginary axis

c = r

θ0

r

(a) (b)

FIGURE B.5 Rectangular
(a) and polar (b) forms of a
complex number.
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The polar form represents the complex number in terms of its
magnitude and angle. We write

c ¼ rffy
To indicate that r is the magnitude of the complex number c
and that y is the angle of c, we write

r ¼ cj j and y ¼ ffc

Figure B.6 shows a complex number c with Refcg < 0. Notice that y, not f, is the angle of c.
Because a complex number can be expressed in both rectangular and polar forms, we write

a þ j b ¼ c ¼ rffy
The trigonometry of Figure B.4 and Figure B.5 provides the following equations for converting
between the rectangular and polar forms of complex numbers.

a ¼ r cos yð Þ; b ¼ r sin yð Þ; r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p

and y ¼
tan �1 b

a

� �
a > 0

180� � tan �1 b

�a

� �
a < 0

8>><
>>:

Several special cases are worth noticing.

1 ¼ 1ff0�; j ¼ 1ff90�; � 1 ¼ 1ff�180� and � j ¼ 1ff�90� ¼ 1ff270�
Next, consider doing arithmetic with complex numbers. We will convert complex numbers to

rectangular form before adding or subtracting. Then,

a þ j bð Þ þ c þ j dð Þ ¼ a þ cð Þ þ j b þ dð Þ

and a þ j bð Þ � c þ j dð Þ ¼ a � cð Þ þ j b � dð Þ

We will convert complex numbers to polar form before multiplying or dividing. Then,

Affy� 	
Bfff� 	

¼ ABff yþ fð Þ and
Affy
Bfff ¼ A

Bff y� fð Þ

The conjugate of the complex number c ¼ a þ jb is denoted as c* and is defined as

c* ¼ a � jb

In polar form, we have

c* ¼ rff�y

A third representation of complex numbers, the exponential form, is motivated by Euler’s
formula. Euler’s formula is

e jy ¼ cos yþ j sin y

Real axis
0

b

a

Imaginary axis

= a + jbθ

0

c = r

r

θ

φ

FIGURE B.6 A complex number having a < 0.
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Consequently; r e jy ¼ r cos yþ j r sin y

Similarly, when we convert from polar to rectangular form,

rffy ¼ r cos yþ j r sin y

Noticing that the right-hand sides of the two previous equations are identical establishes the equivalence
between the exponential and polar forms of a complex number.

r e jy ¼ rffy
The conversion between the polar and exponential forms is immediate. When using MATLAB, we will
represent a polar form complex number by the equivalent exponential form complex number.

It’s worth noticing that Euler’s formula provides formulas for the sine and cosine.

cos y ¼ 1

2
e jy þ e�jy
 �

and sin y ¼ 1

2j
e jy � e�jy
 �

Table B.3 lists some of the complex arithmetic functions available in MATLAB.

Table B.3 Complex-Arithmetic Functions
FUNCTION EQUATION MATLAB

Real part Re{c} real(c)
Imaginary part Im{c} imag(c)
Magnitude |c| abs(c)
Angle ffc angle(c)
Complex conjugate c* conj(c)

E X A M P L E B . 4 Rectangular and Polar Forms of Complex Numbers

Express c1 ¼ 4 � j3 in exponential and polar forms. Express c2 ¼
6:2ff�120� in rectangular form.

Solution
Doing the conversions by hand yields

c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ �3ð Þ2

q fftan�1 �3

4

� �
¼ 5ff�36:87�

and

c2 ¼ 6:2 cos (� 120�)þ j6:2 sin (� 120�) ¼ �3:1� j5:37

In Figure B.7, MATLAB does the same conversions with the same
results. The factors 180/p and p/180 are used to convert radians to
degrees and degrees to radians. Notice that the function angle(c1)
gives the angle of c1 in radians and the function exp ( � j*y) expects
y to be given in radians.

FIGURE B.7 Complex numbers.
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B.4 P l o t t i n g F u n c t i o n s U s i n g MAT LAB

Consider the equation

y ¼ 0:2 x2 þ 1:6

The MATLAB command

>> plot(x,y)

tells MATLAB to plot y as a function of x. The command requires x to be a row vector, that is, a 1 � n
matrix containing a list of equally spaced values of the variable x, and y to be a row vector containing a
list of the corresponding values of the variable y.

E X A M P L E B . 5 Arithmetic with Complex Numbers

Find c þ d; c � d; cd, and c=d when c ¼ 4 � j3 and d ¼ 6:2ff�120�.

Solution
First, let’s convert c to polar form and d to rectangular form.

c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
42 þ �3ð Þ2

q ff tan �1 �3

4

� �
¼ 5ff�36:87�

and

d ¼ 6:2 cos �120�ð Þ þ j6:2 sin �120�ð Þ
¼ �3:1� j5:37

Using the rectangular form for addition and subtraction yields

c þ d ¼ 4� j3ð Þ þ �3:1� j5:37ð Þ
¼ 4� 3:1ð Þ þ j �3� 5:37ð Þ ¼ 0:9� j8:37

and

c � d ¼ 4� j3ð Þ � �3:1� j5:37ð Þ
¼ 4þ 3:1ð Þ þ j �3þ 5:37ð Þ ¼ 7:1þ j2:37

Using the polar form for multiplication and division yields

c d ¼ 5ff�36:87�
� 	

6:2ff�120�
� 	

¼ 5� 6:2ð Þff �36:87� � 120�ð Þ
¼ 31ff�156:87�

and

c

d
¼ 5ff�36:87�

6:2ff�120�

¼ 5

6:2

� �ff �36:87� þ 120�ð Þ

¼ 0:806ff83:13�
In Figure B.8, MATLAB does the same arithmetic with the same results.

FIGURE B.8 Complex Arithmetic.
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To obtain a list of equally spaced values of the variable x, we issue a MATLAB command of
the form

>> x = [xs : dx : xf]

where xs is the starting value of x, dx is the increment of x, and xf is the final value of x. For example,
the MATLAB command

>> x = [-5 : 4 : 15]

produces the list
>> x = -5 -1 3 7 11 15

To obtain the list of the corresponding values of the variable y, we issue the MATLAB command

>> y=0.2*x.^2+1.6

which produces the list

>> y = 0.6 1.4 2.2 3.0 3.8 4.6

(Notice the operation “.^” in this command. The operation ^ is the power operation from Table B.1, and
x is a matrix. The . before the ^ tells MATLAB to apply the power operation to each element of x rather
than to the matrix x itself.)

E X A M P L E B . 6 Plott ing Functions Using MATLAB

Use MATLAB to verify that

5:61 cos (100 t)� 13:96 sin (100 t) ¼ 15 cos (100 t þ 68:1�)

Solution
The MATLAB commands

>> t = [0 : 0.001 : 0.12];
>> v1 = 5.61*cos(100*t) - 16.96*sin(100*t);
>> v2 = 15*cos(100*t +68.1*pi/180);
>> plot(t,v1,t,v2)

Produce the plot shown in Figure B.9. The MATLAB command

>> plot(t,v1,t,v2)

tells MATLAB to plot both v1 versus t and v2 versus t on the same axis. Because these plots overlap exactly,
we conclude that v1 and v2 are identical functions of t.

FIGURE B.9 MATLAB plot for Example B.6.
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APPENDIX C Mathematical
Formulas

C.1 T r i g o n om e t r i c I d e n t i t i e s

1. sin ( �a) ¼ �sin a

2. cos ( �a) ¼ cos a

3. sin a ¼ cos (a� 90�) ¼ �cos (aþ 90�)

4. cos a ¼ �sin (a� 90�) ¼ sin (aþ 90�)
5. sin a ¼ �sin (a� 180�)
6. cos a ¼ �cos (a� 180�)

7. sin (a� b) ¼ sin a cos b� cos a sin b

8. cos (a� b) ¼ cos a cos b� sin a sin b

9. tan (a� b) ¼ tan a� tan b
1 � tan a tan b

10. sin 2a ¼ 2 sin a cos a

11. cos 2a ¼ cos2a� sin2a

12. 2 sin a sin b ¼ cos (a� b) � cos (aþ b)

13. 2 sin a cos b ¼ sin (aþ b) þ sin (a� b)

14. 2 cos a cos b ¼ cos (aþ b) þ cos (a� b)

15. 2 sin2a ¼ 1 � cos 2a

16. 2 cos2a ¼ 1 þ cos 2a

17. sin2aþ cos2a ¼ 1

C.2 D e r i v a t i v e s

The letters u and v represent functions of x, whereas a, b, and m are constants.

1. d

dx
(au) ¼ a

du

dx

2. d

dx
(u þ v) ¼ du

dx
þ dv

dx

3. d

dx
(uv) ¼ du

dx
v þ u

dv

dx

4. d

dx

u

v

� �
¼

v
du

dx
� u

dv

dx
v2

5. d

dx
(xm) ¼ mxm�1
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6. d

dx
(eax) ¼ aeax

7. d

dx
(1n x) ¼ 1

x

8. d

dx
cos (ax þ b) ¼ �a sin (ax þ b)

9. d

dx
sin (ax þ b) ¼ a cos (ax þ b)

C.3 I n d e f i n i t e I n t e g r a l s

The letters u and v represent functions of x, whereas a and b are constants.

1.
Z

au dx ¼ a

Z
u dx

2.
Z

(u þ v) dx ¼
Z

u dx þ
Z

v dx

3.
Z

xm dx ¼ xmþ1

m þ 1
when m 6¼ �1

4.
Z

u
dv

dx
dx ¼ u v �

Z
v

du

dx
dx

5.
Z

dx

x
¼ lnjxj

6.
Z

sin ax dx ¼ � 1
a

cos ax

7.
Z

cos ax dx ¼ 1
a

sin ax

8.
Z

sin2 ax dx ¼ x

2
� sin 2ax

4a

9.
Z

cos2 ax dx ¼ x

2
þ sin 2ax

4a

10.
Z

cos ax sin ax dx ¼ sin2 ax

2a

11.
Z

x sin ax dx ¼ sin ax � ax cos ax

a2

12.
Z

x cos ax dx ¼ cos ax þ ax sin ax

a2

13.
Z

sin ax sin bx dx ¼ sin (a � b)x
2(a � b)

� sin (a þ b)x
2(a þ b)

when b2 6¼ a2

14.
Z

cos ax cos bx dx ¼ sin (a � b)x
2(a � b)

þ sin (a þ b)x
2(a þ b)

when b2 6¼ a2

15.
Z

sin ax cos bx dx ¼ �cos (a � b)x
2(a � b)

� cos (a þ b)x
2(a þ b)

when b2 6¼ a2
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16.
Z

eax dx ¼ 1
a

eax

17.
Z

x eax dx ¼ ax � 1
a2

eax

18.
Z

eax sin bx dx ¼ eax(a sin bx � b cos bx)

a2 þ b2

19.
Z

eax cos bx dx ¼ eax(a cos bx þ b sin bx)

a2 þ b2
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APPENDIX D Standard
Resistor Color
Code

Low-power resistors have a standard set of values. Color-band codes indicate the resistance value as
well as a tolerance. The most common types of resistors are the carbon composition and carbon film
resistors.

The color code for the resistor value uses two digits and a multiplier digit, in that order, as shown
in Figure D.1. A fourth band designates the tolerance. Standard values for the first two digits are listed in
Table D.1.

The resistance of a resistor with the four bands of color may be written as

R ¼ (a � 10þ b)m � tolerance

where a and b are the values of the first and second bands, respectively, and m is a multiplier. These
resistance values are for 2 percent and 5 percent tolerance resistors, as listed in Table D.1. The color
code is listed in Table D.2. The multiplier and tolerance color codes are listed in Tables D.3 and D.4,
respectively. Consider a resistor with the four bands, yellow, violet, orange, and gold. We write the
resistance as

R ¼ (4� 10þ 7) kV� 5%

¼ 47 kV� 5%

1st digit
2nd digit

Multiplier
Tolerance

FIGURE D.1 Resistor with four color bands.

Table D.1 Standard Values for First Two Digits for 2 Percent
and 5 Percent Tolerance Resistors

10 16 27 43 68
11 18 30 47 75
12 20 33 51 82
13 22 36 56 91
15 24 39 62 100
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Table D.2 Color Code

0 black
1 brown
2 red
3 orange
4 yellow
5 green
6 blue
7 violet
8 gray
9 white

Table D.3 Multiplier Color Code

silver 0.01
gold 0.1
black 1
brown 10
red 100
orange 1 k
yellow 10 k
green 100 k
blue 1 M
violet 10 M
gray 100 M

Table D.4 Tolerance Band Code

red 2%
gold 5%
silver 10%
none 20%
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Index

2D gel electrophoresis, 18

ABC phase sequence, 570
AC circuit, 426
Active element, 24
Admittance, 436

complex-frequency domain, 701
Admittance parameters, 844
Alternating current (ac), 3
Ammeter, 30
Ampere, 5
Amplifier, 149, 201
Amplifier design, 231
Amplitude spectrum, 765
Amplitude-phase Fourier series, 747
Analog-to-digital converter (ADC), 250
Angular frequency, 427
Asymptotic Bode plot, 619
Average power, 507

three phase circuit, 589

Balanced three-phase circuits, 586
Balanced three-phase load, 572
Balanced three-phase source, 570
Band-pass filter, 805
Bandwidth, 635
Bell, Alexander Graham, 617
Block diagram, 234, 292
Bode plot, 616

asymptotic, 619
complex poles, 628

Bode, H.W., 616
Break frequency, 620
Bridge, 201, 225
Bridge amplifier, 225, 228
Butterworth transfer function, 806

Capacitor, 269, 325
complex-frequency domain, 691
dc circuit, 290
element equation, 304

Cascade, 816, 819
two-port networks, 853

CCCS, 34, 35
CCVS, 34, 35
Characteristic equation, 384
Characteristic roots, 385
Charge, 2
Circuit, 1
Circuit design

poles and zeros, 632
Circuit diagrams, 54
Coaxial cable, 359
Color-code probes, 32

ammeter, 32
voltmeter, 32

Column vector, 873
Complete response, 324, 396
first-order circuits, 325
switched ac circuits, 465

Complex arithmetic, 879
MATLAB, 880

Complex frequency, 404, 672
Complex numbers, 879

conjugate, 880
MATLAB, 881
polar form, 879
rectangular form, 880

Complex plane, 403
Complex poles, 683

Bode plot, 628
MATLAB, 716

Complex-frequency domain, 693
Conductance, 27
Conservation of complex

power, 516
Constitutive equation, 20
Controlled source, 33
Convolution, 706

Fourier transform, 785
MATLAB, 708

Corner frequency, 619 893



Coulomb, 2
Coupled coils, 531
Coupled inductors, 531

dot convention, 532
element equation, 550

Coupling coefficient, 534
Cramer’s rule, 878
Critically damped, 387

natural response, 389
poles, 404

Current, 2
Current divider, 69, 91

in the frequency domain, 442
Current source, 28

parallel, 74
nonideal, 169

Cutoff frequency, 805

Damped resonant frequency, 390, 407
Damping coefficient, 390
Decibel, 617
Delay, 607, 678
Delta-connected three phase source, 571
Delta-Y transformation, 581
Dependent source, 33, 34

gain, 33
node equations, 126
power, 36

Design
operational amplifier circuits, 228
problem solving method, 11

Design Example
ac circuit with op amp, 479
adjustable voltage source, 88
airbag igniter, 407
anti-aliasing filter, 828
computer and printer, 359
dc power supply, 792
intgrator and switch, 301
jet valve controller, 14
maximum power transfer, 538
potentiometer angle display, 149
power factor correction, 597

radio tuner, 650
space shuttle cargo door, 720
strain gauge bridge, 201
temperature sensor, 42
transducer interface circuit, 250
transistor amplifier, 857

Determinant, 878
Device, 2
Dielectric constant, 269
Difference amplifier, 224, 229
Differential equation, 325

direct method, 379, 380
first-order circuits, 325
integrating factor, 346
Laplace Transform, 689
operator method, 380, 381
state variable method, 399

Differential operator, 351, 381
Differentiator, 293
Dirchlet conditions, 742
Direct current (dc), 3
Dot convention, 532

Effective value, 509
EFS, 761
Electric field, 269, 275
Element, 2
Element equation

capacitor, 304
coupled inductors, 550
ideal transformers, 550
inductors, 304

Energy, 7
stored in a capacitor, 275
stored in an inductor, 285
stored in coupled coils, 534

Equivalent Circuit, 53
coupled inductors, 533
frequency-dependent op amp, 640
ideal transformer, 540
per-phase, 574, 586
series or parallel sources, 77

Equivalent circuit diagrams, 55
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Equivalent impedance, 441, 447
transformer, 542

Equivalent resistance, 77, 91
parallel resistors, 69
series resistors, 64

Euler’s formula, 880
Even function, 750
Exponential Fourier series, 758, 759

MATLAB, 760

Farad, 269
Faraday, Michael, 269
FFT, 761
Filter, 805
Filter Circuits

PSpice, 822
Final value theorem, 687
Final value theorem, 718
First-order circuit, 322, 325

summary, 362
First-order filters, 819
First-order low-pass filters

network functions, 615
Forced response, 324, 347, 350,

393, 426
Fourier series

common waveforms, 755
full-wave rectified cosine, 743
MATLAB, 746
PSpice, 772
trigonometric, 742

Fourier spectrum, 765, 784
MATLAB, 768

Fourier transform, 778
Laplace transform, 788
properties, 781

Fourier, Jean-Baptise-Joseph, 741
Franklin, Benjamin, 2
Frequency, 427
Frequency domain, 438

table, 482
Frequency response, 609

PSpice, 644

Frequency scaling, 807
Fundamental frequency, 742

Gain, 231, 605
Gain-bandwidth-product, 642
Ground node, 115, 220
Guidelines for labeling circuit

variables, 85

Half-power frequency, 614
Harmonics, 742
Heaviside, Oliver, 384
Henry, 281
Henry, Joseph, 281
Hertz, 5, 427
Hertz, Heinrich, 427
High-order filters, 816
High-pass filter, 805
Homogeneity, 21
“How can we check …”

ac analysis, 477
AC power, 546
balanced three-phase circuits, 594
band-pass filter, 826
capacitor voltage and current,

300
complex arithmetic, 476
first-order circuits, 355
Fourier series, 790
frequency response, 646
hybrid parameters, 855
initial and final values, 718
Kirchhoff’s laws, 86
mesh currents, 147
node voltages, 146
Ohm’s law, 40
operational amplifier, 248
passive convention, 13
second-order circuits, 405
Th�evenin equivalent, 200
unbalanced three phase

circuits, 595
Hybrid parameters, 848, 855, 857
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Ideal filter, 805
Ideal operational amplifier, 221
Ideal source, 29
Ideal transformers

element equation, 550
lossless, 541

Impedance, 435
capacitor, 436
complex-frequency domain,

691, 701
inductor, 436

Impedance parameters, 844
Impluse function, 677
Impulse response, 701
Independent source, 28
Inductor, 280, 326

complex-frequency domain, 692
dc circuit, 289
element equation, 304

Initial condition, 327, 690
capacitor, 270
inductor, 281
switched dc circuits, 288

Initial value theorem, 687, 718
Input and output impedance, 818
Instantaneous power, 506

three-phase circuit, 588
Integrator, 293, 301
Inverse Fourier transform, 778
Inverse hybrid parameters, 848
Inverse Laplace transform, 672, 680
Inverting amplifier, 228, 231, 240

in frequency domain, 463

Joule, 5

KCL and KVL for ac circuits, 434
Kilo, 6
Kirchhoff, Gustav Robert, 56
Kirchhoff’s Current Law (KCL), 56
Kirchhoff’s Laws, 54
Kirchhoff’s Voltage Law

(KVL), 57

Lagging power factor, 519
Laplace transform, 671

properties, 675
table, 675

Laplace, Pierre-Simon, 672
Leading power factor, 519
Line current, 583
Line losses, 577
Linear element, 21
Line-to line voltage, 571
Loading, 229, 816
Loop, 57, 128
Low-pass filter, 805

Magnetic field, 280, 285
MathCad

Kirchhoff’s Laws, 86
simultaneous equations, 249

MATLAB, 873
ac circuits, 472
Bode plot, 642
capacitors and inductors, 287
circuit analysis with consecutive

equations, 84
circuit analysis with simultaneous

equations, 84
complex arithmetic, 882
complex numbers, 881
convolution, 708
exponential Fourier series, 760
Fourier spectrum, 768
frequency response, 642
functions, 874
matricies, 875
mesh equations, 142
node equations, 121
operational amplifiers, 245
operations, 874
partial fraction expansion, 713
plotting functions, 882
Th�evenin equivalent circuit, 194
trigonometric Fourier series, 746

Matrix, 875
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Maximum power transfer, 169, 191, 192,
530, 542

ac circuits, 547
Mega, 6
Mesh, 128
Mesh current, 128, 130

PSpice, 144
Mesh equations, 114, 129, 152

dependent sources, 137, 152
in the frequency domain, 447
versus node equations, 139

Mho, 27
Micro, 6
Milli, 6
Model, 20, 29
Multiplicity

repeated poles, 684
Mutual inductance, 532
my_periodic_function, 761

Nano, 6
Natural frequencies, 385
Natural response, 324, 347

critically damped, 389
overdamped, 387
second-order circuits, 383
underdamped, 390

Network function, 608
Node, 2, 54, 115
Node equations, 114, 116, 152

dependent sources, 126, 152
in the frequency domain, 447
op amp circuits, 223
versus mesh equations, 139

Node voltages, 115
element currents and voltages,

117
PSpice, 144

Nonideal op amps, 238
Noninverting amplifier,

228, 231
in frequency domain, 463

Noninverting summer, 235

Norton equivalent circuit, 169, 172,
187, 323, 326

in the frequency domain, 455
Norton, E.L., 187
Notch filter, 805

Odd function, 750
Ohm, 5, 25
Ohm, Georg Simon, 25
Ohmmeter, 79
Ohm’s law, 25, 44
Op amp circuits

design, 233
differential equations, 292
differentiator, 293
first order filters, 819
first-order low-pass filters, 615
integrator, 293
linear algebraic equations, 233
node equations, 223
PSpice, 247
Sallen-Key filters, 810
summing integrator, 295

Open circuit, 30, 44
capacitor in a dc circuit, 290
ideal voltmeter, 32

Open-circuit voltage, 170, 180
Operational amplifier, 219

ac circuits, 453, 463
bias current, 238, 240
catalog of op amp circuits, 228
common-mode rejection ratio, 244
finite voltage gain, 242
frequency-dependent gain, 640
gain-bandwidth product, 244
ideal operational amplifier, 221
input resistance, 238
linear differential equations, 292
models, 238
offset voltage, 238, 240
output resistance, 238
power supplies, 220
saturation current, 221
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saturation voltage, 221, 245
slew rate limit, 221
typical parameters, 239
voltage gain, 238

Overdamped, 387
natural response, 387
poles, 404

Parallel
admittances, 440
capacitors, 278, 305
current sources, 74
inductors, 287, 305
resistors, 68, 91
two-port networks, 853
voltage sources, 91

Partial fraction expansion, 681
MATLAB, 713

Pass-band, 805
Passive convention, 8, 25, 44, 508
Passive element, 24
Period, 427
Periodic function, 427, 742
Permeability, 280
Per-phase equivalent circuit, 574
Phase angle, 427, 429
Phase current, 583
Phase shift, 606
Phase spectrum, 765
Phase voltage, 571
Phasor diagram, 461
Pico, 6
Planar circuits, 128
Poles, 620, 681

MATLAB, 713
stability, 710

Port, 840
Potentiometer, 37, 88, 142, 149
Power, 7

apparent, 512
average, 507, 512
complex, 512
instantaneous, 506

reactive, 512
received, 8
resistor, 27
supplied, 8
table, 513

Power factor, 519
Power factor angle, 519
Power factor correction,

520, 523
three-phase circuit, 597

Power superposition, 527
Power triangle, 514
Pressure transducer, 250
Primary coil

coupled inductors, 535
transformer, 539

Problem-solving method, 11
Proper rational function, 681
PSpice, 864

AC circuits, 466
complete response, 324
filters, 822
first order circuits, 352
Fourier series, 772
frequency response, 644
Getting Started, 864
Initial condition, 352
Mesh currents, 144
Node voltages, 144
Op amp circuits, 247
sources for ac circuits, 474
sources for transient response, 353
Th�evenin equivalent circuit, 197

PSpice subcircuits
Sallen-Key filters, 824

Pulse, 343, 677

Quality factor, 635, 808

Rectangular to polar conversion, 747
Reference node, 115
Repeated poles, 684

MATLAB, 714
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Residues, 681
MATLAB, 713

Resistance, 25
Resistor, 25

color code, 889
Resonant circuit, 633, 639

frequency response, 637
parallel RLC, 634, 638
series RLC, 636

Resonant frequency, 634
RLC summary, 410
Root-mean-squared, 510

Sallen-Key filters, 810
Saturation, 245
s-domain, 693
Secondary coil

coupled inductors, 535
transformer, 539

Second-order RLC filters, 809
Sequential Switching, 338
Series

capacitors, 278, 305
current sources, 91
impedances, 440
inductors, 287, 305
resistors, 63, 64, 91
two-port networks, 853
voltage sources, 74

Short circuit, 30, 32, 44, 289
Short-circuit current, 170, 180
SI Prefixes, 6
SI Units, 5
Siemens, 5, 27
Signal, 234
Simple real poles, 681
Simulated inductor, 650
Simultaneous equations, 875

MATLAB, 876
Sine-cosine Fourier series, 747
Sinusoidal sources, 426
Source transformation, 169, 172, 203

in the frequency domain, 458

SPDT, 39
SPST, 39
Stability, 340, 710

impulse response, 711
transfer function, 710

State variables, 399
Steady state response, 324, 426

periodic inputs, 770
Step function, 342, 677
Step response, 701, 718
Stop-band, 805
Strain gauge, 201
Summing amplifier, 228, 232
Supermesh, 135, 152
Supernode, 122, 123, 152
Superposition, 21, 169, 176,

240, 770
in the frequency domain, 459

Switched dc circuits, 290
Switches, 39
Symmetry and the Fourier

series, 751

Temperature sensor, 37, 42
Terminal, 2
Th�evenin and Norton equivalent

circuits, 204
Th�evenin equivalent circuit, 169, 171,

180, 202, 225, 323, 325
in the frequency domain, 455

Th�evenin impedance, 455
Th�evenin resistance, 180, 192, 340

maximum power transfer, 530
Th�evenin, M.L., 180
Three-phase circuit, 570

instantaneous power, 588
delta-connected, 571
Y-connected, 571

Time constant, 326, 327, 357
Time domain, 438
Tow-Thomas filters, 814
T-Pi Converion, 842
Transfer function, 700, 718
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Transformer, 539
element equation, 550
ideal, 539
line losses, 578

Transient response, 324
Transmission parameters, 849
Trigonometric formulas, 884
Turns ratio, 527, 540
Two-port network, 840
Two-port parameter conversion, 851
Two-wattmeter power measurement, 591

uA741, 220, 221, 240
Underdamped, 387

Natural response, 390
poles, 404

VCCS, 34, 35
VCVS, 34, 35
Volt, 5
Voltage, 7

Voltage division, 64, 91, 232
in the frequency domain, 442, 466

Voltage follower, 228, 229, 232, 242
Voltage source, 28

nonideal, 169
series, 74

Voltage-controlled switch, 301
Voltmeter, 30

Watt, 5

Y parameters, 844
Y-connected three phase source, 571
Y-delta circuit, 583
Y-delta transformation, 581
Y-Y circuit, 572

3-wire, 573
4-wire, 572

Z parameters, 844
Zeros, 620, 681
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