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Course Scope

An Introduction to  
Formal Logic

Logic is the study of rational argumentation. A belief is rational if 
we have good reason to believe that it is true. An argument is a 

set of sentences such that one sentence, the conclusion, is claimed 
to follow from the other sentences, the premises. That means that 
logic is the study of the support we need to have good reason to 
believe the things we believe. 

We are not wired to be logical. All kinds of bad reasons for believing 
things seem to us like perfectly good reasons. But the situation is not 
hopeless. It turns out that logic is a skill that can be learned. We can 
be trained to spot the reasoning errors, look for the proper kind of 
support, and analyze arguments we hear from others to assess their 
strength and weaknesses. 

We’ll begin by examining the human mind and seeing the ways in 
which logic is and is not a natural part of the way we think. We’ll look 
at some of our cognitive biases, ways in which social psychologists 
have demonstrated that the brain naturally works against good 
inferences. Humans can be rational beings, but it takes work to 
realize the pitfalls we need to avoid.

Then, we’ll introduce a wide range of logical concepts. We will 
rigorously introduce the notion of an argument and examine both the 
types of arguments—deductive and inductive—and the criteria by 
which we assess an argument—validity and well-groundedness. We 
will learn that arguments have two parts: conclusions (that which is 
being argued for) and premises (the support given for the conclusion).
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Next, we’ll focus on informal logic—that is, considerations of well-
groundedness, the criterion of assessment that considers the truth 
of an argument’s premises. We’ll learn to spot common fallacies, 
reasoning errors that sound good to the ear but that actually 
undermine the support for the conclusion. 

Inductive arguments are those that begin with observation and lead 
to broader, generalized conclusions. We’ll study the basis for strong 
inductive arguments and the ways in which inductive arguments can 
go wrong, and then we’ll examine the use of inductive arguments in 
science and polls. 

Formal deductive logic is the part of logic concerned with the forms 
of deductive arguments. An argument is deductive if the content 
of the conclusion is contained in the content of the premises. If a 
deductive argument has good form, regardless of the truth or falsity 
of its premises, we say that the argument is valid. 

To handle different types of sentences, we will develop two logical 
languages. The first, truth-functional logic, looks at the logical 
behavior of truth-functional connectives—words such as “not,” “and,” 
“or,” and “if”—which produce sentences that we can determine 
the truth or falsity of simply by knowing the truth or falsity of the 
sentences combined. We will learn how to determine whether or 
not such arguments are valid using both truth tables and natural 
deduction proofs.

The second logical language is first-order predicate logic, which 
builds on top of the elements of truth-functional logic in a way that 
allows us to account for the logical content within sentences as well 
as between them. In this way, a more powerful logical system can 
be constructed that can handle everything in truth-functional logic, 
everything in Aristotle’s logic, and more. 

The pinnacle of first-order predicate logic for us will be the ability to 
account for sentences that contain quantities. This means that we can 
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begin to account for mathematical truths in our logical system. The 
possibility of giving logical justifications for mathematical propositions 
is a major element in the history of the development of logic. We’ll 
discuss the rise and fall of logicism, the view that logic provides the 
ultimate foundation for all of mathematics.

We’ll examine modal logic, which deals with the concepts of 
possibility and necessity, distinguishing between those sentences 
that just happen to be true and those sentences that must be true. 
We will see how modal logic was reinterpreted to develop a logic for 
ethical claims. 

Finally, we’ll explore three-valued logic and fuzzy logic. The basis for 
all of the logical considerations is that all sentences must have one 
of two truth values: true and false. But what if we include a third truth 
value—or even a continuum, ranging from definitely true to definitely 
false, possibly taking any value in between? 

In this course, we’ll see that logic is a tool for helping us think in a 
clearer, more rigorous fashion. Logic allows us to distinguish between 
proper and improper forms of reasoning but never leads us to 
conclusions on its own. The content of our arguments come from our 
experiences, beliefs, and hypotheses. Logic does not control life, but 
it is an important part of a well-lived life.
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Why Study Logic?

S ince the times of classical Greece, the definition of “human 
being” has hinged on the notion of people being rational. Our 

brain is what sets us apart from the rest of the animal kingdom, and 
the nature of that brain is reason. The claim has been that we are built 
for logic. But contemporary psychology and sociology have shown 
otherwise. We have built in cognitive biases, and we have internalized 
social facts from our cultural background, and these both often 
lead us to unwarranted conclusions. We cannot rely on our natural 
instincts, but must train ourselves in the way of rational thought. 

Innate Human Irrationality

⊲⊲ We have arranged our entire civil society around the idea that we 
are logical beings naturally capable of rational thought. But the 
world is complex. In the same way that there are optical illusions, 
images that will trick our senses into thinking they perceive 
something they do not, there are cognitive illusions—that is, ways 
of thinking that convince us that we are right about something we 
believe when we are, in fact, wrong. 

⊲⊲ Contrary to our beliefs, we are not wired to be completely rational. 
Indeed, there are multiple factors that lead us to be irrational. 
Some of these are psychological, some are sociological, and 
some are cultural. 

⊲⊲ But understanding that they are out there is the first step to 
realizing that we need to think carefully about thinking carefully 
and to teach ourselves how to think in ways that are the most 
likely to avoid errors. 
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⊲⊲ One of the more well-known examples of being led to irrational 
belief comes from psychologist Solomon Asch’s experiments in 
the early 1950s on conformity. The subject of the experiment would 
sit at a table with several other people, who he or she was told 
were also participating in the experiment but unbeknownst to the 
subject were really confederates working with the experimenter. 

⊲⊲ It was explained that this was a 
study in perception and that they 
would be shown a series of charts 
with line segments of different length 
(labeled A, B, and C) and that they 
just needed to say which one was 
the same length as a fourth line. 

⊲⊲ The table was arranged so that the subject would answer last, 
after the others said aloud which line they thought was of the 
same size as the comparison line. The first chart was shown, and 
all of the confederates answered correctly, and so did the test 
subject. The same thing happened with the next chart. 

⊲⊲ Then, on the third try, the confederates all gave what was 
obviously the wrong answer. C was the same size as the 
comparison line, but they all responded that A was. When it got 
to the test subject’s turn, 12 out of 18 times in the original study 
(and it has been reconfirmed many times since), the test subject 
gave the wrong answer so as not to stick out. 

⊲⊲ Not conforming with the group is something we fear, and we 
do things that we know are wrong in order to get along with the 
majority. What Asch shows is interesting: that we will act in such a 
way as to do something contrary to our reasonable beliefs. 

⊲⊲ Interviewed after the experiment, most subjects said that they 
knew the answer was wrong, but they didn’t want to embarrass 
themselves or mess up the researcher’s data by being different. 

Reference A B C
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More interestingly, others said that because the task was so easy 
and because the others answered so quickly and confidently, 
they started to doubt themselves. 

⊲⊲ Asch’s study was about what people would do—whether they 
would be willing to act in a way that they knew was wrong. But 
what came out was that, in some cases, it was not just about their 
actions, but also about their thoughts, about the way in which 
humans will change what we believe in order to fit in with those in 
our environment. 

⊲⊲ This is what psychologist Irving Janis called groupthink, which 
occurs when we sacrifice critical capacities of thought in order to 
adopt a consensus belief. All other things being equal, we would 
not have come to hold this belief, but because we are in a group 
that believes it, we do, too. It is not just that we act as if we believe 
it—we do believe it. 

⊲⊲ Janis, Asch, and a few generations of researchers following them 
have documented all kinds of factors that amplify or diminish 
groupthink. If those around you are unified in expressing the 
belief and do so passionately, you are more likely to get swept 
up in it. 

⊲⊲ But if even one person expresses skepticism, you are more likely 
to be skeptical yourself. 

⊲⊲ If there is a strong, charismatic leader espousing the view, people 
are more likely to come to believe it. 

⊲⊲ If there are rewards for believing and punishments for disbelieving, 
people will respond. 

⊲⊲ Our beliefs are affected by the beliefs, actions, and personalities 
of those around us, even if they violate what we otherwise know 
to be good reasoning. 
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⊲⊲ Documenting this has become one task of social psychology, 
and these researchers have documented many ways that we 
naturally reason badly, called cognitive biases. 

⊲⊲ Many cognitive biases have been discovered and replicated in 
multiple experiments. Some involve behaviors—effects such as 
hyperbolic discounting, where we will irrationally choose less of a 
reward now instead of delaying gratification for more of a reward 
later, even if the greater reward is certain to be granted. 

⊲⊲ There is also what has come to be known as irrational escalation 
effect, where we will judge an action less risky than we know it is 
because we have already invested in it. 

⊲⊲ Humans are not purely rational beings. Our ultimate interest in 
cognitive biases involves the ways in which we are innately wired 
to acquire false beliefs. 

Rational Actions and Thoughts

⊲⊲ We know that we act contrary to what we know to be rational, but 
just as interesting—or even more so—are the ways in which we 
are regularly wrong about what is rational. 

⊲⊲ Researchers Rolf Reber and Norbert Schwarz have shown that 
the font a sentence is written in will have a measurable effect on 
how likely we are to think it is true. The clearer the words are 
visually, the more stock we put in their truth. 

⊲⊲ Psychologists define the halo effect as follows: If someone is 
successful or has a virtue in one way—for example, the person 
is successful in business—then we will take that as evidence that 
the person is an authority in whatever he or she does or says. 
Furthermore, if someone we think is attractive tells us something 
and someone unattractive tells us the same thing, we are much 
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more likely to believe it when told to us by the good-looking 
person, even with the same or less evidence. 

⊲⊲ We have a positive outcome bias—that is, we think that we are 
more likely to succeed at tasks, win at games, or have good things 
happen to us than is actually the case. We imagine ourselves 
after the positive outcome, and because we can envision it so 
clearly, we come to think that it is more probable than it is. 

⊲⊲ We overestimate our abilities. The overconfidence effect is the 
irrational degree of belief we put in our own choices, even when 
we know they are random. Interestingly, this effect is amplified 
when the person is the most ignorant. We are most overconfident 
about our abilities to do that which we know the least about. 

⊲⊲ The Dunning-Kruger effect is the name given to the fact that 
the less people know about an area or how to do something, 
the more likely they are to overestimate their ability to do it or 
understand it. The more ignorant we are, the more brazen we are 
in our belief about our abilities and knowledge. 

⊲⊲ In the early 1980s, psychologist Benjamin Libet ran a series of 
experiments that showed that the parts of our brain that determine 
our actions are sometimes triggered before the parts of our brain 
that make decisions. We act first, and then we use our brain to 
concoct a story that justifies our belief that we acted because we 
consciously and rationally decided to, even if that justification has 
nothing to do with the real reason for the action. 

⊲⊲ We find this kind of “backfilling a justification” behavior on different 
cognitive levels. We suffer greatly from what social psychologists 
call confirmation bias—that is, when we hold a particular belief, 
we search out that which we believe supports the belief and 
explain away or outright ignore that which undermines rational 
belief in the proposition. 
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⊲⊲ When faced with a small amount of supporting evidence and a 
huge amount of disconfirming or falsifying evidence, we focus on 
that which backs us up and use it to swamp the overwhelming 
evidence against us—especially when the belief is core to our 
worldview. We see this often in the world of politics. 

⊲⊲ We will do whatever we need to in order to save our preexisting 
beliefs. Where do these come from? That is the purview of 
sociology. We are acculturated into a belief system, and the 
worldview it gives us—the basic categories and presuppositions 
that come with it—is notoriously difficult to change. 

⊲⊲ Emile Durkheim, one of the founding fathers of sociology, 
discussed what he called “social facts,” which we acquire from 
being part of a society. Social facts are ways of thinking or acting 
that originate outside the individual, are enforced by the society, 
and become a part of the individual. 

⊲⊲ These are beliefs that become invisible to us because they are 
the lens through which we see the world, and questioning their 
truth strikes us as absurd, if not dangerous. 

⊲⊲ Where are our culturally generated blind spots? What do we 
believe is necessarily true that is, in fact, completely false? We 
don’t know, but figuring it out is the job of philosophers and 
cultural critics, and among the most important tools they employ 
is logic. 

Logic and Reasoning

⊲⊲ We are not rational animals by nature, but that does not mean 
that we cannot be or should not be. Cognitive biases from our 
psychology and social facts from our cultural upbringing and 
political context might give us false beliefs, but we are capable of 
excavating and rigorously analyzing them. 
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⊲⊲ We can question what we believe, even our most deeply held 
beliefs, and objectively determine whether there are legitimate 
grounds for rational belief. For this, we need logic. 

⊲⊲ It might turn out that there is good reason to believe what we 
believe. In this case, our belief will be strengthened. If it turns out 
that there is good reason to disbelieve it, then we will have saved 
ourselves from having a false belief, which could not only affect 
other beliefs, but also cause us to act in ways that have negative 
consequences for us and those around us. 

⊲⊲ When we are aware of our psychological and cultural biases, we 
are able to step away from them and begin to think rationally. But 
it does not happen automatically. We might be aware of some 
cognitive biases and still fall into them. 

⊲⊲ Logical thinking is not an innate talent, but it is a skill that one can 
develop. It takes training and practice. You must see what makes 
some forms of reasoning effective at determining what is likely to 
be true and what makes other forms of reasoning likely to lead 
you into error, even though it seems attractive to us. 

Readings

Durkheim, The Rules of Sociological Method. 
Fine, A Mind of Its Own.
Sutherland, Irrationality. 
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Questions 

1. 
If the human brain is the result of evolution, which selects for 
properties that have an advantage in survival, then why do we have 
these cognitive biases built into us?

2. 
How do we best go about finding the cultural blind spots that we 
have? If there are assumptions we have been given our whole lives, 
how do we find them?
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Introduction to  
Logical Concepts

The word “logic” means rational argumentation. A belief is rational 
if we have good reason to believe it, and an argument is a set 

of sentences such that one sentence, the conclusion, is claimed to 
follow from the other sentences, the premises. The first skill we have 
to master is finding the parts of an argument—that is, recognizing 
what is the conclusion and what are the premises. Then, we need 
to figure out what type of argument we have: deductive or inductive. 
Finally, we can begin to analyze the argument. For this, there are two 
criteria that have to be satisfied: validity and well-groundedness. 

The Definition of “Logic”

⊲⊲ For the purposes of this course, logic is the study of rational 
argumentation. By “rational,” we mean that which we have 
grounds to show is likely true. A belief is rational if we have good 
reason to believe it is at least probably the case in reality. 

⊲⊲ The other word, “argumentation,” is the important one. The central 
term in all of logic is “argument.” For logicians, an argument is 
a set of sentences such that one sentence, the conclusion, is 
claimed to follow from the other sentences, the premises. 

⊲⊲ Arguments have two parts: a conclusion and premises. The 
conclusion is the point of the argument. It is the thing being 
argued for—that which we are trying to convince ourselves 
or others of. We give arguments in order to provide legitimate 
reasons to believe the conclusion. The premises are those 
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reasons. The premises are the grounds that are being proposed 
to support rational belief in the conclusion. 

⊲⊲ Every argument has one and only one conclusion. Premises, on 
the other hand, can come in any number. There are mathematical 
arguments with an infinite number of premises and weird logical 
arguments that have no premises. 

⊲⊲ Consider an example: All men are mortal. Socrates is a man; 
therefore, Socrates is mortal. In this case, the conclusion is 
“Socrates is mortal.” That is what the argument is trying to 
convince us of. Why should we believe that Socrates is mortal? 
Because he is a man, and all men are mortal. 

⊲⊲ The first thing you do when you approach an argument is to 
find the conclusion and then set out the premises. It is crucially 
important that you do this correctly. 

⊲⊲ Consider what would happen if we misidentified the conclusion 
in this case. If it is true that all men are mortal and that Socrates 
is one of these men, then it turns out that it is absolutely the case 
that Socrates is mortal. But suppose we wrongly thought that 
the conclusion is “all men are mortal” and that the premises are 
“Socrates is a man” and “Socrates is mortal.” Just because one 
man is mortal, it doesn’t necessary follow that they all are. 

⊲⊲ By misidentifying the conclusion and premises, we have taken 
a good argument, one that gives us good reason to believe 
something, and turned it into a flawed argument that does not. 

⊲⊲ So, the first tasks that are necessary for us to develop are 
figuring out when we have an argument and determining what 
the conclusion is and what the premises are. We often have help 
with these tasks—called indicator words. There are certain words 
we use to point out conclusions, and there are certain words we 
use to point out premises. 
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⊲⊲ A conclusion is supposed to be the thing that is established 
by the argument, so we use words that indicate this. The most 
obvious one is “therefore.” My heart is beating; therefore, I am 
alive. We use other words for this function as well, including 
“thus,” “hence,” “so,” and the Latin “ergo.” But be careful: Not 
every use of these words indicates a conclusion. 

⊲⊲ We also use words and phrases that indicate premises, such 
as “because,” “since,” and “given that.” Again, not every use of 
these words is an indication of a premise in an argument. 

⊲⊲ Indicator words are the easiest way to determine whether we 
have an argument and, if so, what the conclusion is and what the 
premises are. But we don’t always have indicator words. How, 
then, do we determine if we are looking at an argument? 

⊲⊲ The easiest way is to try to insert your own indicator words—
for example, “therefore” or “because.” If you look at a passage 
and the word “therefore” can be naturally inserted in a way that 
maintains the meaning of the passage, you are probably looking 
at an argument, and what immediately follows “therefore” is your 
conclusion. 

⊲⊲ Similarly, if you can insert “because” into a passage without 
changing the meaning, you are likely looking at an argument, 
and what comes right after your inserted “because” is probably 
a premise. 

Types of Arguments

⊲⊲ The first two steps are to figure out if a passage contains an 
argument and then to identify the structure—that is, to pick out 
its conclusion and fully lay out its premises (both stated and 
implied). The third step is to determine what kind of argument it is. 
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⊲⊲ Arguments come in two kinds: deductive and inductive. An 
argument is deductive if its conclusion is no broader than its 
premises—that is, if the conclusion only refers to that which 
is mentioned in the premises. The technical term we use is to 
say that deductive inferences are “non-ampliative”—that is, the 
conclusion is contained within the content of the premises. 

⊲⊲ Reconsider the following argument: “All men are mortal. Socrates 
is a man. Therefore, Socrates is mortal.” In the premises, we 
have all men being mortal, but then move in the conclusion 
to just one of these men being mortal. Deduction moves from 
broad to narrow. 

⊲⊲ Inductive arguments are 
ampliative—that is, they do 
have a conclusion that is 
broader than the premises. 
For example, the Scottish 
philosopher David Hume 
famously considers the 
following argument: “The 
sun has risen every other 
morning, so the sun will rise 
tomorrow as well.” 

⊲⊲ Notice that the premises 
contain a lot of data: that the 
sun has risen every day in the 
past. But the conclusion is 
not about one of those days; 
it is about a day outside of the 
data set. We are using facts 
about millions of other days to 
expand our reasonable belief 
to one new one. 

David Hume
(1711–1776)
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⊲⊲ In the case of the Socrates being mortal argument, we had a 
claim about all men and Socrates was one of them, but here we 
have a collection of data and the day in the conclusion is not one 
of them. It is a further instance not contained in the content of the 
premises. 

⊲⊲ With deduction, we are arguing from broad to narrow, but with 
induction, we are arguing from narrow to broad. 

⊲⊲ The important result of this difference is in the degree of belief 
we can reasonably put in the conclusions of these different types 
of arguments. Because the content of a deductive argument is 
already contained in the premises, then in a successful deductive 
argument, the conclusion will be absolutely certain. If all men are 
indeed mortal and Socrates is one of those men, then there is no 
other alternative but that Socrates is mortal. 

⊲⊲ But with an inductive argument, because the conclusion outruns 
the premises, we have no guarantees. Just because the sun 
has always risen, there is no guarantee that it will do so again. It 
probably will, but not definitely. Successful inductive arguments, 
because they are ampliative, only give us high probability, not 
absolute certainty. 

⊲⊲ With an inductive argument, because the conclusion lies outside 
the scope of the premises, there is a risk that even a very good 
inductive argument might have a false conclusion. This is not to 
say that we should not believe it. We should believe that which is 
probably true. It is wonderful to achieve the absolute certainty we 
get from deduction, but in most real-life cases, we are restricted 
to the high probability of induction. 

⊲⊲ It will turn out that when we evaluate arguments—when we 
determine whether an argument is successful or not, whether it 
has flaws or not—we will need different logical tools for deductive 
and inductive arguments. 
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Criteria for Acceptable Arguments

⊲⊲ Identifying the parts of arguments and the types of arguments 
are the initial steps, but the whole point is to determine which 
ones are good arguments. Which ones give you good reason to 
believe in the truth of the conclusion? 

⊲⊲ To evaluate arguments, we use two criteria: validity and well-
groundedness. An argument is valid if and only if, assuming the 
truth of the premises for the sake of argument, the conclusion 
follows from them. 

⊲⊲ The important thing to notice here is that we are assuming the 
premises are true for the sake of argument. Maybe they are true; 
maybe they are false. We don’t care. Validity does not concern 
the content of the premises. 

⊲⊲ All we are looking at is whether the premises, if true, would lead 
you to the conclusion. Validity is not about the content of the 
argument, but about the form of the argument. Validity looks at 
the skeleton of the argument and determines if it is strong enough 
to support the weight of the conclusion. 

⊲⊲ That we are assuming the truth of the premises in the first 
criterion—validity—should bother you a little bit. After all, that is a 
huge assumption to make. What justifies our ability to make such 
an assumption is the second criterion: well-groundedness. 

⊲⊲ An argument is well-grounded if and only if all of its premises are 
true. Well-grounded arguments have true premises. Maybe the 
conclusion is true, or maybe it is false, but what is important for 
us in looking at the well-groundedness of an argument is just the 
truth or falsity of the premises. 
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⊲⊲ An argument that satisfies both of the criteria—an argument that 
is both valid and well-grounded—is considered to be sound. A 
sound argument gives us good reason to believe its conclusion. 

⊲⊲ In order to determine which arguments are sound, we need to 
develop tests for validity and well-groundedness. Validity looks 
at the structural elements of the argument, and its study is 
called formal logic, because it is an examination of the form of 
arguments. Validity for deductive and inductive arguments are 
completely different matters, and we need different tools. 

⊲⊲ Well-groundedness concerns look at the acceptability of the 
argument other than the form and are called informal logic. We 
will begin there as we work to build a complete account of the 
ways we determine what arguments give us good reason to 
believe their conclusions. 

Readings

Barker, The Elements of Logic, chap. 1.
Copi, Introduction to Logic, chap. 1.
Kahane, Logic and Philosophy, chap. 1.

Questions 

1. 
Which of the following �passages contains an argument?

a	 Groundhogs burrow in the winter to protect themselves from 
the cold. They acquire a layer of fat through the summer 
and fall months, which allows them to stay warm and nourish 
themselves as they hibernate. They flourish in areas where 
food is plentiful, making it easier for them to survive the winter.
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b	 The groundhog population here is likely to die off in the near 
future because residential construction is eliminating easy 
access to food. Without the food, they will not have sufficient 
fat for them to make it through the winter, and the population 
will decrease until it can no longer sustain itself.

2. 
Find the conclusion and premises in the following arguments.

a	 You should buy the most expensive model of this computer. 
I know that it is a lot of money, but the speed and increased 
functionality are worth it. If you skimp on the model, then it will 
not be that much better than your current computer, and that 
would make it an even bigger waste of money.

b	 I don’t like Indian food. You can’t eat the gluten that is in most 
Italian food. The Persian restaurant is very expensive. The only 
other restaurant on this block is the Irish pub, which we both 
like and is affordable. Let’s eat there.

3. 
Are the following arguments deductive or inductive?

a	 If you don’t water your plants, they will die. If we don’t drink 
water, we will die. If you take a fish out of water, it will die. It 
seems that it is true of everything living that it needs water.

b	 That recipe calls for a tablespoon of sugar. It says that it serves 
12. There’s only four of us, so if I scale back the recipe, I’ll only 
use a third of a tablespoon of sugar. That’s just a teaspoon.
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Answers

1. 
a	 �This is not an argument; it’s simply a collection of facts about 

groundhogs.

b	 This is an argument, because it is providing reasons why one 
should believe that the groundhog population in a specific 
region will die off.

2. 
a	 �Premise: The most expensive model of computer has increased 

speed and functionality, which make it worth the extra money.

	 Premise: The less expensive model is not much better than 
your current computer, so buying it would be a waste of money.

	 Conclusion: You should buy the most expensive model of 
computer.

b	 Premise: I don’t like Indian food.

	 Premise: You cannot eat at the Italian restaurant.

	 Premise: The Persian restaurant is very expensive.

	 Premise: The Irish pub is the only other restaurant on the block 
and is affordable.

	 Conclusion: We should eat at the Irish pub.
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3. 
a	 �This is inductive, because it generalizes from plants, humans, 

and fish to all living things. 

b	 This is deductive, because four is one-third of 12, and one-
third of a tablespoon is a teaspoon, so it necessarily follows 
that the scaled-back version of the recipe will call for a single 
teaspoon of sugar.



Lecture 3

Informal Logic and Fallacies

An argument is well-grounded if all of its premises are true. In 
assessing the well-groundedness of arguments, we need 

to be on the lookout for a number of standard reasoning errors, 
called fallacies. One category of fallacy concerns what logicians 
call begging the question. These are unwarranted assumptions that 
depend on accepting the conclusion, which is a problem because the 
point of the argument is to provide independent warrant for belief in 
the conclusion. We can commit this error by creating various fallacies, 
such as circular argument, begging the question, equivocation, and 
distinction without a difference. 

Fallacies as Reasoning Errors

⊲⊲ There are common reasoning errors that create unsound 
arguments but that are nonetheless attractive to our minds. 
They sound like good arguments, but in fact they are unsound 
arguments. These reasoning errors are called fallacies. A fallacy 
is an identifiable category of argument that does not support its 
conclusion. 

⊲⊲ One of the most well-known fallacies is circular argument. A 
circular argument is one in which the conclusion is identical to 
the premise. Consider the following argument: “My name is Steve; 
therefore, my name is Steve.” Is it valid? If we assume the truth of 
the premise, are we led to also accept the truth of the conclusion? 

⊲⊲ Yes. It is a perfectly valid argument. But is it a good argument? 
Does the premise give us independent warrant for rational belief 
in the conclusion? No. 



23Lecture 3—Informal Logic and Fallacies

⊲⊲ The point of an argument is to provide independent support for 
the conclusion because the conclusion is in doubt. But if the 
conclusion is in doubt, then so is the premise, because they are 
one and the same proposition. 

⊲⊲ If we do not have independent reason to think that the premise 
is true, then the well-groundedness of the argument is in doubt, 
and the argument cannot be said to be sound, and we do not 
have good reason to believe the conclusion. It is a bad argument 
logically. 

⊲⊲ Unfortunately, it is an effective argument psychologically. It works 
well, if done right. If we say something clearly, slowly, loudly, 
confidently, or forcefully enough, people will believe it. Repeat it 
and it seems more likely to be the case. Circular argument is a 
fallacy, but it is effective. 

⊲⊲ Does the fact that it is logically flawed mean we have reason to 
reject the conclusion of a circular argument? If we have a valid, 
well-grounded argument, then we have good reason to accept 
the likely truth of the conclusion. But if we find a flaw, a fallacy 
committed in the argument—if the argument is invalid or not well-
grounded—do we have reason to think it is likely false? No. 

⊲⊲ Just because someone makes a bad argument for a conclusion 
does not give us rational justification for thinking that the 
conclusion is not the case. Remember that an argument provides 
us good reason to believe in the likely truth of the conclusion. If 
an argument fails, then it means that those specific premises do 
not give us reason to believe that conclusion. 

⊲⊲ But it doesn’t mean that there can be no other set of premises 
that does. There could be a good argument for that conclusion, 
and this one just isn’t it. Every true proposition can be made the 
conclusion of a terrible argument. 
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⊲⊲ If we find a fallacy—if an argument we are analyzing turns out 
to be flawed—what do we know about the truth or falsity of the 
conclusion? Nothing. Might it be true? Yes, for other reasons. 
Might it be false? Maybe. So, what do we know about it? Nothing. 
Are we justified in rejecting it? No. We have to suspend belief. 
Keep in mind that a lack of presentation of a good argument is 
not a refutation. 

Circular Argument

⊲⊲ An argument is circular when the premise and the conclusion are 
the same proposition. Notice the use of the term “proposition” 
here and not the term “sentence.” In philosophy, a sentence 
is a grammatically correct string of words. A proposition is the 
content of the sentence. 

⊲⊲ Different sentences can be used to express the same proposition. 
The easier-to-spot version of circular argument is where the 
premise and the conclusion are the same sentence, as in the 
example, “My name is Steve because my name is Steve.” 

⊲⊲ But more often, the premise and conclusion will be different 
sentences that express the same proposition, thereby 
camouflaging the fact that the argument is circular. For example, 
“My name is Steve because Steve is what I am called.” 

⊲⊲ While this example might seem contrived, we find examples often 
in real life. One place you will frequently come across the easier-
to-identify version is when you question a deeply held belief. We 
will often feel the need to justify our more peripheral beliefs, but 
certain things we take as foundational and either beyond the 
need for evidence or so central to the way we see the world that 
we never thought to question them. 
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⊲⊲ Why are people of your class deserving of benefits not given to 
those beneath? Because we are. Why is gold more valuable than 
silver? Because it is. These circular arguments will often be given 
with a sense of disbelief that anyone could even think to request 
justification for the belief. 

⊲⊲ Frequently, the premise and the conclusion will be different 
sentences expressing the same proposition. Because they 
sound so different to the ear, the fact that they say the same thing 
is overlooked, and the argument is wrongly thought to be sound. 

⊲⊲ Consider a naïve version of a standard ethical argument for 
vegetarianism that we call the argument from sentience: “It is wrong 
to kill animals because it is wrong to kill anything that can feel pain.” 

⊲⊲ What makes this circular is that the only things that can feel pain 
are animals. To feel pain, you need a central nervous system. But 
anything that has a central nervous system would be an animal. 
So, the argument really just says that it is wrong to kill animals 
because it is wrong to kill animals. It restates the conclusion as 
the premise in a fashion that is not obvious at first glance. 

Begging the Question

⊲⊲ Circular arguments are one instance of a larger class of fallacies 
called begging the question. This is a phrase that is often misused. 
One will frequently hear someone say, “That begs the question 
that…” when they mean, “That leads one to ask the question….” 

⊲⊲ But what begging the question really means is arguing unfairly in 
a way that tries to use the conclusion in support of itself. Anytime 
we try to get the conclusion to pull itself up by its own logical 
bootstraps instead of giving independent reasons for belief, 
getting its support from propositions distinct from itself, we are 
looking at begging the question. 
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⊲⊲ What is a question? Is it anything of a certain grammatical form 
where our voice goes up at the end? No. There are non-questions 
that look like questions and sound like questions but are not 
questions. A question is a request for information. A pseudo-
question, on the other hand, seems like a request for information 
but really isn’t. For example, “You’re not going wear that, are you?” 

⊲⊲ A so-called leading question is a question that is not fairly asked 
to elicit an honest response from the listener, but rather a sentence 
that looks like a question but is designed to lead the listener to a 
particular desired response. “Does this make my butt look big?” is 
a famous leading question that one might receive from a significant 
other. It is not a question; there is only one correct answer. 

⊲⊲ So, one way to beg the question is to use questions that are not 
questions. Another way is to use the connotative power of language 
to frame questions unfairly. Words have both denotation—that is, 
they pick out certain things—and connotation—that is, they lend 
an emotional weight to those things. 

⊲⊲ Companies vying for our business do this all the time: Looking 
to relocate to another part of the country, but you don’t have a 
lot of money? Try Budget Movers. Are they cheaper than other 
companies? We have no evidence, but the name implies it. The 
words are chosen because of their ability to sway the customer. 

Equivocation

⊲⊲ The basis of the fallacy known as equivocation is ambiguity. 
Words can mean more than one thing. This is not a logical 
problem, just a feature of language. The fallacy of equivocation 
occurs when we change the meaning of a word in the middle of 
an argument. Consider the following argument. 
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¹¹ Tables are furniture. 
¹¹ My statistics book has tables in it. 
¹¹ Therefore, there is furniture in my statistics book. 

⊲⊲ It certainly looks valid, doesn’t it? And all of the premises are true. 
So, it must be sound, right? We have good reason to believe the 
conclusion—except, of course, that the conclusion is absurd. 
What’s the flaw? 

⊲⊲ The meaning of the word “table” has changed from a raised 
flat surface on which to place things to a rectangular array of 
numbers. There is nothing inherently wrong with the ambiguity as 
long as the meaning of operative ambiguous terms is maintained 
throughout the argument, but in this case, the meaning has 
changed, and the result is the absurdity of thinking that there is 
furniture inside of a book. 

⊲⊲ Unfortunately, not all examples of equivocation are this clear-cut. 
The usual cases are trickier because many ambiguous terms will 
have distinct meanings that are related. As such, the shift from 
one to the other is subtler and, as a result, easier to overlook. 
Consider the following example. 

¹¹ We have a right to vote. 
¹¹ One should always do what is right. 
¹¹ Therefore, one should always vote. 

⊲⊲ In this case, the word “right” is being equivocated upon. In one 
case, we have one sense of “right,” meaning a legally protected 
action, and in the second premise, the same word means an act 
that is morally necessary. These are two different meanings, but 
ones that can be confused if you are not careful. 
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Distinction without a Difference

⊲⊲ A distinction is a linguistic separation of two concepts that are 
different. Distinction without a difference is a fallacy that occurs 
when we try to draw a distinction between two things that are not, in 
fact, distinct. “I didn’t steal it; I just didn’t ask before I borrowed it.” 

⊲⊲ One place we will often find people trying to draw distinctions 
without a difference is when they are trying to justify holding 
views they know they should not. 

⊲⊲ We will often try to justify our misdeeds or our problematic views 
by trying to distance them from the categories to which we know 
they really belong. “I’m not racist; I just think that members of that 
particular minority are less intelligent.” 

⊲⊲ Notice the difference between distinction without a difference and 
circular argument: In the case of distinction without a difference, 
the form is “It’s not A; it’s A,” whereas in a circular argument, we 
are saying, “A because A.” 

⊲⊲ In distinction without a difference, we are trying to say that A is 
both A and not A, whereas in a circular argument, A certainly is 
A, and we should believe A because of itself. Both repeat A, but 
in making very different logical mistakes. 

Readings

Copi, Introduction to Logic, chap. 3.
Damer, Attacking Faulty Reasoning, chap. 5.
Kahane, Logic and Contemporary Rhetoric, chap. 3.
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Questions 

Identify the fallacies in the following passages from the following 
list: circular argument, question-begging language, equivocation, 
distinction without a difference.

1. 
That dish can’t be too spicy; after all, she said she made it with chili 
peppers. Chilly is the opposite of hot, and she didn’t say she used 
hot peppers.

2. 
Do you want to go to the same old boring beach this year for vacation, 
or should we be adventurous and try something new, such as the 
mountains?

3. 
It’s not that I don’t care about you; I’m just not concerned with your 
life choices.

4. 
Fried foods are bad for you because they are not part of a healthy 
diet.
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Answers

1. 
equivocation

2. 
question-begging language

3. 
distinction without a difference

4. 
circular argument



Lecture 4

Fallacies of Faulty Authority

No one knows everything. In many situations, we have to rely on 
others to learn what we need, or we have to infer something from 

other things we know. These are both fine ways of acquiring rational 
beliefs, if done properly. In this lecture, you will continue learning 
about ways that arguments can go wrong by examining five new 
reasoning errors that are associated with flawed appeals to authority 
and flawed inferences. 

Appeal to Authority

⊲⊲ When we want to know something we don’t know, it is perfectly 
rational to ask someone who does. We call this an appeal to 
authority, and arguing from authority is a legitimate means of 
reasoning. We do it all the time, and we should. When you are 
sick, hopefully it is your physician you seek out, because he or 
she is the expert you need. 

⊲⊲ What makes someone a legitimate authority, someone whose 
answer to a question we would have good reason to believe? 
There are three requirements. First, the purported authority must 
have actual physical presence in the material world. The authority 
must exist. 

⊲⊲ Surprisingly, we hear arguments from authority that violate 
this simple criterion all the time. Someone who says, “I heard 
somewhere that…” or “I read somewhere that…” is making an 
argument from authority, but doing so in a way that does not tell you 
the name of the authority. Whenever someone cites an authority, 
you have every right to demand to know the name of the authority. 
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⊲⊲ The second step in a successful argument from authority is to 
make sure that the person cited as an authority is, in fact, an 
expert—that is, someone we have good reason to believe would 
know the correct answer to the relevant question. 

⊲⊲ What makes someone an expert? It depends on the case. On 
one hand, if the question were about basic general science, 
for example, then someone who has a basic education in the 
area would be enough to qualify. On the other hand, if it were 
an intricate question about a cutting-edge aspect of science, 
then an expert would be someone with more education who is 
involved in that particular subfield. 

⊲⊲ The third criterion in considering someone a legitimate authority is 
that the person must not only be in a position to know the answer 
to the question, but the person must also not have a stake in your 
believing one way or the other. The expert must be objective or 
disinterested. 

⊲⊲ If you are buying a used car from Joe, someone you know to 
be a mechanic, should you take his word on the condition of the 
engine? Joe is the sort of person who would know, but he also 
stands to profit if he convinces you that the car is in better shape 
than it is. You should not consider Joe to be an authority in this 
case, even though he is indeed an expert. You should take the 
car to another mechanic to give you an objective appraisal. 

⊲⊲ If someone meets all three of these requirements, that person 
can be considered an authority, and his or her word can be 
reasonably taken. If someone fails to meet one or more of these, 
then the use of that person’s word in an argument from authority 
would be a reasoning error. 
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Appeal to Common Opinion

⊲⊲ A related fallacy is called appeal to common opinion, also known 
by the Latin, ad populum. Simply because many people believe 
something does not make it true. It was widely believed that the 
world was flat and that slavery was morally acceptable. 

⊲⊲ At some level, we all know that simply because something is a 
common belief, that is not sufficient for rational belief, but what 
we are dealing with here is not mere intellectual laziness but a 
deeper cognitive bias: groupthink. 

⊲⊲ We like to think of ourselves as independent minded, but we are 
deeply influenced by the views of those around us. We don’t 
like to stick out, and when we believe something the majority of 
others do not, it will often lead to doubt and insecurity. When we 
surround ourselves with others of like mind, it is comforting to us, 
leading us to be surer of our views than is rationally warranted. 

⊲⊲ In a deep way, we are programmed to commit the fallacy of 
appeal to common opinion. To be rational, we need to learn to 
keep this proclivity in check. This does not mean that it is always 
rational to reject common opinion; sometimes appealing to 
common opinion is a good inference. 

⊲⊲ Suppose that you are attending a performance at a venue where 
you have never been before, and after the show is over, you need 
to find your way to your car, which is in the garage where many of 
those in the theater have also parked. If you just follow the crowd, 
you will probably end up exactly where you need to be. In this 
case, there is nothing wrong with believing that what everyone 
else believes is likely true. But this is not the usual case. 
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Appeal to Tradition

⊲⊲ Widely held beliefs might be true, or they might be false. We 
need independent reason to believe them rationally, and simply 
appealing to the fact that everyone else thinks so is not enough. 
But there might be reasons given why everyone else thinks so. 

⊲⊲ Some of these might be good, but others are not, despite the fact 
that they are often cited. One of these problematic justifications 
is called an appeal to tradition: “But we’ve always done it that 
way….” Some traditions are good; some traditions are not. 

⊲⊲ If a belief, or belief system, or way of doing things has been 
honed and crafted over generations, there might be good reason 
to keep doing something in a certain way. 

⊲⊲ We learn from mistakes, both our own and those of others. And it 
is certainly true that being an apprentice to someone with much 
more experience can be a wonderful way of learning—that is the 
argument from authority. But it requires evidence that the way we 
have been doing it is the right way, or the thing we have always 
believed is, in fact, true. 

⊲⊲ Intellectual inertia is not rational justification. Just because it has 
always been believed or always been done a certain way does 
not make that belief or that method justified. 

⊲⊲ An interesting version we find uses an appeal to other people’s 
traditions. “It is an ancient Chinese cure” is something one hears 
as an attempt to justify approaches to alternative medicine. Are 
ancient Chinese medical practices effective? This may or may not 
be true, and we need independent evidence. Merely appealing 
to tradition is not sufficient. 
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The Fallacy of Novelty

⊲⊲ In the same way that looking backward in time does not give 
us legitimate warrant for rational belief, neither does looking 
forward. The converse of the fallacy of appeal to tradition is the 
fallacy of novelty. Just because something is the latest does not 
necessarily make it the greatest. There is a reason we say “new 
and improved”; just because it is new does not entail that it is 
improved. 

⊲⊲ We regularly see this fallacy in advertising. Manufacturers of 
products have a problem: They want you to be satisfied with the 
product you have bought from them so that you will be loyal to 
their brand, but they also want you to be dissatisfied so that you 
will look to buy a replacement for it. 

⊲⊲ One way of making you want something you have already bought 
is to convince you that while what you have is good, there is a 
new one that is even better. If it is better—if it has capabilities the 
old one does not that would be helpful, or if its new design makes 
it more efficient or easier to use—then these might be legitimate 
reasons to decide to purchase a new one. 

⊲⊲ But manufacturers try fallacious versions of this approach as 
well. Just think of the terms that are often used for new versions: 
“upgrades” or “updates.” They’re explicitly saying that new is 
better just because it is new. This may or may not be true and 
thus requires evidence, not just assertions of its status as the 
most recent addition. 

Arguing by Analogy

⊲⊲ Arguing by analogy is like faulty authority in that it’s a flawed 
version of a good form of reasoning. It is a perfectly fine way to 
arrive at reasonable beliefs. 
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⊲⊲ We use arguments from analogy in science all the time. We 
use computer models to predict the weather. Over the past 
few decades, these computer analogues of the actual weather 
systems have become increasingly accurate. 

⊲⊲ What makes arguments from analogy successful is that the 
systems selected to be analogues do share certain structural 
similarities to the system being modeled. The fallacy of faulty 
analogy occurs when we argue by analogy using a flawed 
analogy, where the system and the analogue are not alike in the 
ways used to draw the inference. 

⊲⊲ Successful analogies involve structural similarities between two 
systems. An analogy can go wrong if that structural similarity is 
missing. 

⊲⊲ Some political candidates cite business experience as a central 
reason to suppose them competent for public office. In both 
cases, they would hold positions of authority in an organization. 
But the goal of running a business is to defeat competition 
in a marketplace and create monetary profits for only your 
shareholders. By contrast, the goal in politics is to create laws 
in a way that brings more than monetary benefit to all of society. 

⊲⊲ These are radically different tasks, and one cannot infer 
competence in one from success in the other. The analogy 
between the two does not hold because the structures of the two 
do not share the requisite commonalities. 

⊲⊲ But even if there is a commonality, that is not sufficient. For 
example, someone might argue that having a drink of alcohol is 
like shooting up heroin: Both alter the brain, both are addictive, 
and lives have been shattered by both. While that is certainly 
true, the effects of a single glass of wine are different from heroin 
use. The analogy fails despite the similarity because of a radical 
difference in degree. 
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Readings

Copi, Introduction to Logic, chap. 3.
Damer, Attacking Faulty Reasoning, chap. 6.
Kahane, Logic and Contemporary Rhetoric, chap. 5.

Questions 

Identify the fallacies in the following passages from the following list: 
faulty authority, appeal to common opinion, faulty analogy, fallacy of 
novelty.

1. 
My GPS says that we should take route 70 to route 97. You think we 
should take route 85 to Buckminster Road after looking at a map. 
I’m thinking that the GPS directions are better because the GPS is 
equipped with the latest route-finding algorithm.

2. 
Look at the line for that new movie! It is out of the theater door, down 
the street, and around the corner. That film must be great.

3. 
I was reading the expert reviews for this product on its website. All of 
them were outstanding. I think that this could be the product we’ve 
been waiting for.

4. 
She must wear dentures. He said that her teeth were like the stars, 
and we know that the stars come out at night.
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Answers

1. 
�fallacy of novelty

2. 
appeal to common opinion

3. 
faulty authority

4. 
faulty analogy



Lecture 5

Fallacies of Cause and Effect

Much of the reasoning we do involves the relation of cause and 
effect. What will happen if you take a new medication while 

also taking your pill for high blood pressure? But cause-and-effect 
reasoning, called causal reasoning, can be quite difficult. As the old 
dictum goes, correlation does not imply causation. Just because 
two events are frequently seen together does not mean that one 
necessarily causes the other. As you will learn in this lecture, there 
are several regularly recurring mistakes that people make when 
asserting cause and effect. 

Cause-and-Effect Reasoning

⊲⊲ Some of the most interesting and important claims we make 
are about cause and effect. So much of what we want to know 
about the world, about each other, and about ourselves involves 
the kinds of “why” questions that assert cause-and-effect 
relations. Unfortunately, they are also among the most difficult to  
establish logically. 

⊲⊲ Most people have heard the old logical dictum that correlation 
does not entail causation—that is, that simply because you can 
find two things occurring together, it does not mean that we can 
assert with any certainty that one caused the other. 

⊲⊲ It may be the case, but simply identifying a correlation does 
not itself establish in any way that there is a cause-and-effect 
relation. We need to understand the mechanism by which event A 
brings about event B if we want to be justified in asserting that A  
causes B. 



40 An Introduction to Formal Logic 

⊲⊲ We will look at different ways that this kind of erroneous inference 
can be made—that is, different ways in which arguments that 
attempt to establish that event A caused event B miss their mark. 

⊲⊲ It is certainly true that for event A to cause event B, A must 
precede B in time. Causes come before their effects. First, we 
observe the cause and then the effect. But just because we saw 
event A before event B does not itself give us good reason to 
infer that A caused B. 

The Post Hoc Fallacy

⊲⊲ Causes come before their effects, but time order is not 
sufficient warrant to assert cause-and-effect relations. To do 
so is to commit the error known by the Latin phrase “post hoc, 
ergo propter hoc,” which means “after this, therefore because 
of it.” Just because it comes after, it does not mean that it 
happened because of it. Most logicians abbreviate this as the  
“post hoc” fallacy. 

⊲⊲ We often make post hoc arguments around individual events 
when the effect is something unusual or significant. Your car, 
which has run beautifully for 10 years with no need of repairs, is 
suddenly making strange noises, and you lent it to Ben just last 
week. What did he do to your car? 

⊲⊲ When something odd occurs, we try to determine why. And if 
we see something different in the antecedent context—if there 
was something else unusual beforehand—we might jump to the 
conclusion that whatever was different before must be the cause 
of what was different after. But that prior difference might be 
completely unrelated to the posterior difference. 
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⊲⊲ Unbeknownst to you, your timing belt was on its last legs, a part 
that usually only lasts 10 years. Ben’s driving had nothing to do 
with it. 

⊲⊲ The post hoc inferences that we cling to the strongest are those 
that do not correlate single events, but when we notice that most 
of the time when we observe events of type A, we also tend to 
observe thereafter events of type B. Seeing the repetition of the 
correlation strengthens our belief in the causation. 

Neglect of a Common Cause

⊲⊲ Correlation does not necessarily mean causation. Again, if we 
want to assert a cause-and-effect relation between A and B, we 
need more than time order. We need the mechanism. Making the 
inference based only on time order, only on correlation, can lead 
to a flawed inference in a few different ways. 

⊲⊲ By taking correlation to imply causation, we commit the fallacy 
called neglect of a common cause. Just because whenever we 
see A, we also see B does not mean that A causes B or that B 
causes A; there might be a third thing, C, that causes both A 
and B. 

⊲⊲ It might be the case that whenever you see your normally mild-
mannered coworker taking an aspirin, he is uncharacteristically 
cranky and short-tempered. This does not mean that aspirin has 
a negative side effect that has psychological ramifications, nor 
does it mean that he takes the pills because of his change in 
disposition. Indeed, there might a third factor—for example, a 
headache or a toothache—that causes both the foul mood and 
the taking of the medicine. 
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Causal Oversimplification

⊲⊲ Real-world phenomena are complex and often brought about by 
a convergence of a multiplicity of factors. By misconstruing or 
ignoring this complexity, we can commit one of two cause-and-
effect reasoning errors. The first is called causal oversimplification, 
which involves picking out one part of a complex causal web and 
ignoring the web. 

⊲⊲ We see this fallacy committed often when we are dealing with 
complex social issues. The claim has been made that the reason 
the divorce rate in America is so high is because of the women’s 
rights movement. 

⊲⊲ It wasn’t until feminism removed women from their traditional 
gender roles that the divorce rate started climbing significantly. The 
feminist movement caused the breakdown of American marriage. 

⊲⊲ There is certainly no doubt that the advance of women’s rights is a 
part of the story about the increased number and rate of divorce. 

⊲⊲ Given the social context of most women before the advance of 
feminism, many women would not have had the financial means 
to live on their own, because of a lack of educational opportunities 
or well-paying jobs, and as a result, some women were forced to 
stay in unsatisfying or abusive marriages. 

⊲⊲ But once a greater range of possibilities became normalized 
for women, such circumstances were less common, and bad 
marriages dissolved more frequently. 

⊲⊲ But the complete story is more than just desertion of traditional 
gender roles. There are many other aspects of the changing 
culture that are intricately wrapped up in the story. To simply pick 
out one element, one causal factor, and say it is the cause is to 
commit the fallacy of causal oversimplification. 



43Lecture 5—Fallacies of Cause and Effect

Confusion of a Necessary with  
a Sufficient Condition

⊲⊲ An error that is related to causal oversimplification is the 
confusion of a necessary with a sufficient condition. A condition 
A is necessary for B if you cannot have B without first having had 
A. In other words, A is necessary for B if A is required for even 
the possibility of B. A doesn’t bring about B by itself, but if there 
is no A, there is no B. 

⊲⊲ Oxygen, for example, is necessary for fire. If there is no oxygen, 
there can be no fire. This doesn’t mean that everywhere there is 
oxygen there will also be fire, but take away the oxygen and you 
remove the chance for fire. Oxygen is necessary for fire. 

⊲⊲ A condition A is sufficient for B if A, by itself, is enough to bring 
about B. Winning a high-stakes lottery, for example, is sufficient to 
become a millionaire. But while it is sufficient—that is, it is by itself 
enough to make you a millionaire—it is not necessary. There are 
other ways to become a millionaire. You could start a tech company 
that gets bought by Google, or you could be born or married into it. 

⊲⊲ While thinking that a necessary condition is sufficient is the 
most common version of this fallacy, the converse can be found 
occasionally as well. Sometimes we take a sufficient condition 
and wrongly assert it to be necessary. 

⊲⊲ This will often be the result of focusing on a particular way of doing 
something that has become habitual for us, and we allow ourselves 
to be blinded to other ways of accomplishing the same task. 

⊲⊲ For example, you might ask your child why a dirty dish that 
was just used is sitting in the sink. Your child might answer, 
“The dishwasher is running.” While putting a dirty plate in the 
dishwasher is sufficient for cleaning it, it is not necessary. There 
are other ways to clean it, such as washing it by hand. 
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The Slippery Slope Fallacy

⊲⊲ The final causal fallacy is perhaps the most famous: the slippery 
slope fallacy. There is no doubt that there are causal chains—
that is, an event A causes B, but then the effect of B becomes the 
cause of C, which in turn causes D. 

⊲⊲ We can have causally related chains of events. This is what leads 
to an alternate name one will sometimes see for the slippery 
slope fallacy, the domino fallacy, which refers to the tipping of 
dominoes. They are arranged until the first one goes, and then it 
hits the second, which hits the third, and so on. 

⊲⊲ While such chains of cause-and-effect relations exist, the fallacy 
is where one asserts the existence of such a chain without giving 
full causal arguments for each step in the chain. Arguing for 
cause-and-effect relations is tricky. 

⊲⊲ We need to show the underlying mechanism at work, and in the 
complex world of intervening causes, often A would bring about 
B, all other things being equal, but when rubber meets road, not 
everything is always equal. 

⊲⊲ When warning people of an act we think is imprudent, we will 
often neglect to do all of the logical heavy lifting and simply 
assert a causal chain or the likelihood of it and leave it at that. 

⊲⊲ “I wouldn’t take that first sip of beer. It always starts with beer, but 
then it goes to wine and then hard liquor, which paves the way 
for marijuana, and then addictive drugs like cocaine and heroin. 
That little sip might seem harmless, but it is the first step on a 
slippery slope to addiction, losing your house and your family—
everything will be gone.” 
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⊲⊲ Of course, there are stories of people who have followed this 
unfortunate path to ruin. But the question for us is whether there 
is good reason to believe that each of these steps down the 
slippery slope awaits the particular person warned. If so, make 
the case for each step. If you cannot, then the argument fails. 

Readings

Copi, Introduction to Logic, chap. 3.
Damer, Attacking Faulty Reasoning, chap. 8.
Kahane, Logic and Contemporary Rhetoric, chaps. 2 and 4.

Questions 

Identify the fallacies in the following passages from the following list: 
post hoc fallacy, neglect of a common cause, causal oversimplification, 
confusion of a necessary and sufficient condition.

1. 
People who drive nice cars also tend to have large homes. I guess 
that if you have a car that nice, you don’t want to park it in front of a 
small house.

2. 
Zydeco music always has an accordion in it. This polka band has an 
accordion player, so I guess they play Zydeco.

3. 
I had eggs for breakfast, and then I played the best round of golf in 
my entire life. It’s eggs every Saturday for me. I want to bring down 
my handicap.
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4. 
The reason drug use is down is because they have been showing 
those “just say no” commercials on television. The message must 
really be getting through to people.

Answers

1. 
neglect of a common cause

2. 
confusion of a necessary and sufficient condition

3. 
post hoc fallacy

4. 
causal oversimplification



Lecture 6

Fallacies of Irrelevance

When we disagree with others, the process is not merely logical, 
but emotional. When someone thinks that we are wrong about 

something, we feel attacked and often feel justified in attacking in 
return. As you will learn in this lecture, the fallacies of irrelevance 
frequently occur when our emotions lead us to focus on some aspect 
of the disagreement other than the actual disagreement. We have to 
make sure that we are on guard at all times to avoid committing—and 
getting sidetracked by—these diversionary fallacies. 

Fallacies of Irrelevance

⊲⊲ One of the most difficult aspects of engaging in passionate 
discourse is keeping the discussion focused on the question 
at hand. When someone is disagreeing with us, especially 
if it involves a proposition we take to be important, we can  
feel attacked. 

⊲⊲ The result is that the fight-or-flight portion of the brain becomes 
engaged, and this can overtake the functioning of the part of the 
brain associated with our rational faculties. We feel that we have 
to defend ourselves through any means possible, not necessarily 
the ones that will lead to open-minded consideration. 

⊲⊲ The outcome is often logically unfortunate. Frequently, the 
conversation gets hijacked by irrelevant appeals that cause the 
discussion to veer off in directions that do not serve the central 
point, but serve only to obscure it. 
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Ad Hominem

⊲⊲ One of the most common diversionary fallacies is where instead 
of attacking the argument, we instead focus on attacking the 
arguer. This fallacy is known by its Latin name, “ad hominem,” 
which translates as “to the man.” The idea is that we are focused 
on the person instead of the case the person is making. 

⊲⊲ Arguments are acceptable if they are sound—that is, if their form 
is valid and their premises are well-grounded. If an argument is 
valid and has true premises, then that is true regardless of whose 
mouth it comes out of. 

⊲⊲ Arguments stand or fall on their own merits. Whose mouth it 
comes out of is irrelevant. The argument is valid because of its 
logical structure and is well-grounded because of the truth of its 
premises. The identity, background, or motivation of the speaker 
has nothing to do with the satisfaction of either criterion. 

⊲⊲ To argue that we should not accept—or, indeed, even consider—
the argument because of the source of the argument is to commit 
an ad hominem fallacy. 

⊲⊲ Ad hominem attacks tend to come in three general categories. 
The first is the “you’re a jerk” version. There are horrible, immoral 
people in this world who do nothing to make the world a better 
place and who often serve their own petty desires at the cost of 
the well-being of others. But if that person makes an argument, 
we need to analyze it objectively. We need to evaluate the validity 
of the argument and assess the likelihood of the premises’ truth. 

⊲⊲ The second version is a form of guilt by association where we 
discount an argument not for objective reasons, but because the 
person offering it belongs to some identifiable group. Don’t listen 
to her; she’s a feminist. You can’t take his argument seriously; 
he’s a conservative. 
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⊲⊲ A common variation of this kind is to point out that the speaker 
is not among those who follow the advice the speaker is giving. 
Known by its Latin name, “tu quoque,” the “but you do it, too” 
objection is just an illegitimate ad hominem attack. It might be 
true that the person telling you not to drink is an alcoholic, but 
that doesn’t mean it is not good advice. 

⊲⊲ The third class of ad hominem attacks is where we focus on the 
motivations of the speaker. “Of course, you’d say that. You stand 
to profit if it’s true.” Again, maybe that is correct, or maybe it isn’t, 
but the argument stands or falls on its own merits, regardless of 
who, where, when, or why the argument is made. 

Attacking a Straw Man

⊲⊲ Another diversionary tactic that we must be on guard against 
is called attacking a straw man. The strange name comes from 
the fact that it is easier to beat the stuffing out of a scarecrow 
than it is to take on an actual human being. It is a metaphor for 
arguments that do not address the actual argument made but 
rather a weaker, easier-to-refute version. 

⊲⊲ Logicians have something called the principle of charity, 
according to which, when one analyzes an argument, one must 
assess the strongest-possible version of that argument. To defeat 
a weak version does nothing in terms of demonstrating the given 
argument to be unsound. It can only be rejected as not providing 
legitimate grounds for rational belief in its conclusion if the 
strongest version, the best understanding, is seen to be flawed. 

⊲⊲ Think of prize fighting. If a particular boxer is the reigning 
champion, then he or she has to take on all challengers. One 
cannot keep the title of heavyweight champion of the world and 
fight only, for example, 12 year olds. While there are surely some 
tough preteens out there, the point of being the champion of the 
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world is that you are the top of the top—that you can defeat the 
toughest competition anywhere. 

⊲⊲ It is the same thing with argumentation. If we are to refute an 
argument—find a flaw in it that leads us to reject it as providing 
good reason to believe—then, like the heavyweight champion of 
the world, we as critical thinkers need to take on the strongest 
version of the argument. To take on a weaker version and then 
assert that we have done anything is to attack a straw man. 

⊲⊲ There are two main varieties of attacking a straw man. One 
version is to alter the scope of the premises offered, making 
them broader or narrower than the ones offered to weaken the 
argument while keeping the rest of the premises intact. The hint 
that this is what you are hearing is the phrase “Oh, so what you 
are saying is….” 

⊲⊲ The other kind of straw man argument is more radical. It is where 
the interlocutor replaces all of the premises wholesale. When you 
hear the phrase “the real reason…,” you are likely looking at a 
straw man argument. 

⊲⊲ Why would someone say “the real reason”? Because what 
they are doing is replacing the original reasons—that is, the 
premises—with new premises, and odds are that these new 
premises are going to be a whole lot easier to undermine. But in 
undermining them, the interlocutor has done nothing with regard 
to the soundness of the original argument, because the original 
argument is gone. 

Red Herring

⊲⊲ Where attacking a straw man is the error wherein we replace 
the premises of an offered argument, the fallacy known as a red 
herring is where we change the conclusion. 
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⊲⊲ When we replace premises with those that are easier to attack 
but maintain the conclusion, we are still talking about the same 
thing, only talking about it differently. But when we change the 
conclusion, we are completely changing the topic of conversation. 
That is a red herring—the ultimate in argumentative diversion. 

⊲⊲ Anyone who has ever been in a serious interpersonal relationship 
knows all about red herrings. 

¹¹ “You really need to clean those dishes in the sink. You make 
yourself a snack and just clutter the kitchen and leave it for me. 
That is not respectful or fair to me.” 

¹¹ “Well, if you want to talk about messes and respect, what 
about the fact that you never pick up your dirty clothes in the 
bathroom? You just throw them on the floor before you get in 
the shower and leave them there.” 

⊲⊲ This began as a discussion about dishes. The first partner made 
the following argument. 

¹¹ One should clean up one’s own messes, because not to do so 
is disrespectful and unfair. 

¹¹ The dishes in the sink are your mess that is not cleaned up. 
¹¹ Therefore, you should do those dishes out of respect and 

fairness. 

⊲⊲ That seems like a sound argument. The conclusion follows from 
premises that certainly seem to be true. How does the other 
partner respond to this argument? Not by showing that the 
argument is flawed, but by giving a new argument. 

¹¹ One should clean up one’s own messes, because not to do so 
is disrespectful and unfair. 

¹¹ The clothes on the bathroom floor are your mess that is not 
cleaned up. 
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¹¹ Therefore, you should pick up the clothes on the bathroom 
floor out of respect and fairness. 

⊲⊲ Notice that while the form of these two arguments is the same 
and there is some overlap in content, the conclusions are different 
propositions—that is, they are completely different arguments. 
Both are worth assessing, but they need to be considered one 
at a time. 

⊲⊲ What we have here is a combination of a red herring and tu 
quoque. Well, you do it, too, or something so much like it that you 
can’t criticize me for doing what you do. 

⊲⊲ If I do it, then I should be criticized and I should change my ways, 
but that is a different question from what we are talking about, 
which is the stack of dirty dishes in the sink. 

⊲⊲ The thing about people is that while we certainly have trainable 
rational capabilities, we are also bundles of insecurities and 
dedicated to agendas of our own which we take to be crucially 
important. Arguments between two people in a relationship can 
display insecurities. 

⊲⊲ Agenda-based red herrings are often seen in political 
discussions. Consider a conversation like the following. 

¹¹ “Your gun control proposal is an affront to gun owner rights. 
We are talking about liberty being seized by an overinvasive 
government here.” 

¹¹ “Oh, that’s funny coming from the person who proposed such 
draconian abortion regulations. If you want to talk about rights 
and liberty being stripped by an overinvasive government, 
there is example A.” 

⊲⊲ Notice what happened. We started with a conversation about 
the political benefits and flaws of a proposed piece of legislation 
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about firearms, and instead of evaluating the argument, we shifted 
to a completely different topic: the permissibility of abortion. 

⊲⊲ Both are important issues. We should give both careful, thoughtful 
attention. But we need to do so one at a time. “I understand that 
abortion rights is an important issue to you, and we will give it our 
due attention, but right now we are talking about gun control.” 

⊲⊲ When there is an issue that is important to us, we will often see 
traces of it everywhere. Just because something reminds you of 
a topic you want to discuss doesn’t mean that we cannot first 
finish the discussion we have started. 

Readings

Copi, Introduction to Logic, chap. 3.
Damer, Attacking Faulty Reasoning, chap. 9.
Kahane, Logic and Contemporary Rhetoric, chap. 4.

Questions 

Identify the fallacies in the following passages from the following list: 
ad hominem, tu quoque, attacking a straw man, red herring.

1. 
�Don’t listen to him. He can’t even speak proper English, so you know 
his argument is also nonsense.

2. 
You say that the changes to the tax code would promote fairness, but 
the real reason you are in favor of it is that you want to punish the rich.



54 An Introduction to Formal Logic 

3. 
You say that we need to help the homeless, but what about the 
working poor who have a place to live? Do you think we should just 
ignore them?

4. 
You know that famous celebrity who is always going on and on about 
the need to care about the environment and leave a small carbon 
footprint? It turns out that she has a mansion, and you know that 
thing uses a ton of electricity in the summer when she runs the air 
conditioner. So, if she can use a lot of power, so can I.

Answers

1. 
ad hominem

2. 
attacking a straw man

3. 
red herring

4. 
tu quoque



Lecture 7

Inductive Reasoning

This lecture begins the move from thinking about well-
groundedness to validity. Each of the two different types of 

arguments, inductive and deductive, require different means of 
determining validity. Inductive arguments start with a set of observed 
instances and use that information to infer beyond it. Inductive 
inferences do not give us the certainty of deduction, but in the 
messiness of the real world, they are the inferences we most often 
make. Because their conclusions outrun the content of their premises, 
inductions are incapable of giving us complete confidence in their 
conclusions, but they give us high probability, and for reasonable 
belief, that is good enough. 

Inductive Arguments

⊲⊲ Arguments come in two different kinds: deductive and inductive. 
A deductive argument is one in which the scope is non-
ampliative—that is, the scope of the conclusion is no broader 
than the scope of the premises. 

⊲⊲ In other words, deductive arguments go from broad to narrow; 
the conclusion doesn’t talk about anything that wasn’t already 
covered in the premises. Because there is no new information 
in the conclusion—because it is just milking a specific result out 
of the premises—one nice thing about deductive arguments is 
that if they are sound, or well-grounded, then their conclusions 
must be true. 
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⊲⊲ Inductive arguments, on the other hand, are ampliative—that is, 
their conclusions do move beyond the scope of the premises to 
give us rational belief about something we have not yet observed. 
Induction is ampliative in that it amplifies our rational beliefs; it 
takes us from narrow to broad. 

⊲⊲ Inductive arguments are wonderful because they give us new 
knowledge about the world. They take what we already know and 
give us logical permission to believe new things that we did not 
know before. 

⊲⊲ Deduction only rearranges our previous knowledge into new 
forms we may or may not have considered, but induction actually 
generates completely novel beliefs about the world. This does not 
come without a fee, and the cost of this growing of our stockpile 
of rational beliefs is certainty. 

⊲⊲ Because deductive inferences are only rearranging what we 
knew before, if what we knew before was known to be true, then 
the conclusions that come from deduction will also be true. But 
with induction, because we are making a logical leap beyond the 
content of the premise set, there is no absolute guarantee that 
the result must be true. 

⊲⊲ The best we get from induction is likely truth. If you have a good 
inductive argument, the conclusion is probably true. While 
“probably true” is less desirable than “definitely true,” “probably 
true” is sufficient for rational belief. We should believe that which 
is probably true. 

⊲⊲ Deductive certainty in all of our beliefs would be wonderful, but 
it is not available to us. We need inductive inferences because in 
most real-life situations, it is all we have. And it is good enough. 
We make inductive inferences all the time, and we should. High 
probability is all we need for rational belief. 
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Types of Inductive Argument 

⊲⊲ While there are many different kinds of inductive arguments, there 
are three forms that are the most important because they are 
the most frequently used. In one form, called inductive analogy, 
we move from a set of data showing universal adherence of a 
particular property in a particular population and assert it of a 
future individual. 

⊲⊲ An inductive analogy is an inductive argument of the following form. 

¹¹ P1 has the property A. 
¹¹ P2 has the property A. 
¹¹ P3 has the property A. 
¹¹ … 
¹¹ Pn has the property A. 
¹¹ I have only seen n instances of P. 
¹¹ Therefore, Pn+1 has the property A. 

⊲⊲ “I have seen some number n different Ps, and every one of them 
has had the property A; therefore, I believe that the next P I see 
will also have the property A.” 

⊲⊲ We make these kinds of inferences all the time. “No, I don’t want 
to go see that scary movie, because it’ll give me nightmares like 
all the other ones.” 

⊲⊲ When we apply what we’ve learned from all other instances in the 
past to one in the present or future, inductive analogy is the form 
of the argument we are using. 

⊲⊲ A related but stronger inductive inference is the universal 
generalization. It has the following form. 

¹¹ P1 has the property A. 
¹¹ P2 has the property A. 
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¹¹ P3 has the property A. 
¹¹ … 
¹¹ Pn has the property A. 
¹¹ I have only seen n instances of P. 
¹¹ Therefore, all Ps have the property A. 

⊲⊲ While both inductive analogy and universal generalization have 
the same premises, notice the difference in the conclusions. One 
is an analogy in that it says that a future instance will be like all 
past instances, whereas the other makes a much broader claim, 
saying something about all members of the observed population. 

⊲⊲ Universal generalizations are also common in everyday life. 
“Every time I’ve tried something with cilantro in it, I have thought 
it’s disgusting. I don’t like cilantro.” Notice that in this example, we 
are making a generalization about an entire category of things, 
not just a prediction about a single upcoming instance. 

⊲⊲ The third form of inductive inference is called statistical 
generalization. Its form is as follows. 

¹¹ X percent of all observed Ps have the property A. 
¹¹ Therefore, X percent of all Ps have the property A. 

⊲⊲ Like universal generalization, we are generalizing over the entire set 
of Ps from some limited sample of Ps, but here we are not attributing 
the property to all of them, but to some percentage—either an 
explicit percentage or a vaguer amount—of the population. 

⊲⊲ “Four out of five dentists surveyed recommend sugarless gum for 
their patients who chew gum, so likely the overwhelming majority 
of dentists overall agree.” 

⊲⊲ In some cases, we are generalizing a more specific statistic, 
such as a percentage of the population as a whole; sometimes 
we are taking a specific statistic, such as 80 percent of dentists 
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surveyed, and generalizing it broadly; and sometimes we are 
taking a vague sense, such as “a lot of the time” or “most people 
surveyed,” and making equally vague generalizations. 

⊲⊲ We need to be careful that we don’t fall prey to one of the 
standard fallacies we see with inductive inferences: exaggerated 
accuracy. If a certain basketball player has made 75 percent of 
his free throws for the year, that could mean that we think he will 
hit most of his free throws in the next game—that’s a perfectly 
fine statistical generalization. 

⊲⊲ But it is not good reason to think he will make three out of four. 
There is a lot of mathematical machinery in the study of statistics 
that tells you exactly how big a sample you need and what 
percentage needs to have the property in order to have a 90 
percent, 95 percent, or 99 percent degree of confidence that your 
statistic can be accurately generalized to the entire population. 

⊲⊲ When you have a statistic you want to generalize, you are almost 
always going to have to soften your generalized conclusion a bit. 

Inductive Fallacies

⊲⊲ One of the fallacies associated with inductive reasoning is 
exaggerated accuracy. There are several more we need to be 
aware of. One involves premises that appear in the first two 
inductive argument forms and implicitly in the third. 

⊲⊲ Note the last premise in inductive analogy and universal 
generalization: “I have only seen n instances of P,” and note the 
form of the premise in statistical generalization: X percent of all 
observed Ps have the property A.” In both cases, we see what is 
called requirement of complete information. 
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⊲⊲ Induction is unlike deduction in that deduction has, but induction 
lacks, the property logicians call monotonicity. An inference is 
monotonic if adding more premises will not turn a valid argument 
into an invalid one. This is true for deductive arguments. 

⊲⊲ As long as the argument is valid to begin with, new premises—no 
matter what they are—will always keep the argument valid. While 
this is true for all deductive arguments, it is not true for inductive 
arguments. Inductive arguments are non-monotonic because 
adding a new premise can turn a perfectly good inductive 
argument into a bad one. One new piece of information can 
completely destroy an argument in a way that cannot happen for 
deductive arguments. 

⊲⊲ So, for an inductive inference to be valid, we need a guarantee 
that the evidence given in the premises is all of the relevant 
observations we have. We need complete information. To fail to 
do so is called cherry-picking. 

⊲⊲ This is a common error where when someone wants to support a 
point, he or she will present lots of evidence—so much evidence 
that we can’t help but believe the conclusion it leads to. But if the 
person was careful to select only the evidence that supports his 
or her position and excludes the counterevidence, we will be led 
to believe something that is not well supported. 

⊲⊲ The key to avoiding this error is in the selection procedure for the 
sample we use to collect our observation. The sample is the set 
of n individuals mentioned in the premises. How do we go about 
getting our data from which to make the inductive inference? 

⊲⊲ There are two keys to having an acceptable sample for a good 
inductive inference. The first is sample size. We need the sample 
to be large enough to support our inference. How large is large 
enough? 
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⊲⊲ This is something that statisticians have studied in great detail 
and have tables dedicated to showing for varying degrees of 
confidence in our inferences. For the purposes of this course, 
one should be on the lookout for absurdly small samples, called 
anecdotal evidence. 

⊲⊲ If someone is generalizing on the basis of just a few examples 
or often just a single experience, then we have the fallacy of 
insufficient sample. If this error is committed while making 
a universal generalization, we sometimes call it a hasty 
generalization, but the term “insufficient sample” covers all of the 
forms of inductive reasoning from too small of a sample. 

⊲⊲ The size of the sample isn’t the only thing we need to be 
concerned about. Bad samples could be quite large. To make 
a good induction, samples have to be representative of the 
population over which we are making the inference. 

⊲⊲ The sample needs to look like the population in miniature 
because there might be aspects of different subgroups within 
the population that affect the distribution of property we are 
examining. If you have a poorly distributed sample, you commit 
the fallacy of unrepresentative data. 

⊲⊲ Good samples model the heterogeneity of the population. If 
your population is homogeneous, then you don’t need to worry 
so much, but the key is that you cover the relevant subgroups 
in proportion to their general representation. This assumes, of 
course, that you know what subgroups are relevant and their 
proportion of the general population beforehand. 

⊲⊲ But sometimes you don’t. In those cases, the key is a random 
sample. The idea is that if we pull enough individuals out of the 
population without a bias toward or away from any subgroup, 
then relevant subgroups will show up in the sample roughly the 
proportion they occupy in the whole. 
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⊲⊲ The key to the random sample, then, is to make sure that your 
sample is large enough that small subgroups will appear and 
that your selection procedure does not accidentally bias your 
selection toward or away from such subgroups. 

⊲⊲ The gambler’s fallacy is one in which we try to make an inductive 
inference from data that bear no cause-and-effect relationship 
to each other, where there is not a probabilistic relation between 
the members of the sample and the property being observed. 
Arguing that past experience in any way affects the next instance 
is to commit the gambler’s fallacy. 

Readings

Barker, The Elements of Logic, chap. 7.
Copi, Introduction to Logic, chap. 3.
Damer, Attacking Faulty Reasoning, chap. 5.
Kahane, Logic and Contemporary Rhetoric, chap. 3.

Questions 

1. 
If inductive arguments do not give us conclusions with absolute 
certainty, why should we believe the conclusion of a sound inductive 
argument? What inductive arguments do you accept in day-to-day life?

2. 
Identify the fallacies in the following passages from the following 
list: cherry-picking, insufficient sample, unrepresentative data, 
gambler’s fallacy.
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a	 Al Capone: Italian and mafia. Lucky Luciano: Italian and mafia. 
John Gotti: Italian and mafia. Sammy the Bull: Italian and mafia. 
I could go on and on, naming hundreds of Italian mobsters. So, 
it must be the case that all Italians are connected.

b	 I always hold my breath when crossing a bridge to make sure 
that nothing bad happens. 

c	 My Ford has 300,000 miles on it and has never needed a 
single major repair. Ford makes quality cars.

d	 A survey conducted by Christian televangelist Pat Robertson 
polled more than a thousand of his followers and overwhelmingly 
showed that people want creationism instead of evolution taught 
in public schools.

Answers

1. 
Answers will vary.

2. 
a	 cherry-picking

b	 gambler’s fallacy

c	 insufficient sample

d	 unrepresentative data



Lecture 8

Induction in Polls and Science

Most of what we believe traces back to inductive reasoning. We 
learn from experience, and the reason that works is because of 

the successfulness of induction. Inductive arguments are everywhere 
in life. There are two places, however, where we conspicuously 
find formalized inductive inferences that deserve extra discussion: 
Inductive inferences are made whenever a poll is taken and reported, 
and induction is a crucial element of scientific reasoning. In this 
lecture, you will learn about induction in these two contexts. You’ll 
learn how to read and understand what information a poll is giving 
and how to understand the roles of induction in scientific results. 

Inductive Inferences in Polls

⊲⊲ We have looked at the basic forms of inductive reasoning and 
the ways in which some inductive arguments can go wrong. With 
respect to polls, those are precisely the errors we need to be on 
the lookout for, with some interesting twists and a few additions. 

⊲⊲ Virtually all polls taken are of the form of the inductive argument 
called statistical generalization. 

¹¹ X percent of all observed Ps have the property A. 
¹¹ Therefore, X percent of all Ps have the property A. 

⊲⊲ We are generalizing a statistic we find in our observed sample to 
the entire population. What we want to examine with respect to 
polling is what makes for a successful statistical generalization 
and how much reason to believe is achieved as a result. 
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⊲⊲ Inductive arguments, because they are ampliative—that is, 
because their conclusions are broader in scope than their 
premises—come with risk. Even the best inductive arguments do 
not provide us with the certainty of deductive arguments. 

⊲⊲ Successful inductions give us high probability, a level of 
reasonable belief. We want to see, then, how a single poll or 
collection of polls should affect what we believe and how deeply. 

⊲⊲ Several of the problems that can plague inductive arguments come 
from flawed samples. This is the case with polls, too. Indeed, one 
of the biggest concerns of legitimate pollsters is sampling. 

⊲⊲ For a good sample, we need both size and distribution—that is, 
we need for the poll to have asked enough people, and we need 
for those people to resemble the population being generalized 
in miniature. All of the relevant subgroups must be present in the 
sample in roughly the proportion in which you find them in the 
general population. 

⊲⊲ With respect to size, we looked at the fallacy of insufficient sample 
in its simplest form: anecdotal evidence, where we generalized 
from just one or two experiences. But in a poll, where we are 
trying to generalize over an entire electorate or an entire national 
population, how big is big enough? 

⊲⊲ It is actually surprising how small a sample can be and still 
be of an acceptable size to make meaningful claims about so 
large a population. About 1,000 respondents is sufficient for a 
nationwide poll in the United States, which has more than 150 
million registered voters. 

⊲⊲ The other concern, once we have enough people, is that the sample 
is well distributed—that it looks like the population as a whole in 
miniature. With polls, we have two concerns: that we are sampling 
the right population and that the sample is properly representative. 
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⊲⊲ But even when we have determined the proper population and 
can develop filters to screen out those who do not belong, we 
have the question of creating a well-distributed sample. 

⊲⊲ There are a few different ways of trying to develop a well-
distributed sample. First, we could identify all of the important 
demographic groups and their proportions in the population 
beforehand and then make sure that our sample is shaped to 
resemble it. 

⊲⊲ Second, we could take a random sample. If we select enough 
people at random from a large group, the sample will come to 
resemble the population as long as there were not selection 
biases toward or against given subgroups. 

⊲⊲ Clearly, the first option is preferable. If we know what properties 
are germane, we can find people with the desired profiles in the 
desired proportions. But how do we know this? 

⊲⊲ Often, it is done inductively. We look at past polls and see how 
accurate their predictions came out and see what their sample 
looked like in terms of different subgroups. Pollsters call this 
making a model of the population. They collect their data but 
then have to decide how to weight the contributions of various 
parts of the population. 

⊲⊲ Once the sample worries are behind us, there is a new concern: 
Can we trust what people tell the pollster? There are two worries 
here. The first is that people sometimes intentionally mislead 
pollsters. 

⊲⊲ Especially on questions that have a moral element, people don’t 
want to be seen as being on the unpopular side of the question 
and will tell pollsters what they think will lead the pollster to think 
better of their character, even if it does not reflect the way they 
will actually vote or what they actually believe. 
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⊲⊲ The name for this is the social desirability bias and with respect 
to polls is often referred to as the Bradley effect, named for Los 
Angeles mayor Tom Bradley, who when running for governor of 
California had a sizeable lead in the polls but lost the election. 
Some have contended that this was the result of people falsely 
telling pollsters that they would vote for Bradley when they would 
not, so that they would not appear to be racist. 

⊲⊲ Second, it turns out that very different results can be achieved 
by asking the same question in different ways. How the pollster 
chooses to ask the question will affect how people answer it. 
This is a cognitive bias that social psychologists call the framing 
effect, and it relates to the fallacy of begging the question. 

⊲⊲ Words not only denote—that is, pick out objects to refer to—but 
also have connotative power; they convey emotional or value-
laden judgments as well. Questions framed differently will allow 
the connotative power of the language employed to steer the 
listener toward or away from particular viewpoints in ways that are 
subtler than leading questions. 

⊲⊲ Polls not only report on the public mood and beliefs, but also 
influence them. This means that we need to be cautious. 
Questions might have been asked intentionally or unintentionally 
in a way that biases them. 

⊲⊲ One’s own ideological filter can lead one to frame a question in 
a leading way that seems perfectly fair to you. The key, then, to 
making good inferences from polling data is to take a step back. 
Polls themselves are inductive arguments—that is, they take data 
and extrapolate a general result. 

⊲⊲ But we are now able to use the polls themselves as data in an 
inductive argument at a higher level. We can now take polls of 
polls. There are websites that work as poll aggregators, collecting 
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all of the polls on a particular topic and displaying their results, 
the size of their samples, etc. By bringing all the polls together, 
we can form a rational basis for reasonable belief based on them. 

Induction in Science

⊲⊲ Induction is used in two different ways in science: in supporting 
hypotheses and in testing theories. We need to keep these two 
contexts separate. 

⊲⊲ A hypothesis is a proposed statement of purported fact. Scientific 
theories, by contrast, are sets of general axioms, which together 
form a system of thought that provides a full picture of the 
workings of some part of nature. 

⊲⊲ Hypotheses are proposed individual statements of possible truth; 
they are more specific than the axioms, and we get evidence 
for them individually. The axioms work together as a group, and 
what we test in that very different context is the theory as a whole. 
We might be able to derive hypotheses when working within the 
theory, but the parts of the theory are not themselves hypotheses. 

⊲⊲ There are different inductive processes for hypotheses and 
theories. The philosopher Karl Popper pointed out that a hypothesis 
is scientific only if it is falsifiable—that is, only if there are observable 
circumstances that would render the statement false. 

⊲⊲ How do we go about our scientific inductive inferences? The first 
step is to identify the independent and the dependent variables. 
The independent variable is the thing we adjust or administer—
the thing under our control. The dependent variable is what we 
measure. It is the thing not under our control, and it may or may 
not change as a result of our adjusting the independent variable. 
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⊲⊲ For example, to determine whether high doses of vitamin C 
reduce the symptoms of the common cold, we can give someone 
high doses of vitamin C—the independent variable—and we can 
then check to see if they receive relief from their cold symptoms—
the dependent variable. 

⊲⊲ One problem is that the world is a complex, messy place. While 
we are giving someone vitamin C, they might also be eating 
something else that is decreasing their symptoms, and we will 
wrongly attribute the effect to our independent variable. So, we 
need to conduct the experiment in a way that controls for other 
independent variables—that is, we need to do our best to create a 
fixed environment in which we can screen off intervening causes. 

⊲⊲ When we get the data, we analyze it to see if the results are 
statistically significant. If so, we have reason to think that the 
results are consistent with the hypothesis. What that means is that 
the hypothesis has not been 
falsified, but we also do not 
yet have enough evidence 
to think it is probably true. 

⊲⊲ Where do we see induction 
in science with respect to 
theories? The philosopher of 
science Hans Reichenbach 
drew a distinction between 
the context of discovery and 
the context of justification. 
What this distinction has 
come to mean is the context 
in which scientists come 
up with their theories and 
the context in which they 
provide good reason to 
believe they are true. 

Hans Reichenbach
(1891–1953)
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⊲⊲ The context of discovery is generally thought to be free—that is, 
there is no specific logic of discovery, no turn-the-crank method 
of coming up with scientific theories. But while there is no set 
method, there is induction, because scientists are working from 
their experiences and the data. 

⊲⊲ They have a question about how a certain system works, and 
they consider what they know and make inductive leaps. They 
look for models—analogies where the system could be thought 
to work like a different system that is better understood. 

⊲⊲ The most important place in scientific reasoning that we find 
induction is in the context of justification. Once a theory has been 
proposed, why should we believe it? Theories are testable; they 
have effects, results, and predictions that come from them. These 
observable results of a theory are determined deductively—that 
is, if the theory is true, then in this given situation, a particular 
observable consequence should result. 

⊲⊲ We go into the lab, set up the situation, and see if we observe 
or measure the result as expected. If not, then the theory has 
failed and, as it stands, is not acceptable. It will either have to be 
rejected or fixed. 

⊲⊲ But if the theory says to expect a particular result and we observe 
it, now we have evidence in favor of the theory. That evidence is 
inductive. It might be that a particular theory predicts the result, 
but there will also be other theories that are different from the first 
one but are also supported by the result. 

⊲⊲ As such, none of the theories are certain, in the way that deductive 
inferences are, but rather they receive inductive support. They 
are more likely to be true than they had been. The probability of 
truth has been increased. 
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⊲⊲ To go from supporting evidence, which makes a theory more 
likely, to conclusive evidence, which makes a theory probably 
true, we need lots of evidence as well as evidence of different 
types. 

⊲⊲ It is good for a theory if it accounts for everything we already 
knew. We call this retrodiction. This is especially true if what 
we already knew was previously unexplained. But better than 
explaining what we already knew, prediction is taken as strong 
evidence. 

⊲⊲ The best evidence brings about what scientist William Whewell 
termed “consilience,” which is when a theory designed to 
account for phenomena of type A turns out also to account for 
phenomena of type B. If you set out to explain one thing and also 
are able to explain something completely different, that is strong 
evidence that your theory is probably true. 

Readings

Bradburn, Sudman, and Wansink, Asking Questions. 
Gimbel, Exploring the Scientific Method.
Kelley, The Art of Reasoning, chaps. 15–17.

Questions 

1. 
Push polls are fake polls in which people believe that they are being 
asked for their opinions by a reputable pollster but are actually being 
lobbied by an interested party that is trying to change their opinion. 
Political campaigns, for example, will have people pose as pollsters 
and ask biased questions designed to influence the respondents’ 
answer. Because the person believes the pollster to be legitimate, the 
respondent thinks that the questions are not skewed and therefore 
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have their own thoughts unfairly affected. Are all polls, in some sense, 
push polls, or can a fair poll be conducted that takes the temperature 
of a population without affecting it?

2. 
Because science is inductive in the inference it requires for evidence, 
science proves nothing. If the results of science are never proven—
if scientific progress might require us to surrender even the most 
deeply held current beliefs—then is it ever rational to believe the 
results of science?



Lecture 9

Introduction to Formal Logic

You have learned that there are two criteria for acceptable 
arguments: well-groundedness and validity. You have also seen 

that there are two types of arguments: inductive and deductive. So far, 
you have examined some aspects of informal logic—that is, analysis 
of the well-groundedness of arguments—and you have looked at 
validity concerns for inductive arguments. What remains is deductive 
validity, the aspect of logic that has historically commanded a 
great amount of attention from logicians. In this lecture, you will be 
introduced to formal logic. 

Formal Logic

⊲⊲ In part because of its use in 
mathematics and in part because 
it is the study of what we can 
know with absolute certainty, 
there is a long trail of work in 
formal logic. The first figure in 
the history of thought to give us 
a functional formal account of 
reasoning was Aristotle. 

⊲⊲ Possibly the smartest person ever 
to have lived, Aristotle provided us 
with the starting point of virtually 
every academic discipline, from 
economics and physics to literary theory and ethics. But for this 
course, it is his work on categorical logic that is important. 

Aristotle
(384 B.C.E.–322 B.C.E.)
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Categorical Propositions

⊲⊲ Aristotle’s logic begins with a little bit of grammar. Formal logic 
examines what propositions necessarily follow from what other 
propositions because of their forms. 

⊲⊲ Propositions need to be expressed as declarative sentences, and 
declarative sentences, Aristotle contends, have a specific form. 
All declarative sentences that we will consider have a subject 
and a predicate. 

⊲⊲ The subject is what the sentence is about, and the predicate is 
what we are asserting about the subject. A sentence is true if 
and only if the subject does have the property asserted by the 
predicate, and it is false if the subject does not. 

⊲⊲ These categorical sentences come in four types. First is the 
universal affirmative, sentences of the following form: All As are B. 

¹¹ All people have noses. 

⊲⊲ Second is the universal negative: No As are B. 

¹¹ No circles have angles. 

⊲⊲ Third is the particular affirmative: Some As are B. 

¹¹ Some people are blonde. 

⊲⊲ Finally, there is the particular negative: Some As are not B. 

¹¹ Some wines are not expensive. 

⊲⊲ We arrange these sentences into what is called the square of 
opposition. 
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⊲⊲ The top line is for universal sentences. The bottom line is for 
particular sentences. The left side is for affirmative sentences. 
The right side is for negative sentences. 

⊲⊲ There are abbreviations for each. Universal affirmative sentences 
are called A sentences. Universal negations are called E 
sentences. Particular affirmative sentences are I sentences, and 
particular negative sentences are called O sentences. 

Some As  
are B

All As  
are B

Some As  
are not B

No As  
are B

Universal

Particular

Affirmative Negative

Some As  
are B

All As  
are B

Some As  
are not B

No As  
are B

Universal

Particular

Affirmative Negative
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⊲⊲ The reason we call this the square of opposition is because 
opposite corners—sentences that are connected diagonally on 
the square—are negations of each other. That is, an A sentence 
is true if and only if the O sentence is false. 

⊲⊲ All Boy Scouts are boys if and only if it is not true that some Boy 
Scouts are not boys. Similarly, if it is false that all Boy Scouts are 
boys, then there must be some Boy Scout that isn’t a boy. A and 
O sentences will always have different truth-values. 

⊲⊲ And it is the same for E and I sentences. If it is true that no clowns 
are happy, then it is false that some clowns are happy. And if it 
is true that some clowns are happy, then it must be false that no 
clowns are happy. E and I sentences must have different truth-
values. 

⊲⊲ The sentences on opposite corners are called contradictories 
because they contradict each other: One and only one can be 
true at a time. But this is not the case with A and E or I and O 
sentences. 

⊲⊲ A and E sentences are called contraries. They cannot both be 
true, but they can both be false. It is false that all paintings use 
the color blue and false that no paintings use the color blue. 

⊲⊲ I and O are called subcontraries. They can both be true, but they 
cannot both be false. It is true that some people are having a 
birthday today and some people aren’t. But if it is false that some 
As are B, then it must be true that some As are not B. 

⊲⊲ In these I and O sentences, the word “some” means at least one, 
maybe all. By using the word “some” we are not saying that only 
some, but not all. It might be simultaneously true that all people 
have mothers and that some people have mothers. 
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⊲⊲ The word “all” is slightly more complex. It means every member 
of the category. But what about the peculiar categories that are 
empty? Consider the following A sentence: “All unicorns have 
a horn.” Is this sentence true or false? It seems to be true by 
definition—to have a horn is part of what it is to be a unicorn. But 
at the same time, there are no unicorns for the sentence to be 
true of. 

⊲⊲ How do we make sense of this? The answer is that we have two 
different meanings: the hypothetical viewpoint and the existential 
viewpoint. 

⊲⊲ In the hypothetical viewpoint, the sentence “All unicorns have a 
horn” is true, because it means that all unicorns, if there are any 
(and there might not be), have a horn. 

⊲⊲ From the existential viewpoint, the sentence “All unicorns have 
a horn” is false, because it now means that there are unicorns 
and all of them have a horn. We need to know whether we are 
working with the hypothetical or existential viewpoint before we 
start doing our logical manipulations. 

⊲⊲ Notice one important difference. From the existential viewpoint, A 
sentences imply I sentences and E sentences imply O sentences. 
If no square has five sides, then some squares do not have five 
sides. 

⊲⊲ As long as we know that the subject exists, then if the predicate 
holds for all, it must hold for some. But from the hypothetical 
viewpoint, just because an A sentence is true does not mean that 
the corresponding I sentence will be true. 

⊲⊲ In the hypothetical viewpoint, it is true that all griffins have the 
body of a lion, but that does not mean that some griffins do, 
because the word “some” means that there is at least one, and 
the griffin is a mythical beast. There aren’t any. 
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⊲⊲ So, with vacuous subjects, we can have true A sentences and 
false I sentences or true E sentences and false O sentences. 
Both viewpoints are legitimate, but for clarity’s sake, let’s assume 
the hypothetical viewpoint unless otherwise noted. 

Categorical Syllogisms 

⊲⊲ Recall that our interest here is deductive validity. We want to 
know when we have to believe a conclusion if we also believe the 
premises. For Aristotle, the key to reasoning is a type of argument 
called a syllogism, which is an argument with two premises. 

⊲⊲ Categorical syllogisms are arguments with a categorical sentence 
as a conclusion and two categorical sentences as premises. 

¹¹ All humans are mortal. 
¹¹ All Greeks are human. 
¹¹ Therefore, all Greeks are mortal. 

⊲⊲ The conclusion has two terms: a subject and a predicate. The 
subject of the conclusion is called the minor term (S). The 
predicate of the conclusion is called the major term (P). 

⊲⊲ In the example, “Greek” is the minor term, and “mortal” is the 
major term. There is another term that appears in both premises, 
but not in the conclusion. This is called the middle term (M). 
“Human” is the middle term in the example. 

⊲⊲ The premise with the minor term and the middle term is called the 
minor premise, and the one with the middle term and the major 
term is called the major premise. We always write out the major 
premise first. 
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⊲⊲ The example has a major premise that is an A sentence, a minor 
premise that is an A sentence, and a conclusion that is yet another 
A sentence. Reading top to bottom, we say that this argument has 
the mood AAA. AAA syllogisms are nice because if they turn out 
to be invalid, you can call for a free tow into the nearest garage. 

A	 All humans are mortal. 	 Major Premise

A	 All Greeks are human. 	 Minor Premise

A	 Therefore, all Greeks are mortal. 	 Conclusion

⊲⊲ But notice that we can have different variations of AAA. Compare 
our example with a new one. 

¹¹ All Greeks are human. 
¹¹ All humans are mortal. 
¹¹ Therefore, all mortals are Greeks. 

⊲⊲ These two arguments both have A sentences for premises, 
but because the terms are switched around, they are different 
arguments. Indeed, the first example is valid, but the second is 
not. The point, though, is that the order of the terms matters. 

⊲⊲ There are four possible arrangements of the terms. Each 
arrangement is called a figure. 

¹¹ The first figure has a major premise that starts with the middle 
term and a minor premise that starts with the minor term. 

¹¹ The second figure has a major premise starting with the major 
term and a minor premise starting with the minor term. 

¹¹ The third figure starts both premises with the middle term. 
¹¹ The fourth figure starts the major premise with the major term 

and the minor premise with the middle term. 
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⊲⊲ This is a complete catalogue of possible figures. 

⊲⊲ Combining mood with figure, we get a complete list of possible 
forms of categorical syllogisms. For example, “Some dogs have 
four legs, and some four-legged beings are not cats; therefore, 
no cats are dogs.” 

⊲⊲ The major premise is an I sentence: “Some dogs have four legs.” 
The minor premise is an O sentence: “Some four-legged beings 
are not cats.” And the conclusion is an E sentence: “No cats are 
dogs.” 

⊲⊲ So, the mood is IOE. The middle term appears second in the 
major premise and first in the minor premise, so it is of the fourth 
figure. We have an argument that is IOE-4. 

⊲⊲ The first example argument has a mood of AAA, and the middle 
term is second in the major premise and first in the minor premise, 
so it is an AAA-1. 

⊲⊲ There are four possibilities for the major premise—A, E, I, O—
and the same four possibilities for the minor premise and the 
conclusion. That gives us 4 × 4 × 4, or 64 possible moods. 
We then have four figures for each mood, giving us 64 × 4, or 
256 categorical syllogisms whose validity status we need to 
determine. How do we do that? 

1 2 3 4

M P P M M P P M Major Premise

S M S M M S M S Minor Premise

S P S P S P S P Conclusion



81Lecture 9—Introduction to Formal Logic

Aristotle’s Five Rules

⊲⊲ There are five simple rules that detect the 15 valid forms from 
the hypothetical viewpoint. But before we work with the rules, we 
need to understand one more concept: a distributed term. 

⊲⊲ A term in a categorical sentence is distributed if that sentence 
says something about the entire category the term refers to. 
So, in an A sentence like “All Greeks are human,” the subject is 
distributed because it tells us something about all Greeks. 

⊲⊲ Likewise, in an E sentence like “No cowboys are werewolves,” we 
are told something about the entire class of cowboys, so again 
the subject is distributed. 

⊲⊲ In an I sentence like “Some people are allergic to peanuts,” 
we are not told anything about any entire class, so no term is 
distributed. 

⊲⊲ In an O sentence like “Some computers are not made by 
Apple,” it seems intuitively that, like with I sentences, neither 
term is distributed. But, in fact, the predicate of an O sentence is 
distributed. We know of the entire category of products made by 
Apple that it fails to include some computers. 

⊲⊲ So, O sentences distribute the predicate, A and E sentences 
distribute their subjects, and I sentences distribute nothing. 

⊲⊲ Having this concept, we can now set out the five rules. 

1	 In all valid syllogisms, the middle term is distributed in at least 
one of the premises. 

2	 In all valid syllogisms, any term distributed in the conclusion is 
also distributed in the premises. 

3	 In all valid syllogisms, at least one of the premises must be 
affirmative. 
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4	 In all valid syllogisms, if the conclusion is negative, one premise 
must be negative. 

5	 In all valid syllogisms, if the conclusion is particular, at least 
one of the premises must be particular. (This one is for the 
hypothetical viewpoint only; for the existential viewpoint, just 
use the first four.) 

⊲⊲ A syllogism is valid if and only if it satisfies all five of these rules. If 
it violates even one, it’s an invalid argument. 

Venn Diagrams

⊲⊲ These rules work, but they are not terribly intuitive. We can 
determine which categorical syllogisms are valid and which are 
not, but we come away without a sense of why. It would be nice to 
have a method that allows us to see why a categorical syllogism 
is or is not valid. 

⊲⊲ Fortunately, we have one. It was provided by the 19th-century 
English logician John Venn. He came up with a way of visually 
representing the content of each type of categorical propositions 
in diagrams that forever bear his name: Venn diagrams. 

⊲⊲ We start with a pair of overlapping circles, with the one on the 
left representing the subject class and the one on the right 
representing the predicate class. The area in the overlap is the 
part of the subject class that also is in the predicate class. 

⊲⊲ The parts of the circles outside of the overlap are for members of 
the classes that belong only to one or the other class. We indicate 
that a region is empty by shading it in, and we represent that an 
area is not empty by putting an X in it. 
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⊲⊲ For categorical syllogisms, we just enter the information from the 
premises into a larger diagram that has three circles, one for the 
minor term on the bottom 
left, one for the major 
term on the bottom right, 
and one for the middle 
term, which is placed 
above and appropriately 
in the middle. 

⊲⊲ We enter in the premises 
and see if what comes out 
contains the information 
within the conclusion. If it 
is, then the argument is 
valid. If not, it is invalid. 

Readings

Barker, The Elements of Logic, chap. 2.
Copi, Introduction to Logic, chaps. 5 and 6.

Questions 

1. 
Identify the form of the following categorical syllogisms.

a	 No dogs are blue. Some blue things are not fruit. Therefore, 
some fruit are dogs.

b	 All desserts are sweet. Some children are sweet. Therefore, 
some children are desserts.

Minor 
Term

Major 
Term

Middle 
Term

Venn Diagram
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2. 
Use Aristotle’s rules to determine if the following syllogism is valid.

Some movies are not comedies.
Some movies are not romances.
Therefore, some romances are not comedies.

3. 
Use Aristotle’s rules to determine if the following syllogism is valid.

No food is poisonous.
Some mushrooms are poisonous.
Therefore, some mushrooms are not food.

4. 
Use Venn diagrams to show whether the two categorical syllogisms 
in questions 3 and 4 are valid.

Answers

1. 
a	 EOI-4

b	 AII-2

2. 
In OOO-1, the predicate of each sentence is distributed. The first rule 
requires that the middle term be distributed in one of the premises. O 
sentences distribute the predicate, but the middle term is the subject 
in both premises and therefore is undistributed. Because the middle 
term is not distributed, by the first rule, the argument is invalid.
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3. 
In EIO-1, the minor premise is an E sentence, so both terms, “food” 
and “poisonous,” are distributed. The major premise is an I sentence, 
and nothing is distributed in an I sentence. The conclusion is an O 
sentence, which distributes the predicate—in this case, “food.” The 
first rule requires that the middle term be distributed in one of the 
sentences, and it is in the minor premise. The second rule requires 
that any term distributed in the conclusion be distributed in the 
premises. The term “food” is distributed in the conclusion and also 
in the minor premise. The third rule requires that at least one of the 
premises be affirmative, and the major premise satisfies that one. The 
fourth rule requires that if the conclusion is negative, then one of the 
premises is, and we do have a negative conclusion and a negative 
minor premise. Finally, according to the fifth rule, if the conclusion is 
particular—which it is—then one of the premises must be particular, 
and the major premise is. So, the argument is valid.



Lecture 10

Truth-Functional Logic

Aristotle’s categorical logic was the first attempt at creating 
a rigorous calculus of human thought, a surefire means of 

determining when a deductive argument is valid. The problem with 
Aristotle’s system is that it only works for sentences of categorical 
form; for non-categorical sentences, the tool kit of Aristotelian logic 
will not let us do what we need to do. We need a different system—
one that can handle a wider range of propositions that we use in 
deductive arguments. This system is called truth-functional logic. 

The Need for Truth-Functional Logic

⊲⊲ At the end of the 19th century and beginning of the 20th century, 
truth-functional logic was developed by philosophers who found 
a need for a new language. Philosophy has to be done with 
words. But the words we use in everyday, ordinary language are 
ambiguous and vague. They are not defined precisely enough to 
do the work that philosophers need. 

⊲⊲ Instead of doing philosophy in ordinary language, they thought, they 
would develop a new artificial language, one that the exactitude 
they required was built into its very grammatical structure. 

⊲⊲ It would resemble spoken language enough that we could 
translate our philosophical questions and intuitions into it, but 
it would be strict enough that we could finally answer some of 
these questions. 

⊲⊲ We could see whether they were real questions or merely pseudo-
questions, and if they were real questions, we could determine 
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their truth conditions—that is, what we would have to look for 
to know if they were true or false. The German mathematician/
logician/philosopher Gottlob Frege called his attempt at framing 
such a language Begriffschrift, or concept writing. It ultimately 
became truth-functional logic. 

⊲⊲ In the phrase “truth-functional,” we use the word “function” in the 
same way that mathematicians do. Mathematicians look at an 
algebraic equation—for example, y = x + 2—and say that y is a 
function of x. What this means is that for every value of x, there is 
a single, unique value for y. For example, if x is 1, then y is 3. 

⊲⊲ A function takes in something and then spits out a well-defined, 
completely determined something else. Numerical functions take 
in numbers or pairs of numbers and spit out a single number. 
Instead of numbers, truth-functions take in truth-values and spit 
out a single truth-value. 

⊲⊲ In classical logic, there are two truth-values: true and false. Every 
sentence has one and only one truth-value. If a sentence is true, it 
is not false. If it is not true, then it has to be false. Truth-functional 
logic is a two-valued system, and every sentence has one or the 
other of these values. 

⊲⊲ For now, it doesn’t matter how we know which it is or whether 
there are some sentences whose truth-values we don’t know how 
to ascertain. All we are concerned with is if these sentences are 
true, does that mean some other sentence also has to be true? 

⊲⊲ In fact, the content of the sentence will be completely irrelevant. All 
we are concerned with here is the form. When we translate spoken 
language into this language, we will remove everything about the 
content of the propositions and strip it down to the bare skeleton—
the logical structure. Whether one sentence follows from another 
depends only on its form, so content will go away for us. 
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The Elements of Truth-Functional 
Language

⊲⊲ Truth-functional language has two elements: atomic sentences 
and truth-functional connectives. Atomic sentences are simple 
declarative sentences that are either true or false. 

¹¹ “The sky is blue” is atomic. 

⊲⊲ This is a simple sentence that has a truth-value. We may or may not 
know the truth-value, but again, that is of no consequence. In our 
language, we use lowercase letters to represent atomic sentences. 

⊲⊲ To our atomic sentences, we add truth-functional connectives. 
A connective is a word that joins atomic sentences together to 
form a more complex molecular sentence. The word “and,” for 
example, is a connective. 

⊲⊲ We can take the sentence “The sky is blue” and the sentence 
“I am 12 feet tall” and use the connective “and” to create a 
whole new sentence: “The sky is blue and I am twelve feet tall.” 
Connectives just join atomic sentences to form new sentences. 

⊲⊲ A connective is truth-functional if and only if the truth-value of 
the molecular sentence is completely and uniquely determined, 
knowing only the truth-values of the constituent atomic sentences 
and the definition of the connective. “And” is truth-functional. 

⊲⊲ We define truth-functional connectives in terms of what is called a 
truth table. In a truth table, we start by setting out all of the atomic 
sentences involved, listing all of the possible combinations of 
truth-values beneath. 

⊲⊲ “And” is a dyadic connective—that is, it joins two sentences 
together—so we need two sentences (it doesn’t matter what they 
say, just that they’re atomic): Let’s call them p and q. We start our 
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truth table by writing down a column for p and 
a column next to it for q. 

⊲⊲ We then list all of the combinations of truth-
values they could have. Because we have two 
sentences, each of which could have one of 
two truth-values, there are four possibilities 
(shown at right). 

⊲⊲ After our atomic sentences are all entered in our truth table, 
we add a new column in which appears nothing but what has 
come before in the table and one new connective. We will use 
the symbol “ &” as our symbol for “and,” although some logicians 
prefer the wedge (∧) or a dot (·). 

⊲⊲ Next is the important step: filling in the value for the molecular 
sentence. In truth-functional logic, what we mean by “and”  
is “and.” 

⊲⊲ Think about how we use the word “and.” 
Suppose that you have a friend Bob 
over at the coffee machine and you say, 
“Bob has sugar in his coffee and Bob 
has cream in his coffee.” When is that 
sentence true, and when is it false? All 
the cases are already in our truth table, 
so let’s take them one by one. 

⊲⊲ The first case has both sentences true. If it is true that Bob has 
sugar in his coffee “and” it is true that Bob has cream in his 
coffee, then what do we know about “Bob has sugar in his coffee 
and Bob has cream in his coffee”? We know it is true. 

⊲⊲ “And” sentences are true when both sentences joined are true. So, 
in the first row of the third column in our truth table, we put a “T.” 

p q 

T T 

T F 

F T 

F F 

p q p &q 

T T T 

T F F 

F T F 

F F F 
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⊲⊲ Suppose that he does have sugar but doesn’t have cream? What 
do we say about the sentence “Bob has sugar in his coffee and 
Bob has cream in his coffee”? It is false. 

⊲⊲ Similarly, if he has cream but no sugar, for an “and” sentence to 
be true, both constituent atomic sentences must be true. And if 
neither are true, then it’s false. 

⊲⊲ “And” is truth-functional because it is possible to construct this 
truth table; that is, knowing just the truth-values of p and q, we 
can uniquely determine the value for 
p &q in every case. 

⊲⊲ Not all connectives are truth-functional. 
Consider the word “because.” It is a 
connective. But it is not truth-functional. 
We cannot construct a truth table for it. 
Let’s try. We’ll use a greater than (>) 
symbol to mean “because.” 

⊲⊲ What goes in the first row of the third column? If p is true and q 
is true, do we know if “p because q” is true? Let p be “The sky is 
blue” and let q be “Albert Einstein was a physicist.” 

⊲⊲ Both p and q are true. Is it also true that the sky is blue because 
Albert Einstein was a physicist? No. To determine the truth-
value of “because” sentences, we need to know more than 
just the truth-values of the constituent atomic sentences. So, 
“because” will have no place in our truth-functional language as 
a connective. 

⊲⊲ We will, in fact, have four truth-functional connectives. The first 
is negation, which is just our way of saying “not.” It is our only 
monadic, or one-place, connective. 

p q p > q 

T T 

T F 

F T 

F F 
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⊲⊲ We will use the minus sign (−) to represent it, 
although others use the tilde (~) or a minus 
sign with a little nib on the end (¬). Its truth 
table is shown at right. 

⊲⊲ Negation flips the truth-value of the sentence it is applied to. 

⊲⊲ In spoken language, in addition to the simple word “not,” we 
also use phrases like “it’s not the case that” or “it is false that” to 
denote negation. 

⊲⊲ The second is conjunction, which is 
logic terminology for “and.” We have 
already seen its truth table. 

⊲⊲ In spoken language, we use the 
word “and” as well as “as well as,” “in 
addition to,” and “also.” One that fools 
a lot of people is “but,” which in many 
contexts is equivalent to “and.” “I intended to call you back, but 
I got distracted.” In this sentence, “but” just means “and.” The 
sentence is true if and only if both atomic sentences are true. 

⊲⊲ The third connective is the disjunction, “or.” For the disjunction, 
we will use the universal symbol ∨, which comes from the word 
vel, which means “or” in Latin. 

⊲⊲ Let’s see if we can construct the truth 
table. It is another dyadic connective, 
so the table starts the same. 

⊲⊲ Let’s see if we can fill in the last 
column. We’ll start with the middle two 
rows because they are the easiest. 
Let’s think about our friend Bob at the 
coffee machine. 

p −p 

T F 

F T 

p q p &q 

T T T 

T F F 

F T F 

F F F 

p q p ∨q 

T T  

T F  

F T  

F F  
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⊲⊲ Suppose that the sentence we want to consider is “Bob has 
sugar or cream in his coffee.” Sentence p is “Bob has sugar in 
his coffee,” sentence q is “Bob has cream in his coffee,” and the 
disjunction is “Bob has sugar in his coffee or Bob has cream in 
his coffee.” 

⊲⊲ Let’s take the second case, in which he does have sugar but has 
no cream. What do we know about “Bob has sugar or cream in 
his coffee”? It is true. Similarly, if he has cream, but no sugar, the 
disjunction “Bob has sugar or cream in his coffee” is true. If one 
or the other is true, then the “or” sentence is true. 

⊲⊲ What about the last row? Suppose that Bob has neither sugar nor 
cream in his coffee. What do we know about the sentence “Bob 
has sugar or cream in his coffee”? It is false. 

⊲⊲ For the top row, suppose that Bob has both sugar and cream in 
his coffee and you say, “Bob has sugar or cream in his coffee.” 
Are you right or wrong? Is the sentence true or false? 

⊲⊲ We use the word “or” to mean both “one, the other, but not both” 
and “one, the other, or both.” If you are having coffee, you might 
ask, “Sugar or cream?” and your friend could reasonably reply, 
“Yes, both please.” But if your friend is having tea and you offer, 
“Lemon or cream?” then clearly you mean which of the two,  
not both. 

⊲⊲ One is what we call the inclusive sense of “or,” and the other is the 
exclusive “or.” Which one do we use? It is arbitrary, because once 
we pick one, we can use the other connectives to build the other. 

⊲⊲ It doesn’t go away; it just becomes a little more cumbersome to 
write. So, purely as a convention, we will choose the inclusive “or” 
because we prefer to be inclusive. Logic is for everyone. 
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⊲⊲ So, the truth table for disjunction, then, 
is as shown at right. 

⊲⊲ In spoken language, we often include 
the term “either” when we are signaling 
to our audience that we mean the 
exclusive “or” and use just “or” to mean 
the inclusive. 

⊲⊲ “We should either go all the way or not start at all” implies that 
there are two mutually exclusive possibilities and we have to 
select only one. “If you like that shade of purple, paint the upstairs 
or the downstairs powder room in that color” is inclusive, leaving 
open the chance to do both. 

⊲⊲ Another way of saying “or” is “unless.” Just like “or,” we have 
inclusive and exclusive senses of “unless.” “When the call comes 
in, page me unless I’m in a meeting” is exclusive. “I’ll have just 
salad, unless they have that soup I love” is inclusive. But in both 
cases, unless is “or.” 

⊲⊲ The last connective is the conditional, which is our “if, then” 
sentences. The sentence that is the “if” clause is called the 
antecedent, and the sentence that is the “then” clause is the 
consequent. We will write the conditional using the right-pointing 
arrow ( → ); others use the sideways horseshoe (⊃). 

⊲⊲ In this truth table, we have a dyadic 
connective—two atomic sentences are 
being joined—so it starts off like the 
last two. 

⊲⊲ Let’s address the last column. It will 
help to think of this in terms of an 
example. Suppose that you make a 
claim to your friend Jane in the form of 

p q p ∨q 

T T T 

T F T 

F T T 

F F F 

p q p   q 

T T  

T F  

F T  

F F  
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a conditional—for example, “If you beat me in backgammon, I 
will give you my car.” When do you lie to Jane? When can she 
take you to court for failing to uphold a contract? 

⊲⊲ In the first case, the antecedent p and the consequent q are both 
true. Jane did beat you at backgammon, and you did give her your 
car. Did you lie? No. So, the first row of the third column gets a “T.” 

⊲⊲ For the other easy case, skip down to the bottom line. The 
antecedent and the consequent are both false. Jane did not beat 
you at backgammon, and you did not give her your car. Did you 
lie? No. In two-valued logic, any sentence that is not false must 
be true. Because this is not false, it is thus true. 

⊲⊲ Consider the third line. Jane did not beat you at backgammon, 
but you gave her your car anyway. Did you lie? No. You never said 
that beating you at backgammon was the only way to get your 
car. Maybe Jane bought it from you, or maybe you were feeling 
generous and just gave it to her. Regardless of the how and why, 
Jane did not beat you at backgammon but did get the car. 

⊲⊲ You did not violate your agreement, so your “if, then” sentence is 
not false and therefore must be true. 

⊲⊲ Consider the second line. Here, Jane did beat you at 
backgammon, and you refused to give her your car. Does she 
have warrant for complaint? Absolutely. 

⊲⊲ This is the only case in which the 
conditional is false: when the antecedent 
is true and the consequent is false. 

⊲⊲ In spoken language, we have a number 
of ways to express the conditional. “If 
you put your hand on a hot stove, then 
you will feel pain”: s → p. We drop the 

p q p   q 

T T T 

T F F 

F T T 

F F T 
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word “then”: “If you put your hand on a hot stove, you will feel 
pain”: s → p. We change the order: “You will feel pain if you put 
your hand on a hot stove”: still s → p. 

⊲⊲ The word “if” picks out the antecedent wherever it is: in front, in 
the middle, etc.; wherever you see the word “if,” you have found 
the antecedent. 

⊲⊲ It is crucial when translating a conditional to correctly identify 
the antecedent and consequent. Notice a difference in the truth 
tables of the conjunction and disjunction, on the one hand, and 
the conditional on the other. 

⊲⊲ Notice that for “and” and “or,” they are symmetric. Paper “or” 
plastic; plastic “or” paper. Logically, there is no difference. The 
truth-value won’t change, regardless of the order. But this is not 
so with the conditional, where the order does matter. 

⊲⊲ Consider the following two sentences: “If you get shot, then you 
bleed” and “If you bleed, then you get shot.” These are two very 
different sentences. The first is true, and second is false. So, for a 
conditional, unlike for a conjunction or disjunction, order matters. 

⊲⊲ So, we look for the word “if” to pick out our antecedent. There are 
other stylistic variants for “if.” “When” sometimes means “if.” “Yes, 
I will go to dinner and a movie with you…when pigs fly.” In other 
words, if pigs fly, feel free to make a reservation for two. “Given 
that” and “on the condition that” are other ways of saying “if.” 

⊲⊲ The interesting one is “only if.” We said that wherever you find the 
word “if,” it picks out your antecedent. The only exception is when 
the word “if” is paired with “only.” “Only if” always picks out the 
consequent. 

⊲⊲ Think about the difference between the sentences. “There is fire 
only if there is oxygen.” This means that if there is fire, then there 
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is oxygen: f → o. It does not mean that if there is oxygen, then 
there is fire. 

⊲⊲ The sentence is true; there is oxygen around you but no fire. So, it 
could not be translated as o → f. So, “if” picks out the antecedent 
wherever it is, unless it is “only if,” in which case it picks out the 
consequent. 

Readings

Barker, The Elements of Logic, chap. 3.
Copi, Introduction to Logic, chap. 8.
Kahane, Logic and Philosophy, chap. 2.

Questions

1. 
Consider the connective “it is the case that,” for which we can use the 
symbol =. = is a one-place connective—that is, it works on a single 
sentence (for example, =p). Is = truth-functional?

2. 
Translate the following into truth-functional logic.

a	 If I am here and you are here, then all is well in the world. 

b	 Unless it is raining or too hot, we will go to the park and have 
a picnic. 

c	 Because I am hungry and you are tired, things will go badly. 
If we go home, I will not be hungry and you will not be tired. 
Things will not go badly this time. We are going home.
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Answers

1. 
We can construct a truth-table for =, as shown at right.

That means that we can determine whether =p is true 
knowing only whether p is true or false. So, = is a truth-
functional connective (albeit not a terribly interesting one).

2. 
a	 Let i represent “I am here,” u represent “You are here,” and a 

represent “All is well in the world”: (i &u) → a.

b	 Let r represent “It is raining,” h represent “It is too hot,” p 
represent “We will go to the park,” and e represent “We will 
have a picnic”: (r ∨h) ∨ (p &e).

c	 Let h represent “I am hungry,” t represent “You are tired,” b 
represent “Things go badly,” and m represent “We go home”: 

(h &t) → b
m → (−h &−t)
−b
Therefore, m.

p =p

T T

F F



Lecture 11

Truth Tables

Truth-functional logic is an artificial logical language designed to 
show us what sentences follow from what other sentences. And 

as you will discover in this lecture, truth tables are amazing logical 
instruments. We can use them to answer a wide range of questions 
that we might have about truth-functional sentences. And the answers 
they give are absolute and rigorous. With truth tables, we have an 
algorithmic method for determining logical properties. 

Truth Tables for Connectives

⊲⊲ Atomic sentences are basic sentences that are either true or 
false, such as “The sky is blue.” Connectives are words that 
connect atomic sentences together into larger, more complex 
molecular sentences. 

⊲⊲ Connectives are said to be truth-functional if and only if the truth-
value of the molecular sentence created using the connective 
can be completely and uniquely determined knowing nothing 
more than the truth-values of the constituent atomic sentences 
and the definition of the connective. 

⊲⊲ This is equivalent to saying that we can construct a truth table 
for the connectives. A truth table contains a row for each of the 
possible arrangements of truth-values for all of the constituent 
atomic sentences and a listing of the resulting truth-values for 
molecular sentences. 
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⊲⊲ It is very nice that we can define our connectives using truth 
tables, but this is actually their most trivial use. We can construct 
truth tables for any truth-functional sentence, and when we do, 
they tell us the truth conditions for that sentence—meaning what 
must be the case in the world for the sentence to be true and 
what can be the case in the world that renders the sentence false. 

⊲⊲ For example, consider the following sentence in our truth-
functional language: (p ∨q) &−p. The first step in constructing 
a truth table is to list all of the atomic sentences in the object 
sentence. For this example, it’s just p and q. 

⊲⊲ Each new column must contain only what already appears in 
the truth table plus one new truth-functional connective. We do 
this by finding the main connective and building up the parts it 
connects. 

⊲⊲ In our sentence, (p ∨q) &−p, it is the conjunction that applies to 
the rest of the sentence. The first conjunct is (p ∨q). It is not in the 
table, but p is and q is, so by adding one new connective, ∨, we 
can make it. 

⊲⊲ Once one side of the conjunction is in the table, we can work on 
the other side, −p, which is not in the table, but p is, so by adding 
one connective, −, we can build it. 

⊲⊲ We now have what is on the left side of the “and” and what is on 
the right side of the “and” in our table, so we can add a column 
that joins them. 

⊲⊲ Then, we can add the possible combinations of truth-values for p 
and q: T-T, T-F, F-T, F-F. 

⊲⊲ We know that p ∨q is true when p is true, q is true, or both are 
true. And −p always has the opposite truth-value of p. 
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⊲⊲ Finally, we can fill in the values for the last column using the 
values from the second and third columns. 

p q p ∨q −p (p ∨q) &−p 

T T T F F 

T F T F F 

F T T T T 

F F F T F 

⊲⊲ It is p ∨q “and” −p, and we know that “and” sentences are only 
true when both conjoined sentences are true. So, we see that the 
only time the sentence (p ∨q) &−p is true is when p is false and 
q is true. 

Types of Truth-Functional Sentences

⊲⊲ By determining the truth conditions of a truth-functional sentence, 
we can tell what type of sentence it is. Truth-functional sentences 
come in three categories: tautologies, contradictions, and 
contingencies. 

⊲⊲ A tautology is a sentence that is always true. For example, “It 
is raining or it is not raining.” That is a sentence that is true no 
matter what the weather is doing. We can tell when a sentence is 
a tautology using truth tables by looking at the column beneath it 
and seeing if it is a complete line of nothing but Ts. 

⊲⊲ By contrast, a contradiction is a sentence that is always false. 
For example, “It is raining and it is not raining.” Because an 
“and” sentence is only true when both conjoined sentences are 
true and because the negation of a sentence always has the 
opposite truth-value, “It is raining and it is not raining” must be 
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false, because when one side is true, the other will be false. In a 
truth table, this is seen when the column beneath the sentence is 
nothing but Fs. 

⊲⊲ A contingency is a sentence whose truth-value is contingent on 
how the world is. Sometimes it is true; sometimes it is false. A 
sentence is a contingency if it is neither a contradiction nor a 
tautology—that is, if there is at least one set of truth-values for 
the constituent atomic sentences that renders the sentence true 
and at least one set of truth-values for the constituent atomic 
sentences that renders the sentence false. 

⊲⊲ The sentence we just used as an example, (p ∨q) &−p, is a 
contingency because its column has at least one T and at least 
one F. 

Constructing Truth Tables for Multiple 
Sentences

⊲⊲ We can construct truth tables for any sentence that allows us to 
determine the sentence’s truth conditions, and this tells us what 
type of sentence it is: tautology, contradiction, or contingency. 
But we can construct truth tables that include multiple sentences 
as well. This allows us to use truth tables to determine whether 
certain relations between sentences hold. 

⊲⊲ One such relation is truth-functional equivalence. Two truth-
functional sentences are logically equivalent if and only if they 
have the same truth conditions; that is, they always have the 
same truth-value—both are true or both are false—no matter the 
state of the world. 

⊲⊲ We test for this by constructing a truth table that includes both 
sentences and see if the arrangement of Ts and Fs in the two 
columns are exactly the same. 
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⊲⊲ Is the sentence −a &−b equivalent to −(a &b)? Using algebra, 
can you distribute the negation through the sentence? We need a 
truth table that includes both sentences. 

⊲⊲ First, list the atomic sentences: a and b. 

⊲⊲ Next, let’s build our first sentence. The main connective in −a &−b 
is the conjunction. It conjoins −a with −b, neither of which is in the 
table, but both of which can be made by adding one connective 
to something that is already in the table. 

⊲⊲ Once we have −a and −b, we can make −a &−b. That is one of 
our sentences. Now, let’s build the other. The main connective 
in −(a &b) is the negation. It applies to the rest of the sentence. 
So, we need a &b. It isn’t in our table, but a is and b is, so we can 
make it. 

⊲⊲ Once we have a &b, we just negate it in the last column and we 
have both sentences we are looking to compare. 

⊲⊲ Next, we enter the truth-values, just like last time: T-T, T-F, F-T, F-F. 

⊲⊲ Because −a is the negation of a, and −b is the negation of b, the 
next two columns are as follows. 

¹¹ −a: F, F, T, T. 
¹¹ −b: F, T, F, T. 

⊲⊲ The next column is the conjunction of the previous two. Note that 
it is only true when both −a and −b are true: F, F, F, T. 

⊲⊲ The next column is just the conjunction of a and b: T, F, F, F. 

⊲⊲ The last column is just the negation of the values we just 
determined: F, T, T, T. 



103Lecture 11—Truth Tables

a b −a −b −a &−b a &b −(a &b) 

T T F F F T F 

T F F T F F T 

F T T F F F T 

F F T T T F T

⊲⊲ So, to see if the two sentences are equivalent, let’s see if they 
have exactly the same arrangement of Ts and Fs beneath them. 
Look at the second and third rows of −a &−b and −(a &b). They 
are not equivalent. 

⊲⊲ But what would happen if instead of −(a &b), we compare 
−a &−b to −(a ∨b)? Let’s change the conjunction from & to ∨ in 
the appropriate columns. We know what a ∨b looks like. It’s only 
false when both a and b are false. And the last column is just the 
negation of the one we just determined. 

a b −a −b −a &−b a ∨b −(a ∨b) 

T T F F F T F 

T F F T F T F 

F T T F F T F 

F F T T T F T 

⊲⊲ This time, we compare the two columns, −a &−b and −(a ∨b), 
and they are exactly alike. Therefore, −a &−b is truth-functionally 
equivalent to −(a ∨b). 

⊲⊲ Intuitively, this makes sense. If we say, “Bob doesn’t have sugar 
and Bob doesn’t have cream in his coffee,” that is synonymous to 
saying, “Bob doesn’t have sugar or cream in his coffee.” 
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⊲⊲ This is exactly what we want. The results of truth-functional logic 
match those of our natural way of reasoning, but we have a 
precise method of demonstrating it. 

⊲⊲ In addition to equivalence, another relation between sentences 
is consistency. Two sentences are consistent if it is possible for 
them both to be true at the same time—that is, if there is some 
arrangement of the constituent atomic sentences such that both 
sentences are rendered true. Notice that this is an incredibly weak 
relation: “The sky is blue” is consistent with “I am a warthog.” 

⊲⊲ We can see this using a truth table. “The sky is blue” is an atomic 
sentence. Let’s use s to abbreviate it. “I am a warthog” is also 
atomic, and we’ll use w for it. 

⊲⊲ The truth table is trivial to set up. There are two atomic sentences, 
and we put them in the table. 

⊲⊲ Next, we add the truth-values. 

⊲⊲ Because the first line is a case in which both sentences are true, 
they are consistent. “The sky is blue” is also consistent with “I am 
not a warthog.” 

⊲⊲ Next, we need an additional column for 
−w. We know that −w has the opposite 
truth-value as w, which gives us what is 
shown at right. 

⊲⊲ In the second row, s is true and −w is 
true. So, the two are also consistent. 

⊲⊲ Indeed, “The sky is blue” is consistent with pretty much 
everything except “The sky is not blue.” 

s w −w 

T T F 

T F T 

F T F 

F F T 
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⊲⊲ To tell if two truth-functional sentences are consistent, we construct 
a truth table with both of them in it and see if there is any row—we 
only need one—in which both have the truth-value T. 

⊲⊲ There is a third relation between sentences called implication. A 
sentence S1 truth-functionally implies sentence S2 if and only if 
whenever S1 is true, S2 is also true—that is, there is no case in 
which S1 is true and S2 is false. This does not mean that they both 
have all of the same truth-values—that is, equivalence. Rather, S1 
implies S2 when S1’s truth is enough to guarantee S2’s truth. 

⊲⊲ Implication is unlike equivalence and consistency in that it is not 
necessarily symmetric—that is, just because S1 implies S2 does not 
mean that S2 implies S1. Indeed, the only time we will have mutual 
implication is when we have two sentences that are equivalent. 

⊲⊲ For example, consider the following two sentences: “If today is 
Sunday, then I’ll visit my parents, unless today is not Sunday and 
I will visit my parents.” “Today is Sunday, or if I visit my parents, 
then it is not Sunday.” 

⊲⊲ The first sentence is composed of two atomic sentences: “Today 
is Sunday” and “I will visit my parents.” Let’s use x for the first and 
y for the second: “If x then y, unless it is not the case that x and 
y. The comma shows us that the main connective is “unless”—
which is another way of saying “or.” So, we have the following. 

¹¹ (if x, then y) ∨ (it is not the case that x and y) 

⊲⊲ The first disjunct is just a conditional. 

¹¹ (x → y) ∨ (it is not the case that x and y) 

⊲⊲ The second disjunct is a conjunction. 

¹¹ (x → y) ∨ (it is not the case that x &y) 
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⊲⊲ It is not the case that x is just −x. So, the first sentence is as follows. 

¹¹ (x → y) ∨ (−x &y) 

⊲⊲ The second sentence is “Today is Sunday, or if I visit my parents, 
then it is not Sunday.” Substitute in the x and y while leaving the 
logical terms in place: “x, or if y, then not x.” 

⊲⊲ The main connective is the disjunction. 

¹¹ x ∨ (if y then not x) 

⊲⊲ The second disjunct is a conditional. 

¹¹ x ∨ (y → not-x) 

⊲⊲ The consequent is a negation, giving us the following. 

¹¹ x ∨ (y → −x) 

⊲⊲ So there are our sentences: (x → y) ∨ (−x &y) and x ∨ (y → −x). 

⊲⊲ What type of sentence is each? Are they equivalent? Are they 
consistent? And does either imply the other? 

⊲⊲ First, we need a truth table for two atomic sentences, x and y. 

⊲⊲ The first sentence has the disjunction, the “or,” as its main 
connective. On the left side is x → y. The right side is −x &y. We 
have y, but not −x, but we do have x, so we can make −x. 

⊲⊲ Next, we can make −x &y. 

⊲⊲ By adding the ∨, we can complete our first sentence: 
(x → y) ∨ (−x &y). 
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⊲⊲ In the second sentence, x ∨ (y → −x), the main connective is the 
“or.” The left side is just x, which is in the table already, and the 
right side is the conditional y → −x, and we already have y and −x 
in the table. So, we need one more column for that, as well as a 
final column for the second sentence. 

⊲⊲ The next step is to add the truth-values. 

⊲⊲ We know what the conditional (x → y) looks like. 

⊲⊲ The fourth column is just the negation of the first. 

⊲⊲ The fifth column is just the fourth conjoined with the second. 

⊲⊲ The sixth column, the first sentence, is the third column “or” the 
fifth column. 

⊲⊲ The seventh column has the second as the antecedent and the 
fourth as the consequent. 

⊲⊲ The last column, the second sentence, is the first column “or” the 
seventh column. 

x y x   y −x −x &y (x   y) ∨ (−x &y) y   −x x ∨ (y   −x) 

T T T F F T F T 

T F F F F F T T 

F T T T T T T T 

F F T T F T T T 

⊲⊲ When we look at the first sentence, we see that underneath it is 
T, F, T, T. 
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⊲⊲ The second sentence has nothing but Ts beneath it. It is a 
tautology. Those two columns are not the same, so the two 
sentences are not equivalent. 

⊲⊲ In the first, third, and fourth rows, both sentences have the truth-
value T; remember that we only need one, so they are consistent. 

⊲⊲ Let’s think carefully about implication: Is there a case in which 
the first sentence is true and the second sentence is false? No, 
because the second sentence is never false. 

⊲⊲ The first sentence does imply the second. Indeed, if the second 
sentence is a tautology, then any sentence would imply it, 
because it would be impossible for the first sentence to be true in 
a case where the second sentence is false, given that the second 
sentence is never false. 

⊲⊲ What about the other direction? Is there a case in which the 
second sentence is true and the first one is false? Yes, this occurs 
in the second row. So, the second sentence does not imply the 
first. 

Readings

Barker, The Elements of Logic, chap. 3.
Copi, Introduction to Logic, chap. 8.
Kahane, Logic and Philosophy, chap. 2.

Questions 

1. 
Use a truth table to determine whether the sentence p → [q ∨ (−q → p)] 
is a tautology, contradiction, or contingency.



109Lecture 11—Truth Tables

2. 
Translate the following sentence, construct a truth table for it, and 
determine if it is a tautology, contradiction, or contingency.

“If you get a pie, then pick up ice cream, but if you don’t get ice 
cream, don’t get a pie.”

3. 
Consider the following two sentences:

“I will pick up the kids from school, you will pick up the kids from 
school, or we will both pick up the kids from school” 

and 

“If you don’t pick up the kids from school, I will.”

Are they consistent? Are they equivalent? Does one imply the other?

4. 
Consider the following two sentences:

“If you are not in love, don’t get married”

and

“If you are in love, get married.”

Are they consistent? Are they equivalent? Does one imply the other?
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Answers

1. 
tautology

p q −q −q   p q ∨ (−q   p) p   [q ∨ (−q   p)]

T T F T T T

T F T T T T

F T F T T T

F F T F F T

2. 
contingency

(p → i) &(−i → −p)

p i p   i −i −p −i   −p (p   i) &(−i   −p)

T T T F F T T

T F F T F F F

F T T F T T T

F F T T T T T
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3. 
The sentences are consistent, equivalent, and imply each other. 
(i ∨u) &(i &u) (this could also be translated simply as i ∨u), −u → i.

i u i ∨u i &u (i ∨u) ∨ (i &u) −u −u   i

T T T T T F T

T F T F T T T

F T T F T F T

F F F F F T F

4. 
The sentences are consistent. They are not equivalent, and there is 
no implication.

−l → −m, l → m

l m −l −m −l   −m l   m

T T F F T T

T F F T T F

F T T F F T

F F T T T T



Lecture 12

Truth Tables and Validity

Truth-functional logic provides us with the tools to assess 
arguments surrounding many of the things we believe. Does 

the evidence we cite really lead us with absolute certainty to the 
conclusions we hold? To find out whether they do, we can use 
truth tables. As you know, they can be used to test for properties 
of individual sentences and relations between sentences. But our 
ultimate goal in logic is to test for validity—that is, to see when we are 
logically obligated to believe an argument’s conclusion based on the 
information contained in the argument’s premises. As you will learn in 
this lecture, truth tables are able to do this, too. 

Validity and Invalidity for  
Deductive Arguments

⊲⊲ In order to understand the means of testing for validity and 
invalidity, recall a relation between truth-functional sentences that 
you have already learned how to test for: implication. 

¹¹ A sentence S1 implies a sentence S2 if and only if in every case 
in which S1 is true, S2 is also true—that is, there is no case 
in which S1 is true and S2 is false. We test for implication by 
constructing a truth table containing both S1 and S2. We then 
look at every row in which S1 is true and see if S2 is also true in 
every case. 

⊲⊲ Validity is just a generalization of implication. An argument is 
valid if and only if its premise set implies its conclusion. As such, 
we can just generalize our truth table test to turn it into a validity 
test—and, interestingly, an invalidity test. 
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⊲⊲ It might seem obvious that we should be able to use a single test 
to demonstrate that an argument is valid if it passes and invalid if 
it fails, but there is another validity test that is not an invalidity test. 
But truth tables are able to do both. How? 

1	 Construct a big truth table that includes all of the premises and 
the conclusion. 

2	 Fill in all of the truth-values. 
3	 Look for every case—that is, every row—in which all of the 

premises are true. 
4	 See if the conclusion is true in all of those cases. If it is, then 

the argument is valid. If there exists even one case in which all 
of the premises are true and the conclusion is false, then the 
argument is invalid. 

Modus Ponens

⊲⊲ Consider the famous argument called modus ponens, which is 
Latin for “the way that affirms.” It is any argument of the form 
m → n; m, therefore, n. 

⊲⊲ For example, consider the following argument: “If you are 
drunk, then your cognitive abilities are impaired. You are drunk. 
Therefore, your cognitive abilities are impaired.” 

⊲⊲ Let m be the sentence “you are drunk” and n be the sentence 
“your cognitive abilities are impaired.” 

⊲⊲ We need a truth table that includes the premises and the 
conclusion. The first step in building a truth table is to list all of the 
atomic sentences we will need. In this case, it is m and n. 

⊲⊲ Next, let’s look at the first premise: m → n. It’s not in our table, but 
we have both m and n, so by adding just one connective, we can 
make it. 
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⊲⊲ We look at the second premise, m, and see that it is already in 
the table, as is the conclusion, n. 

⊲⊲ Next, add the truth-values. This is just 
the truth table for the conditional. 

⊲⊲ Once we have the complete truth 
table, we can test the argument for 
validity. In which rows are both of the 
premises true? It is only the first row. Is 
the conclusion also true in this case? 
Yes. So, the argument is valid. 

⊲⊲ If it is true that you are drunk and if it is true that being drunk 
leads to impaired cognitive abilities, then it must also be true that 
your cognitive abilities are diminished. 

The Fallacy of Affirming the Consequent

⊲⊲ Modus ponens’s evil twin is known to logicians as the fallacy of 
affirming the consequent. It is any argument of the form m → n; n, 
therefore m. 

⊲⊲ Using the same sentences as the previous example, the argument 
would be as follows: “If you are drunk, then your cognitive abilities 
are impaired. Your cognitive abilities are impaired. Therefore, you 
are drunk.” 

⊲⊲ The name probably gives away the validity status, but let’s see 
whether this so-called fallacy really is an invalid argument form. 

⊲⊲ We need a truth table that includes both of the premises and 
the conclusion. This one is easy for us because it is just the 
truth table we constructed for the previous example. The 

m n m   n 

T T T 

T F F 

F T T 

F F T 
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only difference is that we have 
switched the conclusion and one 
of the premises. 

⊲⊲ To test for validity, let’s find every 
row in which both of the premises 
are true. In both of the first and 
the third rows, the conditional “if 
you are drunk, then your cognitive 
abilities are decreased” is true, and in both of these cases you 
do have decreased cognitive capacities. 

⊲⊲ In the first case, you are drunk, but in the third case, you are not 
drunk but have decreased cognitive capacities for some other 
reason—perhaps lack of sleep, for example. 

⊲⊲ Is the conclusion also true in both of those cases? It is for the first 
row, but not for the third row. 

⊲⊲ Note what this means: If we are presented with this argument and 
we know for a fact that both of the premises are true—it is the 
case that being drunk diminishes your cognitive abilities, and you 
do, in fact, have diminished cognitive abilities—do we know with 
absolute certainty whether you are drunk? That is, do we know if 
the conclusion is also true? 

⊲⊲ No, because we don’t know if our world is the first case or the 
third case. In both of these rows, the premises are true, but this is 
not enough for us to know which one is our case and, therefore, 
not enough to know whether the conclusion is true or false. 

⊲⊲ This argument is invalid. It does not give us reason to either 
believe or deny the conclusion. This argument gives us reason 
to believe absolutely nothing. The fallacy of affirming the 
consequent lives up to its name. 

m n m   n 

T T T 

T F F 

F T T 

F F T
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Three Atomic Sentences

⊲⊲ The following example is a bit more complicated than the previous 
two. “If there is precipitation and the temperature is below freezing, 
then there is snow. There is not snow or the temperature is below 
freezing. Therefore, there is precipitation or there is snow.” 

⊲⊲ Let a be the sentence “there is precipitation.” Let b be the 
sentence “the temperature is below freezing.” And let c be the 
sentence “there is snow.” 

⊲⊲ This gives us the argument form (a &b) → c; −c ∨b, therefore a ∨c. 
There are three atomic sentences. How do we build a truth table 
for this? The same way as we do with two. The first step is to list 
all of the atomic sentences. 

⊲⊲ Next, let’s work on the first premise. The main connective is the 
conditional. The antecedent is a &b. We already have both a and 
b in the table, so we can make a &b by adding one connective. 

⊲⊲ We have c, the consequent, already in the table, so by adding 
the arrow to what is already in the table, we can make the first 
premise: (a &b) → c. 

⊲⊲ In the second premise, the main connective is the “or.” On the left 
side, we see −c. We have c, so one connective added makes it. 

⊲⊲ Once we have the left side and the right side of the disjunction in 
the table, we can make the second premise: −c ∨b. 

⊲⊲ Finally, we have a and c already in the table, so we can add one 
connective to make the conclusion: a ∨c. 

⊲⊲ Once we set up the columns, we can add the truth-values. We 
have three atomic sentences that can take two possible truth-
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values, so the number of combinations is 2 × 2 × 2 = 8. There 
are 8 rows in each column. The first three columns are as follows. 

a b c a &b (a &b)   c −c −c ∨b a ∨c 

T T T 

T T F 

T F T 

T F F 

F T T 

F T F 

F F T 

F F F

 

⊲⊲ The fourth column is just the conjunction of the first two. 

⊲⊲ The fifth column is a little tricky. Remember that the only time 
the conditional is false is when the antecedent is true and the 
consequent is false. But notice that in this case, the antecedent is 
listed after the consequent in the table, so we need to be mindful. 

⊲⊲ For the sixth column, −c is just the negation of c. 

⊲⊲ The seventh column is a disjunction of the sixth and second 
columns. 

⊲⊲ Finally, the conclusion in the eighth column is the disjunction of 
the first and third columns. 
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a b c a &b (a &b)   c −c −c ∨b a ∨c 

T T T T T F T T 

T T F T F T T T 

T F T F T F F T 

T F F F T T T T 

F T T F T F T T 

F T F F T T T F 

F F T F T F F T 

F F F F T T T F

 

⊲⊲ Now that our truth table is filled in, let’s find every case in which 
both of the premises are true. It is rows 1, 4, 5, 6, and 8. Is the 
conclusion true in all of these cases? Lines 6 and 8 show us 
cases in which the premises are both true and the conclusion is 
false. So, this is an invalid argument. 

Readings

Barker, The Elements of Logic, chap. 3.
Copi, Introduction to Logic, chap. 8.
Kahane, Logic and Philosophy, chap. 2.
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Questions 

1. 
Is the following argument valid?

p → q. −p ∨−q. Therefore, p ∨q.

2. 
Determine whether the following argument is valid using a truth table.

Your mother will stay with us only if we kennel the dog and get all 
of the carpets in the entire house steam cleaned. I am not going 
through the whole hassle of getting the house prepared for steam 
cleaning again. So, tell your mother she is not staying with us.

Answers

1. 
invalid (row 4)

p q p   q −p −q −p ∨−q p ∨q

T T T F F F T

T F F F T T T

F T T T F T T

F F T T T T F
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2. 
valid

m → (k &c). −c. Therefore, −m.

m k c k &c m   (k &c) −c −m

T T T T T F F

T T F F F T F

T F T F F F F

T F F F F T F

F T T T T F T

F T F F T T T

F F T F T F T

F F F F T T T



Lecture 13

Natural Deduction

Logic determines what we have good reason to believe. We have 
legitimate warrant to accept the conclusion of an argument if that 

argument is both well-grounded and valid. To protect ourselves, we 
need a validity test. For arguments in our truth-functional language, 
we have truth tables. In this lecture, you will be introduced to a 
different validity test: natural deduction proofs. Why introduce a 
second validity test when we already have a perfectly good one? 
Truth tables are not always user-friendly, and our truth-functional 
language is insufficient for all of the logical work we want to do. 

Natural Deduction Proofs

⊲⊲ Think of a natural deduction proof as a game. First, look at the 
playing board. Then, learn the goal we need to accomplish in 
order to win and the rules we have to follow in seeking that goal. 
Finally, learn strategies for successful playing. 

⊲⊲ When it comes to the playing board, a natural deduction proof 
has three columns. The first column is comprised of positive 
integers in ascending order. Every line has a number, which is 
the name of the line. 

⊲⊲ The second column includes nothing but true sentences written 
in our truth-functional language. If a single false sentence gets 
into the second column, it could create logical havoc. The second 
column is, therefore, a very exclusive logical club. 
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⊲⊲ For a sentence to move past the velvet rope and gain admittance 
to the second column, it needs an identification card that vouches 
for its undeniable truth. That identification card is a justification, 
and it is placed in the third column. 

⊲⊲ So, the game of natural deduction proof is played on a board that 
has numbered and justified true sentences written in our truth-
functional language. First comes the number, then the sentence, 
and then the justification. 

⊲⊲ There are several categories of justification, but the first one is 
premise. 

⊲⊲ Natural deduction proof is a validity test, and an argument is valid 
if and only if, assuming the truth of the premises for the sake of 
argument, the conclusion must follow from them. 

⊲⊲ We are trying to show that if the premises are true, then the 
conclusion has to be, too. So, we begin by admitting the 
premises to the second column. Being a premise is like being 
born to a wealthy family: You get privileges you did not have to 
earn, unlike others. 

⊲⊲ All other sentences will need to earn the justification that will 
let them into the second column, but the premises are simply 
granted justification by virtue of the argument whose validity is in 
question. 

⊲⊲ The game begins when all of the premises are entered onto the 
board as numbered lines, justified by premise. The game ends 
when the conclusion appears as a justified line of the proof. 

⊲⊲ Because only true sentences are allowed in the second column, 
if we start with the premises and show that the conclusion follows, 
then we will have, indeed, proven the validity of the argument. 
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The Rules of Inference

⊲⊲ To get us from the premises to the conclusion, we need some 
moves. The first set is rules of inference, which are simple valid 
argument forms. If we have lines in the proof that have the form of 
the premises, then we can write a new line in the proof of the form 
of the conclusion of this valid argument form. 

⊲⊲ Because the form is valid, we know that if the premises are true, 
the conclusion must be and therefore can be entered into the 
second column. 

⊲⊲ We have already seen one of these rules of inference in the 
previous lecture. Recall the argument form modus ponens—that 
is, a → b; a, therefore b. 

⊲⊲ If we have a conditional that we know is true and we also know 
that the antecedent is true, then we can conclude that the 
consequent must be true as well. 

⊲⊲ We can use modus ponens if we have a conditional on some 
line of the proof and on any other line of the proof we have the 
antecedent of that conditional. 

⊲⊲ If these two lines appear, then on a subsequent line, we can write 
the consequent of the conditional in the second column and 
next to it, in the third column, write “MP” for modus ponens and 
write the numbers of the two lines on which the conditional and 
antecedent are found. 

⊲⊲ Let’s work out a proof for the following argument. 

1	 a → b 
2	 b → c 
3	 c → d 
4	 d → e 
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5	 e → f 
6	 f → g 
7	 a therefore, g 

⊲⊲ We start by listing all of the premises as numbered lines of the 
proof, justified by premise. The proof therefore begins as follows. 

1	 a → b	 premise 
2	 b → c	 premise 
3	 c → d	 premise 
4	 d → e	 premise 
5	 e → f	 premise 
6	 f → g	 premise 
7	 a	 premise 

⊲⊲ We look at line 1, and we have a condition a → b, and then we see 
on line 7 that we have a. If a, then b, and we know a, so on line 8 
we can write the following. 

8	 b	 MP 1,7 

⊲⊲ The justification must include the name of the rule of inference 
used and the lines on which it is being used. This says that we 
used modus ponens on lines 1 and 7 in order to get this line, line 8. 

⊲⊲ But look at line 2. It says that if we have b, we get c, and our new 
line 8 gives us b. So, we can add the following. 

9	 c	 MP 2,8 

⊲⊲ And this gives us lines 10 through 13. 

10	 d	 MP 3,9 
11	 e	 MP 4, 10 
12	 f	 MP 5, 11 
13	 g	 MP 6, 12 
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⊲⊲ At this point, let’s look at what we have. The conclusion g showed 
up as a justified line of the proof. This means that the proof is 
complete. We win the game. We declare the argument valid by 
writing beneath the proof “QED,” which stands for quod erat 
demonstrandum, or “which was to be demonstrated.” With this 
proof, we have proven the validity of the argument. 

⊲⊲ The less optimistic sibling of modus ponens—the way of 
affirming—is modus tollens, or the way of denying. If we have, 
on any line of a proof, a conditional, and if on any other line of 
the proof, we have the negation of the consequent, then we may 
write on a further line of the proof the negation of the antecedent, 
justified by modus tollens (MT). In other words, we are using the 
valid argument form. 

a → b 
−b 
Therefore, −a 

⊲⊲ If a is true, then b must be true. But we know that b is not true, so 
a cannot have been, or else b would be. This is valid. 

⊲⊲ The other rule for sentences that are conditionals is the 
hypothetical syllogism (HS). Recall that a syllogism is an argument 
with two premises. A hypothetical syllogism is an argument with 
two conditionals as premises. 

a → b 
b → c 
Therefore, a → c 

⊲⊲ If we have two conditionals in a proof and the antecedent of one 
is the consequent of the other, we can combine them, eliminating 
the middle term. We justify the new line with “HS” and the line 
numbers of the operative conditionals. 
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⊲⊲ This gives us another way of producing a proof from the original 
example. 

1	 a → b	 premise 
2	 b → c	 premise 
3	 c → d	 premise 
4	 d → e	 premise 
5	 e → f	 premise 
6	 f → g	 premise 
7	 a	 premise 
8	 a → c	 HS 1,2 

⊲⊲ So, we took the conditional on line 1 and the conditional on line 
2 and squished them together. If we have a, then we get b. But b 
gives us c. So, a gives us c. 

⊲⊲ But this can be done again and again. 

1	 a → b	 premise 
2	 b → c	 premise 
3	 c → d	 premise 
4	 d → e	 premise 
5	 e → f	 premise 
6	 f → g	 premise 
7	 a	 premise 
8	 a → c	 HS 1,2 
9	 a → d	 HS 3,8 
10	 a → e	 HS 4,9 
11	 a → f	 HS 5,10 
12	 a → g	 HS 6,11 

⊲⊲ But we now have line 12 that tells us that if a, then g, and line 7 
that gives us a. So, by modus ponens, we get the following 

13	 g	 MP 7,12 
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⊲⊲ This is not uncommon. Many arguments will have multiple ways 
of constructing a proof. 

⊲⊲ So far, all of the examples have used atomic sentences as the 
antecedent and consequent, but this is not necessary. This was 
only done to make the examples easier. 

⊲⊲ You can use modus ponens, modus tollens, and the hypothetical 
syllogism on lines that are as complex as you want, as long as 
the main connective is the conditional and the form holds. 

⊲⊲ Modus ponens just requires a conditional on one line and the 
antecedent on another. They don’t have to be atomic sentences 
but could be molecular sentences of any complexity. 

⊲⊲ With the hypothetical syllogism, we match up the middle term, 
and the antecedent stays the antecedent and the consequent 
stays the consequent, even if the terms are complex molecular 
sentences. 

⊲⊲ If we have some sentence on line m and another on line n, then 
we know that both are true because all of the sentences in 
the second column are true. But if they are both true, then the 
conjunction of the two must also be true. 

⊲⊲ So, we can take the sentences on any two lines and put an “and” 
between them, justifying the move with the rule of inference 
called conjunction (Conj). Suppose that we have the following. 

8	 (d → h) ∨ (e &t) 
9	 i &(f ∨g) 

⊲⊲ Then, we can make the following line. 

10	 [(d → h) ∨ (e &t)] &[i &(f ∨g)]	Conj 8,9 
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⊲⊲ The conjunction rule allows you to join any two lines with an “and.” 

⊲⊲ Conjunction introduces an “and.” To get rid of one, you use the 
rule called simplification (Simp). 

⊲⊲ We know that the only time a conjunction a &b is true is when a 
is true and b is true. So, if you have a conjunction in your proof, 
you can break it down and write both conjuncts on their own lines, 
justified by simplification. Suppose that we are given the following. 

8	 (s ∨r) &(x → t) 

⊲⊲ Then, we can write the following. 

9	 s ∨r	 Simp 8 
10	 x → t	 Simp 8 

⊲⊲ Use simplification anytime you can. You will often be able to do 
things with the parts that you cannot do with the whole. Break it 
down and free up as much logical fodder as you can. 

⊲⊲ Be careful, however: We can only use simplification if the 
conjunction is the main connective. You cannot simplify parts of 
lines, only entire lines. In general, rules of inference must only be 
used on entire lines—that is, operate on the main connective of 
the sentences. 

⊲⊲ We also have rules for introducing and removing disjunctions. To 
introduce one, we use the rule called addition (Add). Given any 
line, we can turn it into a disjunction with any sentence. Suppose 
that we are given the following. 

23	 t 
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⊲⊲ We can form the following. 

24	 t ∨m	 Add 23 

⊲⊲ Where did m come from? Why m? If you don’t like m, you can 
make it w or even (c &f ) ∨ (q &−j ). You can add any sentence to 
any other sentence just because you want to. 

⊲⊲ But we said that the sentences in the second column have to be 
true or else really bad things happen. How can we just add any 
sentence? 

⊲⊲ Think about disjunctions: “Or” sentences are true when one or 
the other (or both) disjuncts are true. 

⊲⊲ While we can introduce any sentence we want—true or false—it 
will be stuck in the disjunction. It will not be able to be freed and 
appear on its own. 

⊲⊲ To get a sentence out of a disjunction, we use the disjunctive 
syllogism (DS). If we know that Bob has sugar or cream in his 
coffee and we know he doesn’t have cream, then we know he 
has sugar. If we know that Bob has sugar or cream in his coffee 
and we know he doesn’t have sugar, then we know he has cream. 
That is the disjunctive syllogism. 

⊲⊲ If we have a line whose main connective is an “or,” and we know 
that one of the disjuncts is false, then the other one has to be 
true. It looks like the following. 

5	 (c &d) ∨f 
6	 −f 
7	 c &d	 DS 5,6 

⊲⊲ You can use the disjunctive syllogism if either disjunct is negated. 
The order does not matter. 
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⊲⊲ The last rule has 
three premises and is 
called the constructive 
dilemma (CD). It is 
an argument of the 
following form. 

a → b 
c → d 
a ∨c 
Therefore, b ∨d 

⊲⊲ The idea is that a takes 
you to b, and c takes 
you to d. You know 
that either a or c is 
true, which means that 
you will be led, then, 
to either b or d. So, if 
you have two unrelated 
conditionals, see if 
there is a disjunction 
of the antecedents. 
If so, you can use the 
constructive dilemma. 

Readings

Barker, The Elements of Logic, chap. 3.
Copi, Introduction to Logic, chap. 8.
Hurley, Logic, chap. 7.
Kahane, Logic and Philosophy, chap. 4.

MP	 a → b; a, therefore b 

MT	 a → b; −b, therefore –a 

HS	 a → b; b → c, therefore 
a → c 

Conj	 a, b, therefore a &b 

Simp	 a &b, therefore a, 
therefore b 

Add	 a, therefore a ∨b 

DS	 a ∨b, −a, therefore b or 
a ∨b, −b, therefore a 

CD	 a → b, c → d, a ∨c, 
therefore b ∨d 

The Rules  
of Inference
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Questions 

1. 
Provide a proof for the following argument.

p ∨ (r &q). −p &(q → s). Therefore, r &s.

2. 
Translate the following argument into truth-functional logic and 
construct a proof to show that it is valid.

If you have an identification card showing that you are older than 
21, then either you are of legal age or this ID is a fake. I see your 
card, but I know that you are not 21. Hence, this must be a fake ID.

Answers

1. 
1	 p ∨ (r &q)	 premise
2	 −p &(q → s)	 premise
3	 −p	 Simp 2
4	 q → s	 Simp 2
5	 r &q	 DS 1,3
6	 r	 Simp 5
7	 q	 Simp 5
8	 s	 MP 4,7
9	 r &s	 Conj 6,8
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2. 
c: �You have an identification card showing that you are older than 21.

o: You are older than 21.

f: The identification card is fake.

If you have an identification card showing that you are older than 21, 
then either you are of legal age or this ID is a fake. 

c → (o ∨f )

I see your card, but I know that you are not 21. 

c &−o

Hence, this must be a fake ID.

Therefore, f.

1	 c → (o ∨f)	 premise
2	 c &−o	 premise
3	 c	 Simp 1
4	 −o	 Simp 1
5	 o ∨f	 MP 1,3
6	 f	 DS 4,5
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Logical Proofs  
with Equivalences

The system of proof we have is sound, but it is not complete. A 
system of proof is sound if and only if you can only construct a 

proof for valid arguments. Our system as it is so far must be sound 
because the only moves we can use are rules of inference, which 
are themselves valid arguments. But the system is not complete. 
A system of proof is complete if and only if every valid argument 
formable in the language can be proven in the system. As the system 
stands now, there are valid arguments that we are unable to prove. 
We need more moves. We call these equivalences. 

The Equivalences

⊲⊲ Equivalences are sentence forms in our truth-functional language 
that are truth-functionally equivalent—that is, sentences that must 
always have the same truth-value. For any of these, if you doubt 
that they are really equivalent, work out a truth table, and you will 
see that they are. 

⊲⊲ The first equivalence is called double negation (DN). It asserts 
that a sentence p and the double-negated sentence −−p are 
equivalent. “It is not the case that you didn’t call your mother” 
means that you did call your mother. 

⊲⊲ Two negations yield an affirmation. Negation changes the truth-
value of a sentence from true to false or false to true. So, doing 
it twice just brings you back to the original truth-value. Therefore, 
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you could always add two negations or remove a pair of adjacent 
negations without changing the truth-value of the original 
sentence. For us, this makes the two equivalent. 

⊲⊲ Suppose that we have a proof with the following lines. 

6	 −c → h 
7	 −h 

⊲⊲ We have a conditional and the negation of the consequent, so we 
can use the rule of inference modus tollens to get the negation of 
the antecedent in the proof. The antecedent is −c, so we get the 
following. 

8	 −−c	 MT 6,7 

⊲⊲ But if the conclusion we are looking for is c, then we would need 
one more step. 

9	 c	 DN 8 

⊲⊲ Because c and −−c are equivalent, if c appears in the second 
column, then it must be true, and therefore −c must be true 
and thus can also be entered in the second column. If there 
are two negations directly next to each other, not separated by 
parentheses, we can wipe them away. 

⊲⊲ However, in some circumstances, we will need them. In these 
cases, we can use DN to add them. Suppose that we have a 
disjunction in a proof. 

12	 b ∨−d 

⊲⊲ Suppose that we also have the sentence d in the proof. 

13	 d 
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⊲⊲ This means that we know that b is true or d is false. But we know 
that d cannot be false because line 13 says that it is true. We 
would like to use the disjunctive syllogism here, but to use the 
rule DS, we need a disjunction and the negation of one of the 
disjuncts. We do not have that. 

⊲⊲ But by using DN, we can manufacture it. 

14	 −−d	 DN 13 

⊲⊲ Next, we do have the negation of one of the disjuncts. One is b 
and the other is −d. The negation of −d is −−d. And that is what 
we have on line 14. So, we can now do the following. 

15	 b	 DS 12,14 

⊲⊲ So, double negation can be used to add or take away two 
negations that are directly next to each other anywhere in a proof. 

⊲⊲ There are two important differences between the rules of 
inference and the equivalences. First, equivalences work in both 
directions. We can substitute −−c for c, or c for −−c. Modus 
ponens, for example, is an inference, so it only goes one way. 

⊲⊲ The second difference is that we can use equivalences on parts 
of lines. Rules of inference can only be used on entire lines. 
The reason for this is that while rules of inference are truth-
preserving—that is, they always take you from a true sentence to 
another true sentence—equivalences always maintain the truth-
value of the sentence, true or false. 

⊲⊲ Truth-functional sentences derive their truth-values solely from 
the values of the constituent parts. Some of these parts may be 
true; some may be false. Equivalences always leave the truth-
value unchanged and therefore can be used on parts of lines, 
where rules of inference cannot. 
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⊲⊲ One similarity is that although we will be using atomic letters like a 
and b to show the equivalences, they may be used on molecular 
sentences or any level of complexity. We could take any line in a 
proof, atomic or not, and apply any of our equivalences. 

⊲⊲ The second equivalence is a pair of relations called De Morgan’s 
theorem (DeM), named for the 19th-century logical pioneer 
Augustus De Morgan. It says that the negation of a disjunction is 
a conjunction of the disjuncts and the negation of a conjunction is 
a disjunction of the conjuncts. 

−(a ∨b)::−a &−b 
−(a &b)::−a ∨−b 

⊲⊲ When you negate an “or,” you get an “and,” and when you negate 
an “and,” you get an “or.” 

⊲⊲ Think of this in terms of Bob at the coffee machine. If we say that 
Bob has sugar or cream in his coffee, how could we be wrong? 
The only way we are wrong about Bob having sugar or cream is 
when he has neither—that is, when he doesn’t have sugar and he 
doesn’t have cream. 

⊲⊲ If we say that Bob has sugar and cream in his coffee and again 
are wrong, what could be the case? We would be wrong about 
his having both sugar and cream in his coffee if he didn’t have 
sugar or he didn’t have cream, or he had neither. This is De 
Morgan’s theorem. 

⊲⊲ We cannot distribute a negation, but we do have an equivalence 
called distribution where we can distribute an “and” or an “or.” 

a ∨ (b &c)::(a ∨b) &(a ∨c) 
a &(b ∨c)::(a &b) ∨ (a &c) 

⊲⊲ We can distribute the a ∨  or the a & through the other sentence. 
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⊲⊲ Notice an important aspect of this equivalence. One side is 
a disjunction and the other is a conjunction. A helpful hint 
when doing proofs is that anytime you have the negation of a 
disjunction, use De Morgan’s theorem as quickly as possible, 
because it results in a conjunction upon which we can use the 
rule of inference simplification and get new pieces we might be 
able to use. 

⊲⊲ Distribution has two sibling equivalences, association and 
commutation. Where distribution is used when you have mixed 
conjunctions and disjunctions, association works where you have 
two “ands” or two “ors.” 

a &(b &c)::(a &b) &c 
a ∨ (b ∨c)::(a ∨b) ∨c 

⊲⊲ This is association (Assoc). For an “and” sentence, the only time 
it is true is when both of the conjuncts are true. So, a &b is true 
when a is true and b is true, and (a &b) &c is true only when (a &b) 
is true and c is true—that is, when all three are true. 

⊲⊲ Similarly, when we regroup them, the only time the sentence is 
true is when all three are true. They are equivalent. In the case 
of the disjunction, the only time the sentence is false is when a, 
b, and c are all false, no matter how they are grouped. So, if we 
have two “ands” or two “ors,” we are free to shift the parentheses 
how we see fit. 

⊲⊲ The last of the trio is commutation (Comm), where we are taking 
the terms of a conjunction or disjunction and moving them 
somewhere else. 

a ∨b::b ∨a 
a &b::b &a 
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⊲⊲ Remember that in basic truth tables, conjunction and disjunction 
are symmetric. This is just a result of that fact. 

⊲⊲ But remember that the conditional was not. The only time a 
conditional is false is when the antecedent is true and the 
consequent is false. 

⊲⊲ So, let’s suppose that we have two sentences, a, which is true, 
and b, which is false: a → b is true then false, and thus is false. 
But b → a gives us false then true, and that case is true. So, if we 
try to take the antecedent and the consequent and swap their 
places, we change the truth-value: a then b and b then a are not 
equivalent. 

⊲⊲ We can’t switch around the antecedent and the consequent 
and maintain the truth-value of the resulting sentence, so while 
commutation holds for conjunction and disjunction, it does not for 
the conditional. 

⊲⊲ The conditional gets its own version of this, called contraposition 
(Contra), as in “contrary” (a change in truth-value) and “position” 
(a change in location). 

a → b::−b → −a 

⊲⊲ If we know that a → b is true, then if you get a, b must follow. 
So, if there is no b to be found, there could not have been an 
a in the first place. If there is fire, then there is oxygen. In other 
words, if there is no oxygen, then there is no fire. We can swap 
the antecedent for the consequent in a conditional as long as we 
negate both in the move. 

⊲⊲ The conditional also has its own version of distribution, which is 
called exportation (Exp). 

(a &b) → c::a → (b → c) 
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⊲⊲ Suppose that we need two things to happen to bring about a 
third—for example, we need for the temperature to be below 
freezing and for there to be precipitation in order to get snow. 
That means that if the temperature is below freezing, then if there 
is precipitation, it will snow. 

⊲⊲ So, we can shift those parentheses the way we do with 
conjunctions and disjunctions using the rule association, but only 
if we change the first arrow to a conjunction or vice versa. 

⊲⊲ That is the equivalence that the conditional and the conjunction 
share. 

⊲⊲ The disjunction and the conditional share one as well. It is called 
implication (Impl). 

a → b::−a ∨b 

⊲⊲ If you say to one of your teenage children, “If you are going to 
go to that party, you will complete your chores,” then what you 
are saying is that the teenager’s chores will be complete or the 
teenager will not be attending that party. 

⊲⊲ The key here is to think of the truth table for the conditional. The 
only time a conditional is false is when the antecedent is true and 
the consequent is false. That means that a conditional is true if 
that case is not the case—in other words, if the antecedent is 
false or the consequent is true. 

⊲⊲ And that is just what implication says. This means that we can 
switch back and forth between conditionals and disjunctions as 
long as we negate the first term. 
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⊲⊲ The last equivalence is given the misleading name tautology 
(Taut). 

a ∨a::a 
a &a::a 

⊲⊲ It is fairly obvious that a “or” a or a “and” a is the same thing 
as saying a: Tonight, let’s have either Indian food or Indian food. 
Actually, let’s have both Indian food and Indian food. 

⊲⊲ So, anytime you have a conjunction or a disjunction of the same 
term, you can collapse it. 

⊲⊲ Of course, a ∨a and a &a are not tautologies. They are 
contingencies. If a is true, then a &a and a ∨a are true. If a is 
false, then a &a (false and false) and a ∨a (false or false) are both 
false. On the other hand, a → a is not equivalent to a. Why? 

⊲⊲ Because it is a tautology. If we have a sentence a, then a → a 
will always be true, regardless of the truth-value of a. If a is true, 
then a → a is true, then true, and that is true. If a is false, then 
a → a becomes false, then false, and this is also true. The only 
time a conditional is false is when the antecedent is true and the 
consequent is false. 

⊲⊲ If the antecedent and the consequent are the same sentence, 
then this could never be the case. As such, a ∨a and a &a are 
equivalent to a, and using the equivalence tautology, we can 
substitute one for the other at will. 

⊲⊲ But a and a → a are not equivalent because a could be false and 
a → a would be true. So, the equivalence only holds for “and” 
and “or.” 
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Readings

Copi, Introduction to Logic, chap. 8.
Hurley, Logic, chap. 7.
Kahane, Logic and Philosophy, chap. 5.

Questions 

1. 
Construct a proof for the following argument.

(p ∨−q) ∨r, −p &−r. Therefore, q → s.

DN	 a::−−a 

DeM	 −(a ∨b)::−a &−b; −(a &b)::−a ∨−b 

Dist	 a ∨ (b &c)::(a ∨b) &(a ∨c); a &(b ∨c)::(a &b) ∨ (a &c) 

Assoc	 a ∨ (b ∨c)::(a ∨b) ∨c; a &(b &c)::(a &b) &c 

Comm	 a ∨b::b ∨a; a &b::b &a 

Contra	 a → b::−b → −a 

Exp	 (a &b) → c::a → (b → c) 

Impl	 a → b::−a ∨b 

Taut	 a ∨a::a; a &a::a 

The Equivalences
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2. 
Translate the following argument and construct a proof to show that 
it is valid.

I need to be in Atlanta for work, but we could also visit Boston or 
Chicago. If we fly through Denver, then it makes sense to go to 
Chicago. I suggest that we give Chicago a miss this time. So, we’ll 
go to Atlanta and Boston and not fly through Denver.

Answers

1. 
1	 (p ∨−q) ∨r	 premise
2	 −p &−r	 premise
3	 −p	 Simp 2
4	 −r	 Simp 2
5	 p ∨ (−q ∨r)	 Assoc 1
6	 −q ∨r	 DS 3,5
7	 −q	 DS 4,6
8	 −q ∨s	 Add 7
9	 q → s	 Impl 8

2. 
I need to be in Atlanta for work, but we could also visit Boston or 
Chicago. 

a &(b ∨c)

If we fly through Denver, then it makes sense to go to Chicago. 

d → c



143Lecture 14—Logical Proofs with Equivalences 

I suggest we give Chicago a miss this time. 

−c

So, we’ll go to Atlanta and Boston and not fly through Denver.

Therefore, a &(b &−d).

1	  &(b ∨c)	 premise
2	 d → c	 premise
3	 −c	 premise
4	 −d	 MT 2,3
5	  (a &b) ∨ (a &c)	 DeM1
6	 −c ∨−a	 Add 3
7	 −a ∨−c	 Comm 6
8	 −(a &c)	 DeM 7
9	 a &b	 DS 5,8
10	  (a &b) &−d	 Conj 4,9
11	 a &(b &−d)	 Assoc 10



Lecture 15

Conditional and  
Indirect Proofs

We have been developing a system of natural deduction. We 
want a system that is both sound and complete. A system of 

proof is sound if every argument for which there is a proof is valid. 
Our system so far is sound. A system of proof is complete if every 
valid argument has a proof in the system. Our system is not yet 
complete. There are valid arguments that our rules of inference and 
our equivalences are not enough to complete a proof. We need two 
new proof strategies and a new justification to reach that ultimate 
goal. The justification is assumption. 

Assumption as a Justification

⊲⊲ At this point in the course, you should be flabbergasted at the 
thought of assumption being a justification. How can we enter a 
sentence in the second column that is a mere assumption? 

⊲⊲ After all the time we spent discussing why it was essential to only 
put sentences in the second column that we know to be absolutely 
true, do you mean to tell us that now we can just enter any 
sentence in the second column and justify it as an assumption? 
Surely, there are limits to what can be assumed, and those limits 
are based on rational inferences about what we can know. 

⊲⊲ No. You are free to assume any sentence you want and enter 
it into the second column of the proof. We did say clearly and 
explicitly that if even one false sentence shows up in the second 
column, logical chaos could result. 
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⊲⊲ But it is okay. We have protection. We have boxes. When we 
introduce an assumption (Assumpt) into a proof, we put it in a 
box, and that box is logical quarantine. Nothing inside of the box 
is allowed to come out into the general population. 

⊲⊲ Anything can be brought into the box, but once a sentence has 
been in the box with the assumption, anything that inferred from it 
is to be deemed to be contagious in that it could be infected with 
the possible falsity of the assumption. 

⊲⊲ When we open a box and insert an assumption, we create a new 
logical world—one that resembles our logical world in certain 
ways, so we can infer true propositions in the real world from 
what we observe in the hypothetical box world. One way to draw 
such inferences is called conditional proof. 

Conditional Proof

⊲⊲ We use conditional proof when we want to prove a conditional. 
We use this form of reasoning all the time, especially if we have 
children. There are two ways one can learn lessons in life: the 
easy way and the hard way. The sentence “You should not put 
your hand on a hot stove” can be learned the hard way by putting 
your hand on the stove. 

⊲⊲ The easy way is conditional proof. We say to the person who 
has never yet put a hand on the hot stove, “Before you do, let’s 
think about this.” Let’s start by assuming that you put your hand 
on the hot stove. Don’t really do it in the real world, but create a 
hypothetical world in which you did. What would be the result? 

⊲⊲ The temperature of the stove is significantly higher than that of 
your hand. By the first law of thermodynamics, heat would flow 
rapidly from the stove into your hand. Your hand heats up very 
quickly—so quickly that it would cause damage to the skin. 
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You would suffer burns. The nerves in your hand would send 
message of those burns to your brain, which would register it as 
incredible amounts of pain. 

⊲⊲ What do we know from this thought experiment? We know that 
if you put your hand on a hot stove, then you will experience 
incredible amounts of pain. By assuming the antecedent 
and then deriving the truth of the consequent, we can assert 
the conditional “If you put your hand on a hot stove, you will 
feel incredible amounts of pain.” We learned the truth of the 
conditional the easy way. 

⊲⊲ This is how conditional proof works. To demonstrate a 
conditional by conditional proof, the first step is to enter all 
of the premises into the proof. The second step is to open a 
box and insert the antecedent into the box as an assumption 
justified by “Assumpt.” 

⊲⊲ Next, pull your premises into the box as needed. Then, use rules 
of inference and equivalences. Proceed as if everything were 
normal inside of the box, until such time as the consequent of the 
conditional appears as a justified line inside of the box. 

⊲⊲ At that point, we know that if the antecedent is true, then 
the consequent has to be true. So, close the box, and in the 
general proof, write down the conditional justified by CP m,n., 
where m is the first line inside the box and n is the last line 
inside the box. 

Indirect Proof

⊲⊲ One use of assumptions is in conditional proof. The other is 
called indirect proof. 
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⊲⊲ When we think of proofs in mathematics, we think of Euclidean 
geometry, which are proofs of the type we started with, where 
you assume the premises and demonstrate the conclusion. This 
is called direct proof. 

⊲⊲ But most mathematical proofs do not take this form. Most are 
indirect proofs, or to use the Latin name, reductio ad absurdum, 
or reduce to absurdity. 

⊲⊲ The “absurdity” is a contradiction. Recall how much we worry 
about contradictions. If even one contradiction is true, then 
everything is true, and truth goes away. We fear contradictions. 
But, like early humans who learned to harness the power of 
otherwise dangerous fire for cooking, we, too, will learn to control 
the power of contradictions. 

⊲⊲ The fundamental principle behind traditional logic is the law of 
the excluded middle—that all sentences are either true or false. 
A sentence that isn’t true is false, and a sentence that isn’t false 
is true. 

⊲⊲ So, if we want to prove that a sentence has to be true, that is the 
same thing as proving that it can’t be false. This is the trick. We 
want to prove that p cannot be false. But how? 

⊲⊲ We know that contradictions are always false, so if we can show 
that the negation of p, in conjunction with the premises we are 
asserting to be true, necessarily leads to a contradiction, then we 
have logical grounds on which to reject the negation of p. 

⊲⊲ But if −p is false, then p must be true. If we can show that denying 
p leads to absurdity, then we have no choice but to accept p. 
That is indirect proof. 
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⊲⊲ It begins when we enter the premises into the proof, then open 
a box and insert the negation of what we are trying to prove into 
the box. We use our premises, the assumption, and our rules of 
inference and equivalences until a contradiction, any sentence of 
the form a &−a, appears in the box. 

⊲⊲ It does not have to be a contradiction involving the assumption. 
Any contradiction will do, because, as you have learned, if you 
grant even a single contradiction, all sentences—including all 
contradictions—are true. 

⊲⊲ At this point, we have shown that the negation of the conclusion, 
when added to the premises, necessarily results in contradiction, 
so we close the box, and in the general proof, we write down the 
conclusion, justified by IP with the line numbers from the opening 
to the closing of the box. 

⊲⊲ In a conditional proof, the box was a hypothetical logical world in 
which we posit something that might not be true in order to see 
what else would have to be true. 

⊲⊲ In an indirect proof, inside the box is a bizarre logical world in 
which we put propositions together that we believe cannot be put 
together in order to observe the nonsense that results. 

⊲⊲ If you are particularly clever, you might have realized that 
it might not be the case that the negation of the conclusion is 
responsible for the contradiction. All we have shown is that the 
combined set of the premises and the negated conclusion lead 
to a contradiction. 

⊲⊲ How can we assert that the negation of the conclusion is 
necessarily false when it might not be the conclusion that is 
to blame for the derived contradiction? If the fault is with the 
premises and not the negation of the conclusion, what gives us 
the right to assert the conclusion? 
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⊲⊲ The answer is that if it is not the assumption that is to blame for 
the appearance of the contradiction, then it has to arise from the 
premises alone. That means that the premises are inconsistent—
that they cannot all be true at the same time. 

⊲⊲ An argument with inconsistent premises must be valid, because 
it would be impossible for all of its premises to be true and its 
conclusion to be false. So, on a technicality, we know that the 
argument is valid. So, whether the contradiction comes from the 
assumption or not, the derivation of the contradiction guarantees 
that the argument is valid. 

Readings

Barker, The Elements of Logic, chap. 3.
Hurley, Logic, chap. 7.
Kahane, Logic and Philosophy, chap. 6.

Questions 

1. 
Use conditional proof to show that the following argument is valid.

s → (y &z). (w ∨q) → (y &x). Therefore, (s ∨q) → (y ∨w).

2. 
Use indirect proof to show that the following argument is valid.

(a ∨l) &(a ∨m). a → (t &−l). Therefore, (t ∨m) ∨−l.
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3. 
Translate the following argument and construct both a conditional 
and an indirect proof to demonstrate its validity.

I can’t eat turkey or pasta without overeating. So, if I eat turkey, I will 
eat turkey and overeat.

Answers

1. 
1	 s → (y &z)	 premise
2	 (w ∨q) → (y &x)	 premise
3	 s ∨q	 Assumpt
4	 (s ∨q) ∨w	 Add 3
5	 s ∨ (q ∨w)	 Assoc 4
6	 s ∨ (w ∨q)	 Comm 5
7	 (y &z) ∨ (y &x)	 CD 1,2,6
8	 y &(z ∨x)	 Dist 7
9	 y	 Simp 8
10	 y ∨w	 Add 9
11	 (s ∨q) → (y ∨w)	 CP 3–10

2. 
1	 −l → n	 premise
2	 (n &−t) → m	 premise
3	 −[(t ∨m) ∨−l]	 Assumpt
4	 −(t ∨m) &−l	 DeM 3
5	 −(t ∨m)	 Simp 4
6	 −l	 Simp 4
7	 −t &−m	 DeM 5
8	 −t	 Simp 7
9	 −m	 Simp 7
10	 n	 MP 1,6
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11	 n &−t	 Conj 8,10
12	 m	 MP 2,11
13	 m &−m	 Conj 9,12
14	 (t ∨m) ∨−l	 IP 3–13

3. 
t: I eat turkey; p: I eat pasta; o: I overeat.

(t ∨p) → o; therefore, t → (t &o).

Conditional proof

1	 (t ∨p) → o	 premise
2	 t	 Assumpt
3	 t ∨p	 Add 2
4	 o	 MP 1,3
5	 t &o	 Conj 2,4
6	 t → (t &o)	 CP 2–5

Indirect proof

1	 (t ∨p) → o	 premise
2	 −[t → (t &o)]	 Assumpt
3	 −[−t ∨ (t &o)]	 Impl 2
4	 −−t &−(t &o)	 DeM 3
5	 t &−(t &o)	 DN 4
6	 t	 Simp 5
7	 −(t &o)	 Simp 5
8	 −t ∨−o	 DeM7
9	 t ∨p	 Add 6
10	 o	 MP 1,9
11	 t &o	 Conj 6,10
12	 (t &o) &−(t &o)	 Conj 7,11
13	 t → (t &o)	 IP 2–12



Lecture 16

First-Order Predicate Logic

Truth-functional logic allowed us to account for arguments where 
the relevant logical structure occurred between sentences. 

The truth-functional connectives showed us the truth conditions 
of complex combinations of sentences. But some of the logically 
relevant elements of our arguments occur inside of the sentences. 
Truth-functional logic is too broad to get at this. We need a new, 
sharper logical language that builds on truth-functional logic but 
allows us to pull the logical content from within sentences. This new 
language is first-order predicate logic. 

The Need for First-Order Predicate Logic

⊲⊲ Think about the early lectures about logic. The standard argument 
we used as an example was the following classic argument. 

¹¹ All men are mortal. 
¹¹ Socrates is a man. 
¹¹ Therefore, Socrates is mortal. 

⊲⊲ We said that it is valid. Can we use our truth-functional apparatus 
to demonstrate this? Let a represent “All men are mortal,” b 
represent the sentence “Socrates is a man,” and c stand for 
“Socrates is mortal.” Can we give a proof from the premises a 
and b to the conclusion c? No. 

⊲⊲ Truth-functional logic is also known as sentential logic because it 
is the logic of sentences and the connectives that connect them. 
It is, in a certain sense, a very blunt weapon, because it can only 
deal with the logical relations between sentences. 
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⊲⊲ What we see in the Socrates example is the need to apply 
logical machinery inside of sentences. We do need to be able 
to evaluate the relations between sentences, but we also need 
the much finer work done of illuminating the logical relationships 
within sentences. 

⊲⊲ Think about Aristotle’s categorical logic, in which we have 
inferences that concern the content inside of the grammatical 
structure of the individual sentences. Truth-functional logic 
cannot get at the aspects that Aristotle did. 

⊲⊲ So, for a period, there was a running argument as to which is the 
real logic: Aristotle’s categorical approach or the truth-functional 
approach. 

⊲⊲ That debate ended when we formulated a new logical language 
that combined the two together. This new hybrid language is 
first-order predicate logic. It contains all of the elements of truth-
functional logic—all of our connectives, exactly as we have 
been using them—but adds some new elements that allow us 
to investigate the logical content of the grammar of individual 
sentences instead of simply giving them a truth-value. 

Elements of the First-Order  
Predicate Language

⊲⊲ We begin our new language with the four truth-functional 
connectives: −, &, ∨, and → . But now, instead of sentences being 
represented by a single lowercase letter, individual sentences 
require a subset of three new categories of elements. 

⊲⊲ As we said when we were starting Aristotelian logic, sentences 
have a subject and a predicate. Sentences say something about 
something else. The thing that we are talking about we will call the 
individual. What we are saying about it we will call the predicate. 
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⊲⊲ We will start with the easiest version in which our predicates 
are properties, such as “is tall,” “is blue,” or “is yummy.” We will 
represent these properties in our language with uppercase letters, 
such as T, B, or Y. So, uppercase letters are our properties. 

⊲⊲ One restriction on properties is that they must be world referring, 
such as being tall, blue, or yummy. They cannot be logical 
properties, such as “is true,” “is valid,” or “is logically equivalent 
to.” This is why we call this language “first-order” logic. The 
first-order language talks about things, and the second-order 
language talks about the first-order language. 

⊲⊲ The subject, that which is being said to have the property, will 
be represented by lowercase letters. But we need to be careful 
because there are two different types of individuals we must 
distinguish between. Borrowing terms from mathematics, there 
are constants and variables. 

⊲⊲ A constant is a specific thing, such as Bob, the sky, or a particular 
sandwich. Constants are not classes of things, but particular 
things. For these, we use the lowercase letters in the first part of 
the alphabet—the letters a through t. 

⊲⊲ So, if we want to say in our new language that Bob is tall, we select 
an uppercase letter for the property “is tall”—for example, T. And 
we need a lowercase letter to represent Bob—for example, b. 

⊲⊲ In this language, we put the predicate first and the individual 
second. So, “Bob is tall” is written Tb. For “Larry is tall,” we use 
l to represent Larry, and we get Tl. Bob and Larry are both tall. 
That is a truth-functional combination of the sentences “Bob is 
tall” and “Larry is tall,” giving us Tb &Tl. We cannot write Tbl, 
because T is a property and only applies to one thing. 

⊲⊲ What about “If Bob is tall, you’re a monkey’s uncle”? Here, again, 
is a truth-functional combination of predicate sentences. We have 
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seen that “Bob is tall” is Tb, and now we need a capital letter 
for the property of being a monkey’s uncle. Let’s use M. And for 
you, we’ll use the lowercase letter y. So, “If Bob is tall, you’re a 
monkey’s uncle” gets written Tb → My. 

⊲⊲ We need to discuss sentences that are not about specific entities 
that we can point to. Think of the end of a mystery novel. All of 
the suspects have been gathered in the study and the detective 
says, “Someone in this room is a murderer.” That someone is a 
particular individual, but we don’t know whom. So, we can’t use 
a constant. 

⊲⊲ For unknown individuals or for all of the individuals in some 
category, we need something else in our language. We need 
variables. Variables will be lowercase letters at the end of the 
alphabet—the letters u through z. These will represent arbitrary 
members of some class or unknown members of a class. 

⊲⊲ Suppose that we want to write the title of the song “Everything 
Is Awesome” in our new language. How would we do that? You 
might think that it would be—using A for “awesome”—Ax. That 
is “some x has the property A.” But then how would we write 
“Something is awesome”? Wouldn’t we also write it Ax? 

⊲⊲ But these are clearly different propositions, and the whole point 
of our artificial logical language is to avoid the ambiguity we 
find in ordinary spoken language. We need to do something 
about this. 

⊲⊲ That something is a new pair of elements, called quantifiers. We 
have two of them. The first is the existential quantifier (∃). We read 
it as “for some.” 

⊲⊲ Quantifiers have to quantify over a variable name. So, we always 
pair a quantifier with a variable. ∃x reads “for some x.” We cannot 
quantify a constant: ∃b makes no sense in our language. “For 
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some Bob”? There is no need for “some Bob”; there is simply 
“Bob.” Whenever you use a quantifier, you need to use a variable 
and only a variable. 

⊲⊲ To say, “Something is awesome,” we would write ∃xBx. 

⊲⊲ Suppose that Bob is quite distinguished looking, but not beautiful. 
We might want to say, “Something is beautiful, but it isn’t Bob.” 
Here is a truth-functional combination of sentences. Remember 
that “but” is a way of saying “and,” so we have the following. 

¹¹ Something is beautiful, and it is not the case that Bob is 
beautiful. 

⊲⊲ That would translate into our new language as follows. 

∃xBx &−Bb 

⊲⊲ That is the existential quantifier. It is called this because it asserts 
the existence of something. 

⊲⊲ The other quantifier is the universal quantifier (∀), which is read 
“for all.” If we want to say, “Everything is beautiful,” we pick a 
variable to quantify over—for example, y—and we assert B of all 
y—that is, ∀yBy. 

⊲⊲ Suppose that we want to say, “If Bob is not beautiful, then not 
everything is beautiful.” We have a conditional, as follows. 

¹¹ If Bob is not beautiful, then it is not the case that all things are 
beautiful. 

⊲⊲ Substituting in our truth-functional symbols of the connectives: 

¹¹ −Bob is beautiful → −all things are beautiful 
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⊲⊲ We now know how to translate these first-order pieces. 

−Bb → −∀yBy 

⊲⊲ Notice again that all quantifiers have to quantify over something, 
and that something has to be a variable. All quantifiers need a 
variable. 

⊲⊲ The relation goes in the other direction as well. All variables 
need a quantifier. If T is the property “is tall,” what does Tz 
mean? It doesn’t mean “something is tall” or “everything is tall,” 
because those both need quantifiers. In our language, it does 
not mean anything. It is a violation of the grammar of first-order 
predicate logic. 

Fundamental Forms

⊲⊲ Instead of the sentence letters of truth-functional logic, we now 
have a more complex representation that allows us to get at the 
content contained inside of sentences the way that Aristotelian 
logic did. Indeed, we can subsume Aristotle’s categorical logic 
within this broader approach. To do that, we need to translate the 
four categorical forms into our new first-order language. 

⊲⊲ Let’s start with A sentences, sentences of the form “All As are 
B,” such as “All people have noses.” We need one capital letter 
to represent the property of being human—for example, H—
and another for having a nose—for example, N. It is saying that 
everything that is in the H group is also in the N group, so we 
are looking at a universal quantification: It is “all somethings are 
something.” 

⊲⊲ So, we need a universal quantifier and a variable name. It is 
going to be x(Hx?Nx), where the question mark will be one of our 
truth-functional connectives. Which one? 
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⊲⊲ Some people intuitively think that it should be “and.” But it 
isn’t. Note what the sentence says if we include a conjunction: 
∀x(Hx &Nx) says that everything is both human and has a nose. 
That is not what we are trying to say. We are trying to say that 
if something were to be a human, then it would be a thing with 
a nose. So, we need the connective to be a conditional: “All 
humans have noses” is written ∀x(Hx → Nx) in our language. 

⊲⊲ What about E sentences, sentences of the form “No As are B”? 

⊲⊲ The flawed intuition many people have in this case is to slap a 
negation in front of the A sentence form. But remember the 
square of opposition: The negation of an A sentence is an O 
sentence, not an E sentence. Just because it is false that all 
people love cilantro does not mean that no people love cilantro, 
just that some people don’t. 

⊲⊲ Remember that an E sentence is a universal sentence. As such, 
we will need a universal quantifier. If we say, “No people live on 
Mars,” we are saying something about all people—that they are 
not Martians. What we are saying when we say that no people 
are living on Mars is that, for all things, if that thing is a person, 
we know that that thing does not live on Mars. In symbols,  
∀x(Hx → −Mx). 

⊲⊲ So, the negation does not go in front of the sentence, but rather in 
front of the second property. An E sentence, “No As are B,” is still 
a claim about the entire set of things in the A class, but instead of 
saying that they are all in the B class, we are saying that they are 
not in the B class. 

⊲⊲ What about the particular sentences? Let’s start with I sentences: 
“Some As are B.” Clearly, this is an existential claim. We are 
saying that there is something and that thing is both A and B. 
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⊲⊲ We translate I sentences as ∃z(Az &Bz). Unlike with the universal 
sentences, we do use the conjunction in the particular. We are 
not saying that there is something that if it were an A, it would be 
a B. Instead, we are saying that there is something, and it is both 
A and B. 

⊲⊲ What about O sentences? Let’s think about sentences of the form 
“Some As are not B.” Again, it is making an existential claim. 
We are saying that there is at least one thing, and it has certain 
properties. In this case, the properties are “being A” and “not 
being B.” So, translating it fully, we get ∃x(Ax &−Bx); there is a 
thing, and it is A and not B. 

⊲⊲ We now have all four of our categorical sentence forms translated 
into our new first-order predicate language. 

A: ∀x(Ax → Bx)	 E: ∀x(Ax → −Bx) 
I: ∃x(Ax &Bx)	 O: ∃x(Ax &−Bx) 

⊲⊲ Add to these our categorical forms, the five basic forms, and we 
have the building blocks to translate most sentences into our first-
order predicate language. 

The sky is blue	 Bs 
Everything is blue	 ∀xBx 
Nothing is blue	 ∀x−Bx or −∃xBx 
Something is blue	 ∃xBx 
Something is not blue	∃x−Bx 

⊲⊲ We will call these nine sentence forms our fundamental forms. 
Many of the sentences we come across in normal conversation 
are either one of these fundamental forms or a truth-functional 
combination of them. 
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⊲⊲ When translating, then, the key is to go step by step. 

¹¹ First, look at the sentence and figure out if it is one of the nine 
fundamental forms or if it is a truth-functional combination of 
the fundamental forms. 

¹¹ If it is a truth-functional combination, find the main connective 
and insert the symbol for it, while leaving the rest of the 
sentence in spoken language. 

¹¹ Look at the parts connected by the connectives and again 
ask whether these are fundamental forms or truth-functional 
combinations. Keep going until you are left with nothing but 
truth-functional symbols and spoken language versions of 
fundamental forms. 

¹¹ At this point, or if the sentence was not a truth-functional 
combination, ask whether the fundamental form is categorical 
or basic. Once you know that, figure out which form, and the 
translation from there is straightforward. 

Readings

Barker, The Elements of Logic, chap. 4.
Copi, Introduction to Logic, chap. 10.
Hurley, Logic, chap. 6.
Kahane, Logic and Philosophy, chap. 7.

Questions 

Translate the following sentences into first-order predicate logic. 
Use the following abbreviations: e = Emmett Kelley, C = is a clown, 
A = is an artist, P = is a person, L = loves clowns, F = is afraid  
of clowns.
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1. 
Emmett Kelley was a clown and an artist.

2. 
All the world loves a clown.

3. 
Some people love clowns, but some people are afraid of them.

4. 
Clowns are artists, but only some artists are clowns.

Answers

1. 
Ce &Ae

2. 
∀x(Px → Lx)

3. 
∃x(Px &Lx) &∃y(Py &Fy)

4. 
∀x(Cx → Ax) &∃y(Ay &Cy)



Lecture 17

Validity in First-Order 
Predicate Logic

Because the universal quantifier potentially applies to an infinite 
number of things, truth tables are not an option for us as a 

validity test for first-order predicate logic. We can, however, extend 
our system of natural deduction proofs to work for this stronger 
language. To do so, we need to add four new rules and one new 
equivalence—all of which you will learn about in this lecture. 

New Rules of Inference

⊲⊲ In first-order predicate logic, we need our other method of 
demonstrating validity, natural deduction proof. We will, however, 
need to augment it in order to deal with quantifiers. This will mean 
four new rules of inference and one new equivalence. 

⊲⊲ The four new rules of inference will include two rules for taking 
away quantifiers and two rules for adding them on. The idea is 
to strip the quantifiers away and reduce things back to truth-
functional sentences. Then, once we have a sentence of the form 
we want, we add the quantifiers back in to get the first-order 
predicate sentence we were looking for. In essence, these rules 
allow us to reduce things to what we already know how to do. 

⊲⊲ These rules have personalities. Two are laid-back, relaxed rules 
that just do their job, no matter what is going on around them. 
The other two are finicky, picky rules that refuse to do their job 
unless very specific demands are met. 
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⊲⊲ The first rule, universal instantiation (UI), allows us to remove a 
universal quantifier that applies to an entire line and replace the 
quantified variable with either a free variable or any constant. 

⊲⊲ Consider the sentence ∀x(Bx &Cx); everything is both B and C. If 
everything is B and C, what do we know about your favorite pair 
of socks? It has to be B and C. If everything is B and C, we know 
that the sentence formed by replacing the quantified variable x 
with any constant must also be true. If we know it is true, then it 
can appear in the second column of a proof. 

⊲⊲ But we can also replace the quantified variable with an unquantified, 
or free, variable. That is, suppose that we had the following. 

12	 ∀x(Bx &Cx) 

⊲⊲ Then, we could write the following. 

13	 By &Cy	 UI 12 

⊲⊲ Previously in this course, we made the seemingly unequivocal 
claim that free variables are not allowed in our language—that 
By &Cy has no meaning. It doesn’t mean that some y are B &C 
and it didn’t mean that all y are B &C. It means that it doesn’t have 
a meaning in our language—that it is grammatically incorrect. 

⊲⊲ This is true, outside the context of a proof. In a proof, the use of 
UI gives the sentence By &Cy a meaning. It means that for any 
arbitrary thing—for example, y—y is B &C. We can reason about 
a universal property of the whole group if we have reason to think 
that it holds for each member of the group. 

⊲⊲ While universal instantiation allows us to take away a universal 
quantifier that applies to an entire line in a proof and replace the 
quantified variable with either a constant or any free variable 
name, existential instantiation (EI) allows us to remove an 
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existential quantifier and replace it with a free variable, but only 
with a free variable that appears free nowhere earlier in the proof. 

⊲⊲ There are two restrictions on EI that we need to be clear about. 
First, we cannot use EI to instantiate a constant. Consider the 
sentence ∃zBz. It says that something is B. What is that thing? 
We don’t know what exact thing it is, only that something—that is, 
at least one thing, maybe all things—is B. 

⊲⊲ If we used a constant to instantiate an existential, that is saying 
that we do know what the thing is, and it is c. Maybe it is c; 
maybe it isn’t. If all we know is that it is something, then asserting 
that some constant is the thing is to say more than we know, and 
this means that we could be wrong. 

⊲⊲ If a sentence could be wrong, then it cannot be entered in the 
second column of the proof. So, EI cannot be used to take away 
a quantifier and substitute a constant for the quantified variable. 
It has to be a variable that gets put in. 

⊲⊲ Again, when we use EI we have a sentence with a free variable, 
something that we generally don’t allow. But this free variable 
means something slightly different from the free variable that results 
from UI, in which the free variable means “any arbitrary thing.” 

⊲⊲ By contrast, EI means “the thing whose identity we do not yet, 
and may never, know.” Think of the victim of a murder who is 
discovered with no identifying information. If the victim is male, 
we use the term “John Doe.” This name is a placeholder. It refers 
to the person who was killed, even though we don’t know who 
the person is. The free variable instantiated with EI is the logical 
equivalent of “John Doe.” 

⊲⊲ Suppose that we have the following. 

8	 ∃xBx 
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⊲⊲ Then, we can use EI to get the following—as long as z does not 
appear free earlier in the proof. 

9	 Bz	 EI 8 

⊲⊲ In this sentence, the free variable z means whatever the thing is 
that is z. From line 8, we know that it exists; we just have no clue 
about its identity, so we will use z to refer to whatever that thing is 
that is B. 

⊲⊲ The reason that we have to instantiate with a new variable name 
is that all we know about the thing that is B is that it is the thing 
that is B. If we reused a variable that appeared free earlier in the 
proof, then we would be saying that the same thing has several 
properties—maybe it does, and maybe it doesn’t, but we cannot 
be sure. For example, suppose the following. 

10	 ∃xBx 
11	 ∃xCx 

⊲⊲ If we used EI on both of these lines with the same variable name, 
we would get the following. 

12	 By	 EI 10 
13	 Cy	 EI 11 

⊲⊲ And then we could form the following. 

14	 By &Cy	 Conj 12,13 

⊲⊲ Maybe there is a thing that is both B and C, but we don’t know 
that. Maybe one thing is B and a completely different thing is C. 
It is true that some numbers are even and that some numbers 
are odd, but if we make the mistake of re-instantiating with the 
same free variable, we will be proving that some numbers are 
both even and odd. 
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⊲⊲ It is therefore crucial that every time we use EI, we introduce a 
new free variable name. 

⊲⊲ While the first two rules are instantiation rules that let us remove 
quantifiers, the other two are generalization rules that let us 
reinsert them. And just as one came with no restrictions and the 
other had constraints, it is the same with generalization rules. The 
only difference is that it is the existential that is the easy one. 

⊲⊲ Existential generalization (EG) is the rule by which we add an 
existential quantifier to a line. We can always take a line with a 
free variable or a constant in it and add an existential quantifier 
to bind that variable. If the line has a constant, then we know 
that the property asserted of the constant is true of something—
namely, that thing. 

⊲⊲ We might know that Jane is happy. If this is true, then it must 
necessarily be true that something is happy. Because we are 
being less specific, we are guaranteed that the move will be 
truth-preserving, and therefore, we can write the new existentially 
quantified sentence in the second column of the proof. 

⊲⊲ The same is true if we use EG to generalize a free variable, 
regardless of whether it was instantiated universally or 
existentially. If it is true that all books have pages, then it is true 
that some books have pages. You can existentially generalize 
any free variable anytime and anywhere. 

⊲⊲ The same is not true of universal generalization (UG), which 
cannot be used on a constant. Just because John’s mom let 
him go to the party doesn’t mean that all moms will. Similarly, we 
cannot use UG to generalize a variable that appears free in a line 
justified by EG. Just because some men are jerks does not mean 
that we can conclude that all are. 
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⊲⊲ We can only use UG to generalize a free variable that was 
introduced into the proof using UI and that has never appeared 
free in a line on which EI has been used. EI stamps the 
sentences it operates on with the quantificational version of guilt 
by association. 

⊲⊲ Suppose that we have the sentence “Everything has mass, but 
if that thing is heavier than the earth, then there is something 
else that orbits it.” It is a truth-functional combination. The main 
connective is “and.” 

(Everything has mass) &(If that thing is heavier than the earth, 
then there is something that orbits it) 

⊲⊲ It is important to see that both conjuncts in this sentence refer 
to the same thing. In the first conjunct, we are saying that any 
given thing you choose has a property—having mass. In the 
second conjunct, we are saying that the thing we picked for the 
first conjunct also has the property of being orbited by something 
else if it has a mass greater than that of the earth. Because both 
conjuncts refer to the same thing, the quantifier we use must 
have both sentences in its scope. So, we say the following. 

∀x[(x has mass) &(if x is heavier than the earth, then there is 
something that orbits x)] 

⊲⊲ Having mass is just a property, so let’s use M to represent that. 

∀x[Mx &(if x is heavier than the earth, then there is something 
that orbits x)] 

⊲⊲ The second conjunct is clearly a conditional. 

∀x[Mx &(x is heavier than the earth → there is something that 
orbits x)] 
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⊲⊲ Being heavier than the earth is a property, and so is “orbits x.” 
Let’s use H and O for those. So, what we are saying is that there 
is some thing y such that if x is heavier than the earth, then y 
orbits x. This gives us the following. 

∀x[Mx &∃y(Hx → Oy)] 

⊲⊲ If we had that as a premise in an argument, we could use UI on it 
because the scope of the universal quantifier is the entire rest of 
the sentence. 

1	 ∀x[Mx &∃y(Hx → Oy)]	 Premise 
2	 Mx &∃y(Hx → Oy)	 UI 1 

⊲⊲ Next, we can simplify. 

3	 Mx	 Simp 2 
4	 ∃y(Hx → Oy)	 Simp 2 

⊲⊲ On line 4, we see a sentence with an existential quantifier whose 
scope is the entire rest of the line. So, we can use EI. We cannot 
instantiate it with the free variable x because it already appears 
free previously in the proof. 

⊲⊲ If we did use x again, we would have something orbiting itself. 
Clearly, that’s not what we want. But we could use any other free 
variable name for this thing—whatever it is—that is orbiting x. 
Let’s keep it as y. 

5	 Hx → Oy	 EI 4 

⊲⊲ Now we are in the situation we wanted to illustrate. We introduced 
the free variable named x into the proof using UI in line 2. So, you 
would think that we would be free to generalize it using UG. But 
you would be wrong. 
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⊲⊲ Because of line 5, x appears free in a line justified by EI, and 
this means that x can no longer be generalized using EG, 
even though it was introduced via a universal quantifier. By 
simply being free on a line justified by EI, even though it was 
not being instantiated, that is enough to disqualify it from being 
generalizable using UG. 

A New Equivalence

⊲⊲ Finally, we have one new equivalence: quantifier negation (QN). If 
we have a negation next to a quantifier, we can reverse the order 
if we switch the quantifier. 

−∃::− and −∀::∃− 

⊲⊲ If it is false that some people are 12 feet tall, then it is true that 
all people are not 12 feet tall. If it is false that all grass is green, 
then it is true that some grass is not green. We can always move 
a negation from one side of a quantifier to another if we switch 
the quantifier. 

⊲⊲ These are the only adjustments necessary to have a validity 
test for first-order predicate logic. We take an argument in our 
first-order predicate language, enter the premises into the proof, 
use our original eight rules of inference, our new four rules of 
inference, our original nine equivalences, our new equivalence, 
and our proof strategies until such time as the conclusion 
appears as a justified line in the proof, and we have a complete 
demonstration of the validity. 
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Readings

Barker, The Elements of Logic, chap. 3.
Copi, Introduction to Logic, chap. 10.
Hurley, Logic, chap. 7.
Kahane, Logic and Philosophy, chap. 5.

Questions 

1. 
Show that the following argument is valid by constructing a proof.

∃x(Fx &Gx). ∀x(Gx → Hx). Therefore, ∃x(Fx &Hx).

2. 
Translate the following argument and show that it is valid by 
constructing a proof.

All magical unicorns are immortal. There are no immortal beings. 
Therefore, no unicorns are magical.

Answers

1. 
1	 ∃x(Fx &Gx)	 premise
2	 ∀x(Gx → Hx)	 premise
3	 Fx &Gx	 EI 1
4	 Gx → Hx	 UI 2
5	 Fx	 Simp 3
6	 Gx	 Simp 3
7	 Hx	 MP 4,6
8	 Fx &Hx	 Conj 5,7
9	 ∃x(Fx &Hx)	 EG 8
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2. 
All magical unicorns are immortal.

∀x[(Mx &Ux) → Ix]

There are no immortal beings.

∀x−Ix

Therefore, no unicorns are magical.

∀x(Ux → −Mx)

1	 ∀x[(Mx &Ux) → Ix]	 premise
2	 x−Ix	 premise
3	 Ux	 Assumpt
4	 (Mx &Ux) → Ix	 UI 1
5	 −Ix	 UI 2
6	 −(Mx &Ux)	 MT 4,5
7	 −Mx ∨−Ux	 DeM 6
8	 −−Ux	 DN 3
9	 −Mx	 DS 7,8
10	 Ux → −Mx	 CP 3–9
11	 ∀x(Ux → −Mx)	 UG 10
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Demonstrating Invalidity

One of the wonderful aspects of truth tables is that they are both 
validity and invalidity tests. But in first-order predicate logic, 

we cannot construct truth tables. Natural deduction proof is our only 
validity test. Successful construction of a proof guarantees that the 
argument is valid, but an inability to find a proof does not establish an 
argument’s invalidity. So, we’ll need a different way of demonstrating 
invalidity. We will formulate two different ways of demonstrating that 
an argument in first-order predicate logic is invalid: the method of 
counterexample and the method of expansion. Both will show that an 
argument is invalid by introducing semantic elements into our purely 
syntactic approach. 

Semantics, Syntax, and Pragmatics

⊲⊲ There are three levels to language: syntax, semantics, and 
pragmatics. Syntax deals with form and structure. Questions of 
grammar are syntactic, as are word order and internal structure. 

⊲⊲ Semantics looks at meaning. Questions of what a word refers to 
is a semantic concern. Semantic issues are important issues that 
are complex and philosophically interesting. 

⊲⊲ Syntax looks at what we say, semantics looks at what it means, 
and pragmatics deals with how we say it and how that can 
change the meaning. Issues of tone or inference from that which 
is unsaid are pragmatic aspects. 
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⊲⊲ Our logical languages are thin because they are purely syntactic 
languages. In a deep sense, they are languages with no 
meaning. When we translate spoken language arguments into 
truth-functional or first-order predicate logic, we remove the 
semantic content. 

⊲⊲ Why are we ignoring semantics with our logical languages if it is 
important? Because our interest is determining deductive validity, 
which is a purely syntactic concept. 

⊲⊲ Whether a deductive argument is valid has nothing to do with what 
the argument is about. It only matters whether the conclusion 
follows from the premises. As a result, our artificial languages 
remove the flesh from the spoken language arguments and 
rigorously display the inner skeleton, because that is sufficient to 
answer our questions about validity. 

⊲⊲ But in demonstrating invalidity, we are going to restore semantic 
elements. The idea is that, in one sense, these semantic aspects 
are irrelevant. Consider the invalid argument affirming the 
consequent: If a, then b; b, therefore a. 

⊲⊲ This is a flawed argument form, regardless of what we fill in for 
a and b. We could say “If you are a dog, you have a nose. You 
have a nose. Therefore, you are a dog.” Or we could say, “If you 
won the lottery, you would be happy. You are happy. Therefore, 
you won the lottery.” 

⊲⊲ Whether you are a dog or have won the lottery is irrelevant here. 
The content does not matter because it is the underlying form 
of the arguments that is to blame. But the flaw in the structure 
becomes clearer to us when we add some semantic content to 
that structure. 
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⊲⊲ We are not declaring individual arguments to be invalid, but 
argument forms. When we add semantic content to the argument 
forms, we are not merely saying that just the filled-in version of the 
argument is invalid; rather, we are saying that the skeleton itself is 
flawed. We are saying that any argument with that same form is 
invalid because we are showing that it is possible to construct a 
bad argument with that form. 

The Method of Counterexample

⊲⊲ An argument is invalid if it is possible for its premises to be true 
while its conclusion is false. In truth-functional logic, we could 
construct a truth table in which every possible combination of 
truth-values for the constituent sentences is considered. 

⊲⊲ But another way is to simply come up with an example of an 
argument that has the same form but has true premises and a 
false conclusion. This is called the method of counterexample, 
and because we don’t have the ability to construct truth tables for 
first-order predicate logic, we will have to use it. 

⊲⊲ In order to give semantic content to an argument form in first-
order predicate logic, there are three things we need to do. 

1	 We need to give meaning to the quantifiers. (When we say “all 
x” or “some x,” all what’s or some what’s are we talking about?) 

2	 We need to say which specific elements of this universe are 
picked out by our constants. 

3	 We need to give meaning to the properties. 

⊲⊲ These combine to give what logicians call an interpretation. An 
interpreted argument has the semantic flesh put back on the 
syntactic skeleton, and thus we can talk about the truth or falsity 
of the interpreted sentences. 
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⊲⊲ The goal is to generate an interpretation of our argument that 
results in the premises all being true and the conclusion false. 
This will conclusively show that the argument form is invalid. 

⊲⊲ If we want to construct an interpretation, we need first to give 
meaning to the quantifiers. We do this by specifying what is 
called a domain of discourse, or a universe. 

⊲⊲ When we use a universal quantifier to say “all y,” what is the “all” 
we are talking about? It can be any set. It could be the set of all 
politicians or the set of all brown things. It could be the set of all 
things whatsoever—what is called an unrestricted domain. 

⊲⊲ Often, we will pick sets of numbers to be our domain of discourse 
because their properties are well defined and well behaved. 

⊲⊲ Next, we assign a specific member of the universe to each 
constant. If the domain of discourse is the set of positive integers, 
each constant becomes a particular number. If the domain is 
brown things, then each constant becomes a specific brown 
thing—not, for example, mud, but rather a particular mud stain 
on a particular shirt. 

⊲⊲ Each constant gets mapped onto a particular member of the 
universe, but two different constants can get mapped onto the 
same thing. People have multiple names. Some might call you 
by your name, while others might call you “mother” or “father,” for 
example. The same can be true for constants. 

⊲⊲ Finally, we take each property and assign it a meaning by 
selecting a subset of our domain of discourse. This can be done 
in two ways. We can simply choose members and put them 
together to form a subset. The property is then being a member 
of that subset. Or—and this is the more common way—we 
specify an actual property. 
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⊲⊲ Note that the empty set, the set with no members, is a subset 
of every set. That means that it is acceptable to have empty 
categories. Indeed, sometimes it will be quite advantageous. For 
example, we can use “being a unicorn” as a property. 

⊲⊲ Once we have specified a domain of discourse, chosen a member 
for each constant, and assigned subsets to our properties, we 
can then translate our formal propositions into spoken language 
and determine if the premises of our argument are true and if our 
conclusion is false on this interpretation. If so, we have found a 
counterexample, and our argument is invalid. 

The Method of Expansion

⊲⊲ In addition to the method of counterexample, the other invalidity 
test is the method of expansion. Coming up with counterexamples 
requires that we fully endow our argument with semantic content. 
Expansions only require some semantic content, but not full 
meaning. 

⊲⊲ We do this by starting with a small universe that contains only 
two things: a and b, for example. We then see if we can make the 
premises true and the conclusion false for this small universe. 

⊲⊲ We do this by eliminating the quantifiers, reducing the problem 
to truth-functional logic. If there are only two things, then our 
universal quantifier becomes a conjunction. 

⊲⊲ The sentence ∀xFx says that everything is F, but everything 
in our small universe is just a and b. So, ∀xFx is equivalent to 
Fa &Fb. Similarly, ∃xFx says that something is F. That thing has 
to be either a, b, or both, because that is all there is. So, ∃xFx 
is equivalent to Fa ∨Fb. This holds for any sentence in our first-
order predicate language. 
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⊲⊲ Consider the sentence ∀x[(Dx ∨Nx) → Jx]. We see that we 
have a universal quantifier, so we start by writing down a 
conjunction. On the left side, we replace every instance of 
the quantified variable—in this case, x—with a. On the right 
side, we replace every instance of x with b. This gives us 
[(Da ∨Na) → Ja] &[(Db ∨Nb) → Jb]. 

⊲⊲ Suppose that we have a complex existential quantification—
for example, ∃y[(Gy &−Fy) ∨ (−Gy &Fy)]. It is an existential 
quantification, so we start by writing down a disjunction, and 
on the left side, we replace every instance of the quantified 
variable—in this case, y—with a. On the right side, we replace 
every instance of y with b. This gives us the following. 

[(Ga &−Fa) ∨ (−Ga &Fa)] ∨ [(Gb &−Fb) ∨ (−Gb &Fb)] 

⊲⊲ But what if it is not a quantification, but a truth-functional 
combination of quantified propositions? We can handle that, too. 
Recall that the scope of a quantifier ends at a truth-functional 
connective that is not shielded within parentheses. So, what we 
do is keep all of the truth-functional connectives in place and 
individually expand the quantifications. 

⊲⊲ How is this an invalidity test? When we expand the sentences, 
the quantifiers are gone. All we have are sentences that can be 
true or false and truth-functional connectives. 

⊲⊲ We have successfully reduced a first-order predicate question 
to a truth-functional question, and we know how to answer the 
truth-functional question of determining whether an argument  
is invalid. 

⊲⊲ We could construct a truth table and find a row in which all the 
premises are true and the conclusion is false. It turns out that the 
truth tables will quickly become unwieldy and that the preferred 
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approach is to plug truth-values into the atomic sentence to 
see if we could arrange them to give us true premises and a  
false conclusion. 

Readings

Barker, The Elements of Logic, chap. 3.
Copi, Introduction to Logic, chap. 9.
Hurley, Logic, chap. 8.
Kahane, Logic and Philosophy, chap. 5.

Questions 

1. 
Give an interpretation to show that the following argument is invalid.

∀x(Fx → Gx). ∀x(Fx → Hx). Therefore, ∀x[(Gx &Hx) → Fx].

2. 
Create an expansion to show that the following argument is invalid.

∃x(Fx &Gx). ∀x(Fx → Hx). Therefore, ∀x(Fx &Hx).

Answers

1. 
Domain = animals; F = human, G = warm-blooded, H = has a heart.

∀x(Fx → Gx) = All humans are warm-blooded. (true)
∀x(Fx → Hx) = All humans have a heart. (true)
∀x([(Gx &Hx) → Fx] = All warm-blooded animals with a heart are 
humans. (false)
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2. 
Domain = {a,b; Fa = T, Fb = F, Ga = T, Gb = F, Ha = T, Hb = F.

∃x(Fx &Gx) = (Fa &Ga) ∨ (Fb &Gb) = (T &T) ∨ (F &F) = T ∨F = T.
∀x(Fx → Hx) = (Fa → Ha) &(Fb → Gb) = (T → T) &(F → F) = T &T = T.
∀x(Fx &Hx) = (Fa &Ha) &(Fb &Hb) = (T &T) &(F &F) = T &F = F.



Lecture 19

Relational Logic

F irst-order predicate logic exposes the logical structure within 
sentences. But the language as we have developed it so far 

can only handle certain kinds of internal logical connections: the 
attributions of properties to individuals. In order to be able to more 
fully express the kind of content we put in our arguments, we need 
to add another piece of machinery: relations between individuals. 
In doing this, translation becomes significantly trickier because 
when we need to assert a relation between variables, we will need a 
different quantifier to bind each variable. Multiple quantifiers as well 
as mixtures of properties and relations combine to make translating 
into our extended first-order language more difficult. 

Relations with Constants

⊲⊲ Just as we did for properties, we will use capital letters to represent 
relations. The only difference is that the number of lowercase 
letters that follow the capital letter will increase. We translated “Phil 
is tall” into our first-order predicate language as Tp, where T is the 
property of being tall and p is the constant for Phil. 

⊲⊲ If we take T to be the relation “taller than” and j to be the constant 
for Jose, then we will translate “Phil is taller than Jose” as Tpj. 
Relations will look like properties, except that they will have more 
constants or variables. 

⊲⊲ We can combine these to create truth-functional combinations, 
as in the sentence “Phil is tall, but he is not taller than Jose.” In 
this case, the main connective is “and.” Remember that “but” is 
just another way of saying “and.” 
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⊲⊲ So, we have the following. 

(Phil is tall) &(It is not the case that Phil is taller than Jose) 

⊲⊲ “Phil is tall” is just Tp. 

Tp &(It is not the case that Phil is taller than Jose) 

⊲⊲ “It is not the case that Phil is taller than Jose” is a truth-functional 
combination with the main connective “not.” 

Tp &−(Phil is taller than Jose) 

⊲⊲ “Phil is taller than Jose” is Tpj, so the final formulation of the 
sentence in our first-order language is as follows. 

Tp &−Tpj 

⊲⊲ You might think that we should have translated the sentence 
as follows, because Jose is taller than Phil if Phil is not taller  
than Jose. 

Tp &Tjp 

⊲⊲ But this is problematic. Suppose that Jose and Phil are the same 
height; then, neither is taller than the other. The negation of Txy is 
not necessarily Tyx. 

⊲⊲ Some relations are symmetric—that is, if x bears the relation 
to y, then y bears the relation to x. Consider the relation “is 
the sibling of.” If you are Bob’s sibling, then he is yours. It is a 
symmetric relation. 

⊲⊲ Other relations are asymmetric. If x bears the relation to y, then y 
does not bear it to x. Think of the relation “is the parent of.” If x is 
the parent of y, then y is not the parent of x. 
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⊲⊲ Yet other relations are nonsymmetric. If x bears the relation to 
y, then y might or might not bear the relation to x. Think of the 
relation “is in love with.” When x loves y and y loves x, life can be 
happy, but just because x loves y does not mean that y loves x. 

⊲⊲ To return to our example, when we translate, we need to translate 
the sentence itself. To take “Phil is not taller than Jose” and turn it 
into “Jose is taller than Phil” is to import external knowledge about 
the “is taller than” relation, knowledge that is not in the structure 
of the sentence—that is, not part of the syntax. 

⊲⊲ But, rather, this new knowledge is in the semantic content. We 
know what “is taller than” means and that (with the rare exception 
of people of the same height) it is antisymmetric. But when we 
look at the validity of a relational argument, we need to ask what 
the syntax alone tells us. If the relation is antisymmetric, then we 
will be able to formulate that as a sentence that will be a premise 
in the argument. 

⊲⊲ We will be able to say that if one person is taller than a second, 
then the second is not taller than the first. That is content we will 
need to make explicit as a premise. It cannot be simply assumed 
in the translating because it is not part of the syntactic structure 
of the sentence being translated. 

⊲⊲ So far, we have looked only at relations between two individuals, 
but we are in no way limited to them. Think of the relation 
“between.” It requires three things, one to be in the middle and 
two to be on either side. We could write “Kim is between Sharleen 
and Gregory” as Bksg. This is the usual way of writing it—that we 
put the subject first. 

⊲⊲ The objection is that it is a between-ness relation, yet the thing 
between is not visually between in the representation in our 
language. One could define the symbol for between-ness such 
that “Kim is between Sharleen and Gregory” is represented Bskg. 
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That is fine, but it’s not how we often do it. We will have to be clear 
how we define the relations in this extension of our language. 

Relations with Variables

⊲⊲ Relations with constants are straightforward. Define the relation, 
and part of that definition will be which place after the capital 
letter stands for which place in the relation. But aside from that, 
it is simple. This is not the case once we start in with variables 
and quantifiers. 

⊲⊲ Suppose that we want to say, “Phil is taller than something or 
other.” We need a constant for Phil but a variable for the unknown 
thing that Phil is taller than. It is something, not everything, so the 
quantifier for that variable will be existential. 

∃xTpx 

⊲⊲ This, of course, is different than “something is taller than Phil,” 
which would be the following. 

∃xTxp 

⊲⊲ The order matters. 

⊲⊲ The move to the universal quantifier should be just as simple. Phil 
is taller than everything: ∀xTpx. Everything is taller than Phil: ∀xTxp. 

⊲⊲ The next move is the Pandora’s box of first-order logic. What 
about “something is taller than something”? We need multiple 
quantifiers. We are saying that there is a thing and there is 
another thing, and the first thing bears the “taller than” relation to 
the second thing. 

∃x∃yTxy 
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⊲⊲ Notice that this is exactly the same sentence as the following. 

∃y∃xTyx 

⊲⊲ Remember that bound variables—that is, variables that are in 
the scope of a quantifier—are dummy variables. They are just 
placeholders that show us which quantifier they are connected 
to. With properties, this never really came into play, but with 
relations, it will be a relevant fact with great regularity. 

⊲⊲ For intuition’s sake, let’s switch relations to the loving relation and 
restrict ourselves to talking about people. Suppose that we want 
to say, “Someone loves someone or other.” We know that this is 
the following. 

∃x∃yLxy 

⊲⊲ There exists a thing such that there is another thing, and the first 
thing loves the second one. 

⊲⊲ Suppose that we want to say, “Someone loves everyone.” Now, 
we are saying that there is a thing, and that thing bears the loving 
relation to all other things. 

∃x∀yLxy 

⊲⊲ This is a different sentence from “Everyone loves someone or 
other.” That is saying that for all things, there is a thing that the 
first thing loves. 

∀x∃yLxy 

⊲⊲ We need to be careful here, because there are two different 
propositions we need to keep separate in our mind. One is 
“Everyone loves someone or other.” This means that if you picked 
any given person, that person loves some person. 
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⊲⊲ This is different from the sentence “There is a person everyone 
loves.” Now, we are saying that there is a thing, and that thing is 
loved by all other things. 

∃y∀xLxy 

⊲⊲ Notice how changing the order of the quantifiers has a radical 
effect on the meaning of the sentence. ∀x∃yLxy means that for 
each and every person, there is some person out there whom 
that person loves. But switch around the quantifiers and we get 
∃y∀xLxy, which says that there is some person who is universally 
loved. That is not something that follows from the first sentence. 
The order of the quantifiers matters just as much as the order of 
the variables. 

⊲⊲ Instead of just the two quantified basic forms that we had with 
properties, we now have eight. 

1	 ∃x∃yLxy	 Someone loves someone or other. 
2	 ∃y∃xLxy	 Someone is loved by someone or other. 
3	 ∀x∀yLxy	 Everyone loves everyone. 
4	 ∀y∀xLxy	 Everyone is loved by everyone. 
5	 ∃x∀yLxy	 Someone loves everyone. 
6	 ∀x∃yLxy	 Everyone loves someone or other. 
7	 ∃y∀xLxy	� There is someone who is loved by everyone. 
8	 ∀y∃xLxy	 Everyone is loved by someone or other. 

⊲⊲ There is one more. All of these presume that the one loving and 
the one loved could be different. But what about the sentences 
“Someone loves himself/herself” and “Everyone loves himself/
herself”? For these, the one doing the loving, the first variable, and 
the beloved, the second variable, are the same thing. As such, 
they get the same variable and are bound by the same quantifier. 

∃xLxx	 Something loves itself. 
∀xLxx	 Everything loves itself. 
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⊲⊲ So, when we go through the process of asking whether something 
is a truth-functional combination of quantified propositions or is a 
fundamental form, and we find that it is fundamental, and then 
ask whether it is categorical or basic, and we answer basic, we 
have 10 new basic forms we need to know. 

⊲⊲ With the categorical forms, we move up another notch of 
complexity. We will keep the basic form of the A, E, I, and O 
sentences, but the placement of quantifiers and the placement of 
parentheses will become very important. 

⊲⊲ Consider the A sentence “All who love someone are loved by 
someone or other.” The sentence makes clear that if person A 
loves person B, then there is a person C, who might not be A or 
B, who loves A. 

⊲⊲ We know that this is an A sentence, so it will have the general form 
∀x(Ax → Bx), but it will need to be made more intricate to handle 
the relations. The key is to go step by step, partially translating as 
we go. So, we start with the following. 

All people who love someone or other are loved by someone. 

⊲⊲ We identify it as an A sentence and add in the structure, while 
keeping the content in place not related to the general form. 

∀x(x loves someone or other → someone loves x) 

⊲⊲ Because the person who x loves in the antecedent might be 
different from the person who loves x in the consequent, they 
will need different quantifiers. And because neither appears in 
both terms, the quantifiers will be a part of each term. Because 
x appears in both, the quantifier for x must appear outside of the 
parentheses in the order that both terms lie within its scope. 

∀x[y(x loves y) → ∃z(z loves x)] 



187Lecture 19—Relational Logic

∀x(∃yLxy → ∃zLzx) 

Readings

Barker, The Elements of Logic, chap. 5.
Hurley, Logic, chap. 8.
Kahane, Logic and Philosophy, chap. 8.

Questions 

1. 
Translate the following sentences into first-order relational logic. Use 
Hx = x is human, Mxy = x and y are married, Pxy = x is a parent of y, 
Gxy = x is a grandparent of y, j = John, m = Mary, r = Roberta.

a	 John and Mary are married and are the parents of Roberta.

b	 Everyone has a person who is his/her parent.

c	 Anyone who is the parent of one’s parent is one’s grandparent.

2. 
Translate the following argument into first-order relational logic and 
construct a proof for it to show that it is valid.

Everyone has a person who is his/her parent. Anyone who is the 
parent of one’s parent is one’s grandparent. Therefore, everyone 
has a grandparent.
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Answers

1. 
a	 Mjm &(Pjr &Pmr)

b	 ∀x[Hx → ∃y(Hy &Pyx)]

c	 ∀x∀y∀z[(Pyx &Pzy) → Gzx]

2. 
Everyone has a person who is his/her parent.

∀x[Hx → ∃y(Hy &Pyx)]

Anyone who is the parent of one’s parent is one’s grandparent.

∀x∀y∀z[(Pyx &Pzy) → Gzx]

Therefore, everyone has a grandparent.

∀x(Hx → ∃yGyx)

1	 ∀x[Hx → ∃y(Hy &Pyx)]	 premise
2	 ∀x∀y∀z[(Pyx &Pzy) → Gzx]	 premise
3	 Hx	 Assumpt
4	 Hx →  ∃yPyx	 UI 1
5	 ∃yPyx	 MP 3,4
6	 Hw &Pwx	 EI 5
7	 Hw	 Simp 6
8	 Pwx	 Simp 6
9	 Hw → ∃y(Hy &Pyw)	 UI 1
10	 ∃y(Hy &Pyw)	 MP 7,9
11	 Hz &Pzw	 EI 11
12	 Hz	 Simp 11
13	 Pzw	 Simp 11
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14	 Pwx &Pzw	 Conj 12,13
15	 ∀y∀z[(Pyx &Pzy) → Gzx]	 UI 2
16	 ∀z[(Pwx &Pzw) → Gzx]	 UI 15
17	 (Pwx &Pzw) → Gzx	 UI 16
18	 Gzx	 MP 14,17
19	 ∃yGyx	 EG 18
20	 Hx → ∃yGyx	 CP 3–19
21	 ∀x(Hx → ∃yGyx)	 UG 20



Lecture 20

Introducing Logical Identity

There is one final addition that needs to be made to our first-
order relational logical language, a new relation called identity. 

Two things are identical only if they are the same thing—that is, two 
individuals are identical if and only if they are different names for the 
same thing. Identity is an equivalence relation—that is, it is reflexive, 
symmetric, and transitive. Once we have it, we can start to translate 
sentences that include quantities such as “I have two arms” and “I 
would like at least three slices of pizza.” 

Identity as an Equivalence Relation 

⊲⊲ Identity is an equivalence relation. We talked about truth-
functional equivalence when we were examining everything that 
could be done with truth tables. We saw that two sentences were 
truth-functionally equivalent if and only if they always shared the 
same truth-value—that is, the arrangement of Ts and Fs in the 
columns in a truth table were identical. 

⊲⊲ We made use of this notion to give us our nine equivalences 
in our system of natural deduction proof. This provided us with 
new tools that we could use to substitute one sentence form for 
another in a fashion that still guaranteed truth. These tools greatly 
enlarged the number of arguments we could construct proofs for. 

⊲⊲ But just as we expanded everything else in first-order predicate 
logic so that we could move beyond just talking about truth-
functional relations between sentences, when we talk about identity 
in first-order logic, we will move from the notion of equivalent 
sentences and place our equivalence relation inside of sentences. 
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⊲⊲ With identity, we now want to talk about the equivalence of 
individuals. We want to be able to say that two things are the 
same thing. This is a different notion of equivalence. Two 
sentences can be truth-functionally equivalent and say different 
things—have different meanings. So, we need a new, different, 
more robust concept of equivalence. 

⊲⊲ Equivalence relations are relations that have three important 
properties: r, s, and t. Equivalence is reflexive. That means that a 
thing is always equivalent to itself. Think of reflexive as reflective: 
When you look in a mirror, you never have to wonder whom you 
are seeing. Your reflection is always you. That is r. 

⊲⊲ Next is s, which stands for symmetric: If a is equivalent to b, then 
b is equivalent to a. Some relations, such as “is the sibling of,” are 
symmetric. Some, such as “is the parent of,” are antisymmetric. 
And others, such as “is the brother of,” are nonsymmetric. For 
equivalence, the relation must be symmetric. 

⊲⊲ Finally, we have t, which stands for transitive. If a is equivalent 
to b and b is equivalent to c, then we know that a is equivalent 
to c. This should remind us of the kind of reasoning behind the 
hypothetical syllogism, the rule of inference in natural deduction 
proofs where if we have a → b, and b → c, we can infer a → c. 

⊲⊲ If you have all three of these properties, then you get the most 
important of all logical relations: If you have a relation that satisfies 
r, s, and t—that is, reflexive, symmetric, and transitive—then you 
have equivalence. 

Translating with Identity

⊲⊲ When we apply this relation to individuals, we have identity. For 
identity, we will use in our language the universal symbol for 
equivalence, the equal sign (=). It will not be a truth-functional 
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connective that applies to sentences, but rather a relation within 
sentences that shows the equivalence between individuals—that 
is, constants and variables. 

⊲⊲ What makes identity the most important of all logical relations is 
that it allows us to translate into our logical language all kinds of 
sentences that we could not translate before. 

⊲⊲ Consider the following two sentences: “Dave is taller than everyone” 
and “Dave is taller than everyone else.” The first sentence is false. 
Dave is someone. So, if it is true that Dave is taller than everyone, 
then it would have to be true that Dave is taller than Dave. 

⊲⊲ But we know that the “is taller than” relation is anti-reflexive—
that is, because everything is always the same size as itself, 
nothing can be taller than itself. It is not a contradiction because 
this knowledge about the “is taller than” relation is something 
semantic that we are importing. It is false because of the meaning 
of “is taller than,” not because of the form of the sentence. But 
with the interpretation we have given that form, we know that the 
sentence is always false. 

⊲⊲ The other sentence, “Dave is taller than everyone else,” however, 
could be true. It says that Dave is taller than everyone who is not 
Dave. To know whether that sentence is true or false, we need to 
know not just the form of the sentence and the nature of the “is taller 
than” relation, but now we need to know how tall Dave is and how 
tall everyone else is. These are completely different sentences. 

⊲⊲ The first sentence could be translated into our language already: 
“Dave is taller than everyone.” It is of the fundamental form, and 
it is categorical. It is an A sentence. “All people are things that 
Dave is taller than.” We know that an A sentence, then, takes the 
following logical form. 

∀x(x is a person → Dave is taller than x) 
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⊲⊲ We need a letter for the property “is a person.” We use H for 
that. We need a letter for the “is taller than” relation. Let’s use 
T. And we need a constant for Dave; d would be the obvious 
candidate. This, then, gives us the following. 

∀x(Hx → Tdx) 

⊲⊲ Without equivalence, we cannot translate the second sentence 
without some philosophical weirdness. The sentence is “Dave is 
taller than everyone else.” It is of the fundamental form, and it is 
categorical. It is still an A sentence, but the slight difference is in 
the antecedent. 

∀x(x is a person other than Dave → Dave is taller than x) 

⊲⊲ To say that “x is a person other than Dave” is to assert a 
conjunction; we are saying that x is a person, and x is not Dave. 

∀x[(x is a person &x is not Dave) → Dave is taller than x] 

⊲⊲ We know how to do most of this already. 

∀x[(Hx &x is not Dave) → Tdx] 

⊲⊲ But what do we do with “x is not Dave”? The intuitive move many 
people make is to make a property of Dave-ness and assert that 
x does not have this property. 

∀x[(Hx &−Dx) → Tdx] 

⊲⊲ Making a property out of an entity, though, opens some strange 
philosophical problems. How do we define Dave-ness? Dave 
is always changing. Are there essential properties that belong 
always and only to Dave? 
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⊲⊲ Give us any set of properties and we can usually point to either 
other things that have them and are not Dave, or we can point to 
times of Dave’s life or after his death when Dave would have to be 
categorized as not-Dave. But Dave is always Dave. 

⊲⊲ But even if you could come up with a satisfactory set of 
properties that cluster to form Dave-ness, we still want to be able 
to meaningfully talk about hypothetical cases in which Dave is 
still Dave but lacks certain aspects that Dave has. 

⊲⊲ Would Dave have been so smart and successful if he had different 
parents or if he had gone to different schools? We could have 
interesting discussions about these types of questions and come 
up with rational arguments that seem to be sensible. But what 
we are doing is adding and subtracting properties from Dave in 
order to do it. As such, taking Dave not only to be an individual 
but also a property seems to be something we want to avoid. 

⊲⊲ Recall the purpose of developing this artificial language: to have 
a tool that allows us to reason clearly and rigorously without 
the ambiguity and sloppiness of ordinary spoken language. By 
allowing individuals to become properties in this way, we are 
inviting exactly the kinds of problems we are trying to avoid. To 
escape this, we use identity. 

⊲⊲ That is not to say that there are no problems with self-identity. 
What does it mean to be the same thing over time? But, while 
interesting, these are not new problems we are introducing 
through our language. 

⊲⊲ Using equivalence, then, we can finish our translation. 

∀x([Hx &−(x=d)] → Tdx) 

⊲⊲ Dave is taller than everyone else. 
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⊲⊲ Perhaps the most important sentences we can now translate are 
ones involving quantities. Consider the sentence “Steve’s class 
has at least two students registered for it.” Previously, we might 
have wrongly thought that this is an I sentence: “Some students 
are registered for Steve’s class.” We know how to translate an I 
sentence. In the following, S is the property of being a student, 
and R is the property of being registered for Steve’s class. 

∃x(Sx &Rx) 

⊲⊲ This says that there is at least one student registered for Steve’s 
class. So, we might have wrongly thought that this is a hidden 
truth-functional combination and that it really is a conjunction of 
two I sentences. 

∃x(Sx &Rx) &∃y(Sy &Ry) 

⊲⊲ That says, “There is one student x who is registered for Steve’s 
class and a student y who is also registered for Steve’s class.” 

⊲⊲ The problem here is that we do not know who x or y is. All we 
know from these sentences is that x is some member of our 
domain of discourse and y is some member of our domain of 
discourse. 

⊲⊲ Could both of these be true and x and y be the same thing? 
Absolutely. What we need is an additional claim, an assurance 
that x and y refer to different members of the universe. And for 
that, we need equivalence. 

∃x∃y{[(Sx &Rx) &(Sy &Ry)] &−(x=y)} 

⊲⊲ Now that says, “There are at least two students registered for 
Steve’s class.” 
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⊲⊲ Notice what we had to do with the quantifiers, grouping them at 
the front of the sentence. The reason is that the equivalence (or, 
in this case, the negation of the equivalence) relates x to y, so 
the equivalence needs to be within the scope of both existential 
quantifiers. 

⊲⊲ The jurisdiction of a quantifier ends at a truth-functional 
connective. So, in the second formulation of the sentence, 
∃x(Sx &Rx) &∃y(Sy &Ry), the ∃x logically disappears once we hit 
the central conjunction. 

⊲⊲ In order to have the equivalence within the scope of both 
quantifiers, we need to put the entire rest of the sentences inside 
the braces and put the quantifiers outside so that they reach the 
equivalence portion. 

Equivalence Substitution

⊲⊲ We can now translate sentences that require equivalence into our 
language, and that means that we can translate arguments. Can 
we determine if they are valid? 

⊲⊲ We will need one new rule for our proof structure: equivalence 
substitution (ES). It is, perhaps, the most obvious rule. If, on 
some line of a proof, we have, as the entire content of the line, a 
statement of equivalence between two individuals, then on any 
subsequent line in which either individual appears in a sentence, 
we can substitute the other equivalent individual. 

⊲⊲ Note that this only applies to free variable names—that is, 
variables that are not in the scope of a quantifier. We cannot 
change a bound variable name—that is, a quantified variable—
without changing the meaning of the sentence. 
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⊲⊲ So, we can use ES on free variables and constants. When we 
say that Mark Twain is Samuel Clemens, we are asserting the 
equivalence of two names. We can equate two variables, as in 
cases in which we claim that whoever is stealing your lunch is 
also the person who is spray painting graffiti on the walls. And 
when we say that the butler did it, we are equating a named 
individual, Jeeves, with a free variable, the previously unnamed 
murderer. We can use ES on an equivalence that connects any 
free variable(s) or constant(s). 

Readings

Hurley, Logic, chap. 8.
Kahane, Logic and Philosophy, chap. 8.

Questions 

1. 
Translate the following sentences, using Ax = x is an apple; Hxy = x 
has y.

James has an apple, and Florence has a different apple.

2. 
Translate the following argument and construct a proof to show that 
it is valid.

James has at least two apples. Therefore, James has an apple.
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Answers

1. 
∃x∃y{[(Ax &Hjx) &(Ay &Hfy)] &−(x=y)}.

2. 
∃x∃y{[(Ax &Hjx) &(Ay &Hjy)] &−(x=y)}; therefore, ∃x(Ax &Hjx).

1	 ∃x∃y{[(Ax &Hjx) &(Ay &Hjy)] &−(x=y)}	 premise
2	 ∃y{[(Ax &Hjx) &(Ay &Hjy)] &−(x=y)}		  EI 1
3	 [(Ax &Hjx) &(Ay &Hjy)] &−(x=y)		  EI 2
4	 (Ax &Hjx) &(Ay &Hjy)		  Simp 3	
5	 Ax &Hjx		  Simp 4
6	 ∃x(Ax &Hjx)		  EG 5
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Logic and Mathematics

As you learned in the previous lecture, equivalence relation allows 
us to translate into our language numerical sentences. This 

means that we can now ask questions about the form of mathematical 
reasoning. This is the question that launched the study of deductive 
logic in the first place. If our study of deductive logic looked like work 
you have seen in mathematics classes, that’s because the two studies 
are inextricable. We cannot discuss mathematics without discussing 
logic, and we cannot discuss logic without discussing mathematics. 

Logic in Euclidean Geometry

⊲⊲ Aristotle was the first to develop a systematic approach to formal 
reasoning with his categorical logic, but the hallmark of formal 
reasoning, the book that brought deduction to the forefront of the 
Western intellectual tradition, was written about 50 years later. It 
was Euclid’s The Elements. 

⊲⊲ Euclid’s use of deductive proofs started with five axioms and five 
postulates that were all seemingly self-justifying—that is, they 
were so obvious that no one could possibly deny their truth. He 
starts with general mathematical ideas, such as equals added to 
equals yields equals. 

⊲⊲ But what was amazing is where he went from there. He used 
these basic truths, and then added some definitions. Definitions 
have to be true because they are true by definition. We are 
free to define any term in any way we want. So, Euclid gives us 
definitions of “point,” “line,” “circle,” and other geometric terms. 
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⊲⊲ But then he combines all of this and, using strict deductive 
reasoning, demonstrates the necessary truth of hundreds of 
theorems—that is, propositions he derives from the axioms and 
postulates. These are not obvious. Some of them are incredibly 
intricate, and some of them are counterintuitive. But after reading 
Euclid’s work, one is convinced that each must be true. 

⊲⊲ What Euclid did that made his book one of the most important 
in human history is his organization of the theorems of plane 
geometry—his use of a strict deductive system to derive them all 
from first truths. 

⊲⊲ Euclid’s use of deduction was so elegant and powerful that it 
made thinkers who came after him long to do for every aspect of 
human thought what he did for geometry. So, Euclid’s Elements 
reigned as the unchallenged epitome of rigorous thought—that 
is, until some tried to improve it. 

⊲⊲ Mathematicians love elegance: doing the most with the least, not 
making any more assumptions than are absolutely necessary. 
Euclid had made 10 such assumptions—that is, he had five 
axioms and five postulates. 

⊲⊲ But one of the postulates bothered mathematicians—the fifth 
one. It seemed different. The following are the five postulates. 

1	 A line segment can be drawn connecting any two points. 
2	 A line segment can be extended indefinitely far in either direction. 
3	 A circle of any radius can be drawn around any point. 
4	 All right angles are equal to one another. 
5	 Take any two straight lines and have a third line fall across 

them. If, on one side of the crossing line, the other two lines are 
approaching each other, they will eventually meet on that side of 
the crossing line. 
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⊲⊲ The fifth postulate seems much more like one of the many 
theorems that are proven in the book than the other postulates, 
which are more about what can be constructed. So, some 
thought, maybe it is a theorem. If it is, then it could be proven from 
the definitions, the five axioms, and the other four postulates. 

⊲⊲ If you could create a deductive argument with the fifth postulate 
as a conclusion, then it would not need to be assumed—it would 
be omitted from the list of postulates. Diminishing this list would 
create a more elegant system, and that would be astounding. 
Over the centuries, many mathematicians tried. All failed. 

⊲⊲ Despite the universal failure, the nagging sense persisted. 
So, some changed tactics. Instead of constructing what we 
have called a direct proof, maybe they could instead proceed 
indirectly, in which one sets out the premises and the negation of 
the conclusion and reasons until a contradiction rises. 

⊲⊲ Many attempts were made, but no one could show that this process 
led to explicit contradictions, and this is what is needed to conclude 
an indirect proof. After a while, several mathematicians thought that 
perhaps the contradictions would never arise. If that were true, 
then what they were playing with was not a self-contradictory set of 
premises, but rather propositions that were consistent. 

The Discovery of Non-Euclidean Geometry

⊲⊲ But if that were true, what they had in their hands was a new 
geometry—a geometry other than that of Euclid, a non-Euclidean 
geometry. While a handful of mathematicians nearly simultaneously 
came to this conclusion, the name most associated with this move 
to asserting the existence of a geometry different from that of 
Euclid is the Russian mathematician Nicolay Lobachevsky, and the 
system is now widely referred to as Lobachevskian geometry. 
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⊲⊲ The introduction of Lobachevskian geometry set off alarm bells in 
the world of mathematics. Non-Euclidean geometry seemed like 
a contradiction in terms. Euclid had used deduction. Deductive 
reasoning guarantees the truth of its conclusions. How could 
there be alternative mathematical truths? 

⊲⊲ Mathematical truths are not like physical truths. Things in the 
world could be otherwise, but mathematical truths seem to be 
necessary. They have to be true. 

⊲⊲ So, we have one geometry with one set of axioms and a second 
geometry with a different set. Which one is true? Which set of 
axioms should we believe? 

⊲⊲ Surely, nearly everyone thought, it must be Euclid. How could 
we possibly reject Euclid? So, the push continued to find the 
contradiction that lay hidden among the results of Lobachevskian 
geometry. If a single contradiction could be found, the whole 
non-Euclidean threat could be rejected. 

⊲⊲ But it was a pointless search. This fact was proven by three different 
mathematicians: the German Felix Klein, the Frenchman Henri 
Poincaré, and the Italian Eugenio Beltrami. Each constructed what 
we call a relative consistency proof for non-Euclidean geometry. 

⊲⊲ A consistency proof is an argument that establishes that the 
axioms of a system are non-contradictory. A full-out consistency 
proof for non-Euclidean geometry would have been wonderful 
and established beyond any doubt that non-Euclidean 
geometries were non-contradictory. But we got something only 
half as good: a relative consistency proof. 

⊲⊲ Klein, Beltrami, and Poincaré took the language of the non-
Euclidean universe and erased all of the meanings. They then 
gave the non-Euclidean terms a new meaning in the Euclidean 
world and showed that the relations among the reinterpreted 
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axioms are true in the Euclidean universe. They made Euclidean 
models of non-Euclidean geometry. 

⊲⊲ The radical result is that the only way the axioms could form an 
inconsistent set—that is, the only way non-Euclidean geometry 
would ever produce a contradiction—is if Euclidean geometry did. 

⊲⊲ Because we could show a formal relation between the sentence 
forms and because consistency and inconsistency are formal 
properties, we could prove that the two systems are relatively 
consistent. We did not show that non-Euclidean geometry 
is consistent, but rather that it is only inconsistent if Euclidean 
geometry is inconsistent. 

⊲⊲ But is Euclidean geometry consistent? Mathematicians thought, 
if it is, we should be able to prove it. So, how can we prove that 
Euclidean geometry is consistent? 

⊲⊲ We had been working with it for centuries, and no one had found 
a single contradiction yet. But just because a contradiction had 
not been found yet does not mean that one will not surface 
eventually. We needed a proof. 

⊲⊲ But before we could prove Euclid’s geometry consistent, a small 
detail needed to taken care of. It was long known that Euclid had 
played fast and loose with some of his proofs and had made use 
of some assumptions that he had not accounted for in his axioms 
and postulates. If we were going prove that Euclidean geometry 
was consistent, then we first needed to clean up Euclid’s work. 

Logic in Mathematics

⊲⊲ We needed a complete re-axiomatization of Euclidean geometry 
and a rigorous formalization of the logic to be used. It was a big 
project that would require a big brain and intellectual courage.  



204 An Introduction to Formal Logic 

The man for the job was 
one of the greatest minds in 
the history of mathematics,  
David Hilbert. 

⊲⊲ Unlike some mathematicians 
of his time, Hilbert saw logic 
as the most powerful tool 
of the mathematician. He 
embraced it and the problems 
that came from it. Contrary to 
constructivism—which held 
that logical proofs were not to 
be admitted in mathematics—
Hilbert became the founding 
father of formalism, the view 
that mathematics was about 
the forms of equations and 
mathematical entities. 

⊲⊲ This formalist project needed a formal methodology. With 
his student Wilhelm Ackermann, Hilbert wrote a book called 
Principles of Mathematical Logic. Logic was to be the method, 
and it needed to be made rigorous, so Hilbert developed what 
we have come to know as natural deduction proof. 

⊲⊲ It was Hilbert who first developed the system we have been 
studying, although his version is a bit different. Hilbert’s system 
has many fewer rules, but philosophically, the foundation is the 
same. We have a formal process that demonstrates validity, a 
formal property using purely formal means. 

⊲⊲ He took this view and attacked many of the major mathematical 
problems of his day—among them, the question of geometry. 

David Hilbert
(1862–1943)
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⊲⊲ Poincaré, Beltrami, and Klein had produced relative consistency 
proofs. They had shown that the only way that the non-
Euclidean geometry of Lobachevsky could be inconsistent, self-
contradictory, is if Euclidean geometry was as well. 

⊲⊲ No one doubted the consistency of Euclid, but no one had a proof 
of it either. And if we are mathematicians, we have warrant for 
rational belief only if we have a proof. So, is Euclidean geometry 
consistent? We need a proof. 

⊲⊲ But before we could prove Euclid’s system consistent, we 
needed a reformulation of Euclid. We needed for all and only the 
assumptions, the real axioms, to be set out. We needed a strict 
means of logical process—natural deduction. 

⊲⊲ And we needed the theorems of Euclid to be re-derived. Hilbert 
did exactly this in his book The Foundations of Geometry, 
published in 1899. In it, he replaces Euclid’s 30 definitions, five 
postulates, and five axioms with 20 axioms. He then proceeds to 
do the unthinkable—he improves Euclid. Hilbert had created a 
completely logically precise version of Euclidean geometry. 

Saving Geometry by Reducing It to 
Arithmetic

⊲⊲ The question could now be approached. Is Euclid consistent? 
For that, Hilbert could not produce a proof. But he could take the 
next step down the road begun by Klein. Hilbert could produce 
a relative consistency proof for Euclid, showing that the only way 
that Euclidean geometry held inconsistencies is if arithmetic did. 

⊲⊲ Math is about the internal structure and relations of the concepts 
within the axioms, and Hilbert showed how we could produce 
a coherent interpretation of the Euclidean axioms inside the 
language of arithmetic. 
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⊲⊲ We could take the sentence forms of the axioms he used to 
reformulate Euclid and find their equivalences inside of the results 
of arithmetic. That means that the consistency of all of geometry 
now relied on the consistency of arithmetic. 

⊲⊲ But is arithmetic consistent? Mathematicians doubted this less 
than they doubted the consistency of Euclid. But this certainty is 
unwarranted, or at least ungrounded, without a proof. Could we 
prove arithmetic consistent? 

⊲⊲ In the year 1900, Hilbert gave the keynote address at the Second 
International Congress of Mathematics, the most prestigious 
gathering of mathematicians from all around the world. Hilbert’s 
address laid out the 23 problems that required the combined 
efforts of the mathematical world in the 20th century. It is one 
of the most important addresses ever given in the history  
of mathematics. 

⊲⊲ Of those 23 problems, about 12 were solved in that century—
there is still debate about a few of them. For this course, the 
important one is the second problem: “to investigate the 
consistency of the arithmetic axioms.” Geometry now rested on 
arithmetic, and it was incumbent on mathematicians to prove a 
logical property of arithmetic in order to provide mathematics 
with the firm foundation it required. 

⊲⊲ Logic was not only a part of mathematics, but the truth of all 
mathematics itself now rested on the ability to produce a proof 
of a logical property. Logic and mathematics had become 
inextricably entwined. 
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Readings

Euclid, The Elements. 
Gray, The Hilbert Challenge.
Kramer, The Nature and Growth of Modern Mathematics, chaps. 29–32.
Yandell, The Honors Class.

Questions 

1. 
David Hilbert’s logical approach to mathematics upset mathematicians 
like Paul Gordan because the purpose of mathematics, they argued, 
is to produce what you prove. By proving that something cannot not 
exist, they contended, is not really showing us the thing, and the thing 
is what we want. Was Gordan correct that Hilbert was not really doing 
mathematics, or did they just have an old-fashioned idea of what 
mathematics is? Does mathematics have revolutions that change 
how we think of the mathematical realm like scientific fields do?

2. 
The results of Euclidean geometry are easy to visualize, and they 
seem to resemble our actual observations. Could observations be 
used as a foundation for mathematical truth? Doing so would mean 
that they would be approximate and not necessary truths. Does this 
diminish mathematics? Does the fact that we have a difficult time 
envisioning non-Euclidean geometry mean that it is or has to be 
false? What role does and should our ability to envision something 
play in determining when a mathematical proposition is true or false?



Lecture 22

Proof and Paradox

A t the turn of the 20th century, the foundations of mathematical truth 
hinged on logic. The question of the consistency of Euclidean 

geometry had been reduced to the question of the consistency 
of arithmetic. So, at the beginning of the 20th century, we were left 
with the logical question of the consistency of arithmetic. Logic and 
mathematics had become entangled, but to a group of thinkers, 
including Gottlob Frege and Bertrand Russell, the connection would 
run even deeper than others had previously suspected. 

Arithmetic in the 20th Century

⊲⊲ Traditionally, mathematics was thought to have two separate 
realms: geometry (shapes in space) and arithmetic (numbers and 
equations). Non-Euclidean geometry had the mathematical world 
in a tizzy, but it would be wrong to say that life was peaceful in 
the arithmetic realm. 

⊲⊲ The consistency of arithmetic, the ultimate grounding of numerical 
truths, was something that was considered indubitable. But at the 
end of the 19th century, nothing was beyond doubt. 

⊲⊲ The great German mathematician Richard Dedekind had 
considered that while non-Euclidean geometry had been 
reduced to Euclidean geometry and Euclidean geometry had 
been reduced to arithmetic, perhaps the can needed to be 
kicked one more step down the road and arithmetic needed to 
be reduced to set theory. 
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⊲⊲ Think about numbers as conceptual representations of sets and 
addition, subtraction, multiplication, and division as operations on 
sets—for example, merging sets or looking for members that sets 
have in common. This way, we would just need a complete and 
consistent theory of sets, and that could produce for us the long-
sought foundation for mathematical truth. 

⊲⊲ Sharing Dedekind’s interest was a younger German 
mathematician, Georg Cantor, whose results are among the 
strangest in mathematics. Cantor thought about numbers as the 
size of sets. Two sets are of the same size if we can draw a line 
from each member of one set and have it end at a member of the 
other set, and there is no member of either set that is not paired. 

⊲⊲ We can, therefore, talk about the size of sets without counting. If 
everyone who buys a concert ticket sits in one seat and we want 
to see if the show is sold out, undersold, or oversold, we don’t 
need to count the seats and count the tickets sold, we just need 
to see if there are empty seats, if there are people without seats, 
or if every person has a seat and every seat has a person. 

⊲⊲ We call this mapping. A mapping is “one-to-one and onto,” what 
mathematicians call a homeomorphism, if all of the members 
of each set are mapped onto one member of the other set. 
Homeomorphic sets are the same size. 

⊲⊲ The ability of being able to say that two sets have the same 
number of members without having to count means that we can 
talk about infinite sets. Some infinite sets are the same size even 
though one might be a proper subset of the other—for example, 
even numbers and the positive integers. Some infinite sets are 
larger than other infinite sets—for example, real numbers and 
rational numbers. 
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⊲⊲ Mathematicians became suspicious of thinking about infinity. We 
cannot construct infinite sets, so we should not be able to speak 
of them. They are not part of mathematics. 

⊲⊲ The use of logic and the use of sets in mathematics were joined 
not only in the minds of opponents, but also in the minds of 
those who saw it as the path to ultimate basis for certainty in 
mathematics. 

Questioning the Basis of  
Mathematical Truth

⊲⊲ The question of the consistency of non-Euclidean geometry 
was reduced to the consistency of Euclidean geometry and that 
reduced to the consistency 
of arithmetic, which was 
in turn reduced to the 
consistency of set theory. 
Was this a never-ending—
and therefore ultimately 
unjustified—path? What is 
the intellectual bedrock on 
which it all ultimately rests? 

⊲⊲ Some philosophers, such as 
Plato, thought that numbers 
are mystical, metaphysical 
things, and that is where the 
ultimate justification resides. 
Other philosophers, such as 
Immanuel Kant, argued that 
it was in the human mind, in 
our own intuitions, that we 
find the justification. 

Immanuel Kant
(1724–1804)
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⊲⊲ But many mathematicians were loath to take these philosophical 
paths. They wanted absolute rigor on purely mathematical terms. 
For Hilbert, the answer was his view, formalism, in which we just 
started with an axiomatized theory that we hypothetically take to 
be true. 

⊲⊲ This meant that all of mathematics was ultimately ungrounded 
and that math was just a game like basketball, with arbitrary rules 
whose results do not mean anything away from the playing field. 
Many mathematicians were scandalized by such trivialization of 
their work. 

⊲⊲ Another view was called logicism. According to this view, there 
is an ultimate end to the reduction. The last stop was logic 
itself. Logic is necessarily consistent. If we could reduce set 
theory to pure logic, then there could be no doubt that it is not 
only consistent, but necessarily true because logic is based on 
definitions and tautologies. 

⊲⊲ According to the logicists, all of mathematics is just complex logic 
when you get all the way down. Logic is not merely a method to 
be used in doing mathematics; logic is the reason for and the 
justification of mathematics. 

The Logicist Project

⊲⊲ The project of coming up with an axiomatized theory of sets that 
could be reduced to logic was most famously begun by the Italian 
mathematician Giuseppe Peano. He used nine axioms framed in 
an early version of formal logic that he developed for the work. 

⊲⊲ It involved natural numbers and a function called successor. The 
idea is that we can posit basic truths about a number and its 
successor, the number that comes next. Using this, he showed 
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how the truths of addition and multiplication could be worked out 
within the system, which necessarily obeyed the laws of logic. 

⊲⊲ Impressed with this work, but having the sense that it needed 
to be taken further, was the German mathematician Gottlob 
Frege. He wanted to reconceptualize all of mathematics in a 
fashion that would be able to show how every mathematical truth 
could be traced back to logical concepts via absolutely rigorous 
deductions. There would be no gaps in the reasoning, no appeals 
to intuition; it would all be strict and formal. 

⊲⊲ He knew that such rigor in deduction would require a logical 
language. He appreciated Peano’s work but thought that an 
even more powerful logical language would be needed, so he 
constructed what he called his Begriffschrift, or concept writing. 

⊲⊲ It would be his logical language within which his completely 
rigorous work could be done. It is a progenitor of our first-order 
predicate logic, although one that is much more difficult to work in. 

⊲⊲ Having his logical language, he began to work on setting out 
a version of set theory, which would be a step more abstract 
than Peano’s. Indeed, he sought to create a logical, conceptual 
framework from which Peano’s axioms would emerge as 
theorems—as results. 

⊲⊲ For Frege, mathematics must be completely reducible to the 
concepts of logic. But what, then, are numbers? Think about 
the two seemingly quite different ways we use numbers. On the 
one hand, we talk about numbers abstractly. On the other hand, 
numbers are amounts of things. 

⊲⊲ How can we make sense of numbers in such a way that they 
are not like all other normal, observable properties? How can 
numbers be both in the world and be abstract concepts? 
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⊲⊲ Sets are conceptual things, but we can map abstractly generated 
concepts onto concepts we apply to the world. But that mapping 
is also conceptual, so mathematics should be reducible to the 
underlying logic if the system can be created properly. The 
ultimate concept of “set” would be the basis for everything in 
mathematics, and it would be abstract yet applicable. 

⊲⊲ Frege worked for years to develop this system. He set out 
a version of his view in his earlier book, The Foundations of 
Arithmetic, and then his full system in his masterwork, Basic Laws 
of Arithmetic. He thought he had done it. 

Russell’s Paradox

⊲⊲ The first volume of Basic 
Laws of Arithmetic came 
out in 1893, and he had 
continued to work on the 
project for the better part 
of the following decade. In 
1902, he was ready with 
the second volume. 

⊲⊲ But before he could publish 
it, he received a letter from 
an unknown philosopher 
and logician in Britain, the 
young Bertrand Russell. 
He was one of the few who 
had read Frege’s work and 
admired it to the degree 
Frege thought it warranted. 
Russell agreed that logic was the basis of all mathematical truth, 
and Frege’s work took us along the path to successfully showing it. 

Bertrand Russell
(1872–1970)
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⊲⊲ However, Russell came to realize, Frege’s work could not be 
the last word on the matter. Frege thought he had succeeded 
in developing a system in which set theory and thus arithmetic 
derived from pure logic, thereby guaranteeing that set theory 
would be free of contradictions. 

⊲⊲ But Russell informed him that, in fact, the opposite was true: 
Frege’s system generated a contradiction, what has come to be 
known as Russell’s paradox. 

⊲⊲ Russell thought that Frege’s problem was that his axiom for set 
construction was far too permissive. It allowed sentences to assert 
properties of sentences of its own order. This was a problem. We 
need a logical caste system, a hierarchy with strict regimentation 
and an absolute rule against semantic fraternization. 

⊲⊲ This approach was what came to be known as Russell’s theory 
of types, and he thought that it was sufficient to save Frege’s 
logicist project. He thought that this sort of logical segregation 
would make the paradoxes disappear while still saving the idea 
that all math could be derived from nothing but logic and abstract 
concepts added in as definitions. 

⊲⊲ Russell worked for years developing a system from which an 
axiomization of arithmetic would emerge. He joined forces 
with one of his former professors, Alfred North Whitehead, and 
together they built the first-order logical language that we learned 
to work in, and they used it to produce a mammoth work of logic: 
Principia Mathematica. It is three huge volumes from which the 
basic propositions of arithmetic are painstakingly derived. 

⊲⊲ Unlike Frege’s effort, it was a work that was received with great 
fanfare. The logicist project seemed to have been carried out. Logic 
saved mathematical truth and gave mathematics a firm foundation 
from which to emerge. For an equation to be true is for it to be 
provable in the system of axioms set out in Principia Mathematica. 
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Gödel’s Incompleteness Theorem

⊲⊲ In 1931, Austrian mathematician Kurt Gödel did what Russell 
thought could not be done. Gödel produced a paradox from the 
axiom set of Principia Mathematica, a paradox not unlike the one 
Russell had pointed out could be formed in Frege’s system. This 
result is famously known as Gödel’s incompleteness theorem. 

⊲⊲ Gödel created a kind of relative consistency proof of his own. 
But instead of finding a model of non-Euclidean geometry in 
the Euclidean language, he found a model of second-order 
mathematical sentences in the first-order language. 

⊲⊲ In this way, he considers the second-order sentence “this 
sentence is unprovable.” Either it has a Gödel number or it 
doesn’t—that is, either it has a proof or it doesn’t. 

⊲⊲ Russell and the other logicists, to be true is to be provable in 
the system of logic and to be false is to be unprovable. If “this 
sentence is unprovable” can be proven, then it is false but has a 
proof. This is not allowed. If “this sentence is unprovable” does 
not have a proof, then it is true, but does not have a proof. Either 
way, the logicist definition of truth as provability within the system 
is flawed. 

⊲⊲ But the problem is that this flaw is mirrored in the arithmetic itself 
through the Gödel numbering. The mirroring connects second-
order truths to arithmetic truths. 

⊲⊲ So, Russell and Whitehead’s axioms of arithmetic necessarily either 
let in true sentences that cannot be proven (this makes the system 
incomplete) or false sentences that can be proven (this makes the 
system unsound). Either way, logicism as Russell worked it out is 
dead. Russell’s attempt to save Frege’s project fails. 
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Readings

Coffa, The Semantic Tradition.
Kramer, The Nature and Growth of Modern Mathematics, chaps. 30–33.
Nagel and Newman, Gӧdel’s Proof. 

Questions 

1. 
Cantor’s work on trans-infinite numbers requires an axiom of infinity, 
an assumption that posits the existence of a first infinite number. From 
there, all of the strangeness of his results follows. Mathematicians who 
were bothered by his results contended that we should not accept his 
initial assumption—that it was based on a misunderstanding of the 
infinite. This seems to be a philosophical objection. On what grounds 
should we accept or reject basic assumptions in mathematics? Is 
math ultimately philosophical? Is there a logical basis? Is it a matter of 
applicability to science? Can we accept any basis we want?

2. 
If logicism has failed, which of its competitors is a better foundation for 
mathematical truth? Is Plato correct that mathematics is not about this 
world, but rather about an ideal world of concepts? Is Kant correct 
that mathematics is really a form of psychology that investigates how 
the human mind thinks about numbers and shapes? Is Hilbert correct 
that mathematics does not give us absolute truths, but only results 
of different axiom games we can choose to play if we want? Are 
empiricists correct that mathematical truths are really just a kind of 
physical truth—that one apple and one pear together are two pieces 
of fruit and that mathematical truth is no longer exact and necessary 
but just another variety of plain old truths?



Lecture 23

Modal Logic

We hold there to be two different senses of truth: those sentences 
that happen to be true and those sentences that must be true. 

Our logic so far does not distinguish between garden-variety truth 
and necessary truth. Can we develop a logic that does account for 
the difference between these kinds of true sentences? This is what we 
call modal logic. “Modality” is the term that philosophers use for the 
concepts “possible” and “necessary.” Modal logic is an augmented 
version of our first-order relational logical language that includes new 
operators for possibility and necessity. 

Modality

⊲⊲ We have been using a particular word repeatedly in these lectures 
as if it is clear what it means. The word is “true.” What does it 
mean for a sentence to be true? Philosophers have debated this 
for centuries. 

⊲⊲ One standard definition, what we call the correspondence theory 
of truth, holds that a sentence is true if what it says about the 
universe is actually the case in the universe. 

⊲⊲ Philosophers have long realized that there are two different 
types of true sentence. One type of true sentence happens to 
be true, but the world could be otherwise. These contingent 
truths are possibilities. 

⊲⊲ But then there are sentences we think must be true no matter 
how the world is. We call these necessary truths. We have 
thought that these necessary truths are sprinkled throughout 
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human endeavors—in such areas as mathematics, science, 
ethics, and metaphysics. 

⊲⊲ The concept of necessary truth is stronger than mere truth or 
that which happens to be true. The term “modality” is used by 
philosophers to refer to the concepts of necessity and possibility. 

⊲⊲ The logic we have been exploring is only geared to a single 
concept of truth. If we want to expand it to be able to look at 
arguments involving possible and necessary truths, then we 
need to create an augmented system. We need modal logic. 

⊲⊲ We have seen some necessary truths already. Think back to truth-
functional logic. We saw that there are tautologies, sentences like 
“I have a brother or I don’t have a brother” that are always true. 
We can extend this to our first-order predicate language and 
come up with necessary truths like “All dogs are dogs.” 

⊲⊲ There are sentences like these that are necessarily true. These 
sentences are necessarily true because of their form. Any 
sentence of the form av−a or of the form ∀x(Dx → Dx) will be 
necessary truths. 

⊲⊲ There are some examples from mathematics, science, ethics, and 
religion that are supposedly necessary truths because of their 
content, not because of their form. This means that we will need 
some additional machinery to deal with the logic of modal concepts. 

⊲⊲ We need to add two new operators to our first-order predicate 
language. The box (o) will be our symbol for “necessary,” and 
the diamond (u) will be our symbol for “possible.” They will 
function syntactically sort of like quantifiers in that they will be put 
in front of the sentences that they are intended to modify. 

⊲⊲ We might say that the sentence “Everything is F” is true—that 
is, we can assert ∀xFx. But if we want to make a stronger claim 
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and say that it is no accident of the universe that everything is F, 
but rather that it could not be otherwise—that everything must be 
F—then we can write o∀xFx. This says that the sentence ∀xFx is 
a special sentence; it is a necessary truth. 

⊲⊲ In the same way, we could add a special notation to indicate that 
we don’t know if ∀xFx is true or not, but it is certainly possible that 
all things have the property F. In this case, what we are asserting 
is u∀xFx. This says that the sentence ∀xFx is like a contingency 
in truth-functional logic. It is a sentence that could be true. 

⊲⊲ There is a logical relation between these two. In the same way 
that we have the equivalence quantifier negation that allows us to 
switch the order of a negation and a quantifier—for example, “not 
everything” is the same as “something is not”—the same holds 
true with our modal operators. 

⊲⊲ We can employ the equivalence modal negation (MN) and switch 
the order of a modal operator and a negation. If we say that it is 
not the case that “Everything is G” is necessary, then we have the 
sentence −o∀xGx. But to say that something is not necessarily 
true is to say that it is possible that it is false. But this is to say that 
u−∀xGx. 

⊲⊲ Similarly, if we say that it is not possible that everything is F, 
then we are asserting the sentence −u∀xGx. But to say that it is 
not possible for it to be true, we are saying that it is necessarily 
false—that is, we are asserting the sentence o−∀xGx. If we move 
the negation to the other side of the modal operator and switch 
the operator, we end up with an entirely equivalent proposition. 

⊲⊲ One way that philosophers make sense of these new operators 
is to give them an interpretation in terms of possible worlds. 
By the term “possible world,” we mean a way the world could 
be. Our world, the real world, is just one among the infinite  
possible worlds. 
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⊲⊲ When we write a diamond in front of a sentence, we are saying 
that the sentence is possibly true. By that, we mean that there 
is a possible world (or some set of possible worlds) in which 
this sentence is true. When we then use that sentence in valid 
arguments, we are seeing what else must also be true in this 
particular possible world. 

⊲⊲ When we put a box in front of a sentence, we are saying that the 
sentence is necessarily true. A sentence is necessarily true if it is 
true in every possible world. No matter what world you consider, 
the necessary truths will be true in them. If we put a box in front of 
a negated sentence—that is, we say it is necessarily false—that 
means that it is true in no possible world. 

The Mechanics of Modal Logic

⊲⊲ The translation of spoken-language modal sentences into our 
expanded first-order modal logical language is not different from 
our regular translation in our first-order language, except for the 
new machinery. 

⊲⊲ With all of the other additions we have made, we first learned to 
translate and then jumped right into how to use them in proofs. 
What are the new rules and equivalences associated with the 
introduced elements? With modality, however, this is more 
complicated because there is not single logical meaning for 
them. Rather, there are several possible meanings. 

⊲⊲ There are multiple viewpoints for modal logic. They are called 
modal systems of different strengths because each stronger level 
commits us to a new rule, where the weaker ones do not. We 
account for different meanings of modality by having different 
modal languages that use different additional axioms. 



221Lecture 23—Modal Logic

¹¹ K (named for the philosopher-logician Saul Kripke) is the 
weakest modal language, according to which a sentence is 
necessary only if we can prove it using no premises. In this 
language, the axiom o(P → Q) → (oP → oQ) is true and can be 
inserted into a proof for any sentences P and Q. 

¹¹ M or T (named independently by Kurt Gödel and Georg Henrik 
von Wright), the next stronger language, adds the claim that if 
a sentence is necessarily true, then it must also be true—that 
is, oP → P. 

¹¹ S3 (where “S” stands for “strength”) adds the additional claim 
to M or T that if a sentence is necessarily true, then it must also 
be possibly true—that is, oP → uP. 

¹¹ S4 adds to S3 the additional claim that if a sentence is 
necessarily true, then it is necessarily true that it is necessarily 
true —that is, oP → ooP. 

¹¹ S5, the strongest modal language, adds to S4 the claim that all 
modal claims are necessary—that is, not only are necessary 
truths necessarily necessary, but that sentences that are 
possible are necessarily possible. In other words, uP → ouP. 

⊲⊲ With modal logic, we are left with the question that mathematicians 
faced when suddenly they had multiple geometric systems: Which 
one is right? Which of these five modal systems is the real one? 
The stance that logicians take is similar to the one David Hilbert 
took with respect to mathematical systems—take whichever one 
you want and then ask the philosophers questions. 

Deontic Logic

⊲⊲ Philosophers have made another interesting use of modal logic, 
turning it into what is called deontic logic. The term “deontology” 
refers to an approach to logic that is based on duties, absolute 
rules that must be followed in order to act morally. 
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⊲⊲ Moral theory utilizes three different statuses for possible acts. 

¹¹ An action could be morally necessary, meaning that you have 
to do it. 

¹¹ An action could be morally prohibited; these are things that 
you should never do. 

¹¹ An action could be morally permissible, meaning that you 
could do it if you want or don’t do it if you don’t want—either 
way is fine. 

⊲⊲ Deontological ethicists thought that perhaps modal logic could 
be modified to become deontic logic. Morally necessary 
actions would be represented with the box (o). Instead of oP 
representing the necessary truth of some sentence, it would 
represent the necessity of a person’s undertaking the act P. 
Morally impermissible acts would be represented as o−P. This 
means that it is necessary to avoid doing P. The diamond () 
would be used for morally permissible acts. 

⊲⊲ The hope was that in adapting modal logic to a moral logic, 
we could take the mushiness and hurt feelings that often 
accompany arguments surrounding questions of ethics and 
replace these feelings with the rigor and objectivity that we see 
in logical argumentation. 

⊲⊲ Unfortunately, the project has not taken off as much as early 
advocates had hoped. A few snags have surfaced. Unlike with 
the logic of truth in which every sentence is either true or false 
and we never have to choose between truths, there can be 
situations in which we have to choose between morally required 
acts. Additionally, are ethical sentences intrinsically necessary or 
only necessary in a context? 
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Readings

Epstein, Propositional Logics, chap. 6.
Layman, The Power of Logic, chap. 12.

Questions 

1. 
Is S5 too strong? Is everything necessarily the way it has to be? 
Could things be otherwise? Are the alternative possible worlds really 
possible? Are things the way they are because that is the way they 
have to be?

2. 
Some philosophers have argued that to say that a sentence is true is 
to say that it describes reality. For example, to say that the sentence 
“Madagascar is an island” is true, it must be the case in reality that 
Madagascar is, indeed, an island. So, if we hold that there are true 
sentences about possibility—for example, if we think it is true that 
“It is possible that Madagascar wouldn’t have been an island”—then 
there is a possible world in which Madagascar is not an island. But if 
to be true is to describe an aspect of reality, then if we hold sentences 
about possibility to be true, then the possible worlds must be part of 
reality—in other words, the possible worlds must all actually exist. Do 
we want to give up on having true sentences about possibility? Do 
we want to allow for reality to include not only our world but every 
possible world, or is there another way to understand the truth of 
sentences about possibility?

3. 
Is a deontic logic possible? Could there be a logic that helps us 
determine what we should do if we want to act ethically?
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Three-Valued  
and Fuzzy Logic

A ll of our lectures thus far have elucidated certain elements of 
classical logic. What defines classical logic is the adherence to 

a central proposition: the law of the excluded middle. This is the claim 
that all sentences have one of two truth-values: true or false. But what 
happens if we deny this axiom? Because this is the foundation of all 
the logical inferences we have examined so far, the fear is that by 
eliminating the law of the excluded middle, we make logic impossible. 
It turns out that we don’t; we just make it more complicated. 

Three-Valued Logic

⊲⊲ By denying that all sentences must be either true or false, we 
create what we call multivalued logic. The simplest of these is 
three-valued logic. We are used to having just two truth-values:  
T and F. But we are going to augment this set with one new 
member. The name of this new truth-value is a completely 
arbitrary choice for which logicians have no unified position. 

⊲⊲ Some use M for “middle”—that is, it is some middle value between 
true and false. Others use I for “indeterminate” or U for “unknown” 
or N for “neither true nor false.” We’ll use M, partially because it 
does not presuppose an interpretation for this new truth-value. 

⊲⊲ One could develop a full-blown first-order predicate logic, but 
for simplicity and to see some of the results more clearly, we 
will look at what introducing a new truth-value does for truth-
functional logic. 
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⊲⊲ We can still use truth tables, but they will have 
to be a bit larger because of the new truth-
value. For negation, for example, instead of 
having two rows, we will now have three. For 
a sentence p, we have the truth table shown 
at right. 

⊲⊲ The only new information is the middle line. The negation of a 
sentence with truth-value M remains M. At first glance, this should 
strike us as odd. Negation changes truth-values. But if we think of 
M as indeterminate or unknown, then if we don’t know whether p 
is true, then we also don’t know if it is false. So, if p has the value 
M, then so should −p. 

⊲⊲ What about the other connectives? Let’s make one big truth table 
for all three remaining connectives. 

⊲⊲ We know what the columns are. One each for p and q, and 
columns for “or,” “and,” and “if-then.” We have three possible 
values for each of the constituent sentences, so we will need nine 
rows to capture all of the combinations. 

⊲⊲ Let’s start with the disjunction, p “or” q. All of our truth-values 
from two-valued logic remain the same, so we can enter all of 
those into the table. 

⊲⊲ All that is left are the ones that involve the new value M. We know 
that a disjunction is true whenever one of the disjuncts is true. So, 
let’s put in T for T ∨M or M ∨T. 

⊲⊲ What about the remaining cases: M ∨ F, F ∨ M, and M ∨ M? If, 
again, we think of M as indeterminate or unknown, then all three 
of these will be unknown as well, because if they turn out to 
be true, so will the sentence, but if they turn out to be false, 
so will the sentence. So, we can complete the entire column  
for disjunction. 

p −p 

T F 

M M 

F T 
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⊲⊲ What about the conjunction, p “and” q? Again, the two-valued 
values remain. So, we can add those to the table. 

⊲⊲ We know that a conjunction is false when one conjunct is false, 
so M &F and F &M will both give us F. 

⊲⊲ “True or unknown” remains unknown, and “unknown or unknown” 
is quite unknown, so we can now complete the column. 

⊲⊲ Last is the conditional: if p, then q. Once again, the two-valued 
values can be plugged in. 

⊲⊲ We know that the only time a conditional is false is when the 
antecedent is true and the consequent is false. So, if the 
antecedent is false or the consequent is true, then we know 
that the conditional is true regardless of the truth-value of the 
remaining sentence. This was true for two-valued logic and 
remains true for three-valued logic. 

⊲⊲ If a sentence is T → M, then there is a chance that it could end up 
T → F, which would make it false, and it is possible that it could 
end up T → T, which would have it end up true. So, T → M would 
remain M. The same kind of reasoning holds for M → F. So, we 
can plug these values into the table. 

⊲⊲ The only remaining case is M → M. Different three-valued systems 
treat this case differently. Some take this to give us a value of 
T, while others take it to give us a value of M. For the sake of 
being more intuitive, let’s go with M → M as M. So, we now have a 
complete truth table, as follows. 
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p q p ∨q p &q p   q 

T T T T T 

T M T M M 

T F T F F 

M T T M T 

M M M M M 

M F M F M 

F T T F T 

F M M F T 

F F F F T

 

⊲⊲ One consequence of our choice of M → M being M is that the 
entire row for p=M and q=M has a value of M. If we also think of 
negation, −p and −q with values of M also remain M. 

⊲⊲ As a result, no matter what combination of truth-functional 
connectives we use in creating molecular sentences and no 
matter how complex we make those sentences, the row with all 
truth-values M will always end up with the truth-value M. 

⊲⊲ So, there can be no tautologies or contradictions as we 
traditionally think of them. We can have modified or pseudo-
tautologies that have no truth-value of F, or we can have modified 
or pseudo-contradictions that have no truth-values of T. But 
neither of these will function as tautologies or contradictions did 
in two-valued truth-functional logic. 

⊲⊲ We can still use truth tables to determine validity and invalidity 
in exactly the same way. We are still making sure that there are 



228 An Introduction to Formal Logic 

no cases in which the premises are all true and the conclusion is 
false. But now, we have a stronger and weaker sense of validity. 

⊲⊲ Recall that an argument is invalid if there is even a single case 
in which all of the premises are true and the conclusion is false. 
But now there are two ways to avoid that. The first is validity, in 
which for every case in which all of the premises are true, the 
conclusion is also true. We’ll call this strong validity. 

⊲⊲ But then there will be the arguments in which there are no cases in 
which the premises are true and the conclusion is false, but there 
are some cases in which the premises are true and the conclusion 
is true and some cases in which the premises are true and the 
conclusion is middle. We can think of this as weak validity. 

⊲⊲ But what about the case in which the premises are all true and 
the conclusion is sometimes T and sometimes M? We need a 
new third value, an M version of validity for these arguments. 

⊲⊲ What does this M value really mean? We have been saying, for 
the sake of intuition, that it means unknown, but unknown is not a 
truth-value. 

⊲⊲ There is a difference between what is and what we know about 
what is. Three-valued logic does not seem apt for describing 
what is, but it does seem appropriate for talking about our 
knowledge—and our lack thereof. 

⊲⊲ We can be in one of three states with respect to the truth-value 
of a sentence: we can know it is true, we can know it is false, or 
we can be in a state of doubt, not knowing whether it is true or 
false. As such, three-valued logic does seem to be a good model 
of our reasoning when we see ourselves as being in a state of 
knowledge about some propositions and a state of ignorance 
about others. 
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⊲⊲ With three-valued logic, we deny the law of the excluded middle 
by positing a third truth-value. But we could add more. We could 
create a four-valued logic or an 18-valued logic. It is not clear 
what uses we would have for them, but such utilitarian, pragmatic 
questions hold little weight with logicians and mathematicians. 

⊲⊲ But in all of these cases, we are making a particular assumption 
that we could deny and create an even more general logic. Why 
must these truth-values be discrete—that is, why is it an absolute 
partitioning of sentences into one of these truth-values? Why 
not make a smooth continuum of truth? In this case, we have an 
infinite number of truth-values. 

Fuzzy Logic

⊲⊲ It is tempting to generalize our use of three-valued logic as a 
measure of our knowledge or lack thereof and see fuzzy logic 
as a measure of our certainty about a sentence’s truth. But this is 
not what fuzzy logic is about. That is induction. Fuzzy logic is not 
concerned with likelihood, but rather deals with fuzzy sets. 

⊲⊲ A non-fuzzy set is one where all members of the universe are 
either in or out of the set. Suppose that the domain is the set of 
humans, and the set we want to examine is the set of all pregnant 
people. This is non-fuzzy; either you are or are not pregnant. 
There is a clear and absolute line between in and out, and no one 
straddles that line. 

⊲⊲ But some sets are not like that. Some sets are fuzzy; objects in 
the universe can be in the set to varying degrees. Again, take the 
domain to be humans, and now consider the property of hairiness. 
For example, when men grow a beard, they move further into the 
fuzzy set. But over the years, as their hairline recedes, they move 
further out of the fuzzy set. Hairiness ranges from zero (hairless) 
on one extreme to one on the other extreme (werewolf-like). 
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⊲⊲ All humans have some degree of hairiness. So, while all people 
are hairy, some sets are fuzzy as well. Logicians have devised 
operations on these sets, called fuzzy connectives, that allow us 
to have a fuzzy version of truth-functional logic and even a fuzzy 
version of predicate logic. The values plugged in are numbers 
between zero and one, and the result of the connectives is a new 
value between zero and one. 

⊲⊲ There are several versions of fuzzy logic, each defining these 
connectives in slightly different fashion. Which of the definitions 
we use depends on the needs that the fuzzy logic serves. 

⊲⊲ The standard example of a system that utilizes fuzzy logic 
is the heating and cooling system in your house. There is a 
thermostat connected to a switch that controls the heating and 
cooling system. You ask your system to keep your home at some 
particular temperature. 

⊲⊲ If you have an old system, then this is governed by classical logic. 
Let p be the sentence “The temperature is the one I desire.” If 
p is true, then the system does nothing. If p is false, then the 
system turns on—for example, the heater is on full blast until the 
temperature is reached, at which point it is turned off. 

⊲⊲ But more modern systems use fuzzy logic to be more energy 
efficient. If the temperature is the one desired—if p has a value 
of one—then the system does nothing. But if the temperature 
deviates from the desired temperature, then it springs to action in 
a more intricate fashion. 

⊲⊲ If it is too cold, it turns on the heat to an appropriate degree, 
depending on the degree of deviation from the desired 
temperature. If it is way too cold, it cranks the heat way up. If it is 
just a little too cold, it gives the heater just a small shot of power 
to let it do a little bit of work. This is a different logic governing the 
operation of the system—it is a fuzzy logic. 
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⊲⊲ Fuzzy logic is a generalization of multivalued logic that we 
created by seeing what would happen if we denied the central 
claim of classical logic, the law of the excluded middle. We found 
that if we were clever about it, we could find a way of reasoning 
that is helpful and useful. And that is what logic is really all about. 

Readings

Epstein, Propositional Logics, chap. 8.
Frielberger and McNeill, Fuzzy Logic.

Questions 

1. 
In three-valued logic, the negation of the new value middle is still 
middle. Does it make sense to make the negation of a value the same 
value? Is that not the opposite of what we mean by negation?

2. 
Fuzzy logic might be useful—that is, it might be helpful to think of 
truth as if it varies smoothly—but does it really? Isn’t truth more like 
being pregnant, where you are or you aren’t? Is there really a sense 
of “in between” when it comes to truth?
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