
.As the saying goes, the only 1wo 
things in life that are certain are 
death and taxes. The field of 

electronics supports that adage. Elec­
tronics is filled with .numerical uncer­
tainties-values that may fall anywhere 
within a limited range. 
. Normally a circuits lack of precision 
components have little effect on its op­
eration. Indeed, most circuits are de­
signed to tolerate variation. Even the 
most' cautiously designed ne1work, 
however, can be crippled if deviations 
from nominal specifications add up. 

One of the largest sources of uncer­
tainty is the variation be1ween compo­
nent values; no 1wo are exactly the 
same. Of all the 1000-ohm resistors 
you've ever used, probably none of 
them were · exactly 1000 ohms. They 
may have been so close that your 
meter registered 1000, but more sen­
sitive equipment would have shown .a 
deviation. 

Variations be1ween component val­
ues are not the only culprits. Other 
causes of uncertainty in electronics in­
clude uncalibrated meters, imperfectly 
regulated power supplies, induced 
electrical noise, and even environmen­
tal effects such as temperature· and hu­
midity. 

Armed with even a limited knowl­
edge of how to deal with uncertainties 
in calculations, you can identify poten­
tial problems and eliminate them. This 
awareness can also be a great asset 
when selecting component tolerances 
(e.g. you'll know when to use a 5% re­
sistor and when to spend the extra few 

· cents for its 1% counterpart). 
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This article presents a basic overview 
of how uncertainties should be dealt 
with for the four primary mathematical 
operations: addition, subtraction, multi­
plication, and division. While discussing 
the four basic operations, the article will 
demonstrate a generic methodology 
that can be used to determine how 
uncertainties should be handled in 
more complex operations. Before we 
get to all that though, a short discussion 
of the notation used for uncertainties is 
in order. 

z Uncertainty Notation. As you're 
~ probably aware, numbers with uncer­
b tain values can be written as a series of 
w u:J three separate numbers: a target or 
c:c nominal value, a maximum deviation 
:5 above nominal. and a maximum de-
1[ viation below nominal. Because the 
~ 1wo deviations are generally the same 
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in magnitude, only 1wo numbers are 
usually listed. 

For example, let's return to the hypo­
thetical 1000-ohm resistor mentioned 
earlier. If it were a 5%-tolerance com­
ponent (signified by a gold fourth color 
band), its value could be listed as 1000-
ohm ± 5%. That indicates that the com­
ponent's actual resistance can vary 
from 1000 ohms by up to 5% in either 
direction. Because 5% of 1000 is 50, the 
resistor may actually be anywhere from 
950 to 1050 ohms. 

Note that the deviation from nominal 
are usually given as either a percent­
age (1000 ± 5%), but can be specified 
as an absolute magnitude (1000 ±50). 

Addition and Subtraction. Assume 
1wo resistors are connected in series, 
the first a 5% component with a nomi­
nal value of 820 ohms and the second 
a 10%, 360-ohm element. The ne1work's 
nominal resistance, from the top of the 
upper component to the bottom of the 
lower one, would then be 1180 ohms. 

The highest possible total resistance 
would occur if both components were 
at the upper end of their tolerance 
bands. True resistance values would 
then be 861 and 396 ohms, respec­
tively, and the total circuit resistance 
would therefore be 1257 ohms. Finally, 
the actual circuits deviation from its de­
signed value would be 77 ohms. Clear­
ly, the total deviation of 77 ohms is the 
sum of the absolute deviations for the 
1wo individual components, 41 and 36 
ohms. 

Now let's apply the above procedure 
to the subtraction operation. Figure 1 
shows a segment of a larger circuit, in 
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which the cu(rent through a resistor is. 
dependent on the exact values of 1wo 
independent current sources. By 
Kirchoff's current law, the current 
through the resistor (1,) is the difference 
be1ween 11 and 12 ; that is: 

1, = 11-12 

We would expect 1, to have its largest 
value if 11 and 12 were at the upper and 
lower ends o.f their respective toler­
ance bands. Let's say the have a toler­
ances of ± 50 mA and ± 25 mA 
respectively. So: 

11 = (750 mA + 50 mA) = 800 mA 

and 

11 = (200 mA- 25 mA) = 175 mA 

the calculation of I, yields a result of 625 
mA. The actual current flowing through 
the resistor would therefore be 75 mA 
greater than the target rate of 600 mA. 
We conclude that the current through 
the resistor is 600 mA ± 7 5 mA. 

From the results of these 1wo thought 
experiments we can infer a standard 
rule: When adding or subtracting 1wo 
numbers, the total nominal value is the 
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Fig. 1. The uncertainty of component values 
leads to uncertainties in ·the values of cur­
rent through a circuit. The overall uncer­
tainty can really add up. 
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sum or difference of the two original 
values; the uncertainty of the result is 
the sum of the absolute magnitudes of 
the two original uncertainties. 

Multiplication and Division. With a 
general rule for addition and subtrac­
tion under our belts, we now turn our 
attention to the more complex opera­
tions of multiplication and division. 
Since multiplication and division have 
the same relationship to each other as 
addition and subtraction (they are al­
gebraic inverses of one another), we 
might expect a single rule to cover both 
multiplication and division. That does 
turn out to be the case, so we will there­
fore only consider multiplication in de- · 
tail. 

Assume Pis ~he power dissipated by a 
resistor in a direct-current (DC) circuit. 
The power is the product of the the 
current (I) through the resistor and the 
voltage M across it. If I = 16 ± 2 amps 
and V = 20 ± 5 volts, the nominal value 
of P is 320 watts. The power will deviate 
furthest from this value when both the 
multiplier M and multiplicand (I) are at 
the upper limits of thE(ir ranges. In that 
case, P is 450 watts. The difference be-
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Fig. 2. This example resistor network 
should help clarify how tolerance values are 
affected by mathematical operations. 

tween the two 130, or 40.625% of the 
nominal value. 

To obtain a minimum value for the 
component's power both V and I must 
be at the lower ends of their respective 
ranges. The calculation becomes: 

P = 15 x 14 = 210 watts 

which is 110 (34.375%) below nominal. 
Unlike addition, the multiplication 

operation produces asymmetric (read 
that unequal) positive and negative 
uncertainties. A mc;Jthematical purist 
would be forced to indicate separate 
positive and negative tolerances. 
Those of us who can afford to lose some 
accuracy, however, can make an ap­
proximation of the uncertainty of the 
final result. 

Averaging the two deviations comes 
to mind as a good method. When that 
is done, in both the absolute and per­
centage forms, the averages are 120 
and 37.5%. From that it is easy to see 
that an approximation for the final un­
certainty is just the addition of the per­
centage uncertainties of the multiplier 
and multiplicand. 

By performing a similar analysis for 
division it can be shown that the same 
result applies. Hence we can write a 
general rule for both operations: When 
the operation of multiplication or divi­
sion is to be performed on two num­
bers, the uncertainty of the result is the 
sum of the percentage uncertainties of 
the two original numbers. 

Example. Finally, to demonstrate the 
rules just derived, we'll calculate the 
total resistance of the series/p.arallel re­
sistor network shown in Fig. 2. It is sug-

gested that you try this exercise on your 
own before reading the solution. 

Assume the following component 
values: 

R1 = 910 ± 5% ohms 
R2 = 560 ± 1% ohms 
R3 = 180 ± 5% ohms 

Given those values, the parallel com­
bination of R1 and R2 would yield a 
combined resistance of Rp where: 

Rp = R1 x R2/(R1 + R2) 
= (910 ±5%)x(560 ±1%) + 

((910 ± 45.5) + (560 ± 5.6)) 
= 509600 ± 6%/(1470 ± 51.1) 
= 509600 ± 6%/(1470 ± 3.476%) 
= 346.7 ohms ± 9.476% 
= 346.7 ± 32.8 ohms 

Of course, the last step in the calcula­
tion of Rt (the total equivalent resis­
tance) is to add the resistance of R1 to 
the value of Rp just calculated: 

Rt = R1 +Rp 
Rt = 180 ±5% + 346.7 ±32.8 
Rt = 180 ± 9 + 346.7 ± 32.8 
Rt = 526.7 ± 41.8 ohms = 526.7 ohms 

±7.94% 

From this example we see how even 
rather small uncertainties can be am­
plified through repeated calculations. 
The tolerance of the total resistance 
network is nearly 8% even though the 
individual tolerances are 5% or less. 

As mentioned in the introduction, 
normally this type of error "stack-up" will 
have a little effect on a circuit's opera­
tion. But armed with even the bounded 2: 
knowledge presented here, you should z 

m 
be able to avoid any problems that <D 
may arise from uncertainty. • ~ 
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