EDN Design Ideas

Circular slide rule provides quick results

Jacek Pawlowski, PW INMEL, Zielona Gora, Poland

In analog-circuit design, most calculations you make need not be very precise. If you need an LED-current calculation or a coupling-capacitor value, for example, $\pm 5 \%$ or even $\pm 10 \%$ accuracy is usually adequate. It's sometimes inconve-
nient to makethesecal culations with a pocket cal culator. For example, finding the cutoff frequency of a $3.3-\mathrm{k} \Omega / 47-\mathrm{pF}$ network requires approximately 20 key presses. The circular slide rule using the patterns in Figures 1 through 4 simpli-

This wheel, using transparent material, gives current values of 1 nA to 100A.

EDN DEEIGN IdEAS

fies such cal culations. The slide rule uses one large, opaque, doublesided wheel and two smaller, transparent wheels.

You can make the opaque wheel by gluing back-to-back the patterns in Figures $\mathbf{2}$ and $\mathbf{4}$. For the transparent wheels, you simply photocopy the patterns in Figures $\mathbf{1}$ and $\mathbf{3}$ onto
overhead-transparency foils. To attach the wheels, you can use a rivet or a screw and nut. Using side A (Figures 1 and 2), you can calculate resistance (V/I), power (VI), and percentage products ($\Delta=\delta \cdot X$, where δ is a percentage). X can be voltage, current, power, or resistance. Side A also gives stan-

This wheel, an opaque background, gives voltage, current, power, and dissipation-factor percentages. The inner rows give standard EIA resistance values.

EDN Design Ideas

dard EIA values for resistance.

$$
\mathrm{F}_{\mathrm{RES}}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}
$$

$$
\tau=\mathrm{RC}
$$

$$
\mathrm{F}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{RC}}
$$

$$
\mathrm{T}=\frac{1}{\mathrm{f}}
$$

On side B (Figures 3 and 4), you can calculate the following formulas:

$$
\mathrm{X}_{\mathrm{C}}=\frac{1}{2 \pi \mathrm{fC}}
$$

$$
\mathrm{F}_{\mathrm{RES}}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}
$$

Figure 3

This wheel, copied onto transparency material, gives capacitance values from 1 pF to $10 \mathrm{mF}(10,000 \mu \mathrm{~F})$.

EDN DESIGN IDEAS

$$
\mathrm{L}=\frac{1}{4 \pi^{2}\left(\mathrm{~F}_{\mathrm{RES}}\right)^{2} \mathrm{C}},
$$

Any quantity can be the unknown. For example, you can calculate

$$
\mathrm{C}=\frac{1}{4 \pi^{2}\left(\mathrm{~F}_{\mathrm{RES}}\right)^{2} \mathrm{~L}} .
$$

You can modify the slide rule to incorporate the formulas you use most often. The design of the slide rule uses AutoCAD LT. (DI \#2137)

EDN

To Vote For This Design, Circle No. 423

This wheel, the opaque backing for the wheel in Figure 2, relates resistance, frequencies, and time constants to the capacitance values on the wheel in Figure 3.

