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INTRODUCTION

Since the release of the BBC micro:bit in 2016, millions of these
devices have been distributed. They’re enjoyed by both kids and
adults all over the world. The micro:bit was designed as an easy way
to teach kids programming skills. One of its great advantages is that
you don’t need anything more than a USB cable and a computer to
start using it. Also, once programmed, it can be disconnected from a
power source and run on batteries.

The micro:bit has a small LED display as well as sensors for light,
movement, and magnetic fields, so it has everything you need to make
interesting projects. When you’re ready, you can easily connect things
like motors, sensors, and loudspeakers using alligator clips—there’s
no need for soldering. In other words, your micro:bit can be the brain
for lots of projects and inventions.



ABOUT THIS BOOK
In these pages, you’ll find a variety of experiments and projects. The
experiments show you how things work, and then in the projects,
you’ll use that knowledge to make something funky.

The book is divided into 10 chapters. Chapter 1 tells you all you
need to know about connecting and using your micro:bit. You’ll use
this information in all the experiments and projects in this book. Each
of the following chapters deals with a specific topic, such as light,
sound, and movement. There are lots of fun and useful things you can
do with your micro:bit!

Experiments



Here’s a list of the experiments in the book:

Generating sounds Learn to make your micro:bit play musical
notes and other sounds.

It speaks! Teach your micro:bit to speak!

Sensing light Use the built-in light detector.

Measuring magnetic fields Use the built-in magnometer to sense
magnets.

Gestures Use the micro:bit’s gesture recognition software to have
the device do different things when you shake, drop, or throw it.

Real-time acceleration plotting Learn about Mu’s data
visualization feature.

Logging acceleration to a file Record the data detected by the
micro:bit so you can look at it later.

Making a servomotor move Experiment with motors!

Keeping time Learn how the micro:bit tells time.

How fast are your nerves? Test your reaction time.

Measuring temperature Use the micro:bit temperature sensor to
build a thermometer.

Finding the radio range Learn how to use the micro:bit for radio
communication.

Projects
Here’s a list of the projects in this book:

Musical doorbell Plays a tune of your choice when pressed

Shout-o-meter Detects a sound and shows how loud it is

Automatic night-light Turns on by itself when the room gets



dark

Light guitar Makes music when you wave your hands over the
micro:bit’s LEDs

Infinity mirror Creates the illusion of infinite depth using light

Compass A real working compass!

Magnetic door alarm Goes off when you open a door, separating
a magnet from the micro:bit

Toothbrushing monitor Measures your brushstrokes to make
sure you’re keeping your pearly whites in good order

Acceleration display A meter that shows how quickly the
micro:bit is accelerating

Animatronic head A robotic head that has moving eyes and a
talking mouth

Robot rover A two-wheeled micro:bit robot!

Binary clock Tells time using LEDs

Talking clock Announces the time every hour and whenever you
press a button

Lie detector Measures electrical currents in the skin to tell
whether someone is lying

Temperature and light logger Automatically keeps a record of
light and temperature levels

Automatic plant waterer Waters your plants whenever it senses
that the soil is too dry (Never again kill a plant!)

Wireless doorbell A wireless upgrade to the doorbell project that
uses radio waves

Micro:bit-controlled rover A wireless version of the roving



robot that receives your instructions via radio

CODE AND RESOURCES
The two most popular computer languages for programming the
micro:bit are Makecode Blocks (referred to as just Blocks in this
book) and the MicroPython programming language.

Wherever possible, I’ve provided programs for the projects and
experiments in both Blocks and MicroPython. This means you don’t
have to type in the code yourself—unless you want to.

You can find all the code for the activities in this book at the
companion GitHub page: https://github.com/simonmonk/mbms/. I
provide full instructions for accessing and using the code in Chapter 1.

https://github.com/simonmonk/mbms/


1
GETTING STARTED

This chapter will get you started with your BBC micro:bit. It will also
set the stage for the experiments and projects you’ll find in the
following chapters. I’ll give our Mad Scientist (that’s you!) some
ideas about what to do with your micro:bit, and I’ll help you start
programming your micro:bit. You’ll learn how to use Blocks code and
MicroPython.

Mad Scientists are generally too busy and distracted to type in
huge amounts of code, so all the code used in this book is available to
download. This chapter explains how to get and use the code.

A TOUR OF THE MICRO:BIT
Let’s take a quick look at the micro:bit and what’s on it.



The Top
Figure 1-1 shows the top of a micro:bit.

Figure 1-1: The micro:bit

At the top of the board is a micro USB socket, which you’ll use to
connect the micro:bit to a computer. You’ll write programs for your
micro:bit on a computer, so you’ll have to transfer the programs to the



micro:bit using a USB connection. The USB socket can also power up
the micro:bit.

On the left and right are two buttons labeled A and B, respectively.
We can program these buttons to trigger some action, like flashing an
image on the LEDs or making a doorbell sound.

Between the two buttons is a grid of 25 LEDs arranged as 5 rows
and 5 columns. This is the micro:bit’s display. Even though it has only
25 LEDs, this display can show scrolling text messages, small images,
patterns—a whole load of things!

At the bottom edge of the micro:bit is a gold-plated (yes, real
gold!) strip called the edge connector. This strip has five holes labeled
0, 1, 2, 3V, and GND. These large connectors allow you to connect
things to the micro:bit using alligator clips. For example, you might
connect a speaker to get the micro:bit to make sound or a motor to get
it to move. The much smaller connectors, the slits between the holes,
can be used only with a special adapter. In this book, we’ll use the
large connectors for everything except the two robot projects, which
require an adapter to connect to a motor controller.



The Bottom
Now let’s turn the micro:bit over and see what we have on the
underside (Figure 1-2).



Figure 1-2: The micro:bit’s underside, version 1.3B (left) and 1.5 (right)

At the time of writing, there are two versions of the micro:bit in
circulation. Both work in the same way, and it doesn’t matter which
version you have for this book. The latest version (1.5) just has a
slightly simplified design. You can see the difference in the bottom
left of the boards shown in Figure 1-2.

The leftmost connector is the micro USB connector. Immediately
to the right of that is a push switch. This is the micro:bit’s reset
button. Pressing this button will cause the micro:bit to restart whatever
program is installed on it. To the right of the reset button is the battery



connector, which allows you to connect a 3V battery pack to your
micro:bit.

Now we’ll take a closer look at each section, starting with how to
power your micro:bit.

Power and the Micro:bit
You can power the micro:bit through the USB connector or with
batteries, depending what you want to do with it.

Using USB
The USB connection will provide the micro:bit with 5V (5 volts) of
power when you plug it into your computer. However, the micro:bit
needs only 3.3V, not 5V, and too much voltage would damage the
micro:bit. Therefore, it has a USB interface chip that converts this 5V
to the 3.3V that the micro:bit expects.

When the micro:bit is plugged in via USB, you can use the 3V
connector on the edge connector to provide power to low-current
electronic devices, like external LEDs or speakers designed to work
with the micro:bit.

NOTE The reason this connection is labeled 3V rather than 3.3V is partly that there
isn’t much space for another number but also that protection circuitry reduces the
3.3V to a voltage close to 3V.

The connection labeled GND is the ground or 0V power
connection. When you power your micro:bit, current flows out of the
3V connection, and it needs to return to the micro:bit in order to
complete the circuit—the GND connection is where the current
returns.



Using Batteries
Once you’ve programmed your micro:bit, you may want to move it
away from your computer, in which case you’ll need batteries. You
can use a AAA battery pack, like the one shown in Figure 1-3. Simply
plug the ends of the battery pack wires into the 3V socket on the
underside of the micro:bit.

Figure 1-3: Battery packs for the micro:bit

The appendix lists some places you can buy these battery packs. A
built-in switch is useful because you can power the micro:bit down
without unplugging the battery pack, a task that can be a bit tricky.

Don’t use rechargeable AAA batteries because their voltage is
generally too low to power a micro:bit. These batteries can also allow
dangerously high currents if the flow of electricity is accidentally



short-circuited. If you want to use rechargeable batteries, one option is
a USB battery backup like the one shown on the left of Figure 1-4.

Figure 1-4: Using rechargeable batteries with the micro:bit

These rechargeable batteries allow you to power your micro:bit
through its USB port. The lower-capacity, cheaper backup batteries
are often more suitable to power a micro:bit than are the more
expensive versions. The micro:bit uses so little current that these more
advanced units, which tend to turn off if they think the battery hasn’t
been used in a while, can be fooled into thinking nothing is connected.

The item on the right of Figure 1-4 is the Monk Makes Charger for
micro:bit. This uses a lithium polymer (LiPo) battery that
automatically recharges whenever you connect the charger to your
computer with a USB cable. When you want to run the micro:bit on
batteries, you just unplug the USB cable to the charger.



You can find out more about the options for powering your
micro:bit in the appendix.

WARNING The earliest versions of the micro:bit were susceptible to damage when
used with USB batteries and power supplies. If you have any board other than a
V1.3B or V1.5, you should avoid using any power supply except your computer USB
port or a 3V battery pack.

The early micro:bits don’t have a version number on them. Flip your micro:bit over
and look at the bottom right corner on the underside near connector 0. If it says
V1.3B or V1.5, then using USB battery packs and power supplies will be fine. If you
don’t see a version identifier here, don’t use these power supplies.

In either case, steer away from power supplies and USB batteries described as
high power.

You can read the micro:bit Foundation’s full safety advice at
https://microbit.org/guide/safety-advice/.

Connecting Electronics with Input/Output Pins
One especially fun thing about the micro:bit is that you can use the
connections to attach electronic gadgetry of your own creation. In this
book, you’ll build projects that use these connectors to control motors,
lights, and a loudspeaker. You’ll also use them as inputs to gather data
from sensors that measure light, sound, and temperature.

The 3V and GND connections are there to supply power. The
connections labeled 0, 1, and 2 are usually referred to as input/output
pins, and you’ll be attaching electronics to these.

NOTE You might wonder why we call them pins when they look nothing like pins.
The term pin comes from the chip on the circuit board that the micro:bit connects to.
The chip does have a pin—a tiny leg-like connection—for each of these three pins.

The pins 0, 1, and 2 can be used for:

  Digital output—turning an external LED on and off, for example

https://microbit.org/guide/safety-advice/


  Analog output—controlling the brightness of an LED, for example

  Pulse generation—to control a servo motor, for example

  Digital input—to detect when an external button has been pressed,
for example

  Analog input—to measure temperature using an analog temperature
sensor, for example

  Touch input—to detect that you have touched the pin or a wire
connected to a pin

Digital and Analog Inputs
When you use a pin as a digital output, you can write commands in
your programs to turn the output on (set it to 3V) or turn it off (set it to
0V), but only on or off—nothing in between. This is also the case with
digital inputs: they can only ever be on or off. When your program
code reads a digital input, if the voltage at the input is nearer 3V than
0V, then the input counts as being on; otherwise, it’s off.

Analog inputs, however, can be somewhere between on and off.
Analog inputs on a micro:bit can be any value between 0 and 1,023,
depending on the voltage at the pin.

Making an Analog Signal: Pulse Width
Modulation
A micro:bit, like all other electronics, can work only with digital on or
off signals. To get analog signals between 0 and 3V, electronic
devices simulate the analog signal by providing a rapid series of
digital pulses. The longer the pulse, the more power is delivered to
whatever is connected to the analog output. This is known as pulse



width modulation, or PWM. Figure 1-5 shows PWM in action.

Figure 1-5: Analog outputs on the micro:bit delivering different amounts of power

If the output is connected to an LED and the pulse is at 3V only 5



percent of the time, the LED will appear to glow dimly. In contrast, if
the pulse is at 3V for 90 percent of the time, the LED will appear to be
at almost full brightness.

Interestingly, in both cases, the LED would actually be flashing at
50 times a second, but the human eye can’t see a light flash that
quickly. Instead, we just register a relatively dim or bright light.

If the three pins 0, 1, and 2 are not enough for your project, you
can use an adapter to access the many pins between the three
numbered ones.

Built-In Peripherals
The writing on the underside of the micro:bit gives us some clues
about other things the micro:bit can do. Two areas at the bottom left
are labeled compass and accelerometer.

The compass is actually a magnetometer, meaning it measures the
strength of magnetic fields. You can use it as a compass, but you can
also use it to detect the presence of magnets.

The accelerometer measures forces acting on the accelerometer
chip. Because gravity is a constant force pulling down on everything,
you can, by measuring the forces acting in different directions, use the
accelerometer to detect when the micro:bit is being tilted and by how
much, as well as when it is being shaken or in free fall.

Also on the underside, you will see the words BLE Antenna. The
micro:bit includes BLE (Bluetooth Low Energy) hardware that allows
your micro:bit to communicate wirelessly with other micro:bits or
Bluetooth-enabled phones.

Note that the technology for micro:bit-to-micro:bit communication
is not actually Bluetooth; it just uses the same frequency. Chapter 10



is devoted to this feature of the micro:bit.

HARDWARE ESSENTIALS
There are a few things you’ll need for nearly all the experiments and
projects in this book. They include:

Micro:bit

Micro USB cable To connect your micro:bit to a computer
(Make sure this is a standard micro USB data cable and not a
charging cable, which lacks the necessary connections for
communication. You can’t use a charging cable to load programs
onto the micro:bit.)

Alligator clip cables Ideally, these should be no longer than 4 to
5 inches to avoid getting tangled up.

3V AAA battery pack with two AAA batteries

USB power supply You’ll need this only for some projects. (See
earlier warning.)

Each project or experiment will have a list of all the items you
need, and the appendix at the end of the book gives more information
about how to acquire these supplies.

This book tries to keep project construction straightforward and,
apart from the roving robot in Chapter 6, no soldering is required. For
most projects, you just need alligator clip cables to connect things
together. When making connections using alligator clips, it’s best to
clip the cable in vertically so the teeth of the clip look like Figure 1-6,
as this makes it much less likely that the cables will come loose.



Figure 1-6: Securely attaching alligator clips

PROGRAMMING THE MICRO:BIT
Mad Scientists aren’t known for their patience, so let’s make our
micro:bit do something. First, we’ll program our micro:bit.

One of the nice things about a micro:bit is that to get started with
it, you just need a USB cable and a computer with a browser and
internet connection. You can use a computer running on Windows,
macOS, or Linux. As long as your device has a modern browser, such
as Chrome, it will work fine.

We’ll first connect up the micro:bit. Then we’ll make a small
program using two methods: the drag-and-drop Blocks code and
MicroPython, which you need to type out.

Connecting your Micro:bit



Start by connecting your micro:bit to your computer with a micro
USB cable. Nearly all micro USB cables will work fine, but remember
that charging-only cables don’t have the necessary data connections
and won’t work. If you have trouble programming your micro:bit
using the following instructions, try using a different USB cable.

Once you connect your micro:bit, your operating system should
react as if you’d just plugged in a USB flash drive. To transfer a
program onto the micro:bit, find the micro:bit in your filesystem just
like you’d find a flash drive or some other plug-in. Then copy a file
called a hex file into the micro:bit folder icon, and, hey presto!, your
program will be installed. Loading a program onto your micro:bit is
also known as flashing.

Let’s make a hex file and flash it to our micro:bit.

Programming with Blocks: Hello World
You can build programs for the micro:bit through the micro:bit
website without downloading any software. We’ll make a program
that scrolls some text across the LED display on the micro:bit. Open
your browser and navigate to https://makecode.microbit.org, and you
should see a window something like Figure 1-7.

https://makecode.microbit.org


Figure 1-7: The https://makecode.microbit.org web page

This is the editor that you build programs in. On the left is an
image of a micro:bit that works like a virtual micro:bit, running
whatever programs you write.

The section in the middle is a list of categories such as Basic,
Input, and Music. Within each of these categories, you’ll find blocks
that you can drag onto the working area on the right. Each block is an
instruction for your micro:bit. By dragging these blocks around and
connecting them, you’ll write code using the Blocks language.

You’ll notice that when you open the editor, there are already two
blocks in the editing section: on start and forever. Any blocks inside the
on start block will run once when the micro:bit first powers up, when a

https://makecode.microbit.org


new program is uploaded, or when the micro:bit resets because you
pressed the reset button. Whatever blocks are inside the forever block
will run over and over again, until you stop the program.

For our first program, we don’t need the forever block, so select it
and press DELETE to remove it from your program. Next, you need to
add a show string block to your program—string is programming speak
for text. To do this, click the Basic category, drag the show string block
into the programming area, and place it inside the on start block, as
shown in Figure 1-8. If you have sound on your computer, you will
hear a satisfying click as the blocks snap together.

Now click inside the text bubble and type Hello World. You can
also type different text—whatever you want to see displayed.

Figure 1-8: Blocks code for displaying Hello World

As soon as you drag the show string block into place, the virtual
micro:bit on the left of the display should scroll your message across
its display to show you what your program does.

Now let’s transfer your program to the real micro:bit. Connect your
micro:bit using a USB cable and click Download at the bottom left of
the web page.



This will download the file from the editor in the same way as any
other file that you might download from the internet. Where the file is
saved will depend on your operating system and browser, but usually
it’s in a folder called Downloads. Find this folder, click into it, and
you should find a file called microbit.hex. Using the File Manager (or
Finder on a Mac) select this file and drag it onto the micro:bit where it
appears in your filesystem (Figure 1-9).



Figure 1-9: Dragging a file onto your micro:bit

As soon as you release your mouse button, the file should start
installing itself onto the micro:bit. You’ll know this is happening
because the LED on the back of the micro:bit will start blinking.
When the blinking ends, the micro:bit will reset itself and run the
program, scrolling the text across its display. If you miss seeing the
message, press the reset button on the back of the micro:bit to see it
again.

DOWNLOADING DIRECTLY TO YOUR MICRO:BIT

Most browsers have an option to choose where a file is saved each time you download
one. You can use this feature to download files directly onto your micro:bit. Then you
don’t have to first download and then copy the file.



To set this up in the Chrome browser, go to chrome://settings/, click Advanced,
scroll down to the Downloads, and enable the option Ask where to save each file
before downloading. That way, next time you click Download in the editor, you’ll be
prompted for a location to save your file to and can select the micro:bit folder as the
destination.

At the time of writing, flashing programs onto your micro:bit is about to get a whole
lot easier for users of the Chrome browser. You can read about this feature here:
https://support.microbit.org/support/solutions/articles/19000084059-beta-testing-web-
usb.

Adding Graphics
To display our message, we added a show string block to the on start

block. The on start block is a special type of block called an event block
that runs the code connected to it whenever a particular event happens.
In this case, the event is the start of the program.

Let’s make our program a bit more complicated by adding a new
event that will detect when button A is pressed. To do this, click the
Input category and drag an on button A pressed block into the program
area. Next, drag a show leds block from the Basic category into the on

button A pressed block. The squares in the show leds block represent each
LED in the LED display. You can select which LEDs should light up
by clicking them so they turn white. The result should look something
like Figure 1-10.

https://support.microbit.org/support/solutions/articles/19000084059-beta-testing-web-usb


Figure 1-10: Adding an LED pattern to the program

The show icon block has a number of ready-made LED images if
you want to choose one of those. Click Download again and copy the
new hex file onto your micro:bit. Once the new program has been
uploaded, you can test it by pressing button A. When you do so, the
selected LEDs in the show leds block should light up on your micro:bit,
as in Figure 1-11.



Figure 1-11: Displaying an LED pattern on an actual micro:bit

Saving and Sharing
The https://makecode.microbit.org website remembers all your
projects. Give your project a name by entering the name in the Save
area next to the Download button, and your project will be saved.
Whenever you change your program, it should automatically save, but
to make sure, you can save manually by clicking the floppy-disk Save
icon. Note that when you click Save, the hex file will also be
downloaded, but you can just click Cancel if you’re not ready to flash

https://makecode.microbit.org


the program onto your micro:bit.

Note that your stored programs are actually kept in your browser
cache, so if you delete your cache, you will lose your programs.

To switch between programs and start new ones, click Home at the
top of the page.

To publish a program so others can see it, click Share next to
Projects. This will ask you to confirm that you wish to publish your
project. Click Share again, and you’ll see a link like the one in Figure
1-12.

Figure 1-12: Sharing a project

You can give that URL to anyone, and when they put it in their
browser, they’ll get a copy of your program to use. Note that because
this is just a copy of your program, there’s no risk that they’ll spoil
your original copy of the code.

Finding Blocks
The show string and show leds blocks we’ve used so far were pretty easy
to find, but the Blocks editor contains a lot of blocks, and it keeps the
ones you don’t use as often hidden. This way, you don’t see a



confusing array of choices when you start out on your micro:bit
adventure.

These blocks are hidden in two ways. First, you may have noticed
that when you select one of the block categories, such as Basic, an
item labeled . . . more appears (see Figure 1-13).

Figure 1-13: Extra blocks in the more section

In the case of the Basic category, the more section contains blocks
such as clear screen and show arrow. If you click through the other
categories, you’ll see that they all have a more section, some with
quite a few extra blocks.

Incidentally, hovering your mouse over a block will open a little
information box telling you what the block does. Investing a little time
in getting familiar with the various blocks will give you exciting ideas
about what you can to do with your micro:bit.

The second place to find hidden blocks is in the Advanced
category, just after Math (Figure 1-14). Selecting this category will
reveal a host of other categories containing more advanced features of
the Blocks language, starting with Functions. Again, spend a little



time familiarizing yourself with the blocks. Don’t worry if it’s not
obvious what some of them do. If you’re interested in a block that
does a particular thing, you may find the search field useful for
finding the block you want.

Figure 1-14: The Advanced blocks category

The categories in the Advanced section that you’ll use frequently
are Text and Pins. In some chapters, you’ll also be using Functions
and Arrays.

Programming with MicroPython: Hello World
Blocks code is great for getting started with programming, because
you can accomplish some really impressive things with just a few



blocks. However, many people prefer writing a program in text rather
than dragging blocks around. Typing lines of text is also more like
regular programming.

MicroPython is an implementation of the Python 3 programming
language that includes everything you need to program your micro:bit
with Python. In fact, many of the blocks in Blocks code have direct
equivalents in MicroPython, so switching from programming in
Blocks to MicroPython is fairly straightforward. Python is a popular
first programming language and is often taught in schools for that
reason.

Downloading the MicroPython Editor
We’ll use the Mu editor app (https://codewith.mu), which has lots of
features. It can be downloaded straight onto your computer. Mu also
lets you flash your program directly to a micro:bit without having to
drag the hex file around. The nice thing about Mu is that you don’t
need internet access to flash the program once Mu has been
downloaded.

Download Mu from https://codewith.mu/#download. There are
several versions of Mu, so it’s important that you get the right one for
your computer. The download page will offer you different versions
for different operating systems. If you’re a Windows user, download
the version under Windows Installer that’s labeled 64-bit (Figure 1-
15). If you’re a macOS user, there’s just one version.

https://codewith.mu
https://codewith.mu/#download


Figure 1-15: Downloading Mu

Run the installer and accept the license agreement and all the
default options.

The first time you run Mu, it will offer you a choice of modes.
Make sure to select the BBC micro:bit mode (Figure 1-16).



Figure 1-16: Selecting the right version of Mu

Mu will present you with a blank editor window where you’ll type
your first program.

Writing the Program
Let’s give Mu a go! Add the following code in the Mu window:

from microbit import *

display.scroll("Hello World")

It should look something like Figure 1-17.



Figure 1-17: Writing a MicroPython program in Mu

Save the program by clicking Save at the top of the Mu window.
You’ll be prompted to enter a name for your program: call it hello.py.

Now, with your micro:bit connected to your computer, click Flash
at the top of the Mu window. This should start the process of loading
the hex file to the micro:bit, just as though you were dragging over a
file produced by the Blocks editor. Once the flashing is complete, the
Hello World message should scroll across the display.

Let’s take a closer look at the code. Here’s the first line:

from microbit import *



You’ll find this line at the start of pretty much every MicroPython
micro:bit program, because this is what tells MicroPython to include
all the built-in code that makes it compatible with the micro:bit’s
display and other hardware. This code isn’t automatically included
because MicroPython can be used on a lot of different boards, not just
the micro:bit. The line actually means: from the microbit library,
import everything (* means everything). You could also enter import

microbit, but then you’d have to prefix everything with microbit, which
is a lot of extra typing.

The only other line of code in our minimal program displays a
message on the display:

display.scroll("Hello World")

This line uses the command display.scroll, which tells the micro:bit
to scroll something across its display. Then you add a set of
parentheses, inside of which we have some text enclosed in quotation
marks. You use parentheses to add extra information to a command.
In this case, the extra information (also called an argument) is the text
you want to display. You also have to enclose the text in double
quotes to show that the program should treat it as text, not as more
programming commands.

If, when you flash the program onto a micro:bit, you see something
other than Hello World (or nothing at all), you probably have an error
in your code. When using a text-based programming language, you
have to be precise in what you type. For example, misspelling a word
such as display or scroll will cause an error when you run the program.
Errors in programming are called bugs. Bugs only show up when the
program tries to run on the micro:bit. If you get any bugs, you can
carefully compare the code you wrote to the code in the book to make



sure it all matches. But there’s another way to find and fix bugs—you
can use the REPL.

The REPL
The REPL (Read-Eval-Print-Loop) is a command line interface to
MicroPython on the micro:bit—that is, it’s an area that lets you send
Python commands directly to the micro:bit, without having to put
them into a program first. If you entered the line 1 + 2 here, the REPL
would respond with 3. Similarly, if MicroPython encounters a
problem when it tries to run, it can report this problem to you in the
REPL without you having to wait for the micro:bit to try to display
something.

To experiment with the REPL, let’s deliberately introduce an error
into our program by misspelling scroll so that it only has one l. Delete
an l and click Flash again. The program will upload despite being
faulty, but this time, the micro:bit display will say: AttributeError:

'MicroBitDisplay' object has no attribute 'scrol'. It takes a long time to scroll
out this message, so to get a clearer view of it, click the REPL button
at the top of the Mu window and then click the reset button on the
back of your micro:bit. You should then see the error message in full
in the REPL (bottom of Figure 1-18).



Figure 1-18: Catching errors using the REPL in Mu

The >>> prompt in the REPL indicates that you can type Python
commands here to run immediately on the micro:bit. Try typing the
following after the >>> prompt and hitting ENTER at the end of the line
(this time spell scroll correctly):

display.scroll("The REPL is useful")

Your micro:bit’s display should immediately scroll out the
message, without your needing to upload a program. You don’t need
to repeat the import command, because MicroPython has already



executed import—it did so before it encountered the misspelled scroll.

NOTE When you were typing in your Hello World program, you may have noticed Mu
trying to help by guessing what you were typing. For example, if you type display and
then pause, a list of options (clear, get_pixel, is_on, off, on, scroll, set_pixel, and show)
will appear. You can click on the one you want to save yourself some typing.

Adding Graphics
Let’s now add some graphics to the program, just like we did with the
Blocks code. We again need to detect when button A has been pressed
and then display the graphics pattern. This is a little trickier in
MicroPython because this language doesn’t have the same concept of
events that you find in the Blocks code. Instead, we have to write a
loop that repeats the commands contained within it until told to stop.
In our program, these commands will check for a button press and, if
that event has happened, perform the necessary action. In other words,
rather than being told that button A has been pressed, the program has
to keep checking whether it’s been pressed. Here is the code:

from microbit import *

display.scroll("Hello World")

while True:
    if button_a.was_pressed():
        display.show(Image.CHESSBOARD)

The while True line of code marks the start of the loop that will
continue until something stops it, like you unplugging your micro:bit
or pressing the reset button or CTRL-C at the REPL. Whenever you
make a loop, make sure to indent any lines of code that should run in
that loop. Luckily, Mu recognizes when you have started a loop and
helpfully indents the next line for you.



The first line within the loop is an if statement. This uses the
button_a.was_pressed function to check whether the button has been
pressed since last time was_pressed was used. If it has, then the lines
indented below the if statement will be run. You’ll notice that the next
line is indented even more, which means this line should only run if
the if line is true (so if the button was indeed pressed). In this case, this
line of code tells the display to show a ready-made graphic that
belongs to the Image library. I’ve chosen the CHESSBOARD image.
We’ll talk about if commands more later in “if Blocks” on page 29.

In Python, indentation is very important, and remembering to
indent can be a big cause of frustration when first learning the
language. Lines that are indented within, for example, a while or an if
command must be indented by exactly the same amount. In Mu, this is
four spaces. As you practice coding in Python, knowing when to
indent will become easier and easier.

PROGRAMMING CONCEPTS
Here we’ll go over some key ideas in programming that are worth
understanding, particularly when you want to modify some project
code or start making your own projects. These ideas are the same
whether you’re using the Blocks editor or MicroPython, so we’ll
cover how to execute each concept both ways, first in Blocks code and
then in the MicroPython equivalent.

Variables
A variable is a name associated with a value or multiple values. When
you want to use the value, you can call the name in your code. Let’s
illustrate this idea with some examples.



The Blocks Code
One of the main categories in the Blocks editor is Variables. Start a
new project by clicking New Project from the Blocks editor’s home
page. Delete the forever block (we don’t need it) and then from the
Variable category, click Make a Variable.... When prompted for a
new variable name, enter counter. Drag the set counter to 0 block into the
programming area and click it onto the on start block.

Next, from the Input category, add an on button A pressed block.
Inside this block, add a change counter by 1 block from the Variables
category and then a show number block from the Basic category.
Finally, from the Variables category, drag out a counter block and click
it into the 0 in the show number block to replace the 0.

Once you’ve done this programming, your code should look like
the following.



You can try out this program in the virtual micro:bit on the left of
the editor by clicking button A. You should see the number displayed
increase by 1.

Let’s have a look at what’s going on here. In the on start block, you
make a variable called counter and give it an initial value of 0. When
the on button A pressed block is activated, the change block changes the
value of the counter variable by adding 1 and then shows the value of
the counter variable on the display.

In this case, our counter variable contains a number, but we can also
set variables to hold text and even collections of data.

The MicroPython Code
The MicroPython version of the program we just wrote looks like this:



from microbit import *

counter = 0

while True:
    if button_a.was_pressed():
        counter += 1
        display.scroll(str(counter))

We import the usual micro:bit library, and then make a counter

variable and give it an initial value of 0. We make a while loop that
ensures that if button A is pressed, 1 is added to counter. To add 1, we
use +=, which is equivalent to the change counter block.

When we want to display the new value, we have to convert the
numeric value into a text string with str(counter), because the display

command works only with strings.

Note that it’s perfectly okay to use one command inside another.
So here, we use the str command inside the display.scroll command by
putting it inside parentheses. When you do this, the innermost
command (str in this case) is run first and supplies a value to the next
command (in this case display.scroll).

Arithmetic
In the previous example, you saw how we could add a number to a
variable. As well as addition, we can use all the usual arithmetic
options in programs, including subtraction, multiplication, and
division.

The Blocks Code
Say we wanted to keep doubling a number instead of counting by
ones. We could alter the previous program so that the starting number
for counter is 1 and the on button A pressed block multiplies counter by 2,



as shown here.

Now, instead of using a change counter by 1 block, we use a set counter

to block and, inside that, use a multiply block (×). In the first part of
the multiply block, we place the variable counter, and in the second
part, we put the number 2. Now every time button A is pressed, counter

is given the value of 2 times its old value.

When we use blocks, math like this rapidly becomes quite
complicated, as we need to nest blocks inside of blocks inside of other
blocks. If we have a program that needs to do a lot of arithmetic, it
may be better to code the project using MicroPython.

The MicroPython Code



In MicroPython, we use arithmetic symbols such as +, -, * (multiply
by), and / (divide). You can also use brackets to change the order of
the math operations, as you do in math class. Here’s how we would
rewrite the doubling Blocks program we just made:

from microbit import *

counter = 1

while True:
    if button_a.was_pressed():
        counter = counter * 2
        display.scroll(str(counter))

The key line here is counter = counter * 2. The = symbol after the
variable name means that whatever follows the equal sign will be
assigned to the variable as its new value. In this case, that’s counter * 2

(counter times 2). You could also use the shorthand form counter *= 2,
just as we did earlier when doing addition.

if Blocks
Programs can be thought of as a series of steps that the micro:bit will
carry out. Sometimes you’ll need your program to make decisions and
execute particular steps based on those decisions. The blocks in the
Logic category allow your programs to make decisions.

We’ll make a variation of our counting-by-1 example that counts
up to 10 and then goes back to 0 to start the counting process over.

The Blocks Code
Try making the following Blocks program.



First, we add an if block after the change counter by 1 block. Onto the
if block, we drop a comparison block that compares the value of
counter to 10. If the counter value is greater than (>) 10, the program
runs the blocks inside the if block. In this case, the if block contains a
single block that sets counter back to 0. If counter is not greater than 10,
then it continues to show the number on the display.



There are other variants of the if block that let you carry out one
action if a condition is true and another action if the condition is false.
You’ll learn more about these in later chapters.

The MicroPython Code
We’ve already used if in MicroPython when we checked whether a
button had been pressed. Here, we’re not just using it to see whether a
condition is true or false. Instead, we’re comparing the variable counter

to the value 10. The MicroPython version of the Blocks code looks
like this:

from microbit import *

counter = 0

while True:
    if button_a.was_pressed():
        counter += 1
        if counter > 10:
            counter = 0
        display.scroll(str(counter))

Take a good look at the indentation of this program: we have an if
inside another if, which is itself inside a while. See if you can figure
out how this code works, using the explanation of the Blocks version
as a guide.

Strings
Remember that a string is a series of characters (numbers, letters, or
punctuation), often a word. You used a string in your very first Hello
World program in Figure 1-8 to display the message Hello World.

The Blocks Code



Most of the blocks for strings can be found in the Text category. The
simplest of these is a block with a pair of quotes and a gap where you
can add your own text to make a string. You can use this block to
assign a string, rather than a number, to a variable. Here we set the
message variable to a string. This program will display the string’s
length.

We use an on start block, inside which we set the value of the
variable message to some text. In the show number block, you can see a
length of block and, inside that, the message variable. The length of block
supplies the number of characters in the string message to show number,
which then scrolls that number across the display.

The Text category has other blocks that let you do things, like join
together two strings, chop out a section of a string, and convert a
string into a number.



The MicroPython Code
In MicroPython, string values are distinguished from other program
code by being enclosed in double quotes, just as in Blocks code. We
would write the previous Blocks program like this in MicroPython:

from microbit import *

message = "This text is in a variable."

while True:
    display.scroll(str(len(message)))

This works in the same way as the Blocks code. Notice that we use
the str command to convert the length of the string len into a string
itself so that it can be displayed.

Arrays and Lists
So far, we’ve used variables that contain just a single piece of data,
whether that’s a number or string. But sometimes you need to keep a
collection of values in a variable, often to access each value in turn,
like a sequence of notes that make up a tune (as you’ll see in Chapter
2).

In Blocks code, a collection of values is called an array, and in
MicroPython, it’s called a list. The idea is the same for both, however.

The Blocks Code
The Blocks editor has an Array category that contains array-related
blocks. The most important are set list to, set text list to, and get value at.
The first two allow you to create a list containing numbers or strings,
respectively, and get value at lets you access a particular element of an
array.



The following small program creates a variable called colors and
assigns it to an array of four strings. Then it picks a random item from
that array to display. Note that the array of block has + and - buttons
that allow you to adjust the number of items in the array when you
create it.

We add an on button A pressed block. Inside it, we add a show string

block, inside which we add a get value at block. We then add pick random

(found in the Math category) to choose any number from 0 to 3.
Altogether, this means that when button A is pressed, the pick random

block selects a random number between 0 and 3 and fetches the array
element at that position, and then the show string block displays that
element. Note that in both Blocks and MicroPython programming,
array numbering starts at 0 rather than 1, so if the number 0 is
randomly chosen, the first element of the array will be displayed.



The MicroPython Code
This is how you would write the previous Blocks program in
MicroPython:

from microbit import *
import random

numbers = ["orange", "yellow", "green", "blue"]

while True:
    if button_a.was_pressed():
        display.scroll(numbers[random.randint(0, 3)])

In MicroPython, we use square brackets, [ and ], to enclose the
elements of a list, and we separate the list elements with commas. We
also use square brackets to access a particular element of a list using
its position. In this case, the random.randint command, which returns a
number between 0 and 3, is enclosed within the square brackets.

Programming Wrap-Up
This has been a very quick introduction to programming the micro:bit.
All the code for this book is available for download, so you don’t have
to master programming before you start doing experiments and
making projects. As you progress through this book, you’ll be
introduced to new blocks and MicroPython language features, which
I’ll explain as they come up.

For more information on MicroPython for the micro:bit, see
https://microbit-micropython.readthedocs.io. If you’re new to Python,
you might find my book Programming micro:bit: Getting Started with
MicroPython (McGraw-Hill, 2018) a useful accompaniment to this
book.

https://microbit-micropython.readthedocs.io


DOWNLOADING THE CODE
Some of the programs in this book are long and complex, and typing
them out might not be something that a Mad Scientist such as yourself
is eager to do. If you don’t want to make the programs yourself, you
can just download them and flash them to your micro:bit.

Downloading the Blocks Code
All the Blocks code is published on GitHub at
https://github.com/simonmonk/mbms/. When you click a link for the
Blocks code, the project will open in your browser.

Scroll down the GitHub page until you will see something like
Figure 1-19. You’re looking for a list of links to all the Blocks code
programs.

https://github.com/simonmonk/mbms/


Figure 1-19: Links to the Blocks code for all the programs in this book

To open one of the programs, just click the link. For example,
Figure 1-20 shows the result of clicking the link for the musical
doorbell project.



Figure 1-20: Following a link to the Blocks code for the musical doorbell project

You’ll notice that Figure 1-20 does not look like the normal Blocks
editor window. That’s because you’re to just view the code here and



flash it onto your micro:bit to use. If you want to edit the code, or just
see the code in its more familiar editor, click the Edit button at the top
right. This will make a copy of the original program for you, and then
you’ll be able to edit this copy.

Downloading the MicroPython Code
You can download the MicroPython programs from
https://github.com/simonmonk/mbms/.

If you’re used to using the Git software, you can clone the entire
project onto your computer. For non-Git-experts, here’s a step-by-step
guide for getting all the code.

1. Visit https://github.com/simonmonk/mbms/ and then click the green Clone
or download button and select Download ZIP, as shown in Figure 1-21.

https://github.com/simonmonk/mbms/
https://github.com/simonmonk/mbms/


Figure 1-21: Downloading the code for this book

2. Find the ZIP file you just downloaded (mbms-master.zip) in your
downloads folder and extract all the files from it.

The process of extracting the files will vary, depending on whether you
use Windows, macOS, or Linux. On macOS and most Linux distributions,
a ZIP file will automatically extract when you open it. If you’re a
Windows user, be aware that while Windows will let you look inside the
ZIP file without extracting it into separate files, you won’t be able to use
the files unless you extract them. To extract the files in Windows, right-
click the archive file in File Explorer and select the option Extract All
(Figure 1-22).



Figure 1-22: Extracting the ZIP archive file in Windows

The extracted files will be contained in a directory called mbms-
master. Within this directory, you’ll find another directory called python,
and within this, you’ll find all the MicroPython programs for the book as
separate files, each with the file extension .py.

3. Unfortunately, you can’t just double-click a program to open it in Mu. To



open a program, first open Mu and go to Load. Then find the MicroPython
program you want to open. As a shortcut, I suggest you move all the
MicroPython programs from the python folder that you just downloaded
into the folder where Mu normally expects to find its programs. By
default, this is a directory within your home directory called mu_code.
Now when you click the Load button in Mu, you’ll see all the
MicroPython programs straight away.

SUMMARY
Now that we’ve looked at some of the basics of the micro:bit, it’s time
to get started with some proper Mad Scientist experimentation and
project work. We’ll begin with making and detecting sounds using a
micro:bit.



2
SUPER SONIC

In this chapter, we’ll explore using sound with the micro:bit. We’ll
teach the micro:bit to play music and even imitate speech, and we’ll
get it to hear sound by connecting it to a microphone. You’ll try out a
couple of experiments and create two simple projects: the first project
is a musical doorbell that lets the Mad Scientist know when visitors
have arrived, and the second is a Shout-o-meter that measures and
displays the volume of sounds it detects.

CONNECTING A LOUDSPEAKER TO A
MICRO:BIT
There are a couple of ways to hear sound from your micro:bit. Which
one you should choose depends on how much sound you want to



make.

The Quiet Method: Headphones
Perhaps the easiest way to get sound from your micro:bit is to use
alligator clip cables to connect the micro:bit to a pair of headphones
(see Figure 2-1).

Figure 2-1: Alligator clips attached to headphones

If you look closely at the metal plug on the headphones, you
should see that it is really made of three pieces separated by rings of
plastic. This means the plug has three connections. The section closest
to the headphones’ wire is the ground connection. Connect this to the



micro:bit’s GND (0V) connection with an alligator clip.

The other two connectors are the audio signals for your left and
right ears. If you want to hear sound in both ears, place the alligator
clip so that it spans both of the two connectors on the end. You can
also attach the alligator clip to the very tip for sound in just one ear (as
shown in Figure 2-1). Either way, clip the other end of the alligator
clip to any of the three micro:bit pins: 0, 1, or 2. Micro:bit users
traditionally use pin 0 for audio.

NOTE Headphones designed for use with a cellphone that include a microphone will
have four connectors on the plug rather than three. This shouldn’t make a difference.
You can still use the tip as the audio connection and the connector closest to the
plug body as the GND connection.

To upgrade this method slightly, you can use an audio jack adapter
like the one shown in Figure 2-2. Just plug your headphones straight



into the adapter, with the black wire connected to GND and the other
to pin 0. Adapters like this fit directly onto the headphones and
provide a more reliable connection than alligator clips.

Figure 2-2: An adapter to connect an alligator clip to a 3.5 mm audio jack

The Ghetto Blaster Method: Speaker
With an amplified speaker such as the one shown in Figure 2-3, you
can produce a lot more sound using the same connection methods
described earlier: either connecting directly to the speaker plug or
using an audio jack adapter.



Figure 2-3: Connecting a micro:bit to an amplified speaker

Some speakers are designed especially for use with micro:bits. Some
of these have cables that end in alligator clips to attach to your
micro:bit, while others, like the Monk Makes Speaker for micro:bit
shown in Figure 2-4, end in pins similar to the micro:bit’s, making it
easy to connect the two with alligator clip cables.



Figure 2-4: The Monk Makes Speaker for micro:bit

Amplified speakers need a power source. In some cases, the
amplified speaker may have its own batteries or USB cable.
Otherwise, the micro:bit itself could power the speaker, in which case
the devices will have to connect in three places: to GND (0V) and 3V
on the micro:bit in order to power the speaker and to pin 0 (or one of
the other pins) for the audio signal coming from the micro:bit.

Whatever you’re using for audio output, let’s test it out!

EXPERIMENT 1: GENERATING SOUNDS



In this experiment, you’ll learn how to generate sounds using your
micro:bit and a loudspeaker or headphones.

What You’ll Need
To carry out this experiment, you just need:

Micro:bit

Speaker or headphones

Alligator clip cables

You can find sources for these in the appendix.

Here we’ll assume you’re using a Monk Makes Speaker for
micro:bit and a set of alligator clips, but any of the speaker connection
methods listed earlier will work.

Construction

1. Connect the speaker using one of the methods shown in Figures 2-1 to 2-
4. Then plug your micro:bit into your computer.

2. Go to https://github.com/simonmonk/mbms/ to access this book’s code
repository and click the link for Experiment 1: Generating Sounds.
Once the program has opened, click Download and then copy the hex file
onto your micro:bit. If you get stuck, head back to Chapter 1, where we
discuss the process of getting programs onto your micro:bit in full.

If you prefer to use Python, download the code from the same website.
For instructions for downloading and using the book’s examples, see
“Downloading the Code” on page 34. The Python file for this experiment
is Experiment_01.py.

3. Once you’ve successfully programmed the micro:bit, press button A. You
should hear a tone through your speaker or headphones!

https://github.com/simonmonk/mbms/


Code
You won’t need much code for this experiment. Whether you use
Blocks code or MicroPython, it’s just a matter of detecting button A
being pressed and then playing a -.

Blocks Code
The Blocks code for this experiment is shown here.

The code uses the on button A pressed block to run the play tone block
every time button A is pressed. You drop the play tone block into the on

button A pressed block so it clicks into place. Then from the drop-down
menu, select the tone you want to hear (in this case Middle C) and the
duration of the note (1 beat).

MicroPython Code
Here’s the MicroPython version of the code:

from microbit import *
import music

while True:
    if button_a.was_pressed():
        music.pitch(262, 1000)

Python has a huge number of libraries, which are collections of
code that do a specific thing. By asking your code to use these



libraries, you get access to a lot of functionality without having to
write complicated code yourself. The music library is an example: it
contains functions you can use to make your micro:bit make sound.
To make MicroPython use the music library, you first import the
library using the import music command.

While Blocks code will handle some things on its own, like
knowing how often to run code and what order to run it in,
MicroPython requires you to make that clear in the code itself. Here,
you use a while True: loop to tell the micro:bit to keep checking
whether someone has pressed button A.

When someone does press button A, the note plays using the pitch

command, which needs two pieces of information: the frequency of
the note (262 is middle C) and the duration of the note in milliseconds
(in this case, 1000 milliseconds or 1 second).

Things to Try
You might like to try changing the tone produced. If you are using
Blocks code, go back to the browser and click the Edit button to alter
the code, then click Middle C. This will open up a mini keyboard
where you can choose a different note to play. To change the note in
MicroPython, enter a new number instead of 262 for the frequency.
Then click the Flash button again. Later in this chapter, you’ll learn a
better way to choose notes using MicroPython.

You could also try making both buttons A and B play tones and
even have them play different tones—a chord!

How It Works: Frequency and Sound
How does the micro:bit create sound in the speaker? Essentially, the



micro:bit switches a current (the flow of electricity) on and off
incredibly fast, causing part of the speaker to vibrate, creating sound.
The speed at which the micro:bit switches the current on and off
determines the frequency of the sound, and that’s what makes
different tones. I’ll explain this in more detail.

Figure 2-5 shows the parts of a loudspeaker. A rigid, usually metal
frame holds a cone in place. The narrow end of this cone is cylindrical
and has a coil of wire wrapped around it. Around this coil, fixed to the
frame of the loudspeaker, is a strong magnet.

When a current passes through the coil, it—and hence the whole
cone—moves back and forth very rapidly. This vibration creates
pressure waves in the air that we hear as sound.



Figure 2-5: A loudspeaker

To make a particular sound, the speaker cone needs to move back
and forth a certain number of times per second. The number of times
per second the speaker moves is its frequency, measured in hertz
(shortened to Hz). The higher the frequency, the higher the pitch of
the sound. A frequency of 262 Hz corresponds to middle C on a piano.
The C an octave higher has a frequency of 524 Hz, or double middle
C. In music, when you go up an octave, you double the frequency.

The micro:bit controls the current and therefore the frequency by



turning pin 0 on and off very rapidly. When pin 0 is off, it has an
output voltage of 0V, and when it is on, it has a voltage of 3V. If you
were to draw a chart of the output voltage against time, it would look
like Figure 2-6.

For obvious reasons, this type of wave is called a square wave.
Since a micro:bit’s outputs can only ever be on or off, this is the only
kind of wave that we can generate from the micro:bit.

Figure 2-6: A square wave

When the micro:bit sends its signal to the amplified speaker, the
speaker takes the low current signal from the micro:bit and increases
the current to drive the speaker with more power, making everything
louder.

Now let’s experiment with making sounds.

EXPERIMENT 2: IT SPEAKS!

The micro:bit’s MicroPython software has a really neat feature that



allows you to make your micro:bit read out phrases. In this
experiment, we will try out this feature and have our micro:bit talk to
us.

Although the software that generates the speech was designed for
use with English, by experimenting with the spelling, you should be
able to make the library speak in other languages.

This feature isn’t (at the time of writing) available through the
Blocks code, so we’ll be using MicroPython.

What You’ll Need
This project uses exactly the same hardware as Experiment 1.

Micro:bit

Speaker or headphones

Alligator clip cables

Construction

1. Connect the speaker using one of the methods shown in Figures 2-1 to 2-
4.

2. This project uses the speech library, which is not available in Blocks code,
so this experiment code is for Python only. Go to
https://github.com/simonmonk/mbms/ and download the
Experiment_02.py file. You’ll also find code for the other projects and
instructions for downloading and using the book’s examples on the
GitHub page. Flash the program onto your micro:bit.

3. Once the micro:bit has been successfully programmed, press button A on
the micro:bit. You should hear a message being spoken through your
speaker or headphones. The Mad Scientist likes to hear this voice as it’s a
reminder of their dear old friend Professor Hawkins, who alas is no longer
with us.

https://github.com/simonmonk/mbms/


Code
The MicroPython code for the experiment is listed here:

from microbit import *
import speech

while True:
    if button_a.was_pressed():
        speech.say("Mad Scientists love micro bits")

Aside from importing the speech library, getting the micro:bit to
speak is as simple as putting some text for it to say in the say function.

The speech library is quite sophisticated—you can even use it to
vary the pitch to make your micro:bit sing! You can find out all about
the library at https://microbit-
micropython.readthedocs.io/en/latest/tutorials/speech.html.

PROJECT: MUSICAL DOORBELL

Difficulty: Easy

The Mad Scientist is particularly partial to a musical doorbell. In fact,
you will not be surprised to hear that one of the scientist’s favorite
tunes is “Imperial March” from Star Wars.

In Chapter 10, we will revisit this project, adding a second
micro:bit that will make the doorbell work wirelessly.

This project (shown in Figure 2-7) is a variation on Experiment 1,
except that instead of playing a single tone when a button is pressed,
the doorbell will play tunes. We’ll have button A play one tune and
button B play another. You can see a short video of the project in

https://microbit-micropython.readthedocs.io/en/latest/tutorials/speech.html


action here: https://youtu.be/xmLupw4PxYQ/.

Figure 2-7: The musical doorbell project

Giving the visitor two tunes to choose from allows them to indicate
the level of urgency of their visit. Then if the Mad Scientist is busy,
they can just ignore the person at the door!

What You’ll Need
For this project, you will need the following items:

Micro:bit To be the controller for this project and provide two
buttons to press

3 × Alligator clip cables To connect the micro:bit to the speaker
(Longer cables will make this easier)

USB power adapter or 3V battery pack with power switch To
power the micro:bit and speaker

Speaker To play the doorbell tune (I recommend the Monk
Makes Speaker for micro:bit)

https://youtu.be/xmLupw4PxYQ/


Adhesive putty or self-adhesive pads To attach the micro:bit to
the door frame and the speaker to the inside of the door frame

If you use batteries for this project, it’s a good idea to use a battery
box with a power switch so that when not in use, the doorbell can be
switched off to save the batteries. Otherwise, the batteries will be
exhausted after only a day or so of use. A USB power supply offers a
longer-term solution that can be left on all the time.

Construction
When building a new project, it’s always worth constructing and
testing it at your desk before you fit it into place where it will be used.

1. Connect the speaker to the micro:bit using the three alligator cables, as
shown in Figure 2-7.



It’s a good idea to use color-coding for your cables, with black for
GND, red for 3V, and any other color for the audio connection from pin 0
of the micro:bit. Using different colors will help you keep track of the
connections.

2. Go to https://github.com/simonmonk/mbms/ to access the book’s code
repository and click the link for Musical Doorbell. Once the program has
opened, click Download and then copy the hex file onto your micro:bit. If
you get stuck on this, head back to Chapter 1, where we discuss the
process of getting programs onto your micro:bit in full. If you prefer to
use Python, download the code from the same website, along with
instructions for downloading and using the book’s examples. The Python
file for this experiment is ch_02_Doorbell.py.

3. Once the micro:bit has been successfully programmed, press button A on
the micro:bit and you should hear a tune playing (Scott Joplin’s “The
Entertainer”). Now press button B and you will hear Frédéric Chopin’s
“Funeral March.”

4. Once you have everything working, disconnect the micro:bit from your
computer and plug it into your USB power adapter or battery box. Test it
out again to make sure you’ve got it working. Then fix the micro:bit part
of the project onto one side of your door and the speaker side of the
project to the other side of the door. There are a few things to note here:

Firstly, sticking things to walls, even with adhesive putty, can make a
mess, so make sure you get permission if you need to. This is especially
true if you are using sticky pads, as these can attach quite permanently to
paint.

Secondly, the alligator clips will need to pass from one side of the door
to the other in such a way that they don’t get too pinched when the door
closes. So work out where they need to go before you start sticking
anything down. In Chapter 10, we will make another version of this
project that uses a second micro:bit to provide a wireless link.

Finally, if you are using a USB power adapter, you will need a power
outlet that’s close enough for the USB power adapter to reach your
micro:bit.

https://github.com/simonmonk/mbms/


Code
Now let’s talk through the code for the project.

Blocks Code
Here’s the Blocks code.

The code is similar to that of Experiment 1, with a few differences.
First, we have two stacks of code: one for button A and one for button
B. Second, we choose once from the repeating menu, because we want
the melody to play only once.

Third, we use the start melody block to play a whole sequence of
notes rather than just a single note. Notice that these tunes are already
available in the blocks—you just need to select them from the menu!

MicroPython Code



Here is the MicroPython version of the program:

from microbit import *
import music

while True:
    if button_a.was_pressed():
        music.play(music.ENTERTAINER)
    elif button_b.was_pressed():
        music.play(music.FUNERAL)

This works exactly the same as the Blocks code. The music.play

method is equivalent to the start melody block, and we use if statements
to check which button was pressed. The if statements allow button A
and button B to play different tunes.

The same predefined tunes are available to play in both Blocks and
MicroPython code.

Things to Try
Picking from a selection of predefined tunes is all very well, but the
Mad Scientist may have particular tastes in music. They may want to
compose their own tunes!

If you are using Blocks code, you can make your own tune by
creating a list of play tone blocks, like the example shown here. You fill
out the notes you want played, and each note is played in turn.



So if you know all the notes for a particular tune, you can create it
like this. You’ll also need to specify how long each note needs to play.
You may have to experiment a bit before you get your music to sound
just the way you want.

Now let’s see how to create a tune in MicroPython:

from microbit import *
import music

notes = ['A4:4', 'A', 'A', 'F:2', 'C5:2', 'A4:4', 'F:2', 'C5:2', 'A4:4']

while True:
    if button_a.was_pressed():
        music.play(notes)

The music library for MicroPython takes care of playing whole
tunes by letting you use a special notation to write your own melodies.
Each note is made up of a string of characters (see Chapter 1 for more
information on strings). The first character of the string is the note
name (a letter A to G). Next comes an octave number—middle C is in
octave number 4, so you will probably want to restrict your tune to



around octaves 3, 4, and 5. The octave number is optional, and if you
don’t give it, Python will assume you want the first octave.

Once you specify an octave number, the music library will assume
that octave applies to all following notes until you specify a different
octave number.

Next, you can optionally put a colon followed by a duration. The
duration is measured in quarter-notes. For example, to play middle C
for a half-note, you would write C4:2.

To string together several notes, you have to create a list. So far
we’ve used variables that hold only a single element. A list is like a
variable that can hold multiple elements, and you can access and use
each element independently. To indicate that the notes variable
contains a list of values, rather than just a single value, you’ll separate
the array values by commas and enclose the whole thing between [

and ].

In our array, each element is a note string. To play the whole
sequence of notes, you use the play function, providing it with the list
of notes to play. This example plays the opening few notes from the
Star Wars “Imperial March.”

Here, you see we import the usual microbit library, as well as the
music library. We save our tune in a variable called notes. Then we
make another while True: loop so that the code keeps running and
checking whether the button was pressed. We tell the program that if
button A is pressed, it should play the notes variable.

PROJECT: SHOUT-O-METER



Difficulty: Easy

The Mad Scientist likes to measure things. To that end, this project
makes a simple sound meter that indicates the volume of a noise. Then
the scientist can tell the neighbors off for making too much noise—
and prove they really are.

What You’ll Need
For this project, you need a microphone to pick up sounds so you can
measure their volume. I’m going to use the microphone built into the
Monk Makes Sensor, which has a bunch of sensors. The sound’s
volume then appears on the micro:bit’s LED display. The louder the
sound, the more LEDs will light up.

For this project, you will need the following items:

Micro:bit To be the controller for this project and provide two
buttons to press

3 × Alligator clip cables To connect the micro:bit to the speaker
(Longer cables will make this easier)

Any micro:bit power source Can be the USB computer cable or
a battery box

Monk Makes Sensor for micro:bit To supply a microphone

Construction

1. Connect the sensor board to the micro:bit using the three alligator clips, as
shown in Figure 2-8. You need to connect 3V on the sensor to 3V on the
micro:bit, GND to GND, and the hole with the microphone picture to pin
0 on the micro:bit.

It’s a good idea to stick to the color-coding of the cables, with black for
GND, red for 3V, and any other color for the microphone connection from



pin 0 of the micro:bit.

Figure 2-8: The Shout-o-meter project

2. Go to https://github.com/simonmonk/mbms/ to access the book’s code
repository and click the link for Shout-O-Meter. Once the program has
opened, click Download and then copy the hex file onto your micro:bit. If
you get stuck on this, head back to Chapter 1, where we discuss in detail
how to get programs onto your micro:bit.

If you prefer to use Python, then download the code from the same
website, along with instructions for downloading and using the book’s
examples. The Python file for this experiment is ch_2_Shoutometer.py.

3. Once you’ve programmed the micro:bit, try whistling near the
microphone (Figure 2-9) and notice how the LEDs jump in response to the
sound level. You can also try tapping the microphone. You can see a short
video of the project in action here: https://youtu.be/6pGDSHmfFng/.

https://github.com/simonmonk/mbms/
https://youtu.be/6pGDSHmfFng/


Figure 2-9: The Monk Makes Sensor for micro:bit microphone

Code
The Blocks version of this code is able to make use of the built-in plot

bar graph of block, whereas the MicroPython version is more
complicated because we have to implement our own version of this
feature.

Blocks Code
The Blocks language includes a useful block called plot bar graph of that
makes the code for displaying the sound level really easy.



We put a forever block in, so the code inside is constantly running.
Then we add the plot bar graph of block, which will display the loudness
from the microphone.

As you can see, the analog value read from pin 0 of the micro:bit
has 511 subtracted from it before being passed to plot bar graph of with a
maximum value of up to set to 512. The reason for this bit of math is
discussed in “How It Works: Microphone Output” on page 59.

Getting the right blocks assembled can be tricky, especially when it
comes to math. Fortunately, the editor allows you to freely move
blocks around, so if they are not in the right place to give you the
results you want, you can just drag them to where they should be. See
Chapter 1 for more information on editing code.

MicroPython Code
The MicroPython version of the code is a little more complicated than
the Blocks code. MicroPython does not have a built-in bar graph
display, so we have to write our own. The plot bar graph of block
provides a nice, smooth display, despite rapidly changing data. To get
the same result in MicroPython, I had to add code to read the



maximum sound level from 10 samples.

from microbit import *

def sound_level():
    max_level = 0
    for i in range(0, 10):
        sound_level = (pin0.read_analog() - 511) / 100
        if sound_level > max_level:
            max_level = sound_level
    return max_level

def bargraph(a):
    display.clear()
    for y in range(0, 5):
        if a > y:
            for x in range(0, 5):
                display.set_pixel(x, 4-y, 9)

while True:
    bargraph(sound_level())
    sleep(10)

We use the sound_level function and make a for loop to take 10
samples of sound. Each sample value is (as with the Blocks version of
the code) the analog value with 511 subtracted from it. However in this
case, to scale down the number of rows to be lit to 0 to 4, we divide
the resulting value by 100. We then compare the sound level stored in
the variable sound_level to the variable max_level and, if it is greater,
max_level is changed to be the sound_level. When all 10 samples have
been taken, the largest one will be in max_level, and this value is
returned by the function.

The bargraph function takes a value, represented by a, to display.
The higher the value, the more LEDs will be lit, indicating a louder
noise. This value should be between 0 and 4. However, if it is greater
than 4, it doesn’t matter—all the LEDs in the display will turn on, but
nothing else will happen. The function works by looping over each
row of the display, and, if the value of a is greater than the row



number, every LED on that row is illuminated by the inner for loop
that asks whether x is in the range of 0 to 4.

All the main while loop has to do is call the function bargraph,
supplying it with the sound level returned by the function sound_level.

How It Works: Microphone Output
Figure 2-10 shows a graph of the output of the microphone when it is
detecting sound. Voltage is on the vertical axis, and time in on the
horizontal axis.

Figure 2-10: A sample of sound

As you can see from the left-hand side of the plot, before the sound
starts, the output voltage from the sensor is level at about 1.5V. When
the sound starts, the voltage oscillates above and below this 1.5V
value as the microphone picks up the pressure waves of the sound. A
reading of 1.5V on the micro:bit gives an analog value of 511. This is
why we subtract 511 from the reading before displaying it on the
micro:bit; otherwise, half the LEDs would be on during silence.



SUMMARY
In this chapter, the Mad Scientist explored the world of sound, both by
producing music and speech from the micro:bit and by detecting
sound using a microphone. We have started our exploration of the
micro:bit with a couple of easy projects.

In the next chapter, we will take a look at light. We’ll measure
light with a special sensor and use the micro:bit’s LED display. Then
we’ll tackle a large project, using the multicolored NeoPixel display
and combining light with sound to make a light-controlled musical
instrument. After that, we’ll move on to other, even more challenging
projects.



3
LUMINOUS LIGHT

In this chapter, we’ll use the micro:bit to experiment with light. First,
you’ll learn how to sense light levels, and we’ll build a light-
controlled guitar that plays notes depending on how much light it
senses. Then we’ll use light to create an optical illusion infinity mirror
that appears to go on forever to help the Mad Scientist fathom their
most profound thoughts. MicroPython doesn’t have a light-sensing
feature yet, so you’ll use Blocks code in this chapter.

EXPERIMENT 3: SENSING LIGHT

Let’s look at how you can use a micro:bit to measure the light levels.



Once you know how to do this, you’ll be able to make all sorts of
light-dependent projects, including the automatic night-light and light-
controlled guitar you’ll find later in this chapter.

The micro:bit’s developers very cleverly built a feature into the
device’s software that allows it to measure the light level with its
LEDs. I’ll explain how in “How It Works” on page 63.

What You’ll Need
You just need a micro:bit and a USB cable for this experiment.

Construction

1. Visit the book’s code repository at https://github.com/simonmonk/mbms/
and click the link for Experiment 3: Sensing Light. Click Download and
then copy the hex file onto your micro:bit. If you get stuck, head back to
“Programming the Micro:bit” on page 11 where we discuss the process of
getting programs onto your micro:bit in full. Remember, this experiment
only works on Blocks code, so there’s no MicroPython code available to
download.

2. Once you’ve successfully programmed the micro:bit, a number between 0
and 9 should appear on the display, indicating how much light the
micro:bit is detecting. Try changing the light level by shading the
micro:bit with your hand or holding it under a light and see how the
number changes.

Code
Here is the Blocks code for this experiment.

https://github.com/simonmonk/mbms/


The light level block takes a reading from the micro:bit’s light
sensor and assigns it a value between 0 and 255 that represents the
brightness. But, if the number is more than one digit, the micro:bit’s
LED display will need to scroll to display it, which is slow and
inconvenient. By dividing that number by 26, the value will always be
below 10.

After displaying the light level, the micro:bit pauses for half a
second to give you time to read the display. Otherwise, the numbers
would flicker past too quickly when the light level changes.

How It Works
The micro:bit doesn’t have a dedicated light sensor. Instead, it uses an
ingenious trick to calculate light levels with its display. You can read
about this trick at https://lancaster-university.github.io/microbit-
docs/extras/light-sensing/.

PROJECT: AUTOMATIC NIGHT-LIGHT

https://lancaster-university.github.io/microbit-docs/extras/light-sensing/


Difficulty: Easy

Although they’re reluctant to admit it, the Mad Scientist is a little bit
afraid of the dark. That’s why they developed a project that uses a
micro:bit’s display as a light that will automatically turn on when
night falls.

This simple project builds on Experiment 3 to monitor the light
level and then turn on all the LEDs on the micro:bit’s display if the
light gets too dim.

What You’ll Need
The only thing you need for this project is a micro:bit.

Because the micro:bit will have to stay on for a long time, it’s best
to use a USB power adapter or Monk Makes Power for micro:bit (see



“Powering Your Micro:bit” on page 248) for this project. Batteries run
out of power too soon.

Construction

1. Visit the book’s code repository at https://github.com/simonmonk/mbms/
and click the link for Automatic Night-Light. Then click Download and
copy the hex file onto your micro:bit. If you get stuck on this, head back
to “Programming the micro:bit” on page 11, where we discuss the process
of getting programs onto your micro:bit in full.

2. Once you’ve programmed the micro:bit, the display should illuminate
when you shade the micro:bit with your hand. When you take your hand
away, the display should turn off.

Code
The Blocks code for this project is shown here.

https://github.com/simonmonk/mbms/




This code uses two if blocks. The first checks whether the light
level is less than 10, which would indicate that the environment is
very dark. If this condition is met, the code turns on all the LEDs
using the show leds block with all the LEDs selected.

The second if block turns the LEDs off if the light level is greater
than 50. We leave a gap between the two levels of 10 and 50 to make
sure the LEDs don’t flash on and off when the light is close to either
level. The technical name for the difference between on/off values is
hysterysis.

PROJECT: LIGHT GUITAR

Difficulty: Medium

Now it’s time to make a light-controlled guitar! This guitar will play
different tones when you wave your hand in front of the micro:bit.
You can see a video of this project in action at
https://www.youtube.com/watch?v=OFUYxIYCXQs.

I recommend attaching your micro:bit, a speaker, and a battery to a
guitar-shaped cardboard cutout. (The Mad Scientist is not terribly
good at art, so the resemblance in Figure 3-1 is only passing.)

https://www.youtube.com/watch?v=OFUYxIYCXQs


Figure 3-1: The micro:bit becomes a musical instrument.

The cables that connect the micro:bit to the speaker are hidden
behind the cardboard to keep things neat.

What You’ll Need
For this project, you’ll need the following items:

Micro:bit

3 × Alligator clip cables To connect the micro:bit to the speaker

3V battery pack To power the micro:bit and speaker (The kind
with a switch works best.)

Speaker for micro:bit To play the sound (Use a Monk Makes
Speaker or see Chapter 2 for other speaker options.)



Blu-Tack or self-adhesive pads To attach the micro:bit to the
cardboard cutout

Cardboard To form the guitar body (You can use a cut-up
cardboard box.)

Paper glue (PVA or spray adhesive) To stick the paper outline
to the cardboard

Paper with a guitar outline (optional) You can either draw your
own guitar on paper or cut out and decorate the cardboard
directly.

Scissors To cut out the outline of the guitar

Construction
It’s a good idea to create and test the program before attaching your
micro:bit to the cardboard, so we’ll do that first.

1. Connect the speaker to the micro:bit using the three alligator cables, as
shown in Figure 3-2.

It’s a good idea to color-code the cables so you remember which is
which. Use black for GND, red for 3V, and any other color for the audio
connection from pin 0 of the micro:bit.



Figure 3-2: Attaching the micro:bit to a speaker

2. Open https://github.com/simonmonk/mbms/ and click for the Light
Guitar project. Once the experiment has opened, click Download, then
copy the hex file onto your micro:bit.

3. Once you’ve programmed the micro:bit, it should play a different note
when your hand gets close to it and shades some of the light. If you don’t
get a very large range of notes, you may need to adjust its sensitivity (see
“Code” on page 71 for how to do this).

4. Disconnect the micro:bit from the USB cable. At

https://github.com/simonmonk/mbms/


https://github.com/simonmonk/mbms/, you’ll find a folder called other
downloads that contains a drawing of a guitar shape in PDF, PNG, and
SVG formats. You can draw your own guitar or print out this template.

5. Glue your guitar drawing to your piece of cardboard, as shown in Figure
3-3.

Figure 3-3: Gluing the paper template to the cardboard

6. Using a pair of scissors, cut around the outline of the guitar. Also cut out
the two rectangles in the body of the guitar, where you’ll put the wires
connecting the micro:bit to the speaker. The result should look like Figure
3-4.

https://github.com/simonmonk/mbms/


Figure 3-4: Cutting around the template

7. Using small balls of Blu-Tack, attach the speaker and the micro:bit to the
guitar so that the edge connectors of both are accessible from the
rectangular slots. Also attach the battery box, as shown in Figure 3-5.



Figure 3-5: Attaching the micro:bit, the speaker, and the battery box

When all three parts are attached to the guitar, the project should look
like Figure 3-6.



Figure 3-6: The micro:bit, speaker, and battery box have been attached to
the guitar.

8. Flip the whole thing over and connect the micro:bit and speaker, as shown
in Figure 3-7. Reference Figure 3-2 if you need help with the connections.



Figure 3-7: Connecting the micro:bit to the speaker

9. Connect the battery box to the battery connector on the micro:bit. You’re
ready to rock out!

Code
The Blocks code for this project uses arrays.





We put the code that needs to be run only when the micro:bit starts
up in the on start block. This creates an array of notes. An array is a list
of values rather than a single value. We’re using an array to provide a
list of eight possible notes for the micro:bit to play. Different light
levels will trigger different notes. The first line inside the on start block
defines a new array called notes, which initially just contains the note
Middle C. The add value blocks that follow add another seven notes to
the array so that the variable notes will eventually contain all eight of
the notes we need.

The code inside the forever block will run continuously. This is the
code that tells the micro:bit to read the light level and then uses that
information to pick a note to play. To do this, the code first reads the
light level using the light level block and divides the reading by 25. If
you don’t hear all eight notes, you may need to adjust the sensitivity
by tweaking this value of 25 down a bit.

The set to block names the resulting value note number. Since the note

number is the light level divided by 25, it will be a value between 1 and
10.



But setting the maximum light level to 10 would cause problems.
When accessing items in an array, you specify the position of the item
you want. The maximum position we can specify in this array is 7 (the
eight notes are numbered 0 to 7). We want the guitar to work indoors
where the light is fairly low. However, if the light is really bright, then
note number might turn out to be 10, which would be outside the array.
To make sure that we don’t exceed this maximum permitted value for
note number, we add the if command to check whether the note
number is greater than 7. If it is, the code sets it to 7—problem solved.

The play tone block accesses the item in the notes array at the
position of the value of note number and plays it for 1/8 of a beat.

PROJECT: INFINITY MIRROR

This seemingly magical mirror (Figure 3-8) is guaranteed to impress
any visiting mad scientists. Built into a small picture frame, the mirror
looks much deeper than it really is.



Figure 3-8: A micro:bit-controlled infinity mirror

Your micro:bit will control a strip of 30 LEDs mounted inside a
picture frame, and we’ll put some reflective film on either side of the
LEDs, allowing you to create interesting light effects.

You can see a video of this project in operation at
https://www.youtube.com/watch?v=-4Ud47OkIyY.

NOTE This project is a little tricky because the reflective film can be difficult to
smooth out. If you stick with it, though, the effect is worth it!

https://www.youtube.com/watch?v=-4Ud47OkIyY


What You’ll Need
For this project, you’ll need the following items:

Micro:bit

0.5 m Addressable LED Strip (NeoPixels) One WS2812B RGB
5050 SMD Strip should have 60 LEDs per meter and be 0.5
meters long, with self-adhesive backing.

3 × Alligator clip to male jumper cables To connect the
micro:bit to the LED strip

Monk Makes Power for micro:bit To power the micro:bit and
LED strip. Note that USB power will not provide enough current
for this project and a AAA battery pack will provide enough
power only if the batteries are very fresh.

6V DC wall wart power adapter To provide enough power for
the LEDs. The power adapter should have a DC barrel jack plug
on the end. (See “Powering Your Micro:bit” on page 248.)

Deep 7 × 5-inch picture frame See additional information about
the picture frame below. You’ll need one with plastic spacers,
which a deep frame should contain.

Two 7 × 5-inch pieces of reflective window film Samples of
reflective window film

Craft knife To cut the reflective film and make a slot in the
picture frame spacer for the LED strip’s wires

Soapy water To clean the glass and attach the film

Ruler or plastic card To use as a squeegee

Adhesive tape To remove the backing film from the reflective
window film



Look for a 7 × 5-inch (17.5 × 12.5 cm) picture frame that has an
insert designed for 6 × 4-inch photos. The important thing about the
frame is that it has sufficient depth, so look for a frame like the one
shown in Figure 3-9a–b. The one I used was 1.25 inches deep. Also
make sure that there’s glass at the front of the frame. Behind the glass,
there should be a plastic spacer (on which we’re going to stick the
LED strip) and then the backboard.

Figure 3-9: A deep photo frame for the infinity mirror: (a) front and (b) with the
back removed

The reflective film reflects light, so it acts like a mirror. It normally
comes in large rolls for fitting to the windows of a building. Luckily
for us, the people who sell this film also usually offer small samples of
the material, which are plenty big enough for our needs. You’ll find it
most easily online. Search on eBay or Amazon by entering the phrase
silver reflective mirror window film and then look through the listings
until you find someone who offers sample sizes.

You’re going to need two pieces that are at least 7 × 5 inches, but I
recommend getting extra; attaching the film to the glass of the photo



frame and removing the bubbles is a little tricky, so it’s a good idea to
have a few spare sheets in case your first attempts fail.

The easiest place to find the addressable LED strips is on eBay, but
it’s also sold through hardware sites like Adafruit and SparkFun. Use
the search term WS2812B RGB 5050 LED Strip. You’ll want to buy a
strip with 60 LEDs per meter. You’ll need half a meter for this
project, so 30 LEDs in total. These LED strips come in two varieties:
waterproof (for outside use) or with a self-adhesive backing. You need
the type with the adhesive backing.

Construction
Now that you have your materials, we’ll attach the LEDs and
reflective film to the frame. After we program the LEDs, the light will
appear to go back into the frame forever, creating the illusion that the
frame is deeper than it is.

1. It’s worth making sure the LED strip works with your micro:bit before
you go through the trouble of constructing the hardware for the project. To
test it, connect the LED strip to the micro:bit using the three alligator to
jumper cables.

Note that it’s also possible to connect the strip using male-to-male
jumper wires and normal alligator clips.

Also attach the DC power adapter and Monk Makes Power for
micro:bit board, as shown in Figure 3-10.



Figure 3-10: Testing the LED strip with a micro:bit

The pins of the alligator to jumper pin cables will fit into the three-way
connector attached to the LED strip. Your LED strip may have differently
colored wires than the ones shown in Figure 3-10, so it’s best to look at
the strip itself to see where the wires are soldered to it. One wire will be
marked GND; connect this to the GND connection of the micro:bit. A
second wire will be marked 5V; connect this to 3V on the micro:bit. The
final connection, in the middle, will either be marked DIN (Data In) or
have an arrow pointing toward the LED. Connect this to pin 0 of the
micro:bit.

2. Got to https://github.com/simonmonk/mbms/ and click the link for Magic
Mirror. Click Download to download the code and then copy the hex file
onto your micro:bit. If you get stuck, head back to “Programming the
Micro:bit” on page 11, where we discuss the process of getting programs
onto your micro:bit in full.

If you prefer to use Python, then download the code from the same
website. For instructions for downloading and using the book’s examples,

https://github.com/simonmonk/mbms/


see “Downloading the Code” on page 34. The Python file for this project
is ch_03_Magic_Mirror.py.

3. Once you’ve loaded the program onto your micro:bit, you should see
LEDs blink on and off at random.

Figure 3-11 shows how the infinity mirror is constructed from the
picture frame.

Figure 3-11: How the infinity mirror is constructed

The following steps will lead you through this part of the project build.

4. Take the photo frame apart and remove the plastic insert. Using a craft
knife, carefully cut out a slot in one corner of the insert, as shown in
Figure 3-12, for the cables to the LED strip to go through.

WARNING Craft knives can be very sharp, so be careful and ask an adult
for help.



Figure 3-12: Cutting a groove for the wires in the plastic insert

5. Without removing the backing tape, lay the LED strip around the edge of
the plastic insert. If it’s not long enough, you can stretch it across the
corners, as shown in Figure 3-13. When you’ve made sure it fits, peel off
the backing film and fix the LED strip to the inside of the insert.



Figure 3-13: Attaching the LED strip to the plastic insert

6. Now set the insert aside. The next step is to attach the reflective film to
the glass. Carefully remove the frame’s glass and wash it in soapy water.
Dry one side and set it down with the wet side up.

Pick up the reflective film. There will be a backing sheet of transparent
plastic on the adhesive side of the film. To separate this thin transparent
layer, put adhesive tape on both sides of the film and pull apart (Figure 3-
14).



Figure 3-14: Removing the plastic backing from the reflective window
film

Place the reflective film adhesive side down onto the wet glass. Using
a plastic card or ruler, push the bubbles between the film and glass to the
edge of the glass to remove them (Figure 3-15).



Figure 3-15: Removing bubbles from the reflective window film

7. Let the film dry for about an hour. Then flip the glass over and use a craft
knife to trim the film to the same size as the glass (Figure 3-16).



Figure 3-16: Trimming the reflective window film

8. Lay the backboard of the frame on your second piece of reflective film
and cut the film to the same size as the backing frame (Figure 3-17). You
don’t need to remove the protective film or stick the film to the board
unless the film does not lie flat when you put the frame back together.



Figure 3-17: Trimming the reflective window film for the backboard

9. Now it’s time to assemble the frame.
Put the glass back into the frame with the glass side facing out. This

will protect the film and make the mirror look better (Figure 3-18a). If
your picture frame included a thin piece of cardboard meant to be used
with a smaller print, you can insert this after the glass.

Next, put the plastic insert back into the frame, allowing the cable to
escape through one corner (Figure 3-18b). If the insert has a wider flat
side designed to support the photo, this should face away from the glass.



Finally, place the cardboard back onto the frame, allowing the cable to
escape through one corner (Figure 3-18c). Fix the back in place and flip
the finished frame over (Figure 3-18d).

Figure 3-18: Reassembling the frame

10. Reattach your micro:bit, and your magic mirror should spring into life.

Code



We want to program the LEDs to blink on and off at random. To do
this, the code picks one of the LEDs at random, then generates a
random color and sets the LED to that color.

Blocks Code
Here is the Blocks code for the project.

When using addressable LEDs (called NeoPixels in the Blocks
code), you need to assign the NeoPixel at block to a variable, which we
have called leds, in your on start block. You must supply the NeoPixel at

block with the pin used to control the LEDs. In this case, we’ll use pin
P0. Then specify the number of LEDs on the strip, which is 30 in our
case. Finally, tell NeoPixel at how to define the colors. In this case,



that’s the standard RGB format.

We again use a forever block to keep this code running
continuously. In the forever block, we start by generating a random
number between 0 and 29 using the pick random block and assign this
number to the variable led. This selects one of the LEDs. The color

variable is then assigned random amounts (between 0 and 255) of red,
green, and blue.

The show block updates the LED strip with the change we’ve just
made.

Try experimenting with the code to change the LED colors.

MicroPython Code
Here’s the MicroPython version of the code.

from microbit import *
import neopixel, random

leds = neopixel.NeoPixel(pin0, 30)
while True:
    led = random.randint(0, 29)
    color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255))
    leds[led] = color
    leds.show()
    sleep(5)

This code works in much the same way as the Blocks version.
Notice that you have to include the neopixel and random libraries at
the top of the program so that you can access the LED strip and
generate the random numbers.

The MicroPython neopixel library first defines the LED strip as
using pin 0, which is the micro:bit pin we attached it to, and having a
length of 30 LEDs. It does this using the command leds =

neopixel.NeoPixel(pin0, 30).



The while loop then does the same job as the forever block in the
Blocks version, picking an LED at random and setting it to a random
color.

How It Works
Figure 3-19 shows how the infinity mirror works.

Figure 3-19: Light bouncing around in the infinity mirror project

Light from the LEDs heads off in all directions (A in Figure 3-19).
Some of that light travels up, toward the front of the frame. The mirror
film reflects some—but not all—of this light back down to the mirror
at the back of the frame (B). The rest of the light escapes from the
frame (C), and some of it finds its way to the back of your eye, where
it forms an image.

Meanwhile, some of the light that found its way down to the mirror
(B) will bounce back up toward the front glass again (D). Some of this
light will escape the picture frame entirely and find its way to your



eye, and the rest will perform yet another bounce. It’s this bouncing
back and forth of the light that causes an endless succession of LEDs
to seem to disappear into the mirror, getting dimmer each time a
proportion of the light is lost.

SUMMARY
In this chapter, you have learned how to both measure and make light
with your micro:bit. In Chapter 4, the Mad Scientist turns their
attention to magnetism.



4
MAGICAL MAGNETISM

As you saw in Chapter 1, the micro:bit has a built-in magnetometer
that serves a variety of purposes. In this chapter, we’ll use it to turn
your micro:bit into a compass that tells you which direction you’re
facing. We’ll also measure the magnetic fields of neodymium
magnets. Then, we’ll make a magnetic alarm that rings whenever
someone opens the door.

PROJECT: COMPASS

Difficulty: Easy



In this project, shown in Figure 4-1, you’ll use the micro:bit’s built-in
magnetometer as a compass. It will display an arrow on the screen that
points toward magnetic north.

Figure 4-1: Finding north with a micro:bit compass

Unlike a conventional compass, this compass doesn’t always point
north. Instead, it shows you which way to turn in order to be facing
north.

Rotate until the arrow is facing straight ahead, and you’re looking
north!

What You’ll Need
For this experiment, you will need:



Micro:bit

Battery pack

You only need a micro:bit to make this compass, but if you plan to
navigate outdoors, then you’ll need a battery pack as well.

Construction

1. Go to https://github.com/simonmonk/mbms/ to access the book’s code
repository and click the link for Compass. Once the program has opened,
click Download and then copy the hex file onto your micro:bit. If you get
stuck on this section, head back to Chapter 1, where the process of getting
programs onto your micro:bit is explained in full.

If you prefer to use Python, then download the code from the same

https://github.com/simonmonk/mbms/


website, along with instructions for downloading and using the book’s
examples. The Python file for this experiment is ch_04_Compass.py.

2. Once you’ve loaded the program onto your micro:bit, you’ll see a
message prompting you to move your micro:bit in a certain way. Follow
the instructions. This will happen every time you flash a program onto the
micro:bit that uses the magnetometer.

The purpose of moving your micro:bit this way is to calibrate its
magnetometer. The magnetometer chip on the micro:bit is sensitive to
local magnetic field variations. By moving the magnetometer in different
directions, you help its internal filtering software to compensate for the
local distortions to Earth’s magnetic field. This is why it’s a good idea to
calibrate your compass again if you take it outside, away from the metal
objects commonly found indoors. Also, a battery pack can affect the
magnetometer, so it’s best to calibrate with the same hardware you’ll use
on the final project.

Calibrating your micro:bit’s magnetometer is a bit like doing a puzzle.
As you move your micro:bit, more LEDs will light up (Figure 4-2).



Figure 4-2: Calibrating your micro:bit’s magnetometer

3. To use the compass, attach a battery pack to your micro:bit and take it
outside, well away from items such as computers and household
appliances. Hold the micro:bit level (so it’s flat). If the arrow points to the
right or left, slowly turn in that direction until the arrow points straight
ahead. When it does, you’re facing magnetic north.

If the compass isn’t pointing north, try calibrating it again by pressing
button A.



Code
The Blocks and MicroPython versions of the code follow the same
pattern. The heading, or bearing, (the direction the micro:bit is
pointing) is measured and then the program decides which of the three
arrows (north, west, or east) it should display in order to direct the
user in the right direction.

Blocks Code
Here is the Blocks code for this project.



In this project, we’ll set up the code so that you can calibrate the



magnetometer any time you want by pressing button A.

The calibrate compass block is inside the on button A pressed block. The
calibrate compass block will display the dot we used to calibrate the
magnetometer earlier. You can then roll it around the display, as we
did at the start of this project.

In the forever block, assign the value of compass heading (degrees
from 0 to 359) to a variable called heading, which will contain this
heading.

Then create a large if block that consists of an if, an else if, and an
else. This big block will test which direction the micro:bit is facing and
display an arrow on the LED display showing you which way to turn
to be facing north.

If you’re writing this code yourself, you will notice that the Blocks
code library seems to offer only two kinds of if blocks: if then and else.
To add the else if then section, click the + circled in Figure 4-3.

Figure 4-3: Adding another section to if blocks



The first line of the large if block tests whether heading is between
10 and 180 degrees, where 0 degrees is north. Thus, a heading value
between 10 and 180 would indicate that you were facing east. In this
case, the micro:bit would display the west arrow, which points left.
This arrow tells you to turn to the left in order to face north.

If heading is not between 10 and 180, then the else if part of the
block tests whether heading is greater than or equal to 180 and less than
350 degrees. If it is, then the micro:bit displays the east arrow, which
tells you to go right.

If heading is between 350 and 10 degrees, the else part of the if block
will display the north arrow, which points forward—you’re on the
right track! Figure 4-4 shows how this works (the numbers are
possible values of heading).



Figure 4-4: The arrow will point in one of three directions, guiding you north.

MicroPython Code
Here is the MicroPython code for the project:

from microbit import *

while True:
    heading = compass.heading()



    if heading > 10 and heading < 180:
        display.show(Image.ARROW_W)
    elif heading >= 180 and heading < 350:
        display.show(Image.ARROW_E)
    else:
        display.show(Image.ARROW_N)

    if button_a.was_pressed():
        compass.calibrate()

This code uses the same logic as its Blocks code equivalent: it
checks the reading of the magnetometer and tells the micro:bit to
display an arrow. Again, if the heading is between 10 and 180 degrees
from north, the micro:bit shows a west arrow; if it’s between 180 and
350 degrees, the micro:bit displays an east arrow; and if the heading is
within 20 degrees of north, an arrow points straight up, telling you to
keep going in the same direction.

Things to Try
See whether you can use a magnet to confuse the compass about
which direction is north.

How It Works: The Earth’s Magnetic Field
Earth’s magnetic north and south poles have strong charges, creating a
magnetic field all around the globe, as shown in Figure 4-5.



Figure 4-5: Earth’s magnetic field

The micro:bit’s magnetometer measures the strength of Earth’s
magnetic field to deduce the direction the micro:bit is facing.

Interestingly, the magnetic north pole is not exactly at the top of
the spinning ball that is Earth. The magnetic field can be centered up
to 20 degrees away from the geographic poles, depending on where



you are in the world.

Another interesting fact about the magnetic poles is that they’re
shifting at a rate of about 6 miles (10 km) a year. One day, the poles
will flip completely, meaning that magnetic north will be at the
southern end of the globe. This process happens on Earth about every
450,000 years.

EXPERIMENT 4: MEASURING MAGNETIC
FIELDS

Difficulty: Medium

As we just saw, the micro:bit’s built-in magnetometer is sensitive
enough that you can use it as a compass to find north. It’s also a great
tool for measuring the strength of a nearby magnet. In this experiment
(shown in Figure 4-6), you’ll measure the strength of a magnetic field
at various distances.

What You’ll Need
In this experiment, you’ll need the following:

Micro:bit

Strong neodymium magnet

Ruler (preferably showing millimeters)

You’ll find all sorts of shapes and sizes of magnets on eBay. As
you can see in Figure 4-6, I’m using a disk-shaped one with a
diameter of 10 mm, but any neodymium magnet of a similar size



should work. Note that I’ve put a bit of tape labeled N on one side of
the magnet (more on this later).

Figure 4-6: The neodymium magnet used for Experiment 4

WARNING Neodynmium magnets are very strong, so be careful when handling
them. If two of them get stuck together, it can be hard to separate them.

Construction
The program repeatedly scrolls a number across the micro:bit’s
display. This number represents the overall magnetic field strength
detected by the magnetometer. We are going to measure the field
strength at various distances from the magnet.



1. Go to https://github.com/simonmonk/mbms/ to access the book’s code
repository and click the link for Experiment 4: Magnetic Fields. Once
the program has opened, click Download and then copy the hex file onto
your micro:bit. If you get stuck on this, head back to Chapter 1, where the
process of getting programs onto your micro:bit is explained in full.

If you prefer to use Python, download the code for this project from the
same website, along with instructions for downloading and using the book
examples. The Python file for this experiment is Experiment_04.py.

2. Set your magnet on a flat surface so that it’s balanced on its curved edge.
A neodymium magnet is so strong that if you set it down in this way, it
will align itself with Earth’s magnetic field (by spinning until one side is
facing north), just like a compass needle. Allow your magnet to do this
and then put a piece of tape on the side that’s facing north. (You might
need to use the Compass project, described earlier in this chapter, to find
north so you don’t accidentally mark south instead.)

3. Align your ruler so the 0 cm mark is pointing north and the 30 cm mark is
pointing south, as shown in Figure 4-7. The ruler allows you to make sure
the magnet continues to face north so that the effect of Earth’s magnetic
field remains constant.

https://github.com/simonmonk/mbms/


Figure 4-7: Place the ruler in the north–south direction to make sure your
magnet continues to face north.

4. Set the magnet on its curved edge next to the 1 cm mark on the ruler.
Make sure the north side is facing the micro:bit. Point the micro:bit south
and align its edge with the 0 cm mark. Record the reading displayed on
the micro:bit in the following table, in the 1 cm row. The unit of magnetic
field strength is a tesla (which is a very, very strong magnetic field), so
the readings from the micro:bit are in microtesla or millionths of a Tesla,



represented by µT).

Distance from micro:bit to magnet 
(cm) Magnetic field strength (µT)

1 ___________________________
________

2 ___________________________
________

3 ___________________________
________

4 ___________________________
________

5 ___________________________
________

6 ___________________________
________

7 ___________________________
________

8 ___________________________
________



9 ___________________________
________

10 ___________________________
________

5. Move the magnet so it’s next to the 2 cm mark on the ruler. Enter the new
number displayed on the micro:bit in the corresponding row in the table.
Repeat this process for all the readings up to 10 cm. Notice that the field
strength decreases quickly as you move the magnet away from the
micro:bit.

6. Once you’ve taken all the readings, try plotting a chart of your results.
Make the vertical axis, or Y axis, show the field strength in µT and plot
the distance of the magnet from the micro:bit in cm against the horizontal
axis, or X axis.

You can plot this graph by hand on paper, or, if you prefer, you can
make a copy of the Google Sheets spreadsheet I’ve created for this
experiment and then replace my readings with the numbers you have just
written down. You will find a link to this spreadsheet at
https://github.com/simonmonk/mbms/. Open this link and, from the
spreadsheet menu, select File▸Make a Copy to make your own copy.
Figure 4-8 shows the completed spreadsheet with a chart of the readings
underneath it.

Note that your readings might be different, as your magnet may be
weaker or stronger.

https://github.com/simonmonk/mbms/




Figure 4-8: Make a graph of your results.

We’ll discuss these results in “How It Works: The Strength of
Magnets” on page 99.

Code
The code for this experiment is simple. It takes a reading, displays it,
and then repeats.

Blocks Code
Here is the Blocks code for this project.

The show number block displays the result of the magnetic force block
inside the forever block.

The magnet force block has four options, which you can see in the
drop-down menu of this block. You can either get a separate reading
for the force in one of the three dimensions X, Y, or Z, or you can get
the combined force measurement from all three dimensions. We will
use the combined measurement, which is the strength option in the
drop-down menu.

MicroPython Code
Here is the MicroPython version of the code:



from microbit import *
while True:
    display.scroll(str(int(compass.get_field_strength() / 1300)))

In MicroPython, the get_field_strength function takes readings from
the micro:bit’s magnetometer. Unlike the magnetic force block of the
Blocks code, the MicroPython code does not specify the units for the
measurement it returns, but the reading we get back is about 1,300
times the reading reported by the equivalent magnetic force block.
Therefore, divide the number by 1,300 and then convert this value
with the int function to make it an integer.

Use the str function to convert the number to a text string so the
scroll function can display it on the micro:bit screen.

Things to Try
Using the program for Experiment 4, try moving the magnet farther
and farther away to see how far away the magnet can be and still show
up on your micro:bit.

How It Works: The Strength of Magnets
The chart in Figure 4-8 shows that as you move the magnet away from
the micro:bit, the magnetic field strength falls very rapidly at first and
then gradually levels off. In fact, the relationship between magnetic
field strength and distance from the magnet follows something called
the inverse square rule. That is, the field strength is proportional to 1
divided by the square root of the distance from the magnet.

What this means is that when the distance between the magnet and
the micro:bit doubles, the field strength falls to a quarter of its
previous strength.



The strength of Earth’s magnetic field when measured on the
ground ranges from 25 to 65 µT. When you measure the magnetic
force without a magnet nearby, you should get readings in this range.
Even the super-strong neodymium magnet used in this experiment has
a field strength of only a few hundred µT at a distance of a few
centimeters. Magnets that are used to look inside human bodies during
magnetic resonance imaging (MRI) scans typically have a field
strength (where the person lies) of 0.5 to 1.5 T. That’s several
thousand times stronger than the neodymium magnet. This is why you
have to take off any metal you are wearing when you go into an MRI
scanner!

PROJECT: MAGNETIC DOOR ALARM

Difficulty: Medium

We’re going to create a door alarm! By attaching a magnet to a door
and a micro:bit to a door frame, the Mad Scientist can be alerted to the
arrival of guests. The micro:bit will sound an alarm when it detects a
change in the strength of the magnetic field. This is exactly what
happens when someone opens the door, moving the magnet farther
away.

Figure 4-9 shows the project attached to the Mad Scientist’s door.



Figure 4-9: A magnetic door alarm



What You’ll Need
For this project, you will need the following items:

Micro:bit

3 × Alligator clip cables To connect the micro:bit to the speaker.
These cables should be at least 15 cm (6 inches) long.

USB power adapter or switched 3V battery pack To power the
micro:bit and speaker. See the appendix for other options for
powering your micro:bit.

Speaker You can use any of the methods for getting sound out of
a micro:bit discussed in Chapter 2. Here, I used a Monk Makes
Speaker for micro:bit.

Adhesive putty or self-adhesive pads To attach the micro:bit
and speaker to the door frame and the magnet to the door

Neodymium magnet As used in Experiment 4

Construction
Make sure to test the project before you install it on your door, since
you’ll need to experiment a little to determine the right field strength
to use. You’ll also need to calibrate the magnetometer before sticking
it to a door frame.

1. Connect the speaker to the micro:bit using the three alligator cables, as
shown in Figure 4-9.

It’s a good idea to color-code your cables by using black for GND, red
for 3V, and any other color for the audio connection from pin 0 of the
micro:bit. That way, you won’t forget which cable is which. You’ll need
to place the speaker at least 15 cm away from the micro:bit, as speakers
have strong magnets that can disrupt the micro:bit’s magnetometer.

2. Go to https://github.com/simonmonk/mbms/ to access the book’s code

https://github.com/simonmonk/mbms/


repository and click the link for Magnetic Alarm. Once the program has
opened, click Download and then copy the hex file onto your micro:bit. If
you get stuck on this, head back to Chapter 1.

If you prefer to use Python, you’ll find the code for this at the same
website, along with instructions for downloading and using the book’s
examples. The Python file for this experiment is
ch_04_Magnetic_Alarm.py.

3. Once you have programmed the micro:bit, when you put the magnet close
to the micro:bit, the speaker should be silent. Then when you move the
magnet more than a few inches away, the alarm should sound. Once the
program is working, disconnect the micro:bit from your computer and
attach it to either a USB power adapter or battery pack. Then attach the
micro:bit and speaker to your door frame. Fix the magnet to the door
itself, within an inch (2.5 cm) of the micro:bit.

WARNING Adhesive putty can make a mess, so make sure you get
permission before you start sticking things to the door and frame.

If you’re using a USB power adapter, you’ll need an electrical outlet
close enough to the door for the USB power adapter to reach.



Code
In both versions of the code, the magnetic field strength is first read
and then compared with a threshold. If the threshold is exceeded, then
a note is played.

Blocks Code
Here is the Blocks code for the project.



This code is basically saying that if the micro:bit reads a magnetic
force strength of less than 100 µT, it should play a particular note for
4 beats. Since the strength of Earth’s magnetic field at the surface has
a range of 25 to 65 µT, setting a threshold at 100 µT should ensure
we’re detecting the magnet and not just picking up Earth’s magnetic
field.

MicroPython Code
Here’s the MicroPython version of the program:

from microbit import *
import music

while True:
    if compass.get_field_strength() < 160000:
        music.pitch(523, 1000)

This code works in the same way as the Blocks code, but because
the units of get_field_strength are different from those of the magnetic

force block, the threshold for sounding the alarm is different than in the
Blocks code version. The units of the field strength returned by



get_field_strength are not specified in its documentation
(https://microbit-micropython.readthedocs.io/en/latest/compass.html),
so I chose the threshold value of 160,000 by trial and error.

We supply the command music.pitch with a frequency of tone to
produce. Unlike with the Blocks code, here we have to specify the
frequency of the sound wave rather than a note. A frequency of 523
hertz (Hz) is the frequency of high C. The music.pitch command also
requires a length of time to play the note. Here we’ve told the
micro:bit to play the note for 1,000 milliseconds, or 1 second.

Things to Try
Could a thief defeat your new alarm? Try placing a second magnet on
the other side of the door frame, opposite the micro:bit. If the second
magnet is close enough to the micro:bit, you may be able to open the
door without triggering the alarm.

You could also change the alarm tone by changing the frequency to
some other value. The following table shows some notes and their
corresponding frequencies (to the nearest whole number).

Note Frequency (Hz)

Middle C 262

D 294

E 330

F 349

https://microbit-micropython.readthedocs.io/en/latest/compass.html


G 392

A 440

B 494

High C 523

You can find a full table of musical notes and their frequencies at
https://www.liutaiomottola.com/formulae/freqtab.htm.

SUMMARY
The micro:bit’s magnetometer is useful for more than working out
which direction you’re facing. In this chapter, we’ve explored how
you can use it to sense the presence of a magnet and even to do some
science by measuring magnetic field strength.

In the next chapter, we’ll explore one of the micro:bit’s other built-
in sensors—its accelerometer.

https://www.liutaiomottola.com/formulae/freqtab.htm


5
AMAZING ACCELERATION

The accelerometer is arguably the most useful of the BBC micro:bit’s
built-in sensors. It lets you measure the direction and strength of a
force, such as gravity, that is acting on the micro:bit.

You can use the accelerometer for many things, including:

  Detecting gestures like shaking, or even finding out that your
micro:bit is falling

  Learning which way and how much the micro:bit is tilted and using
this to control your micro:bit

  Measuring how quickly your micro:bit is accelerating when it
moves. (For example, you might use it in a pedometer to see how
many steps you take in a day.)



EXPERIMENT 5: GESTURES

The micro:bit’s software includes gesture recognition, so it can
respond to certain motions, like tilting or shaking, that are picked up
by the accelerometer. In this section, you’ll program the micro:bit to
display a smile whenever you shake it.

Later in this chapter, you’ll learn how to deal with the raw data that



comes straight from the accelerometer chip so you can measure
acceleration.

What You’ll Need
In this experiment, you’ll just need your micro:bit.

Construction

1. Go to https://github.com/simonmonk/mbms/ to access the book’s code
repository and click the link for Experiment 5: Gestures. Once the
program has opened, click Download and then copy the hex file onto your
micro:bit. If you prefer to use Python, then download the code from the
same website. For instructions for downloading and using the book’s
examples, see “Downloading the Code” on page 34. The Python file for
this experiment is Experiment_05.py.

2. Once the program starts, shake your micro:bit, and you should see a smile
appear, then disappear, on the display.

Code
Using gestures in your program is similar in both Blocks and
MicroPython. Both languages have the same set of gesture types. The
main difference is that in MicroPython there is no event mechanism
for handling events; instead, you have to keep checking for gestures in
a loop.

Blocks Code
Here is the Blocks code for this experiment.

https://github.com/simonmonk/mbms/


The acceleration gestures available in the Blocks code work as
events, just as pressing a button does. Start with an on block. Click the
triangle in to access a drop-down menu of possible gestures, shown in
Figure 5-1, and select shake.



Figure 5-1: Selecting different gestures

THE DIFFERENT GESTURES

The shake gesture responds to any significant shaking of your micro:bit. The next two
gestures, logo up and logo down, respond to tilting the micro:bit front to back. The logo
this code refers to is the icon printed on the micro:bit board, near the USB socket.

The screen up and screen down gestures respond to the micro:bit’s orientation. For
example, if you placed it screen side down, you’d trigger the screen down event.

The tilt left and tilt right events respond when you tilt the micro:bit from side to side
by more than about 60 degrees. You have to tilt it quite a lot to trigger these events.

The final four events relate to the overall force acting on the accelerometer rather
than the force in any particular direction. For example, if the micro:bit is in free fall, then
the fall will trigger the free fall event. The gestures 3g, 6g, and 8g detect different
amounts of force acting on the accelerometer, measured in g (the acceleration due to
gravity, or the g-force). For example, you could detect a finger tap on the micro:bit.
Tapping the micro:bit doesn’t move it much, so you might think that not much force is
involved, but in fact tapping can exert quite a high g-force.

MicroPython Code



Here’s the MicroPython code for this experiment:

from microbit import *

while True:
    if accelerometer.was_gesture('shake'):
        display.show(Image.HAPPY)
        sleep(500)
        display.clear()

You’ll recognize most of the code here. We import the usual
library and then start a while True loop so the main code runs
continually. This loop checks whether the micro:bit has detected
shaking and, if it has, shows the happy face!

Because MicroPython doesn’t have the concept of “events,” you
have to use the was_gesture function inside a while loop to check for the
shake gesture. You can also replace the shake block with up, down, left,
right, face up, face down, freefall, 3g, 6g, or 8g.

Things to Try
Try adding more gestures to the program for Experiment 5. You can
even make each gesture trigger a different icon on the screen.

In Chapter 10, you’ll use gesture detection again to steer a
micro:bit-controlled robot rover!

How It Works: Force, Acceleration, and Gravity
We’ve been talking about force, acceleration, and gravity as if the
accelerometer measures all of these things, but it really just measures
the distance a certain mass moves. Then it computes the other
measurements. Let’s take a look at what the accelerometer chip
actually does to get a better idea of what these three terms mean.



Figure 5-2: The micro:bit’s accelerometer

Figure 5-2 shows a rough sketch of what’s inside the tiny
accelerometer chip attached to your micro:bit.

Imagine a tiny mass m attached to a spring. (The mass is drawn as
a ball in Figure 5-2, but its shape isn’t important.) Normally, the mass
is in position A, but if it’s being pulled against the spring by some
force (for example, gravity), then it will move to some other position,
which we’ll call position B. The stronger the force, the bigger the
difference between A and B. By measuring this distance, the
accelerometer calculates the force acting on the mass.

Looking at Figure 5-2, you can see that the force of gravity alone



will pull the mass down. But the more the spring is stretched, the more
the spring pulls the mass in the opposite direction to gravity. So
gravity applies downward force to the mass, stretching the spring,
which then applies upward force. When the two forces are equal but
acting in opposite directions, the difference between the distances B
and A is a measure of the gravitational force acting on the micro:bit.
The larger the distance between A and B, the greater the force acting
on the mass.

Remember that the g-force relates to the acceleration that occurs
due to gravity. Acceleration is an increase in speed. In other words, if
you drop your micro:bit off a tall building, the acceleration g is the
number of meters per second the micro:bit’s speed increases by every
second. If you dropped your micro:bit off a tall building in a vacuum,
there wouldn’t be any air to slow down the micro:bit, and in this case,
the speed of the micro:bit would increase by about 9.8 meters per
second for every second it fell. So, if it were to start at a speed of 0 (as
you’re holding it in your hand) and then fall for 10 seconds, it would
reach a speed of 98 meters per second (about 220 miles per hour).

Also, when the micro:bit meets the ground after traveling at 220
miles per hour, it will probably be smashed to bits.

However, if you dropped your micro:bit in a vacuum, then its
accelerometer would read 0 even though it was clearly accelerating at
9.8 meters a second. This is because the accelerometer is not really
measuring acceleration. As you saw in Figure 5-3, it’s measuring the
force acting on the mass inside of the micro:bit. That force would be
zero if the mass and the spring were accelerating at the same rate,
which they would be since they’re both in the micro:bit.

If you were in space, well away from the gravitational pull of
celestial bodies, then the acceleration would be equal to the force



acting on the object divided by the mass of the object. Because the
mass is always the same, the accelerometer can tell us the acceleration
of the micro:bit as long as some force, any force, is acting on it.

The accelerometer chip is actually more advanced than Figure 5-2
suggests because it has three force-measuring devices in it, set to
measure force in three directions, all at right angles to each other. In
other words, the chip measures the force acting on it in three
dimensions, X, Y, and Z, as shown in Figure 5-3.



Figure 5-3: The micro:bit’s accelerometer measures force in three dimensions.

If your micro:bit were sitting flat on a table, the X dimension
would run left to right, the Y dimension would run front to back, and
the Z dimension would run above and below the tabletop. So, if the
micro:bit is completely horizontal on a flat tabletop, the force of
gravity will only be acting on the Z (up-down) dimension, while the X
and Y dimensions will measure 0 acceleration. Now, if you tilt the
micro:bit forward a little, then some of the force due to gravity will act
on the Y dimension, so the Y value will no longer be 0. This also
means that slightly less gravitational force is acting on the Z
dimension, so the value of Z will decrease slightly.

From the description so far, you might think that the accelerometer
is only useful for measuring the force of gravity. In fact, looking at
Figure 5-2, it is easy to imagine how shaking the micro:bit or causing
any kind of acceleration on it would change the position of the mass.

EXPERIMENT 6: REAL-TIME
ACCELERATION PLOTTING

Mu has a great feature that will plot data coming from your micro:bit
in real time. In this experiment, you’ll use the Plotter feature to see
how the acceleration data changes when you move your micro:bit.

NOTE At the time of writing, the Plotter feature is available only on the Windows and
Mac versions of the Mu Editor. The experiment also shows you how to get an overall
measurement of acceleration, as well as separate readings for each of the X, Y, and
Z dimensions.



What You’ll Need
For this experiment, you just need a micro:bit connected to your
computer by a USB cable.

Construction

1. This project uses Mu’s Plotter feature, which you’ll need Python for, so
there’s no Blocks code for this. Find the code at
https://github.com/simonmonk/mbms/. The Python file for this experiment
is Experiment_06.py. Flash the program onto your micro:bit.

2. Click the Plotter icon in the Mu toolbar to open Mu’s Plotter, shown in
Figure 5-4. If you want to see the raw data that Mu is using to create
graphs, click the REPL button.

https://github.com/simonmonk/mbms/


Figure 5-4: Plotting accelerometer data using Mu

3. Tilt the micro:bit this way and that to see the changes in the Plotter.

As you can see in Figure 5-4, there are four plots, each drawn in a
different color. There is one plot for each dimension (blue for X, green



for Y, and orange for Z). There is also a purple plot for the net
acceleration, which is the combination of the forces in all three
dimensions. We’ll explain how the net acceleration is calculated in
“How It Works: Calculating Net Acceleration” on page 11.

If you find that readings don’t appear in the REPL area of the
screen, you may have an old micro:bit that needs an update for this to
work. If this is the case, follow the instructions at
https://support.microbit.org/support/solutions/articles/19000019131-
how-to-upgrade-the-firmware-on-the-micro-bit/ to update your
device.

Code
Here’s the Python code that sends the accelerometer data to Mu’s
plotter:

from microbit import *
from math import sqrt

while True:
    x, y, z = accelerometer.get_values()
    net = sqrt(x*x + y*y + z*z)
    all = (x, y, z, net)
    print(all)
    sleep(100)

Import the usual micro:bit library. Then import the square root
function sqrt from the Python math library. We’ll use this function to
calculate net acceleration.

Add a while loop, which gets the readings for the X, Y, and Z
dimensions from the accelerometer in one go using the get_values

method. This line will return a tuple, which is a data structure capable
of holding multiple values. Assign this tuple to three variables: x, y,
and z. These will hold the three values, respectively. We use these

https://support.microbit.org/support/solutions/articles/19000019131-how-to-upgrade-the-firmware-on-the-micro-bit/


variables to calculate the net acceleration, which we assign to the
variable net.

Next, send the net acceleration value along with the individual
values for the X, Y, and Z accelerations to Mu for plotting. Mu
expects the values you want to plot to be in the form of a tuple, so
create a new tuple, all, that contains all four values.

Finally, print the tuple, which not only shows the values on Mu’s
REPL (for more information on this, see “The REPL” on page 23) but
also provides these values to the Plotter. You can see the values
printed in the bottom left of Figure 5-6.

How It Works: Calculating Net Acceleration
To calculate the net acceleration on the X, Y, and Z dimensions, you
need to use some ancient Greek technology: the Pythagorean theorem.

To understand how this works, picture an acceleration force as a
line with an arrow on the end. The arrow indicates the direction of the
force, and the length of the line indicates how strong the force is.
Lines like these are called vectors, and they are used often in physics.

Figure 5-5: Two-dimensional vectors

Vectors are easier to understand in two dimensions than in three.



Figure 5-5 shows some two-dimensional vectors on the X and Y
dimensions. The blue vector along the X axis has a strength of 4, and
the green vector along the Y axis has a strength of 3.

The purple vector, equivalent to the combined effect of the green
and blue vectors, is the net vector our program calculated earlier. The
net vector is useful because its length tells you the overall strength of
the force. To calculate the strength of the net vector, you can use the
Pythagorean theorem.

The Pythagorean theorem says that in a right triangle (a triangle
that has a right angle), the square of the hypotenuse (the triangle’s
longest side) equals the sum of the squares of the other two sides.

Looking at Figure 5-5, you can see that we do indeed have a right
triangle, because the blue and green vectors intersect at a right angle.
Using the Pythagorean theorem, we can say that the square of the
length of the purple line is equal to 32 + 42. That’s 9 + 16, which
equals 25. So, the length of the purple line is the square root of 25,
which is 5.

The math works in three dimensions as well as two. To find the
length of a net vector for the dimensions X, Y, and Z, take the square
root of the sum of the squares of all three X, Y, and Z vectors.

Figure 5-6 shows the three forces in the X, Y, and Z dimensions at
some point in time.



Figure 5-6: Acceleration forces as vectors in three dimensions

Here’s the line of code that calculates the length of the single
vector that would replace the X, Y, and Z vectors.

    net = sqrt(x*x + y*y + z*z)

The X, Y, and Z values are found in a[0], a[1], and a[2],
respectively, in the tuple returned by accelerometer.get_values().

If the X, Y, and Z vectors were of lengths 4, 3, and 2, as shown in
Figure 5-6, then calculating the square of the length of the net vector
would look like this:

4 × 4 + 3 × 3 + 2 × 2 = 16 + 9 + 4 = 29

So, the length of the vector would be the square root of 29, or
about 5.4.

PROJECT: TOOTHBRUSHING MONITOR



Difficulty: Easy

The Mad Scientist is usually a bit distracted by all the interesting
experiments going on, so they need some help brushing their teeth
thoroughly. That’s why the Mad Scientist has used a micro:bit to
create a toothbrush monitor (Figure 5-7) that counts the number of
strokes of the toothbrush.

Figure 5-7: A toothbrush monitor

The toothbrush monitor displays a score that ranges from 0 to 9 on
the display. It increases the score by 1 for every 50 strokes of the
toothbrush. When it counts a score of 10, it displays the happy face
icon to show the Mad Scientist that toothbrushing is all done—until
next time.



WARNING Don’t let your micro:bit get wet—it might break!

What You’ll Need
For this project, you will need the following items:

Micro:bit

3V battery pack To power the micro:bit. (The switched type
battery box is preferred.)

Manual toothbrush Not the electric type

2 × Elastic bands To attach the micro:bit and battery pack to the
toothbrush

This project is intended for a manual toothbrush. Electric
toothbrushes won’t work with this project.

Construction

1. Go to https://github.com/simonmonk/mbms/ to access the book’s code
repository and click the link for Toothbrushing Monitor. Once the
program has opened, click Download and then copy the hex file onto your
micro:bit.

If you prefer to use Python, then download the code from the same
website. For instructions for downloading and using the book’s examples,
see “Downloading the Code” on page 34. The Python file for this
experiment is ch_05_Toothbrush_Monitor.py.

2. Plug the battery pack into the micro:bit and attach the battery and
micro:bit to the toothbrush using elastic bands, as shown in Figure 5-7.

When positioning the bands, make sure they don’t hide the display and
that you can still reach the battery pack’s on/off switch. Also, check that
the bands aren’t over the reset switch on the back of the micro:bit.

3. Switch on the battery pack. Once it’s on, the micro:bit should show 0.

https://github.com/simonmonk/mbms/


Brush vigorously, and after a little while, the display should show 1.

Code
The programs for this project measure the acceleration and, if it is
above a certain level, they add 1 to a count variable to record the
number of brush strokes.

When the count of brush strokes becomes big enough to qualify as
another point in the tooth-brushing score, then the score is also
incremented and displayed.

Eventually, when the score gets to 10, the smiley face icon is
shown on the micro:bit’s display.

Blocks Code
Here is the Blocks code for the project.





This is probably the most complex program so far in the book. The
on start block defines four variables. Here’s what each of them does:

strokes per point This specifies the number of brush strokes
needed to advance your score by a point. If you are a lazy
brusher, then you can decrease this number so that the points
increase more quickly and you get your smiley-face reward faster.
Note, however, that your next visit to the dentist may not be fun.

score This is the number that increases as you complete each set
of 50 brush strokes until it reaches 10.

count This is used to track the number of strokes completed since
you earned a point. It starts at 0 and resets each time the score
goes up.

old mg This variable holds the acceleration value in milli-
gravities the last time it checked for a brush stroke. The program
will compare this value to the new value to detect brush strokes.

We make a forever block, and inside we have a set XX to block.
From the drop-down, we select mg so that that this block puts the
overall acceleration reading into a variable called mg. In the acceleration

(mg) block’s drop-down menu, choose strength, which does the
Pythagorean theorem calculation for you. (If you’re using
MicroPython, you’ll have to calculate it yourself.)

Then a set change in mg block calculates the change in acceleration
strength by subtracting the current strength from the previous strength
(held in old mg). If the change is greater than 800—indicating the start
of a brushing movement—the count increases by 1. The value of 800
was chosen by looking at Figure 5-8, which is a plot of the net
acceleration for a short period of vigorous toothbrushing.



Figure 5-8: A plot of net acceleration during toothbrushing

On the plot, each peak represents one brush stroke, with the
maximum net acceleration occurring when the brush changes
direction. The value of 800 is enough to capture most strokes, since
most strokes produce a change in acceleration of around 1,000. If you
brush your teeth quite gently, you might need to decrease this
threshold, or you could be left brushing your teeth forever, never
racking up a large enough score to stop.

Next, place the first if block to detect acceleration large enough to
indicate a brush stroke and, inside that, place a second if block that
checks the value of count. If the value has exceeded the number you set
earlier in strokes per point, then the program adds 1 to score and displays
the new score value. Finally, the program checks whether score is
greater than 9 and, if it is, displays a smiley-face icon.

MicroPython Code
Here is the MicroPython version of the code.



from microbit import *
from math import sqrt

strokes_per_point = 50
old_mg = 0
count = 0
change_in_mg = 0
score = 0
mg = 0
display.show(str(score))
while True:
    x, y, z = accelerometer.get_values()
    mg = sqrt(x*x + y*y + z*z)
    change_in_mg = mg - old_mg
    old_mg = mg
    if change_in_mg > 800:
        count += 1
        if count > strokes_per_point:
            score += 1
            display.show(str(score))
            count = 0
            if score > 9:
                display.show(Image.HAPPY)

The MicroPython code mirrors the Blocks code almost exactly,
except that the overall strength of the force has to be calculated since
MicroPython has no built-in function for this for the micro:bit.

Things to Try
You could use this project as a pedometer—a device that measures
how many steps you take when walking or running. To do this, try
simplifying the code to get rid of the score variable, because we are
now only interested in the number of steps (equivalent to the strokes
when toothbrushing). You’ll want your code to keep track of steps and
then, when you press button A, display the number of steps you’ve
taken. To test it, tuck the project into your sock (remove the
toothbrush first) and walk around while counting your steps in your
head. Then see how many steps the pedometer says you’ve taken. If
the measurement isn’t accurate, you may need to change the



acceleration threshold from 800 to make the pedometer more or less
sensitive.

EXPERIMENT 7: LOGGING
ACCELERATION TO A FILE

The Plotter built into Mu is great if you don’t mind keeping your
micro:bit tethered to your computer with a USB cable. However,
sometimes the Mad Scientist finds it useful to record readings on the
micro:bit remotely for later analysis.

In this experiment, you’ll use your micro:bit to record
accelerometer readings in a file saved on the micro:bit. You can wave
the micro:bit around and do various other tests on it and then look at
charts of the measured acceleration.



The program will take about 60 readings per second, and it can
record about 45 seconds’ worth of samples before the micro:bit runs
out of memory.

What You’ll Need
For this experiment, you’ll need:

Micro:bit

3V battery pack

Construction

1. This project uses the micro:bit’s local filesystem, which is not available in
Blocks code at the time of this writing. That means you’ll have to use
Python for this experiment. Download the code from
https://github.com/simonmonk/mbms/, along with instructions for
downloading and using the book examples. The Python file for this
experiment is Experiment_07.py. Load the program onto your micro:bit.

2. When you turn on the micro:bit, its display will show an X. This means it
isn’t recording any readings. When you click button A, the icon will
change to a check mark, and the micro:bit will start recording. It will stop
recording when you press button A again, at which point it will save the
accelerometer readings in a file that you can transfer to your computer.

To test this out, press button A, wave the micro:bit around, and press
button A again.

3. To transfer the file containing the readings to your computer, use Mu’s
Files feature. Connect your micro:bit to your computer with a USB cable
and click the Files icon in Mu’s toolbar (Figure 5-9).

The bottom of the window now has two columns. On the left are the
files saved on the micro:bit. In Figure 5-9, there is only one file, data.txt.
On the right are the files in Mu’s code directory, which is in your home
directory under mu code.

https://github.com/simonmonk/mbms/


Figure 5-9: Mu’s File feature in action

To copy the file from the micro:bit, just drag it from the left area to the
right area in the Mu window.

As with Experiment 6, earlier in the chapter, if the Files feature doesn’t
work in Mu, you may have an old micro:bit that needs an update. In this
case, follow the instructions at
https://support.microbit.org/support/solutions/articles/19000019131-how-
to-upgrade-the-firmware-on-the-micro-bit/ to update your device.

4. Once you’ve transferred the data from the micro:bit to your computer,
you’ll plot the data by importing the file into a spreadsheet, such as Excel
or Google Sheets.

The procedure is a bit different depending on which spreadsheet
software you use. I’ll show you how to use Google Sheets since it’s free.

https://support.microbit.org/support/solutions/articles/19000019131-how-to-upgrade-the-firmware-on-the-micro-bit/


You just need to be logged into a Google account.
Visit https://docs.google.com/spreadsheets/ and click the Blank option

in the Start a new spreadsheet area. Then, from the Google Sheets menu,
select File▸ Import. From the pop-up window that appears, select the
Upload tab and navigate to the data.txt file that you copied onto your
computer.

The recorded data should appear in the first column of your
spreadsheet. Select the column and click Insert▸Chart to create a chart of
the data, like the one shown in Figure 5-10.

Figure 5-10: Charting data recorded on the micro:bit

https://docs.google.com/spreadsheets/


Code
Here is the MicroPython code for this experiment:

from microbit import *
from math import sqrt
import os

filename = 'data.txt'

recording = False
display.show(Image.NO)

while True:
    if button_a.was_pressed():
        recording = not recording
        if recording:
            display.show(Image.YES)
            try:
                os.remove(filename)
            except:
                pass
            fs = open(filename, 'w')
                else:
            display.show(Image.NO)
            fs.close()
    if recording:
        x, y, z = accelerometer.get_values()
        net = sqrt(x*x + y*y + z*z)
        fs.write(str(net))
        fs.write('\n')
        sleep(10)

The micro:bit can save only a limited amount of data, so import the
os package, which will let you delete any data already on your
micro:bit.

Set the data filename as data.txt. You can change the name of this
file by altering the value of the filename variable, though I recommend
keeping it as is until you’ve gotten the program working.

Make a variable called recording to keep track of whether the
project is recording or not. This is toggled between True and False in
the main while loop every time button A is pressed to start and stop the



recording of data. That’s what the line recording = not recording does: if
recording is True, the code sets it to False, and vice versa.

Create a while True loop to run forever. Inside this loop are two if

statements. The first tells the micro:bit what to do when button A is
pressed, and the second checks whether we are in recording mode.
When button A is first pressed, recording starts, the screen displays
the YES image, and the os.remove method deletes the existing data file.

We’ve put the remove command within a try: except: Python
structure. This ensures that if any error occurs (in particular, if the data
file can’t be deleted because it’s not there), the program ignores the
error and doesn’t crash the program.

The program then opens the file with a mode of w, which means
you can write in it. When button A is pressed again, the screen
displays the NO image and the file closes.

Also contained in the main while loop is another if block that writes
a reading from the accelerometer to the file as long as recording is True.
If the program runs for too long and fills up all the file space, it will
give an error. However, the data that it wrote before it ran out of room
will still be available.

The sleep command at the end of the recording slows down the
recording process so that you don’t run out of memory too quickly.

Things to Try
This experiment will let you measure accelerations in various practical
situations. You could, for example, record the accelerations on your
micro:bit when you throw it into the air. If you plan to try this, then
it’s wise to take a few precautions:

  Choose an environment with soft ground. That way, if you fail to



catch your micro:bit, it might survive. During experiments like this,
it’s not unusual for a battery to come loose or fall out of its holder.

  Don’t throw your micro:bit somewhere where it may hit someone in
the head.

  Attach the micro:bit to the battery pack. Elastic bands are good for
this.

  Put your micro:bit in a case. A Kitronik MI:pro case with MI:power
battery backpack, shown in Figure 5-11, is a great choice. If you
use this case, you won’t need a battery pack, because the case
contains a tiny 3V battery.



Figure 5-11: Kitronik MI:pro case with MI:power battery backpack

You could also measure acceleration by securely attaching a string
to the micro:bit and swinging it gently in circles. Again, be careful as
the micro:bit could easily become detached from its string, breaking
or hurting someone nearby.

The filesystem used by the micro:bit is very limited; it has only
about 40KB available for storage. Therefore, previous files may be
erased every time you flash a new program onto the micro:bit.



PROJECT: ACCELERATION DISPLAY

Difficulty: Easy

This project, shown in Figure 5-12, allows you to see the micro:bit’s
acceleration on its display. When the micro:bit is at rest, the middle
row of LEDs on the display will be lit. If you rapidly move the
micro:bit up, then the line of LEDs will move up the display, like an
elevator, in response to the increase in the net force. Similarly, if you
quickly move the micro:bit down, the line will move down, indicating
the reduced effect of gravity, as if you were accelerating downward in
an elevator.



Figure 5-12: A Micro:bit acceleration display

What You’ll Need
For this project, you just need a micro:bit. However, it’s useful to
have a battery pack if you want to make this project more mobile.

You could also use the MI:pro case and MI:power combination
shown in Figure 5-11.

Construction



1. Go to https://github.com/simonmonk/mbms/ to access the book’s code
repository and click the link for Acceleration Display. Once the program
has opened, Download and then copy the hex file onto your micro:bit.

If you prefer to use Python, then download the code from the same
website. For instructions for downloading and using the book’s examples,
see “Downloading the Code” on page 34. The Python file for this
experiment is ch_05_Acceleration_Display.py.

2. Try moving your micro:bit up and down, watching how acceleration in
various directions affects the reading. If you can take your micro:bit for a
ride in an elevator, watch as the display shows whether you’re going up or
down.

Code
The code first takes a reading of acceleration and then uses a bit of
math to decide which row of the display to light up.

Blocks Code
Here is the Blocks code for this project.

https://github.com/simonmonk/mbms/




All the code for this project is contained in the forever block. It first
reads the net acceleration and then calculates a value for y. Here, y

represents the row of the display that will light up. When the micro:bit
is stationary, the only force acting on it is gravity, at a net force of
1,000 mg (1 g). Therefore, the program subtracts 1,000 from the net
acceleration and divides the result by 100, so that each 1/10 of g will
cause a change of 1 row in the display. Finally, we add 2 to this result
to display row 2 (the middle row of LEDs, if you start counting at 0)
by default.

Use two if blocks to make sure that the value of y remains between
0 and 4 (for the 5 rows). To draw the correct row, first clear the screen
so the old row isn’t displayed along with the new reading. Then use a
for loop to loop over each of the five LEDs for that row, which are
represented by values of x, to turn them on.

MicroPython Code
Here’s the MicroPython equivalent of the code:

from microbit import *
from math import sqrt

while True:
    x, y, z = accelerometer.get_values()
    acc = sqrt(x*x + y*y + z*z)
    y = int(2 + (acc - 1000) / 100)
    display.clear()
    if y < 0:
        y = 0
    if y > 4:
        y = 4
    for x in range(0, 5):
        display.set_pixel(x, y, 9)

This code is similar to the Blocks code, but you have to calculate the
net acceleration yourself.



SUMMARY
The micro:bit’s accelerometer opens up a lot of opportunities for
projects that detect the movement or orientation of a micro:bit. In this
chapter, you’ve explored some interesting ways you can use the
accelerometer.

You’ve also learned how to plot data coming from the micro:bit
using Mu’s Plotter and record readings into a file to chart and analyze
later.



6
MAD MOVEMENT

In this chapter, you’ll use a few different types of motors to make two
of the most impressive projects in this book: an animatronic head that
swivels its eyes and talks and a robotic, remote-controlled rover.
These toys can amuse the Mad Scientist for hours.

EXPERIMENT 8: MAKING A
SERVOMOTOR MOVE

One way to get things moving is to use a servomotor, like the one
shown in Figure 6-1.



Figure 6-1: A servomotor connected to a micro:bit

A servomotor is a small, low-powered motor with an arm you can
control with your program. Unlike most other motors, servomotors
don’t rotate all the way around. Instead, they have a 180-degree range
of motion. Your program can set the position of the motor arm to a
particular angle.

In this experiment, you’ll learn how to connect a servomotor to a
micro:bit and investigate how the servomotor moves.



What You’ll Need
Micro:bit

Servomotor A 9-g servomotor is ideal. A micro:bit has just
enough power to drive a small servomotor but would struggle
with a full-size one. Choose a servomotor that is 3V compatible.
See the appendix for more details.

Alligator clip-to-male jumper cables These connect the
micro:bit to the servomotor. (You can also use male-to-male
jumper cables; see below.)

USB connection to a computer, Monk Makes Power for
micro:bit or USB battery pack An AAA battery box may
(depending on the servo) work, but AAA batteries may not



provide enough voltage for the servomotor. See the appendix for
options for powering your micro:bit.

Instead of using the alligator clip-to-male jumper cables, you could
use the more common male-to-male jumper cables by pushing one end
of the cable into the servomotor connector and clipping an alligator
cable to the other end. However, you would need to make sure the
connections don’t accidentally short out. In general, alligator clip-to-
male jumper cables will be a useful thing to have in your micro:bit
toolbox, so it’s worth getting some.

Construction
Connect the servomotor to your micro:bit.

1. Go to https://github.com/simonmonk/mbms/ to access the book’s code
repository and click the link for Experiment 8: Servomotors. Once the
program has opened, click Download and then copy the hex file onto your
micro:bit. If you get stuck on this, head back to Chapter 1.

If you prefer to use Python, you’ll find the code for this at the same
website. For instructions for downloading and using the book’s examples,
see “Downloading the Code” on page 34. The Python file for this
experiment is Experiment_08.py.

2. Servomotors come with different kinds of arms that can be attached to the
cog-like shaft of the motor. For this project, select a simple arm like the
one shown in Figure 6-1.

NOTE Your servomotor should come with a little screw. This is intended
to fix the arm more permanently to the shaft. If you’re planning to do the
animatronic head project, keep the screw nearby; otherwise, put it in a
safe place for later use.

3. Connect your micro:bit to the servomotor using the alligator clip, as
shown in Figure 6-2.

https://github.com/simonmonk/mbms/


Figure 6-2: A servomotor connected to a micro:bit

4. The servomotor has three connections, which are color-coded:

Control Orange or yellow (This pin controls the position of the
servomotor’s arm.)

+V The red wire is the positive power wire. Servomotors ideally use
5V, but most small servomotors will also work with the 3V of a
micro:bit.

GND Usually brown, sometimes black (This is the negative power
wire.)

5. Once powered up, the servomotor arm should jump to a 90-degree
position, perpendicular to the servomotor. The micro:bit will use this
position as a reference point. If the arm isn’t at 90 degrees, take it off and
put it back on so that it is, as shown in Figure 6-1. If you plan to make the



animatronic head, use the small screw to fix the arm in place.
6. You now have a functioning servomotor! Pressing button A should move

the servo arm 10 degrees in one direction. Pressing button B should move
the servo arm 10 degrees in the other direction. If you press both buttons
together, the current angle of the arm should scroll across the micro:bit’s
display.

Code
Both programs follow the same approach of first setting the
servomotor’s angle to 90 degrees and then waiting for button presses
to increase the angle, decrease it, or display it.

Blocks Code
Here is the Blocks code for this experiment.





We use a variable called angle to remember the current angle of the
servomotor. We define the angle variable in the on start block and give
it an initial value of 90. When the next servo write pin block runs, it
moves the servo arm to the position set in angle so that the arm jumps
to a 90-degree angle on power-up.

If you press button A, the on button A pressed block is called. If you
press button B, on button B pressed is called. The buttons work in a
similar way. The block for button A first checks whether the angle is
still greater than or equal to 10 and, if so, subtracts 10 from the angle
to move the arm in one direction. The block for Button B checks
whether the angle is less than or equal to 170 and, if it is, adds 10 to
the angle and moves the arm in the opposite direction. Both use the
servo write pin to set the servo to the new angle as a result of the buttons
being pressed.

MicroPython Code
Here is the MicroPython version of the code.

from microbit import *

def set_servo_angle(pin, angle):
    duty = 26 + (angle * 51) / 90
    pin.write_analog(duty)

angle = 90
set_servo_angle(pin2, angle)

while True:
    if button_a.was_pressed() and angle >= 10:
        angle -= 10
        set_servo_angle(pin2, angle)
    if button_b.was_pressed() and angle <= 170:
        angle += 10
        set_servo_angle(pin2, angle)

if button_a.is_pressed() and button_b.is_pressed():
    display.scroll(str(angle))



The MicroPython code works in much the same way as the Blocks
code. But unlike in the Blocks code, there is no predefined function to
set the servomotor to a particular angle. Fortunately, we can write our
own method using a little math and PWM analog outputs (see
“Making an Analog Signal: Pulse Width Modulation” on page 8),
which generate the pulses that our servomotor expects (more on this
next).

How It Works: Servomotors and Pulses
You control servomotors by sending them a series of repeating
electrical pulses—in this case, from the micro:bit. The pulses are
generated by turning a pin on and off very quickly. The servomotor
knows how to act based on how long the pulse has been high (3V)
over a certain time period. The proportion of time that the signal is
high, and thus the pin is on, is known as the duty cycle. This is
different from the actual amount of time that the signal is high, which
is known as the pulse width. We refer to this amount of time,
measured in milliseconds (ms), as a width because we can visualize
pulses as a square wave (see Figure 6-3). The total length of the wave
(between each on pulse) is the period.



Figure 6-3: Pulses controlling a servomotor

A servomotor expects to receive a pulse every 20 milliseconds, or
at a rate of 50 pulses a second. Each pulse has a width between 0.5
milliseconds and 2.5 milliseconds.

As you can see in Figure 6-3, the length of the pulse determines the
position of the arm. If the pulse width is 0.5 ms, the servomotor’s arm
will be at one end of its range (0 degrees). If the pulse width is 1.5 ms,
the arm will be at its center position (90 degrees). And if the width is



2.5 ms, the arm will be at 180 degrees.

Conveniently, the micro:bit’s default frequency for analog output
(see Chapter 1) is 50Hz—exactly the right frequency for a
servomotor. However, even the longest pulse is only 2.5 ms out of a
total period of 20 ms, meaning that the longest pulse will only be high
about one-tenth of the time.

Figure 6-4 helps to explain how the numbers used in the
MicroPython set_servo_angle function were calculated. The duty value
is the number supplied to the set_servo_angle function. This value must
be between 0 and 1023, where 0 is no pulse at all and 1023 is a pulse
so long that it lasts until the next cycle.

Figure 6-4: Correspondence of duty values to pulse widths to servo arm angles

The top line of Figure 6-4 shows the servo arm’s range of positions
in terms of angles from 0 to 180 degrees. The code must convert this
into a different range of numbers, from 0.5 to 2.5, that are the pulse



widths corresponding to those angles.

To convert an angle in degrees to a pulse width in milliseconds,
we’ll start with the information that a pulse of length 0.5 ms is equal
to an angle of 0 degrees and a pulse of length 2.5 ms is equal to an
angle of 180 degrees. We can then find the degrees per millisecond by
dividing the range of degrees (180) by the range of pulse lengths (2),
giving 90 degrees per millisecond. Then, to calculate the pulse length
of a new angle, we begin with our baseline, 0.5 ms and add the angle
we are using divided by 90, the degrees per millisecond.

Let’s consider an example. If the angle is 0 degrees, the pulse
length in milliseconds will be 0.5 (0.5 + 0/90 = 0.5). If the angle is 90
degrees, the pulse length will be 0.5 + (90/90) = 1.5 ms. And if the
angle is 180 degrees, the pulse length will be 0.5 + (180/90) = 2.5 ms.

Now we have a formula for the pulse length for an angle:

pulse_length = 0.5 + angle/90

But, referring to Figure 6-5 again, we need to convert the pulse
length in milliseconds to a duty value between 0 and 1023 because the
set_servo_angle function expects a value in that range.

The duty value (0 to 1023) is calculated by multiplying the pulse
length in milliseconds by the number of steps per millisecond
(1023/20 ≈ 51). For example, a pulse length of 1.5 milliseconds would
require a duty value of 1.5 × 51 ≈ 77.

In other words:

duty_value = pulse_length × 51

Combining these two formulas, we have:



duty_value = (0.5 + angle/90) × 51

This can also be written as (with rounding):

duty_value = 26 + angle × 51/90

So the values used in the write_analog function are between 26 and
128. This range reflects the fact that the pulses are quite short in
comparison to the maximum duty cycle value of 1023.

PROJECT: ANIMATRONIC HEAD (MIKE
THE MICRO:BIT ROBOT)

Difficulty: Hard

This animatronic head, shown in Figure 6-5, makes a great project for
a Halloween display. A servomotor moves a pair of ping-pong ball
eyes from left to right, and it uses the micro:bit’s display as a mouth.
When the head talks, the lights simulate a simple animation of lips
moving.



Figure 6-5: The animatronic head

What You’ll Need
For this project, you’ll need the following items:

Micro:bit

Servomotor A small 9g servomotor is ideal.



Amplified speaker For the head’s voice (Monk Makes Speaker
for micro:bit is a good choice.)

3 × Alligator clip-to-male jumper cables To attach the
servomotor

3 × Alligator clip cables To attach the speaker

2 × Ping-pong balls For the eyeballs (Balls without any writing
or logos on them make decoration easier. Grab a couple of spares,
just in case.)

Thick card Roughly letter or A4 card that is 3 mm or more thick

Paper and access to a printer To print a template for cutting out
the framework

2 × 3-inch (75 mm) paper clips These are used to make the axles
that allow the eyes to swivel and the frame that connects the eyes
to the servomotor. Ideally, these are 1.5 mm in diameter.

Adhesive tape For sticking the cardboard together and sticking
various things to the cardboard

Blu-Tack adhesive putty To attach the speaker to the cardboard

Paper glue To stick the template onto the cardboard

Scissors and/or craft knife

Paint or pens To draw the eyeballs

A drill with 5/64-inch (#47) or 2-mm bit To make holes in the
ping-pong balls

Pliers To bend the wire

Construction
We’ll begin by creating the eyeballs.



1. Grab two ping-pong balls (Figure 6-6) and prepare to decorate. The best
way to draw an eyeball is to first find two small circular items, one a bit
bigger than the other (perhaps the lid of a toothpaste tube and a ring) and
then, using the circular items and a pencil, trace two concentric circles on
the surface of the ping-pong ball. Once this is done, color the outer ring
(the iris) and the inner circle (the pupil) two different colors.

Figure 6-6: Decorating an eyeball

2. Once you’ve drawn on the two balls to make them look like eyes, drill
three holes in each, through which you’ll feed wires. Using a pencil, make
three marks: with the pupil of the eye facing you, make one mark at the
bottom of the ball, one at the top, and a final mark on the back opposite
the pupil. The holes on the top and bottom will be used to thread the
eyeball onto a vertical wire to hold it in position. The hole in the back will
be used to attach the second wire, which will move the eye left and right.

WARNING Using a drill can be dangerous! For this part of the project, a
responsible adult should use the drill or at least supervise. The main
precaution is to keep the ping-pong ball on a flat surface and hold it from
the sides. Then drill from above, as shown in Figure 6-7. If you have a
vise to clamp the ball in place, that’s even better.



Figure 6-7 Drilling the eyeball

3. Once you’re happy with the position of the marks, grab a drill bit with a
diameter slightly larger than that of the paper clip wire and drill into the
ping-pong ball. For the 1.5 mm paper clips, a 5/64-inch (#47) or 2-mm
drill bit is perfect.

4. Make a frame for the eyeballs. Start by completely straightening out a
paper clip. Then make the three bends labeled A, B, and C in Figure 6-8.



Figure 6-8: Where to bend the paper clip to make the eye frame

5. Make bends A and C first. Both should be 90 degrees. These will hold the
eyeballs upright. Next, make a slight bend at the center of the wire—this
is bend B. Bend B will provide something to tape onto the cardboard
chassis you will make next. Place the eyeballs on the frame as shown in
Figure 6-9.



Figure 6-9: Placing the eyes on the frame

6. Once you’ve mounted the eyeballs, you can bend the 10 mm tips of the
wires over the eyeballs to prevent them from falling off, as shown in
Figure 6-9. Use pliers to avoid hurting your fingers.

NOTE These bends don’t have to be perfect the first time. Plan to make
some adjustments as you build the project.

7. Now let’s start assembling the cardboard chassis that will hold everything
together. To make this easier, I’ve provided a template that can be
downloaded with the code for the book. The template is in the folder other
downloads and is called Animatronic_Head_Template. It is available in
PDF, PNG, and SVG formats. Download it, print it out, and fix it onto a
slightly larger piece of cardboard, as shown in Figure 6-10.



Figure 6-10: The paper template glued to a piece of cardboard

8. Except for the places noted in Figure 6-10, cut along the lines. This will
give you the pieces of cardboard shown in Figure 6-11. For many of the
cuts, scissors will be fine, but you’ll really need a craft knife to make the
cutouts for the slots and servomotor.



Figure 6-11: The cardboard pieces for the chassis

WARNING Only use a craft knife with adult supervision. Craft knives are
very sharp, and it’s easy to accidentally cut yourself with them.

9. Attach the micro:bit to the front card by poking holes through the pairs of
small circles marked on the front of the board. Then, for each pair of
holes, clip an alligator clip through the back. These clips will both allow
you to make electrical connections and keep the micro:bit securely



attached to the card.
Attach the alligator clips in the order suggested in Figure 6-12: red to

3V, black to GND, and yellow to pin 0. Make sure to attach two alligator
clips each to the GND and 3V connections of the micro:bit.

Figure 6-12: Connecting cables to the micro:bit

10. To connect the micro:bit to the servomotor, you’ll need to attach three
alligator clips with male jumper cables on one end. Clip a yellow alligator
clip with a male jumper cables to pin 2. Then, pull back the insulating
sheath on the red alligator clip already attached to the 3V, expose some of
the metal, and clip the red alligator clip with male jumper cable to the red
clip. Do the same with the black GND cable, pulling back the insulating
sheath of GND’s black alligator clip and attaching the black alligator to
male jumper cable (Figure 6-13).



Figure 6-13: Attaching the micro:bit to the front of the cardboard

11. Now slot the bottom piece of cardboard into the front piece and fix it in
place using adhesive tape (Figure 6-14).



Figure 6-14: Attaching the bottom card to the front card

12. Now attach the speaker to the back card; use adhesive tape or putty to
secure it. Clip the other end of the three alligator clips you’ve connected
to the micro:bit (black, red, and yellow) to their corresponding ports on
the speaker (GND, 3V, and 0, respectively). Affix the back card to the
bottom card using adhesive tape. As you can see in Figure 6-15, your
chassis should now be in a U shape. The red, blue, and yellow alligator
clips here are waiting to be attached to the servomotor.

Figure 6-15: The back card and speaker

13. With the servomotor arm fixed in place at 90 degrees (review the end of
Experiment 8 if needed), push the servomotor through the top card (the
round face), threading the servomotor’s wire through first. Notice that the
servomotor’s shaft is not in the center of the servomotor but rather toward
one end; that end should be at the end of the servomotor cutout that is
closest to the center of the top card (see Figure 6-16).



Figure 6-16: Connecting the servomotor

14. Attach the male jumper pins to the servomotor’s socket, as described in
Experiment 8.

15. With everything connected together, attach the top piece of cardboard to
the rest of the chassis. The two circles marking the position of the eyes on
the top piece should face the micro:bit end of the chassis (refer to Figure
6-5).

16. Now attach the eyeballs and wire frame to the top card, as shown in
Figure 6-17. Adjust the bend in the middle of the wire frame so that the
eyeballs are centered over the two circles drawn on the top card. Then use
adhesive tape to hold the wire in place. Give the eyeballs a little spin to
make sure they can turn freely.



Figure 6-17: Connecting the eyeballs

17. To connect the servomotor to the eyeballs, you’ll need to straighten out
the other paper clip, as shown in Figure 6-18.



Figure 6-18: Making the connector between the servomotor and the
eyeballs

18. To make the loop in the center of the wire, wrap the wire tightly around a
small screwdriver shaft (shown in Figure 6-19). The diameter of the
screwdriver I used was about 3 mm, making the outside diameter of the
little loop around 5 mm. Use a screwdriver with a sharp end that’s
narrower than the shaft, or it will be hard to slide the wire off once it’s
been bent. Make sure to straighten the legs of the wire as shown.



Figure 6-19: Using a screwdriver to bend a loop in the servomotor-to-
eyeball connector

NOTE Screwdrivers are sharp and it takes strong hands to bend the thick
wire around the screwdriver, so you might need adult help for this bit.

19. Adjust the connector by bending the paper clip until the arms are the same
distance apart as the holes in the backs of the eyeballs. Then, hook the
wire into the backs of the eyeballs. Use one of the screws provided with
the servomotor to fasten the loop to the tip of the servomotor’s arm, as
shown in Figure 6-20. Depending on how snugly the servomotor fits its
cutout in the top card, you may need to tape down the motor to prevent it
from moving.



Figure 6-20: Fitting the servomotor–eyeball connector to the card

Now connect the USB cable from your micro:bit and try the
project out!

Code
First, we’ll use the code from Experiment 8 to test that our
mechanisms are all working. Once you’re sure everything is working
well, switch to the code for this project.

Using the Code from Experiment 8 as a Test
Go to https://github.com/simonmonk/mbms/ and click the link for
Experiment 8: Servomotors. Once the program has opened, click
Download and then copy the hex file onto your micro:bit. If you

https://github.com/simonmonk/mbms/


prefer to use Python while testing, download the Python file,
Experiment_08.py, from the same website.

Once the code is loaded, try pressing the A and B buttons to move
the servomotor’s arm left and right. You will probably need to adjust
the connector wire slightly so that the eyes are lined up and move
freely left to right. Only take the servomotor arm a few steps to either
side of the 90-degree position or the linkage might get jammed.

Using the Real Project Code
Once you’re satisfied that the eyeballs are moving the way they
should, you can switch to the real project code.

Because this project uses a speech library, it is only available in
MicroPython form. Go to https://github.com/simonmonk/mbms/ to
download the Python file is ch_06_Animatronic_Head.py.

Flash it onto your micro:bit and then gently poke the robot. The
accelerometer should pick up the movement and tell your animatronic
head to swivel its eyes, say something witty, and then look straight
ahead again. For a video of this project, go to my YouTube channel
(https://www.youtube.com/watch?v=FAJTS2Z8ZDA).

The software for this project does two things: it detects when the
head is poked, and it triggers talking events after random periods of
time have elapsed. The code is rather long, so instead of showing all
of it, I’ll just highlight the key parts. If you want to follow along, load
the code into Mu.

To make it seem as though your animatronic head has a mind of its
own, we use the Python random library to give us random numbers,
which will trigger random events:

import random

https://github.com/simonmonk/mbms/
https://www.youtube.com/watch?v=FAJTS2Z8ZDA


Rather than give the head a free range of eye movements, we keep
a list of possible eye angles in the array eye_angles. When we want to
set the eyes in a random direction, we simply use the random function
from the random library to take an angle from this array.

If you’ve played around with the head, you’ve probably noticed
that it doesn’t know that many sentences. The phrases it speaks are
contained in the array sentences, shown here:

sentences = [
"Hello my name is Mike",
"What is your name",
"I am looking at you",
"Exterminate exterminate exterminate",
"Number Five is alive",
"I cant do that Dave",
"daisee daisee give me your answer do"
]

As with the eye angles, when we want a sentence, we’ll take it
from this array. As you can see in the code, with robotic speakers,
sometimes it’s better to spell a word phonetically than spell it
correctly.

The three lip images for the speech animation are created as
custom Image objects. Here is the one for the resting lip animation, a
horizontal line:

lips0 = Image("00000:"
              "00000:"
              "99999:"
              "00000:"
              "00000")

Each of the five rows in Image is a string representing one row of
the display; each digit in the string represents the brightness from 0 to
9 of a particular LED.

The images for the lips are held as an array in the variable lips:



lips = [lips0, lips1, lips2]

Both the speaking and the lip animation are controlled by the
function speak, which takes in the sentence to speak as a parameter:

def speak
(sentence):
    words = sentence.split()
    for i in range(0, len(words)):
        display.show(random.choice(lips))
        speech.say(words[i])
    display.show(lips0)

To make sure that the lips animate as the words are spoken, we use
the split method to break the sentence into the list of individual words
saved as words. Then, for every word in the list, we display one of the
lip images (chosen at random using the choice method from the
random library) and have speech speak the word. When all the words
have been spoken, the lip display shows the default lips0 image.

Next, we define an act() function:

def act():
    set_servo_angle(pin2, random.choice(eye_angles))
    sleep(300)
    speak(random.choice(sentences))
    set_servo_angle(pin2, 90)
    sleep(2000)

The act function does three things: it moves the eyes at random by
setting the servomotor to a random angle, it selects a sentence to speak
by calling speak, and it resets the eyes by setting the servomotor angle
back to 90 degrees. To allow for some time between each step, the
code makes a call to sleep.

Here is the main body of our code that uses all of our variables and
functions:



while True:
    new_z = abs(accelerometer.get_z())
    if abs(new_z - base_z) > 20:
        base_z = new_z
        act()
    if random.randint(0, 1000) == 0:
        act()
    sleep(50)

In the main body of the code, we have a while True loop, which
means the commands execute until the code is signaled to stop. This is
useful for when you need code to respond continuously to input. Here,
we want to be ready for the sudden change in acceleration caused by a
tap on the robot’s head. First, the loop registers the acceleration from
the accelerometer. Then, it uses the abs function to get the magnitude
of the acceleration—in this case, we don’t care about the direction,
just how large the acceleration is.

In the first if statement, we check whether the acceleration value
has changed by more than 20 mg (milligravities). If so, the base
acceleration is updated to the new acceleration (ensuring that the next
time through the loop, the acceleration has to change by another 20
mg), and act is called.

In the second if statement, we give the animatronic head a bit of
randomness. The code picks a random number between 0 and 1,000. If
it is equal to 0 (a 1 in 1,001 chance), the act function is called. Even
though this probability is very low, since the value gets checked
hundreds of times a second, the head springs into action several times
a minute.

Things to Try
Try using a USB battery or AAA battery box to power the head
instead of keeping it tethered to your computer with a USB cable.



If you want to change up your head’s speech, go into the code and
add more sentences to the sentences array.

The speech library produces rather quiet speech that is also quite
indistinct. You can improve this a little by connecting a bigger
amplified speaker.

If you want to add a bit more to the project, take a look at the code
examples here: https://microbit-
micropython.readthedocs.io/en/latest/tutorials/speech.html. In this
code, the speech library is used to produce singing.

PROJECT: ROBOT ROVER

Difficulty: Hard

In this project, we’ll create a robotic rover. Using a clever app called
Bitty Controller, you’ll be able to control the little buggy with your
Android phone (Figure 6-21). The Mad Scientist likes to use the rover
to deliver notes to the lab assistants.

WARNING We’re going to use some low-cost chassis kits for this project, but the
wires that come with these kits are usually loose—meaning you’ll need to solder the
wires onto the motors. This is the only project in the book that requires soldering. The
soldering isn’t difficult, but it is dangerous and you can easily get burned. So please
find an adult to do this part.

https://microbit-micropython.readthedocs.io/en/latest/tutorials/speech.html


Figure 6-21: A micro:bit-controlled roving robot

What You’ll Need
For this project, you’ll need the following items:

Micro:bit

Android phone

Kitronik Motor Driver Board for micro:bit (V2) To control the
motors

Low-cost robot chassis kit Includes two gear motors and a 4 ×
AA battery box

4 × AA batteries

Bitty Controller App for Android From Google Play Store



(about $5)

Assorted screwdrivers Suitable for both the nuts and bolts on the
chassis and the screw terminals on the motor controller board

Soldering equipment To attach the wires to the gearmotors

Blu-Tack adhesive putty To attach the motor control board and
micro:bit to the chassis

If you search eBay or Amazon for robot chassis, you’ll find low-
cost robot chassis kits like the one shown in Figure 6-22. Look for one
that includes a 4 × AA battery box and two gearmotors (motors with a
built-in gearbox).

Figure 6-22: The low-cost robot chassis used by this Mad Scientist



Construction
Maybe the trickiest part of this project is the chassis kit assembly.
Getting the screws and bolts in the right place will require precision
and finesse.

Not all chassis will be the same, so instead of taking you through
the assembly step-by-step, I’ll just give you some high-level advice.
Your chassis should come with instructions, although they may be
somewhat cryptic. In general, you’ll need to attach the gear motors,
the castor wheel (the wheel that can turn freely in any direction), the
motor controller, and the micro:bit.

1. Solder the supplied wires onto the motor terminals, as shown in Figure 6-
23a–c. If you work quickly, a good soldering joint can be made by melting
a generous amount of solder onto the motor terminal and then pressing the
wire onto the dome of solder with the iron (Figure 6-23a).





Figure 6-23: Soldering wires onto the motor

2. It doesn’t matter much which terminal you attach the red wire to. Just be
sure to be consistent between the two motors. That is, if you decide to
attach the red wire to the right-hand terminal on one motor, solder the red
wire to the right-hand terminal of the other motor as well.

3. Remove the layer of paper covering the chassis. Figure 6-24a–e shows the
assembly process at a high level. You may find that your chassis is
different.





Figure 6-24: Building the chassis

Here are a few things to remember when building the chassis:

  Don’t overtighten the nuts and bolts, as doing so can cause the plastic
chassis to crack.

  When attaching the gearmotors, put the nuts toward the inside of the
chassis so that the motor-fixing bolts that stick out beyond the nut
won’t get in the way of the wheels.

  If the bolt doesn’t turn smoothly into the nut, try turning the bolt
counterclockwise a little to find the start of the nut’s thread. You may
want to use a pair of small pliers to grip the nut while you turn the
screw with a screwdriver.

4. Once you have the chassis securely assembled, attach the micro:bit to the
Kitronik Motor Driver board with the micro:bit’s screen facing outward,
as shown in Figure 6-25. Line up the micro:bit’s edge connector carefully
with the socket on the Motor Controller and press it firmly into place.
When your controller looks like Figure 6-25, stick it to the chassis using
adhesive putty, also shown in Figure 6-25.



Figure 6-25: Attaching the micro:bit

5. It’s time to wire up the motors and battery box. First, look at Figure 6-26
to see what you are aiming for. Unscrew the screw on the relevant
terminal, place the wire firmly inside the terminal, and then screw the



screw back in fairly tightly.

Figure 6-26: Wiring up

6. Make the following connections:

  Red (positive) wire from the battery box to the screw terminal marked
RED + on the Motor Controller

  Black (negative) wire from the battery box to the screw terminal



marked BLACK - on the Motor Controller

  Red wire from the left (as viewed from the back of the rover) motor to
the screw terminal on the Motor Controller labeled MOTOR1 P12

  Black wire from the left motor to the screw terminal on the Motor
Controller labeled MOTOR1 P8

  Red wire from the right motor to the screw terminal on the Motor
Controller labeled MOTOR2 P0

  Black wire from the right motor to the screw terminal on the Motor
Controller labeled MOTOR1 P16

7. In this project, you’ll use an Android app to control the rover via
Bluetooth. You can find the code that runs on the micro:bit at
http://www.bittysoftware.com/downloads.html#controller. Click the link
micro:bit hex file for Kitronik Buggy - no pairing required and
download the hex file. This file is also available with the book downloads
in the Other Downloads folder. Next, connect the micro:bit to your
computer with a USB and copy the downloaded hex file onto your
micro:bit. You won’t need batteries just yet.

8. To install the app on your Android phone, open Google Play and search
for Bitty Controller. You’ll have to pay a few dollars for the app.
Download and install the app.

9. We’re one step away from trying out the project! Put four AA batteries
into the battery box. These will power both the motors and your micro:bit,
meaning you can disconnect the USB cable—it’s time to set your rover
free.

Open the Bitty Controller app (Figure 6-27) and click Scan. This
should find your micro:bit. In Figure 6-27, it’s called BBC micro:bit
[gaviv]. Click this and the RC-style controller of Figure 6-28 should
appear. The micro:bit’s display should also show a C, indicating that
it’s connected to your phone.

http://www.bittysoftware.com/downloads.html#controller


Figure 6-27: Starting Bitty Controller



Figure 6-28: The Dual D-Pad Controller

Use the top and bottom square buttons to control the forward and
backward motion of the rover. To turn the rover left and right, use the
left and right round buttons.

For a first test, do something simple: flip the rover onto its back
and use the app to control the wheels. Do they spin? Once the rover
passes that test, put it on the floor and try driving it around. If you
don’t like the controller layout, head to Options on the Bitty
Controller app to find other layouts.

The rover may move forward when you tell it to go backward and
vice versa. If this happens, your wires are swapped: switch the red and



black wires for motor 1 and motor 2. If your rover drives around in a
circle, swap one of the pairs of wires on one of the motors.

When you want to turn off your rover (a good way to make your
batteries last longer), just lift one end of one of the batteries out of the
battery holder. Ta-da! Now you have a crude switch.

How It Works: Motors and the Flow of Electricity
The direction of the gear motors is controlled by the direction of the
current flowing through them—if you reverse the direction, you
reverse the motors. As you can see in Figure 6-29, a motor turns
clockwise if connection A is positive and connection B is negative. If
A and B are reversed, so that A is negative and B is positive, the
motor moves the other way.



Figure 6-29: Controlling the direction of a motor

The Kitronik Motor Controller contains a chip that controls the
direction of current in two motors. It also supplies the relatively high
current that the motors need.

SUMMARY
We covered a lot of ground in this chapter. First, we learned about
servomotors and how to set one up using the micro:bit. Then, we built
two complex projects: the animatronic head and the remote-controlled
rover. Along the way, we learned about PWM and current flow and
picked up a few basic programming tricks to boot.



Now that you know how to make things move, you can start
thinking about other projects you’d like to make. What things would
you like to have move all on their own? In the next chapter, we’ll look
at how to deal with time.



7
TIME TRAVEL

Okay, so we won’t actually build a time machine in this chapter, but
you’ll measure time by making a binary clock and a clock that can
speak. We’ll also conduct an experiment to test how well your
micro:bit can keep time. All the experiments and projects in this
chapter use MicroPython only.

EXPERIMENT 9: KEEPING TIME

The aim of this experiment is to make a micro:bit clock that keeps
good time. That means programming the micro:bit to tick at precisely
one-second intervals.



One way to do this would be to use the sleep function, as in the
code shown here. Note that this code is not a full program, so don’t try
to run it. The sleep command stops the micro:bit from doing anything
for however long you specify. In our case, the delay is 1,000
milliseconds (1 second).

seconds = 0

while True:
    sleep(1000)
    seconds += 1

In this example, after each 1 second delay, the program adds 1 to



the seconds variable, which counts the number of seconds that have
passed. This loop repeats indefinitely and, as a way of marking time,
works for a bit.

The problem is that the clock will gradually fall behind because we
haven’t accounted for the time it takes the micro:bit to add 1 to the
seconds variable. In this example, adding 1 to the variable won’t take
much time at all, but if the program got any longer—for example, by
telling the clock to also display the time or even speak the time, which
we’ll try later—then the delay could become significant. It would also
be unpredictable, as the time lost may not be the same every time the
program loops.

Therefore, a better way to keep time is to use the running_time

function. This function returns the number of milliseconds that have
passed since the micro:bit was last reset, and it’s not affected by how
long other parts of your code take to do things.

In this experiment, we’ll use the running_time function to calculate
just how slow or fast our micro:bit clock runs.

What You’ll Need
To carry out this experiment, you just need two things:

Micro:bit

USB cable

Construction

1. Find the code at https://github.com/simonmonk/mbms/. The Python file for
this experiment is Experiment_09.py. Open the program in Mu and flash it
onto your micro:bit.

2. Once you’ve successfully programmed the micro:bit, press button B. You

https://github.com/simonmonk/mbms/


should find that the micro:bit sets the seconds to 0 and starts counting up
from there.

3. Set a timer on your phone or another device for exactly 16 minutes 40
seconds. Start the timer and, at the same time, press button B to reset the
micro:bit’s second count. At the end of the timed period, press button A to
freeze the clock and make a note of the number of seconds displayed.

Because this experiment is all about timing, it’s important to start
the timer at exactly the same time that button B is pressed and to press
button A as soon as the timer sounds. This will be easier if a friend
helps: one of you can operate the timer, while the other operates the
micro:bit.

The reason for setting the timer to 16 minutes 40 seconds is that
this is 1,000 seconds. If the micro:bit’s second count is greater than
1,000, then the clock is running fast, and if the count is less than
1,000, the clock is running slow. My micro:bit’s second count was
989, indicating that the micro:bit’s internal clock was running about
11 parts in 1,000 too slow.

Make a note of your micro:bit’s second count. You’ll use it in the
projects in this chapter to make your clock more accurate.

Code
Here is the MicroPython code for Experiment 9:

from microbit import *

seconds = 0
last_time = 0

while True:
    now = running_time()
    elapsed_ms = now - last_time
    if elapsed_ms >= 1000:
        seconds += 1



        last_time = now
    if button_a.was_pressed():
        display.scroll(str(seconds))
    if button_b.was_pressed():
        seconds = 0
        display.show("0")
        sleep(100)
        display.clear()

The program uses two variables:

last_time Keeps track of the last time that the clock ticked

seconds Keeps track of the number of seconds that have passed
since the micro:bit was last reset and the clock started running

I find it useful to think of the clock ticking, like a regular clock.
That is, it does something at regular intervals.

The main while loop uses the running_time function to find out how
long the micro:bit has been running in milliseconds. It stores that
number in a variable called now. It then calculates how many
milliseconds have elapsed since the last tick by subtracting last_time

from now.

If the number of milliseconds elapsed is greater than or equal to
1,000—in other words, greater than or equal to 1 second—then the
seconds variable increases by 1. Then we reset the number of
milliseconds elapsed to 0 so we can count elapsed time over again.

We use two if statements to program button A and button B. If you
press button A, the micro:bit will display seconds, or the time that’s
passed since the program started running. If you press button B, the
seconds count will reset to 0.

How It Works: Keeping Time
The micro:bit’s processor uses a crystal oscillator (an electronic



component used to keep time accurately) that should be accurate to
better than 30 parts per million. However, for my micro:bit, it was
inaccurate by 11,000 parts per million for some reason.

To get a truly accurate clock, you’d need to use a dedicated RTC
(Real Time Clock) chip and separate crystal oscillator. At the time of
writing, no RTC chips are available specifically for the micro:bit.
Although they can be made to work with the micro:bit, this is a fairly
tricky process. Therefore, it’s probably best not to rely too much on
either of the clocks you’ll build in this chapter, but these projects are
fun and will teach you important skills.

PROJECT: BINARY CLOCK

Difficulty: Easy

In this project, shown in Figure 7-1, you’ll create a clock that shows
you the time in binary. Binary is a numbering system used in
computers. You can learn more about it in the “How It Works: Telling
the Time in Binary” on page 176. A binary clock displays hours,
minutes, and seconds as separate binary numbers on the micro:bit’s
LED display.



Figure 7-1: The binary clock in the Kitronik MI:Pro case

Figure 7-2 shows the binary numbering system on the micro:bit. It
might seem confusing at first, like a random pattern of LEDs, but I’ll
explain how it works shortly. Plus, the Mad Scientist loves to show off
their skill at reading binary clocks to impress their friends!



Figure 7-2: Reading the binary clock

How to Read the Binary Clock
Our binary clock is a 24-hour clock. To read the clock, start at the top
row of LEDs, shown in Figure 7-2. This row represents the hours.
Each column of LEDs stands for a number. From right to left, the
columns represent the numbers 1, 2, 4, 8, and 16. By adding these five
numbers, you can create every possible value between 1 and 24. To
work out the hour, add the column numbers for the LEDs that are lit.
In the case of Figure 7-2, that’s 1, 2, and 8, which add up to 11. So,
the hour is 11.



The next two rows represent the number of minutes, and the
bottom two rows represent the number of seconds. Both minutes and
seconds are indicated by a row with the same 1, 2, 4, 8, and 16 LEDs.
However, since we need to be able to count all the way to 60 for
minutes and seconds, these values are indicated by an additional LED
(worth 32) on the preceding row. As shown in Figure 7-2, the 32 LED
for minutes is the leftmost LED on the second row from the top, and
the 32 LED for seconds is the leftmost LED on the fourth row from
the top.

In Figure 7-2, the 4 and 1 minute LEDs are lit, indicating 5
minutes. The 2 and 1 second LEDs are lit, indicating 3 seconds. All
together, this display is saying the time is 11:05:03.

Holding down button A will make the numbers on the clock
advance very quickly, allowing you to set the time. You just need to
be ready to stop the clock as soon as it reaches the correct time.

You can see a video of the clock in operation, including how the
time is set, at https://www.youtube.com/watch?v=v26gYo5OG0g.

What You’ll Need
For this project, all you need is your micro:bit and a power source.

If you plan to keep your clock running constantly, then you should
use a USB power adapter or other long-term power source for the
micro:bit (see the appendix) to save on batteries. You might also want
to get a case for the micro:bit to make your clock look nicer.

Remember that the clock won’t keep perfect time, so you’ll need to
reset it fairly often.

Construction

https://www.youtube.com/watch?v=v26gYo5OG0g


1. The code for this project is in MicroPython, because the math required
would be extremely tricky to do in the Blocks code. Download the code
from https://github.com/simonmonk/mbms/. The file for this project is
ch_07_Binary_Clock.py.

2. Before loading the program onto your micro:bit, open it in Mu and change
the current time so it’s accurate. You should probably set it to a few
minutes before the current time, just to be safe. You can adjust it later by
holding down button A.

Change the time by altering the following lines. Remember that this is
a 24-hour clock, so, for example, 6:00 PM is 12 + 6 or 18 hours.

hours = 8
minutes = 25

You should also change the value of the adjust variable to the number
of parts per thousand by which your micro:bit’s clock is slow or fast. My
micro:bit ran slow by 11 seconds in 1,000, so I set adjust to –11 to speed it
up a little (note the negative sign). If the micro:bit had run fast by, say, 10
seconds per 1,000, then I would have set adjust to 10 to slow things down a
tiny amount.

Code
This project involves quite a lot of math. We’ll also use some more
advanced programming features, such as two-dimensional arrays,
which are much easier to implement in Python than in Blocks code.

Let’s break the code into chunks, starting with the lines that assign
the correct binary values to each LED:

# hhhhh
# m
# mmmmm
# s
# sssss
sec_leds = [[4, 4], [3, 4], [2, 4], [1, 4], [0, 4], [0, 3]]
min_leds = [[4, 2], [3, 2], [2, 2], [1, 2], [0, 2], [0, 1]]
hour_leds = [[4, 0], [3, 0], [2, 0], [1, 0], [0, 0]]

https://github.com/simonmonk/mbms/


adjust = -11

The first four lines of code aren’t actually part of the program.
They’re comment lines, or notes, reminding you which LEDs display
the hours, minutes, and seconds. These can serve as a useful reference
when setting the LED coordinates in the arrays that follow.

The next three lines are the two-dimensional arrays mentioned
earlier. These assign the proper LED coordinates to the seconds,
minutes, and hours. Remember that arrays are like variables, except
they hold multiple elements. The arrays we’re using here are called
two dimensional because their elements are also arrays. For example,
the first element in the first array, sec_leds, is [4, 4]. This identifies the
first LED used to display the number of seconds as the LED with an x
coordinate of 4 and a y coordinate of 4. That’s the LED in the bottom
right corner of the display. Figure 7-3 shows the coordinates of the
individual LEDs that make up the display.



Figure 7-3: LED display coordinates

As you can see, the top left LED has the coordinates [0, 0] and the
bottom right [4, 4].



Next, we have the hours, minutes, and seconds variables to keep the
current time:

hours = 8
minutes = 25
seconds = 1
adjust = -11

We’ll use the adjust variable to correct the clock’s speed. See
“Construction” on page 167 if you’re not sure how to do this.

Here is the function that turns the LEDs on or off to indicate a
value in binary:

def display_binary(value, num_bits, leds):
    v = value
    for i in range(0, num_bits):
        v_bit = v % 2
        display.set_pixel(leds[i][0], leds[i][1], int(v_bit * 9))
        v = int(v / 2)

We have three separate binary numbers (hours, minutes, and



seconds) to display, and the display_binary function works for all of
them. It takes a number to display (value), the number of LEDs to use
in displaying the number (num_bits), and an array of LEDs to use (leds).
It uses these three values to display the three parts of the time—the
seconds, minutes, and hours—on the micro:bit.

To keep track of the time, you use two variables:

last_time = 0
tick = 1000 + adjust

The variable last_time records the last time that the clock ticked, and
the variable tick holds the duration of the clock’s tick in milliseconds.
The default value for tick is 1,000 + adjust, but this value will change
when you press button A to set the time.

Here is the code to update the time:

def update_time():
    global hours, minutes, seconds
    seconds += 1
    if seconds > 59:
        seconds = 0
        minutes += 1
        if minutes > 59:
            minutes = 0
            hours += 1
            if hours > 23:
                hours = 0

The function update_time adds 1 to the number of seconds every
time it is called. When the seconds count gets past 59, it resets to 0 and
increases the number of minutes. It does the same thing for the hours.
We use nested if statements to accomplish this.

This is the code to display the hours, minutes, and seconds in
binary:

def display_time():



    display_binary(seconds, 6, sec_leds)
    display_binary(minutes, 6, min_leds)
    display_binary(hours, 5, hour_leds)

We put this code inside the display_time function, which calls the
display_binary function defined earlier.

Here is the main while loop that makes the clock run quickly when
someone presses button A and normally otherwise. It also contains the
code to keep time.

while True:
    if button_a.is_pressed():
        tick = 10
    else:
        tick = 1000 + adjust
    now = running_time()
    elapsed_ms = now - last_time
    if elapsed_ms >= tick:
        update_time()
        display_time()

The first part of the loop checks whether button A is being pressed.
If it is, the code reduces tick to 10 milliseconds. Otherwise, it sets it to
1000 + adjust.

Finally, we write the code that allows the clock to keep time. The
function running_time returns the number of milliseconds since you last
reset your micro:bit. Each time the program loops, we calculate how
much time has elapsed since the clock last ticked. The loop does the
following:

1. Gets the current running_time and stores it in a variable called now

2. Calculates the value for elapsed_ms by figuring out the difference between
the variables now and last_time

3. Updates the time if elapsed_time is greater than our tick time of 1 second
4. Sets last_time to now, resetting the millisecond count to zero



How It Works: Telling the Time in Binary
Using this binary clock to tell the time is a little tricky. It’s especially
hard to figure out the seconds, which are likely to have changed
before the code has calculated them. But there’s a reason the binary
system exists.

Most of us are familiar with the decimal system of writing
numbers. Decimal is the Latin word for 10, and in the decimal system,
we use 10 different symbols (the digits 0 through 9). If we need to
write a number greater than 9—say 15—then we use two digits.
Because of the position of the 1 in the number 15, we know that it
actually represents the number 10.

The following table shows the numbers from 0 to 10 in binary.
Note that in decimal, we don’t write leading zeros. We wouldn’t write
15 as 0015, for example. In binary, however, it’s customary to write
numbers with the leading zeros to give the numbers the same number
of digits. That’s just the way computer scientists roll. So in this case,
all the binary numbers are four digits long.

Decimal Binary

0 0000

1 0001

2 0010

3 0011



4 0100

5 0101

6 0110

7 0111

8 1000

9 1001

10 1010

In theory, computers could store numbers like this by using 10
different voltages to represent the digits 0 to 9, but they don’t. Instead,
computers use a system called binary. Rather than having 10 possible
values for a digit, a binary digit (also called a bit) can represent either
a 0 or a 1. Computers use binary because the transistors they are made
with are really good at being either off (0) or on (1). That means they
have only 2 possible states, which is much easier than giving them 10
possible states. Also, the math behind binary logic means that a
computer can do reliable arithmetic on binary numbers far more easily
than it were dealing with numbers in decimal.

Just as in the familiar decimal system, the binary system combines
digits to represent bigger numbers. Whereas each digit position in a



decimal number increases by a factor of 10—going from 1, to 10, to
100—each binary digit increases by a factor of 2—from 1, to 2, to 4,
and so on. For example, the four-digit binary number 1010 has 1s in
the 16- and 2-digit positions and 0s in the other positions. In decimal,
it’s 16 + 2, or 18.

It turns out that you don’t need very many binary digits to
represent some pretty big numbers. For example, eight binary digits
put together (called a byte) can represent a decimal number anywhere
between 0 and 255. Make that 16 bits, and the number goes up to
65,535. A computer with 64 bits is able to do everything using those
binary 64 digits, and it can represent a number between 0 and
18,446,744,073,709,551,615. Incidentally, a micro:bit has a 32-bit
processor, able to represent numbers between 0 and a very respectable
4,294,967,295. The MicroPython function running_time that we’ve been
using uses a 32-bit number. This means that it will not run out of
numbers for 4,294,967,295 ÷ 1,000 ÷ 60 ÷ 60 ÷ 24 = 49.7 days.

PROJECT: TALKING CLOCK

Difficulty: Easy

Sometimes the Mad Scientist is so busy with test tubes and chemicals
and alarming plumes of smoke that they can’t check the time. And
then they forget to eat! That’s when a talking clock comes in handy.
This project (Figure 7-4) announces the time every hour, or whenever
you press button A.



Figure 7-4: A talking clock

You can see this project in action at
https://www.youtube.com/watch?v=iNjXEK8RUtU.

What You’ll Need
For this project, you’ll need the following items:

Micro:bit

3 × Alligator clip cables To connect the micro:bit to the speaker

Speaker for micro:bit To play the sounds (Use a Monk Makes
Speaker or see Chapter 2 for other speaker options.)

Power adapter See the appendix for options on keeping your
micro:bit powered without batteries.

If you’re planning to keep your clock running, then use a USB
power adapter or another long-term power solution to save on
batteries.

You may want to build a case for the clock or attach the micro:bit

https://www.youtube.com/watch?v=iNjXEK8RUtU


and speaker to the same piece of cardboard you used for the light-
controlled guitar project from Chapter 3.

Construction

1. The code for this project is in MicroPython, as the speech library is not
currently available in the Blocks code. Download the code from
https://github.com/simonmonk/mbms/. The file for this project is
ch_07_Talking_Clock.py.

2. Before loading the program onto your micro:bit, open the file in Mu and
change the hours and minutes to your current time. Also change adjust to
the amount by which you want to adjust your clock. See “Construction”
on page 167 of the binary clock project if you’re not sure how to do this.

3. Connect a speaker to the micro:bit with one alligator clip on pin 0 and the
other alligator clip on the pin marked IN on the speaker. Use the other two
clips to provide power to the speaker, as shown in Figure 7-4.

4. Wait for the time you set in step 2 to arrive. Then connect the micro:bit to
a power source. Note that for this project, there is no other mechanism to
set the time.

Code
For clarity, we’ll work through this code in sections.

Here’s the code that does the time keeping—in other words, that
makes sure the hours and minutes are correct. It’s almost the same as
the time-keeping code from the previous project. The main difference
is that, instead of showing the time on the LED display, the code will
speak the current time.

digits = ["no", "1", "2", "3", "4", "5", "6", "7", "8", "9",
"ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen",
"sixteen", "seventeen", "eighteen", "nienteen"]
tens = ["no", "no", "twenty", "thirty", "forty", "fifty"]
preamble = "The time is "
am = "aye em"

https://github.com/simonmonk/mbms/


pm = "pee em"

We use several variables and arrays to hold a set of words that the
micro:bit will speak.

The speech library contains recordings of some common words. It
can say single digits like 1, 2, or 3, but for numbers 10 and over, it
pronounces each digit separately, which is not what we want our
talking clock to do. That’s why we have to spell out numbers greater
than 10. Notice that nineteen is misspelled as nienteen to make it
sound right when the synthesized voice says it. The array called digits

holds the text for each number up to 19. The clock should never speak
the 0 digit, so we just set it to the word no.

The tens array does a similar job with numbers that are multiples of
10. We already accounted for all the numbers up to 19 with the digits
array, so we don’t need to worry about the first two elements in the
tens array, which will never be spoken. We set these to no as well.

The preamble variable contains the text that the micro:bit will speak
before it announces each time. The am and pm variables contain
phonetic versions of the AM/PM indicator. The micro:bit will speak one
of these after reading the time.

Here’s the code with the function that actually speaks the time.
Appropriately enough, it’s called speak_the_time.

def speak_the_time():
    h = hours
    am_pm = am
    if h >= 12:
        am_pm = pm
    if h > 12:
        h = h - 12
    if minutes == 0:
        # The time is twelve pm exactly
        speech.say(preamble + digits[h] + " "
                            + am_pm + " exactly")



    else:
        if minutes < 10:
            # The time is twelve o four pm
            speech.say(preamble + digits[h] + " o "
                  + digits[minutes] + " " + am_pm)
        elif minutes < 20:
            # The time is twelve eighteen pm
            speech.say(preamble + digits[h] + " "
                  + digits[minutes] + " " + am_pm)
        else:
            mins_tens = int(minutes / 10)
            mins_units = minutes % 10
            if mins_units == 0:
                # The time is twelve twenty pm
                speech.say(preamble + digits[h] + " "
                      + tens[mins_tens] + " " + am_pm)
            else:
                # The time is twelve twenty four pm
                speech.say(preamble + digits[h] + " "
      + tens[mins_tens] + " " + digits[mins_units] + " " + am_pm)

This function is fairly complex, as it has to account for our
different ways of expressing the time.

This clock speaks in the 12-hour format but stores the hours in 24-
hour format, so the first thing speak_the_time does is decide whether the
time is AM or PM. It subtracts 12 from the hour variable once hour

reaches 13.

Next, the nested if statements cover the following possible cases:

  If the time is exactly on the hour, say something like The time is

twelve pm exactly.

  Otherwise, if the minutes are less than 10, add an o, to say
something like The time is twelve o four pm.

  For two-digit minutes less than 20, use the digits array and say
something like The time is twelve eighteen pm.

  For other two-digit minutes of 20 or over that are multiples of 10,
use the tens array to say something like The time is twelve twenty pm.



  And, where the minutes are not multiples of 10, say something like
The time is twelve twenty four pm.

Last comes the main while loop:

while True:
    if button_b.is_pressed():
        speak_the_time()
    now = running_time()
    elapsed_ms = now - last_time
    if elapsed_ms >= tick:
        elapsed_seconds = int(elapsed_ms / tick)
        update_time(elapsed_seconds)
        blink()
        last_time = now

This loop checks whether button B has been pressed or an hour has
passed and speaks the time if either event has occurred. It also calls a
function called blink. That flashes the heart icon on the screen to
reassure you that the clock is working, even if it is silent most of the
time.

How It Works: Teaching the Micro:bit to Speak
The MicroPython speech library opens up all sorts of possibilities in
your projects, as you saw back in Chapter 6. The sound quality isn’t
perfect, but it does add loads of fun to your projects.

The speech library itself is based on the concept of phonemes:
building blocks of sound. When you use the say function, the text to be
spoken is first translated into a series of phonemes. Because of the
strangeness of spoken language, this often doesn’t work perfectly—
hence the misspelling of nineteen in the code for this project to help
the say function pronounce the word more accurately.

You can read much more about this speech library at
https://microbit-

https://microbit-micropython.readthedocs.io/en/latest/tutorials/speech.html


micropython.readthedocs.io/en/latest/tutorials/speech.html.

SUMMARY
Hopefully you now have a good sense of how to make a clock using a
micro:bit and use it to display or literally tell you the time.

In the next chapter, the Mad Scientist turns their attention to
psychological experiments.



8
MAD SCIENTIST MIND

GAMES

In this chapter, the Mad Scientist turns their attention to the source of
their genius—the mind! First, you’ll learn about your nervous system
by testing how long it takes to react to stimuli. You’ll then build a lie
detector that measures galvanic skin resistance, one of the factors used
in polygraph tests. Use it on your friends. If they get warm and sweaty
when you question them, they might be lying to you!

EXPERIMENT 10: HOW FAST ARE YOUR
NERVES?



Difficulty: Medium

People process stimuli with nerve cells, or neurons. Nerves are the
wiring of the human body, carrying signals from the brain to the rest
of the body and back. When you touch a hot stove, you seem to feel
the pain right away. But compared to the copper wires in most
electronics, nerves actually work pretty slowly.

By measuring the time it takes your brain to respond to a signal,
you can estimate how fast that signal travels through your nerves. In
this experiment, you’ll press button A with either your hand or your
foot whenever the micro:bit screen goes blank, and the micro:bit will
measure the time it takes you to react.

We’ll make a cardboard pedal to go around the micro:bit so you
can press the button without hiding the display (Figure 8-1).



Figure 8-1: Turning a micro:bit into a foot-operated switch



What You’ll Need
For this project, you’ll need:

Micro:bit

Piece of cardboard about 8 inches × 4 inches (20 cm × 10 cm)
Thick, strong cardboard works best. It doesn’t need to be exactly
these dimensions.



Craft knife To cut and score the cardboard

Blu-Tack adhesive putty To attach the micro:bit to the
cardboard

Construction
We’ll start by creating a cardboard pedal that will fold in half around
the micro:bit.

1. Draw two parallel lines roughly halfway down the cardboard and about
1/4 inches (5 mm) apart, as shown in Figure 8-2. You’ll fold the cardboard
along these lines. Also, mark the rectangular part of the cardboard you
want to cut out. Make sure the hole you’ll make is big enough for the
micro:bit’s screen.

2. Draw your knife along the lines for the hinges, cutting only about halfway
through the cardboard. This is called scoring the cardboard. Be careful not
to cut all the way through. Then cut out the rectangle you marked.

Figure 8-2: Making the hinge and cutting out a place for the micro:bit



display

WARNING Using a craft knife can be dangerous! For this part of the
project, a responsible adult should use the craft knife or at least supervise.

3. Place the micro:bit inside the folded cardboard so you can see its screen.
Stick small pieces of Blu-Tack to the center of the micro:bit and then stick
the micro:bit to the cardboard. When you gently press the top of the hinge,
you should be able to feel button A click (see Figure 8-1). Check that
when the switch is pressed, it doesn’t also accidentally press the Reset
button on the back of the micro:bit. If it does, try using larger pieces of
Blu-Tack.

4. This experiment uses MicroPython only. Find the code at
https://github.com/simonmonk/mbms/ The Python file for this experiment
is Experiment_10.py. Open the file in Mu and load it onto the micro:bit.

Testing Your Nervous System
The program that controls this experiment uses Mu’s REPL to report
results and give you instructions. (Revisit Chapter 1 if you need a
refresher on how the REPL works.) Because it uses the REPL, this is
one experiment where you’ll need to keep your micro:bit connected to
your computer using the USB cable. We’ll use the micro:bit’s display
and button A to measure reaction times.

Open Mu’s REPL. The instructions in the REPL area of the
window will ask you to hold down button A whenever the micro:bit’s
display shows a cross and release it as fast as you can when the
display goes blank.

Here is what you might see in the REPL on a typical run. The
instructions are broken into sections for clarity.

TEST 1 - USING your hand

https://github.com/simonmonk/mbms/


Hold the switch down while the cross is showing.
Release momentarily when the display blanks.
Repeat 5 times.
Press ENTER when ready to start the test

To start the first test run, hold down the switch with your dominant
hand and press ENTER once on your computer. A cross should appear
on the screen. After a random delay of between 3 and 7 seconds, the
display will go blank. When it does, release the button as fast as you
can. The REPL should show you the number of milliseconds between
when the display went blank and when you released the switch. For
example:

252

The cross should then light for another random period, so hold
down the switch to try the test again. The experiment should repeat a
total of five times.

If you let go of the switch before the display has blanked, the
REPL should display the message You let go too soon. This will record a
time of 0, invalidating the experiment, and you’ll have to restart the
whole process. If this happens, reset the micro:bit by unplugging its
USB cable and plugging it back in.

After you’ve completed the five tests, the micro:bit’s display
should remain blank, and the REPL will show your individual reaction
times as well as the average of all your times. For example:

252
264
264
282
The average time using your hand was 262.7999 ms

You should then be prompted to repeat the experiment using your
foot. Move the micro:bit pedal onto the floor. This time, position your



foot over the micro:bit and gently use it to press the switch. Getting
this right may take a little practice.

Now repeat the test for your foot. Once you’ve captured five
reaction times, the REPL should display the average, and you’ll be
prompted to enter the following two measurements, as in this
example:

The average time using your foot was 368.3999 ms
Enter the distance from the back of your neck to your fingers in cm: 107
Enter the distance from the back of your neck to your toes in cm: 188

The program will use these measurements to calculate how long it
took your brain to realize that the display had blanked in milliseconds
—this is the thinking time. And it will calculate the speed at which the
signal traveled to your hand or foot in meters per second—this is the
transmission speed.

Thinking time (ms): 123.3036
Transmission speed (m/s): 13.03703

“How It Works: Measuring Your Reaction Time” on page 191 will
explain how these calculations are made and just how meaningful they
are (or aren’t).

Code
We use a variable n to hold the number of reaction time readings to
take for each test. In this case, five readings are taken.

from microbit import *
import random
n = 5

def run_full_test():
    print("TEST 1 - USING your hand")
    t_hand = run_test()
    print("The average time using your hand was " + str(t_hand)



         + " ms")
    print("Now repeat the test for your foot")
    t_foot = run_test()
    print("The average time using your foot was " + str(t_foot)
         + " ms")
➊  d_hand = int(input("Enter the distance from the back of
                        your neck to your fingers in cm: "))
➋  d_foot = int(input("Enter the distance from the back of
                        your neck to your toes in cm: "))
    thinking_time = (d_foot * t_hand - d_hand * t_foot)
                  / (d_foot - d_hand)
    transmission_speed = 10 * (t_foot - thinking_time) / d_foot
    print("Thinking time (ms): " + str(thinking_time))
    print("Transmission speed (m/s): " + str(transmission_speed))

The function run_full_test runs both the hand and foot test in turn.
(We’ll define the code for both those tests in a bit.) The last four lines
of the code are the calculations for the thinking time and transmission
speed, explained in “How It Works: Measuring Your Reaction Time”
on page 191.

This function also prompts you to enter the neck-to-hand and neck-
to-foot distances using the input function. The program will be able to
use that information because it stores the input in variables. We store
the input for the neck-to-hand distance in d_hand ➊ and the input for
the neck-to-foot distance in d_foot ➋.

The input function displays the string of text that you supplied as its
parameter and then waits for you to enter some text. It returns
whatever you type as a string, and the int function converts that string
into an integer so we can use it in the calculation.

Here’s the code for the run_test function:

def run_test():
    print("Hold the switch down while cross is showing and
            release momentarily when the display blanks")
    print("Repeat " + str(n) + " times.")
    input("Press ENTER when ready to start the test")
    total = 0
    for i in range(0, n):



        t = get_reaction_time()
        if t > 10:
            print(t)
            total += t
        else:
            print("You let go too soon")
    return total / n

The run_test function runs a single test, providing the necessary
instructions and collecting the required number of reaction time
readings by calling get_reaction_time. If the reaction time is less than 10
milliseconds, which would mean superhuman reflexes, the program
tells you that you let go too soon. Otherwise, it displays your reaction
time.

def get_reaction_time():
    display.show(Image.NO)
    sleep(random.randint(3000, 7000))
    display.clear()
    t0 = running_time()
    while pin5.read_digital() == False: # Button A down
        pass
    t1 = running_time()
    t = t1 - t0
    return t

run_full_test()

The get_reaction_time function displays the cross image and then
sleeps for a random period between 3 and 7 seconds. It then clears the
screen and sets the variable t0 to the current running time so that the
program knows when to start timing the reaction test.

When you release button A, the program exits the while loop and
records the time at which it stops in t1. We calculate the reaction time
by subtracting t0 from t1.

You might be wondering why the code checks for button A being
pressed using pin5.read_digital rather than button_a.is_pressed. The answer



is that the is_pressed function does not operate as quickly as read_digital

and so would add some unwanted extra time to the reaction time
measurement. We use pin5 because the micro:bit’s wiring connects pin
5 directly to button A. The micro:bit actually has a whole load of other
pins than the pins 0 to 3 that we use with alligator clips. However, in
this book we concentrate on the pins that are easy to access.

Things to Try
To perform further investigations into the human nervous system, try
comparing different people’s results or conducting the test at different
times of day.

How It Works: Measuring Your Reaction Time
When you see the cross vanish, two things happen in your body, each
of which takes a certain amount of time:

1. Your eyes and brain notice the change and decide to act on it.
2. A signal passes from your brain, through your nerves, to the muscles that

control your hand or foot, and the hand or foot comes off the switch.

For this experiment, we assumed that the thinking time, or the time
it takes you to register the change, is the same whether you’re moving
your hand or your foot.

We also assume that the nerve signal speed between brain and
hand and brain and foot is the same. In reality, neither of these
assumptions is exactly right, but the Mad Scientist can sort out those
issues some other time.

Given those assumptions, the speed that the signal travels through
your nerves is equal to the total reaction time minus the thinking time,



divided by the distance the signal has to travel.

Taking the two distance measurements allows us to crudely
calculate both the thinking time and the signal speed. Here are the
variables we’ll use in the calculations:

t_hand The total reaction time (thinking + acting) for the hand

t_foot The total reaction time for the foot

d_hand The distance the signal has to travel along the nerve from
the brain to the hand

d_foot The brain-to-foot distance

thinking_time The time it takes to register the event and start the
message to the hand or foot

transmission_speed The speed of the signal through the brain to the
hand or foot

Now for the math. For the hand, we can use this equation:

Similarly, for the foot, we can use this:

This means that we also know the following:

Now we can use algebra to rearrange things so that we can
calculate the thinking time and transmission speed. We can multiply
both sides by this:



(t_hand – thinking_time)

And we get this:

If we multiply both sides by the following:

(t_foot – thinking_time)

we get this:

d_hand (t_foot – thinking_time) = d_foot (t_hand – thinking_time)

Multiplying across the parentheses gives this:

d_hand × t_foot – d_hand × thinking_time

= d_foot × t_hand – d_foot × thinking_time

So:

d_hand × t_foot – d_foot × t_hand

= d_hand × thinking_time – d_foot × thinking_time

d_hand × t_foot – d_foot × t_hand

= thinking_time (d_hand – d_foot)

Finally, we can calculate the thinking time as the following:

Now that we have the thinking time, we can use it to calculate the
speed the message travels along the nerves, like this:



This result will be in centimeters per millisecond. To convert the
value into meters per second, we multiply by 1,000 and divide by 100.
In other words, multiply by 10, and you’ve got the transmission speed.

PROJECT: LIE DETECTOR

Difficulty: Medium

The Mad Scientist doesn’t like surprise parties, and they want to
figure out whether their lab assistants are planning one for their
birthday. They’ll have to use their lie detector (Figure 8-3) to figure it
out!



Figure 8-3: Lie detector

This project measures galvanic skin resistance (GSR), which is the
resistance of the skin to the flow of electricity. To measure GSR, we’ll
use a micro:bit, and a pair of metal spoons.

What You’ll Need
For this project, you’ll need the following:

Micro:bit

2 × Alligator clip cables To connect the spoons to the micro:bit

2 × Spoons

You’ll use the spoons to make contact with the palms of your
hands. The alligator clips will attach to the spoons’ handles and might
scratch them, so don’t use your best spoons!



Construction

1. Go to https://github.com/simonmonk/mbms/ to access the book’s code
repository and click the link for Lie Detector. Once the program has
opened, click Download and then copy the hex file onto your micro:bit. If
you get stuck, head back to Chapter 1 for a refresher on loading programs
onto your micro:bit.

If you prefer to use Python, then download the code from the same
website. For instructions for downloading and using the book’s examples,
see “Downloading the Code” on page 34. The Python file for this
experiment is ch_08_Lie_Detector.py.

2. Use one alligator clip to connect the handle of one of the spoons to pin 2
and the other alligator clip to connect the other spoon to GND, as shown
in Figure 8-3.

To use the lie detector, you need two people: an operator to ask the
tricky questions and a subject to answer them. The subject needs to
hold the spoons so that the curved side makes full contact with the
palms of their hands.

When the operator presses button A, the dot on the micro:bit’s
display should move to the center of the LED. If skin resistance falls
because the subject gets sweaty, the dot will move up the screen. If
skin resistance rises, the dot will move down.

If the dot seems to be stuck at the top or bottom, the operator needs
to press button A to center the display. The readings will gradually
drift, even without any difficult questions.

After asking a question, the operator should wait three or four
seconds before checking the reading on the display.

Code

https://github.com/simonmonk/mbms/


This project has both Blocks and Python code. The full explanation
follows the Blocks code, so if you skip to the Python code now, make
sure to return to read the explanation.

Blocks Code
Here is the Blocks code for this project.





In the on start block, we place the block set pull pin, which enables
the built-in 12kΩ pullup resistor. (The pullup resistor is disabled by
default.)

Also in the on start block, we take a reading from pin 2, connected
to one of the spoons, and store the result in the baseline variable. The
program will compare any new readings against this baseline to see
how much the subject’s skin resistance has changed.

We then use the forever loop to take a new analog reading from pin
2 that represents your subject’s GSR after answering a question
you’ve asked. The loop subtracts the baseline reading from the new
reading and divides the result by 10 to reduce it by about the right
amount.

It uses this number to determine which of the five LEDs should
light up. The number must fall within the range of –2 to 2 or an error
will occur. Once this is done (using a couple of if blocks), the display
is cleared, and the middle-column LED on the row 2 + change is lit
using the plot block.

Pressing button A resets the baseline.



MicroPython Code
The MicroPython version of the code is shown here:

from microbit import *

pin2.set_pull(pin2.PULL_UP)
baseline = pin2.read_analog()
while True:
    if button_a.was_pressed():
        baseline = pin2.read_analog()
    reading = pin2.read_analog()
    change = int((reading - baseline) / 10)
    if (change > 2):
        change = 2
    if (change < -2):
        change = -2
    display.clear()
    display.set_pixel(2, 2 + change, 9)

This works in much the same way as the Blocks code, with just a
few differences. Here, we use the int function to convert the change in
the reading values into an integer.

We then use the set_pixel method to tell the micro:bit display which
LED to light up. This method is different from the plot block because



it not only asks for the x and y coordinates but also requires you to
provide a brightness level between 0 and 9. We choose 9 to make it as
bright and visible as possible.

How It Works: Detecting Lies Through Sweat,
Voltage, and Resistance
Skin resistance is one of the measurements used by polygraph lie
detectors so often seen in movies.

If you flush or start to sweat, as you might when under pressure,
your skin’s resistance to electricity changes. But testing for GSR
might not always work. The questions you ask and how you ask them
can influence a person’s reactions or make them feel nervous, and
GSRs will differ from person to person. Conversely, people who are
more detached from their feelings can learn how to defeat the
polygraph. But for the Mad Scientist’s investigation into a possible
surprise party, this lie detector is just the ticket.

This project converts readings of GSR into a voltage. Most metals
have low resistance because metal conducts electricity well, whereas
something like plastic has a high resistance because electricity does
not generally flow well through plastic. We measure resistance using a
micro:bit’s pin, which works as an analog input (see Chapter 1) and an
arrangement of two resistors called a voltage divider (Figure 8-4).



Figure 8-4: Schematic of a voltage divider

The unit of resistance is the ohm (Ω), and we normally abbreviate
1,000Ω to 1kΩ. In Figure 8-4, the 12kΩ resistor connected to pin 2 is
a resistor built into the micro:bit’s processor. This resistor pulls the
voltage at pin 2 toward 3V (think of the resistors in this diagram as
springs); if you weren’t holding onto the spoons, this pull would be
the only force acting on the pin, and the pin would register a
maximum reading of 1023, or 3V.

However, as soon as the subject grasps the spoons, another resistor
—the subject’s skin—comes into play. This counters the 12kΩ
resistor by pulling the voltage at pin 2 back toward 0V. If your skin
resistance was exactly 12kΩ, then the two resistances would be
pulling equally, and the voltage at pin 2 would be 1.5V.

If the subject sweats, their skin resistance falls, pulling the voltage
lower. Conversely, when they recover, their skin resistance increases,
allowing the 12kΩ resistor to pull the voltage up.



SUMMARY
In this chapter, we conducted a few experiments on the human
nervous system. The experiment and project we completed may have
dubious scientific rigor, but hopefully you enjoyed yourself along the
way.

In the next chapter, we’ll take measurements of the environment.
Specifically, we’ll work with light and temperature, which are
important to the Mad Scientist’s comfort.



9
ENVIRONMENTAL

MADNESS

The Mad Scientist loves to measure things. In this chapter, we’ll
follow in the scientist’s footsteps by measuring the temperature. We’ll
devise a temperature and light logger that will provide valuable
insights into our environmental experiments. Then we’ll create a
plant-watering project that uses a small pump to water a houseplant
automatically when its soil starts to dry out.

EXPERIMENT 11: MEASURING
TEMPERATURE



Difficulty: Easy

Owning no clothes besides lab coats and having skimped on the
insulation budget for the Secret Laboratory, the Mad Scientist decided
to build a custom heating system. To do this, they needed to know the
exact temperature in every room of the lab. Unfortunately, they soon
found the measurements taken with their micro:bit were not exact
enough.

The micro:bit has a function named temperature in both the Blocks
and MicroPython code that returns a temperature reading in degrees
Celsius. However, the sensor itself is built into the micro:bit’s
processor and thus is actually reporting the temperature of the
micro:bit’s chip, not the temperature of the micro:bit’s surroundings.

At normal room temperature of around 20 degrees C (68 degrees
F), if the micro:bit hasn’t been running for too long, the sensor gives a
fairly accurate reading. However, we can’t be sure whether the
temperature reading is correct if the micro:bit’s processor has been
busy and started warming up.

In this experiment, you’ll investigate the difference between the
temperature readings of a busy micro:bit and an idle micro:bit.

What You’ll Need
To do this experiment, you’ll just need two things:

Micro:bit

USB cable

You may also want a separate thermometer to check your readings



against. The only other thing you’ll need is some patience, as you’ll
need to leave this program running for half an hour to get good
readings.

Construction

1. This project uses Mu’s Plotter feature, which you’ll need Python for, so
there’s no Blocks code for this. Find the code at
https://github.com/simonmonk/mbms/. The Python file for this experiment
is Experiment_11.py. Flash the program onto your micro:bit.. This code
will take temperature readings every 20 seconds. It will also initiate
micro:bit activity every 10 minutes and then idle for 10 minutes, letting
you see the difference in temperature between when the micro:bit is busy
and when it’s idle.

2. Open both the REPL and Plotter views of Mu and press Reset on the
micro:bit to start the reading process. A new temperature reading, and an
indication as to whether the micro:bit has been busy or idle, are logged to
the Plotter and REPL every 20 seconds. The busy/idle status of the
micro:bit flips every 10 minutes. Figure 9-1 shows the result of logging
the data for 40 minutes.

https://github.com/simonmonk/mbms/


Figure 9-1: Plotting temperature readings and processor activity

The blue line shows the temperature reported by the temperature

function, and the green line indicates whether the micro:bit is busy or
idle. When busy, the micro:bit turns on the display and its radio
interface, and it displays the message Busy over and over.

As you can see from Figure 9-1, when the micro:bit is in busy



mode, the reported temperature rises by about 3 degrees C. When it
goes back to idle mode, the temperature drops. Note that the
temperature in the room, as measured by a separate thermometer,
remained at 20.0 degrees C throughout the experiment.

Code
The MicroPython code for the experiment needs to do two things: flip
the busy state (held in the variable busy) of the micro:bit every 10
minutes and report the temperature every 20 seconds.

Setting the Variables
Our code uses the variables last_busy_flip and last_log_time to record the
last time these two things (flip and log) happened:

busy = False
last_busy_flip = 0
busy_period = 600000
last_log_time = 0
log_period = 20000

The variable busy_period specifies the time in milliseconds between
each flip between the busy and idle state; 600,000 milliseconds is
equal to 600 seconds, which is 10 minutes. The variable log_period

holds the time between temperature reports; 20,000 milliseconds is
equal to 20 seconds. The code busy = False means the micro:bit starts
off idle.

Making It Busy
If the micro:bit is in busy mode, both the display and radio are turned
on and the message Busy is displayed. Otherwise, the radio and display
are off.



while True:
    if busy:
     ➊ display.on()
     ➋ radio.on()
        display.show("Busy")
    else:
        display.off()
        radio.off()
    now = running_time()
    if now > last_busy_flip + busy_period:
        busy = not busy
        last_busy_flip = now
    now = running_time()
    if now > last_log_time + log_period:
        print((temperature(), busy * 10))
        last_log_time = now

In a while loop, we say that if the busy variable is True, the micro:bit
should turn the display ➊ and radio ➋ on. Otherwise, they should be
switched off.

Then we have two tests to see whether either a flip of the busy
status or a log to the REPL and Plotter are due: the code checks the
current runtime against the values in the busy_period and log_period

variables.

To easily see when the processor is busy on the same plot as the
temperature (Figure 9-1), we multiply the True or False Boolean value
of busy by 10. Python allows us to do this! Rather than reporting an
error, Python interprets False as 0 and True as 1. Because Python treats
the Boolean values as numbers, it lets us multiply them. Then, instead
of being either 0 or 1, the value is plotted as either 0 or 10.

How It Works: Why Does a Processor Heat Up?
A processor chip, like the one used by micro:bit, contains tens or even
hundreds of thousands of transistors. These transistors are electronic
switches that are in either an on or off state (represented by 1 and 0 in



binary). Transistors use a very small amount of current when they are
in a particular state (either on or off), but require a small amount of
additional energy to change states. This is why, when doing something
processor intensive, your computer fans will rev up—they’re
removing the excess heat generated by the large amount of switching.

A busy processor is a warmer processor. But other things can
affect the processor temperature, too. In this experiment, the LEDs
used by the display give off a little heat, as does switching the radio
on and off. So, even though our definition of busy is a little misleading
because it includes turning the radio and display on and off, the idea
that the micro:bit’s temperature readings are influenced by what the
micro:bit happens to be doing still stands.

PROJECT: TEMPERATURE AND LIGHT
LOGGER

Difficulty: Medium

As a hopeless perfectionist and incorrigible botanist, the Mad Scientist
wanted a way to measure the ideal location for all the plants in the
laboratory. And so a logger of temperature and light was born.

In Experiment 7, we wrote acceleration readings into a file for later
analysis. In that case, we wanted to take readings immediately. Here,
we want to log values over a period of time, say over the course of a
day.



Figure 9-2 shows the completed project. As you can see, we have
built it into a transparent food container to protect it from the
elements, in case we want to use it outdoors.



Figure 9-2: A temperature and light logger

You could use this logger to carry out a survey of your yard and
determine the best place to grow different plants.

What You’ll Need
For this project, you’ll need the following items:

Micro:bit

Monk Makes Sensor for micro:bit Another temperature and
light sensor would work as well.



4 × Alligator clip cables

AAA battery pack

Transparent plastic food container This is essential if you want
to use the project outdoors. The container should be big enough to
house the project, including the battery pack.

Construction

1. This project uses the micro:bit’s local filesystem, which is not available in
Blocks code yet. Therefore, this project can be done only in Python. Find
the code at https://github.com/simonmonk/mbms/. The Python file for this
experiment is ch_09_Logger.py. Flash the program onto your micro:bit.

2. Connect the micro:bit to the sensor board, as shown in Figure 9-3.

https://github.com/simonmonk/mbms/


Figure 9-3: Connecting the micro:bit to the Monk Makes Sensor

3. Place everything into the food container, making sure that the sensor and
micro:bit are at the top, near the lid. Fitting the alligator clips from the
back of the boards will help.

4. Turn on the battery pack. When you’re ready to start logging, press button
A and then put the lid on the container. The display will change to show a



single dot.

5. The logger can hold about 2,000 readings, so at a rate of one sample per
second, it can run for 33 hours before running out of memory. This is
about how long a set of AAA batteries should last.

When you’re ready to stop the readings, press button A again. You can
then connect the micro:bit to your computer and use Mu’s Files feature to
transfer the file data.txt onto your computer, just as you did in Experiment
7 back in Chapter 5.

6. To make sense of the data, you’ll probably want to import it into a
spreadsheet and draw some charts like the one in Figure 9-4. See
Experiment 7 in Chapter 5 for an example of importing data from the
data.txt file into Google Sheets.





Figure 9-4: Charting temperature and light

In Figure 9-4, the steep drop of the line in the light chart indicates
the nightfall.

Code
For this project, we’ll need to import the os library, which we’ll use to
delete any data file that might already be on the micro:bit. We do this
to make space for our new readings. We’ll also need log from the math
library to write the code that calculates the temperature. Log (or
logarithm) is a mathematical concept used in the Steinhart-Hart
equation that converts the resistance measurement of a thermistor to a
temperature. If you are into math, you might like to read more about
logarithms here:
https://www.mathsisfun.com/algebra/logarithms.html.

Setting the Variables
The code for this project waits for button A to be pressed and then
repeatedly takes readings first of temperature then of the light level.
Both readings are then written to a file so that when the logging is
finished, they can be transferred a computer.

sample_period = 60000
filename = 'data.txt'
temp_pin = pin1
light_pin = pin2

last_sample_time = 0
recording = False
display.show(Image.NO)

We set the variable sample_period to 60000 milliseconds, or 1
minute. This period tells the micro:bit to take a recording once a

https://www.mathsisfun.com/algebra/logarithms.html


minute. By default, the recorded data will be saved into a file called
data.txt. You can change the name of this file by changing the value
of the filename variable.

We tell the micro:bit which two pins are connected to the
temperature and light outputs of the sensor board in the temp_pin and
light_pin variables. In the last_sample_time variable, we store the last
time a reading of the environment was recorded.

We use the variable recording to keep track of the whether the
project is recording or not recording. This variable is toggled between
True and False every time button A is pressed.

Reading the Temperature
We create the function read_c to read the temperature. This involves
quite a lot of math.

def read_c():
    r0 = 100000.0
    r2 = 100000.0
    b = 4250.0
    v33 = 3.3 # actual result is independent of this value
    V = temp_pin.read_analog() * v33 / 1023.0
    R = r2 * (v33 - V) / V
    t0 = 273.15 # 0 deg C in K
    t25 = t0 + 25.0 # 25 deg C in K
    # Steinhart-Hart equation (google it)
    inv_T = 1/t25 + 1/b * log(R/r0)
    T = (1/inv_T - t0)
    return round(T, 1)

We won’t go into the math in detail, but it’s here in case you want
to look through it.

This function measures the voltage at the temp_pin (pin 1) and uses
that to calculate the temperature in degrees Celsius. See “How It
Works: Sensors” on page 211 for more information on how this



works.

If you want your temperatures in Fahrenheit, use the function
read_f, which calls read_c and converts the temperature to Fahrenheit:

def read_f(self):
    return read_c() * 9/5 + 32

Reading the Light Level
The temperature readings are in units of Celsius or Fahrenheit.
However, the light level is not expressed in any specific units. The
light readings are just the direct analog readings from pin 2. In effect,
we have defined our own units. You can give them a name if you like,
perhaps lightiness?

Measuring light intensity in its standard unit of lux is difficult with
this kind of sensor. But if you have a calibrated lux meter, you could
carry out your own experiment to compare Lux and lightiness under
different levels of illumination.

The while Loop
The main while loop (at the end of the code if you are following along
in Mu) checks for a press of button A, toggling recording between True

and False whenever the button is pressed. When recording starts, a
single dot is displayed, and we delete the existing data file with
os.remove. The remove command is contained within a try: except: Python
structure. This makes sure that if an error occurs, probably because the
data file isn’t there and can’t be deleted, the error is ignored and
doesn’t crash the program. After we remove the old file, the new file
is opened with a mode of w for writing.

When button A is pressed again, the NO image is displayed and the



file closed.

In the main while loop, there is also an if block that writes the
readings from the light and temperature sensors to the file as long as
recording is True and enough time has elapsed since the last_sample_time.

while True:
    if button_a.was_pressed():
        recording = not recording
        if recording:
            display.show(".")
            try:
                os.remove(filename)
            except:
                pass
            fs = open(filename, 'w')
        else:
            display.show(Image.NO)
            fs.close()
    now = running_time()
    if now > last_sample_time + sample_period:
        last_sample_time = now
        if recording:
            temp = read_c()
            light = light_pin.read_analog()
            fs.write(str(temp) + "," + str(light))
            fs.write('\n')

How It Works: Sensors
Thermistors are a special type of resistor (see the lie detector project
in Chapter 8) whose resistance changes as the temperature changes.
The type of thermistor used in the Monk Makes Sensor for micro:bit is
an NTC (negative temperature coefficient). The negative part means
that when the temperature increases, the resistance decreases. We use
the resistance to measure the temperature.

Our thermistor sensor measures temperature as electrical
resistance. However, a micro:bit cannot measure resistance directly.
Instead, resistance must first be converted into a voltage, and this can



then be read by the micro:bit pin that’s acting as an analog input. To
do this, we need to use a voltage divider as we did in the lie detector
project of Chapter 8. However, this time a thermistor, rather than
someone’s skin, will provide the variable resistance (Figure 9-5). Note
that the Monk Makes Sensor for micro:bit board has the 100kΩ
resistor built in.

Figure 9-5: Schematic diagram for using a thermistor to measure temperature

A thermistor’s resistance does not change every time there is a
difference of some number of ohms, indicating a change of one
degree. As you saw in the code earlier, the formula for calculating a
thermistor’s resistance is complicated, involving the use of logarithms.

When you buy a thermistor, it will specify two parameters:

  The resistance of the thermistor at 25 degrees C (called r0 in our
code and equal to 100kΩ for the sensor board)

  A constant called beta, or sometimes just B, that is different for



different thermistors (In our code, this is called b. For the thermistor
on the sensor board, b is 4,250. The value of beta will always be
specified on the datasheet for the thermistor.)

You can see how the calculation is made in the code. If you want
to know more about this formula, search online for “Steinhart-Hart
equation.”

Because the voltage at pin 1 depends on the ratio of the resistance
of the thermistor to the fixed resistor, it is independent of the supply
voltage. This is just as well, because the 3V connector of the micro:bit
can be anything from 3.3V down to about 2V, depending how you are
powering the micro:bit and how fresh the batteries are. This is why
you will see the comment in the read_c function explaining that the
variable v33 (3.3V) has no effect. In fact, it cancels out in the math. It
is included only to make the math a bit easier to follow.

PROJECT: AUTOMATIC PLANT WATERER

Difficulty: Hard

Ever busy with conferences that take them away from the Secret Lab,
the Mad Scientist has devised this automatic plant waterer. The
project monitors the resistance of the soil to determine how wet it is. If
the soil gets too dry, it turns on a water pump. Pressing button A gives
a readout of the soil dryness, and pressing button B acts as a test,
running the pump for 10 seconds.



Figure 9-6: The automatic plant waterer project



What You’ll Need
For this project, you’ll need the following items. See the appendix for
more information on where to find these.

Micro:bit

Relay board for micro:bit To switch the pump on and off (You
could also use a motor controller such as the Kitroniks board that
we used in the rover project of Chapter 6.)

12V aquarium metering pump These pumps are slow but
reliable.

Tubing and connectors To transfer the water from the reservoir
to the plant pot

Large plastic bottle To serve as a water reservoir for the plant

12V power supply for the pump 12V at 1 amp or more

USB power supply for the micro:bit or a Monk Makes Power
for micro:bit and AC adapter This is a long-term project, so
you don’t really want to be running it from batteries. See the
appendix for long-term micro:bit power options.

1kΩ resistor

Female DC barrel jack to screw terminal adapter To connect
the relay and battery to the pump’s power supply

7 × Alligator clip cables To connect the nails to the micro:bit

Fold-back binder clips To keep the watering tube in place

2 × 5-inch nails To be used as electrodes in the plant pot (Note
that 6-inch nails also work just fine. Galvanized (zinc-coated)
nails are best because they don’t rust.)

Potted plant



The pump you need is a peristaltic pump, sometimes called a
dosing pump. You can find one on eBay for a few dollars. These
pumps usually come with short inlet and outlet tubes that you’ll need
to extend so they can reach from the water reservoir to the pot. They
are generally 4 mm in diameter, a common size for garden irrigation
systems. You can find such tubing and connectors at eBay, a hardware
store, a tropical fish store, or a garden center.

You’ll need longer alligator clip cables to connect the micro:bit to
the nails. A good size would be about 1 foot (30 cm).

The water reservoir can be anything that will contain a reasonable
volume of water (an old milk container would do fine).



Construction
You’ll need to take extra care when building this project, as it has both
an electronic and mechanical component. What’s more, it pumps
water around, so if you don’t connect the pipes correctly, you could
cause quite a mess in your Secret Lab!

Figure 9-7 shows how the electronics are connected to give you an
idea of what you are aiming for as you follow the step-by-step
instructions.





Figure 9-7: Wiring for the automatic plant waterer project

1. Open https://github.com/simonmonk/mbms/ and click the link for Plant
Waterer. Click Download and then copy the hex file onto your micro:bit.
If you get stuck on this, head back to Chapter 1, where the process of
transferring programs to your micro:bit is explained in full. The Python
version of the code is in ch_09_Plant_Waterer.py.

2. Wrap the 1kΩ resistor’s wires around pins 1 and 2 of the micro:bit.

3. Using Figure 9-7 as a reference, wire up the alligator clips to the
micro:bit, relay board, barrel jack, and pump. Don’t attach the yellow and
green cables to the nails or connect the tubes to the pump just yet. To get
the alligator clips to attach to the screw terminal ends of the DC barrel
jack adapter, use a screwdriver to fully open the screw terminals. If your
alligator clip jaws are too big to fit into the screw terminal holes, you can
fit straightened-out paper clips into the screw terminals and then clip the
alligator clips onto those.

4. Plug the 12V power adapter into the barrel jack adapter and then press
button B on your micro:bit. You should hear the pump run for 10 seconds
and then stop. If it doesn’t do this, double-check your wiring.

5. Push the nails into the soil of the plant pots spaced about 3 or 4 inches (8
to 10 cm) apart. Leave enough of the nail above the soil that you can
attach the green and yellow alligator clips, as shown in Figure 9-8.

https://github.com/simonmonk/mbms/


Figure 9-8: Positioning the nails in the soil

6. Now, press button A on your micro:bit, and a number should scroll across
the screen. This is a measure of the dryness of the soil. The drier the soil,
the higher the number. Try adding a little water to the pot, wait for a few
seconds, and then press button A again. You should see the number
decrease. Don’t make the soil too wet, though, as it will take ages to dry
out again and you won’t get to see the plant waterer in action.

You now need to give the plant the right amount of water. You may
need to consult someone with a green thumb who knows about your
particular plant. Once you’ve found out how moist your plant’s soil
should be, keep adding small doses of water until the soil is damp enough.
Then press button A and make a note of the number. This is your target
dryness for the automatic plant waterer.

7. We’re now ready for the wet part of this project. Start by measuring out
suitable lengths of tubing from the pump. You want enough tubing that
you can put one length through the top of the reservoir bottle and have it
reach the bottom and the other will reach from the pump into the plant pot.
Before attaching the tubing, you need to find out which nozzle of the
pump is the inlet and which is the outlet. To do this, press button B and
put a finger over each of the pump’s tubes. You will feel the inlet pump



sucking at your fingertip. Make a note of which tube is which.
Use the tube connectors to attach these lengths of tubing to the pump’s

short tubes.

8. Clip the binder clips onto the side of the pot and push the tubing through
the handles of the clip, as shown in Figure 9-9.

Figure 9-9: Securing the tube to the plant’s pot

9. Fill up the reservoir bottle and push the extended inlet tube into the bottle,
down to the bottom.

10. Test the pump by pressing button B a couple of times. If the water finds
its way to the pot without any dripping or leakage, the waterer is almost
ready to go. If not, find and seal the leaks by adjusting the connections.

11. The final step before you can let your plant waterer do its mundane work,
leaving you free for more adventurous tasks, is to adjust the value of
dry_threshold. Set dry_threshold to the value you recorded in step 6 and then



flash the program onto your micro:bit again.

Code
The code for this project is quite complex. As well as monitoring the
soil’s moisture content, it also has to handle button presses and make
sure that the pump doesn’t get too carried away and flood the lab.

Blocks Code
Here is the Blocks code for the project.





In the on start block, we define three variables:

dry_threshold We put our value from step 6 here. If the plant gets
dryer than this value, it will be watered.

on_time_ms This is the amount of time (in milliseconds) that the
pump will run when watering. Keeping this value small (say 10
seconds) will keep the plant from being overwatered. It will also
prevent accidents that might result in minor flooding!

check_period_ms The water needs a little time to spread throughout
the pot and evenly wet the soil. This variable sets the delay
between each dryness check. By default, it’s set to 3,600,000 (1
hour in milliseconds).

If we have an on_time_ms value of 10, the maximum watering time
the plant can receive in one day is 24 × 10 seconds or 4 minutes. With
this kind of pump, it will receive about a pint (500 mL) of water.
That’s quite a lot, but if you have a really big pot, you may need to
decrease check_period_ms or increase on_time_ms to allow the plant to
get even more water. We’ll discuss this further in “Things to Try” on
page 222.

Besides these three variables, we have two functions, check_dryness

and water_the_plant. The check_dryness function updates the dryness

variable with a new soil reading from pin 2. Notice that this function
also turns on pin 1, but just while the reading is being taken. We’ll
explain why in “How It Works: Measuring Soil Dampness” on page
222.

The water_the_plant function turns on pin 0 to activate the relay,
turns on the pump for the time specified in on_time_ms, and displays
the down arrow on the micro:bit to indicate that watering is in
progress (a bit like it’s raining).



With the forever loop, we first check whether sufficient time has
elapsed since the last check (by default 1 hour). If enough time has
passed, the loop calls check_dryness and compares this reading to the
dry_threshold. If the pot is too dry, water_the_plant is called.

Now that the check is complete, the dont_water_until variable is set
to the current time plus the check_period_ms to schedule the next check.
The dryness is then shown on the display using the plot bar graph of

block. The higher the level of LEDs on the display, the drier the soil is
and the closer it is to being given more water.

Then we have the code that checks whether button A is pressed
and reacts appropriately. This code calls check_dryness and then
displays it before showing the bar graph again. The handler for button
B calls water_the_plant and then displays the dryness level.

MicroPython Code
Here is the MicroPython version of the code:

from microbit import *

dryness = 0
dry_threshold = 500
on_time_ms = 10000
check_period_ms = 3600000
dont_check_until = 0

def water_the_plant():
    pin0.write_digital(1)
    display.show(Image.ARROW_S)
    sleep(on_time_ms)
    pin0.write_digital(0)

def check_dryness():
    global dryness
    pin1.write_digital(1)
    dryness = pin2.read_analog()
    pin1.write_digital(1)

def bargraph(a):



    display.clear()
    for y in range(0, 5):
        if a > y:
            for x in range(0, 5):
                display.set_pixel(x, 4-y, 9)

while True:
    if button_a.was_pressed():
        check_dryness()
        display.scroll(str(dryness))
        bargraph(dryness / 200)
    if button_b.was_pressed():
        water_the_plant()
        check_dryness()
        bargraph(dryness / 200)
    if running_time() > dont_check_until:
        check_dryness()
        if dryness > dry_threshold:
            water_the_plant()
        dont_check_until = running_time() + check_period_ms
        bargraph(dryness / 200)

Because MicroPython has no equivalent of the plot bar graph of

block, we use the bargraph function from the Shout-o-meter in Chapter
2 to display the dryness level.

Things to Try
Because the plant waterer keeps the moisture level of the plant more
or less constant, you can measure the amount of water the plant is
using by seeing how much water has left the reservoir.

Use a measuring cup when you refill the reservoir bottle and log
how much water you need to fill it back up. Once you know how
much water your plant typically needs per day, you can work out how
long your reservoir should last before it needs a refill. This will be
very important if you want to keep your plant alive when you go on
vacation.

How It Works: Measuring Soil Dampness



Impure water (such as water in soil) has a much lower electrical
resistance than air. In other words, the dryer the soil, the higher its
electrical resistance, and the more water in the soil, the lower its
resistance. By measuring the resistance between the two nails, we can
measure the dryness of the soil.

If you look back at Figure 9-7, you can see that there is a resistor
between pins 1 and 2. To make it easier to see what is going on,
another way of visualizing the schematic is shown in Figure 9-10.

Figure 9-10: Schematic for measuring soil resistance

Notice that the diagram in Figure 9-10 is almost identical to the
one in Figure 8-4 on page 198, where we were measuring skin
resistance (rather than soil resistance) in the lie detector project. The
one big difference is that rather than being connected permanently to
3V, the top of the fixed 1kΩ resistor is connected to pin 1. When we
take a measurement of the soil dryness, we first set pin 1 high (to 3V)
to take the reading and then set the pin back to 0V.



The reason for using Pin 1 instead of the 3V connection is that we
want to allow electricity to flow through the soil only intermittently. If
the resistor were attached to 3V, an electric current would always be
flowing through the soil, messing up the readings and speeding up
corrosion of the nails. This process is known as electrolysis. By only
turning on pin 1 for the brief time that we take a reading, we avoid this
problem.

SUMMARY
In this chapter, we explored how to measure temperature, created a
temperature and light level data logger, and created an automatic plant
waterer. In the next chapter, we’ll see how the Mad Scientist uses the
micro:bit’s built-in radio library.



10
RADIO ACTIVITY

The Mad Scientist has made a friend. After hitting it off at a Mad
Science Conference, the two decided they wanted to keep talking—
through micro:bit, of course. The micro:bit has a built-in radio
transmitter and receiver, together known as a transceiver, that can
communicate with Bluetooth devices. We saw this in action in the
roving robot project in Chapter 6.

This radio transceiver can also be used to talk to other micro:bits
using a simple message-sending and receiving protocol specific to the
micro:bit. In this chapter, we’ll look at micro:bit-to-micro:bit
communication, so you’ll need either two of your own micro:bits or a
friend with a micro:bit.



EXPERIMENT 12: FINDING THE RADIO
RANGE

Difficulty: Easy

The Mad Scientist and a friend want to know how far apart they can
be before their micro:bit communicators stop working.

What You’ll Need
You’ll need a pair of micro:bits, each equipped with a battery pack.
You’ll also need a friend to talk to and a field or other open space
where you can move away from each other.



Construction

1. Go to https://github.com/simonmonk/mbms/ and click the link for
Experiment 12: Radio Range. Copy the hex file onto both micro:bits.
(Chapter 1 explains the full process of getting programs onto your
micro:bit if you get stuck). If you want to run the MicroPython version of
this experiment, that file is Experiment_12.py.

2. Equip both micro:bits with battery power—you’re probably used to doing
this by now.

Before you venture outdoors, test that both micro:bits are ready to go
by pressing button A on one of the devices. An up arrow should appear on
that micro:bit, and a check mark should appear on the other micro:bit.
Repeat this test by pressing button A on the other micro:bit (Figure 10-1).

https://github.com/simonmonk/mbms/


Figure 10-1: Testing the micro:bits

3. Go to a place where you and your friend have plenty of room to move
away from each other. Stand about a yard (or meter) apart, facing one
another. You should have one micro:bit and your friend the other.

4. Now either you or your friend presses button A on their micro:bit to
transmit the signal. Then wave to let the other person know the signal was
sent (in case they don’t receive it). When their device picks up the signal,
they should wave back. Assuming the signal was successfully transmitted,
take a few steps away from each other and repeat the test.

5. At some point, the message won’t be received! The sender should press
the button and wave one more time. If the message still isn’t received, you
both know to move one step closer.

6. Once you’ve determined the radio’s range, the sender uses a prearranged
signal to tell the receiver to walk toward them, counting the number of
steps that they take.

7. Measure the length of a step taken by the receiver and multiply that by the
number of steps they took. The resulting value is the line-of-sight range of
the micro:bit’s radio. Tip: To get a reasonably accurate stride length, have
the person walk five steps, use a long tape measure to measure the total
distance traveled, and divide that distance by 5.

The Mad Scientist tested the range of two micro:bits and found it
to be 192 strides. Five strides covered 12 feet (3.65 meters), meaning
that each stride was 2.4 feet. The range was therefore 192 × 2.4 or
approximately 460 feet (140 meters).

A range of over 1,100 feet (350 meters) has been reported by
others carrying out this experiment. Note that the range will be
considerably less if either your body or your friend’s is between the
micro:bits.

Code



The code for the range test is fairly simple, whether you use Blocks or
MicroPython.

Blocks Code
Here is the Blocks code for the project.





You can control the amount of power used by the radio. The on start

block uses the radio set transmit power block to set the power to 7
(maximum)—more power means greater range. The set radio group

block assigns a group for the radio to use. In this case, we use group 1,
which means all the micro:bits set to radio group 1 will receive the
transmissions. So, if you plan to carry out this experiment with
multiple pairs of micro:bits at the same time, then each pair of
experimenters should pick a different number between 0 and 255 and
set the radio group to that number. This way, the different pairs won’t
interfere with each other.

We use the on button A pressed block with the radio send block to
transmit a simple message of test. This will flash the North arrow icon
to show that the message has been sent.

We handle incoming messages with an on received block, specifying
the name of the variable into which any incoming message should be
put. In this case, whenever the micro:bit’s radio receives a message, it
puts the message into the variable receivedString. If this message is test,
then the check mark icon is displayed for a moment on the screen.

MicroPython Code
Here is the MicroPython version of the code. Note that the way
messages are sent in MicroPython is slightly different from how
they’re sent in the Blocks code, so the pair of micro:bits used in this
experiment should both be programmed either in Blocks or in
MicroPython.

from microbit import *
import radio

radio.on()
radio.config(power=7, group=1)



while True:
    if button_a.was_pressed():
        radio.send("test")
        display.show(Image.ARROW_N)
        sleep(1000)
        display.clear()
    message = radio.receive()
    if message == 'test':
        display.show(Image.YES)
        sleep(1000)
        display.clear()

To set the radio’s power and radio group in MicroPython, we need
to use the radio.config method. This method also allows you to control a
number of other options. You can read about these at
https://bbcmicrobitmicropython.readthedocs.io/en/latest/radio.html.

The Blocks version of the code is contained entirely in handlers. In
MicroPython, we don’t have handlers, so we have to continually
check for a button press or incoming message. We do this by having a
set of if statements in a while True loop that is always running.

First, we check whether button A has been pressed since the
previous check. If it has been, we send the message test and show the
North arrow.

To check whether we’ve received a message, we repeatedly call
message.receive. When the radio receives messages, it puts them in a
queue. If there is no message waiting, then message.receive returns None.
However, if there is one or more messages, then message.receive returns
the oldest message and removes that message from the queue.

We only care whether the message is test, so we check this
condition. If the message is test, we have the micro:bit display the YES
icon for a second.

How It Works: Radio Signals

https://bbcmicrobitmicropython.readthedocs.io/en/latest/radio.html


When outdoors, the range of the micro:bits’ radios is likely to be
much greater than when you’re indoors, where walls between the
micro:bits will impede the signal.

The system of sending messages between devices is called packet
radio because small packets of data are being sent. In this project’s
code, these are text commands.

PROJECT: WIRELESS DOORBELL

Difficulty: Medium

Distracted by experiments and insubordinate underlings, the Mad
Scientist often misses packages when they’re delivered. To remedy
this, they’ve decided to build a speaker in the lab that plays when the
doorbell is rung.

We’ll build on the doorbell project from way back in Chapter 2. In
this version of the project, we’ll use two micro:bits: one connected to
a speaker, responsible for playing a tune, and a second one that acts as
the doorbell button (Figure 10-2). When one of the buttons on the
second micro:bit is pressed, it sends a radio message to the sound-
making micro:bit, telling it to play a tune. Because the micro:bit
radios have a pretty good range, your sound-playing micro:bit can be
some distance from your door and, thus, closer to you.



Figure 10-2: The wireless doorbell project

What You’ll Need
For this project, you’ll need the following items:

2 × Micro:bit One that acts as a doorbell button and another that
plays a tune



3 × Alligator clip cables To connect the micro:bit to the speaker

2 × USB power adapters or 3V battery packs with power
switch To power the micro:bits

Speaker To play the doorbell tune, I recommend the Monk
Makes Speaker for micro:bit.

Blu-Tak adhesive putty or self-adhesive pads To attach one of
the micro:bits to the door frame

Construction

1. Go to https://github.com/simonmonk/mbms/ and click the link for
Wireless Doorbell. Copy the hex file onto both micro:bits. Chapter 1
explains the full process of getting programs onto your micro:bit if you
need a refresher. If you want to run the MicroPython version of this
experiment, that file is ch_10_Wireless_Doorbell.py.

2. Connect a speaker to one of the micro:bits. You can use the speaker you
used in the musical doorbell project from Chapter 2 (see the instructions
for this project if you get stuck).

3. Test the speaker by pressing button A on the doorbell micro:bit. The
micro:bit attached to the speaker should immediately start playing the tune
“The Entertainer.” When it’s finished, try pressing button B, and the
“Funeral March” should play.

4. Use the Blu-Tak adhesive putty or pads to attach the speakerless micro:bit
to the outside of your door.

Code
Both versions of the code rely on sending a message over the radio of
either db1 or db2, depending on which button is pressed. The
receiving micro:bit then plays one of two tunes, depending on which
message it receives.

https://github.com/simonmonk/mbms/


As with Experiment 12, you cannot mix and match the
MicroPython and Blocks versions of the code, so decide to use one or
the other.

Blocks Code
Here is the Blocks code for the project.





You’ll notice that the code here is similar to that in Experiment 12.
If Button A is pressed, then the string db1 (doorbell 1) is sent and a
north arrow displayed to indicate that the message has been sent. The
handler for when button B is pressed sends the message db2.

The receiving code checks whether the received message is db1 or
db2 and plays the appropriate tune.

MicroPython Code
Here is MicroPython version of the code:

from microbit import *
import radio, music
radio.on()
radio.config(power=7, group=1)

def send_message(message):
    radio.send(message)
    display.show(Image.ARROW_N)
    sleep(1000)
    display.clear()

while True:
    if button_a.was_pressed():
        send_message("db1")
    if button_b.was_pressed():
        send_message("db2")
    message = radio.receive()
    if message == 'db1':
        music.play(music.ENTERTAINER)
    elif message == 'db2':
        music.play(music.FUNERAL)

In this version of the code, we’ve defined the function send_message,
which sends a message using the radio and displays the north arrow
for a second.

As with the code in Experiment 12, we use a while True loop to
continuously check for button presses and received messages.



Things to Try
Try swapping in different tunes. Or you might try changing the code
so that when db1 or db2 is received, the tune is played more than once.
Then the Mad Scientist will be more likely to hear it!

How It Works: Sending and Receiving
You might be wondering why we use the same code for both the
sender and the receiver. If we press button A on the micro:bit with a
speaker attached, shouldn’t it receive its own message and play a
tune? It turns out that while the micro:bit’s radio is busy transmitting,
it cannot receive anything. Also, having just one program avoids
confusion about which program goes on which micro:bit.

PROJECT: MICRO:BIT-CONTROLLED
ROVER

Difficulty: Hard

No secret lab would be complete without a robot that can give
instructions. Back in Chapter 6, we made a robot rover that could be
controlled over Bluetooth using your phone. This project uses the
same basic rover, but instead of controlling the rover with your phone
and Bluetooth, you’ll use a second micro:bit and the micro:bit’s own
way of communicating wirelessly. You’ll steer the rover by tilting the
controlling micro:bit left, right, forward, or backward. Figure 10-3
shows the project, and you can see it in action at
https://youtu.be/Qqr0fknoPQ4/.

https://youtu.be/Qqr0fknoPQ4/


Figure 10-3: A micro:bit-controlled rover

What You’ll Need
For this project, you’ll need the following items:

2 × Micro:bit

Kitronik Motor Driver Board for micro:bit (V2) To control the
forward and backward motors

Low-cost robot chassis kit Includes two gear motors and a 4 ×
AA battery box

4 × AA batteries



AAA battery pack for micro:bit To power the micro:bit being
used as the remote control

Screwdrivers Suitable for both the nuts and bolts on the chassis
and the screw terminals on the motor controller board

Soldering equipment To attach wires to the gearmotors

Blu-Tack adhesive putty To attach the motor control board and
micro:bit to the chassis

Construction



Use the rover you built in Chapter 6 or, if you haven’t built the rover
yet, go back and follow construction steps 1 to 4 from that project.
We’ll be using different software, however, so once the chassis is
built, follow the instructions here. Don’t fit the batteries yet, or your
rover might accidentally drive itself off your table!

1. First, we’ll install the program for the rover part of the project. Go to
https://github.com/simonmonk/mbms/ and click the link for Rover. Copy
the hex file onto the micro:bit attached to the rover chassis. Head back to
Chapter 1 if you need more detailed instructions on how to get programs
onto your micro:bit.

2. Now install the program for the micro:bit being used as the remote
control. Go to the Github page, click the link for Rover Controller, click
Download, and copy the hex file onto the micro:bit.

3. Before you let your robot loose in the lab, it’s worth testing out your
project without the wheels touching the ground. You may need to swap
over some of the motor wires so the rover follows the commands you send
it correctly. Insert the batteries and then flip the rover on its back so you
can see what the wheels are doing, without any danger of its driving away.

Tip the controlling micro:bit to the left, and you should see the same
left arrow appear on the displays of both micro:bits. At the same time,
both wheels should turn in the same direction. As you look from above,
the right wheel should be turning faster than the left. If one of the wheels
is turning in the wrong direction, swap over the red and black wires at the
motor controller screw terminal for that motor.

4. Try driving the rover around. Remember that if the vehicle gets stuck, you
can stop it by putting the controller micro:bit into a horizontal position.

Code
The software uses two programs, one for the controller and another for
the rover micro:bit. You can only use Blocks code for this project

https://github.com/simonmonk/mbms/


Controller Code
Here is the code for the remote controller micro:bit.

You’ll notice that in the on start block, we use a radio set group block.
This block makes the micro:bit listen only to messages from other
micro:bits in the same group—here group 1. This prevents your
micro:bit from picking up stray messages from other scientists in the



area who might be using the same radio group and behaving
unpredictably as a result. If you want to add other micro:bit pairs,
change the number in the radio set group block to a different value for
each micro:bit pair. Then each rover will be paired to a single
controller. You can pick any number between 0 and 255.

The rest of the program consists of on gesture blocks that handle the
possible movement commands for the rover. For example, below the
on start block, you have the on tilt left block, which transmits the string L
and displays an East arrow when the micro:bit is tilted. Here’s the full
list of commands that can be sent:

S Stop

L Left

R Right

B Backward

F Forward

Rover Code
Here is the receiving code for these commands.





Similar to the controller code, we have an on start block that sets the
radio group to 1. Remember that if you decide to change the radio
group code, you have to do it on both micro:bits!

The rest of the code is contained in an on radio received block. Inside
the block is a series of if statements that test the incoming command
letter and perform the action that letter signals. If the L command is
received, for example, a left arrow is shown, and then motor 1 is set to
go forward at 50 percent and motor 2 to go forward at 100 percent
(full speed). This will make motor 2 (the right motor) go faster than
the left motor, making the rover turn in an arc toward the left.

Things to Try
Try adding extra commands to the pair of programs. You’re getting a
bit short on gestures to use, but you could add a D (for dance)
command that tells the rover to do a little sequence of moves when the
controller micro:bit is shaken.

You could also add a C (for circle) command that instructs the
rover to spin on the spot by setting one motor forward at full speed
and the other in reverse at full speed. This could be triggered by
pressing button A or B.

How It Works: Motor Driver Blocks
You may have noticed a new category of blocks that appeared in your
Blocks code when you opened the code for the rover: Motor Driver
blocks. These blocks were created by Kitronik, the makers of the
motor controller used in the project.

If you’re starting a new project and want to use these blocks, you
first need to add them to your project. To do this, click Extensions at



the bottom of the list of block categories. This will open a dialog that
looks something like Figure 10-4. If the package isn’t listed after you
search for it, refresh the browser page and try searching again.

Figure 10-4: Managing extensions in the Blocks editor

In the field at the top labeled Search or enter project URL . . . enter
the following: https://github.com/KitronikLtd/pxt-kitronik-motor-
driver/. To make sure you get the URL right, enter it into another
browser tab first. When you’ve found the page, copy and paste the
URL from your browser’s address bar to the field.

Once you’ve entered the URL, you should see kitronik-motor-
driver, as shown in Figure 10-5. Click it, and you’ll find that your
Blocks editor now has a new category containing the motor control
blocks that you can drag into your code.

https://github.com/KitronikLtd/pxt-kitronik-motor-driver/


Figure 10-5: Managing extensions in the Blocks editor

Once the package has been added to your project, it will be stored
in the project forever. You won’t need to install it again, unless you
start a new project and want to use the package there. Because the
package is stored in the project, you can easily share the project with
someone else, with no need for them to install the package.

SUMMARY
In this chapter, you tested the range of the micro:bit’s built-in radio,
built a better doorbell, and made a remote-controlled rover. With its
good range, the radio lets micro:bits communicate with each other
easily, and it lends itself to all sorts of communication projects.

This is the final chapter in this book. The appendix that follows
will give you some information about the parts you need to build the
projects in this book and where you might obtain them.

The micro:bit community is a vibrant and active one. You’ll find



lots of interesting projects to make and experiments to carry out
involving your micro:bit. Take a look at https://microbit.org/ideas/ if
you want some inspiration for what you, as a Mad Scientist, might do
next with your micro:bit.

https://microbit.org/ideas/


APPENDIX: GET THE PARTS

The projects in this book use a lot of parts, and unfortunately, there is
no one supplier that has all of them. If you find a project you want to
build or an experiment you want to try, carefully look through the
“What You’ll Need” section and make a note of the things you don’t
have. This will be your shopping list.

The tables in this appendix will help you find the items on your
list. If you’re struggling to find something, do an internet search on
the item’s name or description, and you’ll usually find somewhere you
can buy it.

The Monk Makes Electronics Starter Kit for micro:bit
(https://monkmakes.com/mb_kit/) will provide you with alligator clip
cables as well as the Monk Makes Speaker and Sensor boards used in
several of the projects in this book.

https://monkmakes.com/mb_kit/


USEFUL TOOLS
Most of the projects and experiments in this book don’t require any
tools beyond your hands. However, there are a few tools that every
Mad Scientist should have available. You probably already have many
of these in your home.

Item Description Some Sources

Scissors   

Adhesive tape   

Screwdrivers Flat head and Phillips 
(cross head)

 

Drill (for Chapter 6)   

Soldering kit (for 
Chapter 6)

A low-cost kit is fine. 
You don’t need 
anything fancy.

Ladyada’s Electronics 
Toolkit: 
https://www.adafruit.com/pro
duct/136. For lower-cost 
alternatives, search Amazon 
and eBay for “soldering kit.”

Craft knife To cut shapes out of 
cardboard

Craft/hobby store

Pliers Medium-sized Hardware store

https://www.adafruit.com/product/136


general-purpose 
pliers are useful for 
bending wire.

Ruler (inches and 
cm)

 Office supply store

Blu-Tack/Adhesive 
putty

This is great for 
sticking micro:bits to 
things in a 
nonpermanent 
manner.

Office supply store

Only the roving robot project in Chapter 6 requires any soldering.
If you don’t plan to make this project, you won’t need a soldering kit.

Also in Chapter 6, the animatronic head project requires you to use
a drill to make holes in ping-pong balls. Otherwise, you don’t need
this piece of equipment.

COMMON PARTS
Here are some of the parts that are used in many of the projects and
experiments in this book. A number of micro:bit “getting started”
bundles include some or all of these items, and some of these are
listed here as well.

Item Description Some Sources

USB to micro USB 
data cable

To power and 
program your 

These cables are often used to 
charge cell phones, so you 



micro:bit may have one lying around. If 
not, they are readily available 
from stores that carry cell 
phones or computers. They 
are also included in the 
micro:bit Go bundle and 
Pimoroni micro:bit 
accessories pack.

Alligator clip cables To connect the 
micro:bit to various 
things

https://www.adafruit.com/pro
duct/1592
https://shop.pimoroni.com/pr
oducts/crocodile-leads-set-of-
10/
https://www.kitronik.co.uk/24
07-crocodile-leads-pack-of-
10.html

Alligator clip to male 
header cables

To connect the 
micro:bit to a 
servomotor

https://www.adafruit.com/pro
duct/3255
https://thepihut.com/products/
adafruit-small-alligator-clip-
to-male-jumper-wire-bundle-
6-pieces-ada3448/

Here are some kits that contain some or all of these items.

Item Description Some Sources

Pimoroni micro:bit 
accessories kit

Includes a USB cable 
and battery box

https://shop.pimoroni.com/pr
oducts/micro-bit-accessories-

https://www.adafruit.com/product/1592
https://shop.pimoroni.com/products/crocodile-leads-set-of-10/
https://www.kitronik.co.uk/2407-crocodile-leads-pack-of-10.html
https://www.adafruit.com/product/3255
https://thepihut.com/products/adafruit-small-alligator-clip-to-male-jumper-wire-bundle-6-pieces-ada3448/
https://shop.pimoroni.com/products/micro-bit-accessories-kit/


kit/

BBC micro:bit Go 
bundle

Includes a micro:bit, 
USB cable, and 
battery box

https://www.adafruit.com/pro
duct/3362

Monk Makes 
Electronics Starter 
Kit for micro:bit

Includes alligator clip 
cables and a number 
of accessory boards

https://www.eduporium.com/s
tore/monk-makes-electronics-
starter-kit-for-micro-bit.html
https://thepihut.com/products/
electronics-starter-kit-for-
micro-bit/

POWERING YOUR MICRO:BIT
Here are some of the options available for powering your micro:bit.

Item Description Some Sources

2 × AAA battery 
pack

Holder for AAA 
batteries

Available in the micro:bit Go 
bundle: 
https://www.adafruit.com/mic
robit
https://shop.pimoroni.com/pr
oducts/battery-holder-2-x-
aaa-with-switch/
You can also find these on 
eBay.

Kitronik MI:power 
board

Coin-cell power for 
your micro:bit

https://www.kitronik.co.uk/56
10-mipower-board-for-the-

https://www.adafruit.com/product/3362
https://www.eduporium.com/store/monk-makes-electronics-starter-kit-for-micro-bit.html
https://thepihut.com/products/electronics-starter-kit-for-micro-bit/
https://www.adafruit.com/microbit
https://shop.pimoroni.com/products/battery-holder-2-x-aaa-with-switch/
https://www.kitronik.co.uk/5610-mipower-board-for-the-bbc-microbit.html


bbc-microbit.html

Monk Makes Power 
for micro:bit

Powers the micro:bit 
from a 4.5V to 12V 
DC source, which is 
useful for long-term 
powering of the 
micro:bit

https://www.kitronik.co.uk/46
144-monk-makes-power-
board-for-microbit.html
https://shop.pimoroni.com/pr
oducts/power-for-micro-bit/
https://www.robotshop.com/e
n/monk-makes-power-
module-microbit.html

ElecFreaks micro:bit 
Power Supply 
Module

The same concept as 
power for micro:bit 
(Note that the 
connecting cable is 
not included.)

https://www.elecfreaks.com/e
store/micro-bit-power-supply-
module-3-3v-2a.html

Charger kit for 
micro:bit

Rechargeable battery 
and case kit for 
micro:bit

https://www.monkmakes.com/
mb_charger/

USB backup battery A useful rechargeable 
battery option (not 
suitable for high-
current projects)

https://www.adafruit.com/pro
duct/1959
You can also find these at 
stores that carry cell phones 
or computers, as well as on 
eBay and Amazon.

MICRO:BIT ACCESSORIES

https://www.kitronik.co.uk/46144-monk-makes-power-board-for-microbit.html
https://shop.pimoroni.com/products/power-for-micro-bit/
https://www.robotshop.com/en/monk-makes-power-module-microbit.html
https://www.elecfreaks.com/estore/micro-bit-power-supply-module-3-3v-2a.html
https://www.monkmakes.com/mb_charger/
https://www.adafruit.com/product/1959


This book makes ample use of micro:bit accessories, like speakers and
sensors. Here are some options for the accessories.

Item Description Some Sources

Monk Makes 
Speaker for micro:bit

Loudspeaker for 
sound-related 
projects

https://www.eduporium.com/s
tore/monk-makes-speaker-
for-micro-bit.html
https://shop.pimoroni.com/pr
oducts/speaker-for-micro-bit/
https://www.kitronik.co.uk/46
124-powered-speaker-board-
for-microbit.html

Mini.Mu speaker Loudspeaker for 
sound-related 
projects

https://shop.pimoroni.com/pr
oducts/mini-mu-speaker/

Monk Makes Sensor 
for micro:bit

Sound, temperature, 
and light sensor

https://www.eduporium.com/s
tore/monk-makes-sensor-for-
micro-bit.html
https://www.kitronik.co.uk/46
122-sensor-board-for-
microbit.html
https://shop.pimoroni.com/pr
oducts/sensor-for-micro-bit/

Adafruit MEMS 
Microphone 
Breakout

Advanced option for 
sound sensing 
(soldering required)

https://www.adafruit.com/pro
duct/2716

https://www.eduporium.com/store/monk-makes-speaker-for-micro-bit.html
https://shop.pimoroni.com/products/speaker-for-micro-bit/
https://www.kitronik.co.uk/46124-powered-speaker-board-for-microbit.html
https://shop.pimoroni.com/products/mini-mu-speaker/
https://www.eduporium.com/store/monk-makes-sensor-for-micro-bit.html
https://www.kitronik.co.uk/46122-sensor-board-for-microbit.html
https://shop.pimoroni.com/products/sensor-for-micro-bit/
https://www.adafruit.com/product/2716


Kitronik Motor 
Driver Board for the 
BBC micro:bit (V2)

For the robot rover 
project in Chapter 6

https://www.kitronik.co.uk/56
20-motor-driver-board-for-
the-bbc-microbit-v2.html

MISCELLANEOUS
As well as the add-on accessories, you’ll need a few other items.

Item Description Some Sources

Neodymium magnet 
(10 mm disc)

A very powerful disc 
magnet

You might find these in a 
hobby/craft shop, but eBay is 
probably your best bet. 
Search for “neodymium 
magnets.”

3V Servomotor Low-power 
servomotors that will 
operate at 3V

https://www.adafruit.com/pro
duct/169
https://www.kitronik.co.uk/25
65-180-mini-servo.html

12V aquarium 
metering pump

Used in the plant 
waterer project in 
Chapter 9

Tropical fish store or eBay, 
searching for “12V aquarium 
metering pump”

1kΩ resistor Used in the plant 
waterer project in 
Chapter 9

https://www.sparkfun.com/pr
oducts/14492/
https://www.kitronik.co.uk/c3
003-resistor-pack-of-100.html 
(version 3003-1k)

https://www.kitronik.co.uk/5620-motor-driver-board-for-the-bbc-microbit-v2.html
https://www.adafruit.com/product/169
https://www.kitronik.co.uk/2565-180-mini-servo.html
https://www.sparkfun.com/products/14492/
https://www.kitronik.co.uk/c3003-resistor-pack-of-100.html


Female DC barrel 
jack to screw 
terminal adapter

Used in the plant 
waterer project in 
Chapter 9

https://www.adafruit.com/pro
duct/369
https://shop.pimoroni.com/pr
oducts/male-dc-power-
adapter-2-1mm-plug-to-
screw-terminal-block/

12V power supply 
for the pump

To power the pump 
in the plant waterer 
project in Chapter 9 
(Pick one with your 
country’s type of AC 
outlet plug that can 
supply 12V at 1A)

US: 
https://www.adafruit.com/pro
duct/798
UK: 
https://shop.pimoroni.com/pr
oducts/power-supply-12v-1a/

https://www.adafruit.com/product/369
https://shop.pimoroni.com/products/male-dc-power-adapter-2-1mm-plug-to-screw-terminal-block/
https://www.adafruit.com/product/798
https://shop.pimoroni.com/products/power-supply-12v-1a/


Micro:bit for Mad Scientists is set in Century Schoolbook, Filmotype
Candy, Housearama Kingpin, and TheSansMono Condensed.



RESOURCES

Visit https://www.nostarch.com/microbitformad/ for resources,
errata, and more information.

MORE SMART BOOKS FOR CURIOUS KIDS! 

LEARN ROBOTICS WITH RASPBERRY PI
Build and Code Your Own Moving, Sensing, Thinking Robots
by MATT TIMMONS-BROWN

JANUARY 2019, 240 PP., $24.95
ISBN 978-1-59327-920-2
full color

https://www.nostarch.com/microbitformad/


MAKE YOUR OWN SCRATCH GAMES!
by ANNA ANTHROPY

JULY 2019, 192 PP., $17.95
ISBN 978-1-59327-936-3
full color

CODING WITH MINECRAFT
Build Taller, Farm Faster, Mine Deeper, and Automate the
Boring Stuff



by AL SWEIGART

MAY 2018, 256 PP., $29.95
ISBN 978-1-59327-853-3
full color

20 EASY RASPBERRY PI PROJECTS
Toys, Tools, Gadgets, and More!
by RUI SANTOS and SARA SANTOS

APRIL 2018, 288 PP., $24.95
ISBN 978-1-59327-843-4
full color



THE OFFICIAL SCRATCH CODING CARDS
Creative Coding Activities for Kids
by NATALIE RUSK and the SCRATCH TEAM

MAY 2019, 76 CARDS, $24.95
ISBN 978-1-59327-976-9
full color, box set

PYTHON FOR KIDS
A Playful Introduction to Programming



by JASON R. BRIGGS

DECEMBER 2012, 344 PP., $34.95
ISBN 978-1-59327-407-8
full color

1.800.420.7240 or 1.415.863.9900 | sales@nostarch.com |
www.nostarch.com

mailto:sales@nostarch.com
http://www.nostarch.com


AGES 10+

BUILD YOUR OWN SECRET
LABORATORY!

The BBC micro:bit is a tiny, inexpensive, and surprisingly powerful
computer that you can use to build cool things and experiment with
code.

The 30 simple projects and experiments in this book will show you
how to use the micro:bit to build a secret science lab—complete with
robots, door alarms, lie detectors, and more—as you learn basic
coding and electronics skills.

Here are just some of the projects you’ll build:



  A light-controlled guitar you can play just by waving your hand

  A working lie detector

  A self-watering plant care system

  A two-wheeled robot

  A talking robotic head with moving eyes

  A door alarm made with magnets

Learn to code like a Mad Scientist!

ABOUT THE AUTHOR
Simon Monk writes frequently about electronics for makers. He is the
author of Raspberry Pi Cookbook, Programming Arduino, and
Hacking Electronics. He is also the co-author of Practical Electronics
for Inventors and wrote Minecraft Mastery with his son, Matthew
Monk.

Covers MicroPython and MakeCode Blocks

30 CODING AND ELECTRONICS
PROJECTS



THE FINEST IN GEEK ENTERTAINMENT™

www.nostarch.com

http://www.nostarch.com
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