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Digital storage and analysis
of speech
4 Fourier transforms and estimating formant position

by Ian H. Witten, M.A.,M.Sc., Ph.D., M.I.E.E., University of Calgary

Dr Witten continues his discussion
of spectral analysis with an
explanation of the discrete Fourier
and fast Fourier transforms, and
shows how to estimate the
positions of formants.

Discrete Fourier transform
Let us return from the brief digression
into techniques of digital signal analysis to

the problem of determining the frequency
spectrum of speech. Although a bank of
bandpass filters such as is used in the chan-
ncl vocoder is perhaps the most
straightforward way to obtain a frequency
spectrum, there are other Techniques
which arc in fact more commonly used in
digital speech processing.

It is possible to define the Fourier
transform ot a discrete sequence of points.

To motivate the definition, consider first

the ordinary Fourier transform (IT),
which is

This takes a continuous time domain into a
continuous frequency domain. Sometimes
you see a normalizing factor 1/2jt multiply-
ing the integral in cither the forward or the
reverse transform. This is only needed
when the frequency variable is expressed
in radians's, and we will find it more con-
venient to express frequencies in Hz.
The Fourier series (FS), which should

also be familiar to you, operates on a

periodic time waveform (or, equivalently,
one that only exists for a finite period of
time, which is norionally extended
periodically). If a period lies in the time
ranges [0,6), then the transform is

gC0=
r=
r xg

I
G(r)=‘

!

g(t)e |2jWf *dr.

The Fourier series takes a periodic time-
domain function into a discrete frequency-
domain one. Because of the basic duality
between the time and frequency domains
in the Fourier transforms, it is not surpris-

ing that another version of the transform
can be defined which takes a periodic fre-

quency domain function into a discrete

time-domain one.

_
Fourier transforms can only deal with a

finite stretch of a lime signal bv assuming
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that the signal is periodic, for if g(r) is

evaluated from its transform G(r) accord-
ing to the formula above, and t is chosen
outside the interval [0,b), then a periodic
extension of the function g(r) is obtained
automatically. Furthermore, periodicity in

one domain implies discreteness in the
other. Hence if we transform a Finite

stretch of a discrete time waveform, we get
a frequency-domain representation which
is also finite (or, equivalently, periodic),

and discrete. This is the discrete Fourier
transform (DFT). and takes a discrete

periodic time-domain function into a
discrete periodic frequency-domain one, as

illustrated in Fig. 14. Ii is defined by

jAT-1

S(«)= v l G(r>’2™‘v

r=0

.V-l
G(r)= I'

w=0

or, writing

.V-l

I G{rW~m

r= 0

fV-1
G(r)= X fa)W*.

n=

0

The 1IN in the first equation is the same

normalizing factor as the lib in the Fourier
series, for the finite time domain is [0,Af)
in the discrete case and [0,6) in the Fourier
scries case. It docs not matter whether it is

written into the forward or the reverse
transform, but it is usually placed as

shown above as a matter of convention.
As illustrated by Fig. 15, discrete

Fourier transforms take an input of -V real

values, representing equally spaced time
samples in the interval [0,6), and produce
as output N complex values, representing

equally spaced frequency samples in the
interval [0,;V/6). Note that the end-point
of this frequency interval is the sampling
frequency. It seems odd that the input is

real and the output is the same number of
complex quantities: we seem to be getting
some numbers for nothing! However, this

isn’t so, for it is easy to show that if the
input sequence is real, the output fre-

quency spectrum has a symmetry about its

mid-point (half the sampling frequency).
This can be expressed as

DFT symmetry: G(j-*-r)=G(~-r)*

if g is real-valued, where * denotes the

tonjugate of a complex quantity (that is,

(fl+;'6)*=(a->6).

It was argued above that the frequency
spectrum in the DFT is periodic, with the
spectrum from 0 to the sampling fre-
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Fig. 16. Symmetryand periodicity in DFT.

qucncy being repeated regularly up and

down the frequency axis. It can easily be

seen from the DFT equation that this is so.

It can be written

DFT periodicity: G(N+r) = G(r)' always.

Figure 16 illustrates the properties of

symmetry and periodicity.

Estimating the frequency

spectrum of speech

using the DFT
Speech signals are not exactly periodic.

Although the waveform in a particular

period will usually resemble those in the

preceding and following pitch periods, it

will certainly not be identical to them. As

the articulation of the speech changes, the

formant positions will alter. Furthermore,

the pitch itself is certainly not constant,

because the intonation of speech varies

continually. Hence the fundamental as-

sumption of the DFT, that the waveform

is periodic, is not really justified.

However, the signal is quasi-pcriodic, for

changes from period to period will not

usually be very greai. One way of comput-

ing the short-term frequency spectrum of

speech is to use pitch-synchronous Fourier

transformation, where signal pitch periods

are isolated from the waveform and

processed with the DFT. This gives a

rather accurate estimate of the spectrum.

Unfortunately, it is difficult to determine

the beginning and end of each pitch cycle,

as we shall sec later in this article when
discussing pitch extraction techniques.

If a finite stretch ofa speech waveform is

isolated and Fourier transformed, without

regard to pitch of the speech, then the

periodicity assumption will be grossly vio-

lated. Figure 17 illustrates that the effect is

the same as multiplying the signal by a

rectangular window function, which is 0

except during the period to be analysed,

where it is 1. The windowed sequence will

almost certainly have discontinuities at its

edges, and these will effect the resulting

spectrum. The effect can be analysed quite

easily, but wc will not do so here. It is

enough to say that the high frequencies

associated with the edges of the window

cause considerable distortion of the spec-

trum. The effect can be alleviated by using

a smoother window than a rectangular one,

and several have been investigated extensi-

vely. The commonly-used windows of

Bartlett, Blackman, and Hamming arc

illustrated in Fig. 18.

Because the DFT produces the same

number of frequency samples, equally-

spaced, as there were points in the time

waveform, there is a tradeoff between fre-

quency resolution and time resolution (for

a given .sampling rate). For example, a

256-point transform with sampling rate of

8 kHz gives the 256 equally-spaced fre-

quency components between 0 and 8 kHz
that are shown in Table 4. The top half of

the frequency spectrum is of no interest,

because it contains the complex conjugates

of the bottom half (in reverse order), corre-

sponding to frequencies greater than half

the sampling frequency. Thus for a 30 Hz

resolution in the frequency domain, 256

time samples, or a 32 ms stretch of

speech, needs to be transformed. A com-

mon technique is to take overlapping

periods in the time domain to give a new

frequency spectrum every 16 ms. From

the acoustic point of view this is a rcason-

Retfongular

iwindow

Windowed

signal

Fig. 17. Isolating part of waveform for

analysis - windowing.

Fig. 18. Three windovv shapes to reduce

effects of discontinuities at beginning and

end ofwindow period.

able rate to recompute the spectrum, for as

noted above when discussing channel vo-

coders the rate of change in the spectrum is

limited by the speed that the speaker can

move his vocal organs, and anything be-

tween 10 and 25 ms is a reasonable figure

for transmitting or storing the spectrum.

time domain
sample time

number

frequency domain
sample frequency

number

0 0 usee 0 0 Hz
1 125 1 31

2 250 2 62

3 375 3 94

4 500 4 125

254 *31750 254 7938

255 31875 255 7969

Table 4 Time domain and fre-

quency domain samples for a 256-

point DFT with 8 kHz sampling
figure for transmitting or storing

the spectrum.
The DFT is a complex transform, and

speech is a real signal. It is possible to do

two DFTs at once by putting one time

waveform into the real parts of the input

and another into the imaginary parts. This

destroys the DFT symmetry property, for

it only holds for real inputs. But given the

DFT of a complex sequence formed in this

way, it is easy to separate out the DFTs of

the two real time sequences. If the two

time sequences arc x(n) and><n), then the

transform of the complex sequence

g{n) = x(n) *-/><")

N-

1

is G(r)= X ^n)W”].
n=

0
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II follows that the complex conjugate of
the aliased parts of the spectrum, in the

upper frequency region, are

.V~l
G(A'-r)*= I [x(n)Ur'* - r*-y(n)W

*

-

v r

*J

,

n=0

and this is the same as

discrete Fourier transforms, and they are

neither alleviated nor exacerbated bv the

FIT.

To gain insight into the working of the

ITT, imagine the sequence .?(») split into

halves, containing the even and odd points

respectively.

A'-l
G(.V- r)*= Z [x(n)Wn'-y(n)W

n
'),

n=0

because Ws
is 1 (recall the definition of

\V), and so W~Nn is 1 for any n. Thus

v(r)
_<fr)+GQV— rj»

y/r:_
G(r)—GjN- r)*

extracts the transforms X(r) and Y(r) of the
original sequences x andy.
With speech, this trick is frequently

used to calculate two spectra at once.

Using 256-point transforms, a new esti-

mate of the spectrum can be obtained
every’ 16 ms by taking overlapping 32 ms
stretches of speech, with a computational
requirement of one 256-point transform
every 32 ms. -

The fast Fourier transform
Straightforward calculation of the DF1\
expressed as

N— 1

G(r>~ X rfior,
n=0

for r = 0, 1, 2, . . . ,Ar-l, takes \u opera-

tion, where each operation is a complex
multiply and add (for W is, of course, a

complex number). There is a better way,
invented in the early sixties, which reduces
this to A' logjiV operations a very con-

siderable improvement. Dubbed the “last

Fourier transform” (FFT) for historical

reasons, it would actually be better called

the “Fourier transform”, with the
straightforward method above known as

the "slow Fourier transform”: There is no
reason nowadays to use the slow method,
except for tiny transforms. It is worth des-

cribing the basic principle of the FFT, for

it is surprisingly simple.

It is important to realize that the FIT
involves no approximation. It is an exact

calculation of the values that would be

obtained by the slow method. Problems of
aliasing and windowing occur in all

Fig. 19. Fast Fourier transform 'FFT! re-

quires many fewer operations than OFT.
Sue of transform plotted horizontally.

even half e(n) is g(0) g(2) . .
.
g(.V-2)

odd half o(n) is g\ I) g(3) . . . giM-l).

Then is is easy to show that if G is the
transform of g, E the transform of e, and 0
that of o

,
then

U(r>=E(r;+lFOr for r=0,
1, £-1,

and

G(y H- r)= E(r)+ for 0. 1, ..., j-l.

Calculation of the E and O transforms

involves (AH2) 1 operations each, while
combining them together according to the

above relationship occupies A* operations.

Thus the total is A' + Af2
/2 operations,

which is considerably less than Ar2
.

But don’t stop there: The even half can
itself be broken down into even and odd
parts to expedite its calculation, and the

same with the odd half. The only con-
straint is that the number of elements in

the sequences splits exactly into two at

each stage. Providing A' is a power of 2,

then, we are left at the end with some 1 -

poini transforms to do. But transforming a

single point leaves it unaffected! (Check
the definition of the DFT.) A quick calcu-

lation shows that the number of operations
needed is not .V +Ar2

/2, but ,Y log2A
r

.

Figure 19 compares this with A’
2
, the

number of operations for straightforward

DFT calculation, and it can be seen that

the FFT is very much faster.

The only restriction on the use of the

FIT is that Ar must be a power of two. If it

is not, alternative, more complicated, algo-

rithms can be used which give comparable
computational advantages. However, for

speech processing the number of samples

that are transformed is usually arranged to

be a power of two. If a pilch synchronous
analysis is undertaken, the time stretch

that is lo be transformed is dictated by the

length of the pitch period, and will vary

from lime to time. Then, it is usual lo pad
out the time waveform with zeros to bring

the number of samples up to a power of

two; otherwise, if different-length time

stretches were transformed the scale of the

resulting frequency components would
vary- too.

The FIT provides very worthwhile cost

savings over the use of a bank of bandpass
filters for spectral analysis. Take the

example of a 256-point transform with 8

kHz sampling, giving 128 frequency com-
ponents spaced by 31.25 Hz from 6 up to

almost 4 kHz. This can be computed on
overlapping 32 ms stretches of the time
waveform, giving a new spectrum every 16

ms, by a single FFT calculation every 32

ms ^putting successive pairs of time

stretches in the real and imaginary parts of

ihc complex input sequence, as described

earlier). The FIT algorithm requires N
log2-V operations, which is 2048 when .V =
256. An additional 512 operations are re-

quired for the windowing calculation. Re-

peated every 32 ms, this gives a rate of

80,000 operations per second. To achieve a

much lower frequency resolution with 20
bandpass filters, each of which are fourth-

order, will need a great many more opera-

tions. Each filter needs between four and
eight multiplications per sample, de-

pending on its exact digital implementa-

tion. But new samples appear every 125

Microseconds, and so somewhere around a

million operations are required every

second. If we increased the frequency reso-

lution to that obtained by the FFf, 128
filters would be needed, requiring between
4 and 8 million operations!

Formant estimation.
Once the frequency spectum of a speech
signal has been calculated, it may seem a

simple matter to estimate the positions of
the formants. But it is not! One reason for

this is that, unless the analysis is pitch-

synchronous, the frequency spectrum of
the excitation source is mixed in with that

of the vocal tract filter. There arc other
reasons, which will be discussed later in

this section. But first, let us consider how
to extract the vocal tract filter characteris-

tics from the combined spectrum of source
and filter. To do so we must begin to

explore the theory of linear systems.

Discrete linear systems. Figure 20 shows
an input signal exciting a filter to produce
an output signal. For present purposes,
imagine the input to he a glottal waveform,
the filter a vocal tract one, and the output a

speech signal (which is then subjected to

high-frequency de-emphasis by radiation

from the lips!. We will consider here
discrete systems, so that the input x(n) and
output v<»; arc sampled signals, defined
only when n is integral. The theory is quite
similar lor continuous systems.

Assume that the system is linear; that is,

if input XjIh; produces output y\(n) and
input x>(n) produces output yfa), then the
sum of x\(n) and x>(n) will produce the

sum of jVifa; and yz(n). It is easy to show
from this that, for any constant multiplier

a, the input axln) will produce output
ay i:

-
it is pretty obvious when a~ 2 . or

indeed anv positive inreger; for then ax(n)
can be written as xfn)+x(n)+ . . . Assume
further that the system is time-invariant;
iltat is, if input xfx; produces output >;‘n)

then a time-shifted version of x, say

Fig. 20. Linear system with input and out-
put. with impulsive input and correspond-
ing output.
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x(n-no) for some constant wrii will produce

the same output, only time-shifted:

namelyjyfn+ no).

Now consider the discrete delta function

6fn;, which is 0 except at n= 0 when it is 1.

If this single impulse is presented as input

to the system, the output is called the

impulse response, and will be denoted by

h{n). The fact that the system is time-inva-

riant guarantees that the response does not

depend upon the particular time at which

the impulse occurred, so that, lor example,

the impulsive input 6(n+no) will produce

output h(n+rto). A delta-function input

and corresponding impulse response are

shown in Fig, 20.

The impulse response of a linear, time-

invariant system is an extremely useful

thing to know, for it can be used to calcu-

late the output of the system for any input

at all! Specifically, an input signal x(n) can

be written

CO

x(n)=, I x(k)b{n-k),
R= —x

because b(n-h ) is non-zero only when k=n,

and so for any particular value of n, the

summation contains only one non-zero

term - x(n). The action of the system on

each term of the sum is to produce an

output x(k',h[n-k) t
because x{k) is just a

constant, and the system is linear,

Furthermore, the complete input x(n) is

just the sum of such terms, and since the

system is linear, the output is the sum of

x(k'Xn-k). Hence the response of the

system to an arbitrary input is

y(n)

=

k=^ x x(k)h(n-k)

.

This is called a convolution sum, and is

sometimes written

y<n)=x(n)*h(n).

Let’s write this in terms of z-transforms.

The (two-sided) z-transform ofy{«) is

Y(z)= £ y(n)z
-»= XZx(k)h(n-k)z~”.

fl— — % m rt

Writing s " as s and inter-

changing the order of summation, this be-

comes

Y(z)=^[Zh(n-k)s " 4
ix(*>-

A

k n

=ZH(z)8 *=H(8)Zx(i!f)2
-

ft=H(z;X(8).

k k

Thus convolution in the time domain is the

same as multiplication in the z-transform

domain: a very important result. Applied

to the linear system of Fig. 20- this means
that the output z-transform is the input z-

transform multiplied by the z-transform of

the system’s impulse response.

What we really want to do is to relate the

frequency spectrum of the output to the

response of the system and the spectrum of

the input. In fact, frequency spectra are

very closely connected with z-transforms.

A periodic signal x\n) which repeats every

iV samples has DFT

and its z-transform is

Hence the DFT is the same as the z-

transform of a single cycle of the signal,

evaluated at the points z-c ,2 ’rA for

r-0,1, . . . ,iV-l. In other words, the fre-

quency components are samples of the z-

transform at :V equally-spaced points

around the unit circle. Hence the fre-

quency spectrum at the output of a linear

system is the product of the input spec-

trum and the frequency response of the

system itself (i.c., the transform of its im-

pulse-response function). It should be ad-

mitted that this statement is somewhat

questionable, because to get from z-

transforms to DFTs wc have assumed that

a single cycle only is transformed - and

the impulse response function of a system

is not necessarily periodic. The real action

of the system is to multiply z-transforms,

not DFTs. However, it is useful in imagin-

ing the behaviour of the system to think in

terms of products ofDFTs; and in practice

it is always these rather than z-transforms

which are computed because of the exist-

ence of the FFT algorithm.

The DFT frequency spectrum of a

typical voiced speech signal shows humps
at the formant positions. However,
superimposed on this is an “oscillation”

(in the frequency domain!) at the pitch

frequency. This occurs because the

transform of the vocal tract filter has been

multiplied by that of the pitch pulse, the

latter having components at harmonics of

the pitch frequency. The oscillation must

be suppressed before the formants can be

estimated to any degree of accuracy.

One way of eliminating the oscillation is

to perform pitch-synchronous analysis.

This removes the influence of pitch from

the frequency domain by dealing with it in

the time domain! The snag is, of that it is

not easy to estimate the pitch frequency:

some techniques for doing so are discussed

in the next main section. Another method

is to remove the pitch ripple from the

frequency spectrum directly. This will be

discussed next, in an intuitive rather than a

theoretical way.

Cepstral processing of speech. Suppose

the rippled frequency spectrum were actu-

ally a time waveform. To remove the high-

frequency pitch ripple is easy: iust filter it

out! However, filtering removes additive

ripples, whereas this is a multiplicative

ripple. To turn multiplication into addi-

tion, take logarithms. Then the procedure

would be
- compute the DFT of the speech

waveform (windowed, overlapped);
- take the logarithm of the transform;

- filter out the high-frequency part,

corresponding to pitch ripple.

Filtering is often best done using the

D1T. If the rippled waveform is trans-

formed, a strong component could be ex-

pected at the ripple frequency, with

weaker ones at its harmonics. These com-

ponents can be simply removed by setting

them to zero, and inverse-transforming the

result to give a smoothed version of the

original frequency spectrum. A spectrum

of the logarithm of a frequency spectrum is

often called a cepstrum - a sort of back-

wards spectrum. The horizontal axis of the

cepstrum, having the dimension of time, is

called “quefrency”! Note that high-fre-

quency signals have low quefrencies and

vice versa. In practice, because the pitch

ripple is usually well above the quefrency

of interest for formants, the upper end of

the cepstrum is often simply cut off from a

fixed quefrency which corresponds to the

maximum pitch expected. However, iden-

tifying the pitch peaks of the cepstrum has

the useful byproduct of giving the pitch

period of the original speech.

To summarize, then, the procedure for

spectral smoothing by the cepstral method

is

- compute the DFT of the speech wave-

form (windowed, overlapped);

take the logarithm of the transform;

- take the DFT of this log-transform,

calling it the cepstrum;
- identify the lowcst-qucfrcncy peak in

the spectrum as the pitch, confirming it by

examining its harmonics, which should be

equally spaced at the pitch quefrency;

- remove pitch effects from the cepstrum

by cutting off its high-quefreney part

above either the pitch frequency or some

constant representing the maximum ex-

pected pitch (i.e. minimum expected pitch

frequency);

- inverse DFT the resulting cepstrum to

give a smoothed spectrum.

Estimating formants from smoothed

spectra. The difficulties of formant extrac-

tion are not over even when a smooth fre-

quency spectrum has been obtained. A
simple peak-picking algorithm which iden-

tifies a peak at the k'\h frequency compo-

nent whenever

X(k-l)<X(k) and X(k)<X{k I- 1)

will quite often identify formants incor-

rectly. It helps to specify in advSnce

minimum and maximum formant frequen-

cies say 100 Hz and 3 kHz for three-

formant identification, and ignore peaks

lying outside these limits. It helps to esti-

mate the bandwidth of the peaks and reject

those with bandwidths greater than 500 Hz
- for real formants arc never this wide.

However, if two formants are very dose,

then they may appear as a single, wide,

peak and be rejected by this criterion. It is

usual to take account of formant positions

identified in previous frames under these

conditions.

There arc several estimation algorithms.

The simplest uses the number of peaks

identified in the raw spectrum (under 3

kHz, and with bandwidths greater than

500 Hz), to determine what to do. If

exactly three peaks arc found, they are

used as the formant positions It is claimed

that this happens about 85% to 90% of the

time. If only one peak is found, the present

frame is ignored and the previously-iden-

tified formant positions arc used (this hap-



pens less than 1% of me time). The re-

maining cases are two peaks —
corresponding to omission of one formant

and four peaks corresponding to an
extra formant being included. 'More than
tour peaks do not normally occur.) Under
these conditions, a nearest-neighbour mea-
sure can be used for identification. A suit-

able measure is

where /•*;(£- 1) is the >’th formant fre-

quency defined in the previous frame k-

1

and F*-,(k) is the fth raw data frequency
estimate for frame k. If two peaks only arc
found, this measure is used to identify the

closest peaks in the previous frame; and
then the third peak of that frame is taken
to be the missing formant position. If lour
peaks are found, the measure is used to

determine which of them is furthest from
the previous formant values, and this one
is discarded.

This procedure works forwards, using

the previous frame to distinguish peaks
given in the current one. More sophis-
ticated algorithms work backwards as

well, identifying anchor points in the data
which have clearly defined lormant posi-

tions, and moving in both directions from
rhese to identify neighbouring frames
of data. Finally, absolute limits can be
imposed upon the magnitude of formant
movements between frames to give an
overall smoothing to the formant tracks.

Very often, people will refine the result

ol such automatic formant estimation

procedures bv hand, looking at the tracks,

knowing what was said, and making ad-

justments in the light of their experience of

how formants move in speech. Unfortuna-

tely, it is difficult to obtain high-quality

formant tracks by completely automatic

means.

One of the most difficult cases in for-

mant estimation is where two formants arc

so close together that the individual peaks
cannot be resolved. One simple solution to

this problem is to employ “analysis-by-

synthesis", whereby once a formant is

identified, a standard formant shape at this

position is synthesized and subtracted

from the logarithmic spectrum. Then, even
if two formants are right on top of each
other, the second is not missed because it

remains after the first one has been
subtracted.

Unfortunately, however, the single peak
which appears when two formants are

close together usually docs not correspond
exactly with the position of cither one.
There is one rather advanced signal-

processing technique that can help in this

Fig. 21. Evaluating Z-transform outside
outerpole but inside unit circle.
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case. The frequency spectrum of speech is

determined by poles which lie in the com-
plex a-plane inside the unit circle. (They
must be inside the unit circle if the sytem
is stable. Those familiar with Laplace
analysis of analogue systems may like to

note i hat the left half of the s-plane corre-

sponds with the inside of the unit circle in

the s-planc.) As shown earlier, computing
a DFT is tantamount to evaluating the z-

transfonn at equally-spaced points around
the unit circle. However, better resolution

is obtained by evaluating around a circle:

which lies inside the unit circle, but:

outside the outermost pole position. Such,
a circle is sketched in Fig. 2 1

.

Recall that the FFI' is a fast way of
calculating the DFT of a sequence. Is

there a similarly fast way of evaluating the

z-irunsform inside the unit circle? The ans-

wer is yes, and the technique is known as

the “chirp z-transform", because it

involves considering a signal whose fre-

quency increases linearly — just like a

radar chirp signal. The chirp method
allows the z-transform to be computed
quickly at equally-spaced points along spi-

rally-shaped contours around the origin of
the s-planc corresponding to signals of
linearly incresing complex frequency. The
spiral nature of these curves is not of parti-

cular interest in speech processing. What
is of interest, though, is that the spiral can

begin at any point on the s=0 axis, and its

pitch can be set arbitrarily. If we begin

spiralling at s=0.9, say, and set the pitch

to zero, the contour becomes a circle inside

the unit one, with radius 0.9. Such a circle

is exactly what is needed to refine formant
resolution.

To be continued

Literature Received
Catalogue of passive and active electronic com-
ponents, hardware and tools, which includes a
greater number of optoelectronic devices than
usual, can be obtained by writing to HB
Electronics, Norfolk House, Wellesley Road,
Croydon CRO OYF on company notepaper.

A variety of noise sources, from basic diodes to
programmable generators is produced by
Micronctics, who offer a catalogue through
distributors March Microwave Ltd. 112 South
Street, Braintree, Essex. WW401

Crow of Reading’s capabilities in the design and
construction of broadcast television equipment,
Irom single instruments to large stations, is

briefly described in a colour brochure which can
be obtained from Crow of Reading Ltd. PO Box
36, Reading, Berks. WW402

A range of seven microterminals made by Burr-
Brown are illustrated and shortly specified in a
brochure, available from Burr-Brown Interna-
tional Ltd, Cassiobury House, 11-19 Station
Road, Watford, Hertfordshire WD1 1EA.

WW403
Catalogue of small tools and a selection of
hardware is produced by Elcctrowarc, who des-
cribe their range in a new catalogue, which is

obtainable from Dutton Lane. Eastleigh S05
4SL - WW404

Voltage regulator i.es to provide currcnr up to

$A positive and 1.5A negative, and a range of

switching power supplies for up to SOA arc
made by I.ambds. Brochures can be had on
application :o Lambda Electronics Co., Abbey
Barn Road, High Wycombe, Bucks. WW405
Production equipment for the electronics indus-
try (cutting, stripping, bending and cleaning) is

described in a leaflet produced by Eraser Inter-

national Ltd, Unit M, Portway Industrial Es-
tate, Andover SP10 3LU. WW406
P.r.o.ms and programmable logic devices from
many makers arc detailed in a new wall-chart

from Microsystem Services, Duke Street, High
Wycombe, Bucks. IIP13 6F.E. WW407

Booklet from the Electric Cable Makers’ Con-
tcdcration lists the member companies by name
and by product, and includes a short resume of
each company's activities. The confederation’s

address is 56 Palace Road, East Molcscy, Surrev
KTS 9DW. WW408
Catalogue ol general electronic components and
tools, including a wide range of semiconductors
and the well-known audio modules, can be ob-
tained from Bi-Pak, the Makings, 63a High
Street, Ware, Hens. SG12 9AD. WW409

Link Electronics have produced a guide to their

closed-circuit television equipment and

systems, including cameras, studio equipment,
complete studios and mobile units. It is avail-

able from Link Electronics Ltd, North Way,
Andover SP 1 0 5AJ . WW4 i 0

The Acron 505 Sync, pulse generator, for PAL,
NTSC and PAL-M is described in a colour
leaflet from Acron Video, Unit 3, Lovelace
Road

, Bracknell RG 1 2 4YT. WW4 1

1

Communications, lugic and memory devices in

ISO-CMOS technology’, which confers high
speed at low power, will shortly be introduced
by GTE, who have sent us a short description of
the new devices. Copies can be obtained from
GTE Microcircuits, 2000 W. 14th Street,
Tcmpc, Am., 8528 1

. WW412

Zilog’s newsletter Z-Bits is now in its second
issue, the latest one including details of the Z-
Lab development system for sixteen users, new
peripheral devices, Z8003 and 8004 c.p.us, 3
cross-assembler for Intel dev. systems and a new
4K by 8-bit quasi-static r.a.m. Copies can be
had from Zilog (UK) Ltd, Babbage House,
King Street, Maidenhead, Berks. SL6 1DU.

WW413
A vast range of test and measuring instruments
is fully described in the 1981:82 catalogue of
instruments from Electroplan Ltd, PO Box 19,

Orchard Road, Royston, Herts. SG8 5HH.




