
Emergence, Complexity and Computation ECC 16

Bharathwaj Muthuswamy
Santo Banerjee

A Route to
Chaos Using
FPGAs
Volume I: Experimental Observations

Emergence, Complexity and Computation

Volume 16

Series editors

Ivan Zelinka, Technical University of Ostrava, Ostrava, Czech Republic
e-mail: ivan.zelinka@vsb.cz

Andrew Adamatzky, University of the West of England, Bristol, UK
e-mail: adamatzky@gmail.com

Guanrong Chen, City University of Hong Kong, Hong Kong
e-mail: eegchen@cityu.edu.hk

Editorial Board

Ajith Abraham, MirLabs, USA
Ana Lucia C. Bazzan, Universidade Federal do Rio Grande do Sul, Porto Alegre

RS, Brazil
Juan C. Burguillo, University of Vigo, Spain
Sergej Čelikovský, Academy of Sciences of the Czech Republic, Czech Republic
Mohammed Chadli, University of Jules Verne, France
Emilio Corchado, University of Salamanca, Spain
Donald Davendra, Technical University of Ostrava, Czech Republic
Andrew Ilachinski, Center for Naval Analyses, USA
Jouni Lampinen, University of Vaasa, Finland
Martin Middendorf, University of Leipzig, Germany
Edward Ott, University of Maryland, USA
Linqiang Pan, Huazhong University of Science and Technology, Wuhan, China
Gheorghe Păun, Romanian Academy, Bucharest, Romania
Hendrik Richter, HTWK Leipzig University of Applied Sciences, Germany
Juan A. Rodriguez-Aguilar, IIIA-CSIC, Spain
Otto Rössler, Institute of Physical and Theoretical Chemistry, Tübingen, Germany
Vaclav Snasel, Technical University of Ostrava, Czech Republic
Ivo Vondrák, Technical University of Ostrava, Czech Republic
Hector Zenil, Karolinska Institute, Sweden

About this Series

The Emergence, Complexity and Computation (ECC) series publishes new
developments, advancements and selected topics in the fields of complexity,
computation and emergence. The series focuses on all aspects of reality-based
computation approaches from an interdisciplinary point of view especially from
applied sciences, biology, physics, or chemistry. It presents new ideas and
interdisciplinary insight on the mutual intersection of subareas of computation,
complexity and emergence and its impact and limits to any computing based on
physical limits (thermodynamic and quantum limits, Bremermann’s limit, Seth
Lloyd limits…) as well as algorithmic limits (Gödel’s proof and its impact on
calculation, algorithmic complexity, the Chaitin’s Omega number and Kolmogorov
complexity, non-traditional calculations like Turing machine process and its
consequences,…) and limitations arising in artificial intelligence field. The topics
are (but not limited to) membrane computing, DNA computing, immune
computing, quantum computing, swarm computing, analogic computing, chaos
computing and computing on the edge of chaos, computational aspects of dynamics
of complex systems (systems with self-organization, multiagent systems, cellular
automata, artificial life,…), emergence of complex systems and its computational
aspects, and agent based computation. The main aim of this series it to discuss the
above mentioned topics from an interdisciplinary point of view and present new
ideas coming from mutual intersection of classical as well as modern methods of
computation. Within the scope of the series are monographs, lecture notes, selected
contributions from specialized conferences and workshops, special contribution
from international experts.

More information about this series at http://www.springer.com/series/10624

http://www.springer.com/series/10624

Bharathwaj Muthuswamy • Santo Banerjee

A Route to Chaos Using
FPGAs
Volume I: Experimental Observations

123

Bharathwaj Muthuswamy
Software Engineering
Tarana Wireless
Berkeley, CA
USA

Santo Banerjee
Institute for Mathematical Research
(INSPEM)

University Putra Malaysia
Serdang
Malaysia

ISSN 2194-7287 ISSN 2194-7295 (electronic)
Emergence, Complexity and Computation
ISBN 978-3-319-18104-2 ISBN 978-3-319-18105-9 (eBook)
DOI 10.1007/978-3-319-18105-9

Library of Congress Control Number: 2015940413

Springer Cham Heidelberg New York Dordrecht London
© Springer International Publishing Switzerland 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer International Publishing AG Switzerland is part of Springer Science+Business Media
(www.springer.com)

To the pursuers of knowledge…

Foreword

During the last three decades, the Field-Programmable Gate Array (FPGA) has
attracted a lot of interest in the stream of Engineering and Science. The most
important reasons for this are the inherent reconfigurability and cost-effectiveness
of the FPGA. This device is basically a massively parallel blank slate of hardware
(look-up tables, flip-flops, digital signal processing blocks, etc.). The purpose of
this book is to configure that hardware to investigate chaotic phenomena.

Even though the FPGA approach is a digital emulation, many complicated
nonlinear ODEs can be implemented much more quickly on an FPGA, instead of
using traditional analog circuit components such as op-amps and multipliers. For
instance, it would take a user around ten minutes to specify and synthesize the
Lorenz system on an FPGA. The approach involves drawing a block diagram
representation of the Lorenz system nonlinearities in Simulink. Thus it would take
the same amount of time to perform a numerical simulation. Nevertheless, proto-
typing the Lorenz system on a breadboard using analog multipliers will definitely
take more than ten minutes! In addition, compared to traditional microcontrollers,
FPGAs are not executing sequential C code. Rather, they are configured specifically
for the hardware required.

Moreover, the wide flexibility and the effectiveness of hardware description
languages such as VHDL and Verilog enable one to specify long delay chains for
FPGA implementation. This is attractive because one can investigate chaotic delay
differential equations (DDEs) on FPGAs with ease and even first-order DDEs can
be infinite dimensional. Therefore, chaotic DDEs find applications in the field of
secure communication.

This book clearly explains the implementation of classic (such as Chen, Chua,
Lorenz, Rössler, Sprott) chaotic systems and also chaotic DDEs. For instance, the
authors have the very first physical implementation of the Ikeda chaotic DDE. This
is possible because the sinusoidal trigonometric nonlinearity required for the DDE
can be very easily specified on the FPGA. The authors also leverage the fact that
FPGA boards have digital-to-analog converters to view the chaotic waveforms on
an oscilloscope.

vii

This volume is very timely since there has been no book so far that describes
how to use FPGAs for studying chaotic phenomena. This book should become
indispensable for anyone who wants to implement and study chaotic systems, using
state-of-the-art FPGA development platforms.

London Leon O. Chua
February 2015

viii Foreword

Preface

If a picture is worth a thousand words, how much is a video worth? To answer this
question, please take a look at a video demonstrating the capabilities of a Field-
Programmable Gate Array (FPGA) for implementing chaotic systems: https://www.
youtube.com/watch?v=wwa7aylrLGo&index=1&list=PLr9kJRBrySkf3P4yiWAxz-
CdzaWhTof-PW.

Now that we have you convinced about the robustness of twenty-first century
FPGAs, let us talk about the book. In a single sentence, the purpose of this volume
is to expose the reader to the exciting world of chaos (science) using FPGAs
(engineering). This book differs from other texts on chaos because of a variety of
reasons. First, our experimental approach toward chaos theory attempts to provide
the reader with a “physical-feel” for the mathematics involved. Second, the medium
that we use for physical realization and experiments is the FPGA. These devices are
massively parallel digital architectures that can be configured to realize a variety of
logic functions. Hence unlike microcontrollers that run sequential compiled code,
FPGAs can be configured to execute systems of discrete difference equations in
parallel. Moreover, ever since the early twenty-first century, one could realize
design specifications in a mathematical simulation software such as Simulink
directly onto an FPGA. Also, twenty-first century FPGA development boards have
digital-to-analog converters, hence the signals viewed on the oscilloscope are
analog waveforms from our digital chaotic realization!

Nevertheless, maximizing the capabilities of an FPGA requires the user to
deeply understand the underlying hardware and also the software used to realize the
differential equations. This is achieved by another feature in this book: a lab
component (along with exercises) in each chapter. In the lab component, readers are
asked to investigate chaotic phenomena via MATLAB (or Simulink), design digital
logic systems on FPGAs, and also implement a variety of chaotic systems. The
specific objective of the lab depends obviously on the particular chapter. Note that
one could use FPGAs and development platforms from other manufacturers to
understand the concepts in this book. But, for the sake of brevity, we use the Altera
Cyclone IV FPGA on a Terasic DE2-115 board which includes an onboard ADA
(Analog-to-Digital and Digital-to-Analog) from the audio codec (coder/decoder).

ix

https://www.youtube.com/watch?v=wwa7aylrLGo&index=1&list=PLr9kJRBrySkf3P4yiWAxzCdzaWhTof-PW
https://www.youtube.com/watch?v=wwa7aylrLGo&index=1&list=PLr9kJRBrySkf3P4yiWAxzCdzaWhTof-PW
https://www.youtube.com/watch?v=wwa7aylrLGo&index=1&list=PLr9kJRBrySkf3P4yiWAxzCdzaWhTof-PW

Details on procuring hardware are in Chap. 2. However, understand that FPGA
technology is changing rapidly and the hardware (software) used in this book will
become quickly outdated. Thus from this book, one has to learn the concepts used
in implementing nonlinear ordinary differential equations on FPGAs.

This text is intended for final-year undergraduate or graduate electrical engi-
neering students who are interested in a scientific application of an engineered
product. Knowledge of digital logic system (combinational and sequential) reali-
zation on FPGAs and an integral calculus course is necessary. A first-year under-
graduate course in FPGA-based digital logic and a first-year undergraduate calculus
course is necessary and sufficient. However, the only prerequisite for understanding
this book is a thirst for knowledge and the willingness to overcome failure. To
quote Albert Einstein, “Anyone who has never made a mistake has never tried
anything new.”

This book is organized as follows: Chapter 1 is an introduction to both chaos
theory and FPGAs. Some mathematical foundations for working with chaos are
discussed. Chapter 2 gives an overview of the FPGA hardware platform and
includes tutorials on utilizing the DE2-115. Chapter 3 shows how to simulate and
realize some chaotic ODEs on FPGAs. This chapter combines the ideas in Chaps. 1
and 2 to show the reader how to implement chaotic systems on FPGAs. Chapters 4
and 5 are more mathematical in nature and serve as a precursor to Volume II
(Theoretical Methods). Chapter 4 shows how to study bifurcation mechanisms in
chaotic systems using FPGAs. Chapter 5 covers time-delayed systems. The FPGA
is particularly suited for implementing time-delayed systems because one can
implement the necessary delay using n flip-flops (n could be 4096!) by using only
five lines in a hardware description language!

There is also a companion website: http://www.harpgroup.org/muthuswamy/
ARouteToChaosUsingFPGAs/ARouteToChaosUsingFPGAs.html for the book that
has recorded video solutions (maximum 20 minutes) to all book exercises+labs,
FPGA reference designs and corresponding videos (maximum 20 minutes), forums
for discussing other hardware platforms, etc. It would be prudent to have access to
the internet as you read through this book.

Note that this volume is an “engineering cookbook” that is full of examples for
implementing nonlinear dynamical (chaotic) systems on FPGAs. The second vol-
ume (theoretical methods) is more rigorous and covers concepts for digital emu-
lation of chaotic dynamics. However, either volumes can be used as stand-alone
texts for understanding FPGA-based chaotic system implementation.

This book was typesetted using LATEX. Image processing softwares used were
GIMP 2.8, Inkscape 0.48, and Xfig 3.2. An iPhone 5 camera was used for pictures.

x Preface

http://dx.doi.org/10.1007/978-3-319-18105-9_2
http://dx.doi.org/10.1007/978-3-319-18105-9_1
http://dx.doi.org/10.1007/978-3-319-18105-9_2
http://dx.doi.org/10.1007/978-3-319-18105-9_3
http://dx.doi.org/10.1007/978-3-319-18105-9_1
http://dx.doi.org/10.1007/978-3-319-18105-9_2
http://dx.doi.org/10.1007/978-3-319-18105-9_4
http://dx.doi.org/10.1007/978-3-319-18105-9_5
http://dx.doi.org/10.1007/978-3-319-18105-9_4
http://dx.doi.org/10.1007/978-3-319-18105-9_5
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ARouteToChaosUsingFPGAs.html
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ARouteToChaosUsingFPGAs.html

NCH Debut Professional v1.64 was used for screen recordings. Oscilloscopes used
were the Agilent 54645D and the Tektronix 2205.

Happy chaos via FPGAs!

Santa Clara, California, United States Bharathwaj Muthuswamy
June 2015 Santo Banerjee

About the book title: it is intended to be a pun on the mathematical concept of a route to chaos.
About the cover art: we show a chaotic attractor from the Ikeda DDE.

Preface xi

Acknowledgments

There are a plethora of folks that we have to thank. From Dr. Muthusamy’s per-
spective, first and foremost, he would like to thank his MS and Ph.D. advisor Dr.
Leon O. Chua for all his support and guidance. Ferenc Kovac and Carl Chun from
the University of California, Berkeley (Cal) have been both professional and per-
sonal mentors throughout the years. Dr. Pravin Varaiya was also instrumental for
Dr. Muthuswamy’s success at Cal. Dr. Muthuswamy’s exposure to cluster com-
puting in 2001 at the Los Alamos National Labs under the guidance of Ron
Minnich was invaluable.

This book was technically four years in the making. Dr. Fondjo, Dr. Kennedy,
and Ferenc Kovac were extremely helpful in reviewing the very first sample
chapters from this book, back in 2010. Faculty colleagues at the Milwaukee School
of Engineering, Dr. Jovan Jevtic and Dr. Gerald Thomas, have also provided much
needed feedback. Altera (Jeff Nigh, Greg Nash) and Stephen Brown (University of
Toronto) donated software and DE2-115 hardware, respectively, along with pro-
viding much needed feedback. Many thanks to anonymous peer reviewers from
Springer. Their comments were extremely insightful and helpful in fixing errors
from the very first version of this book.

Most of the material in this book is based primarily off Dr. Muthuswamy’s and
Dr. Banerjee’s research into FPGA-based nonlinear dynamics. As a result, our
research students throughout the years, specifically Ms. Valli from the Vellore
Institute of Technology (VIT); Chris Feilbach, Andrew Przybylski from MSOE,
and students (Andrew, Curt, Dan, Jonathan, Ryan and Scott) from the very first
nonlinear dynamics course offering at MSOE deserve special mention. In addition,
Cornell University’s ECE 5760 course served as an inspiration for this book. Dr.
Muthuswamy was also inspired by Dr. Kennedy et al.’s work on Digital Signal
Processor-based investigation of Chua’s circuit family (in Chua’s Circuit : A
Paradigm for Chaos, edited by N. Madan, World Scientific, 1993, pp. 769–792). In
many ways, Dr. Muthuswamy’s use of FPGAs is a “twenty first century” extension
of Dr. Kennedy et al.’s work. Dr. Muthuswamy would also particularly like to
thank Ms. Valli, Dr. Ganesan, Dr. C.K. Subramaniam, and others from VIT for
providing much needed support in the Summer of 2014 for completing this volume.

xiii

A round of applause to Dr. Muthuswamy’s spouse, Ms. Deepika Srinivasan, for
her help in producing many of the figures. Her “architectural eye” was very helpful
in formatting figures so that the appropriate information is properly represented.

Finally, last but not the least, we would like to thank Springer for being very
patient with us despite the delay in delivering the final manuscript.

xiv Acknowledgments

Contents

1 Introduction. 1
1.1 An Introduction to Chaos . 1

1.1.1 A Brief History of Chaos . 1
1.1.2 An Application of Chaos . 8

1.2 An Introduction to Field Programmable Gate Arrays 9
1.2.1 History of FPGAs . 9
1.2.2 Why FPGAs? . 10

1.3 Some Basic Mathematical Concepts . 11
1.3.1 Linear Versus Nonlinear Equations 11
1.3.2 Linear Versus Nonlinear Dynamics 14
1.3.3 Fixed (Equilibrium) Points . 18
1.3.4 System Behaviour Near Fixed Points 20

1.4 Conclusions. 24
Problems . 25
Lab 1: Introduction to MATLAB and Simulink 27
References . 28

2 Designing Hardware for FPGAs . 29
2.1 The FPGA Development Flow. 29
2.2 The Architecture of an FPGA . 30
2.3 An Overview of the Hardware and Software

Development Platform . 33
2.3.1 An Overview of the Terasic DE2-115

Development Board . 33
2.3.2 VHDL Primer and Using the Quartus Toolset 37
2.3.3 Audio Codec Interfacing. 45

2.4 Timing Closure . 49
2.5 Conclusions. 50
Problems . 50
Lab 2: Introduction to Altera FPGA Tools . 52
References . 52

xv

http://dx.doi.org/10.1007/978-3-319-18105-9_1
http://dx.doi.org/10.1007/978-3-319-18105-9_1
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec1
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec1
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec2
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec2
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec3
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec3
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec4
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec4
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec5
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec5
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec6
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec6
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec7
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec7
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec8
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec8
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec9
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec9
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec10
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec10
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec11
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec11
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec12
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec12
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec13
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec14
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Sec14
http://dx.doi.org/10.1007/978-3-319-18105-9_1#Bib1
http://dx.doi.org/10.1007/978-3-319-18105-9_2
http://dx.doi.org/10.1007/978-3-319-18105-9_2
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec1
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec1
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec2
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec2
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec3
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec3
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec3
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec4
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec4
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec4
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec9
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec9
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec14
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec14
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec15
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec15
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec16
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec16
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec17
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec18
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Sec18
http://dx.doi.org/10.1007/978-3-319-18105-9_2#Bib1

3 Chaotic ODEs: FPGA Examples . 55
3.1 Euler’s Method . 55
3.2 Specifying Chaotic Systems for FPGAs Using DSP Builder 56

3.2.1 The Lorenz System . 56
3.3 Introduction to Functional Simulation and In-System

Debugging . 61
3.4 Functional Simulation of Chaotic Systems. 62
3.5 Debugging Using SignalTap . 65

3.5.1 General Concepts—An Illustration
Using a Simple Example . 65

3.5.2 Debugging the Chen System Using SignalTap. 67
3.6 Hardware Debugging Concepts . 67

3.6.1 Observing a Problem . 68
3.6.2 Identifying the Problem . 69
3.6.3 Sources of Errors in VHDL Designs 70
3.6.4 Design Procedure. 71

3.7 Another Example—A Highly Complex Attractor System 72
3.8 Conclusions. 77
Problems . 77
Lab 3: ModelSim Simulation, In-System Debugging

and Physical Realization of the Muthuswamy-Chua System . . . 79
References . 80

4 Bifurcations . 81
4.1 The Concept of Bifurcations . 81
4.2 Routes to Chaos . 82

4.2.1 Period-Doubling Route to Chaos 82
4.2.2 Period-Adding Route to Chaos 83
4.2.3 Quasi-Periodic Route to Chaos 85
4.2.4 Intermittency Route to Chaos . 85
4.2.5 Chaotic Transients and Crisis . 87

4.3 Bifurcation Experiments with an FPGA 91
4.3.1 Period-Doubling Route to Chaos 92
4.3.2 Period-Adding Route to Chaos 93
4.3.3 Quasi-Periodic Route to Chaos 96

4.4 Conclusions. 100
Problems . 100
Lab 4: Displaying Bifurcation Parameter(s) on the LCD 101
References . 102

5 Chaotic DDEs: FPGA Examples and Synchronization
Applications . 103
5.1 An Introduction to Time Delay Systems 103

xvi Contents

http://dx.doi.org/10.1007/978-3-319-18105-9_3
http://dx.doi.org/10.1007/978-3-319-18105-9_3
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec1
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec1
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec2
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec2
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec3
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec3
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec4
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec4
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec4
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec5
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec5
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec6
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec6
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec7
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec7
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec7
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec8
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec8
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec9
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec9
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec10
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec10
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec11
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec11
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec12
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec12
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec13
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec13
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec14
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec14
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec15
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec15
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec16
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec17
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec17
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Sec17
http://dx.doi.org/10.1007/978-3-319-18105-9_3#Bib1
http://dx.doi.org/10.1007/978-3-319-18105-9_4
http://dx.doi.org/10.1007/978-3-319-18105-9_4
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec1
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec1
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec2
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec2
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec3
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec3
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec4
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec4
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec5
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec5
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec6
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec6
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec7
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec7
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec8
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec8
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec9
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec9
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec10
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec10
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec11
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec11
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec12
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec12
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec13
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec14
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Sec14
http://dx.doi.org/10.1007/978-3-319-18105-9_4#Bib1
http://dx.doi.org/10.1007/978-3-319-18105-9_5
http://dx.doi.org/10.1007/978-3-319-18105-9_5
http://dx.doi.org/10.1007/978-3-319-18105-9_5
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec1
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec1

5.2 Simulating DDEs in Simulink . 104
5.3 FPGA Realization of DDEs. 105
5.4 Applications of (Time Delayed) Chaotic

Systems—Synchronization . 113
5.4.1 Unidirectional Coupling . 114
5.4.2 Bidirectional Coupling . 115

5.5 Conclusions. 119
Problems . 119
Lab 5: The Lang-Kobayashi Chaotic Delay Differential Equation. 120
References . 121

Appendix A: Introduction to MATLAB and Simulink 123

Appendix B: Chapter 1 MATLAB Code . 131

Appendix C: Chapter 2 VHDL, Simulink DSP
Builder and SDC File . 135

Appendix D: Chapter 3 VHDL, MATLAB Code
and ModelSim Scripts . 149

Appendix E: Chapter 4 MATLAB Code, VHDL
and ModelSim Scripts . 163

Appendix F: Chapter 5 VHDL . 193

Glossary . 217

Solutions . 219

Contents xvii

http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec2
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec2
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec3
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec3
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec4
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec4
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec4
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec5
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec5
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec6
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec6
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec7
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec7
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec8
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec9
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Sec9
http://dx.doi.org/10.1007/978-3-319-18105-9_5#Bib1

Acronyms

ADC Analog-to-Digital Converter
DAC Digital-to-Analog Converter
DDE Delay Differential Equation
DSP Digital Signal Processor/Processing
FPGA Field-Programmable Gate Array
FSM Finite-State Machine
HDL Hardware Description Language
LAB Logic Array Block
LE Logic Element
LUT Look-Up Table
ODE Ordinary Differential Equation
PLL Phase-Locked Loop
ROM Read-Only Memory
RTL Register Transfer Level
SDC Synopsys Design Constraints
SDRAM Synchronous Dynamic Random-Access Memory
SMA Subminiature Version A
VHDL Very High Speed Integrated Circuit Hardware Description Language

xix

Mathematical Notations

The mathematical notation used in this book is standard [12]; nevertheless, this
section clarifies the notation used throughout the book.

1. Lowercase letters from the Latin alphabet (a – z) are used to represent variables,
with italic script for scalars and bold invariably reserved for vectors. The letter
t is of course always reserved for time. n is usually reserved for the dimension
of the state. j is used for

ffiffiffiffiffiffiffi�1
p

, in accordance with the usual electrical engi-
neering convention. Mathematical constants such as π; e; h (Planck’s constant)
have their usual meaning. Other constant scalars are usually drawn from lower
case Greek alphabet. SI units are used.

2. Independent variable in functions and differential equations is time (unless
otherwise stated) because physical processes change with time.

3. Differentiation is expressed as follows. Time derivatives use Leibniz’s (dydx, for
example) or Newton’s notation: one, two, or three dots over a variable corre-
sponds to the number of derivatives and a parenthetical superscripted numeral
for higher derivatives. Leibniz’s notation is used explicitly for non-time
derivatives.

4. Real-valued functions, whether scalar- or vector-valued, are usually taken (as
conventionally) from lowercase Latin letters f through h, r and s along with
x through z.

5. Vector-valued functions and vector fields are bold-faced as well, the difference
between the two being indicated by the argument font; hence fðxÞand fðxÞ
respectively.

6. Constant matrices and vectors are represented with capital and lowercase let-
ters, respectively, from the beginning of the Latin alphabet. Vectors are again
bolded.

7. In the context of linear time-invariant systems the usual conventions are
respected: A is the state matrix B(b) is the input matrix (vector).

8. Subscripts denote elements of a matrix or vector: di is the ith column of D; xj is
the jth element of x. Plain numerical superscripts on the other hand may
indicate exponentiation, a recursive operation or simply a numbering depending

xxi

on context. A superscripted T indicates matrix transpose. I is reserved for the
identity matrix. All vectors are assumed to be columns.

9. Σi is used for summations, sampling interval is symbolized by T and 2 denotes
set inclusions.

10. Calligraphic script (R etc.) is reserved for sets which use capital letters.
Elements of sets are then represented with the corresponding lowercase letter.
Excepted are the well-known number sets which are rendered in doublestruck
bold: N;Z;Q;R and C for the naturals, integers, rationals, reals, and complex
numbers respectively. The natural numbers are taken to include 0. Restrictions
to positive or negative subsets are indicated by a superscripted + or −. The
symbol , is used for definitions. 8 and 9 have the usual meaning of “for all”
and “there exists” respectively.

xxii Mathematical Notations

Conventions Used in the Book

Each chapter starts with an epigraph, the purpose is to evoke the intellectual
curiosity of the reader. Chapters are divided into sections and subsections for
clarity. We have placed the most of the MATLAB code and VHDL in appendices
to avoid disrupting content flow. For MATLAB code, VHDL and ModelSim
scripts, we use line numbers for ease of code discussion.

1. MATLAB code or VHDL goes here
MATLAB, FPGA Design Suite (Quartus, ModelSim, etc.) menu actions along with
respective library block names and in-text elements of VHDL syntax are indicated
by Boldface notation. Note, however, that further details for utilizing the toolsets
are incorporated in online videos on the companion website.

We have used UPPERCASE to describe FPGA pins. The distinction between
pins and acronyms will be clear from the context.

Figures and equations are numbered consecutively. The convention for a defi-
nition is shown below.

Definition 1 Definitions are typeset as shown.

The book has a variety of solved examples in light gray shade.

Solved Examples

All references are placed at the end of each chapter for convenience. We use a
number surrounded by square brackets for in-text references, example [5].
Occasionally, important terminology and concepts are highlighted using red font.
Although references are hyperlinked, only online URLs are colored midnight blue
for clarity.

The chapter concludes with a comprehensive set of exercises and a lab.
On a concluding remark, when you find typos in the book please contact the authors

with constructive comments: muthuswamy@msoe.edu, santoban@gmail.com.

xxiii

Chapter 1
Introduction

Lorenz, E.N. Deterministic
Nonperiodic Flow [6]

Abstract This chapter will provide a historical overview of chaos and FPGAs.
We will begin with a history of how chaos was observed (but unidentified) in a
problem related to astronomy and made its way into electronics. On the flip side, the
history of FPGAs is a part of the history of Silicon Valley. Next we will look at some
very important and fundamental concepts: linearity versus nonlinearity, equilibrium
points and Jacobi linearization. As you read through the chapter andwork through the
exercises, you will realize that nonlinear systems have “rich behaviour” compared
to linear systems. Yet you will also notice that relatively simple nonlinear systems
can give rise to this rich behaviour.

1.1 An Introduction to Chaos

In this section, we will first go through a very brief history of chaos. The purpose is
to emphasize that chaos is essentially a scientific phenomenon that has been stud-
ied by engineering for potential applications. The application we will consider is
synchronization, although chaos has been used in robot locomotion [1].

1.1.1 A Brief History of Chaos

Chaos was first observed in the late 19th century [2] via a problem related to astron-
omy! Henri Poincaré, a professor at the University of Paris, observed chaos in the
circular restricted three body problem: threemasses interactingwith each other (think

© Springer International Publishing Switzerland 2015
B. Muthuswamy and S. Banerjee, A Route to Chaos Using FPGAs, Emergence,
Complexity and Computation 16, DOI 10.1007/978-3-319-18105-9_1

1

2 1 Introduction

Sun-Earth-Moon). Poincaré determined that it was impossible to accurately predict
long termmotion of themasses. He discovered the crucial ideas of stable and unstable
manifolds which are special curves in the plane. However, even after Poincaré’s sem-
inal work, chaos was largely forgotten till the 1920s.

Edwin H. Armstrong invented the regenerative circuit for high frequency oscilla-
tions in 1912 [3]. It is possible that he actually observed chaos [3]. In 1927, Dutch
physicists Van Der Pol and Van Der Mark proposed one of the first nonlinear oscil-
lators [4, 5]. They observed that at certain drive frequencies, an “irregular noise” is
present. These were one of the first discovered instances of deterministic chaos in
circuits.

In the late 1950s, ameteorologist atMIT named Edward Lorenz acquired a Royal-
McBee LGP-30 computer with 16 kilobyte (KB) of internal memory [2]. Although
Lorenz initially started with a system of twelve ordinary differential equations, he
eventually simplified the model to a system of three ordinary coupled nonlinear dif-
ferential equations nowknown as the Lorenz equations [6], shown in Eqs. (1.1)–(1.3).

ẋ = −σ x + σ y (1.1)

ẏ = −xz + ρx − y (1.2)

ż = xy − βz (1.3)

−20 −15 −10 −5 0 5 10 15 20
5

10

15

20

25

30

35

40

45

x

z

Fig. 1.1 The Lorenz Butterfly as plotted in two dimensional phase space

1.1 An Introduction to Chaos 3

Notice that since our notation implies that the independent variable in differential
equations is time, we have omitted t in the differential equations for clarity. The
equations are said to be coupled because the right-hand-side (RHS) of one equation
involves a variable from another equation. For example, the RHS of Eq. (1.1) involves
y(t), which is the solution to Eq. (1.2). The exact definition of nonlinearity will be
clarified later in this chapter.

Figure1.1 shows the result of simulating Eqs. (1.1)–(1.3) in MATLAB. The code
for simulation is shown in listing B.1. You should type the code and reproduce the
plot, refer to Appendix A at the end of the book for a short tutorial onMATLAB (and
Simulink). The parameter values are σ = 10, ρ = 28, β = 8

3 . Initial conditions are
x(0) = 10, y(0) = 20, z(0) = 30.

Figure1.1 is the phase plot obtained from our system. A phase plot is a parametric
plot, in this case the x-axis function is x(t) and the y-axis function is z(t). In other
words, each point on the plot of the object in Fig. 1.1 corresponds to a solution
(x(t), z(t)). Figure1.2 shows a parametric three dimensional plot. We have also
plotted the time domain waveform x(t) in Fig. 1.3. The waveform is not visually
appealing as Figs. 1.1 and 1.2. For instance, the elegance of the phase plots is absent
in the time domain waveform.

−20

−10

0

10

20

−25−20−15−10−50510152025

5

10

15

20

25

30

35

40

45

y

x

z

Fig. 1.2 The Lorenz Butterfly as plotted in three dimensional phase space. Comparing this picture
to a true three dimensional object such as a sphere, you can see that there is no “inside” and “outside”
to the Lorenz Butterfly. This in turn implies that the Lorenz Butterfly has a fractional dimension.
In other words, the Lorenz Butterfly is a fractal

4 1 Introduction

0 5 10 15
−20

−15

−10

−5

0

5

10

15

20

t (seconds)

x

Fig. 1.3 x(t) time domain waveform for the Lorenz butterfly. We have plotted only one waveform
for clarity. Although the waveform looks periodic, a fast Fourier transform will clearly show that
there is no underlying period

The structure that we see in Fig. 1.2 is called a chaotic strange attractor (or
attractor).1 Using computer simulations, Lorenz identified the presence of sensitive
dependence on initial conditions, aperiodicity and bounded trajectories, the hall-
marks of chaos. Just like Lorenz, we also obtained the solution using a numerical
simulation. The exception might be that our computer probably does not have 16KB
of memory.

It turns out that we cannot determine an explicit chaotic solution (x(t), y(t), z(t))
for the Lorenz system in Eqs. (1.1)–(1.3). This lack of an explicit chaotic solution
lead to a natural question: was the strange attractor an artifact of computer round-off
errors? Although other chaotic sytems were proposed in the 1970s and early 1980s,
they were also studied through computer simulations. Hence the question of the
strange attractor being an artifact of computer simulation was still unanswered and
there was a need to demonstrate that chaos is a robust physical phenomenon.

Electronic circuits were a natural choice for realizing the Lorenz system because
electronic components such as operational amplifiers were becoming ubiquitous

1There exist nonchaotic strange attractors and chaotic nonstrange attractors. We will primarily
discuss chaotic strange attractors in this book.

1.1 An Introduction to Chaos 5

Fig. 1.4 Chua’s circuit, the nonlinear resistor is realized using two operational amplifiers

in the early 1970s. However the difficulty in realizing Lorenz and other similar
systems via electronic circuits was the fact that the equations describing the chaotic
system involved multiplying two functions. The analog multiplier was not a reliable
electronic component in the 1970s and early 1980s.

This unreliablity of the analog multiplier spurred the invention of the first elec-
tronic chaotic circuit in 1983, almost 20 years after Lorenz’s paper. Leon O. Chua,
a professor at the University of California, Berkeley designed the first electronic
chaotic circuit, Chua’s circuit [7]. The circuit and oscilloscope pictures are shown in
Figs. 1.4 and 1.5 respectively [8].

By rescaling the circuit variables vC1, vC2 and iL from Fig. 1.4, we obtain the
dimensionless2 Chua Equations shown in Eqs. (1.4)–(1.6). α, m1, m0, β ∈ R are
parameters of the system.

ẋ = α[y − x − m1x − 1

2
(m0 − m1) (|x + 1| − |x − 1|) (1.4)

ẏ = x − y + z (1.5)

ż = −βy (1.6)

Notice that the circuit in Fig. 1.4 is not an analog computer. That is, we do not
have analog integrators for solving the system of equations in (1.4)–(1.6). Chua was
able to construct the circuit in Fig. 1.4 without analog integrators because he sys-
tematically derived the circuit for producing chaos from basic concepts in nonlinear

2Dimensionless formulation will be covered in Sect. 4.2.4.

http://dx.doi.org/10.1007/978-3-319-18105-9_4

6 1 Introduction

Fig. 1.5 Phase plot recorded on an oscilloscope from experimental measurements of Fig. 1.4. The
inductor was realized using an op-amp operating as a gyrator [9]

circuit theory. This approach was also instrumental in mathematically proving the
existence of chaos [8] in Chua’s circuit. Thus Chua’s circuit was the first system
in which the existence of chaos was confirmed numerically via simulation, experi-
mentally via electronics and rigorously via Shilnikov’s theorem by 1984. Between
the announcement of the circuit in late 1983 and the rigorous proof of chaos by
1984, the time span was approximately one year. In comparison, Lorenz’s system
was rigorously proved to be chaotic only in 1999 by Warwick Tucker, a span of
36 years since Lorenz’s paper in 1963! Chua’s approach illustrates the paradigm of
using electronics to study chaos—we have at our disposal a physical interpretation
of chaos. This physical interpretation of chaos is the motivation behind using FPGAs
to study the phenomenon.

Since Chua’s work, many other chaotic circuits have been proposed. A family of
such circuits involve jerky dynamics andwere proposed by JulienClinton Sprott from
the University of Wisconsin, Madison [10]. One possible chaotic circuit based on
jerky dynamics is shown in Fig. 1.6. An oscilloscope phase plot is shown in Fig. 1.7.
Notice that unlike Chua’s circuit, Fig. 1.6 is a circuit based on analog integrators.
These circuits are easy to build and analyze analytically. We will realize the system
equations on FPGAs later in the book.

...
x = J (x, ẋ, ẍ) (1.7)

1.1 An Introduction to Chaos 7

Fig. 1.6 Achaotic circuit realizing jerky dynamics. This circuit was implemented by formerMSOE
students Chris Feilbach and Clara Backes

Fig. 1.7 Phase plot from an oscilloscope screenshot for the circuit in Fig. 1.6. ẍ is on the y-axis,
x is plotted on the x-axis

8 1 Introduction

Equation (1.7) shows the general system equation for Sprott’s jerky dynamical
systems. They are so named because if x(t) is considered to be position then Eq. (1.7)
implies that ẍ is the acceleration. But Eq. (1.7) involves the derivative of acceleration
or the jerk. Jerky dynamics is very useful in rocket science, althoughwe unfortunately
will not be building rockets in this book.

After Sprott, a variety of other chaotic circuits (hysteresis based chaos generators,
chaos from synchronized oscillators etc.) have been developed. We will leave the
history of chaos with Sprott and turn our attention to one application of chaos that
will be discussed later in the book—synchronization.

1.1.2 An Application of Chaos

One very interesting application of chaos is synchronization for secure communi-
cation: a transmitter and receiver chaotic system can synchronize with each other.
But if we use the chaotic signal as a much larger masking signal, then we can trans-
mit a message using the chaotic mask. The concept of synchronization in chaotic
systemswas originally proposed by Pecora and Carroll [11]. An application to secure
communication was suggested by Cuomo and Oppenheim [12].

The key to this concept is that if a chaotic system (say the Lorenz system) can be
decomposed into subsystems, a drive subsystem and a stable response subsystem,
then the original message can be recovered at the receiver using only the transmitted
signal. Consider again the Lorenz system of equations.

ẋ = −σ x + σ y (1.8)

ẏ = −xz + ρx − y (1.9)

ż = xy − βz (1.10)

Pecora and Carroll [11] showed that Eqs. (1.8)–(1.10) can be decomposed into
two stable response subsystems.

ẋ1 = −σ x1 + σ y (1.11)

ż1 = x1y − βz1 (1.12)

ẏ2 = −xz2 + ρx − y2 (1.13)

ż2 = xy2 − βz2 (1.14)

Equations (1.8)–(1.10) canbe interpreted as the drive systemsince its dynamics are
independent of the response subsystems. Nevertheless, the two response subsystems
(Eqs. (1.11)–(1.14)) can be used together to regenerate the full-dimensional dynamics
which are evolving at the drive system [12]. Specifically, if the input signal to the
(y2, z2) subsystem is x(t), then the output y2(t) can be used to drive the (x1, z1)

1.1 An Introduction to Chaos 9

subsystem and subsequently generate a “new” x(t) in addition to having obtained,
through synchronization, y(t) and z(t).

We will study such synchronization mechanisms in delay differential equations
in Chap.5.

1.2 An Introduction to Field Programmable Gate Arrays

We will now take a digression from science and give a brief overview of a very
flexible integrated circuit—the FPGA.

1.2.1 History of FPGAs

The FPGA industry originated from the programmable read-only memory and pro-
grammable logic devices industry of the 1970s.Xilinx co-foundersRoss Freeman and
Bernard Vonderschmitt invented the first commercially viable field programmable
gate array in 1985 [13]—the XC2064.3

Freeman and Vonderschmitt were both working as chip engineers at Zilog Corp.
prior to joiningXilinx.Whileworking at Zilog, Freemanwanted to design a computer
chip that effectively acted as a blank tape, allowing the user to program the chip
“in hardware” rather than having to purchase a preprogrammed chip (or ASIC—
Application Specific Integrated Circuit) from themanufacturer. Freeman approached
his superiors at Zilog and suggested that such a programmable chip would be a viable
new avenue for the company. Nevertheless, he was unable to convince executives at
Exxon (Zilog’s parent company) to chase a totally unexplored market. As a result,
Freeman left his post at Zilog and along with Vonderschmitt founded Xilinx.

Xilinx’s FPGAwasbasedon the company’s patentedLogicCellArray technology.
The company’s system basically consisted of an off-the-shelf programmable chip
and a software package that could be used to program and tailor the chip for specific
needs. The technology was based on the arrangement of gates (the lowest level
building block in a logic circuit) in complex formations called arrays; as the number
of gates increased, themore complexwere the functions that the semiconductor could
perform. Figure1.8 shows a very simple FPGA Logic Element or LE.

In this book, we will utilize FPGAs from Altera (and a development board from
Terasic Inc.). Altera’s history is as interesting as Xilinx. We will not discuss their
history more except to note that the name “Altera” is from “alterable” [14].

3Although Xilinx’s competitor, Altera, was founded in 1983.

http://dx.doi.org/10.1007/978-3-319-18105-9_5

10 1 Introduction

Fig. 1.8 The basic processing unit on an Altera FPGA, the Logic Element (LE). Screenshot has
been obtained using Altera’s Chip Planner tool in Quartus 12.0

1.2.2 Why FPGAs?

Unlike processors, FPGAs use dedicated hardware for processing logic and hence
are not constrained by the complexities of additional overhead, such as an oper-
ating system. In the early days of FPGAs, they were usually constrained by high
power requirements. Neverthelesswith the latest FPGA families (such as Stratix from
Altera) emphasizing lowdynamic power performance, FPGAs are being increasingly
used for digital signal processing (DSP) applications [15].

Another interesting benefit of FPGA technology is that since it is truly a “hard”
implementation of our design specification, FPGAs provide more reliability unlike
software tools running in a programming environment. This is because processor-
based systems often involve several layers of abstraction to help schedule tasks and
share resources among multiple processes. All these complexities are unnecessary
in an FPGA based system.

From the standpoint of differential equations, one can recast a fixed step algorithm
(such as Euler’s method) in a simple block diagram form suitable for realization on
an FPGA, refer to Fig. 1.9.

However, before we can realize differential equations on FPGAs we need to learn
some basic mathematical concepts. That is the subject of the next section.

1.3 Some Basic Mathematical Concepts 11

reset

reset

Clock
Divider

X

D

reset
reset

reset

reset

fEuler = 1
δt

Q+f(x(t),x(t−Ni))

Δt

xNNew

xN

Global
clock

clockGlobal

x(t−Ni)

Fig. 1.9 The block diagram that we will eventually implement in this book for solving the non-
linear delay differential equation (DDE): ẋ = f(t, x(t), x(t − τi)) [16]. The blocks in grey will be
implemented in MATLAB using the DSP Builder Advanced Blockset from Altera

1.3 Some Basic Mathematical Concepts

Wewill start with the very basic concept of what is a linear system (and what is not).
This will eventually help us understand what kind of systems give rise to chaotic
behaviour.

1.3.1 Linear Versus Nonlinear Equations

Consider Eqs. (1.15) and (1.16), a system of linear equations:

x − 3y = 3 (1.15)

2x − 6y = 6 (1.16)

What are the solutions to Eqs. (1.15) and (1.16)? To answer this question notice that
Eq. (1.16) can be simplified to x − 3y = 3. Thus we have only one equation in two
unknowns, shown below.

y = x

3
− 1 (1.17)

Hence if we let x ∈ R, there are infinitely many real number solutions in the form
(x, y). In other words, we have two superimposed straight lines in our solution space.
The MATLAB code in listing B.2 plots one of the equations, the result is Fig. 1.10.

The beauty of linear equations is thatwe can have only two other kinds of solutions
to a system of linear equations: a unique solution or no solution. The detailed study
of linear systems and their application is the subject of linear algebra [17]. We will
introduce concepts from linear algebra, when required in this book.

Unlike linear equations, one cannot state beforehand (or a priori) how many
solutions a nonlinear equation can have in general. Take the case of a simple quadratic

12 1 Introduction

−5 −4 −3 −2 −1 0 1 2 3 4 5
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

x

y

Fig. 1.10 The function y = x
3 − 1 as plotted in MATLAB

equation: y = x2 − 2. If x ∈ R then the equation has two solutions: x = ±√
2. The

situation changes drastically if we have non-polynomial functions involved.
However we can understand the difference between linearity and nonlinearity

using the concept of a system.4 Loosely speaking a system “acts” on a function. For
example consider the volume knob on your car stereo. This volume knob adjusts the
gain of your audio amplifier. In other words the audio amplifier multiplies your input
signal by a factor proportional to how much you turn the volume knob. Mathemati-
cally, the audio amplifier transforms an input function into another output function.
Hence we have our first definition [18].

Definition 1.1 A system is a function whose domain and range are sets of signals
called signal spaces.

For example, let us say the audio amplifier has a gain K ∈ R that can be controlled
by the volume knob. Then we can say that the audio amplifier is a system S such that:

y = S(x) (1.18)

4Note that we are not talking about a system of equations. This difference should become clear after
we provide a mathematical definition of a system.

1.3 Some Basic Mathematical Concepts 13

x and y are functions in the function space of continuous-time systems: x, y : t → R.
Thus the output of the system at any time t is given by:

y(t) = S(x)(t) (1.19)

= K x(t) (1.20)

Thus if the gain K is positive, then we hear loud (sometimes obnoxiously loud)
music.

We need to emphasize that we should not write the mathematical description of
the system as S(x(t)). This is because a system’s domain is a function. x(t) is a
number, not a function.

Now that we know the definition of a system, a linear system is defined below [18].

Definition 1.2 A system S is said to be linear iff: ∀u, v ∈ D,∀α, β ∈ R, S(αu +
βv) = αS(u) + βS(v).

In Definition 1.2, set D is the domain of S. In other words, Definition 1.2 is the
superposition theorem: “response of the sum is the sum of the responses”. Let us
understand the definition via examples.

Example 1.1 Consider the audio amplifier system: y(t) = S(x)(t) = K x(t).
Is this system linear or nonlinear?

Solution: Applying Definition 1.2 to the audio amplifier system, we have:

S(αu + βv) = K (αu + βv) (1.21)

= Kαu + Kβv (1.22)

= αK u + βK v (1.23)

= αS(u) + βS(v) (1.24)

Thus our audio amplifier system is linear.

Note that in reality you cannot expect to get infinite gain out of your audio ampli-
fier. That is, physically the audio amplifier is going to eventually saturate as you turn
the volume knob. However the linearity model is an excellent approximation when
the audio amplifier does not saturate and we listen to music in the linearity range of
the audio amplifier.

Example 1.2 Consider a system that squares the input function: y(t) =
S(x)(t) = x2(t). Is this system linear or nonlinear?

14 1 Introduction

Solution: Applying Definition 1.2 to the square system, we have:

S(αu + βv)(t) = (αu + βv)2(t) (1.25)

= α2u2(t) + β2v2(t) + 2αβu(t)v(t) (1.26)

However,

S(αu + βv)(t) �= αu2(t) + βv2(t) (1.27)

= αS(u)(t) + βS(v)(t) (1.28)

Thus our square system is nonlinear.

1.3.2 Linear Versus Nonlinear Dynamics

The systems (scaling and squaring) we studied in Sect. 1.3.1 are examples of non
dynamical systems.On the other hand, a dynamical system is governed by differential
equations, and such systems are the topic of study in this book.We will be concerned
with nth order ordinary nonlinear differential equations (ODE), autonomous or non-
autonomous, with or without delay.

Definition 1.3 The order of a differential equation is the order of the highest deriv-
ative in the equation.

Example 1.3 What is the order of the differential equation: (ẍ)3 + sin(x) = 0?

Solution: Since the highest derivative appearing in the equation is the 2nd
derivative, the order of the differential equation is two.

Definition 1.4 A differential equation involving ordinary (non-partial) derivatives
is an ODE.

Definition 1.5 An autonomous ODE does not involve an explicit function of time.

Example 1.4 Is Eq. (1.29) below an autonomous ODE?

ẍ + ẋ + x = cos(t) (1.29)

1.3 Some Basic Mathematical Concepts 15

Solution: Equation (1.29) involves only ordinary derivatives and hence is an
ODE. But it does not involve an explicit function of time so the equation is
non-autonomous. In this book, we will use the following change of variables
to convert non-autonomous ODEs to autonomous ODEs.

x1 = x (1.30)

x2 = ẋ (1.31)

x3 = t (1.32)

Using Eqs. (1.29)–(1.32), we get:

ẋ1 = x2 (1.33)

ẋ2 = −x1 − x2 + cos(x3) (1.34)

ẋ3 = 1 (1.35)

The advantage of this change of variables is that it allows us to visualize a
phase plot with trajectories “frozen” in it.

Linearity or nonlinearity of differential equations can be determined using super-
position from Definition 1.2, as the following example illustrates.

Example 1.5 Consider the jerky dynamical system below.

ẋ = y (1.36)

ẏ = z (1.37)

ż = −x − y − sign(1 + 4y) (1.38)

Prove the system above is nonlinear. sign is the signum function defined below.

sign(x) =
⎧
⎨

⎩

−1 when x < 0,
0 when x = 0,
1 when x > 0

(1.39)

Proof First, we will write the system above as one third order differential
equation in x . To do so, notice that Eqs. (1.37) and (1.36) imply ż = ÿ = ...

x .
Thus substituting

...
x for ż and ẋ for y in Eq. (1.38), we get:

...
x + ẋ + sign(1 + 4ẋ) + x = 0 (1.40)

16 1 Introduction

Suppose there exist three solutions to Eq. (1.40): x1, x2, x3. That is:

...
x1 + ẋ1 + sign(1 + 4ẋ1) + x1 = 0 (1.41)
...
x2 + ẋ2 + sign(1 + 4ẋ2) + x2 = 0 (1.42)
...
x3 + ẋ3 + sign(1 + 4ẋ3) + x3 = 0 (1.43)

We will apply Definition 1.2 and check if a superposition of the solutions:
αx1 + βx2 + δx3, α, β, δ ∈ R is also a solution. That is:

d3

dt3
(αx1 + βx2 + δx3) + d

dt
(αx1 + βx2 + δx3)

+ sign

(

1 + 4
d

dt
(αx1 + βx2 + δx3)

)

+ (αx1 + βx2 + δx3)
?= 0

(1.44)

Simplifying the left-hand-side (LHS) of Eq. (1.44), we get:

LHS = α(
...
x1 + ẍ1 + x1) + β(

...
x2 + ẍ2 + x2) + δ(

...
x3 + ẍ3 + x3)+

sign (1 + 4(α ẋ1) + 4(β ẋ2) + 4(δ ẋ3))
(1.45)

Note that if:

sign (1 + 4(α ẋ1) + 4(β ẋ2) + 4(δ ẋ3))

= sign(1 + 4α ẋ1) + sign(1 + 4β ẋ2) + sign(1 + 4δ ẋ3) (1.46)

then Eq. (1.44) is zero by virtue of Eqs. (1.41)–(1.43). However, the signum
function is nonlinear. Equation (1.39) shows that signum returns the sign of the
input number x : −1 if x is negative, 0 if x is zero and 1 if x is positive. Sketch
the signum function or use a few counter-examples to convince yourself that
signum is nonlinear. Thus, Eq. (1.44) may not be zero. Hence Definition 1.2 is
not satisfied and this implies that our system is nonlinear. �

The point to be noted from this example is that a rigorous proof of nonlinearitymay
involve a bit of work. But a quick glance at Eqs. (1.36)–(1.38) reveals the signum
function is the reason our system in nonlinear. In other words, if the RHS of our
system of first-order ODEs has a nonlinear function, our system is nonlinear.

There is an interesting subset of linear systems that have the same behaviour
independent of time shifts: linear time-invariant systems.

Definition 1.6 Asystem S is said to be linear time-invariant (or LTI) iff (S◦D)(x) =
(D ◦ S)(x).

1.3 Some Basic Mathematical Concepts 17

Definition 1.7 defines a time shift using a delay system.

Definition 1.7 Dτ (x)(t) = x(t − τ).

Now that we have studied the differences between linear and nonlinear systems,
a logical next step would be to try and find an explicit solution to the system under
question. We already know that this may not be possible, case in point being an
explicit chaotic solution to the Lorenz system does not exist. However, for some
differential equations, it may be possible to find an explicit solution.

Example 1.6 Consider the DDE in Eq. (1.47)

ẋ = D1(x)(t) History(t) = 1, t ≤ 0. (1.47)

Find x(t) for t ≥ 0.

Solution: In order to solve the DDE, we will solve the differential equation
over mutually exclusive intervals as shown below.

For 0 ≤ t < 1, the DDE can be written as:

ẋ = 1 (1.48)

Equation (1.48) is valid since D1(x)(t) = History(t) if 0 ≤ t < 1. Notice also
that Eq. (1.48) justifies our choice of the label “History”. We have an infinite
set of initial conditions in the form of a “History” function. Solving Eq. (1.48),

x(t) = t + c0, 0 ≤ t < 1 (1.49)

Now, c0 in Eq. (1.49) can be determined because we have defined the value of
the history function at t = 0: x(0) = History(0) = 1. Hence the solution to
our DDE in the interval 0 ≤ t < 1 is:

x(t) = t + 1, 0 ≤ t < 1 (1.50)

Proceeding in this manner, we see that the solution to our differential equation
are polynomials of increasing order:

x(t) =
⎧
⎨

⎩

t + 1 0 ≤ t < 1,
t2
2 + t + c1 1 ≤ t < 2,
· · · · · ·

(1.51)

In order to find c1 in Eq. (1.51), we will impose continuity constraints:

t + 1|t=1 = t2

2
+ t + c1|t=1 (1.52)

18 1 Introduction

Thus c1 = 1
2 .

Now, contrast the solution to our DDE with the solution that corresponds
to a differential equation with no delay: ẋ = x . The solution to the differential
equation with no delay is the exponential function. Quite a contrast to the
solution in this example!

The example above shows that we need an infinite set of initial conditions to
properly solve a DDE. Thus even first order DDEs are infinite-dimensional and can
exhibit chaos (and hyperchaos etc.). In Chap.5, we will simplement chaotic DDEs.

However most physical systems cannot be solved explicitly. But, interestingly,
we can predict the behavior of most physical systems without solving for an explicit
closed form solution. An introduction to this approach is the topic of Sect. 1.3.3.

1.3.3 Fixed (Equilibrium) Points

Consider the differential equation in Eq. (1.53), written explicitly using time t :

dx

dt
= cos(x(t)) (1.53)

Physically, points of interest are x† for which the derivative dx
dt

∣
∣
∣
x†

= 0. In other

words, the system does not “move” from x†. Such points are called fixed points or
equilibrium points.

We can extend the above description to nth order differential equations by rewrit-
ing an nth order differential equation as n first-order differential equations. In other
words, our definition of equilibrium will involve a system of n first-order differential
equations as shown below.

Definition 1.8 A system of differential equations ẋ = f(x) has equilibrium point(s)

x† such ẋ
∣
∣
∣
x†

= 0. Here, x ∈ R
n .

Hence given a system of differential equations, we need to solve a set of nonlinear
equations for finding the equilibrium points. Let us look at a couple of examples,
starting with Eq. (1.53).

Example 1.7 Determine the equilibrium points for the system in Eq. (1.54).

ẋ = cos(x) (1.54)

http://dx.doi.org/10.1007/978-3-319-18105-9_5

1.3 Some Basic Mathematical Concepts 19

Solution: Applying Definition 1.8, we get:

ẋ
∣
∣
∣
x†

= 0 (1.55)

Thus:

cos(x†) = 0 (1.56)

Hence the equilibrium points are the zeroes of the cosine function:

x† = (2k + 1)
π

2
, k ∈ Z (1.57)

Example 1.8 Determine the equilibrium points for the Lorenz systemwith the
specific value of parameters shown below.

ẋ = −10x + 10y (1.58)

ẏ = −xz + 28x − y (1.59)

ż = xy − 8

3
z (1.60)

Solution: Applying Definition 1.8, we get:

−10x† + 10y† = 0 (1.61)

−x†z† + 28x† − y† = 0 (1.62)

x†y† − 8

3
z† = 0 (1.63)

Equation (1.61) implies

x† = y† (1.64)

Replacing x† with y† in Eqs. (1.62) and (1.63) and solving, we get y† and z†.
Hence our equilibrium points are:

(x†, y†, z†) = (0, 0, 0), (6
√
2, 6

√
2, 27), (−6

√
2,−6

√
2, 27) (1.65)

20 1 Introduction

1.3.4 System Behaviour Near Fixed Points

Revisiting the Lorenz system from Sect. 1.3.3, if (x(0), y(0), z(0)) = (x†, y†, z†)
then ((x(t → ∞), y(t → ∞), z(t → ∞)) = (x†, y†, z†). That is if our initial
conditions are exactly equilibrium points, we will continue to stay at the equilibrium
point, courtesy of Definition 1.8.

However, physically speaking, there is always some inherent noise present in our
initial conditions. So a practical question is: what happens when we start our system
“near” (or close to) a fixed point? The answer to the question is given by the stability
theory of dynamic systems, a topic that is beyond the scope of this volume. The
short answer is: if the equilibrium point is stable, our system trajectories will move
back towards the equilibrium point. If the equilibrium point is unstable, the system
trajectories will move away from the equilibrium point. The unstable case is the
interesting one since it may lead to the chaotic trajectories in phase space.

But we can determine what happens to the system behavior near the equilibrium
point via numerical simulation using MATLAB. Let us start with the Lorenz system.

Example 1.9 Simulate the Lorenz system starting with the initial condi-
tions (x(0), y(0), z(0)) = (8.5, 8.7, 3.0). Plot a two dimensional phase plot
(x(t), z(t)).

Solution: We have already simulated the Lorenz system in the introduction
section. For this question, we are just going to change the initial condition. We
leave it to you as an exercise to generate Fig. 1.11.

If you recall our Lorenz example from the introduction section, the ini-
tial conditions were (x(0), y(0), z(0)) = (10, 20, 30). In this example, we
start quite a distance away (10, 20, 30). Yet our system still manages to get
into a chaotic state. In other words, the Lorenz attractor is robust. Refer to
Problem 1.11 for quantifying “robustness”.

For two dimensional systems, you can of course write a MATLAB program for
simulating the system. However, a very nice tool is pplane7,5 available from Rice
University [19]. Download pplane7 from [19].

Next, start MATLAB and navigate to the directory where you downloaded type
pplane7. Type pplane7 at the prompt and press enter. The window in Fig. 1.12 should
appear.

Choose the vibrating spring as the system to simulate: Gallery → vibrating
spring. Leave the default parameter value for d as 0 and left-click “Proceed”. The
window in Fig. 1.13 should appear.

5An alternative to pplane is the MATLAB command quiver. We will explore the use of quiver in the
lab component of this chapter. Nevertheless, pplane is excellent MATLAB code and is open-source.
One is encouraged to explore coding styles used in pplane7.

1.3 Some Basic Mathematical Concepts 21

−20 −15 −10 −5 0 5 10 15 20
0

5

10

15

20

25

30

35

40

45

50

x

z

Fig. 1.11 We obtain the Lorenz butterfly with a different initial condition

Fig. 1.12 pplane7 startup

22 1 Introduction

Fig. 1.13 pplane7 vector field for a simple mass-spring system (no damping)

In addition to the phase plot, pplane plots the vector field of two dimensional
systems. As the name implies, a vector field associates a vector to every point in phase
space. How do we know the direction of the vector? The answer is we can obtain the
direction of the vector from the differential equation. Consider the following system
of two dimensional nonlinear ODEs. These are representative of systems in pplane.

ẋ = f1(x, y) (1.66)

ẏ = f2(x, y) (1.67)

The slope of the solution trajectory at any point in the plane is given by:

dy

dx
=

dy
dt
dx
dt

= f2(x, y)

f1(x, y)
(1.68)

In other words, the vector field is described by a tangent to the solution trajectory.
Figure1.14 show a few solution trajectories in pplane. To obtain these trajectories,
left-click anywhere in the vector field. Refering to Fig. 1.14, we see that y(t) is v(t)
or velocity. Thus to obtain an analytic expression of the vibrating spring vector field,
we use Eq. (1.68).

1.3 Some Basic Mathematical Concepts 23

Fig. 1.14 Some typical mass-spring system trajectories, no damping. Notice the system oscillates
forever. This system is an ideal case in the sense that most practical (except superconducting)
physical systems will have some damping

dy

dx
= dv

dx
=

−kx
m

v
= −3x

v
(1.69)

A mechanical schematic of our system is shown in Fig. 1.15. We have a system
that is governed by Newton’s law and Hooke’s law.

mẍ = −kx (1.70)

In our case, m = 1 kg and k = 3 N
m . Using Fig. 1.15 as the physical model for

Fig. 1.14, we can further understand the vector field. If we give an initial position
and velocity to the mass, then the system oscillates forever since there is no damping.
Equation (1.70) is also called the simple harmonic oscillator.

24 1 Introduction

Fig. 1.15 A mass spring
system with the positive
direction of displacement
labelled

1.4 Conclusions

Below is a summary of how we could apply the concepts and techniques from this
chapter.

1. Given a system of differential equations, determine if they are linear or nonlinear.
2. Compute the equilibrium points6 of the system using Definition 1.8.
3. Numerically simulate the system using MATLAB and display phase plots. Start

with initial conditions near the equilibrium points.
4. The phase plot will qualitatively describe system behavior. Use the phase plot as

a starting point for rigorous analysis.

The beauty of the equilibrium point method lies in the fact that we do not find
an explicit analytic solution. Rather, we determine any equilibrium points and deter-
mine system behavior by starting close to those equilibrium points. An example
application of the equilibrium point method was the Lorenz system. We first found
the equilibrium point(s). Then, using MATLAB, we found that starting close to one
of the equilibrium points the solution will move into a strange attractor. Looking
at the differential equation for the Lorenz system, it is not obvious at all that the
solution could be chaotic.

In the next chapter, we will discuss the engineering part of the book—the FPGA.

6If the system has no equilibrium points, you need to rely on intuition to select initial conditions.
As a specific example, refer to Problem 1.8 in the exercises.

Problems 25

Problems

Note that an excellent book on problem solving is “How to Solve It” by Polya [20].
You should obtain a copy of this book and read it thoroughly, it is time well spent!

1.1 Google Scholar http://scholar.google.com is a great tool to find research papers.
Using Google Scholar, find Lorenz’s original paper from 1963 [6]. Lorenz’s paper is
very well written, read the paper and determine the physical meaning of the variables
x , y and z in Eqs. (1.1)–(1.3). Note that Google Scholar is not yet universally accepted
as a scientific database. Hence the reader should be familiar with other tools such as
Web of Science and Scopus.

1.2 Consider three dimensional space R3. Draw all possibilities for a linear system
of three equations (in three unknowns x , y, z) such that the system has no solution,
unique solution and infinitely many solutions.

1.3 Consider the amplifier system and the system that squares the input function.

y1(t) = S(x)(t) = K x(t) (1.71)

y2(t) = S(x)(t) = x2(t) (1.72)

What is the output of the amplifier if the input is x(t) = sin(ωt)? What is the
frequency of the output? Now, what is the output frequency of the square system
when the input is x(t) = sin(ωt)? Based on the results of this problem, what can you
conclude about the output of a nonlinear system to a sinusoidal input of a specific
frequency? Can your conclusion be extended to nonlinear dynamical systems?

1.4 Recall the Sprott system from the text with the signum nonlinearity. We wrote
the three first-order differential equations as one third order differential equation.
Can we, in general, write any n first-order differential equations as one nth order
differential equation? Prove your answer or give a counter-example. HINT: Before
you look for a proof, try to write the Lorenz system as one third order differential
equation.

1.5 Analogous to the Problem 1.4, can we write any nth order differential equation
as n first-order differential equations of the form ẋ = f(x)? Prove your answer or
give a counter-example.

1.6 Consider the simple harmonic oscillator from the text:

mẍ + kx = 0 (1.73)

Can you realize this system physically (on a breadboard, for instance)?

1.7 For each of the following system, determine equilibrium points analytically.
Simulate each system near the equilibrium point to determine dynamics. For two
dimensional systems, use pplane.

http://scholar.google.com

26 1 Introduction

1. Van Der Pol oscillator

ẋ = μ

(

x − x3

3
− y

)

(1.74)

ẏ = x

μ
(1.75)

μ ∈ R, μ �= 0 is a parameter indicating the strength of nonlinear damping. Use
μ = 1.5 for simulation. What do you observe for μ � 1?

2. Rössler System

ẋ = −y − z (1.76)

ẏ = x + αy (1.77)

ż = β + z(x − γ) (1.78)

α, β, γ ∈ R are parameters of the system. Use α = 0.1, β = 0.1, γ = 14 for
simulation.

3. Sprott System

ẋ = −2y (1.79)

ẏ = x + z2 (1.80)

ż = 1 + y − 2z (1.81)

4. Chua System

ẋ = α[y − x − m1x − 1

2
(m0 − m1) (|x + 1| − |x − 1|)] (1.82)

ẏ = x − y + z (1.83)

ż = −βy (1.84)

m0, m1, α, β ∈ R are parameters of the system. Use m0 = −8
7 , m1 = −5

7 , α =
15.6, β = 25.58 for simulation.

1.8 What are the fixed points for the system below?

ẋ = y (1.85)

ẏ = −x + yz (1.86)

ż = 1 − y2 (1.87)

Construct a three dimensional phase plot in MATLAB.

1.9 What is the phase plot for the one dimensional nonlinear differential equation:

ẋ = sin(x) (1.88)

Problems 27

1.10 In the text, we considered three dimensional systems. Now consider the
following four dimensional system proposed by Rössler [21].

ẋ = −y − z (1.89)

ẏ = x + αy + w (1.90)

ż = β + xz (1.91)

ẇ = −γ z + δw (1.92)

α, β, γ, δ ∈ R are parameters. What are the equilibrium points for this system?
Simulate the system inMATLAB, try to pick values for α, β, γ, δ for chaos. Contrast
the behavior of this systemwith the Rössler system in Eqs. (1.76)–(1.78). The system
above is the first example of a hyperchaotic system.

1.11 In the text, we discussed “robustness” of the Lorenz attractor. A mathematical
approach to quantifying “robustness” is to compute the divergence of a vector field
f defined by the RHS of the Lorenz system:

f
�= (−σ x + σ y)x̂ + (−xz + ρx − y)ŷ + (xy − βz)ẑ (1.93)

x̂, ŷ and ẑ are the unit vectors in the x, y and z directions respectively. Compute
∇ · f . What can you conclude?

Lab 1: Introduction to MATLAB and Simulink

Objective: To compute equilibrium points and numerically investigate behaviour of
dynamical systems.

Theory: Refer to the Appendix for a tutorial on MATLAB and Simulink.

Lab Exercises:

1. After working through the Appendix, simulate all systems from Exercise 1.7.
2. Consider the Lotka-Volterra system in Eq. (1.94).

ẋ = x(α − βy)

ẏ = −y(γ − δx) (1.94)

a. Determine the equilibrium points of this system.
b. Using pplane, determine all possible qualitatively different phase portraits for

this system, as α, β, γ, δ are changed. Note that the Lotka-Volterra system is
available in pplane.

28 1 Introduction

3. pplane7 can be used to plot two dimensional phase plots. MATLAB has an
equivalent command called quiver. Moreover, in order to plot vector fields for
three dimensional systems, investigate the MATLAB command quiver3. Use
quiver or quiver3 to plot vector fields for all systems in Exercise 1.7.

References

1. Steingrube S, Timme M, Worgotter F, Manoonpong P (2010) Self-organized adaptation of a
simple neural circuit enables complex robot behaviour. Nat Phys 6:224–230

2. Alligood KT, Sauer TD, Yorke JA (1996) Chaos: an introduction to dynamical systems.
Springer, New York

3. Chen G, Ueta T (2002) Chaos in circuits and systems. World Scientific, Singapore
4. Van der Pol B (1927) On Relaxation-oscillations, The London, Edinburgh and Dublin Philos

Mag J Sci 2(7):978–992
5. Van der Pol B, Van der Mark J (1927) Frequency demultiplication. Nature 120:363–364
6. Lorenz EN (1963) Deterministic nonperiodic flow. J Atmos Sci 20:130–141
7. Matsumoto T (1984) A chaotic attractor from Chua’s circuit. IEEE Trans Circuits Syst CAS

31(12):1055–1058
8. Chua LO (2011) Chua’s circuit. In: Scholarpedia. http://www.scholarpedia.org/article/Chua_

circuit. Accessed 25 Dec 2012
9. Muthuswamy B et al (2009) A Synthetic inductor implementation of Chua’s circuit. In: Uni-

versity of California, Berkeley, EECS Technical Reports. http://www.eecs.berkeley.edu/Pubs/
TechRpts/2009/EECS-2009-20.html. Accessed 22 Nov 2014

10. Sprott JC (2010)Elegant chaos.Algebraically simple chaotic flows.World Scientific, Singapore
11. Pecora LM, Carroll TL (1990) Synchronization in chaotic systems. Phys Rev Lett 64:821–824
12. Cuomo KM, Oppenheim AV (1993) Circuit implementation of synchronized chaos with appli-

cations to communications. Phys Rev Lett 71:65–68
13. AHistory of Xilinx (2012). In: Funding Universe. http://www.fundinguniverse.com/company-

histories/xilinx-inc-history/. Accessed 26 Dec 2012
14. AHistory of Altera (2012). In: Funding Universe. http://www.fundinguniverse.com/company-

histories/altera-corporation-history/. Accessed 26 Dec 2012
15. Top 5 benefits of FPGAs (2012). In: National Instruments Whitepaper. http://www.ni.com/

white-paper/6984/en. Accessed 26 Dec 2012
16. CornellUniversity (2012)DigitalDifferentialAnalyzer. In:ECE5760Homepage. http://people.

ece.cornell.edu/land/courses/ece5760/DDA/index.htm. Accessed 26 Dec 2012
17. Strang G (2009) Introduction to linear algebra. Wellesley-Cambridge Press, Massachusetts
18. Lee EA, Varaiya PP (2011) Structure and interpretation of signals and systems, 2nd edn. http://

leevaraiya.org/
19. Polking JC (2011) pplane homepage. http://www.math.rice.edu/~dfield/. Accessed 25 Dec

2012
20. Polya G (1957) How to solve it. Doubleday, Gardent City
21. Rössler OE (1979) An equation for hyperchaos. Phys Lett A 71:155–157

http://www.scholarpedia.org/article/Chua_circuit
http://www.scholarpedia.org/article/Chua_circuit
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-20.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-20.html
http://www.fundinguniverse.com/company-histories/xilinx-inc-history/
http://www.fundinguniverse.com/company-histories/xilinx-inc-history/
http://www.fundinguniverse.com/company-histories/altera-corporation-history/
http://www.fundinguniverse.com/company-histories/altera-corporation-history/
http://www.ni.com/white-paper/6984/en
http://www.ni.com/white-paper/6984/en
http://people.ece.cornell.edu/land/courses/ece5760/DDA/index.htm
http://people.ece.cornell.edu/land/courses/ece5760/DDA/index.htm
http://leevaraiya.org/
http://leevaraiya.org/
http://www.math.rice.edu/~dfield/

Chapter 2
Designing Hardware for FPGAs

FPGA realization of the Lorenz
butterfly

Abstract In this chapter we will cover many of the basic concepts behind FPGA
design. We start with an overview of our hardware platform, go through a quick intro-
duction to the Quartus toolset and then review combinational along with sequential
logic. We will conclude with the all important concept of timing closure. Although
we cover a particular hardware platform, the material in this chapter can be adopted
to understand other FPGA hardware platforms. This chapter, along with Chap. 1, lay
the groundwork for the rest of the book. Nevertheless, please understand that major-
ity of this chapter is meant primarily as a review. However, the conceptual material
on abstracting the FPGA development flow via Simulink should not be skipped.

2.1 The FPGA Development Flow

In order to design for an FPGA, one needs to intimately understand the design
process shown in Fig. 2.1 [1]. The first step in the process is design entry. In other
words, you specify design functionality (differential equations) using tools such as
Hardware Description Languages (HDLs), schematic entry or using a high level block
diagram approach like Simulink. Next we compile the design to identify any syntax
errors and then simulate the design to verify functionality. If design specifications
are not met, we debug the design entry as necessary in order to meet functional
specifications. Once the functional specifications have been met, we should run a

© Springer International Publishing Switzerland 2015
B. Muthuswamy and S. Banerjee, A Route to Chaos Using FPGAs, Emergence,
Complexity and Computation 16, DOI 10.1007/978-3-319-18105-9_2

29

http://dx.doi.org/10.1007/978-3-319-18105-9_1

30 2 Designing Hardware for FPGAs

Fig. 2.1 A high-level view of FPGA design flow

timing-intensive simulation, but this topic is beyond the scope of this volume.1 Once
we have confirmed that the design is both functional and satisfies timing, we can
download the bitstream onto the FPGA.

The first step in maximizing the capabilities of an FPGA is understanding the
underlying architecture, the topic of Sect. 2.2.

2.2 The Architecture of an FPGA

Although the specifics of FPGA architecture vary between each device family (even
within the same manufacturer), an FPGA is simply a massively parallel lookup table.
Figure 2.2 shows a screen shot from the Quartus chip planner of the FPGA that we
will be using in this book, the Cyclone IV.

Note how the device architecture is very repetitive in terms of fundamental struc-
ture, i.e.., the FPGA has a two dimensional row and column-based architecture to
implement custom logic. Figures 2.3 and 2.4 show just how uniform this structure is.

Let us examine the LE in Fig. 2.4 in some detail [2], since a LE is the basic design
unit on an FPGA. Each LE features:

• A four-input look-up table (LUT), which is a function generator that can implement
any combinational logic function of four variables

• A programmable register
• A carry chain connection
• A register chain connection
• The ability to drive all types of interconnects: local, row, column, register chain

and direct link interconnects
• Support for register packing
• Support for register feedback

An LE can also operate in normal mode or arithmetic mode. Normal mode is suit-
able for general logic applications and combinational functions. The arithmetic mode
is ideal for implementing adders, counters, accumulators and comparators. LEs in

1We will however discuss the important concept of timing closure.

2.2 The Architecture of an FPGA 31

Fig. 2.2 A view of the Cyclone IV from the Chip planner in Quartus. The darker blue indicates
filled FPGA regions

arithmetic mode can drive out registered and unregistered versions of the LUT out-
put. Register feedback and register packing are supported when LEs are used in
arithmetic mode.

In addition to LEs, Cyclone IV provide Phase Locked Loops (PLLs) for general-
purpose clocking [2], as well as support for features such as clock multiplication

32 2 Designing Hardware for FPGAs

Fig. 2.3 A zoomed in view of the Logic Array Block (LAB) that highlight the 16 Logic Elements
(LEs). LABs are the primary design features on the Cyclone FPGA that are grouped into rows and
columns across the device [2]

Fig. 2.4 LEs are the smallest units of logic in the Cyclone IV device architecture [2]

(division) and phase shifting. These PLLs are easily configurable via FPGA software
tools, this feature will be discussed in the book as necessary. Cyclone IVs also
incorporate embedded memory consisting of columns of M9K memory blocks [2].
Each M9K block can implement various types of memory, with our without parity.
The M9K blocks are also easy to configure via FPGA software.

We have covered a brief overview of FPGA architecture. Going back to Fig. 2.1,
a natural question is: how do we utilize software to realize a design onto an FPGA?
The answer is: FPGA manufacturers provide advanced software tools for FPGA
hardware design. The toolset that Altera provides is the Quartus suite. However since

2.2 The Architecture of an FPGA 33

we are implementing differential equations, we will primarily utilize MATLAB and
Simulink. Nevertheless, we first need to choose the appropriate development board.

2.3 An Overview of the Hardware and Software
Development Platform

In order to physically realize our differential equations, we will use the DE2-115
board2 [3] shown in Fig. 2.5 from Terasic Technologies that utilizes a Cyclone IV
(EP4CE115F29C7N) FPGA.

One also requires the Quartus toolset from Altera and the MATLAB (along with
Simulink) package from Mathworks Corporation. Please contact the respective com-
panies for the appropriate licenses. Note also that you need miscellaneous hardware
such as interface cables and oscilloscopes.

FPGA hardware and software platforms evolve rapidly. A decision had to be
made on the particular choice of hardware and software. We first chose the DE2-115
because it offered a large functionality-to-cost ratio for our research project(s) and,
consequently, we chose the Quartus toolset. This platform was also available at the
time when the volume was first published. However, the concepts covered in this
volume should be applicable to any appropriate FPGA development platform and
toolset(s).

We will now go over the salient features of our development platform, starting
with the DE2-115 board.

2.3.1 An Overview of the Terasic DE2-115 Development Board

Since we have already discussed the FPGA in Sect. 2.2, we will discuss board
peripherals.

2.3.1.1 FPGA Clocks

Probably the most important component on the FPGA board is the crystal oscillator
for the clock circuitry [4]. The DE2-115 board includes one oscillator that produces
50 MHz clock signal. A clock buffer is used to distribute 50 MHz clock signal with
low jitter to the FPGA. The board also includes two Subminiature Version A (SMA)
connectors which can be used to connect an external clock source to the board or
to drive a clock signal out through the SMA connector. In addition, all these clock

2These are not the only possible development platforms that can be used to realize chaotic dynamics.
Please utilize the companion website to obtain information on other development platforms and
software tools.

34 2 Designing Hardware for FPGAs

Fig. 2.5 The DE2-115 board [3]

Fig. 2.6 Block Diagram of Clock Distribution on the DE2-115 [4]

inputs are connected to the PLL clock input pins of the FPGA to allow users to use
these clocks as a source clock for the PLL circuit [4] (Fig. 2.6).

Since clocks are fundamental to FPGA functionality, pin assignments for clock
inputs to FPGA input/output (I/O) pins are listed in Table 2.1.

2.3.1.2 Switches and Light Emitting Diodes (LEDs)

The DE2-115 board provides four push-button switches as shown in Fig. 2.7 [4].
Each of these switches is debounced using a Schmitt Trigger circuit, as indicated in

2.3 An Overview of the Hardware and Software Development Platform 35

Table 2.1 Pin assignments for clock inputs

Signal name FPGA pin no. Description I/O standard

CLOCK_50 PIN_Y2 50 MHz clock input 3.3 V

CLOCK2_50 PIN_AG14 50 MHz clock input 3.3 V

CLOCK3_50 PIN_AG15 50 MHz clock input Depending on JP6

SMA_CLKOUT PIN_AE23 External (SMA) clock
output

Depending on JP6

SMA_CLKIN PIN_AH14 External (SMA) clock
input

3.3 V

Fig. 2.7 Connections between the push-button and Cyclone IV FPGA [4]

Fig. 2.8 Push button debouncing [4]

Fig. 2.8. The four outputs called KEY0, KEY1, KEY2, and KEY3 of the Schmitt
Trigger devices are connected directly to the Cyclone IV E FPGA. Each push-button
switch provides a high logic level when it is not pressed, and provides a low logic level
when depressed. Since the push-button switches are debounced, they are appropriate
for using as clock or reset inputs in a circuit.

36 2 Designing Hardware for FPGAs

Fig. 2.9 Connections between the slide switches and Cyclone IV FPGA [4]

Fig. 2.10 Connections between the LEDs and Cyclone IV FPGA [4]

There are also 18 slide switches on the DE2-115 board (See Fig. 2.9) [4]. These
switches are not debounced, and are assumed for use as level-sensitive data inputs to
a circuit. Each switch is connected directly to a pin on the Cyclone IV FPGA. When
the switch is in the down position (closest to the edge of the board), it provides a low
logic level to the FPGA, and when the switch is in the up position it provides a high
logic level.

There are 27 user-controllable LEDs on the DE2-115 board [4]. Eighteen red
LEDs are situated above the 18 Slide switches, and eight green LEDs are found
above the push-button switches (the 9th green LED is in the middle of the 7-segment
displays). Each LED is driven directly by a pin on the Cyclone IV FPGA; driving its
associated pin to a high logic level turns the LED on, and driving the pin low turns
it off. Figure 2.10 shows the connections between LEDs and Cyclone IV FPGA.

2.3.1.3 7-Segment Displays

The DE2-115 board has eight 7-segment displays. These displays are arranged in
two pairs and a group of four. As indicated in the schematic in Fig. 2.11, the seven
segments (common anode) are connected to pins on the Cyclone IV. The 7-segment
displays are actve low.

2.3 An Overview of the Hardware and Software Development Platform 37

Fig. 2.11 Connections between the 7-segment display HEX0 and the Cyclone IV FPGA [4]

Table 2.2 JP7 settings for different I/O standards

JP7 jumper settings Supplied voltage to VCCIO5
and VCCIO6 (V)

IO voltage of HSMC
connector (JP8) (V)

Short pins 1 and 2 1.5 1.5

Short pins 3 and 4 1.8 1.8

Short pins 5 and 6 2.5 2.5 (Default)

Short pins 7 and 8 3.3 3.3

Table 2.3 JP6 settings for different I/O standards

JP6 jumper settings Supplied voltage to VCCIO4
(V)

IO voltage of expansion header
(JP5) (V)

Short pins 1 and 2 1.5 1.5

Short pins 3 and 4 1.8 1.8

Short pins 5 and 6 2.5 2.5

Short pins 7 and 8 3.3 3.3 (Default)

2.3.1.4 I/O Standards

The I/O voltage levels (standards) for the High Speed Mezzanine Card (HSMC) and
the expansion header on the DE2-115 can be set by using JP7 and JP6 respectively [4].
Nevertheless, these jumpers also set the I/O standards for peripherals, for example the
clock input in Table 2.1. Hence we list the JP7 and JP6 settings in Tables 2.2 and 2.3.

2.3.2 VHDL Primer and Using the Quartus Toolset

Although we will be primarily utilizing Simulink for a high level functional spec-
ification of our chaotic systems, it is important to have an idea of the underlying

38 2 Designing Hardware for FPGAs

hardware to which our design synthesizes to. There are many abstraction levels for
understanding synthesized hardware. In this book, we will utilize the HDL approach.
Specifically, we will use VHDL—one of the two HDLs that have an IEEE standard
associated with them [5]. The other IEEE standard HDL is Verilog. We use VHDL
in this book because it has better support for parameterized design [6].

Discussing every nuance of VHDL is beyond the scope of this book. Fortunately,
many details are abstracted away because of our functional approach to specifying
chaotic systems. However, we will still discuss some of the most important ideas
behind VHDL in this section. For further study, two very good references on VHDL
are Brown and Vranesic that deals with basic VHDL concepts [7] and Chu’s book
on VHDL for efficient synthesis [6].

Before we begin, an important note: as the name indicates, HDL describes hard-
ware [6]. We are not writing a software program and hence it is essential to approach
HDL from the hardware’s perspective. The synthesis software should also be treated
as a tool to perform transformation and local optimization. It cannot alter the original
architecture or convert a poor design into a good one [6]. A rule of thumb: if we as
humans cannot understand the underlying hardware functionality via the HDL, the
synthesizer will not translate the design into a correct functional specification.

2.3.2.1 VHDL Modules: Entity, Ports and Architecture

Listing 2.1 below is a sample VHDL hardware specification.

Listing 2.1 Combinational logic in VHDL

1 -- Lines starting with -- are comments in VHDL.
2 library ieee; -- include ieee library for the use statements

below
3 use ieee.std_logic_1164.all;
4 use ieee.numeric_std.all;
5
6 entity simpleLogicGates is port (
7 x1,x2,x3 : in std_logic;
8 x : in std_logic_vector(3 downto 0);
9 y : out std_logic_vector(4 downto 0));

10 end simpleLogicGates;
11
12 architecture combinational of simpleLogicGates is
13 begin
14 y(0) <= (x1 and x2) or x3;
15 y(2 downto 1) <= (x1&x(0)) AND (x2&x(1));
16 y(4 downto 3) <= x(3 downto 2);
17 end combinational;

The first three statements are IEEE standardized libraries to facilitate synthesis [6].
Line 1 invokes the IEEE library and line 2 allows us to use the predefined datatypes,

2.3 An Overview of the Hardware and Software Development Platform 39

Fig. 2.12 Schematic diagram of our hardware specification, generated using the Quartus RTL
viewer. The thicker lines imply multi-bits or a bus

std_logic and std_logic_vector. The numeric_std package enables us to utilize other
datatypes such as signed and unsigned.

The entity declaration in line 6 describes the external interface of our circuit [6].
Our design communicates with the outside world via ports. These ports can be
input, output or inout (bidirectional). In our example, we have three 1-bit wide input
ports (x1, x2, x3) and two multi-bit wide (bus) ports. Note that the std_logic (and
std_logic_vector) types support more than ‘1’ and ‘0’. We will additionally only
utilize the high impedance (‘Z’) support in std_logic, as this is the only other type
defined for proper synthesis. A potential issue of utilizing ‘Z’ is support for tri-state
devices in the underlying hardware but the Cyclone IV on the DE2-115 does support
these devices. Also note that for interfacing to external physical components, we
should not use VHDL types such as integers.3

The architecture body specifies the internal operation or organization of the dig-
ital logic system [6]. The architecture body consists of concurrent statements that
describe combinational logic and process statements that describe sequential logic.
We will first give examples of combinational logic design.

2.3.2.2 VHDL Combinational Logic Design and Using Quartus

Going back to our design specification in Sect. 2.3.2.1, we have three concurrent
statements that synthesize to the RTL description in Fig. 2.12.

We will now summarize the main steps for using Quartus.

1. The first step in using Quartus is to obtain the software. Although the Quartus
web-edition [8] will suffice for this section, we will need the Quartus Subscription
Edition [9], ModelSim-Altera [10] and DSP Builder [11] for synthesis, simulation
and mathematical functionality specification respectively. Please contact Altera

3Of course, we are free to choose any type for internal communication between modules. Such
flexibility is the purpose of abstraction.

40 2 Designing Hardware for FPGAs

corporation for details on obtaining academic licenses or purchasing software. In
this book, we will utilize the 12.0 versions of the toolset, although any version
after 12.0 is acceptable. Note that some of the screens and menu actions may be
different in newer versions of Quartus.

2. Next we need to download the system CD for our board, the DE2-115, from the
board manufacturer (Terasic) website [3]. Although a system CD is part of the
board kit, the latest version is available online. The CD has a plethora of useful
documentation and reference designs.

3. Now that we have Quartus installed and the system CD, we can start our design
by creating a new folder 4 for the combinational logic project.

Please refer to the online video and reference design on the companion web-
site: http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/Refere
nceDesigns/volumeI-ExperimentalObservations/chapter2/combinationalLogicDesi
gn/ for completing the simple combinational logic design.

Let us examine a frequently used VHDL construct for combinational logic design,
the selected signal assignment, shown in listing 2.2. The selected signal assignment
synthesizes to a multiplexer at the RTL level.

Listing 2.2 VHDL selected signal assignment

1 with selectBits select
2 output0 <= input0 when "00",
3 input1 when "01",
4 input2 when "10",
5 input3 when others;

The careful reader should have noticed that the type of input (and conse-
quently output) cannot be inferred from the VHDL snippet above. The type could
be std_logic, std_logic_vector or integers. In fact, now would be a good time
to look at the online video for a reference design that realizes an arithmetic
logic unit using a mux at the output for selecting between different operations:
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/Reference
Designs/volumeI-ExperimentalObservations/chapter2/alu/.

The video should help the reader complete the simple combinational logic design.
An RTL view of the ALU is shown in Fig. 2.13.

2.3.2.3 VHDL Parameterization

In this section, we will utilize parameterization functionality of VHDL. We will let
the synthesizer infer and connect multiple instances of the same module. Although
we will be using a for loop for synthesis, please remember that we are designing
hardware, not programming. The Quartus RTL view of the top level from our design
is shown in Fig. 2.14.

4It is not a good idea to include spaces in the project path.

http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/combinationalLogicDesign/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/combinationalLogicDesign/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/combinationalLogicDesign/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/alu/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/alu/

2.3 An Overview of the Hardware and Software Development Platform 41

Fig. 2.13 RTL view for the ALU design

Fig. 2.14 RTL view for the ripple carry adder. Extraction of digits in the sum is done at the top
level

The design primarily contains three components:

1. oneBitFullAdder: The oneBitFullAdder simply implements a structural one bit
adder. The boolean equations for the sum input and the carry outputs for the i th
one bit full adder are shown in Eqs. (2.1) and (2.2) respectively.

si = xi ⊕ yi ⊕ ci (2.1)

ci+1 = xi yi + ci (xi + yi) (2.2)

2. genericNBitFullAdder: In order to realize the genericNBitFullAdder, we will
connect n one bit full adders in a ripple carry structure, as shown in listing C.1.

3. sevenSegmentDecoder: The seven segment decoder is a standard decimal to hex
decoder module. The VHDL description is shown in listing C.2.

The top level realization of the generic ripply carry adder is shown in listing C.3.
In order to completely understand the design, please look at the online video for the
genericNBitFullAdder: http://www.harpgroup.org/muthuswamy/ARouteToChaosU
singFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/ripple
CarryAdder/.

http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/rippleCarryAdder/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/rippleCarryAdder/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/rippleCarryAdder/

42 2 Designing Hardware for FPGAs

2.3.2.4 VHDL Sequential Logic Design

So far we have seen designs whose output only dependent on the current input, not
on the past history of inputs. Digital circuits where the input depends on both the
present and past history of inputs (or the entire sequence of input values) are called
sequential logic circuits [6]. We need sequential logic circuits to implement memory
via registers (flip-flops). We store the system’s state or state variables in memory
and hence sequential logic circuits can also be specified using finite state machines
(or state machines). Figure 2.15 shows a block diagram of a Moore (Mealy) state
machine. We will examine a 24-h clock design in order to understand the concepts
behind state machines.

The synthesized Quartus project and a 20-minute video on the design can be obta-
ined from: http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/
ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/twentyForHourClo
ck/.

Considering Fig. 2.15, one can infer that we should be able to specify each of the
blocks via VHDL. However before we discuss the VHDL realization, we need to
understand the concept of a globally synchronous design [6].

A large digital system should consist of subsystems that operate at different rates
or different clock frequencies. In our 24-h clock, the seconds counter should be
updated at 1 Hz, the minutes counter at 1

60 Hz and the hours counter at 1
3600 Hz.

There are primarily two approaches for clocking, shown in Figs. 2.16 and 2.17.
There are two main problems with the approach in Fig. 2.16. First, the system is

no longer synchronous because if the subsystems interact, then the timing analysis
becomes very involved. Second problem is the placement and routing of multiple
clock signals. Since a clock signal needs a special driver and distribution network,
having derived clock signals makes this process more difficult.

 State
MemoryNext State Logic

Output
 Logic

Inputs

Clock

Outputs

Reset

Fig. 2.15 Generic block diagram for a finite state machine. State machines are composed of next
state logic (a combinational function of inputs and synchronous current state). The output function
combinational logic function can be a function of current state only (Moore machine) or current
state and input (Mealy). There is a single clock to ensure the design is fully synchronous. All finite
state machines must have a well defined global reset

http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/twentyForHourClock/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/twentyForHourClock/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/twentyForHourClock/

2.3 An Overview of the Hardware and Software Development Platform 43

clockOut

Counter
Seconds
Counter

Counter
Minutes

Hours
Counter

Reset Reset

Reset

Reset

clockIn

clockIn

clockIn

clockIn clockOut

Fig. 2.16 System with multiple clock frequencies. The global clock is stepped down to a 1 Hz
clock and each module subsequently outputs clocks with different frequencies

In contrast, the low rate single-clock enable pulse design shown in Fig. 2.17 is
the preferred approach since the different subsystems are driven with the same clock
frequency.

The specification of the seconds counter, along with a single pulse generator is
in listing C.4 (obtained from the online Quartus project). The single pulse generator
is a state machine that helps us implement the scheme shown in Fig. 2.17. The state
machine generates a pulse that is exactly one clock cycle long, everytime the seconds
counter overflows.

44 2 Designing Hardware for FPGAs

Fig. 2.17 System with a
single synchronous clock.
Each module uses a single
pulse generator that has an
enable pulse that is exactly
20 ns wide. This pulse acts as
a synchronous trigger input
for the subsequent module

enableIn

Seconds
Counter

Counter
Minutes

Hours
Counter

Reset

Reset

Reset

clockIn

clockIn

clockIn pulseOut

pulseOut

enableIn

One way to visualize an FSM is using State Machine Diagrams. The state transition
diagram for the single pulse generator is shown in Fig. 2.18.

Once you download the online design to the DE2-115 board, you will notice that
the base design clock is counting much faster than the usual 1 Hz frequency for a
seconds counter. Exercise 2.1 asks you to modify the design so we have the 1 Hz
frequency for the seconds counter.

2.3 An Overview of the Hardware and Software Development Platform 45

Input10/0 1/0

0/0

Input0

Fig. 2.18 A state transition diagram for the Mealy FSM realization of the single pulse generator.
The circles represent states and the arcs represent transitions between states. Input(s)/Output(s)
are specified on the arcs. It is assumed that transitions take place only on clock edges and hence
synchronous behaviour is implied. Hence, the output is logic 1 only when we transition from the
Input0 to Input1 state, in other words, the output is high only for one clock pulse. A Moore FSM
is specified in a similar manner, except the outputs are given in the states. How would you specify
the single pulse generator as a Moore FSM? Hint you need at least one more state

You should also understand that the design has a well defined reset state. Since
the DE2-115 keys are debounced in hardware, we can utilize them as reset inputs
without a debounce circuit. Exercise 2.4 considers debouncer design.

Going back to the issue of multiple clock frequencies in a design, a natural question
is: can we always use a single clock frequency for every design? The answer is: no.
This situation is very common when interfacing to external devices. For example,
if our design were to interface with external memory (like SDRAM) then we will
most likely have our FPGA design running at one frequency while the external
SDRAM’s clock is at a different frequency. Nevertheless we should clearly separate
the different clock domains in our design. If we do, then we can utilize powerful
timing closure tools provided by FPGA manufacturers to ensure that our design
meets timing requirements. We will discuss timing closure in Sect. 2.4. In fact the
next section shows an example design where we do interface to external hardware
on the DE1 board.

2.3.3 Audio Codec Interfacing

We need ADC and DAC converters to interface external signals to/from the FPGA
respectively. On the DE2 board, there is a Wolfson WM8731 [12] audio coder/de-
coder (codec) that has on-board ADC and DAC. This section shows how we can
interface to these peripherals.

Figure 2.19 shows a top-level block diagram of our design. A discussion of each
block follows [13].

46 2 Designing Hardware for FPGAs

Fig. 2.19 A screenshot from the Quartus RTL view of our i2c interface

The clock buffer uses two PLL modules: one to buffer the 50 MHz global clock
and the other to provide a 18.42105 MHz clock (from the 27 MHz clock) for sending
data to/from the codec.

The i2c interface initializes the audio codec by sending a series of 10 data packets.
In accordance with the i2c protocol, each data packet is 24 bits long, consisting of: the
codec address, the control register and the control register settings. The 10 packets
were retrieved from ROM, and sent over the two-wire interface via an FSM.

The i2c clock signal was a 50 KHz clock signal, generated from the 50 MHz PLL
buffered FPGA clock using a counter. Functionally, the i2c clock lagged the FSM
clock by a half-clock cycle. This allowed the FSM to update each bit on the rising
edge of the clock but the bit was still correctly interpreted by the codec.

Hence this design utilizes different clock frequencies between modules and this
cannot be avoided due to the fact that we are interfacing to an external device. Also,
the i2c protocol limits the maximum frequency of the clock to be 3.4 MHz, depending
on the mode [14]. Therefore, there is no possibility of clocking the i2c initialization
module at the global clock frequency of 50 MHz.

The ADC_DAC controller module’s primary function is to place data into and
read data from the A/D and D/A registers respectively. First, this controller generates
two clock signals:

1. A bit clock with a frequency of 3.07 MHz to clock I/O bits from the codec.
2. A frame clock with a frequency of 192 KHz to signify either the left or right

channel.

The synthesized Quartus project for our design can be found online:
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/Reference
Designs/volumeI-ExperimentalObservations/chapter2/DE2i2cInterface/.

The State Machine Viewer in Quartus can be used to examine the state transition
diagram of our FSM. We can access the state machine viewer using Analysis and
Synthesis→Netlist Viewers→State Machine Viewer.

An important point that we need to remember is the voltage range of the ADA are
±2 V. Hence any digital design’s I/O must confirm to this range of voltage. Also,
the I/O range assumes there is no loading of the codec input and output.

http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/DE2i2cInterface/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/DE2i2cInterface/

2.3 An Overview of the Hardware and Software Development Platform 47

Fig. 2.20 The experimental setup used in this book. We are not using the left-channel in this
experiment

Figure 2.20 shows the setup that we used throughout the book. We have a stereo-
to-banana cable that is used for interfacing to scope probes. Figure 2.21 shows the
results of the classic loop-back test: the input from the ADC is directly to DAC output
(the online i2c reference design utilizes loopback).

Nevertheless, only the phase delay is apparent in Fig. 2.21. Effects of sampling are
not readily apparent with a sine wave. Figure 2.22 shows the result of the loop-back
rest with a square wave.

Although we could implement the nonlinear functions and the numerical integra-
tion method in VHDL,5 it is much easier to utilize Simulink for an abstract spec-
ification of the mathematics. Section C.5 highlights the conceptual steps in using
DSP Builder, the Simulink library developed by Altera. You should go through that
section before continuing on with the rest of the this chapter.

5That is, one could use the MegaWizard in Quartus and avoid DSP Builder. However, the DSP
builder approach is more visual and this is the approach that we will use in this book. If you don’t
have access to DSP Builder, then you can utilize the approach using the MegaWizard. You can
discuss questions related to this approach in the online forums available on the book’s companion
website. Note however that we will use the MegaWizard for implementing some of the functionality,
such as bifurcations in Chap. 4.

http://dx.doi.org/10.1007/978-3-319-18105-9_4

48 2 Designing Hardware for FPGAs

Fig. 2.21 Sine wave loopback, input frequency is 500 Hz. Notice the large phase delay at the output

Fig. 2.22 Square wave loopback at 700 Hz. Compare with Fig. 2.21

2.4 Timing Closure 49

2.4 Timing Closure

In this section we will discuss the concept of timing closure [5, 15] and look at an
example of timing closure for the 24 h clock design from Sect. 2.3.2.4. Although
reference designs on the companion website are closed with respect to timing, we
will leave the advanced timing closure principles to volume II.

At the start of FPGA technology in the 1980 s, signal propagation delay in logic
gates was the main contributor to circuit delay, while wire delay was negligible [15].
Hence cell placement and wire routing did not noticeably affect the final FPGA
design. However, starting the in late 990 s, the advent of high density FPGAs and
the consequent increase in the size of the final FPGA design implied that there was
a need for automated timing closure tools.

Simply put, timing closure is the process by which we ensure the final placed and
routed design on the FPGA satisfies timing requirements: setup and hold times for
all flip-flops in our design are not violated. Timing closure tools such as TimeQuest
(included in Quartus) from Altera adjust propagation delays in the final netlist such
that the primary goal of setup and hold time constraints are satisfied. Recall from
our basic logic courses that setup (long-path) constraints specify the amount of time
a data input signal should be steady before the clock edge for each storage element.
Hold time constraints specify the amount of time a data input signal should be stable
after the clock edge.

Setup time constraints ensure that no signal transition occurs too late. Initial phases
of timing closure focus on these types of constraints, as formulated6 in Eq. (2.3).

tclockPeriod > tcombinationalDelay + tsetupTime + tskew (2.3)

In Eq. (2.3):

1. tcombinationalDelay is the worst-case combinational logic delay
2. tsetupTime is the setup time of the receiving flip-flop
3. tskew is the clock skew—the maximum time difference between flip-flop clock

edges

Setup constraints are usually performed as part of static timing analysis, which
defines timing slack as the difference between required arrival time and actual arrival
time, as shown in Eq. (2.4). Positive slack means timing requirements have been met.

Timing Slack = Required Arrival Time − Actual Arrival Time (2.4)

Hold time constraints ensure that signal transitions do not occur too early [15].
Hold violations can occur when a signal path is too short, allowinga receiving
flip-flop to capture the signal at the current cycle instead of the next cycle. Thus
the hold time constraint is formulated as in Eq. (2.5).

6Some authors define ≥ instead of > in Eq. (2.3). We have considered the worst-case scenario and
thus use >.

50 2 Designing Hardware for FPGAs

tcombinationalDelay > tholdTime + tskew (2.5)

Note that clock skew usually affects hold time constraints than setup time con-
straint. Thus hold time constraints are typically enforced after placing and routing
the clock network [15].

In order to experimentally understand these concepts, examine the SDC speci-
fication for timing constraints in Sect. C.5. TimeQuest uses the SDC file to close
timing. For further instructions, please look at the video on the companion website:
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceD
esigns/volumeI-ExperimentalObservations/chapter2/twentyFourHourClock/.

2.5 Conclusions

Below is a summary of the main concepts in this chapter:

1. The FPGA is an ideal platform for implementing discrete specifications of non-
linear differential equations because of the massively parallel architecture and
variable (user-specified) data and address bus widths. Nevertheless, properly uti-
lizing an FPGA requires the user to have a sound knowledge of basic digital logic
principles.

2. In the case of sequential logic, one must aim for a globally synchronous design.
3. For implementing abstract mathematical concepts, we will use DSP Builder

Advanced Blockset from Altera.
4. Timing closure is the process of satisfying timing constraints by informing the

timing closure tool as to how the design should operate (with respect to tim-
ing parameters). The industry standard SDC file is used for specifying timing
parameters to TimeQuest, the timing closure tool included with Quartus.

This chapter involved a lot of ideas and hopefully most of them were review
of digital logic design concepts. In Chap. 3, we will combine digital logic design
concepts and the ideas of DSP builder from this chapter to realize some classic
chaotic systems on FPGAs via Simulink.

Problems

2.1 Modify the 24-h clock design from Sect. 2.3.2.4 to accurately count seconds,
minutes and hours.

2.2 Instantiate the D flip-flops for synchronous reset from the 24-h clock design in
VHDL as opposed to a component-based specification.

2.3 Design a finite state machine whose output is a 1 iff there are two consecutive
1 s in the input stream.

http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/twentyFourHourClock/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter2/twentyFourHourClock/
http://dx.doi.org/10.1007/978-3-319-18105-9_3

Problems 51

1. Design a Moore FSM for this problem.
2. Design a Mealy FSM for this problem.

2.4 In this problem, we will consider debouncer design [16]. The goal is to design
a circuit that would compensate for the mechanical bounces in switch contacts. This
circuit is necessary because consider our 50 MHz system clock with 20 ns period.
Say a mechanical bounce lasts for 1 ms.

1. How many system clock cycles is one mechanical bounce?
2. Let us say we decide to have a timing-based solution: we declare an input change

after signal has been stable for at least 5 ms. Design a system that incorporates
a finite state machine and timer to accomplish this task.

Test your realization by using the mechanical switches on the DE2 board.

2.5 Design a finite state state machine that returns the remainder when an arbitrary
size integer is divided by 5. One way to test your design on the DE2 board is: use
two keys as 0 and 1 inputs. You can use an other key to send a “display remainder”
signal to your design. Obviously, the fourth key is global reset.

2.6 The concept of recursion is central to computer programming. Consider list-
ing 2.3 that recursively defines the factorial function:

Listing 2.3 Recursive specification of factorial function in MATLAB

1 function y = myfact(number)
2 %myfact Recursive realization of factorial function:
3 % n! = n*(n-1)*(n-2)...1
4 if number == 0
5 y=1;
6 else
7 y=number*myfact(number-1);
8 end
9 end

A natural question to ask would be: are there recursive structures in hardware?
The answer is yes and a classic example is specifying an m-bit 2n-to-1 mux (m-bits is
the input/output bus width with n-select bits) using 2-1 muxes. Using Fig. 2.23 as an
example, design and realize on the DE2 board a recursive multiplexer specification.

The elegant solution in Fig. 2.23 was proposed by Jake Nagel in the EE2900
(Combinational Logic Design) course at the Milwaukee School of Engineering in
the Winter 2012–2013 quarter.

52 2 Designing Hardware for FPGAs

Fig. 2.23 Recursively specifying a 3-bit 2-to-1 mux, technology map viewer from Quartus

Lab 2: Introduction to Altera FPGA Tools

Objective: DE2 LCD interface.

Theory: We first need to thoroughly understand the LCD communication protocol.
The DE2-115 user’s manual [4] should be our starting point. The display controller
is the HD44780 and a data sheet is available on the system CD that accompanies the
DE2 board. Nevertheless, you can simply search online and get the latest version of
the data sheet.

Lab Exercise:

After going through the LCD documentation, design an FSM to display the words
“Hello” on the first line and “World” on the second line of the LCD display. This lab
should be a very good review of digital logic concepts, so please take your time to
complete the design before looking at the online solution video.

References

1. Altera Corporation (2008) My First FPGA Design Tutorial. In: Altera Corporation Online
Tutorials, http://www.altera.com/literature/tt/tt_my_first_fpga.pdf. Accessed 22 Mar 2013

2. Altera Corporation (2013) Cyclone IV Handbook. In: Altera Corporation Online Datasheets,
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf. Accessed 19 Apr
2013

3. Terasic (2013) Altera DE2-115 Development and Education Board. In: Terasic Corporation
Online Cyclone Main Boards, http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=
English&No=502. Accessed 21 Apr 2013

http://www.altera.com/literature/tt/tt_my_first_fpga.pdf
http://www.altera.com/literature/hb/cyclone-iv/cyclone4-handbook.pdf
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=502
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=502

References 53

4. Terasic (2013) Altera DE2-115 Board User’s Manual on the System CD. In: Terasic Corporation
Online Cyclone Main Boards, http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=
English&No=502. Accessed 21 Apr 2013

5. Simpson P (2010) FPGA design—best practices for team-based design. Springer, New York
6. Chu PP (2006) RTL hardware design using VHDL—coding for efficiency, portability and

scalability. Wiley-Interscience, New Jersey
7. Brown S, Vranesic Z (2008) Fundamentals of digital logic design with VHDL, 3rd edn.

McGraw-Hill, New York
8. Altera Corporation (2013) Quartus Web Edition, http://www.altera.com/products/software/

quartus-ii/web-edition/qts-we-index.html. Accessed 7 May 2013
9. Altera Corporation (2013) Quartus Subscription Edition, http://www.altera.com/products/

software/quartus-ii/subscription-edition/qts-se-index.html. Accessed 7 May 2013
10. Altera Corporation (2013) ModelSim-Altera Edition, http://www.altera.com/products/

software/quartus-ii/modelsim/qts-modelsim-index.html. Accessed 7 May 2013
11. Altera Corporation (2013) DSP Builder, http://www.altera.com/products/software/products/

dsp/dsp-builder.html. Accessed 7 May 2013
12. Wolfson WM8731 datasheet, http://www.wolfsonmicro.com/products/audio_hubs/WM8731/.

Accessed 4 Oct 2013
13. Stapleton C (2011) Neuron Project EE2902 Spring 2011 Final Project Report
14. NXP Semiconductors (2012) UM10204 i2C-bus specification and user manual. http://www.

nxp.com/documents/user_manual/UM10204.pdf. Accessed 30 Sep 2013
15. Kahng A et al (2011) VLSI physical design: from graph partitioning to timing closure. Springer,

New York
16. Brigham-Young University (2013) ECEn 224 Debouncing a Switch - A Design Example,

Available via DIALOG. http://ece224web.groups.et.byu.net/lectures/20%20DEBOUNCE.
pdf. Accessed 12 Oct 2013

http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=502
http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&No=502
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html
http://www.altera.com/products/software/quartus-ii/web-edition/qts-we-index.html
http://www.altera.com/products/software/quartus-ii/subscription-edition/qts-se-index.html
http://www.altera.com/products/software/quartus-ii/subscription-edition/qts-se-index.html
http://www.altera.com/products/software/quartus-ii/modelsim/qts-modelsim-index.html
http://www.altera.com/products/software/quartus-ii/modelsim/qts-modelsim-index.html
http://www.altera.com/products/software/products/dsp/dsp-builder.html
http://www.altera.com/products/software/products/dsp/dsp-builder.html
http://www.wolfsonmicro.com/products/audio_hubs/WM8731/
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://www.nxp.com/documents/user_manual/UM10204.pdf
http://ece224web.groups.et.byu.net/lectures/20%20DEBOUNCE.pdf
http://ece224web.groups.et.byu.net/lectures/20%20DEBOUNCE.pdf

Chapter 3
Chaotic ODEs: FPGA Examples

FPGA realization of the chaotic
attractor from the Highly Complex

Attractor system [10]

Abstract In this chapter, we will focus on realizing chaotic systems on an FPGA.
We will first show a simple numerical method for specifying chaotic systems on
the FPGA and then realize the Lorenz system. We will then illustrate the complete
FPGA design process of functional simulation, in-system debugging and physical
implementation. In order to illustrate the robustness of FPGAs, we will conclude this
chapter by realizing a chaotic system with a hyperbolic tangent nonlinearity.

3.1 Euler’s Method

Recall from Chap.1 that we studied chaos in continuous-time differential equations.
We also learned that an FPGAcan be used to realize a sampled and discretized version
of the differential equation (recall Fig. 1.9). In this section, we will understand that
the block diagram in Fig. 1.9 is how we realize the forward-Euler’s method [11] on
an FPGA.

Consider Eqs. (3.1)–(3.2).

ẋ1 = f1(x1, . . . , xn) (3.1)

...

ẋn = fn(x1, . . . , xn) (3.2)

© Springer International Publishing Switzerland 2015
B. Muthuswamy and S. Banerjee, A Route to Chaos Using FPGAs, Emergence,
Complexity and Computation 16, DOI 10.1007/978-3-319-18105-9_3

55

http://dx.doi.org/10.1007/978-3-319-18105-9_1
http://dx.doi.org/10.1007/978-3-319-18105-9_1
http://dx.doi.org/10.1007/978-3-319-18105-9_1

56 3 Chaotic ODEs: FPGA Examples

We can use first principles [11] and rewrite Eqs. (3.1)–(3.2) as Eqs. (3.3)–(3.4).

x1(t + δt) = x1(t) + f1(x1(t), . . . , xn(t))�t (3.3)
...

xn(t + δt) = xn(t) + fn(x1(t), . . . , xn(t))�t (3.4)

When implementing Eqs. (3.3)–(3.4) on an FPGA, we can define:

xNNew
�= xn(t) + fn(x1(t), . . . , xn(t))�t (3.5)

xN
�= xn(t + δt) (3.6)

In Eqs. (3.5) and (3.6), xNNew and x N areVHDL signalswith N = 1, 2, . . . , n. δt
is the clock period for the D flip-flop that results in a synchronous xN. �t is the step-
size in Euler’smethod. ListingD.1 shows one possibleVHDL specification of Euler’s
method for the Lorenz system. However for consistency (withmaterial fromChap.1)
and clarity (theLorenz system is three dimensional),we can simply use x, y, z instead
of x1, x2, x3. Thus the VHDL design that we will use is shown in listing D.2.

In order to complete listing D.2, we have to specify the various nonlinearities and
scale the nonlinearities by�t . For these purposes, we will utilize DSP builder, along
with a VHDL specification of Euler’s method. This topic is the subject of Sect. 3.2.
But a detailed mathematical discussion of the numerical methods for approximat-
ing continuous-time dynamical systems is beyond the course of this book. This will
be discussed in more detail in volume II. Simply put a “large enough” step size
in Euler’s (or any other numerical method) [9] could introduce anomalies in the
numerical simulation.

3.2 Specifying Chaotic Systems for FPGAs
Using DSP Builder

3.2.1 The Lorenz System

Let us first simulate the Lorenz system in Simulink but using the discrete-time inte-
grator block. Figure3.1 shows the discrete Euler’smethod specification of the Lorenz
system.We have scaled the state variable outputs tomatch the output voltage range of
the audio codec. x(t) from the simulation plotted via MATLAB is shown in Fig. 3.2.
Code for plotting the result is in listing D.3.

Now that we have verified the functionality of a discrete implementation of the
Lorenz system, we need to implement the nonlinearities using DSP builder. The pro-
cedure incorporates the ideas from Sect.C.5 and an online-video of the implemen-
tation can be found on the companion website: http://www.harpgroup.org/muthuswa
my/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObser
vations/chapter3/lorenzSystem/.

http://dx.doi.org/10.1007/978-3-319-18105-9_1
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/lorenzSystem/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/lorenzSystem/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/lorenzSystem/

3.2 Specifying Chaotic Systems for FPGAs Using DSP Builder 57

Fig. 3.1 Simulink Euler’s method realization of the Lorenz system. We use K = 1, Ts = −1
(�t = 1

1000) for each discrete time integrator block and use a sampling time of 1e-3 to conserve
memory. The physical implementation uses �t = 2−10 and a sampling time of 1.28µs. The
discrete-time integrator block can be found in the Simulink libraries, under Discrete. You can
download Simulink design from the companion website: http://www.harpgroup.org/muthuswamy/
ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/
lorenzSystem/

We can now complete the VHDL in listing D.2, as shown in listing D.3. An online
video that shows how to incorporate this design with the i2c interface from Sect. 2.3.3
is on the companion website: http://www.harpgroup.org/muthuswamy/ARouteTo
ChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter
3/lorenzSystem/.

Figure3.3 shows x(t) and also the FFT of the signal. If you have headphones, you
should plug them into the line out port and listen to the sounds of the stereo Lorenz
chaotic attractor!

One potential issuewith the discrete realization is thatwe have not really discussed
how the our sampling frequency affects the chaotic signal frequency content.Wemay
need to adjust either the sampling frequency or the fixed-point representation. In the
case of the Lorenz system, consider Fig. 3.4.

In order to refine1 z(t) in Fig. 3.4, we changed the fixed-point representation and
this is actually reflected in the online reference design.

Figure3.5 shows the result. Figures3.6, 3.7 and 3.8 show the various phase plots.

1One way to predict the effect on z(t) in Fig. 3.4 is to use functional simulation, the subject of
Sect. 3.3.

http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/lorenzSystem/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/lorenzSystem/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/lorenzSystem/
http://dx.doi.org/10.1007/978-3-319-18105-9_2
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/lorenzSystem/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/lorenzSystem/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/lorenzSystem/

58 3 Chaotic ODEs: FPGA Examples

Fig. 3.2 x(t) from the Lorenz system. Notice the plot indicates that our sampling time and range
of x(t) values should be compatible with the DE2 Wolfson audio codec parameters

Fig. 3.3 x(t) from the Lorenz attractor realization on the FPGA, along with an FFT of the signal

3.2 Specifying Chaotic Systems for FPGAs Using DSP Builder 59

Fig. 3.4 x(t) from the Lorenz attractor realization on the FPGA, compared to z(t). Notice the large
variations in z(t) values are not being adequately captured by our digital system

Fig. 3.5 We changed the fixed-point representation to refine z(t)

60 3 Chaotic ODEs: FPGA Examples

Fig. 3.6 y(t) versus x(t) Phase plot of the Lorenz attractor, the left (right) audio channel is on
input X or channel 1 (input Y or channel 2) of the scope. Screen intensity has been set to 50%

Fig. 3.7 z(t) versus x(t)—the classic Lorenz butterfly

3.3 Introduction to Functional Simulation and In-System Debugging 61

Fig. 3.8 z(t) versus y(t)

3.3 Introduction to Functional Simulation
and In-System Debugging

After we complete our design in Simulink, it would be prudent to check if the design
is functionally correct. That is, does the hardware perform as it is supposed to? In
the case of chaotic systems, a functional simulation will also tell us if our design
functionally reproduces chaotic behavior. One could also perform a timing-intensive
simulation that will also account for delays in the physical FPGA [4]. Nevertheless,
a functional simulation is more than enough for us to check the effects of sampling
rate. Moreover, timing simulations take a lot longer time to run and we will not be
pursuing them further in this book.

There is another important difference between a functional simulation and check-
ing our system behaviour in Simulink. Functional simulation can tell us how the
signals propagate within our hardware system. Hence a functional simulation will
test the fundamental correctness of our digital circuit. We will use the industry stan-
dard ModelSim simulator for functional simulation.

As a natural followup to functional simulation, we can utilize a tool called Signal-
Tap, to debug the design as it executes on the FPGA. The “SignalTap Core” is a logic
analyzer provided byAltera that is compiled with your design. A block diagram view
of a system that incorporates SignalTap is shown in Fig. 3.9. In-system debugging
using SignalTap is discussion in Sect. 3.5.

62 3 Chaotic ODEs: FPGA Examples

Fig. 3.9 Block diagram of a design that has SignalTap compiled as a separate design partition [2]

In the next section, we will simulate Chen’s system. We will discuss general
concepts behind simulation and then highlight the main steps as to how we can per-
form the simulation in ModelSim via the online video. The discussion of ModelSim
will be followed by the SignalTap section.

3.4 Functional Simulation of Chaotic Systems

Equations (3.7)–(3.9) are the system equations for Chen’s system [7].

ẋ = a(y − x) (3.7)

ẏ = (c − a)x − xz + cy (3.8)

ż = xy − bz (3.9)

Parameters are a = 35, b = 3, c = 28. Initial conditions are (10, 20, 30).
First, we will perform a discrete Euler simulation and realize this system in

DSP Builder. The reference design is placed online: http://www.harpgroup.org/
muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-Experime
ntalObservations/chapter3/. We have not prepared a video since obviously the steps
are the same as in Sect. 3.2.1. Also note that we have not included ModelSim sim-
ulation results since the amount of data can be hundreds of megabytes (depends on
simulation time length, number of waveforms etc.).

http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/

3.4 Functional Simulation of Chaotic Systems 63

Fig. 3.10 1ms functional simulation of the Chen system, performed in Modelsim. Notice how
ModelSim can interpret the x, y, z state variables from our Chen system as an analog waveform

Fig. 3.11 y(t) versus x(t) for
Chen’s system. 0.5 V/div for
both scales on the digital
scope

In order to perform functional simulation, we first need to design a VHDL file
called as a “test bench”, that mimics a physical lab bench [4]. The test bench for the
Chen system is shown in listing D.6.

An online video that illustrates how to performModelSim simulation is available
on the companion website: http://www.harpgroup.org/muthuswamy/ARouteToCha
osUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/c
henSystem. Once we know the script window commands appropriate to our design,
they can be placed in a batch file with a .do extension. This file is also available
online and is also shown in listing D.7. In order to use this file, you can simply type:
“do FILENAME.do” in the transcript window command line as soon as you start

http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/chenSystem
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/chenSystem
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/chenSystem

64 3 Chaotic ODEs: FPGA Examples

Fig. 3.12 z(t) versus y(t) for
Chen’s system. X-axis scale
is 0.5 V/div, Y-axis scale is
0.2 V/div

Fig. 3.13 x(t) versus z(t) for
Chen’s system. X-axis scale
is 0.2 V/div, Y-axis scale is
0.5 V/div

ModelSim (assuming you have already created a default work library with the vlib
command).

Figure3.10 show the result of the ModelSim simulation. Figures3.11, 3.12 and
3.13 show the phase plots from the physical realization.

3.5 Debugging Using SignalTap 65

Fig. 3.14 The top level RTL view of the simple SignalTap project

3.5 Debugging Using SignalTap

Before we debug the Chen system in SignalTap, let us go over some general ideas,
using a simple design.

3.5.1 General Concepts—An Illustration Using
a Simple Example

The design to be analyzed configures a Cyclone II PLL via the MegaIPWizard to
step up the 50MHz board clock to 100MHz. We use a counter to step down the
50MHz clock to 1Hz and output the slow clock to a green LED on the DE2. We use
a different instance of the 1Hz counter, with an input clock of 100MHz. We output
this clock to a red LED on the board. Visually, the red LEDwill appear to flash twice
as fast as the green LED. A top-level FSM waits for the user to press KEY(0) on the
DE2 board before running the design. Figure3.14 shows a top-level RTL view of the
project. To avoid confusion, we have not included the SignalTap core in Fig. 3.14.

There are many ways to start2 SignalTap. The simplest is to add a SignalTap
(.stp) file to our project. We can then configure SignalTap, compile SignalTap with
our design and download the resulting .sof file to the DE2. Note that every time we
change settings in SignalTap, we will have to recompile the entire project, if we do
not have Incremental Compilation enabled in Quartus. Incremental Compilation is
beyond the scope of this book.

To add theSignalTapfile to the project, useFile→New and select theSignalTap II
Logic Analyzer File (under Verification/Debugging Files). The SignalTap window
in Fig. 3.15 should appear, the different “sub-windows” have been labeled. We will
use the “sub-windows” to understand the three primary concepts behind SignalTap:

2Before using SignalTap, you may need to enable the TalkBack feature in Quartus under
Tools→Options→Internet Connectivity.

66 3 Chaotic ODEs: FPGA Examples

Fig. 3.15 SignalTap main window

the clock signal, trigger and buffer. Please refer to Fig. 3.15 as you read the three
ideas below.

1. The Clock Signal provides the sampling clock source for the design, we cannot
display this clock in SignalTap. It is implied that SignalTap is always sampling at
this clock frequency, data is capturedwhen one ormore trigger conditions aremet.
According to the Nyquist-Shannon sampling theorem [12], to avoid aliasing, the
sampling clock frequency needs to be at least twice the highest clock frequency3

in the system. In our project, the fastest clock has a frequency of 100MHz. Hence
we need a sampling clock with a frequency of at least 200MHz, we will use a
300MHz clock.

2. The Trigger source starts capturing data, based on trigger condition(s). In the case
of our simple project, we will trigger on the start button.

3. The Buffer specifies the size of on-chip FPGA memory for data storage. We will
use a buffer size of 4K. The sampling frequency, buffer size and number of signals
that we monitor determine the amount of time for which data can be stored.

Please refer to the online video on the companion website: http://www.harpgroup.
org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-Exper

3Although chaotic systems are mathematically not band-limited, “most” of the chaos is practically
band-limited due to the underlying sampling period of the numerical method. Hence a good rule of
thumb is to choose the sampling clock frequency to be twice the frequency underlying the numerical
method.

http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/SignalTapDemo/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/SignalTapDemo/

3.5 Debugging Using SignalTap 67

Fig. 3.16 Results from the SignalTap session. Notice how the 100MHz clock has twice the
frequency of the 50MHz clock. Since we are not using a global reset, the signals are not syn-
chronized

imentalObservations/chapter3/SignalTapDemo/. However the result that we should
obtain via SignalTap is shown in Fig. 3.16.

3.5.2 Debugging the Chen System Using SignalTap

For understanding how to use SignalTap to debug the Chen system, please refer to the
online video and reference design on the companion website: http://www.harpgroup.
org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-Exper
imentalObservations/chapter3/chenSystem/ to understand how to debug the Chen
system using SignalTap.

3.6 Hardware Debugging Concepts

Before we conclude this chapter, it would be instructive to discuss some general
hardware debugging ideas [1] since the designs that we are going to specify using
VHDL are quite complex. We have also discussed debugging via simulation and an
in-system logic analyzer in this chapter, so this would be an appropriate place in the
book to summarize some engineering debugging ideas. Most of this section has been
paraphrased from Altera’s online documentation for debugging hardware. If you are
using an FPGA from a different manufacturer, you should consult the manufacturer’s
debugging documentation for additional tips. However this section is quite general
and should apply to debugging hardware, irrespective of the FPGA manufacturer.

Debugging of complex logic circuits can be difficult. The task is made easier if
one uses an organized approach with the aid of debugging tools. The debugging task
involves:

1. Observing that there is a problem
2. Identifying the source of the problem
3. Determining the design changes that have to be made
4. Changing and re-implementing the design
5. Testing the corrected design

http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/SignalTapDemo/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/chenSystem/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/chenSystem/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/chenSystem/

68 3 Chaotic ODEs: FPGA Examples

3.6.1 Observing a Problem

Often it is easy to see that there is a problem because hardware functionality does
not match the designer’s expectations in an obvious way. For example, the graphical
image displayed by the RTL Viewer may indicate that there are missing logic blocks
and/or connections. It is usually a good idea to check at least the top-level of our
design. Consider the RTL view in Fig. 3.17.

Notice that there is no output from the block hundredth_sec. The probable reason
is that the outputs of this module are not being used as inputs anywhere else in the
design. Hence the Compiler decided to omit all output signals from this module.
Making this observation via the RTL view would solve the problem.

As another example, suppose the designer assumes erroneously the labeling of
the elements of a VHDL std_logic_vector. Consider for instance the labeling of the
segments for a seven segment display. Compiling, synthesizing and programming
the FPGA would result in a circuit that seems to respond properly to pressing of
input keys, but generates a strange looking output on the seven segment displays.
Observing this behavior, the designermay suspect that there is somethingwrongwith
the decoder itself. A simple test is to use ModelSim or the SignalTap logic analyzer
to ensure that the outputs of the decoder are in the correct order.

A complex design may be difficult to debug. The implementation may appear to
contain all necessary components, it may appear to function properly, but the results
it produces do not exhibit the expected behavior. In such cases, the first task is to
correctly identify the source of the problem.

Fig. 3.17 The erroneous circuit displayed by the RTL Viewer

3.6 Hardware Debugging Concepts 69

3.6.2 Identifying the Problem

Designer’s intuition (which improves greatly with experience) may suggest some
tests that could be tried. Otherwise, it is necessary to adopt an organized procedure.
A golden rule is to first test small portions of the circuit, which should be easy to do
if the circuit is designed in a modular fashion. This is referred to as the divide-and-
conquer approach.

In this book, you should have noticed that we do emphasize themodular approach.
Specifically, the top-level of our design in the RTL Viewer should show only blocks
and tri-state buffers. For instance, consider the DE2 Chaos Engine that implements a
variety of chaotic systems, found online: http://www.harpgroup.org/muthuswamy/
ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservatio
ns/DE2ChaosEngine.zip.

The Compilation Report for the design in Fig. 3.18 is shown in Fig. 3.19.
Notice how themodular top-level has abstracted away a quite complicated design.

Moreover, the modular approach allows a designer to compile, simulate and test each
module on its own.We have also been emphasizing this approach whenwe simulated
the discrete Euler method in MATLAB before FPGA specification.

Fig. 3.18 Top-level RTL view of the DE2 chaos engine that implements seven chaotic systems:
Lorenz, Rössler, Highly Complex Attractor, Chen, Ikeda Delay Differential Equation, Chua oscil-
lator and Torus Breakdown

http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/DE2ChaosEngine.zip
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/DE2ChaosEngine.zip
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/DE2ChaosEngine.zip

70 3 Chaotic ODEs: FPGA Examples

Fig. 3.19 Compilation report for the DE2 chaos engine. It took 45min to assemble a programmable
file on Dr. Muthuswamy’s Windows 7 emulator under Parallels Desktop

3.6.3 Sources of Errors in VHDL Designs

TheQuartus IICompiler can detectmany errors inVHDLfiles that specify a given cir-
cuit. Typical errors include incorrect syntax, undeclared inputs or outputs, improper
use of signals and incorrect sizes of vectors. The compiler stops compilation and
displays an error message. Such errors are usually easy to find and correct. It is much
more difficult to find errors in a design that appears to be correctly specified but the
specification does not result in hardware that the designer hoped to achieve. In this
subsection, we will consider some typical errors of this type:

1. Inadvertent creation of latches
2. Omission of signals
3. Not assigning a value to a wire
4. Assigning a value to a wire more than once
5. Incorrect specification of port map signals
6. Incorrect definition of signal vector
7. Incorrectly specified FSM (e.g. wrong or invalid next state)
8. Incorrect timing where the output signal of a given subsystem is off by one clock

cycle
9. Careless use of clocks

Inadvertent latches are created by the Compiler if the designer fails to specify the
action needed for all cases in constructs. Latches can also be inferred by the Compiler
if the designer forgets to register input(s) on clock edges.

3.6 Hardware Debugging Concepts 71

If the designer fails to use some signals in a VHDL file, the Compiler will ignore
these signals completely and may even omit circuitry associated with these signals.
Failure to include the begin and end delimiters in a multi-statement process block
will cause only one statement to be considered valid. Careful use of blocking and
nonblocking assignments is essential. It is dangerous, and not advisable, to use both
types of assignments in the same process block. To describe a combinational circuit
in a process construct, it is best to use blocking assignments. For sequential circuits,
it is best to use nonblocking assignments.

Errors in the specification of an FSM may lead to a variety of undesirable con-
sequences. They can cause wrong functional behavior by reaching wrong states, as
well as wrong timing behavior by producing incorrect output signals. A common
error results in an output signal that is off by one clock cycle.

It is particularly important to use clocks carefully. We already discussed in
Sect. 2.3.2.4 the implications of having a single synchronous clock. If we have to
utilize different clock frequencies for interfacing to external components, it is best
to use PLL(s).

Inadequate understanding of the board can lead to design errors. Typical examples
include:

1. Wrong pin assignment
2. Wrong interpretation of the polarity of pushbutton keys and toggle switches
3. Timing issues when accessing various chips on the board, such as SDRAM

memory

If pins are not assigned correctly, the design will not exhibit desired behavior. The
Quartus II compiler causes all unused pins to be driven to ground by default. The
easiest way of ensuring that the pins are correctly assigned for the board is to import
the (usual) manufacturer provided pin assignment file. If the design involves access
to external peripherals (particularly memory like SDRAM), it is necessary to adhere
to strict timing requirements by utilizing the peripheral’s data sheet.

3.6.4 Design Procedure

It is prudent to follow a systematic design procedure that tends to minimize the
number of design errors and simplifies the debugging tasks.Here are final suggestions
that are likely to help:

1. Design the system in a modular, hierarchical manner.
2. Use well-understood and commonly-used constructs to define circuits.
3. Test each module, by simulating it, before it is incorporated into a larger system.
4. Define and test portions of the final design by connecting two or more modules.
5. If possible, simulate the full design.

http://dx.doi.org/10.1007/978-3-319-18105-9_2

72 3 Chaotic ODEs: FPGA Examples

It is vital that we write VHDL in a style that allows one to easily visualize the
hardware specified by the code. It is also useful to make the resulting VHDL easily
understandable for others.

3.7 Another Example—A Highly Complex Attractor System

In Sect. 3.2.1, we realized the classic Lorenz system. In this section, we will realize a
system that will show the robustness of using DSP builder. Consider the Eqs. (3.10),
(3.11) and (3.12) [10].

ẋ = y − x (3.10)

ẏ = − tanh(x)z (3.11)

ż = −R + xy + |y| (3.12)

R = 60 in Eq. (3.12) and initial conditions are (1, 1, 1). The robustness of DSP
builder will be evident when we are able to realize the hyperbolic tangent function in
Eq. (3.11). What makes this system interesting is the fact that as of 2013, this system
has the largest Lyapunov dimension of 2.3 (for a dissipative chaotic system) [10]. In
this section, we will first simulate and then realize this system on the FPGA.

Figures3.20 and 3.21 show a portion of the Simulink block diagram and x(t) from
the simulation result respectively.

Notice that due to the large Lyapunov dimension, our simulation parameters
need to closely match our implementation sampling frequency and dt . The step size
used in simulation implies large amounts of memory (we generate 40000001 x, y, z

Fig. 3.20 A screenshot of the Simulink discrete Euler realization of the highly complex
attractor system. You can download Simulink design from the companion website: http://
www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-
ExperimentalObservations/chapter3/highlyComplexAttractor/

http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/highlyComplexAttractor/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/highlyComplexAttractor/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/highlyComplexAttractor/

3.7 Another Example—A Highly Complex Attractor System 73

Fig. 3.21 x(t) from the highly complex attractor system.Notice how the large Lyapunov dimension
affects our simulation in the sense we need a large simulation time step to save memory

values). One solution to overcome the memory issue is to run a hardware functional
simulation.4

Example 3.1 Implement tanh(x) in DSP Builder Advanced blockset

Solution: Upon examining the ModelPrim blocks, we will notice that we do
not have a hyperbolic tangent function. Nevertheless, using first principles, we
get:

tanh(x) = sinh(x)

cosh(x)
(3.13)

= 0.5(ex − e−x)

0.5(ex + e−x)
(3.14)

= e2x − 1

e2x + 1
(3.15)

4We could also reduce simulation step size and K in the Simulink simulation but you will notice
our results will not match with the physical realization (when compared with the Lorenz system)
because of the large Lyapunov dimension. Turns out our choices for sampling frequency and dt are
sufficient to simulate the system accurately. But before we look at the physical realization, we need
to address the issue of specifying the hyperbolic tangent function in DSP builder.

74 3 Chaotic ODEs: FPGA Examples

In the ModelPrim blocks, we do have exponential functions. Hence, we will
implement Eq. (3.15) in DSP Builder.

Figures3.22, 3.23, 3.24, 3.25 and 3.26 show physical realization results. The
VHDL specification is in listing D.5. We have however not recorded videos since the
concepts are analogous to the Lorenz system.You can however download theQuartus
project that incorporates the Lorenz system and the highly complex attractor system5

from the companionwebsite: http://www.harpgroup.org/muthuswamy/ARouteToCh
aosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/.
We have not synthesized the Quartus project since the fully synthesized project
size is approximately 90MB.

Fig. 3.22 Time domain waveform from the highly complex attractor system

5There are other chaotic systems in the zipped Quartus project that we will utilize later in the book.

http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter3/

3.7 Another Example—A Highly Complex Attractor System 75

Fig. 3.23 The two other state variables from the highly complex attractor system plotted in the
time-domain

Fig. 3.24 y(t) versus x(t), 0.5 V/div scale for y and 0.2 V/div scale for x . We used the analog
Tektronix 2205 scope to capture XY waveforms because, due to the large Lyapunov dimension, the
features of the attractor in phase space were better resolved in an analog scope

76 3 Chaotic ODEs: FPGA Examples

Fig. 3.25 z(t) versus x(t), 0.5 V/div scale for z and 0.2 V/div scale for x

Fig. 3.26 z(t) versus y(t), 0.5 V/div scale for both axes

3.8 Conclusions 77

3.8 Conclusions

Below is a summary of the main concepts and steps used in this chapter:

1. We have made a design choice of specifying synchronous Euler’s method in
VHDL instead of in DSP Builder, please refer to listing D.4.

2. We should first run a discrete-time simulation of our chaotic differential equation
to identify ideal sampling frequencies and to get an idea of the maximum (mini-
mum) state variable values so we can appropriately scale the output to match the
DAC range of our audio codec.

3. We need to add both the nonlinear subsystem and nonlinear synthesizable sub-
system from our DSP builder design to our Quartus project. We also need to add
the following DSP builder libraries (from the appropriate Quartus installation
directory):

altera /12.0/ quartus/dspba/Libraries/vhdl/fpc/math_package.vhd
altera /12.0/ quartus/dspba/Libraries/vhdl/fpc/math_implementation.vhd
altera /12.0/ quartus/dspba/Libraries/vhdl/fpc/hcc_package.vhd
altera /12.0/ quartus/dspba/Libraries/vhdl/fpc/hcc_implementation.vhd
altera /12.0/ quartus/dspba/Libraries/vhdl/fpc/fpc_library_package.vhd
altera /12.0/ quartus/dspba/Libraries/vhdl/fpc/fpc_library.vhd

4. We need to add fixed point wrapper functions [5] around our DSP builder syn-
thesized subsystem so that we can use the audio codec controller, please refer to
listing D.4. Note that the number of bits for the fixed point integer and decimal
part will vary with the chaotic system.

5. AModelSim simulation of our chaotic system is used to confirm the functionality
of our digital design. Since the discrete Euler’s method in Simulink cannot take
into account our entire digital system (including the i2c protocol for the audio
codec), a ModelSim simulation is a must.

6. A test bench should be utilized to test the different sub-components of our design.
Test benches are not synthesizable, so any VHDL constructs can be used.

7. In-systemdebugging provides an alternative to timing intensive simulation.More-
over, we are debugging the design as it is executing on the FPGA.

8. Debugging is both an art and a science. But remember this quote from Einsten
while debugging: “Insanity: doing the same thing over and over again but expect-
ing different results”.

We now have the necessary FPGA knowledge to study a very important concept
that is central to the formation of a chaotic attractor-bifurcations. This is the subject
of Chap.4.

Problems

3.1 Experiment with the sampling frequency and fixed point representation for the
highly complex attractor system.

http://dx.doi.org/10.1007/978-3-319-18105-9_4

78 3 Chaotic ODEs: FPGA Examples

3.2 Reconsider the Chua system (Eqs. 1.82, 1.83 and 1.84), repeated below for con-
venience.

ẋ = α[y − x − m1x − 1

2
(m0 − m1) (|x + 1| − |x − 1|)] (3.16)

ẏ = x − y + z (3.17)

ż = −βy (3.18)

m0, m1, α, β ∈ R are parameters of the system. Use m0 = −8
7 , m1 = −5

7 ,

α = 15.6, β = 25.58 to perform a discrete simulation and then realize the sys-
tem on the FPGA.

3.3 Simulate and implement Sprott’s jerky chaotic system shown in Eqs. (3.19),
(3.20) and (3.21).

ẋ = −2y (3.19)

ẏ = x + z2 (3.20)

ż = 1 + y − 2z (3.21)

3.4 Simulate and implement the Rössler system in Eqs. (3.22), (3.23) and (3.24).

ẋ = −y − z (3.22)

ẏ = x + αy (3.23)

ż = β + z(x − γ) (3.24)

α, β, γ ∈ R are parameters of the system. Use α = 0.1, β = 0.1, γ = 14.

3.5 Simulate and implement the hyperchaotic Lü system [3] in Eqs. (3.25), (3.26),
(3.27) and (3.28).

ẋ = a(y − x) + u (3.25)

ẏ = −xz + cy (3.26)

ż = xy − bz (3.27)

u̇ = xz + du (3.28)

Parameter values are: a = 36, b = 3, c = 20, d = 1.3. Initial conditions are
(1, 2, 3, 4). Note that sincewe have a four-dimensional system and for the parameters
chosen we have a value of hyperchaos. When we realize this system on the FPGA,
we have to make sure that we output all four state variables via the DAC on the audio
codec.

3.6 We could make a refinement on the simple forward-Euler numerical method for
solving chaotic differential equations by considering the fourth-order RK method
shown in Eqs. (3.29)–(3.33) [11].

http://dx.doi.org/10.1007/978-3-319-18105-9_1
http://dx.doi.org/10.1007/978-3-319-18105-9_1
http://dx.doi.org/10.1007/978-3-319-18105-9_1

Problems 79

k1 = F(xt)δt (3.29)

k2 = F
(

xt + k1

2

)

δt (3.30)

k3 = F
(

xt + k2

2

)

δt (3.31)

k4 = F (xt + k3) δt (3.32)

xt+δt = xt + k1

6
+ k2

3
+ k3

3
+ k4

6
(3.33)

ImplementEqs. (3.29)–(3.33) on theFPGA.Amaximumstep size of δt = 0.1 ismore
than adequate for most cases because the natural period of oscillation is typically less
than 1 rad per second when the parameters are of order unity, and thus there is the
order of 2π

δt ≈ 63 iterations per cycle [11]. Using this idea, determine an appropriate
step size (�t) and sampling count for the FPGA realization. Test your algorithm by
implementing the circulant chaotic system [11] on the FPGA.

ẋ = −ax + by − y3 (3.34)

ẏ = −ay + bz − z3 (3.35)

ż = −az + bx − x3 (3.36)

Parameters are: a = 1, b = 4. Initial conditions are (0.4, 0, 0). Note that the online
reference design for this chapter has an Euler’s method realization of the circulant
chaotic system. Compare your RK realization to the Euler realization.

3.7 Perform a functional simulation of the simple combinational logic design from
Sect. 2.3.2.1 (listing 2.1). Note that although a functional simulation is “overkill” for
this design, this problem should help you understand the nuances of ModelSim by
using a very simple example for simulation.

3.8 Perform a functional simulation of the generic n-bit ripple carry adder from
Sect. 2.3.2.3.

3.9 Perform a functional simulation of the i2c design from Sect. 2.3.3.

3.10 Design and verify the SignalTap waveforms for the PLL based design in
Sect. 3.5.1. Also add a global asynchronous reset.

Lab 3 : ModelSim Simulation, In-System Debugging and
Physical Realization of the Muthuswamy-Chua System

Objective: Simulate and physically realize theMuthuswamy-Chua [6, 8, 13] system.

http://dx.doi.org/10.1007/978-3-319-18105-9_2
http://dx.doi.org/10.1007/978-3-319-18105-9_2
http://dx.doi.org/10.1007/978-3-319-18105-9_2
http://dx.doi.org/10.1007/978-3-319-18105-9_2

80 3 Chaotic ODEs: FPGA Examples

Theory: The Muthuswamy-Chua system models a linear inductor, linear capacitor
and memristor in series (or parallel). In this book, we will use the original series
version whose system equations are Eqs. (3.37)–(3.39) [8].

v̇C = iL

C
(3.37)

i̇L = −1

L
(vC + R(z)iL) (3.38)

ż = f (z, iL) (3.39)

Lab Exercise:

Simulate, verify using SignalTap and hence implement Eqs. (3.37)–(3.39) for the
following parameters and functions: C = 1, L = 3, R(z) = β(z2 − 1), f (z, iL) =
−iL − αz + ziL , β = 1.5, α = 0.6. Initial conditions are: (0.1, 0, 0.1). For the
simulation, please check the output from the audio codec controller as well. This
will help you determine if the left-channel and right-channel DAC registers use the
entire range of values reserved for 16-bit 2’s complement.

References

1. Altera Corporation (2014) Debugging of VHDL Hardware Designs on Altera’s DE-Series
Boards. ftp://ftp.altera.com/up/pub/Altera_Material/13.0/Tutorials/VHDL/Debugging_
Hardware.pdf 23 Mar 2014

2. Altera Corporation (2014) Quartus II 10.0 handbook—Design Debugging Using the SignalTap
II Logic Analyzer. http://www.altera.com/literature/hb/qts/qts_qii53009.pdf 23 Mar 2014

3. Chen A et al (2006) Generating hyperchaotic Lü attractor via state feedback control. Phys A
364:103–110

4. Chu PP (2011) Embedded SOPC design with NIOS II processor and VHDL examples. Wiley,
Hoboken

5. CornellUniversity (2013)DigitalDifferentialAnalyzer. In:ECE5760Homepage. http://people.
ece.cornell.edu/land/courses/ece5760/DDA/index.htm Accessed 13 Oct 2013

6. Llibre J, Valls C (2012) On the integrability of a Muthuswamy-Chua system. J Nonlinear Math
Phys 19(4):1250029–1250041

7. Lu J et al (2002) Local bifurcations of the Chen system. Int J Bifurc Chaos 12(10):2257–2270
8. MuthuswamyB, Chua LO (2010) Simplest chaotic circuit. Int J Bifurc Chaos 10(5):1567–1580
9. Numerical Simulation of Chaotic ODEs (2014) In: Chaos from Euler Solution of ODEs. http://

sprott.physics.wisc.edu/chaos/eulermap.htm 24 Aug 2014
10. San-Um W, Srisuchinwong B (2012) Highly complex chaotic system with piecewise linear

nonlinearity and compound structures. J Comput 7(4):1041–1047
11. Sprott JC (2010) Elegant chaos. World Scientific, New Jersey
12. VaraiyaPP,LeeEA (2002)Structure and interpretation of signals and systems.Addison-Wesley,

Boston
13. Zhang Y, Zhang X (2013) Dynamics of the Muthuswamy-Chua system. Int J Bifurc Chaos

23(8):1350136–1350143

ftp://ftp.altera.com/up/pub/Altera_Material/13.0/Tutorials/VHDL/Debugging_Hardware.pdf
ftp://ftp.altera.com/up/pub/Altera_Material/13.0/Tutorials/VHDL/Debugging_Hardware.pdf
http://www.altera.com/literature/hb/qts/qts_qii53009.pdf
http://people.ece.cornell.edu/land/courses/ece5760/DDA/index.htm
http://people.ece.cornell.edu/land/courses/ece5760/DDA/index.htm
http://sprott.physics.wisc.edu/chaos/eulermap.htm
http://sprott.physics.wisc.edu/chaos/eulermap.htm

Chapter 4
Bifurcations

FPGA realization of the torus
breakdown system [6]

Abstract This chapter will explore a variety of routes that lead to chaos in dynamical
systems, through simulation and FPGA experiments. The goal of this chapter is
simply for the reader to understand that a system is chaotic for a certain range of
parameters and there are interesting mechanisms that lead to the chaotic behavior.

4.1 The Concept of Bifurcations

Simply put, bifurcations are sudden qualitative changes in system dynamics at critical
parameter values [1]. For example, consider the Rössler system in Problem 2 from
Chap. 1.

ẋ = −y − z (4.1)

ẏ = x + αy (4.2)

ż = β + z(x − γ) (4.3)

We will first specify the system from Eqs. (4.1)–(4.3) in MATLAB. In listing E.1,
we have utilized parameterized functions so that we can pass in ODE simulation
settings and parameters. On the MATLAB command line, we can type listing E.2
to obtain a phase plot, with parameter values α = 0.1, β = 0.1 and γ = 4. In
listing E.2, we only plot a subset of our state variables to account for transient
behavior. Figure 4.1 shows the result.

© Springer International Publishing Switzerland 2015
B. Muthuswamy and S. Banerjee, A Route to Chaos Using FPGAs, Emergence,
Complexity and Computation 16, DOI 10.1007/978-3-319-18105-9_4

81

http://dx.doi.org/10.1007/978-3-319-18105-9_1

82 4 Bifurcations

−8 −6 −4 −2 0
−8

−6

−4

−2

0

2

4

6

y

x

Fig. 4.1 y versus x phase plot for the Rössler system from listings E.1 and E.2

We will now investigate the behavior of our system as we change one of the
parameters while keeping the other parameters fixed. We will use phase space to
visualize the change in system behavior, leading to chaos. This “birth” of chaos is
technically called as “route to chaos”.

Note that the question regarding the most common route to chaos is, in any but
a very select set of specific examples, still an open and poorly defined question [2].
Even analytically piecing together the types of bifurcations that can exist en route to
chaos is usually difficult.

4.2 Routes to Chaos

There are a variety of routes to chaos, in this section we will discuss some of the
more “common” types and investigate bifurcation behaviour using MATLAB. FPGA
investigation of bifurcations is covered in Sect. 4.3.

4.2.1 Period-Doubling Route to Chaos

In this route to chaos, an equilibrium point looses stability and a stable limit cycle
emerges through an Andronov-Hopf bifurcation [3]. As we continue changing the
value of a parameter, a stable limit cycle at approximately twice the period emerges,
which we will refer to as a period-2 limit cycle. As the parameter value is further
changed, the period-2 limit cycle in turn loses stability and a stable period-4 limit

4.2 Routes to Chaos 83

−20 −15 −10 −5 0
−20

−15

−10

−5

0

5

10

15

20

x

y

−20 −15 −10 −5 0 5
−20

−15

−10

−5

0

5

10

15

20

x

y

−20 −15 −10 −5 0 5
−25

−20

−15

−10

−5

0

5

10

15

20

x

y

−20 −15 −10 −5 0 5
−25

−20

−15

−10

−5

0

5

10

15

20

x

y

(a) (b)

(c) (d)

Period-3 Period-6

Chaos Higher Period

Fig. 4.2 Period-doubling route to chaos in the Rössler system. α = 0.1, β = 0.1 for all the plots
above. Bifurcation parameter value of γ (starting clockwise from top-left): Period-3—γ = 12;
Period-6—γ = 12.6; Higher Period—γ = 13.3; Chaos—γ = 14

cycle appears. This bifurcation occurs many times at ever decreasing intervals of
the parameter range which converges at a geometric rate to a limit when chaos is
observed.

Let us use the Rössler system to illustrate period-doubling. Listing E.3 gives
MATLAB code, results are shown in Fig. 4.2.

Notice that it becomes quite difficult to visually spot the period (Fig. 4.2d) as the
system tends towards chaotic behaviour.

4.2.2 Period-Adding Route to Chaos

In this route to chaos, we will have windows of consecutive periods separated by
regions of chaos [3]. In other words as the parameter is varied, we obtain a stable
period-n orbit, n = 1, 2, . . . followed by a region of chaos, then a stable period-(n+1)

orbit, followed by chaos and then a period-(n + 2) orbit and so on.

84 4 Bifurcations

Consider Chua’s oscillator equations [4] in Eqs. (4.4)–(4.6), a generalization of
the Chua system from Problem 1.7.

ẋ = α(y − g(x)) (4.4)

ẏ = x − y + z (4.5)

ż = −βy − γ z (4.6)

The nonlinear function g is given in Eq. (4.7).

g(x) = ax3 + cx (4.7)

The difference between Chua’s oscillator and Chua’s circuit is the γ z term in
Eq. (4.6). In the physical circuit realization, this term is obtained by using a resistor
in series with the inductor [4].

In order to observe period-adding route to chaos, we will fix parameters
α = 3.708, γ = 0.076, a = 1, c = −0.276. β will be varied. Listings E.4 and
E.5 show MATLAB code, results are in Fig. 4.3.

−0.8 −0.6 −0.4 −0.2 0
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

y

x

−0.8 −0.6 −0.4 −0.2 0
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

y

x

−0.8 −0.6 −0.4 −0.2 0
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

y

x

−0.8 −0.6 −0.4 −0.2 0
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

y

x

3:3 Limit Cycle Chaos after 3:3 Limit Cycle

4:4 Limit Cycle Chaos after 4:4 Limit Cycle

Fig. 4.3 Period-adding route to chaos, obtained using Chua’s oscillator. For 3:3 limit cycle
β = 3.499, for chaos after 3:3 limit cycle β = 3.708, for 4:4 limit cycle β = 3.574 and for
chaos after 4:4 limit cycle β = 3.6

http://dx.doi.org/10.1007/978-3-319-18105-9_1

4.2 Routes to Chaos 85

4.2.3 Quasi-Periodic Route to Chaos

In this route to chaos, we will have a toroidal attractor bifurcating into a chaotic
attractor [3]. The toroidal attractor is initially formed due to two incommensurate
frequencies.1 Consider the system of equations in Eqs. (4.8)–(4.10) [5].

ẋ = −α f (y − x) (4.8)

ẏ = − f (y − x) − z (4.9)

ż = βy (4.10)

The nonlinear function f is given in Eq. (4.11).

f = −ax + 1

2
(a + b) (|x + 1| − |x − 1|) (4.11)

The bifurcation sequence is shown in Fig. 4.4, the relevant code is in listings E.6
and E.7. Here, we have a two-torus, namely a quasi-periodic solution and as we
increase α further we observe that the two-torus and the periodic attractor (phase-
locking) alternatively appear and disappear many times [5]. As we continue to
increase α, the two-torus will fail to appear and we can obtain chaos through the
period-doubling, period-adding (discussed earlier) or torus-breakdown. This section
discussed torus-breakdown, the other two scenarios are left as exercises.

4.2.4 Intermittency Route to Chaos

Intermittency is the phenomenon where the signal is virtually periodic except for
some irregular (unpredictable) bursts [3]. In other words, we have intermittently
periodic behaviour and irregular aperiodic behaviour.

In this section, we will start with the physical Chua’s oscillator [3], to illustrate
the idea of dimensionless scaling.2 We will then choose a set of parameter values
such that the intermittency route to chaos is observed.

Example 4.1 Consider the circuit equations of Chua’s oscillator shown in
Eqs. (4.12)–(4.14). Scale the circuit equations into a dimensionless form suit-
able for implementation on an FPGA [6].

1Incommensurate frequencies ω1 and ω2 imply that the ratio ω1
ω2

∈ R\Q.
2Although dimensionless scaling could have been covered in Chap. 1, we delayed introducing this
concept so the reader can appreciate the idea better, once they have been well-exposed to chaos.

http://dx.doi.org/10.1007/978-3-319-18105-9_1

86 4 Bifurcations

−2.5 −2 −1.5 −1 −0.5 0 0.5
0

0.5

1

1.5

2

2.5

y

x

−2.5 −2 −1.5 −1 −0.5 0 0.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

y

x

−3 −2 −1 0 1 2 3
−2

−1

0

1

2

3

4

y

x

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

y

x

Two-torus Period-8

Period-15Chaos

Fig. 4.4 Torus-breakdown route to chaos. β = 1, a = 0.07, b = 0.1 for all the plots above.
Bifurcation parameter value of α (starting clockwise from top-left): Two-torus—α = 2.0; Period-
8—α = 8.0; Period-15—α = 8.8; Chaos—α = 15.0

v̇1 = 1

C1

(
(v2 − v1)

R
− f (v1)

)

(4.12)

v̇2 = 1

C2

(
(v1 − v2)

R
+ i3

)

(4.13)

di3

dt
= − 1

L
(v2 + R0i3) (4.14)

The piecewise-linear function f in Eq. (4.12) is given in Eq. (4.15):

f (v1) = Gbv1 + 1

2
(Ga − Gb)(|v1 + E | − |v1 − E |) (4.15)

4.2 Routes to Chaos 87

Solution: Notice we know have a piecewise linear function for the nonlinearity,
as opposed to Eq. (4.7) in Sect. 4.2.2. In order to perform dimensionless scaling,
we need to cast voltage, current and time into dimensionless form. To do so
consider the following definitions:

x
�= v1

E
, y

�= v2

E
, z

�= i3
R

E
, τ

�= t

|RC2| (4.16)

α
�= C2

C1
, β

�= R2C2

L
, γ

�= R R0C2

L
(4.17)

a
�= RGa, b

�= RGb, k = 1, if RC2 > 0, k = −1, if RC2 < 0

(4.18)

Utilizing the definitions in Eqs. (4.16)–(4.18), we get Eqs. (4.19)–(4.22).

dx

dτ
= kα (y − x − f (x)) (4.19)

dy

dτ
= k (x − y + z) (4.20)

dz

dτ
= k (−βy − γ z) (4.21)

f (x) = bx + 1

2
(a − b) (|x + 1| − |x − 1|) (4.22)

Parameter values for the intermittency route to chaos are α = −75.018755,

a = −0.98, b = −2.4, k = 1. In this case, we will have two bifurcation parameters:
β and γ . However the intermittency route to chaos is nevertheless a co-dimension
one bifurcation in the sense that the corresponding route in the parameter space is a
1-D curve [7].

Simulation code is shown in listings E.8 and E.9. Simulation result is shown
in Fig. 4.5.

4.2.5 Chaotic Transients and Crisis

Transient chaos is the mechanism by which a trajectory typically behaves chaotically
for a finite amount of time before settling into a final (usually nonchaotic state) [8].
The dynamical origin of transient chaos is known: it is due to nonattracting chaotic
saddles in phase space [8]. What is interesting about transient chaos is that we have
chaotic saddles, unlike say the Lorenz system where we have chaotic attractors. A
chaotic attractor is a bounded set that exhibits a fractal structure only in the stable

88 4 Bifurcations

Fig. 4.5 The intermittency
route to chaos. Bifurcation
parameter value for β, γ

(starting from top):
Periodic—
β = 44.803, γ = −4.480;
First chaotic intermittency—
β = 43.994721, γ =
−4.3994721; Second chaotic
intermittency—
β = 31.746032, γ =
−3.1746032; Third chaotic
intermittency—
β = 31.25, γ = −3.125

−0.3 −0.2 −0.1 0 0.1 0.2
−2

−1

0

1

2

3

y

z

740 750 760 770 780 790
−1.5

−1

−0.5

0

0.5

1

1.5

t

x

−3 −2 −1 0 1 2 3
−1.5

−1

−0.5

0

0.5

1

1.5

z

x

740 750 760 770 780 790
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t

y

−2.5 −2 −1.5 −1 −0.5 0 0.5
−1.5

−1

−0.5

0

0.5

1

1.5

z

x

740 750 760 770 780 790
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

t

y

−0.5 0 0.5 1 1.5 2 2.5
−1.5

−1

−0.5

0

0.5

1

1.5

z

x

740 750 760 770 780 790
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

y

Limit Cycle(s) Limit Cycle(s) (time-domain)

Intermittency Intermittency Chaos (time-domain)

Intermittency Intermittency Chaos (time-domain)

Intermittency Intermittency Chaos (time-domain)

direction whereas a chaotic saddle is a bounded set that exhibits a fractal structure
in both stable and unstable directions.3 Due to the fractal structure in the unstable
direction, an infinite number of gaps of all sizes exists along the unstable manifold
of the chaotic saddle. An initial condition is typically attracted toward the chaotic
saddle along the stable direction, stays in its vicinity for a finite amount of time, and
then leaves the chaotic saddle through one of the gaps in the unstable direction. It is
known that chaotic saddles and transient chaos are responsible for important physical
phenomena such as chaotic scattering and particle transport in open hydrodynamical
flows [8]. We will now consider an example of chaotic transients in a physical model,
that will lead to species extinction!

3Detailed theoretical methods to understand chaotic systems as pertaining to FPGA realizations
will be covered in Volume II.

4.2 Routes to Chaos 89

Extinction of species has been one of the biggest mysteries in nature [8]. A com-
mon belief about local extinction is that it is typically caused by external environmen-
tal factors such as sudden changes in climate. For a species of very small population
size, small random changes in population (known as “demographic stochasticity”)
can also lead to its extinction. Clearly, the question of how species extinction occurs
is extremely complex, as each species typically lives in an environment that involves
interaction with many other species (e.g., through competition for common food
sources, predator-prey interactions, etc.) as well as physical factors such as weather
and disturbances. From a mathematical point of view, a dynamical model for the pop-
ulation size of a species is complex, involving both spatial and temporal variations.
Thus such a system in general should be modeled by nonlinear partial differential
equations. An obvious difficulty associated with this approach is that the analysis
and numerical solution of such nonlinear partial differential equations present an
extremely challenging problem in mathematics.

Nonetheless, in certain situations, the problem of species extinction may become
simpler. Specifically, in this section, we will use the much simpler three dimensional
nonlinear ODEs suggested by McCann and Yodzis [8]: a resource species, a prey
(consumer) and a predator. The population densities of these three species denoted
by R, C and P for resource, consumer and predator, respectively, are governed by
Eqs. (4.23)–(4.25).

d R

dt
= R

(

1 − R

K

)

− xC yC C R

R + R0
(4.23)

dC

dt
= xC C

(
yC R

R + R0
− 1

)

− xP yP PC

C + C0
(4.24)

d P

dt
= xP P

(

−1 + yPC

C + C0

)

(4.25)

K is the resource carrying capacity and xC , yC , xP , yP , R0 and C0 are parameters
that are positive. The model carries the following biological assumptions [8]:

1. The life histories of each species involve continuous growth and overlapping
generations, with no age structure (this permits the use of differential equations)

2. The resource population (R) grows logistically
3. Each consumer species (immediate consumer C , top consumer P) without food

dies of exponentially
4. Each consumer’s feeding rate (example, xC yC R

R+R0
) saturates at high food levels

Realistic values for parameters can be derived from bioenergetics. Following [8],
we fix xC = 0.4, yC = 2.009, xP = 0.08, yP = 2.876, R0 = 0.16129, C0 = 0.5.
The resource carrying capacity, K , can be different in different environments and
hence is our bifurcation parameter.

Figure 4.6 show a chaotic attractor and a limit cycle for K < Kc ≈ 0.99976.
There is a period-doubling cascade to chaos and a crisis at K = Kc. Note that none
of the populations will become extinct for K < Kc because the chaotic attractor is

90 4 Bifurcations

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

R

C

0.1 0.15 0.2 0.25 0.3 0.35
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

R

P

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t

P

0 100 200 300 400 500
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

t

P

Limit Cycle Chaos

P time series P population decays

Fig. 4.6 Chaotic Transients and Crisis. Starting from top, clockwise: The limit cycle co-exists
with the chaotic attractor. Notice that before the onset of crisis, P time series decays. The limit
cycle and chaotic attractor were obtained by using different sets of initial conditions (for limit cycle:
(0.1, 0.2, 0.1), for chaos: (0.55, 0.35, 0.8)), but the same parameter values. After the onset of crisis,
even though P oscillates chaotically initially, the predator population eventually decays to 0

located in a phase-space region away from the origin. Initial conditions do tend to
a trajectory along the second co-existing attractor, the limit cycle. This correspond
to the situation where the top predator population becomes extinct. As the carrying
capacity increases beyond the critical value Kc, the predator population becomes
extinct for almost all initial conditions. This can be understood from dynamical
systems theory because at K = Kc a crisis occurs since the tip of the chaotic attractor
touches the basin boundary [8], after which there is transient chaos shown in Fig. 4.6.
It can be seen that P(t) remains finite initially but decreases rapidly to zero. Thus
we see that species extinction can indeed occur as a result of transient chaos.

Simulation code is in listings E.10 and E.11.

4.3 Bifurcation Experiments with an FPGA 91

4.3 Bifurcation Experiments with an FPGA

The next step is to physically study bifurcation mechanisms in chaotic systems using
FPGAs. Most development boards (including the DE2) have hardware debounced
push-buttons. These pushbuttons can be used to increment or decrement parameters.
As we discussed in Chap. 2, we have four push-buttons on the DE2 board. Since we
have used KEY(0) as global reset, we can utilize the rest of the keys for bifurcation
experiments. There are two steps involved:

1. Implement a pulse generator that accounts for latency (propagation delay)
2. Implement parameter change(s) (increment, decrement, etc.) using the appropri-

ate floating point modules (adder, subtractor, etc.).

We will illustrate both steps above using the bifurcation scenarios from Sect. 4.2.
We will also illustrate the concept of hierarchical design by using subsystems in
Simulink for implementing the various nonlinearities.

Example 4.2 Discuss why we need a pulse generator and utilize the single
pulse generator from listing C.4 as a reference design, but implement the
pulse generator as a Moore FSM.

Solution: The sampling clock period is 20 ns. But pressing and releasing any
push button has a minimum human reaction time of 1 ms. Therefore in order
to ensure that a single key press is not misinterpreted as multiple key presses,
we need a pulse generator. We will also need to account for latency associated
with floating point computation. Implementation of a pulse generator Moore
FSM that incorporates latency is shown in listing E.12.

We use a pulse that is eight clock cycles long because the latency associated
with the floating point addition or subtraction is seven clock cycles. We wait
one more clock cycle to make sure data has been correctly updated on the
rising edge of the clock for the floating point module.

Before we move on to the next example of realizing parameter increment, it is a
good idea to check our FSM functionality using ModelSim. Listing E.13 shows the
test bench, listing E.14 shows the ModelSim script file and Fig. 4.7 shows the result.

Fig. 4.7 Pulse FSM simulation in ModelSim that shows the eight clock cycle long pulse

http://dx.doi.org/10.1007/978-3-319-18105-9_2

92 4 Bifurcations

4.3.1 Period-Doubling Route to Chaos

Example 4.3 Implement the Rössler period-doubling bifurcation from
Sect. 4.2.1 on the FPGA.

Solution: Listing E.15 shows the VHDL specification. We have included the
entire design specification instead of a snippet since we want the reader to
understand the different steps involved in implementing bifurcations on the
FPGA.

The DSP builder Advanced Blockset design that uses subsystems (hierar-
chical design) is shown in Figs. 4.8, 4.9, 4.10 and 4.11.

Figure 4.12 shows the result. Compare to Fig. 4.2. Note that the bifurcation para-
meter value(s) are approximately (since we are using 32-bit floating point) equal to
those in Fig. 4.2.

Fig. 4.8 Period-Doubling system top level

4.3 Bifurcation Experiments with an FPGA 93

Fig. 4.9 Period-Doubling nonlinear subsystem

Fig. 4.10 Period-Doubling synthesizable subsystem

4.3.2 Period-Adding Route to Chaos

Example 4.4 Implement the Chua oscillator from Sect. 4.2.2 on the FPGA.

Solution: Listing E.16 shows the VHDL specification. We have again specified
the full design because there are subtle differences between VHDL specifica-
tions of the different chaotic systems. It would be instructive to understand the

94 4 Bifurcations

reason for the differences. Nevertheless, we have not implemented the bifur-
cation mechanism in this example. Exercise 4.9 asks you to implement the
period-adding route to chaos (Fig. 4.12).

The DSP builder Advanced Blockset design that uses subsystems (hierar-
chical design) is shown in Figs. 4.13, 4.14, 4.15 and 4.16.

Figure 4.17 shows the result.

Fig. 4.11 Rössler nonlinearity

Fig. 4.12 Period-doubling
route to chaos in the Rössler
system, as realized on the
FPGA. For the period-3 limit
cycle and chaotic attractor, X
and Y-axes scales are
0.5 V/div; for the period-6
limit cycle, the X-axis scale
is 0.2 V/div and the Y-axis
scale is 0.5 V/div

4.3 Bifurcation Experiments with an FPGA 95

Fig. 4.13 Period-Adding system top level

Fig. 4.14 Period-Adding nonlinear subsystem

96 4 Bifurcations

Fig. 4.15 Period-Adding synthesizable subsystem

Fig. 4.16 Period-Adding nonlinearity

4.3.3 Quasi-Periodic Route to Chaos

Example 4.5 Implement the quasi-periodic route to chaos (via torus-
breakdown) from Sect. 4.2.3 on the FPGA.

Solution: Listing E.17 shows the VHDL specification for the quasi-periodic
route to chaos. We have again left the bifurcation implementation as an exercise
for the reader in Problem 4.10.

4.3 Bifurcation Experiments with an FPGA 97

Fig. 4.17 The Chua oscillator as realized on the FPGA. Scales are 0.2 V/div on both channels

The DSP builder Advanced Blockset design that uses subsystems (hierarchical
design) is shown in Figs. 4.18, 4.19, 4.20 and 4.21.

Figure 4.22 shows the result.

Fig. 4.18 Torus-breakdown system top level

98 4 Bifurcations

Fig. 4.19 Torus-breakdown nonlinear subsystem

Fig. 4.20 Torus-breakdown synthesizable subsystem

Exercises 4.11 and 4.12 ask you to implement on the FPGA, the intermittency
route to chaos and chaotic transients from Sects. 4.2.4 and 4.2.5 respectively.

4.3 Bifurcation Experiments with an FPGA 99

Fig. 4.21 Torus-breakdown nonlinearity

Fig. 4.22 Torus-breakdown route to chaos, as realized on the FPGA. Scales are 0.5 V/div on both
channels

100 4 Bifurcations

4.4 Conclusions

In this chapter, we studied bifurcations. In particular:

1. We understood bifurcations as a change in system behaviour when a parameter
is varied.

2. We used the concept of bifurcations to study a variety of routes to chaos including
period-doubling, period-adding, quasi-periodic (torus-breakdown), intermittency
and chaotic transients.

3. We utilized single pulse generator to implement bifurcation mechanism on the
FPGA.

This chapter has only scratched the surface of bifurcation phenomenon. Entire
books have been written on this subject. The interested reader should pursue this
topic further.

So far in this book, we have learned how to implement chaotic ODEs on an FPGA.
In the concluding chapter to this volume, we will exercise the robustness of an FPGA
by realizing chaotic DDEs. FPGA realization of DDEs is possible nowadays because
of the copious amounts of on-chip memory.

Problems

4.1 Consider the Langford System, shown in Eqs. (4.26)–(4.28). These equations
can be used to describe the motion of turbulent flow in a fluid [9].

ẋ = xz − ωy (4.26)

ẏ = ωx + xy (4.27)

ż = p + z − 1

3
z3 − (x2 + y2)(1 + qx + εx) (4.28)

First, compute the equilibrium points for the system. Now consider the following
typical system parameters: p = 1.1, q = 0.7 and ε = 0.5. Investigate the route to
chaos in this system as a function of parameter ω. In other words, obtain a bifurcation
diagram. Implement your design on the FPGA.

4.2 Investigate the route(s) to chaos in the Lorenz system.

4.3 Read [5] and obtain the period-doubling route to chaos in Eqs. (4.8)–(4.10)

4.4 Repeat Problem 4.3 but for the period-adding route.

4.5 Parameterize the pulseFSM in listing E.12 using generics. This will allow us to
utilize the pulseFSM for other modules that require different delays.

Problems 101

4.6 We can also examine limit cycles with high periods (such as period-16) on the
FPGA as opposed to an analog realization, due to noise immunity on the FPGA. Try
to obtain high period limit cycles in any of the system(s) (say Rössler system) from
this chapter.

4.7 Perform an In-system verification using SignalTap, of the period-doubling route
to chaos for the Rössler system.

4.8 Investigate the route to chaos as a function of parameterκ , in the optically injected
laser system in Eqs. (4.29)–(4.31) [10]. Use α = 2.5, β = 0.015, Γ = 0.05, ω = 2.

ẋ1 = κ + x1x3

2
− α

2
x2x3 + ωx2 (4.29)

ẋ2 = −ωx1 + α

2
x1x3 + x2x3

2
(4.30)

ẋ3 = −2Γ x3 − (1 + 2βx3)(x2
1 + x2

2 − 1) (4.31)

4.9 Following Example 4.3, implement the period-adding route to chaos Sect. 4.2.1.

4.10 Following Example 4.3, implement the quasi-periodic route to chaos
Sect. 4.3.3.

4.11 Design and implement on the FPGA, the intermittency route to chaos from
Sect. 4.2.4,

4.12 Design and implement on the FPGA, chaotic transients from Sect. 4.2.5.

Lab 4: Displaying Bifurcation Parameter(s) on the LCD

Objective: Implement a display module for bifurcation parameter(s).

Lab Exercise:

You should have realized from the design(s) in this chapter that simply pressing the
key and mentally keeping track of the increment or decrement of the bifurcation para-
meter is cumbersome. Hence, utilize the solution from Lab 2 to display the current
value of the bifurcation parameter on the LCD display. You can of course display
any additional information or even interface to an external monitor using VGA.

http://dx.doi.org/10.1007/978-3-319-18105-9_2

102 4 Bifurcations

References

1. Lakshmanan M, Rajasekar S (2003) Nonlinear dynamics—integrability, chaos and patterns.
Springer, Berlin

2. Albers DJ, Sprott JC (2006) Routes to chaos in high-dimensional dynamical systems: a quali-
tative numerical study. Phys D 223:194–207

3. Chua LO, Wah CW, Huang A, Zhong G (1993) A universal circuit for studying and generating
chaos—part I: routes to chaos. IEEE Trans Circuits Syst 40(10):732–744

4. Ambelang S (2011) Four routes to chaos: Chua’s oscillator with a cubic nonlinearity. Final
project report, EE4060 Spring 2011. Electrical Engineering and Computer Sciences Depart-
ment, Milwaukee School of Engineering

5. Matsumoto T, Chua LO, Tokunaga R (1987) Chaos via torus breakdown. IEEE Trans Circuits
Syst CAS 34(3):240–253

6. Pivka L, Wu CW, Huang A (1994) Chua’s oscillator: a compendium of chaotic phenomena. J
Frankl Inst 331(6):705–741

7. Kevorkian P (1993) Snapshots of dynamical evolution of attractors from Chua’s oscillator.
IEEE Trans Circuits Syst—I: Fundam Theory Appl 40(10):762–780

8. Dhamala M, Lai Y-C (1999) Controlling transient chaos in deterministic flows with applications
to electrical power systems and ecology. Phys Rev E 59(2):1646–1655

9. Buscarino A et al (2014) A concise guide to chaotic electronic circuits. Springer, Berlin
10. Banerjee S, Saha P, Chowdhury AR (2004) Optically injected laser system: characterization

of chaos, bifurcation and control. Chaos 14(2):347–357

Chapter 5
Chaotic DDEs: FPGA Examples
and Synchronization Applications

Valli et al. Synchronization in Coupled
Ikeda Delay Systems: Experimental

Observations using FPGAs [7]

Abstract This chapter explores particular advantage(s) of FPGAs for investigating
nonlinear dynamics—realization of time delayed chaotic systems. These advantages
are the availability of on-chip memory and the fact that generate statements in VHDL
can be used to elegantly implement arbitrary (limited by on-chip memory and the
number of FPGA logic elements) length delay chains. We will also explore synchro-
nization applications in chaotic DDEs using the FPGA.

5.1 An Introduction to Time Delay Systems

Timedelay is inherent inmanyphysical systems and could be caused by (for example)
lag between the sensing of disturbance and the triggering of an appropriate response
[1, 4, 7]. Differential equations can be used to model time-delay systems and the
general model that we will use in this chapter [5] is given in Eq. (5.1).

ẋ = f(t, x(t), x(t − τi)) (5.1)

In Eq. (5.1), x
�= (x1(t), x2(t), . . . , xn(t))T and τi > 0, i = 1, 2, . . . , n are lag

times or delay times. f is a vector valued continuous function.

© Springer International Publishing Switzerland 2015
B. Muthuswamy and S. Banerjee, A Route to Chaos Using FPGAs, Emergence,
Complexity and Computation 16, DOI 10.1007/978-3-319-18105-9_5

103

104 5 Chaotic DDEs: FPGA Examples and Synchronization Applications

We will utilize the forward-Euler’s method (recall Sect. 3.1) for specifying the
DDE, refer to Eq. (5.2).

x(t + δt) = x(t) + f(x(t), x(t − Ni))�t (5.2)

In Eq. (5.2), we have slightly abused our notation and have used continuous time t
whereas the equation is actually discrete. Nevertheless, the advantage of an FPGA
becomes apparent when realizing the delay(s) Ni . But let us first simulate DDEs in
Simulink.

5.2 Simulating DDEs in Simulink

A general simulation block diagram is shown in Fig. 5.1. Example 5.1 shows how to
adapt the block diagram in Fig. 5.1 to a particular chaotic DDE.

Example 5.1 Simulate the Ikeda DDE [3] in Simulink.

ẋ = μ sin(x(t − τ)) − αx(t) (5.3)

μ = 6, τ = 1, α = 1.

Solution: Fig. 5.2 shows the Ikeda DDE simulation block diagram. Phase plot
is shown in Fig. 5.3.

Figure5.1 implies that DDEs can be realized on an FPGA quite easily, once the
delay has been specified. The subject of FPGA realization is the topic of the next
section.

x
f(x, x(t−Ni))

z−Ni

KTs

z−1
ẋ

Fig. 5.1 Simulating a DDE in simulink, block diagram adopted from [7]. We utilize the discrete-
time integrator but inherit the sample time from the fixed-point simulation period

http://dx.doi.org/10.1007/978-3-319-18105-9_3

5.3 FPGA Realization of DDEs 105

Fig. 5.2 Simulink block diagram for simulating the Ikeda DDE. Fixed-step Euler’s method was
used with a step size 0.001

Fig. 5.3 Ikeda DDE
simulation result. y-axis is
x(t − 1), x-axis is x(t)

5.3 FPGA Realization of DDEs

In order to implement the delay on an FPGA, we will need the definition in
Eq. (5.4) [5].

�t
�= τi

Ni − 1
(5.4)

Based on Eq. (5.4), we can utilize the for statement (refer to listing C.1) to let the
synthesizer infer the number of flip-flops required for the delay.

Line 22 in listing F.2 declares the internal delay lines to be 32 bits wide. However,
we need an array of these internal delay lines and hence we have declared it as
“memory”. Thus, we are specifying a tapped delay line in VHDL.

Figure5.4 is the block diagram for FPGA realization of DDEs.

106 5 Chaotic DDEs: FPGA Examples and Synchronization Applications

reset

reset

Clock
Divider

X

D

reset
reset

reset

reset

fEuler = 1
δt

Q+f(x(t),x(t−Ni))

Δt

xNNew

xN

Global
clock

clockGlobal

x(t−Ni)

Fig. 5.4 Hardware block diagram for specifying DDEs, using forward-Euler method [7]. Note that
one could specify more advanced integration methods such as Runge-Kutta. The block diagram
utilizes a combination of DSP builder advanced block set (blocks highlighted in grey) and VHDL.
The shift register is obviously unnecessary for non-delay systems and thus the block diagram
specifies how we can implement nonlinear ODEs on FPGAs

We can infer from Fig. 5.4 that the onlymodification to our already existing FPGA
realization of chaotic systems (starting from Chap.3) is the delay realization using
VHDL from listing F.1 and F.2. In Fig. 5.4, the clock divider block is configured to
divide the global clock (usually obtained from the FPGAboard clock) so propagation
delays associated with the various sub-modules (such as the shift register) can be
accommodated. Hence the clock divider output clock (with frequency fEuler = 1

δt)
is used as clock input for the shift register and the D flip-flop synchronizer. Since the
overall design is synchronous, all sequential logic components have a well-defined
reset state. xN (x(t + δt)) and x(t − Ni) also serve as inputs to the audio codec DAC.

We will now discuss examples of FPGA realization of DDEs.

Example 5.2 Implement the Ikeda DDE from Example 5.2 on the DE2.

Solution: In order to implement the Ikeda DDE, we will simply utilize the D
flip-flop (with async reset) and the addressable shift register from listings F.1
and F.2 resp. Listing F.3 shows the complete VHDL Ikeda module.

Please refer to the online video and reference design on the companion web-
site: http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/Refere
nceDesigns/volumeI-ExperimentalObservations/chapter5/ikedaDDE/ for further
details on the Ikeda DDE. Nevertheless, we have shown all the DSP builder sub-
systems (similar to Chap.4) in Figs. 5.5, 5.6, 5.7 and 5.8.

http://dx.doi.org/10.1007/978-3-319-18105-9_3
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter5/ikedaDDE/
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ReferenceDesigns/volumeI-ExperimentalObservations/chapter5/ikedaDDE/
http://dx.doi.org/10.1007/978-3-319-18105-9_4

5.3 FPGA Realization of DDEs 107

Fig. 5.5 Ikeda system top level

Fig. 5.6 Ikeda nonlinear subsystem

108 5 Chaotic DDEs: FPGA Examples and Synchronization Applications

Fig. 5.7 Ikeda synthesizable subsystem. The optional sync input can be set to zero if we are not
performing synchronization experiments

Fig. 5.8 Ikeda nonlinearity

Figure5.9 shows the result.

Example 5.3 Implement the Sigmoidal DDE in Eq. (5.5) on the FPGA.

ẋ = 2tanh(x(t − τ)) − x(t − τ) (5.5)

Use τ = 3.

5.3 FPGA Realization of DDEs 109

Solution:AlthoughDSP builder advanced blockset does not have a hyperbolic
tangent function, recall fromSect. 3.7 that the hyperbolic tangent can bewritten
in terms of exponential functions, refer to Eq. (5.6).

tanh(x) = ex − e−x

ex + e−x
(5.6)

We can thus implement the sigmoidal DDE since the exponential function is
available in DSP builder advanced blockset. Listing F.4 shows the complete
VHDL specification for the sigmoidal DDE.

Figures5.10, 5.11, 5.12 and 5.13 show the DSP builder design.
Figure5.14 shows the result.

Fig. 5.9 x(t − τ) verses x(t) for the Ikeda DDE, implemented on the DE2. Oscilloscope scales
are 0.5V/div for both axis

http://dx.doi.org/10.1007/978-3-319-18105-9_3

110 5 Chaotic DDEs: FPGA Examples and Synchronization Applications

Fig. 5.10 Sigmoid DDE DSP builder system top level

Fig. 5.11 Sigmoid DDE DSP builder nonlinear subsystem

5.3 FPGA Realization of DDEs 111

Fig. 5.12 Sigmoid DDE DSP builder synthesizable subsystem

Fig. 5.13 Sigmoid DSP builder nonlinearity

Example 5.4 Implement the Signum DDE in Eq. (5.7) on the FPGA.

ẋ = sgn(x(t − τ)) − x(t − τ) (5.7)

Use τ = 2.

Solution: Listing F.5 shows the complete VHDL specification for the signum
DDE. Note that we do not use DSP builder advanced block set for the nonlin-
earity, since it is so trivial to implement.

Figure5.15 shows the result.

112 5 Chaotic DDEs: FPGA Examples and Synchronization Applications

Fig. 5.14 x(t − τ) verses x(t) for the sigmoid DDE, implemented on the DE2. Oscilloscope scales
are 0.1V/div for X-axis and 1V/div for Y-axis

Fig. 5.15 x(t − τ) verses x(t) for the signum DDE, implemented on the DE2. Oscilloscope scales
are 0.1V/div for X-axis and 1V/div for Y-axis

5.4 Applications of (Time Delayed) Chaotic Systems—Synchronization 113

5.4 Applications of (Time Delayed) Chaotic
Systems—Synchronization

In Sect. 1.1.2, we briefly touched upon the topic of synchronization. In this section,
wewill expand upon this topic further.Wewill briefly discuss the concept of synchro-
nization first and then show examples of synchronization in chaotic DDEs. One of the
reasons why we focus on DDEs is because they are infinite dimensional [5]. Hence
they are more attractive to applications such as secure communications, compared
to chaotic systems without delay [5].

A surprising property of chaotic attractors is their susceptibility to synchroniza-
tion [8]. This refers to the tendency of two or more systems that are coupled together
to undergo closely related motions, even if the motions are chaotic. This property
is surprising because it was believed that chaotic synchronization was not feasible
because of the hallmark property of chaos: sensitive dependence on initial condi-
tions [5]. Hence chaotic systems intrinsically defy synchronization because even
two identical systems starting from very slightly different initial conditions would
evolve in time in an unsynchronized manner (the differences in state would grow
exponentially). Nevertheless it has been shown that it is possible to synchronize
chaotic systems [5, 8], to make them evolve on the same trajectory, by introducing
appropriate coupling between them due to the works of Pecora and Carroll and the
earlier works of Fujisaka and Yamada [5].

Chaos synchronization has been receiving a great deal of interest for more than
two decades in view of its potential applications in various fields of science and
engineering [5]. There are a variety of synchronization mechanisms that have been
proposed: complete or identical synchronization, phase synchronization, almost syn-
chronization, episodic synchronization—are a few [5]. A detailed discussion of syn-
chronization mechanisms is obviously beyond the scope of this chapter or this book.
We will however give an example of chaotic DDE synchronization on FPGAs using
the Ikeda DDE [7].

Complete synchronization is the simplest type of synchronization that is charac-
terized by perfect follow-up of two chaotic trajectories. Synchronization is achieved
by means of a coupling function. We consider linearly coupled Ikeda systems as the
drive and response systems, described by Eqs. (5.8) and (5.9) respectively.

ẋ = −αx + μ sin x(t − τ) (5.8)

ẏ = −αy + μ sin y(t − τ) + k(t)(x − y) (5.9)

k(t) is the coupling function between drive and response system. In the following
subsections, we illustrate complete synchronization using unidirectional and bidirec-
tional coupling via the FPGA. The parameters are taken as μ = 20, α = 5, τ = 1.
Figure5.16 shows the analog output from Eq. (5.3), with the parameters for synchro-
nization.

http://dx.doi.org/10.1007/978-3-319-18105-9_1

114 5 Chaotic DDEs: FPGA Examples and Synchronization Applications

Fig. 5.16 x(t − τ) (Y-input) verses x(t) (X-input) displayed on an oscilloscope for the Ikeda
attractor with parameters for synchronization experiments. Scales for both channels are 0.2V/div

5.4.1 Unidirectional Coupling

In unidirectional coupling, the drive system is free to evolve and the response system
is influenced by the coupling function k(t). Due to this, the dynamical evolution
of the response system is to follow the dynamics of the drive system in the course
of time. We investigated chaos synchronization in unidirectionally coupled Ikeda
systems with two types of coupling functions. In the first type, k(t) is a square wave
coupling represented by

(t0, k1), (t1, k2), (t2, k1), (t3, k2)....... (5.10)

where t j = t0 + (j − 1)τ, j ≥ 1 with k1 �= k2. It is observed that the amplitude of
the control parameter k(t) is the key factor to achieve synchronization between drive
and response, larger the amplitude quicker the convergence into synchronization,
provided that the conditional Lyapunov exponents of the response systems are all
negative. The threshold value is chosen as k1 = 0 and k2 = 50 for square wave
coupling. We also used the second type of coupling function defined in Eq. (5.11).

k(t) = −α + 2μ| cos(y(t − τ))| (5.11)

5.4 Applications of (Time Delayed) Chaotic Systems—Synchronization 115

5.4.2 Bidirectional Coupling

In bidirectional coupling, both drive and response systems are coupledwith eachother
by a coupling function k(t) that inducesmutual synchronization. For this bidirectional
coupling, the drive Eq. (5.12) and response Eq. (5.13) systems are considered as

ẋ = −αx + μ sin x(t − τ) + k(t)(y − x) (5.12)

ẏ = −αy + μ sin y(t − τ) + k(t)(x − y) (5.13)

The synchronization error is computed by e(t) = x(t) − y(t), which is the measure
for convergence of two chaotic trajectories. Figures5.17, 5.18, 5.19 and 5.20 show
results from the analog output synchronization experiment. In order to generate the

Fig. 5.17 Synchronization
error for unidirectional
square wave coupling.
Vertical scale is 200mV/div.,
horizontal scale is 200µs/div

Fig. 5.18 Synchronization
error for unidirectional
cosine function based
coupling. Vertical scale is
200mV/div., horizontal scale
is 100µs/div

116 5 Chaotic DDEs: FPGA Examples and Synchronization Applications

Fig. 5.19 Synchronization error for bidirectional square wave coupling. Vertical scale is
200mV/div., horizontal scale is 2.00µs/div

Fig. 5.20 Synchronization error for bidirectional cosine function based coupling. Vertical scale is
200mV/div., horizontal scale is 100µs/div

analog output,we simply passed x(t)−y(t) into aDACchannel. It is observed that the
synchronization is quicker in bidirectional coupling compared to the unidirectional
coupling for the same parameters.

In order to shed more light on synchronization, we have used the analog oscillo-
scope to obtainX-YplotswhereX is x(t) (drive) andY is y(t) (response). Figure5.21
first shows the X-Y plot when the drive and response systems are not synchronized.
The X-Y plots as a result of synchronization are shown in Figs. 5.22, 5.23, 5.24 and
5.25.

5.4 Applications of (Time Delayed) Chaotic Systems—Synchronization 117

Fig. 5.21 The fact that the drive and response systems are not synchronized and the outputs are
analog waveforms is an experimental evidence of “sensitive dependence on initial conditions”, one
of the hallmarks of chaotic systems. Although the FPGA Ikeda DDE drive and response systems
are both digital specifications, the output waveform is analog. Thus any noise on the analog line is
going to ensure that the drive and response systems do not have the same initial conditions and this
leads to the X-Y plot shown

Fig. 5.22 XY plot for unidirectional square wave coupling. Vertical and horizontal scales are
200mV/div

118 5 Chaotic DDEs: FPGA Examples and Synchronization Applications

Fig. 5.23 XY plot for unidirectional cosine function based coupling. Vertical and horizontal scales
are 200mV/div

Fig. 5.24 XY plot for bidirectional square wave coupling. Vertical and horizontal scales are
200mV/div

Listing F.6 shows one possible approach for implementing synchronization
schemes on an FPGA. The top level is shown in listing F.7 so that we may fully
understand the design.

5.5 Conclusions 119

Fig. 5.25 XY plot for
bidirectional cosine function
based coupling. Vertical and
horizontal scales are
200mV/div

5.5 Conclusions

In this chapter, we understood that chaotic DDEs can be realized on FPGAs using
tapped delay lines. We also studied an application of chaotic systems (on FPGAs)
to synchronization. DDEs are particularly suited for synchronization and secure
communication applications because of their infinite dimensionality.

Applications aside, we hope you had fun understanding that FPGAs are robust
physical platforms for realizing nonlinear (chaotic) ODEs. In a followup volume,
we will examine theoretical methods to rigorously understand the implications of
sampling and quantization on the underlying system behaviour.

Acknowledgments Many thanks to our colleagues at the Vellore Institute of Technology, Vel-
lore, India for working with us on the synchronization experiments. Specifically, Ph.D. candidate
Ms. Valli, Professors Ganesan and Subramanian have been extremely helpful.

Problems

5.1 Consider the Ikeda DDE:

ẋ = μ sin(x(t − τ)) − αx(t) (5.14)

μ = 6, τ = 1, α = 1.
Perform a ModelSim simulation of the system above.

120 5 Chaotic DDEs: FPGA Examples and Synchronization Applications

5.2 One approach to speed up the synthesis procedure is to minimize the number of
delays by increasing the sampling frequency of the system. Explore this approach
by increasing the sampling frequency for, say, the Ikeda system.

5.3 One of the earliest and most widely studied DDE is the Mackey-Glass equation
[6], shown in Eq. (5.15).

ẋ = ax(t − τ)

1 + x(t − τ)c
− bx(t) (5.15)

Parameters for chaos: a = 3, b = 1, c = 7, τ = 3 [6]. Implement the equation on
the FPGA.

5.4 Implement the antisymmetric piecewise-linear DDE [6], shown in Eq. (5.16) on
the FPGA. Use τ = 3.

ẋ = |x(t − τ) + 1| − |x(t − τ) − 1| − x(t − τ) (5.16)

5.5 Implement the asymmetric piecewise-linear DDE [6], shown in Eq. (5.17) on
the FPGA. Use τ = 1.8.

ẋ = x(t − τ) − 2|x(t − τ)| + 1 (5.17)

5.6 Explore the synchronization schemes discussed in Sect. 5.4 using theDDEs from
problems 5.3, 5.4 and 5.5.

5.7 Consider Eq. (5.18) [6].

ẋ = 1

τ

∫ τ

0
x(t − s)(4 − |x(t − s)|)ds (5.18)

In Eq. (5.18), the time derivative depends on the average value of a function for time
lags of xs from s = 0 to τ . Implement the equation on an FPGA, using τ = 3.

5.8 Investigate bifurcation mechanisms in any of the DDEs from this chapter.

Lab 5: The Lang-Kobayashi Chaotic Delay
Differential Equation

Objective: Simulate and physically realize the Lang-Kobayashi (L-K) chaotic
DDE [2]

d E

dt
= −(1 + iα)|E |2E + η1E(t − τ1) + η2E(t − τ2) (5.19)

Lab 5: The Lang-Kobayashi Chaotic Delay Differential Equation 121

Theory: Notice that Eq. (5.19) is in the complex domain. However we can separate
the real and imaginary parts by writing E(t) = ρ(t)eiθ(t) in Eq. (5.19) to obtain
Eqs. (5.20) and (5.21).

dρ

dt
= −ρ3 + η1ρ(t − τ1) cos(θ(t) − θ(t − τ1))

+ η2ρ(t − τ2) cos(θ(t) − θ(t − τ2)) (5.20)

ρ
dθ

dt
= −αρ3 + η1ρ(t − τ1) sin(θ(t) − θ(t − τ1))

+ η2ρ(t − τ2) sin(θ(t) − θ(t − τ2)) (5.21)

Verify that one can indeed obtain Eqs. (5.20) and (5.21) from Eq. (5.19).

Lab Exercise:

1. Simulate (using Simulink and Modelsim), verify using SignalTap and hence
implement Eqs. (5.20) and (5.21) for the following parameters α = 4, η1 =
3.5, η2 = 3, τ1 = 2.5, τ2 = 0.1.

2. Study synchronizationmechanisms in theL-KDDEusing the ideas fromSect. 5.4.

References

1. Banerjee S, Rondoni L, Mukhopadhyay S (2011) Synchronization of time delayed semiconduc-
tor lasers and its applications in digital cryptography. Opt Commun 284:4623–4634

2. Banerjee S, AriffinMRK (2013) Noise induced synchronization of time-delayed semiconductor
lasers and authentication based asymmetric encryption. Opt Laser Technol 45:435–442

3. Ikeda K, Daido H, Akimoto O (1980) Optical turbulence: chaotic behavior of transmitted light
from a ring cavity. Phys Rev Lett 45:709

4. Jeeva STS, Ariffin MRK, Banerjee S (2013) Synchronization and a secure communication
scheme using optical star network. Opt Laser Technol 54:15

5. Lakshmanan M, Senthilkumar DV (2011) Dynamics of nonlinear time-delay systems. Springer
Series in Synergetics, New York

6. Sprott, JC (2010) Elegant chaos. World Scientific
7. Valli D et al (2014) Synchronization in coupled Ikeda delay differential equations: experimental

observations using field programmable gate arrays. Eur Phys J Spec Top 223(8):1–15. doi:10.
1140/epjst/e2014-02144-8

8. Wolfson (2013) WM8731 datasheet, Available via DIALOG. http://www.wolfsonmicro.com/
products/audio_hubs/WM8731/ Accessed 4 Oct 2013

http://dx.doi.org/10.1140/epjst/e2014-02144-8
http://dx.doi.org/10.1140/epjst/e2014-02144-8
http://www.wolfsonmicro.com/products/audio_hubs/WM8731/
http://www.wolfsonmicro.com/products/audio_hubs/WM8731/

Appendix A
Introduction to MATLAB and Simulink

In this appendix, we will discuss MATLAB and Simulink. Note that we will only
cover aspects of MATLAB and Simulink that are useful for simulating nonlinear
differential equations. MATLAB is an acronym for MATrix LABoratory and is a
product of the MathWorks corporation [1]. Simulink is a graphical front end to
MATLAB. This appendix assumes you have MATLAB version 7.1 (R14) installed
(with default options). Note that any version of MATLAB later than 7.1 should work
although there may be slight differences between your version of MATLAB and the
version used in this appendix.

Note our approach is not the only procedure for simulating differential equations.
The reader is encouraged to independently explore other methods on their own.

A.1 Simulating Nonlinear Differential Equations
in MATLAB

A.1.1 Starting MATLAB

First, start MATLAB by left-clicking on the MATLAB icon . FigureA.1 should
appear. Some of the windowsmaybe disabled by default.Make sure thatWindow →
Command History and Window → Workspace are enabled. These windows
enable you to quickly retype a previous command and check MATLAB’s memory
usage respectively.

The online help system in MATLAB is extensive. If you are unfamiliar with
MATLAB, you should understand the basics ofMATLAB before proceeding further.
Press “F1” on your keyboard to bring up the MATLAB help window, a portion of
which is shown in Fig.A.2. You should go through the “Getting Started” section and
as many sections as necessary to understand MATLAB.

© Springer International Publishing Switzerland 2015
B. Muthuswamy and S. Banerjee, A Route to Chaos Using FPGAs, Emergence,
Complexity and Computation 16, DOI 10.1007/978-3-319-18105-9

123

124 Appendix A: Introduction to MATLAB and Simulink

Fig. A.1 The startup screen in MATLAB, the command prompt is indicated by “�”

Fig. A.2 The MATLAB help window

A.1.2 Simulating a One Dimensional System in MATLAB

Consider the following one dimensional dynamical system

ẋ = sin x, x(0) = π

2
(A.1)

Appendix A: Introduction to MATLAB and Simulink 125

The code required to simulate the system is shown below. The MATLAB comments
should make the code self-explanatory. Note that you should liberally comment your
code to improve readability. While labeling the plot of our solution, we have used
MATLAB’s ability to interpret LATEX commands for improved readability. For more
information, type “help latex” at the MATLAB command prompt.

1 % Lines starting with a % are comment.
2 % MATLAB code for simulating a one dimensional nonlinear
3 % dynamical system
4 % Muthuswamy, Bharathwaj
5
6 % The lines below instruct MATLAB to clear all workspace variables
7 % (or memory). It is a good idea to start your simulation from a
8 % clean MATLAB state in order to eliminate the side-effects caused
9 % by unused variables. The semicolon at the end of a line
10 % supresses echo to the MATLAB command line.
11 clear all;
12 close all;
13
14 % The line below defines our system via the "inline" MATLAB
15 % command. The first argument is our system. The second
16 % argument defines the independent variable (time) and the
17 % third argument defines the array "y" for our dependent
18 % variable. Thus y(1) = x(t).
19 sinusoidalSystem = inline('[sin(y(1))]','t','y');
20
21 % We setup tolerance options for the Ordinary Differential
22 % Equation (ODE) solver.
23 % The values below suffice for our systems.
24 options = odeset('RelTol',1e-7,'AbsTol',1e-7);
25
26 % The line below invokes the medium order ode45 solver,
27 % we will use this solver for our systems. The first argument
28 % is the system to be solved.
29 % The second argument is a matrix with start and stop times.
30 % The third argument specifies the initial conditions and
31 % the fourth argument uses the options specified previously.
32 [t,ya] = ode45(sinusoidalSystem,[0,100],[pi/2],options);
33
34 % plot the solution. The first argument to the plot
35 % command is the x-axis variable and the second argument
36 % is the y-axis variable.
37 plot(t,ya(:,1));
38
39 % Label axis with units. Then title the plot.
40 % Note that we use a Latex interpreter.
41 xlabel('t (seconds)','FontSize',14,'Interpreter','Latex');
42 ylabel('$x(t)$','FontSize',14,'Interpreter','Latex');
43 title('Solution of $\dot{x} = \sin(x),x(0)=\frac{\pi}{2}$','Interpreter','Latex');

The reader is encouraged to use script files (or M-files in MATLAB terminology)
to enter your commands so you can save them for reuse in a later MATLAB session.
To create anM-file and enter the commands above, go to File → New → M − File.
Enter the commands above and save the file as “oneDimensionalSimulation.m”. The
result is shown inFig.A.3.You can run the file by typing the filename in theMATLAB
command prompt and pressing enter.

126 Appendix A: Introduction to MATLAB and Simulink

Fig. A.3 The result of simulating our one dimensional system

We have already seen how to simulate a chaotic system in MATLAB (the Lorenz
system in Chap.1). Let us now understand how to use Simulink, the graphical front-
end to MATLAB.

A.2 Simulating Nonlinear Differential Equations
in Simulink

In this section, we will show you how to simulate nonlinear differential equations
using Simulink. This tool offers a more visual approach to the differential equation
setup.

A.2.1 Starting Simulink

First, start Simulink by left-clicking on the Simulink icon
in the MATLAB tool bar. FigureA.4 should pop up.

The Simulink library browser contains a plethora of components. We will restrict
ourselves to the Integrator block (highlighted in Fig.A.4) under the Continuous
Library and various blocks in the Math Operations, User-Defined Functions,
Sinks and Sources library.

http://dx.doi.org/10.1007/978-3-319-18105-9_1

Appendix A: Introduction to MATLAB and Simulink 127

Fig. A.4 Simulink library browser

A.2.2 Simulating a One Dimensional System in Simulink

We will simulate the system shown below.

ẋ = e−x − cos(x), x(0) = 0.1 (A.2)

First open a new model in Simulink by left-clicking File → New → Model
FigureA.5 shows the system represented in Simulink. In order to construct this

system, follow the steps below.

1. Place an Integrator block from the Continuous Library by left-clicking the
block and dragging it into your model. Double-click the block and set the initial
condition to 0.1.

2. Next place a Fcn block from the User-Defined Functions library.
3. Double-click the Fcn block and enter “exp(-u)-cos(u)”. Notice that “u” is the

input variable.
4. Drag and place a Scope block from the Sinks library.

128 Appendix A: Introduction to MATLAB and Simulink

Fig. A.5 The one dimensional system ẋ = e−x − cos(x), x(0) = 0.1 in Simulink

5. Connect all the components as shown in Fig.A.5 by left-clicking and dragging a
wire connection.

6. Double-click anywhere in the model to add comments. Make sure you add a
comment indicating the system you are simulating and also label wires, as shown
in Fig.A.5.

To simulate the system, left-click the Play button in the Simulink
toolbar. The default options are sufficient for themodels in this book.You can increase
the simulation time appropriately, for this differential equation, 10 s is sufficient.

Fig. A.6 Result of simulating our system

Appendix A: Introduction to MATLAB and Simulink 129

The result should be Fig.A.6. Note that you cannot unfortunately name the axes
and title the plot. The colors have been inverted for printing purposes.

A.2.3 Simulating a Chaotic System in Simulink

Now we will simulate the Sprott system shown below.

...
x + ẍ + x + f (ẋ) = 0 (A.3)

The nonlinear function is given by:

f (ẋ) = sign(1 + 4ẋ) (A.4)

Here sign(x) is the signum function given by:

sign(x) =
⎧
⎨

⎩

−1 when x < 0,
0 when x = 0,
1 when x > 0.

The Simulink model of our system is shown in Fig.A.7. Simulating our system
for 100s, the result should be Fig.A.8.

The Sum block can be found inMath Operations library. The Sprott Nonlinear
System is an XY Scope from the Sinks library. The initial conditions are
x(0) = −0.5, y(0) = z(0) = 0. sgn is used with the Fcn block under the User-
Defined Functions library.

Fig. A.7 Simulating the Sprott system in Simulink

130 Appendix A: Introduction to MATLAB and Simulink

Fig. A.8 Results of simulating the Sprott system

A.3 Conclusion

In this appendix we showed you how to simulate nonlinear differential equations in
MATLAB and Simulink.

The reader may have noticed that we are simulating a sensitive system on a finite
state machine (computer). How can we be even confident that our simulation is
correct? It turns out that the concept of “shadowing” can be used to justify numerical
simulation of chaotic systems.1 For more information, please refer to the upcoming
volume II on theoretical methods.

Reference

1. The Mathworks Corporation (2012) Available via DIALOG. http://www.mathworks.com.
Accessed 25 Dec 2012

1We cannot invoke the Nyquist-Shannon sampling theorem to determine a sampling frequency
since our system is not bandlimited.

http://www.mathworks.com

Appendix B
Chapter 1 MATLAB Code

B.1 The Lorenz System

Listing B.1 MATLAB code for Lorenz equations
1 % Lines starting with % are comments in MATLAB.
2 % Extensively comment your code!
3 % Purpose of this code: Obtaining phase plots and time-domain
4 % waveforms for Lorenz system.
5 %
6 % The lines below instruct MATLAB to clear all workspace
7 % variables (or memory). It is a good idea to start your
8 % simulation from a clean MATLAB state in order to eliminate
9 % the side-effects caused by unused variables. The semicolon

10 % at the end of a line will supress echo to the MATLAB command
11 % line.
12 clear all;
13 close all;
14
15 % The line below defines our system via the "inline" MATLAB
16 % command. The first argument is our system. Since our system
17 % is three dimensional, we have a 3 x 1 matrix for our system.
18 % The second argument defines the independent variable (time)
19 % and the third argument defines the array "y" for our

dependent
20 % variable. Thus y(1) = x(t),y(2) = y(t) and y(3) = z(t).
21 lorenz = inline('[-10*y(1)+10*y(2);-y(1)*y(3)+28*y(1)-y(2);y

(1)*y(2)-(8/3)*y(3)]','t','y');
22
23 % We setup tolerance options for the Ordinary Differential
24 % Equation (ODE) solver. The values below suffice for our
25 % systems.
26 options = odeset('RelTol',1e-7,'AbsTol',1e-7);
27
28 % The line below invokes the medium order ode45 solver, we

will

© Springer International Publishing Switzerland 2015
B. Muthuswamy and S. Banerjee, A Route to Chaos Using FPGAs, Emergence,
Complexity and Computation 16, DOI 10.1007/978-3-319-18105-9

131

132 Appendix B: Chapter 1 MATLAB Code

29 % use this solver for our systems. The first argument is the
30 % system to be solved. The second argument is a matrix with
31 % start and stop times. The third argument specifies the

initial
32 % conditions and the fourth argument uses the options

specified
33 % in the line above.
34 % You should use initial conditions very close to the

equilibrium
35 % points.
36 h1=figure;
37 [t,ya] = ode45(lorenz,[0,100],[10,20,30],options);
38
39 % classic view of lorenz butterfly
40 % the first argument is the x-value to be plotted
41 % the second argument is the y-value
42 plot(ya(:,1),ya(:,3));
43 % clearly label your axes!
44 xlabel('x','Interpreter','LaTeX','FontSize',32);
45 ylabel('z','Interpreter','LaTeX','FontSize',32);
46 % uncomment line below for EPS output
47 % print(h1,'-depsc','-r600','chap1Figure-LorenzAttractor2D.eps

');
48 % new figure for three dimensional plot
49 h2 = figure;
50 % plot3 is very similar to plot
51 plot3(ya(:,1),ya(:,2),ya(:,3));
52 % the view point setting below was experimentally determined

to
53 % see the best possible view of the attractor, in order to
54 % understand the sheet-like nature of the fractal. You should
55 % rotate and zoom the view in the 3D MATLAB figure to better
56 % understand the structure.
57 azimuth = -76; % degrees
58 elevation = -40; % degrees
59 view(azimuth,elevation);
60 xlabel('x','Interpreter','LaTeX','FontSize',24);
61 ylabel('y','Interpreter','LaTeX','FontSize',24);
62 zlabel('z','Interpreter','LaTeX','FontSize',24);
63 % uncomment line below for EPS output
64 % print(h2,'-depsc','-r600','chap1Figure-LorenzAttractor3D.eps

');
65 % time domain plot, not visually appealing :)
66 h3 = figure;
67 % we plot only 5000 points so we can see some features of
68 % the waveform clearly
69 % remember: MATLAB array indices start at 1.
70 plot(t(1:5000),ya([1:5000],1));
71 xlabel('t (seconds)','Interpreter','LaTeX','FontSize',24);
72 ylabel('x','Interpreter','LaTeX','FontSize',24);
73 % uncomment line below for EPS output

Appendix B: Chapter 1 MATLAB Code 133

74 % print(h3,'-depsc','-r600','chap1Figure-
LorenzAttractorTimeDomain.eps');

B.2 Linear Equation

Listing B.2 MATLAB code for plotting the graph of a straight line
1 % Purpose: plot simple linear system
2 % define range of x values (-5 to 5) and spacing (0.1) between
3 % values.
4 close all;
5 clear all;
6 x = [-5:0.1:5];
7 % define function and plot the resulting straight line.
8 y=(x/3)-1;
9 h1=figure;
10 plot(x,y)
11 xlabel('x','Interpreter','LaTeX','FontSize',24);
12 ylabel('y','Interpreter','LaTeX','FontSize',24);
13 % uncomment line below for EPS output
14 % print(h1,'-depsc','-r600','chap1Figure-MATLABStraightLinePlot.eps');

Appendix C
Chapter 2 VHDL, Simulink DSP Builder
and SDC File

C.1 VHDL Generic Full Adder

Listing C.1 VHDL full adder with generics
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 entity genericNBitFullAdder is
6 generic (bitLength : integer := 0);
7 port (
8 xInBits,yInBits : in std_logic_vector(bitLength downto 0);
9 cIn : in std_logic;

10 cOut : out std_logic;
11 sumBits : out std_logic_vector(bitLength downto 0));
12 end genericNBitFullAdder;
13
14 architecture structuralRippleCarryAdder of genericNBitFullAdder is
15 component oneBitFullAdder is port (
16 xIn,yIn,cIn : in std_logic;
17 sum,cOut : out std_logic);
18 end component;
19 signal carryInternal : std_logic_vector(bitLength+1 downto 0);
20 begin
21 -- map cIn and cOut to carryInternal!
22 carryInternal(0) <= cIn;
23 cOut <= carryInternal(bitLength+1);
24 -- Generate statement for instantiating repeated structures
25 -- p. 799 (Appendix A) in your book (Fundamentals of Digital
26 -- Logic Design with VHDL)
27 generateAdders : -- generate label
28 for i IN 0 to bitLength generate
29 nFullAdders : oneBitFullAdder
30 port map (xInBits(i),yInBits(i),carryInternal(i),sumBits(i),
31 carryInternal(i+1));
32
33 end generate;
34 end structuralRippleCarryAdder;

© Springer International Publishing Switzerland 2015
B. Muthuswamy and S. Banerjee, A Route to Chaos Using FPGAs, Emergence,
Complexity and Computation 16, DOI 10.1007/978-3-319-18105-9

135

136 Appendix C: Chapter 2 VHDL, Simulink DSP Builder and SDC File

Points to note from the VHDL description are:

1. In line 6 we have utilized the generic keyword to emphasize that, the size of
the full adder can be resolved only at synthesis time.

2. Line 19 declares internal carry signals that will be utilized to interconnect the
carry inputs and outputs of the one bit adders.

3. Lines 22 and 23map the input carry to the least significant bit of the internal carry
signal and the output carry to the most significant bit of the internal carry signal.

4. Lines 27–31 implement parameterization in VHDL via the for loop construct.
Note that you need to make sure the VHDL syntax is correct, we have added
carriage returns for code clarity.

C.2 VHDL Seven Segment Decoder

Listing C.2 VHDL behavioural seven segment decoder
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 entity sevenSegmentDecoder is port (
6 integerIn : in integer range 0 to 9;
7 hexOut : out std_logic_vector(7 downto 0));
8 end sevenSegmentDecoder;
9
10 architecture behavioral of sevenSegmentDecoder is
11 begin
12 with integerIn select
13 hexOut <= X"40" when 0,
14 X"79" when 1,
15 X"24" when 2,
16 X"30" when 3,
17 X"19" when 4,
18 X"12" when 5,
19 X"02" when 6,
20 X"78" when 7,
21 X"00" when 8,
22 X"10" when others;
23 end behavioral;

Appendix C: Chapter 2 VHDL, Simulink DSP Builder and SDC File 137

C.3 Top-Level for Generic Full Adder

Listing C.3 VHDL top level for generic adder
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 entity rippleCarryAdder is port (
6 SW : in std_logic_vector(9 downto 0);
7 HEX3,HEX2,HEX1,HEX0 : out std_logic_vector(6 downto 0);
8 -- LEDs are going to indicate carry out
9 LEDG : out std_logic_vector(7 downto 0));
10 end rippleCarryAdder;
11
12 architecture topLevel of rippleCarryAdder is
13
14 component genericNBitFullAdder is
15 generic (bitLength : integer := 0);
16 port (
17 xInBits,yInBits : in std_logic_vector(bitLength

downto 0);
18 cIn : in std_logic;
19 cOut : out std_logic;
20 sumBits : out std_logic_vector(bitLength downto 0));
21 end component;
22
23 component sevenSegmentDecoder is port (
24 integerIn : in integer range 0 to 9;
25 hexOut : out std_logic_vector(7 downto 0));
26 end component;
27
28 signal carry0 : std_logic;
29 signal sumInternal : std_logic_vector(3 downto 0);
30 signal sumInteger : integer;
31 signal unitsDigit,tensDigit : integer;
32 signal hex0Out,hex1Out : std_logic_vector(7 downto 0);
33
34 begin
35 carry0 <= '0';
36 oneBitFullAdder : genericNBitFullAdder generic map
37 (bitLength => 0)
38 port map (xInBits => SW(0 downto 0),
39 yInBits => SW(1 downto 1),
40 cIn => carry0,
41 cOut => LEDG(0),
42 sumBits => LEDG(1 downto 1));
43 fourBitFullAdder : genericNBitFullAdder generic map
44 (bitLength => 3)
45 port map (xInBits => SW(5 downto 2),
46 yInBits => SW(9 downto 6),

138 Appendix C: Chapter 2 VHDL, Simulink DSP Builder and SDC File

47 cIn => carry0,
48 cOut => LEDG(2),
49 sumBits => sumInternal(3 downto 0));
50
51 sumInteger <= to_integer(unsigned(sumInternal));
52 unitsDigit <= sumInteger rem 10;
53 tensDigit <= sumInteger / 10;
54
55 unitsDisplay : sevenSegmentDecoder port map (unitsDigit,

hex0Out);
56 tensDisplay : sevenSegmentDecoder port map (tensDigit,

hex1Out);
57 HEX0 <= hex0Out(6 downto 0);
58 HEX1 <= hex1Out(6 downto 0);
59
60 end topLevel;

1. Lines 36–47 show that we are going to realize two adders : an one bit full adder
and a four bit full adder. The important VHDL syntax nuance is: since the gener-
icNBitFullAdder module expects a std_logic_vector, we need to make sure our
one bit inputs and outputs are of type std_logic_vector, not of type std_logic.
Hence, instead of using SW(0) we use SW(0 down to 0).

2. Lines 49–51 convert the output from the four bit full adder into an unsigned integer
and thedigits from the integer are extracted for usewith the sevenSegmentDecoder
module. The online reference design video for theALU realization in Sect. 2.3.2.2
has details on extracting digits from unsigned integers.

C.4 Seconds Counter with Single Pulse Generator

Listing C.4 VHDL seconds counter
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 entity secondsCounter is port (
6 areset,clockIn : in std_logic;
7 minuteCounterEnablePulse : out std_logic;
8 secondsOut : out integer range 0 to 59);
9 end entity;
10
11 architecture behavioralSecondsCounter of secondsCounter is
12
13 type state is (reset,generatePulse,stop);
14 signal currentState,nextState : state;
15
16 signal secondsCountRegister : integer range 0 to 49999999;
17 signal internalSecondsCount : integer range 0 to 59;
18 signal enablePulseGenerator : std_logic;
19 --

http://dx.doi.org/10.1007/978-3-319-18105-9_2

Appendix C: Chapter 2 VHDL, Simulink DSP Builder and SDC File 139

20 begin
21
22 secondsCountProcess : process(areset,clockIn)
23 begin
24 if areset='1' then
25 secondsCountRegister <= 0;
26 internalSecondsCount <= 0;
27 enablePulseGenerator <= '0';
28 else
29 if rising_edge(clockIn) then
30 if secondsCountRegister >= 49999 then
31 secondsCountRegister <= 0;
32 if internalSecondsCount >= 59 then
33 internalSecondsCount <= 0;
34 enablePulseGenerator <= '1';
35 else
36 internalSecondsCount <=

internalSecondsCount + 1;
37 enablePulseGenerator <= '0';
38 end if;
39 else
40 secondsCountRegister <= secondsCountRegister

+1;
41 end if;
42
43 end if;
44 end if;
45 end process;
46
47 -- single pulse generator state machine
48 stateMemory : process(areset,clockIn)
49 begin
50 if areset='1' then
51 currentState <= reset;
52 else
53 if rising_edge(clockIn) then
54 currentState <= nextState;
55 end if;
56 end if;
57 end process;
58 stateTransitionLogic : process(enablePulseGenerator,

currentState)
59 begin
60 case currentState is
61 when reset =>
62 if enablePulseGenerator='1' then
63 nextState <= generatePulse;
64 else
65 nextState <= reset;
66 end if;
67 when generatePulse =>
68 nextState <= stop;
69 when others =>

140 Appendix C: Chapter 2 VHDL, Simulink DSP Builder and SDC File

70 if enablePulseGenerator='0' then
71 nextState <= reset;
72 else
73 nextState <= stop;
74 end if;
75 end case;
76 end process;
77 -- output logic (could put this inside state transition

logic process)
78 with currentState select
79 minuteCounterEnablePulse <= '1' when generatePulse,
80 '0' when others;
81 -- end single pulse generator FSM
82
83 --output seconds count register content for display
84 secondsOut <= internalSecondsCount;
85
86 end behavioralSecondsCounter;

Themain ideas in the snippet that correspond to each of the blocks in Fig. 2.15 are:

1. Lines 13 and 14 illustrate how to use the type specification in VHDL to specify
user-defined states. This will help the synthesizer (and simulator) infer a state
machine from your design.

2. Lines 48–57 will infer the state memory block in Fig. 2.15.
3. Lines 58–76 will infer the next state logic block in Fig. 2.15.
4. Line 78 will infer the output logic block in Fig. 2.15.

C.5 Abstracting the FPGA Development Flow in Simulink

Simulink should be the tool of choice in realizing abstract mathematical concepts.
For realizing chaotic system nonlinearities, we will utilize DSP builder blockset
for Simulink from Altera. The reference for this section is Altera’s DSP Builder
Advanced Blockset reference manual that can be found on Altera’s DSP Builder
website [1].

1. The concept behind DSP builder is to create a synthesizable subsystem that incor-
porates our mathematical abstraction. To do so, we first access the Altera DSP
Builder Advanced Blockset2 library from Simulink, as shown in Fig.C.1.

2. We create a new Simulink model and then place the Control and Signals block
from the Base Blocks library in Fig.C.1. FiguresC.2 and C.3 show the configu-
ration parameters for these blocks that will be used in a majority of the designs
in this book.

3. We next set the solver configurations as shown in Fig.C.4. The completed top
level is shown in Fig.C.5. We have created a subsystem at the top level. Within
this subsystem, we will realize the nonlinear synthesizable subsystem.

2Altera recommends the use of Advanced Blockset instead of Standard Blockset for newer designs.

http://dx.doi.org/10.1007/978-3-319-18105-9_2
http://dx.doi.org/10.1007/978-3-319-18105-9_2
http://dx.doi.org/10.1007/978-3-319-18105-9_2
http://dx.doi.org/10.1007/978-3-319-18105-9_2

Appendix C: Chapter 2 VHDL, Simulink DSP Builder and SDC File 141

Fig. C.1 The Base blocks library in the DSP Builder Advanced Blockset

Fig. C.2 In the Control block, make sure generate hardware is checked and use an absolute path
for the hardware destination directory. Turn off automatic test benches. Set both address and data
width to 16-bits

142 Appendix C: Chapter 2 VHDL, Simulink DSP Builder and SDC File

Fig. C.3 In the Signals block configuration, set the clock frequency to 50MHz. There is no need
to use a separate bus clock. Make sure the reset is active high

4. Within the nonlinear subsystem, we place a Device block from the Base Blocks
library and configure the Device block as shown in Fig.C.6. FigureC.7 shows the
subsystem from the top level that incorporates the Device Block.

5. Inside the nonlinear synthesizable subsystem fromFig.C.7, we specify our design
mathematically. In order to do this, we will use blocks from the ModelPrim
library, shown in Fig.C.8.

6. There are two main blocks that should be part of any nonlinear synthesizable
subsystem: the Convert block shown in Fig.C.9 and the SynthesisInfo block
shown in Fig.C.10.

7. We finally enable port data types as shown in Fig.C.11 as a visual debugging tool,
in case of errors.

Appendix C: Chapter 2 VHDL, Simulink DSP Builder and SDC File 143

Fig. C.4 The solver should be configured as fixed-step and with no discrete states

Fig. C.5 The top level of our design. According to DSP Builder syntax, the synthesizable portion
of our design must be specified as a subsystem within the top level

Once we run our top level in Simulink, DSP builder should generate the appro-
priate hardware in the directory specified via the Control block (Fig.C.2). Make sure
the constant input(s) from the Source library at the top level have single as the output
data type. The default is double and will generate 64-bit bus widths.

144 Appendix C: Chapter 2 VHDL, Simulink DSP Builder and SDC File

Fig. C.6 Device block configuration. We don’t have to explicitly set the Cyclone IV E part number
since we are only going to be synthesizing a subsystem, not a stand-alone Quartus project from
DSP Builder

Fig. C.7 The Device block must be placed within a subsystem, not at the top level that has the
Control and Signals blocks

Appendix C: Chapter 2 VHDL, Simulink DSP Builder and SDC File 145

Fig. C.8 The ModelPrim library from the DSP Builder Advanced Blockset

Fig. C.9 This block is used to convert inputs and outputs to single precision (32-bit) floating point

146 Appendix C: Chapter 2 VHDL, Simulink DSP Builder and SDC File

Fig. C.10 Weneed a SynthesisInfo block for controlling synthesis flow. By using the default option
of Scheduled, we let DSP builder use a pipelining and delay distribution algorithm that create fast
hardware implementations from an easily described untimed block diagram

Fig. C.11 Enable port data types helps us debug the design more easily. In our experience, the most
common error is incorrect data types. In the case of incorrect data types, functionally speaking, we
have domain and range errors

Appendix C: Chapter 2 VHDL, Simulink DSP Builder and SDC File 147

C.6 SDC File for Twenty Four Hour Clock Design

Listing C.5 Synopsys Design Constraint File
1 # STEP 1: ADD CLOCK CONSTRAINTS
2 # the constraint below assigns a 20 ns clock to the input

port
3 # CLOCK_50. Note that we use the default name (CLOCK_50)
4 # as the name of the clock. This is our board clock.
5 create_clock -name CLOCK_50 -period 20.000
6
7 # There are no virtual I/O clocks since we are not driving
8 # external devices. Moreover, because we have a SINGLE
9 # clock for our entire design, virtual clocks are un-

necessary.
10
11 # take care of PLL clocking constraints automatically.
12 # Note that this is an Altera SDC extension and this may not
13 # be available from all FPGA vendors. The create_base_clocks
14 # flag below generates create_clock constraints for PLL input
15 # clocks
16 derive_pll_clocks -create_base_clocks
17
18 # the command below automatically derives clock

uncertainities
19 # such as setup, hold etc. Results only seen after place and

route.
20 derive_clock_uncertainty
21
22 # Note that since we have a globally synchronous design
23 # (all flip-flops are being driven by the SAME PLL clock),
24 # we are DONE with clocking constraints!
25 # Once are done with clocking constraints, run TimeQuest
26 # to make sure clocks are constrainted.
27
28 # STEP 2: Add I/O constraints. We will add output constraints
29 # to the hex displays since these are actually registered

outputs,
30 # with the global 50 MHz clock.
31 # The input and output delays really don't matter for this

example.
32 # Of course, if our design is driving timing critical

external logic,
33 # then the board clock skew etc. need to be accurate.
34 set_output_delay -clock { CLOCK_50 } -max 5 [get_ports {HEX

*}]
35 set_output_delay -clock { CLOCK_50 } -min 10 [get_ports {HEX

*}]
36
37 # STEP 3: Asynchronous path(s). Since the external KEY(0)

input
38 # is truly asynchronous, we have internally synchronized the

reset.

148 Appendix C: Chapter 2 VHDL, Simulink DSP Builder and SDC File

39 # Hence, we can safely apply a false path constraint.
40 set_false_path -from [get_ports KEY*]

Reference

1. Altera Corporation (2013) DSPBuilder, Available via DIALOG. http://www.altera.com/produc
ts/software/products/dsp/dsp-builder.html. Accessed 7 May 2013

http://www.altera.com/products/software/products/dsp/dsp-builder.html
http://www.altera.com/products/software/products/dsp/dsp-builder.html

Appendix D
Chapter 3 VHDL, MATLAB Code
and ModelSim Scripts

D.1 VHDL Specification of the Lorenz System

Listing D.1 VHDL specification of the Lorenz system. We have split comments over multiple
lines so be careful when copying and pasting the HDL! Note that the specification is incomplete,
we use it to understand the ideas behind Euler’s method
1 entity lorenzSystem is port (
2 resetn, clockIn : in std_logic;
3 xOut,yOut,zOut : out std_logic_vector(15 downto 0));
4 end lorenzSystem;
5
6 architecture behavioral of lorenzSystem is
7
8 signal reset : std_logic;
9 ...

10 -- state variables
11 signal x1,x2,x3,x1New,x2New,x3New : std_logic_vector (31 downto 0)

;
12 ...
13 begin
14 reset <= not resetn;
15 -- Euler's method
16 ...
17 -- state memory
18 process(clockIn, resetn)
19 begin
20 -- constants (place outside reset and clock to avoid

latches)
21 ...
22 if resetn = '0' then
23 -- initial state
24 -- the constants below are in single-precision 32-bit

floating point format
25 -- You can use an online floating point converter such

as :
26 -- http://babbage.cs.qc.cuny.edu/IEEE-754.old/Decimal.

html

© Springer International Publishing Switzerland 2015
B. Muthuswamy and S. Banerjee, A Route to Chaos Using FPGAs, Emergence,
Complexity and Computation 16, DOI 10.1007/978-3-319-18105-9

149

150 Appendix D: Chapter 3 VHDL, MATLAB Code and ModelSim Scripts

27 -- to determine the appropriate 32-bit hexadecimal
values for the corresponding reals.

28 x1 <= X"41200000";-- 10
29 x2 <= X"41A00000";-- 20
30 x3 <= X"41F00000";-- 30
31 ...
32 else
33 if rising_edge(clockIn) then
34 ... -- appropriate state update computations go

here (will be discussed later)
35 x1 <= x1New;
36 x2 <= x2New;
37 x3 <= x3New;
38 end if;
39 end if;
40 end process;
41 ...
42 ...
43 end behavioral;

D.2 VHDL Specification of the Lorenz System
with Mathematical Labelling of Signals

Listing D.2 VHDL specification of the Lorenz system with consistent mathematical labels for the
various signals. This specification is also incomplete
1 entity lorenzSystem is port (
2 resetn, clockIn : in std_logic;
3 xOut,yOut,zOut : out std_logic_vector(15 downto 0));
4 end lorenzSystem;
5
6 architecture behavioral of lorenzSystem is
7
8 signal reset : std_logic;
9 ...
10 -- state variables
11 signal x,y,z,xNew,yNew,zNew : std_logic_vector(31 downto 0);
12 ...
13 begin
14 reset <= not resetn;
15 -- Euler's method
16 ...
17 -- state memory
18 process(clockIn, resetn)
19 begin
20 -- constants (place outside reset and clock to

avoid latches)
21 ...
22 if resetn = '0' then
23 -- initial state

Appendix D: Chapter 3 VHDL, MATLAB Code and ModelSim Scripts 151

24 -- the constants below are in single-precision
32-bit floating point format

25 -- You can use an online floating point converter
such as :

26 -- http://babbage.cs.qc.cuny.edu/IEEE-754.old/
Decimal.html

27 -- to determine the appropriate 32-bit
hexadecimal values for the corresponding
reals.

28 x <= X"41200000";-- 10
29 y <= X"41A00000";-- 20
30 z <= X"41F00000";-- 30
31 ...
32 else
33 if rising_edge(clockIn) then
34 ... -- appropriate state update computations

go here (will be discussed later)
35 x <= xNew;
36 y <= yNew;
37 z <= zNew;
38 end if;
39 end if;
40 end process;
41 ...
42 ...
43 end behavioral;

D.3 MATLAB Code for Plotting Lorenz System Trajectory
Obtained from Euler’s Method

Listing D.3 MATLAB code for plotting output from Simulink
1 >> x=xSimOut.signals.values; % extract x data from structure
2 >> t=linspace(0,1,1001);
3 >> plot(t,x')
4 >> xlabel('t');
5 >> ylabel('x(t)');
6 >> title('x(t) plot for Lorenz System');

152 Appendix D: Chapter 3 VHDL, MATLAB Code and ModelSim Scripts

D.4 Complete VHDL Specification of the Lorenz System

Listing D.4 Complete VHDL specification of the Lorenz system, incorporating both DSP builder
synthesized subsystem and Euler’s method

1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_signed.all;
4
5 entity lorenzSystem is port (
6 resetn, clockIn : in std_logic;
7 xOut,yOut,zOut : out std_logic_vector(15 downto 0));
8 end lorenzSystem;
9

10 architecture behavioral of lorenzSystem is
11
12 signal reset : std_logic;
13 -- constants
14 signal dt,output1Over10Scale,output1Over20Scale,

output1Over30Scale : std_logic_vector(31 downto 0);
15 -- state variables
16 signal x,y,z,xNew,yNew,zNew,xScaled,yScaled,zScaled,xFixed,

yFixed,zFixed : std_logic_vector(31 downto 0);
17 -- prescalar
18 signal count : integer range 0 to 64;
19
20 -- DSP builder top level.
21 -- Note: Open lorenzSystem_NonlinearSubsystem.vhd and create

component.
22 -- NOTE : SAME STEPS FOR OTHER CHAOTIC SYSTEMS!
23 component lorenzSystem_NonlinearSubsystem is
24 port (
25 In_dt : in std_logic_vector(31 downto 0);
26 In_x : in std_logic_vector(31 downto 0);
27 In_y : in std_logic_vector(31 downto 0);
28 In_z : in std_logic_vector(31 downto 0);
29 Out_x : out std_logic_vector(31 downto 0);
30 Out_y : out std_logic_vector(31 downto 0);
31 Out_z : out std_logic_vector(31 downto 0);
32 clk : in std_logic;
33 areset : in std_logic;
34 h_areset : in std_logic
35);
36 end component;
37 -- END DSP builder top level.
38
39 -- latency : 5 clock cycles (scale for DAC range)
40 component floatingPointMultiplyDedicated IS
41 PORT
42 (
43 aclr : IN STD_LOGIC ;
44 clock : IN STD_LOGIC ;
45 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);

Appendix D: Chapter 3 VHDL, MATLAB Code and ModelSim Scripts 153

46 datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
47 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
48);
49 END component;
50
51
52 -- latency : 6 clock cycles
53 component floatingPointToFixedLorenz IS
54 PORT
55 (
56 aclr : IN STD_LOGIC ;
57 clock : IN STD_LOGIC ;
58 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
59 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
60);
61 END component;
62
63 component floatingPointToFixedZLorenz IS
64 PORT
65 (
66 aclr : IN STD_LOGIC ;
67 clock : IN STD_LOGIC ;
68 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
69 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
70);
71 END component;
72
73
74 begin
75 reset <= not resetn;
76 -- Euler's method
77 -- We first synchronously update state variables at 781.250

KHz (64 counts of 50 MHz clock)
78 -- Since dt = 1/1024, time scale is actually (780.250e3/1024)

= 762 Hz (approximately)
79
80 -- state memory
81 process(clockIn, resetn)
82 begin
83 -- constants (place outside reset and clock to avoid

latches)
84 dt <= X"3A800000"; -- 1/1024
85 output1Over10Scale <= X"3DCCCCCC"; --0.1
86 output1Over20Scale <= X"3D4CCCCC"; -- 0.05
87 output1Over30Scale <= X"3D888888"; -- 0.06666 approx.
88 if resetn = '0' then
89 -- initial state
90 x <= X"41200000";-- 10
91 y <= X"41A00000";-- 20
92 z <= X"41F00000";-- 30
93 count <= 0;
94 else
95 if rising_edge(clockIn) then

154 Appendix D: Chapter 3 VHDL, MATLAB Code and ModelSim Scripts

96 if count = 64 then
97 count <= 0;
98 else
99 count <= count + 1;

100 end if;
101
102 if count = 63 then
103 x <= xNew;
104 y <= yNew;
105 z <= zNew;
106 end if;
107 end if;
108 end if;
109 end process;
110
111 staticNonlinearitiesAndDeltaT :

lorenzSystem_NonlinearSubsystem port map (
112 In_dt => dt,
113 In_x => x,
114 In_y => y,
115 In_z => z,
116 Out_x => xNew,
117 Out_y => yNew,
118 Out_z => zNew,
119 clk => clockIn,
120 areset => reset,
121 h_areset => reset);
122 -- END Euler's method
123
124 -- scale outputs
125 scaleX : floatingPointMultiplyDedicated port map (
126 aclr => reset,
127 clock => clockIn,
128 dataa => x,
129 datab => output1Over10Scale,
130 result => xScaled);
131 scaleY : floatingPointMultiplyDedicated port map (
132 aclr => reset,
133 clock => clockIn,
134 dataa => y,
135 datab => output1Over20Scale,
136 result => yScaled);
137 scaleZ : floatingPointMultiplyDedicated port map (
138 aclr => reset,
139 clock => clockIn,
140 dataa => z,
141 datab => output1Over30Scale,
142 result => zScaled);
143
144 --state outputs : convert scaled floating point x,y variables

to 2.30 fixed point for DAC
145 xOutFinal : floatingPointToFixedLorenz port map (
146 aclr => reset,

Appendix D: Chapter 3 VHDL, MATLAB Code and ModelSim Scripts 155

147 clock => clockIn,
148 dataa => xScaled,
149 result => xFixed);
150 yOutFinal : floatingPointToFixedLorenz port map (
151 aclr => reset,
152 clock => clockIn,
153 dataa => yScaled,
154 result => yFixed);
155 -- convert scaled z variable to 3.29 fixed point since z(t)

for Lorenz requires larger resolution for the
156 -- magnitude component (this should be evident from the

MATLAB and/or ModelSim simulation.
157 zOutFinal : floatingPointToFixedZLorenz port map (
158 aclr => reset,
159 clock => clockIn,
160 dataa => zScaled,
161 result => zFixed);
162
163 xOut <= xFixed(31 downto 16);
164 yOut <= yFixed(31 downto 16);
165 zOut <= zFixed(31 downto 16);
166
167 end behavioral;

D.5 Complete VHDL Specification of the Highly Complex
Attractor System

Listing D.5 Highly Complex Attractor System in VHDL
1 --04/10/13
2 --Single precision (32-bit) floating point realization
3
4 library ieee;
5 use ieee.std_logic_1164.all;
6 use ieee.std_logic_signed.all;
7
8 entity highlyComplexAttractorSystem is port (
9 resetn, clockIn : in std_logic;
10 xOut,yOut,zOut : out std_logic_vector(15 downto 0));
11 end highlyComplexAttractorSystem;
12
13 architecture behavioral of highlyComplexAttractorSystem is
14
15 signal reset : std_logic;
16 -- constants
17 signal dt,outputHalfScale,output1Over8Scale :

std_logic_vector(31 downto 0);
18 -- state variables
19 signal x,y,z,xNew,yNew,zNew,xScaled,yScaled,zScaled,xFixed,

yFixed,zFixed : std_logic_vector(31 downto 0);

156 Appendix D: Chapter 3 VHDL, MATLAB Code and ModelSim Scripts

20 -- prescalar
21 signal count : integer range 0 to 64;
22
23 -- DSP builder top level. Steps to add:
24 -- 1. source ./dspba_rtl/highlyComplexAttractor/

NonlinearSubsystem/NonlinearSubsystem.add.tcl via TCL
window (View -> Utility Windows -> TCL Console)

25 -- 2. source ./dspba_rtl/highlyComplexAttractor/
NonlinearSubsystem/
highlyComplexAttractor_NonlinearSubsystem_fpc.add.tcl
via TCL window (View -> Utility Windows -> TCL Console)

26 -- 2. Open highlyComplexAttractor_NonlinearSubsystem.vhd
from the path above and create component.

27 -- NOTE : SAME STEPS FOR OTHER CHAOTIC SYSTEMS!
28 component highlyComplexAttractor_NonlinearSubsystem is
29 port (
30 In_dt : in std_logic_vector(31 downto 0);
31 In_x : in std_logic_vector(31 downto 0);
32 In_y : in std_logic_vector(31 downto 0);
33 In_z : in std_logic_vector(31 downto 0);
34 Out_x : out std_logic_vector(31 downto 0);
35 Out_y : out std_logic_vector(31 downto 0);
36 Out_z : out std_logic_vector(31 downto 0);
37 clk : in std_logic;
38 areset : in std_logic;
39 h_areset : in std_logic);
40 end component;
41 -- END DSP builder top level.
42
43 -- latency : 5 clock cycles (scale for DAC range)
44 component floatingPointMultiplyDedicated IS
45 PORT
46 (
47 aclr : IN STD_LOGIC ;
48 clock : IN STD_LOGIC ;
49 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
50 datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
51 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
52);
53 END component;
54
55
56 -- latency : 6 clock cycles
57 component floatingPointToFixed IS
58 PORT
59 (
60 aclr : IN STD_LOGIC ;
61 clock : IN STD_LOGIC ;
62 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
63 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
64);
65 END component;
66

Appendix D: Chapter 3 VHDL, MATLAB Code and ModelSim Scripts 157

67 begin
68 reset <= not resetn;
69 -- Euler's method
70 -- We first synchronously update state variables at

781.250 KHz (64 counts of 50 MHz clock)
71 -- Since dt = 1/1024, time scale is actually (780.250e3

/1024) = 762 Hz (approximately)
72
73 -- state memory
74 process(clockIn, resetn)
75 begin
76 -- constants (place outside reset and clock to

avoid latches)
77 dt <= X"3A800000"; -- 1/1024
78 outputHalfScale <= X"3F000000"; --0.5
79 output1Over8Scale <= X"3E000000"; -- 0.125
80 if resetn = '0' then
81 -- initial state
82 x <= X"3F800000";-- 1
83 y <= X"3F800000";
84 z <= X"3F800000";
85 count <= 0;
86 else
87 if rising_edge(clockIn) then
88 if count = 64 then
89 count <= 0;
90 else
91 count <= count + 1;
92 end if;
93
94 if count = 63 then
95 x <= xNew;
96 y <= yNew;
97 z <= zNew;
98 end if;
99 end if;

100 end if;
101 end process;
102
103 staticNonlinearities :

highlyComplexAttractor_NonlinearSubsystem port map (
104 In_dt => dt,
105 In_x => x,
106 In_y => y,
107 In_z => z,
108 Out_x => xNew,
109 Out_y => yNew,
110 Out_z => zNew,
111 clk => clockIn,
112 areset => reset,
113 h_areset => reset);
114 -- END Euler's method
115

158 Appendix D: Chapter 3 VHDL, MATLAB Code and ModelSim Scripts

116 -- scale outputs
117 scaleX : floatingPointMultiplyDedicated port map (
118 aclr => reset,
119 clock => clockIn,
120 dataa => x,
121 datab => outputHalfScale,
122 result => xScaled);
123 scaleY : floatingPointMultiplyDedicated port map (
124 aclr => reset,
125 clock => clockIn,
126 dataa => y,
127 datab => outputHalfScale,
128 result => yScaled);
129 scaleZ : floatingPointMultiplyDedicated port map (
130 aclr => reset,
131 clock => clockIn,
132 dataa => z,
133 datab => output1Over8Scale,
134 result => zScaled);
135
136 --state outputs : convert scaled floating point variables

to 5.27 fixed point format DAC (no latency)
137 xOutFinal : floatingPointToFixed port map (
138 aclr => reset,
139 clock => clockIn,
140 dataa => xScaled,
141 result => xFixed);
142 yOutFinal : floatingPointToFixed port map (
143 aclr => reset,
144 clock => clockIn,
145 dataa => yScaled,
146 result => yFixed);
147 zOutFinal : floatingPointToFixed port map (
148 aclr => reset,
149 clock => clockIn,
150 dataa => zScaled,
151 result => zFixed);
152
153 xOut <= xFixed(31 downto 16);
154 yOut <= yFixed(31 downto 16);
155 zOut <= zFixed(31 downto 16);
156
157 end behavioral;

D.6 VHDL Testbench for Chen System

Listing D.6 A test bench. Note that test benches are not synthesizable
1 -- testbench for Chen system
2
3 library ieee;

Appendix D: Chapter 3 VHDL, MATLAB Code and ModelSim Scripts 159

4 use ieee.std_logic_1164.all;
5 use ieee.numeric_std.all;
6
7 entity chenSystemtb is
8 end chenSystemtb;
9
10 architecture testbench of chenSystemtb is
11 signal clock,reset,resetn,trigger,increment,pulseOut :

std_logic := '0';
12 signal xOut,yOut,zOut : std_logic_vector(15 downto 0);
13
14 component chenSystem is port (
15 resetn, clockIn : in std_logic;
16 xOut,yOut,zOut : out std_logic_vector(15 downto 0));
17 end component;
18
19 begin
20 chenSystemInstance : chenSystem port map (
21 resetn => resetn,
22 clockIn => clock,
23 xOut => xOut,
24 yOut => yOut,
25 zOut => zOut);
26
27 clock50MHzProcess : process
28 begin
29 clock <= not clock;
30 wait for 10 ns;
31 end process clock50MHzProcess;
32
33 stimulus : process
34 begin
35 resetn <= '0';
36 wait for 55 ns;
37 resetn <= '1'; -- unreset after 55 ns
38 wait; -- prevent process from being executed again
39 end process stimulus;
40 end testbench;

The salient features of the test bench are:

1. The entity statement has no input and/or output ports. This makes sense since the
test bench is a virtual environment that cannot be synthesized.

2. We have to generate a 50 MHz clock. This is done using the process statement
shown.

3. We then provide stimulus inputs to our module under test. Notice that since
VHDL processes execute concurrently, our stimulus process has a wait as the last
statement to prevent repeated process execution.

160 Appendix D: Chapter 3 VHDL, MATLAB Code and ModelSim Scripts

D.7 ModelSim Script File for Chen System

Listing D.7 Script file for Chen system that lists ModelSim commands for performing functional
simulation
1 # do vlib work only once!
2 # vlib work
3
4 vmap work work
5
6 # compile DSP builder advanced blockset source
7 vcom D:/altera/12.0/quartus/dspba/Libraries/vhdl/fpc/math_package.vhd
8 vcom D:/altera/12.0/quartus/dspba/Libraries/vhdl/fpc/math_implementation.vhd
9 vcom D:/altera/12.0/quartus/dspba/Libraries/vhdl/fpc/hcc_package.vhd

10 vcom D:/altera/12.0/quartus/dspba/Libraries/vhdl/fpc/hcc_implementation.vhd
11 vcom D:/altera/12.0/quartus/dspba/Libraries/vhdl/fpc/fpc_library_package.vhd
12 vcom D:/altera/12.0/quartus/dspba/Libraries/vhdl/fpc/fpc_library.vhd
13
14 # compile DSP builder advanced blockset nonlinearities
15 vcom ../dspBuilder/chenSystem/dspba_rtl/chenSystem/NonlinearSubsystem/

chenSystem_NonlinearSubsystem.vhd
16 vcom ../dspBuilder/chenSystem/dspba_rtl/chenSystem/NonlinearSubsystem/

NonlinearSynthesizableSubsystem/
chenSystem_NonlinearSubsystem_NonlinearSynthesizableSubsystem.vhd

17
18 # compile source
19 vcom ../floatingPointMultiplyDedicated.vhd
20 vcom ../floatingPointToFixed.vhd
21 vcom ../chenSystem.vhd
22
23
24 vcom chenSystemtb.vhd
25
26 vsim chenSystemtb
27 # configure wave window to have a white background color
28 # http://www.utdallas.edu/˜zhoud/EE%203120/Xilinx_tutorial_Spartan3_home_PC.

pdf and ModelSim Reference Manual - configure command
29 configure wave -background white -foreground red -textcolor blue -timecolor

blue -vectorcolor red -wavebackground white -cursorcolor black
30 add wave -divider "Clock and Reset"
31 add wave clock
32 add wave resetn
33
34
35 add wave -divider "Outputs from Chen System model"
36 # obtained switch information below by using analog (automatic) formatting in

ModelSim
37 add wave -format analog-step -min -13380 -max 11972 -height 74 xOut
38 add wave -format analog-step -min -26982 -max 24076 -height 74 yOut
39 add wave -format analog-step -min -11033 -max 20597 -height 74 zOut
40
41 add wave -divider "Chen System Module Internal Signals"
42 add wave -label dt -hex sim:/chenSystemtb/chenSystemInstance/dt
43 add wave -label count -hex sim:/chenSystemtb/chenSystemInstance/count
44 add wave -label xPlus_f1 -hex sim:/chenSystemtb/chenSystemInstance/xNew
45 add wave -label yPlus_f2 -hex sim:/chenSystemtb/chenSystemInstance/yNew
46 add wave -label zPlus_f3 -hex sim:/chenSystemtb/chenSystemInstance/zNew
47 add wave -label x -hex sim:/chenSystemtb/chenSystemInstance/x
48 add wave -label y -hex sim:/chenSystemtb/chenSystemInstance/y
49 add wave -label z -hex sim:/chenSystemtb/chenSystemInstance/z
50 add wave -label xFixed -hex sim:/chenSystemtb/chenSystemInstance/xFixed

Appendix D: Chapter 3 VHDL, MATLAB Code and ModelSim Scripts 161

51 add wave -label yFixed -hex sim:/chenSystemtb/chenSystemInstance/yFixed
52 add wave -label zFixed -hex sim:/chenSystemtb/chenSystemInstance/zFixed
53
54 # run 1ms

Appendix E
Chapter 4 MATLAB Code, VHDL
and ModelSim Scripts

E.1 Rössler System Specification in MATLAB

Listing E.1 MATLAB code for the Rössler system
1 function [t,y] = rossler(tspan,reltol,abstol,x0,alpha,beta,

gamma)
2
3 % Simulates the Rossler system:
4 % x'=-y-z
5 % y'=x+alpha*y
6 % z'=beta+z*(x-gamma)
7 % Function uses ode45. The arguments to be passed into the

function
8 % are tspan, reltol,abstol,x0,alpha,beta,gamma. For classic

Rossler
9 % attractor, try:
10 % [t,rosslerOut]=rossler([0:0.01:100],1e-5,1e-5,[14.5 0

0.1],0.1,0.1,14);
11
12 options = odeset('RelTol',reltol,'AbsTol',abstol);
13 [t,y] = ode45(@rosslerFunction,tspan,x0,options);
14
15
16 function dy = rosslerFunction(t,y)
17 dy = zeros(3,1); % a column vector
18 dy(1) = -y(2)-y(3);
19 dy(2) = y(1) + alpha*y(2);
20 dy(3) = beta+y(3)*(y(1)-gamma);
21 end
22 end

© Springer International Publishing Switzerland 2015
B. Muthuswamy and S. Banerjee, A Route to Chaos Using FPGAs, Emergence,
Complexity and Computation 16, DOI 10.1007/978-3-319-18105-9

163

164 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

E.2 Period-1 Limit Cycle for the Rössler System

Listing E.2 MATLAB code for obtaining a limit cycle (period 1) the Rössler system
1 % type one line at a time or use a script file after defining the

rossler function
2 h1=figure;
3 [t,y1]=rossler([0:0.01:100],1e-5,1e-5,[14.5 0 0.1],0.1,0.1,4);
4 plot(y1([5000:10001],1),y1([5000:10001],2))
5 a = get(gca,'XTickLabel');
6 set(gca,'XTickLabel',a,'fontsize',18)
7 xlabel('y','Interpreter','Latex','Fontsize',32)
8 ylabel('x','Interpreter','Latex','Fontsize',32)
9 % enable line below for EPS output

10 % print(h1,'-depsc','-r600','chap4Figure-
RosslerSystemPeriodOneLimitCycle.eps');

E.3 MATLAB Code for Period-Doubling Route to Chaos

Listing E.3 MATLAB code for obtaining period-doubling bifurcation in the Rössler system
1 % rossler period-doubling script
2 % make sure rossler.m is in the same folder
3 [t,rosslerPeriod3]=rossler([0:0.01:10000],1e-5,1e-5,[14.5 0

0.1],0.1,0.1,12);
4 [t,rosslerPeriod6]=rossler([0:0.01:10000],1e-5,1e-5,[14.5 0

0.1],0.1,0.1,12.6);
5 [t,rosslerPeriodHigh]=rossler([0:0.01:10000],1e-5,1e-5,[14.5

0 0.1],0.1,0.1,13.3);
6 [t,rosslerChaos]=rossler([0:0.01:10000],1e-5,1e-5,[14.5 0

0.1],0.1,0.1,14);
7
8 h1 = figure;
9 plot(rosslerPeriod3([75000:100001],1),rosslerPeriod3

([75000:100001],2))
10 a = get(gca,'XTickLabel');
11 set(gca,'XTickLabel',a,'fontsize',18)
12 xlabel('x','Interpreter','Latex','Fontsize',32)
13 ylabel('y','Interpreter','Latex','Fontsize',32)
14 title('Period=3','Interpreter','Latex','Fontsize',32)
15 % enable line below for EPS output
16 % print(h1,'-depsc','-r600','chap4Figure-rosslerP3.eps');
17
18 h2=figure;
19 plot(rosslerPeriod6([75000:100001],1),rosslerPeriod6

([75000:100001],2))
20 a = get(gca,'XTickLabel');
21 set(gca,'XTickLabel',a,'fontsize',18)
22 xlabel('x','Interpreter','Latex','Fontsize',32)
23 ylabel('y','Interpreter','Latex','Fontsize',32)
24 title('Period=6','Interpreter','Latex','Fontsize',32)

Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts 165

25 % enable line below for EPS output
26 % print(h2,'-depsc','-r600','chap4Figure-rosslerP6.eps');
27
28 h3=figure;
29 plot(rosslerPeriodHigh([75000:100001],1),rosslerPeriodHigh

([75000:100001],2))
30 a = get(gca,'XTickLabel');
31 set(gca,'XTickLabel',a,'fontsize',18)
32 xlabel('x','Interpreter','Latex','Fontsize',32)
33 ylabel('y','Interpreter','Latex','Fontsize',32)
34 title('Higher Period','Interpreter','Latex','Fontsize',32)
35 % enable line below for EPS output
36 % print(h3,'-depsc','-r600','chap4Figure-rosslerHighPeriod.

eps');
37
38 h4=figure;
39 plot(rosslerChaos([75000:100001],1),rosslerChaos

([75000:100001],2))
40 a = get(gca,'XTickLabel');
41 set(gca,'XTickLabel',a,'fontsize',18)
42 xlabel('x','Interpreter','Latex','Fontsize',32)
43 ylabel('y','Interpreter','Latex','Fontsize',32)
44 title('Chaos','Interpreter','Latex','Fontsize',32)
45 % enable line below for EPS output
46 % print(h4,'-depsc','-r600','chap4Figure-rosslerChaos.eps');

E.4 MATLAB Code for Chua Oscillator

Listing E.4 MATLAB code for simulating Chua oscillator
1 function [t,y] = chuaOscillator(tspan,reltol,abstol,x0,alpha,

beta,gamma,a,c)
2
3 % Simulates Chua's oscillator with a smooth nonlinearity
4 % from Ambelang's EE4060 project report (Spring 2011

Nonlinear Dynamics
5 % Course at MSOE)
6 % x'=alpha*(y-g(x))
7 % y'=x-y+z
8 % z'=-beta*y-gamma*z
9 % Function uses ode45. The arguments to be passed into the

function
10 % are tspan, reltol,abstol,x0,alpha,beta,,gamma,a and c. a

and c are
11 % parameters for the nonlinear function:
12 % f(x)=-a*x+0.5(a+b)(|x+1|-|x-1|)
13 % For a double-scroll chaotic attractor, try:
14 % [t,doubleScroll]=chuaOscillator([0:0.1:1000],1e-5,1e-5,[0.1

0 0.1],10,16,0,1,-0.143);
15 % For period-adding route,

166 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

16 % [t,period3]=chuaOscillator([0:0.1:1000],1e-5,1e-5,[0.1 0
0.1],3.708,3.499,0.076,1,-0.276);

17 % [t,chaosAfterPeriod3]=chuaOscillator([0:0.1:1000],1e-5,1e
-5,[0.1 0 0.1],3.708,3.549,0.076,1,-0.276);

18 % [t,period4]=chuaOscillator([0:0.1:1000],1e-5,1e-5,[0.1 0
0.1],3.708,3.574,0.076,1,-0.276);

19 % [t,chaosAfterPeriod4]=chuaOscillator([0:0.1:1000],1e-5,1e
-5,[0.1 0 0.1],3.708,3.6,0.076,1,-0.276);

20
21 options = odeset('RelTol',reltol,'AbsTol',abstol);
22 [t,y] = ode45(@chuaOscillatorFunction,tspan,x0,options);
23
24
25 function dy = chuaOscillatorFunction(t,y)
26 dy = zeros(3,1); % a column vector
27 dy(1) = alpha*(y(2)-g(y(1),a,c));
28 dy(2) = y(1)-y(2)+y(3);
29 dy(3) = -beta*y(2)-gamma*y(3);
30 end
31
32 function y=g(x,a,c)
33 y=a*xˆ3+c*x;
34 end
35 end

E.5 MATLAB Code for Period-Adding Route to Chaos

Listing E.5 MATLAB code for obtaining the period-adding route to chaos in Fig. 4.3
1 % period-adding, using Chua's oscillator
2 % Make sure chuaOscillator.m is in the same folder
3 [t,period3]=chuaOscillator([0:0.1:1000],1e-5,1e-5,[0.1 0

0.1],3.708,3.499,0.076,1,-0.276);
4 [t,chaosAfterPeriod3]=chuaOscillator([0:0.1:1000],1e-5,1e-5,[0.1

0 0.1],3.708,3.549,0.076,1,-0.276);
5 [t,period4]=chuaOscillator([0:0.1:1000],1e-5,1e-5,[0.1 0

0.1],3.708,3.574,0.076,1,-0.276);
6 [t,chaosAfterPeriod4]=chuaOscillator([0:0.1:1000],1e-5,1e-5,[0.1

0 0.1],3.708,3.6,0.076,1,-0.276);
7
8 h1 = figure;
9 plot(period3([5000:10001],1),period3([5000:10001],2))

10 a = get(gca,'XTickLabel');
11 set(gca,'XTickLabel',a,'fontsize',18)
12 xlabel('y','Interpreter','Latex','Fontsize',32)
13 ylabel('x','Interpreter','Latex','Fontsize',32)
14 title('3:3 Limit Cycle','Fontsize',32)
15 % enable line below for EPS output
16 % print(h1,'-depsc','-r600','chap4Figure-chuaOscillatorP3.eps');
17
18 h2 = figure;

http://dx.doi.org/10.1007/978-3-319-18105-9_4

Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts 167

19 plot(chaosAfterPeriod3([5000:10001],1),chaosAfterPeriod3
([5000:10001],2))

20 a = get(gca,'XTickLabel');
21 set(gca,'XTickLabel',a,'fontsize',18)
22 xlabel('y','Interpreter','Latex','Fontsize',32)
23 ylabel('x','Interpreter','Latex','Fontsize',32)
24 title('Chaos after 3:3 Limit Cycle ','Fontsize',32)
25 % enable line below for EPS output
26 % print(h2,'-depsc','-r600','chap4Figure-

chuaOscillatorChaosAfterP3.eps');
27
28 h3 = figure;
29 plot(period4([5000:10001],1),period4([5000:10001],2))
30 a = get(gca,'XTickLabel');
31 set(gca,'XTickLabel',a,'fontsize',18)
32 xlabel('y','Interpreter','Latex','Fontsize',32)
33 ylabel('x','Interpreter','Latex','Fontsize',32)
34 title('4:4 Limit Cycle ','Fontsize',32)
35 % enable line below for EPS output
36 % print(h3,'-depsc','-r600','chap4Figure-chuaOscillatorP4.eps');
37
38 h4 = figure;
39 plot(chaosAfterPeriod4([5000:10001],1),chaosAfterPeriod4

([5000:10001],2))
40 a = get(gca,'XTickLabel');
41 set(gca,'XTickLabel',a,'fontsize',18)
42 xlabel('y','Interpreter','Latex','Fontsize',32)
43 ylabel('x','Interpreter','Latex','Fontsize',32)
44 title('Chaos after 4:4 Limit Cycle ','Fontsize',32)
45 % enable line below for EPS output
46 % print(h4,'-depsc','-r600','chap4Figure-

chuaOscillatorChaosAfterP4.eps');

E.6 MATLAB Code for Torus-Breakdown System

Listing E.6 MATLAB code implementing Eqs. (4.8)–(4.10)
1 function [t,y] = torusBreakdown(tspan,reltol,abstol,x0,alpha,beta

,a,b)
2
3 % Simulates the torus breakdown system from Matsumoto et. al.:
4 % x'=-alpha*f(y-x)
5 % y'=-f(y-x)-z
6 % z'=beta*y
7 % Function uses ode45. The arguments to be passed into the

function
8 % are tspan, reltol,abstol,x0,alpha,beta,a and b. a and b are

parameters
9 % for the piecewise-linear function:

10 % f(x)=-a*x+0.5(a+b)(|x+1|-|x-1|)
11 % For a folded torus chaotic attractor, try:

http://dx.doi.org/10.1007/978-3-319-18105-9_4
http://dx.doi.org/10.1007/978-3-319-18105-9_4

168 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

12 % [t,torusBreakdownOut]=torusBreakdown([0:0.1:1000],1e-5,1e-5,
13 % [0.1 0 0.1],15,1,0.07,0.1);
14
15 options = odeset('RelTol',reltol,'AbsTol',abstol);
16 [t,y] = ode45(@torusBreakdownFunction,tspan,x0,options);
17
18
19 function dy = torusBreakdownFunction(t,y)
20 dy = zeros(3,1); % a column vector
21 dy(1) = -alpha*f(y(2)-y(1),a,b);
22 dy(2) = -f(y(2)-y(1),a,b)-y(3);
23 dy(3) = beta*y(2);
24 end
25
26 function y=f(x,a,b)
27 y=-a*x+0.5*(a+b)*(abs(x+ones(length(x),1))-abs(x-ones(

length(x),1)));
28 end
29 end

E.7 MATLAB Code for Quasi-Periodic Route to Chaos

Listing E.7 MATLAB code for obtaining torus-breakdown route to chaos in Fig. 4.4
1 % torus breakdown script
2 % make sure torusBreakdown.m is in the same folder
3 [t,torusAttractorTwoTorus]=torusBreakdown([0:0.1:1000],1e-5,1e

-5,[0.1 0 0.1],2.0,1,0.07,0.1);
4 [t,torusAttractorPeriod8]=torusBreakdown([0:0.1:1000],1e-5,1e

-5,[0.1 0 0.1],8.0,1,0.07,0.1);
5 [t,torusAttractorPeriod15]=torusBreakdown([0:0.1:1000],1e-5,1e

-5,[0.1 0 0.1],8.8,1,0.07,0.1);
6 [t,torusAttractorTorusBreakdown]=torusBreakdown([0:0.1:1000],1e

-5,1e-5,[0.1 0 0.1],15.0,1,0.07,0.1);
7
8 h1 = figure;
9 plot(torusAttractorTwoTorus([7500:10001],2),torusAttractorTwoTorus

([7500:10001],1))
10 % http://www.mathworks.com/matlabcentral/newsreader/view_thread

/288159
11 a = get(gca,'XTickLabel');
12 set(gca,'XTickLabel',a,'fontsize',18)
13 xlabel('y','Interpreter','Latex','Fontsize',32)
14 ylabel('x','Interpreter','Latex','Fontsize',32)
15 title('Two-torus','Interpreter','Latex','Fontsize',32)
16 % enable line below for EPS output
17 %print(h1,'-depsc','-r600','chap4Figure-torusBreakDownTwoTorus.eps

');
18
19 h2=figure;

http://dx.doi.org/10.1007/978-3-319-18105-9_4

Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts 169

20 plot(torusAttractorPeriod8([7500:10001],2),torusAttractorPeriod8
([7500:10001],1))

21 a = get(gca,'XTickLabel');
22 set(gca,'XTickLabel',a,'fontsize',18)
23 xlabel('y','Interpreter','Latex','Fontsize',32)
24 ylabel('x','Interpreter','Latex','Fontsize',32)
25 title('Period-8','Interpreter','Latex','Fontsize',32)
26 % enable line below for EPS output
27 %print(h2,'-depsc','-r600','chap4Figure-torusBreakDownPeriod8.eps

');
28
29 h3=figure;
30 plot(torusAttractorPeriod15([7500:10001],2),torusAttractorPeriod15

([7500:10001],1))
31 a = get(gca,'XTickLabel');
32 set(gca,'XTickLabel',a,'fontsize',18)
33 xlabel('y','Interpreter','Latex','Fontsize',32)
34 ylabel('x','Interpreter','Latex','Fontsize',32)
35 title('Period-15','Interpreter','Latex','Fontsize',32)
36 % enable line below for EPS output
37 %print(h3,'-depsc','-r600','chap4Figure-torusBreakDownPeriod15.eps

');
38
39 h4=figure;
40 plot(torusAttractorTorusBreakdown([7500:10001],2),

torusAttractorTorusBreakdown([7500:10001],1))
41 a = get(gca,'XTickLabel');
42 set(gca,'XTickLabel',a,'fontsize',18)
43 xlabel('y','Interpreter','Latex','Fontsize',32)
44 ylabel('x','Interpreter','Latex','Fontsize',32)
45 title('Chaos','Interpreter','Latex','Fontsize',32)
46 % enable line below for EPS output
47 %print(h4,'-depsc','-r600','chap4Figure-

torusAttractorTorusBreakdown.eps');

E.8 MATLAB Code with Chua Oscillator Parameter Values
for Intermittency Route to Chaos

Listing E.8 MATLAB code implementing Eqs. (4.19)–(4.22)
1 function [t,y] = chuaOscillatorIntermittency(tspan,reltol,

abstol,x0,alpha,beta,gamma,a,b)
2
3 % Simulates Chua's oscillator with a piecewise-linear

nonlinearity
4 % x'=alpha*(y-x-f(x))
5 % y'=x-y+z
6 % z'=-beta*y-gamma*z
7 % f(x) = bx + 0.5*(a-b)*(|x+1|-|x-1|)
8 % Function uses ode45. The arguments to be passed into the

function

http://dx.doi.org/10.1007/978-3-319-18105-9_4
http://dx.doi.org/10.1007/978-3-319-18105-9_4

170 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

9 % are tspan, reltol,abstol,x0,alpha,beta,,gamma,a and b.
10
11 options = odeset('RelTol',reltol,'AbsTol',abstol);
12 [t,y] = ode45(@chuaOscillatorFunction,tspan,x0,options);
13
14
15 function dy = chuaOscillatorFunction(t,y)
16 dy = zeros(3,1); % a column vector
17 dy(1) = alpha*(y(2)-y(1)-f(y(1),a,b));
18 dy(2) = y(1)-y(2)+y(3);
19 dy(3) = -beta*y(2)-gamma*y(3);
20 end
21
22 function y=f(x,a,b)
23 y=b*x+0.5*(a-b)*(abs(x+ones(length(x),1))-abs(x-ones(

length(x),1)));
24 end
25 end

E.9 MATLAB Code for Plotting Intermittency Route
to Chaos

Listing E.9 MATLAB code for obtaining intermittency route to chaos in Fig. 4.5
1 % Intermittency script
2 % make sure chuaOscillatorIntermittency.m is in the same folder
3 alpha=-75.018755;
4 a=-0.98;
5 b=-2.4;
6
7 % Periodic
8 beta=44.803;
9 gamma=-4.480;
10 [t,intermittencyPeriodic]=chuaOscillatorIntermittency([0:0.01:1000],1e

-4,1e-4,[0.1 0 0.1],alpha,beta,gamma,a,b);
11 h1a = figure;
12 plot(intermittencyPeriodic(:,2),intermittencyPeriodic(:,3))
13 % http://www.mathworks.com/matlabcentral/newsreader/view_thread/288159
14 figureProperties = get(gca,'XTickLabel');
15 set(gca,'XTickLabel',figureProperties,'fontsize',18)
16 xlabel('y','Interpreter','Latex','Fontsize',32)
17 ylabel('z','Interpreter','Latex','Fontsize',32)
18 title('Limit Cycle(s)','Interpreter','Latex','Fontsize',32)
19 % enable line below for EPS output
20 % print(h1a,'-depsc','-r600','chap4Figure-intermittencyPeriodic.eps');
21
22 h1b = figure;
23 plot(t([75000:83000],1),intermittencyPeriodic([75000:83000],1));
24 % http://www.mathworks.com/matlabcentral/newsreader/view_thread/288159
25 figureProperties = get(gca,'XTickLabel');
26 set(gca,'XTickLabel',figureProperties,'fontsize',18)
27 xlabel('t','Interpreter','Latex','Fontsize',32)
28 ylabel('x','Interpreter','Latex','Fontsize',32)

http://dx.doi.org/10.1007/978-3-319-18105-9_4

Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts 171

29 title('Limit Cycle(s) (time-domain)','Interpreter','Latex','Fontsize'
,32)

30 %enable line below for EPS output
31 % print(h1b,'-depsc','-r600','chap4Figure-intermittencyPeriodic-

TimeDomain.eps');
32
33 % Chaos, one instance
34 beta=43.994721;
35 gamma=-4.3994721;
36 [t,intermittencyChaosOne]=chuaOscillatorIntermittency([0:0.01:1000],1e

-6,1e-6,[0.1,0,0.1],alpha,beta,gamma,a,b);
37 h2a = figure;
38 plot(intermittencyChaosOne([75000:100001],3),intermittencyChaosOne

([75000:100001],1))
39 % http://www.mathworks.com/matlabcentral/newsreader/view_thread/288159
40 figureProperties = get(gca,'XTickLabel');
41 set(gca,'XTickLabel',figureProperties,'fontsize',18)
42 xlabel('z','Interpreter','Latex','Fontsize',32)
43 ylabel('x','Interpreter','Latex','Fontsize',32)
44 title('Intermittency','Interpreter','Latex','Fontsize',32)
45 % enable line below for EPS output
46 % print(h2a,'-depsc','-r600','chap4Figure-intermittencyChaosOne.eps');
47
48 h2b = figure;
49 plot(t([75000:83000],1),intermittencyChaosOne([75000:83000],2))
50 % http://www.mathworks.com/matlabcentral/newsreader/view_thread/288159
51 figureProperties = get(gca,'XTickLabel');
52 set(gca,'XTickLabel',figureProperties,'fontsize',18)
53 xlabel('t','Interpreter','Latex','Fontsize',32)
54 ylabel('y','Interpreter','Latex','Fontsize',32)
55 title('Intermittency Chaos (time-domain)','Interpreter','Latex','

Fontsize',32)
56 % enable line below for EPS output
57 % print(h2b,'-depsc','-r600','chap4Figure-intermittencyChaosOne-

TimeDomain.eps');
58
59 % Chaos, second instance
60 beta=31.746032;
61 gamma=-3.1746032;
62 [t,intermittencyChaosTwo]=chuaOscillatorIntermittency([0:0.01:1000],1e

-6,1e-6,[0.1,0,0.1],alpha,beta,gamma,a,b);
63 h3a = figure;
64 plot(intermittencyChaosTwo([75000:100001],3),intermittencyChaosTwo

([75000:100001],1))
65 % http://www.mathworks.com/matlabcentral/newsreader/view_thread/288159
66 figureProperties = get(gca,'XTickLabel');
67 set(gca,'XTickLabel',figureProperties,'fontsize',18)
68 xlabel('z','Interpreter','Latex','Fontsize',32)
69 ylabel('x','Interpreter','Latex','Fontsize',32)
70 title('Intermittency','Interpreter','Latex','Fontsize',32)
71 % enable line below for EPS output
72 % print(h3a,'-depsc','-r600','chap4Figure-intermittencyChaosTwo.eps');
73
74 h3b = figure;
75 plot(t([75000:83000],1),intermittencyChaosTwo([75000:83000],2))
76 % http://www.mathworks.com/matlabcentral/newsreader/view_thread/288159
77 figureProperties = get(gca,'XTickLabel');
78 set(gca,'XTickLabel',figureProperties,'fontsize',18)
79 xlabel('t','Interpreter','Latex','Fontsize',32)

172 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

80 ylabel('y','Interpreter','Latex','Fontsize',32)
81 title('Intermittency Chaos (time-domain)','Interpreter','Latex','

Fontsize',32)
82 % enable line below for EPS output
83 % print(h3b,'-depsc','-r600','chap4Figure-intermittencyChaosTwo-

TimeDomain.eps');
84
85 % Chaos, third instance
86 beta=31.25;
87 gamma=-3.125;
88 [t,intermittencyChaosThree]=chuaOscillatorIntermittency([0:0.01:1000],1e

-6,1e-6,[0.1,0,0.1],alpha,beta,gamma,a,b);
89 h4a = figure;
90 plot(intermittencyChaosThree([75000:100001],3),intermittencyChaosThree

([75000:100001],1))
91 % http://www.mathworks.com/matlabcentral/newsreader/view_thread/288159
92 figureProperties = get(gca,'XTickLabel');
93 set(gca,'XTickLabel',figureProperties,'fontsize',18)
94 xlabel('z','Interpreter','Latex','Fontsize',32)
95 ylabel('x','Interpreter','Latex','Fontsize',32)
96 title('Intermittency','Interpreter','Latex','Fontsize',32)
97 % enable line below for EPS output
98 % print(h4a,'-depsc','-r600','chap4Figure-intermittencyChaosThree.eps');
99

100 h4b = figure;
101 plot(t([75000:83000],1),intermittencyChaosThree([75000:83000],2))
102 % http://www.mathworks.com/matlabcentral/newsreader/view_thread/288159
103 figureProperties = get(gca,'XTickLabel');
104 set(gca,'XTickLabel',figureProperties,'fontsize',18)
105 xlabel('t','Interpreter','Latex','Fontsize',32)
106 ylabel('y','Interpreter','Latex','Fontsize',32)
107 title('Intermittency Chaos (time-domain)','Interpreter','Latex','

Fontsize',32)
108 % enable line below for EPS output
109 % print(h4b,'-depsc','-r600','chap4Figure-intermittencyChaosThree-

TimeDomain.eps');

E.10 MATLAB Code for Resource-Consumer-Predator
Model

Listing E.10 MATLAB code implementing Eqs. (4.23)–(4.25)
1 function [t,y] = resourcePredatorPrey(tspan,reltol,abstol,x0,xC,

yC,xP,yP,R0,C0,K)
2
3 % Simulates the resource predator prey model from
4 % "Controlling transient chaos in deterministic flows with

applications
5 % to electrical power systems and ecology". Physical Review E,

59(2),
6 % 1646 - 1655, 1999.
7 % Function uses ode45. The arguments to be passed into the

function
8 % are tspan, reltol,abstol,x0,alpha,beta,,gamma,a and b.

http://dx.doi.org/10.1007/978-3-319-18105-9_4
http://dx.doi.org/10.1007/978-3-319-18105-9_4

Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts 173

9
10 options = odeset('RelTol',reltol,'AbsTol',abstol);
11 [t,y] = ode45(@resourcePredatorPreyFunction,tspan,x0,options);
12 function dy = resourcePredatorPreyFunction(t,y)
13 dy = zeros(3,1); % a column vector
14 dy(1) = y(1)*(1-y(1)/K)-(xC*yC*y(2)*y(1))/(y(1)+R0);
15 dy(2) = xC*y(2)*((yC*y(1))/(y(1)+R0)-1)-(xP*yP*y(3)*y(2))/(

y(2)+C0);
16 dy(3) = xP*y(3)*(-1+(yP*y(2))/(y(2)+C0));
17 end
18
19
20 end

E.11 MATLAB Code for Chaotic Transients

Listing E.11 MATLAB code for simulating chaotic transients and crisis phenomenon in Fig. 4.6
1 % chaotic transients script
2 % make sure resourcePredatorPrey.m is in the same folder
3 xC=0.4;
4 yC=2.009;
5 xP=0.08;
6 yP=2.876;
7 R0=0.16129;
8 C0=0.5;
9

10 % Periodic attractor and chaotic attractor co-exist
11 K=0.99;
12 [t,chaoticTransientPeriodic]=resourcePredatorPrey

([0:0.1:1000],1e-4,1e-4,[0.1 0.2 0.1],xC,yC,xP,yP,R0,C0,
K);

13 h1 = figure;
14 plot(chaoticTransientPeriodic(:,1),chaoticTransientPeriodic

(:,2))
15 % http://www.mathworks.com/matlabcentral/newsreader/

view_thread/288159
16 figureProperties = get(gca,'XTickLabel');
17 set(gca,'XTickLabel',figureProperties,'fontsize',18)
18 xlabel('R','Interpreter','Latex','Fontsize',32)
19 ylabel('C','Interpreter','Latex','Fontsize',32)
20 title('Limit Cycle','Interpreter','Latex','Fontsize',32)
21 % enable line below for EPS output
22 % print(h1,'-depsc','-r600','chap4Figure-

chaoticTransientsPeriodic.eps');
23
24 h2 = figure;
25 plot(t(:,1),chaoticTransientPeriodic(:,3))

http://dx.doi.org/10.1007/978-3-319-18105-9_4

174 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

26 % http://www.mathworks.com/matlabcentral/newsreader/
view_thread/288159

27 figureProperties = get(gca,'XTickLabel');
28 set(gca,'XTickLabel',figureProperties,'fontsize',18)
29 xlabel('t','Interpreter','Latex','Fontsize',32)
30 ylabel('P','Interpreter','Latex','Fontsize',32)
31 title('P population decays','Interpreter','Latex','

Fontsize',32)
32 %enable line below for EPS output
33 % print(h2,'-depsc','-r600','chap4Figure-

chaoticTransientsPeriodic-TimeDomain.eps');
34
35 h3 = figure;
36 [t,chaoticTransientChaos]=resourcePredatorPrey

([0:0.1:1000],1e-4,1e-4,[0.55 0.35 0.8],xC,yC,xP,yP,R0,
C0,K);

37 plot(chaoticTransientChaos(:,2),chaoticTransientChaos(:,3))
38 % http://www.mathworks.com/matlabcentral/newsreader/

view_thread/288159
39 figureProperties = get(gca,'XTickLabel');
40 set(gca,'XTickLabel',figureProperties,'fontsize',18)
41 xlabel('R','Interpreter','Latex','Fontsize',32)
42 ylabel('P','Interpreter','Latex','Fontsize',32)
43 title('Chaos','Interpreter','Latex','Fontsize',32)
44 %enable line below for EPS output
45 % print(h3,'-depsc','-r600','chap4Figure-

chaoticTransientsChaos.eps');
46
47 % Crisis past critical carrying capacity.
48 K=1.02;
49 [t,chaoticTransientCrisis]=resourcePredatorPrey

([0:0.1:1000],1e-4,1e-4,[0.55 0.35 0.8],xC,yC,xP,yP,R0,
C0,K);

50 h4 = figure;
51 plot(t(:,1),chaoticTransientCrisis(:,3))
52 % http://www.mathworks.com/matlabcentral/newsreader/

view_thread/288159
53 figureProperties = get(gca,'XTickLabel');
54 set(gca,'XTickLabel',figureProperties,'fontsize',18)
55 xlabel('t','Interpreter','Latex','Fontsize',32)
56 ylabel('P','Interpreter','Latex','Fontsize',32)
57 title('P time series','Interpreter','Latex','Fontsize',32)
58 % enable line below for EPS output
59 % print(h4,'-depsc','-r600','chap4Figure-

chaoticTransientsCrisis.eps');

Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts 175

E.12 VHDL Specification for Single Pulse Generator

Listing E.12 VHDL pulse FSM
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 entity pulseFSM is port (
6 reset,clock,trigger : in std_logic;
7 pulseOut,pulseOutSingleClockCycle : out std_logic);
8 end pulseFSM;
9
10 architecture mooreFSM of pulseFSM is
11
12 type state is (resetState,generatePulseCycle1,

generatePulseCycle2,generatePulseCycle3,
generatePulseCycle4,generatePulseCycle5,
generatePulseCycle6,generatePulseCycle7,
generatePulseCycle8,stopPulse,waitForTriggerRelease);

13 signal currentState,nextState : state;
14
15 begin
16
17 -- state memory
18 stateMemory : process(reset,clock)
19 begin
20 if reset='1' then
21 currentState <= resetState;
22 else
23 if rising_edge(clock) then
24 currentState <= nextState;
25 end if;
26 end if;
27 end process;
28
29 -- next state logic
30 stateTransitionLogic : process (currentState,trigger)
31 begin
32 case currentState is
33 when resetState =>
34 if trigger='0' then
35 nextState <= resetState;
36 else
37 nextState <= generatePulseCycle1;
38 end if;
39 when generatePulseCycle1 =>
40 nextState <= generatePulseCycle2;
41 when generatePulseCycle2 =>
42 nextState <= generatePulseCycle3;
43 when generatePulseCycle3 =>

176 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

44 nextState <= generatePulseCycle4;
45 when generatePulseCycle4 =>
46 nextState <= generatePulseCycle5;
47 when generatePulseCycle5 =>
48 nextState <= generatePulseCycle6;
49 when generatePulseCycle6 =>
50 nextState <= generatePulseCycle7;
51 when generatePulseCycle7 =>
52 nextState <= generatePulseCycle8;
53 when generatePulseCycle8 =>
54 nextState <= stopPulse;
55 when stopPulse =>
56 nextState <= waitForTriggerRelease;
57 when waitForTriggerRelease =>
58 if trigger='1' then
59 nextState <= waitForTriggerRelease;
60 else
61 nextState <= resetState;
62 end if;
63 end case;
64 end process;
65
66 -- output logic
67 with currentState select
68 pulseOut <= '0' when resetState,
69 '0' when waitForTriggerRelease,
70 '0' when stopPulse,
71 '1' when others;
72
73 -- we enable single clock cycle pulse only after latency

of floating point design has been
74 -- accounted for.
75 with currentState select
76 pulseOutSingleClockCycle <= '1' when stopPulse,
77 '0' when others;
78 end mooreFSM;

E.13 ModelSim Testbench for Single Pulse Generator

Listing E.13 VHDL pulse FSM test bench
1 -- testbench for pulse FSM (bifurcations)
2
3 library ieee;
4 use ieee.std_logic_1164.all;
5 use ieee.numeric_std.all;
6
7 entity pulseFSMtb is
8 end pulseFSMtb;

Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts 177

9
10 architecture testbench of pulseFSMtb is
11 signal clock,reset,trigger,pulseOut : std_logic := '0';
12
13 component pulseFSM is port (
14 reset,clock,trigger : in std_logic;
15 pulseOut : out std_logic);
16 end component;
17
18 begin
19 pulseFSMInstance : pulseFSM port map (
20 reset => reset,
21 clock => clock,
22 trigger => trigger,
23 pulseOut => pulseOut);
24
25 clock50MHzProcess : process
26 begin
27 clock <= not clock;
28 wait for 10 ns;
29 end process clock50MHzProcess;
30
31 stimulus : process
32 begin
33 reset <= '1';
34 trigger <= '0';
35 wait for 55 ns;
36 reset <= '0'; -- unreset after 55 ns
37 wait for 100 ns;
38 trigger <= '1';
39 wait for 150 ns;
40 trigger <= '0';
41 wait; -- prevent process from being executed again
42 end process stimulus;
43 end testbench;

E.14 ModelSim Script File for Single Pulse Generator

Listing E.14 ModelSim script file for pulse FSM
1 # do vlib work only once!
2 # vlib work
3
4 vmap work work
5
6 # compile source
7 vcom ../../pulseFSM.vhd
8
9 # compile testbench
10 vcom pulseFSMtb.vhd
11

178 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

12 vsim pulseFSMtb
13 # configure wave window to have a white background color
14 # http://www.utdallas.edu/˜zhoud/EE%203120/

Xilinx_tutorial_Spartan3_home_PC.pdf and ModelSim
Reference Manual - configure command

15 configure wave -background white -foreground red -textcolor
blue -timecolor blue -vectorcolor red -wavebackground
white -cursorcolor black

16 add wave -divider "Clock and Reset"
17 add wave clock
18 add wave reset
19
20 add wave -divider "Input"
21 add wave trigger
22 add wave -divider "Output"
23 add wave pulseOut
24 add wave -divider "FSM states"
25 add wave -label "Synchronous current state" sim:/pulsefsmtb/

pulseFSMInstance/currentState
26
27 # run 500ns

E.15 VHDL Specification of Period-Doubling Route
to Chaos

Listing E.15 VHDL specification of period-doubling bifurcation in the Rössler system
1 --Single precision (32-bit) floating point realization
2
3 library ieee;
4 use ieee.std_logic_1164.all;
5 use ieee.std_logic_signed.all;
6
7 entity rosslerSystem is port (
8 resetn, clockIn, incrementCountClockN,

incrementGammaClockN,incrementCount,incrementGamma :
in std_logic;

9 xOut,yOut,zOut : out std_logic_vector(15 downto 0));
10 end rosslerSystem;
11
12 architecture behavioral of rosslerSystem is
13
14 signal reset,incrementGammaClock,incrementDecrementGammaPulse,

dFlipFlopClock : std_logic;
15 -- constants
16 signal dt,output1Over2Scale,output1Over5Scale,alpha,beta,gamma,

gammaSignal : std_logic_vector(31 downto 0);
17 -- state variables
18 signal x,y,z,xNew,yNew,zNew,xScaled,yScaled,zScaled,xFixed,

yFixed,zFixed : std_logic_vector(31 downto 0);
19 -- prescalar
20 signal count,countIncrement : integer range 0 to 128;

Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts 179

21
22 -- DSP builder top level.
23 -- Note: Open rosslerSystem_NonlinearSubsystem.vhd and create

component.
24 -- NOTE : SAME STEPS FOR OTHER CHAOTIC SYSTEMS!
25 component rosslerSystem_NonlinearSubsystem is
26 port (
27 In_a : in std_logic_vector(31 downto 0);
28 In_b : in std_logic_vector(31 downto 0);
29 In_dt : in std_logic_vector(31 downto 0);
30 In_g : in std_logic_vector(31 downto 0);
31 In_x : in std_logic_vector(31 downto 0);
32 In_y : in std_logic_vector(31 downto 0);
33 In_z : in std_logic_vector(31 downto 0);
34 Out_x : out std_logic_vector(31 downto 0);
35 Out_y : out std_logic_vector(31 downto 0);
36 Out_z : out std_logic_vector(31 downto 0);
37 clk : in std_logic;
38 areset : in std_logic;
39 h_areset : in std_logic
40);
41 end component;
42 -- END DSP builder top level.
43
44 -- latency : 5 clock cycles (scale for DAC range)
45 component floatingPointMultiplyDedicated IS
46 PORT
47 (
48 aclr : IN STD_LOGIC ;
49 clock : IN STD_LOGIC ;
50 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
51 datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
52 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
53);
54 END component;
55
56 -- latency : 6 clock cycles
57 component floatingPointToFixed IS
58 PORT
59 (
60 aclr : IN STD_LOGIC ;
61 clock : IN STD_LOGIC ;
62 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
63 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
64);
65 END component;
66
67 component floatingPointAddSubtract IS
68 PORT
69 (
70 aclr : IN STD_LOGIC ;
71 add_sub : IN STD_LOGIC ;
72 clk_en : IN STD_LOGIC ;

180 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

73 clock : IN STD_LOGIC ;
74 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
75 datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
76 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
77);
78 END component;
79
80 component pulseFSM is port (
81 reset,clock,trigger : in std_logic;
82 pulseOut,pulseOutSingleClockCycle : out std_logic);
83 end component;
84
85 component dFlipFlopWithAsyncReset is port (
86 clock,reset : in std_logic;
87 d,resetVal : in std_logic_vector(31 downto 0);
88 q : out std_logic_vector(31 downto 0));
89 end component;
90
91 begin
92 reset <= not resetn;
93 -- Euler's method
94 -- We first synchronously update state variables at 781.250

KHz (64 counts of 50 MHz clock)
95 -- Since dt = 1/1024, time scale is actually (780.250e3

/1024) = 762 Hz (approximately)
96
97 -- since synchronous update count is integer, simply use a

process statement
98 process(incrementCountClockN,resetn)
99 begin
100 if resetn = '0' then
101 countIncrement <= 64;
102 else
103 if falling_edge(incrementCountClockN) then
104 if incrementCount = '1' then
105 countIncrement <= countIncrement+1;
106 else
107 countIncrement <= countIncrement-1;
108 end if;
109 end if;
110 end if;
111 end process;
112 -- state memory
113 process(clockIn, resetn)
114 begin
115 -- constants (place outside reset and clock to avoid

latches)
116 dt <= X"3A800000"; -- 1/1024
117 output1Over5Scale <= X"3E4CCCCC";
118 output1Over2Scale <= X"3F000000";
119 -- default values for parameters and synchronous

count
120 alpha <= X"3DCCCCCC"; --0.1

Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts 181

121 beta <= X"3DCCCCCC"; --0.1
122 if resetn = '0' then
123 -- initial state
124 x <= X"41680000"; -- 14.5
125 y <= X"00000000"; -- 0
126 z <= X"3DCCCCCC"; -- 0.1
127 count <= 0;
128 else
129 if rising_edge(clockIn) then
130 if count = countIncrement then
131 count <= 0;
132 else
133 count <= count + 1;
134 end if;
135
136 if count = countIncrement-1 then
137 x <= xNew;
138 y <= yNew;
139 z <= zNew;
140 end if;
141 end if;
142 end if;
143 end process;
144
145 incrementGammaClock <= not incrementGammaClockN;
146 pulseFSMForGamma : pulseFSM port map (
147 reset => reset,
148 clock => clockIn,
149 trigger => incrementGammaClock,
150 pulseOut => incrementDecrementGammaPulse,
151 pulseOutSingleClockCycle => dFlipFlopClock);
152
153 gammaParameterBifurcation : floatingPointAddSubtract port

map (
154 aclr => reset,
155 add_sub => incrementGamma, -- '1' = add, '0' = subtract
156 clk_en => incrementDecrementGammaPulse,
157 clock => clockIn,
158 dataa => gamma, -- start at 12 = X"41400000". Memory

implemented using D flip-flop
159 datab => X"3DCCCCCC", -- increment/decrement by 0.1 = X"3

DCCCCCC"
160 result => gammaSignal);
161
162 -- we will need the flip-flop below to provide a proper initial

state.
163 gammaFlipFlop : dFlipFlopWithAsyncReset port map (
164 clock => dFlipFlopClock,
165 reset => reset,
166 d => gammaSignal,
167 resetVal => X"41400000", -- start at 12
168 q => gamma);
169

182 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

170 staticNonlinearitiesAndDeltaT :
rosslerSystem_NonlinearSubsystem port map (

171 In_a => alpha,
172 In_b => beta,
173 In_dt => dt,
174 In_g => gamma,
175 In_x => x,
176 In_y => y,
177 In_z => z,
178 Out_x => xNew,
179 Out_y => yNew,
180 Out_z => zNew,
181 clk => clockIn,
182 areset => reset,
183 h_areset => reset);
184 -- END Euler's method
185
186 -- scale outputs
187 scaleX : floatingPointMultiplyDedicated port map (
188 aclr => reset,
189 clock => clockIn,
190 dataa => x,
191 datab => output1Over2Scale,
192 result => xScaled);
193 scaleY : floatingPointMultiplyDedicated port map (
194 aclr => reset,
195 clock => clockIn,
196 dataa => y,
197 datab => output1Over2Scale,
198 result => yScaled);
199 scaleZ : floatingPointMultiplyDedicated port map (
200 aclr => reset,
201 clock => clockIn,
202 dataa => z,
203 datab => output1Over5Scale,
204 result => zScaled);
205
206 --state outputs : convert scaled floating point x,y

variables to 2.30 fixed point for DAC
207 xOutFinal : floatingPointToFixed port map (
208 aclr => reset,
209 clock => clockIn,
210 dataa => xScaled,
211 result => xFixed);
212 yOutFinal : floatingPointToFixed port map (
213 aclr => reset,
214 clock => clockIn,
215 dataa => yScaled,
216 result => yFixed);
217 zOutFinal : floatingPointToFixed port map (
218 aclr => reset,
219 clock => clockIn,
220 dataa => zScaled,

Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts 183

221 result => zFixed);
222
223 xOut <= xFixed(31 downto 16);
224 yOut <= yFixed(31 downto 16);
225 zOut <= zFixed(31 downto 16);
226
227 end behavioral;

1. Lines 67–89 show how we have decided to implement the bifurcation scenario.
Instead of using DSP builder to increment (decrement) a parameter, we have
utilized the MegaWizard. The primary reason is that the increment or decrement
of the bifurcation parameter simply requires only one module: floating point
addition and subtraction.

2. Lines 145–168 show how we implement the bifurcation. We generate two single-
cycle 20 ns wide clock pulses using the pulse FSM. The first clock pulse is used as
a clock enable signal for the appropriate floating pointmodule that implements the
bifurcation sequence. In this example, we use the floating-point addsub module
(lines 153–160) to specify gamma as the bifurcation parameter. The second clock
pulse is delayed by the appropriate number of clock cycles (depending on the
floating point module) and used to clock the bifurcation parameter register. In
this design, we have a delay of nine clock cycles due to the eight clock cycle
latency associated with the floating-point addsub module.

E.16 VHDL Specification for Period-Adding Route to Chaos

Listing E.16 VHDL specification of period-adding bifurcation in the Chua system
1 --Single precision (32-bit) floating point realization
2 library ieee;
3 use ieee.std_logic_1164.all;
4 use ieee.std_logic_signed.all;
5
6 entity chuaOscillator is port (
7 resetn, clockIn, incrementCountPulseN,

incrementBetaPulseN,incrementCount,incrementBeta :
in std_logic;

8 xOut,yOut,zOut : out std_logic_vector(15 downto 0));
9 end chuaOscillator;
10
11 architecture behavioral of chuaOscillator is
12
13 signal reset,incrementBetaPulse,incrementDecrementBetaPulse,

dFlipFlopClock : std_logic;
14 -- constants
15 signal dt,outputScaledBy8,alpha,beta,betaSignal,gamma,a,c :

std_logic_vector(31 downto 0);
16 -- state variables
17 signal x,y,z,xNew,yNew,zNew,xScaled,yScaled,zScaled,xFixed,

yFixed,zFixed : std_logic_vector(31 downto 0);

184 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

18 -- prescalar
19 signal count,countIncrement : integer range 0 to 128;
20
21 -- DSP builder top level.
22 component chuaOscillator_NonlinearSubsystem is
23 port (
24 In_a : in std_logic_vector(31 downto 0);
25 In_alpha : in std_logic_vector(31 downto 0);
26 In_beta : in std_logic_vector(31 downto 0);
27 In_c : in std_logic_vector(31 downto 0);
28 In_dt : in std_logic_vector(31 downto 0);
29 In_gamma : in std_logic_vector(31 downto 0);
30 In_x : in std_logic_vector(31 downto 0);
31 In_y : in std_logic_vector(31 downto 0);
32 In_z : in std_logic_vector(31 downto 0);
33 Out_x : out std_logic_vector(31 downto 0);
34 Out_y : out std_logic_vector(31 downto 0);
35 Out_z : out std_logic_vector(31 downto 0);
36 clk : in std_logic;
37 areset : in std_logic;
38 h_areset : in std_logic);
39 end component;
40 -- END DSP builder top level.
41
42 -- latency : 5 clock cycles (scale for DAC range)
43 component floatingPointMultiplyDedicated IS
44 PORT
45 (
46 aclr : IN STD_LOGIC ;
47 clock : IN STD_LOGIC ;
48 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
49 datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
50 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
51);
52 END component;
53
54 -- latency : 6 clock cycles
55 component floatingPointToFixed IS
56 PORT
57 (
58 aclr : IN STD_LOGIC ;
59 clock : IN STD_LOGIC ;
60 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
61 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
62);
63 END component;
64
65 component floatingPointAddSubtract IS
66 PORT
67 (
68 aclr : IN STD_LOGIC ;
69 add_sub : IN STD_LOGIC ;
70 clk_en : IN STD_LOGIC ;

Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts 185

71 clock : IN STD_LOGIC ;
72 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
73 datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
74 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
75);
76 END component;
77
78 component pulseFSM is port (
79 reset,clock,trigger : in std_logic;
80 pulseOut,pulseOutSingleClockCycle : out std_logic);
81 end component;
82
83 component dFlipFlopWithAsyncReset is port (
84 clock,reset : in std_logic;
85 d,resetVal : in std_logic_vector(31 downto 0);
86 q : out std_logic_vector(31 downto 0));
87 end component;
88
89 begin
90 reset <= not resetn;
91 -- Euler's method
92 -- We first synchronously update state variables at

781.250 KHz (64 counts of 50 MHz clock)
93 -- Since dt = 1/1024, time scale is actually (780.250e3

/1024) = 762 Hz (approximately)
94
95 -- since synchronous update count is integer, simply use

a process statement
96 process(incrementCountPulseN,resetn)
97 begin
98 if resetn = '0' then
99 countIncrement <= 64;

100 else
101 if falling_edge(incrementCountPulseN) then
102 if incrementCount = '1' then
103 countIncrement <= countIncrement+1;
104 else
105 countIncrement <= countIncrement-1;
106 end if;
107 end if;
108 end if;
109 end process;
110 -- state memory
111 process(clockIn, resetn)
112 begin
113 -- constants (place outside reset and clock to

avoid latches)
114 dt <= X"3A800000"; -- 1/1024
115 outputScaledBy8 <= X"41000000";
116 -- default values for parameters and synchronous

count
117 alpha <= X"406D4FDF"; -- 3.708, approximately

3.70799999

186 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

118 beta <= X"40666666"; -- 3.6, approximately
3.5999999

119 gamma <= X"3D9BA5E3"; -- 0.076, approximately
0.0759999

120 a <= X"3F800000"; -- 1
121 c <= X"BE8D4FDF"; -- -0.276, approximately

-0.27599999
122 if resetn = '0' then
123 -- initial state
124 x <= X"3DCCCCCC"; -- 0.1
125 y <= X"00000000"; -- 0
126 z <= X"3DCCCCCC"; -- 0.1
127 count <= 0;
128 else
129 if rising_edge(clockIn) then
130 if count = countIncrement then
131 count <= 0;
132 else
133 count <= count + 1;
134 end if;
135
136 if count = countIncrement-1 then
137 x <= xNew;
138 y <= yNew;
139 z <= zNew;
140 end if;
141 end if;
142 end if;
143 end process;
144
145 -- incrementBetaPulse <= not incrementBetaPulseN;
146 -- pulseFSMForBeta : pulseFSM port map (
147 -- reset => reset,
148 -- clock => clockIn,
149 -- trigger => incrementBetaPulse,
150 -- pulseOut => incrementDecrementBetaPulse,
151 -- pulseOutSingleClockCycle => dFlipFlopClock);
152 --
153 -- betaParameterBifurcation : floatingPointAddSubtract port

map (
154 -- aclr => reset,
155 -- add_sub => incrementBeta, -- '1' = add, '0' = subtract
156 -- clk_en => incrementDecrementBetaPulse,
157 -- clock => clockIn,
158 -- dataa => beta, -- start at ????????. Memory implemented

using D flip-flop
159 -- datab => X"", -- increment/decrement by ???? = X

"??????????"
160 -- result => betaSignal);
161 --
162 ---- we will need the flip-flop below to provide a proper

initial state.
163 -- betaFlipFlop : dFlipFlopWithAsyncReset port map (

Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts 187

164 -- clock => dFlipFlopClock,
165 -- reset => reset,
166 -- d => betaSignal,
167 -- resetVal => X"", -- start at ??????????
168 -- q => beta);
169 --
170 staticNonlinearitiesAndDeltaT :

chuaOscillator_NonlinearSubsystem port map (
171 In_a => a,
172 In_alpha => alpha,
173 In_beta => beta,
174 In_c => c,
175 In_dt => dt,
176 In_gamma => gamma,
177 In_x => x,
178 In_y => y,
179 In_z => z,
180 Out_x => xNew,
181 Out_y => yNew,
182 Out_z => zNew,
183 clk => clockIn,
184 areset => reset,
185 h_areset => reset);
186 -- END Euler's method
187
188 -- scale outputs
189 scaleX : floatingPointMultiplyDedicated port map (
190 aclr => reset,
191 clock => clockIn,
192 dataa => x,
193 datab => outputScaledBy8,
194 result => xScaled);
195 scaleY : floatingPointMultiplyDedicated port map (
196 aclr => reset,
197 clock => clockIn,
198 dataa => y,
199 datab => outputScaledBy8,
200 result => yScaled);
201 scaleZ : floatingPointMultiplyDedicated port map (
202 aclr => reset,
203 clock => clockIn,
204 dataa => z,
205 datab => outputScaledBy8,
206 result => zScaled);
207
208 --state outputs : convert scaled floating point x,y

variables to 2.30 fixed point for DAC
209 xOutFinal : floatingPointToFixed port map (
210 aclr => reset,
211 clock => clockIn,
212 dataa => xScaled,
213 result => xFixed);
214 yOutFinal : floatingPointToFixed port map (

188 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

215 aclr => reset,
216 clock => clockIn,
217 dataa => yScaled,
218 result => yFixed);
219 zOutFinal : floatingPointToFixed port map (
220 aclr => reset,
221 clock => clockIn,
222 dataa => zScaled,
223 result => zFixed);
224
225 xOut <= xFixed(31 downto 16);
226 yOut <= yFixed(31 downto 16);
227 zOut <= zFixed(31 downto 16);
228
229 end behavioral;

E.17 VHDL Specification for Quasi-Periodic Route to Chaos

Listing E.17 VHDL specification of quasi-periodic route to chaos via torus-breakdown
1 --Single precision (32-bit) floating point realization
2 library ieee;
3 use ieee.std_logic_1164.all;
4 use ieee.std_logic_signed.all;
5
6 entity torusBreakdown is port (
7 resetn, clockIn, incrementCountPulseN,

incrementAlphaPulseN,incrementCount,incrementAlpha
: in std_logic;

8 xOut,yOut,zOut : out std_logic_vector(15 downto 0));
9 end torusBreakdown;
10
11 architecture behavioral of torusBreakdown is
12
13 signal reset,incrementAlphaPulse,

incrementDecrementAlphaPulse,dFlipFlopClock : std_logic;
14 -- constants
15 signal dt,outputScaledBy4,alpha,beta,alphaSignal,a,b :

std_logic_vector(31 downto 0);
16 -- state variables
17 signal x,y,z,xNew,yNew,zNew,xScaled,yScaled,zScaled,xFixed,

yFixed,zFixed : std_logic_vector(31 downto 0);
18 -- prescalar
19 signal count,countIncrement : integer range 0 to 128;
20
21 -- DSP builder top level.
22 component torusBreakdown_NonlinearSubsystem is
23 port (
24 In_a : in std_logic_vector(31 downto 0);
25 In_alpha : in std_logic_vector(31 downto 0);
26 In_b : in std_logic_vector(31 downto 0);

Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts 189

27 In_beta : in std_logic_vector(31 downto 0);
28 In_dt : in std_logic_vector(31 downto 0);
29 In_x : in std_logic_vector(31 downto 0);
30 In_y : in std_logic_vector(31 downto 0);
31 In_z : in std_logic_vector(31 downto 0);
32 Out_x : out std_logic_vector(31 downto 0);
33 Out_y : out std_logic_vector(31 downto 0);
34 Out_z : out std_logic_vector(31 downto 0);
35 clk : in std_logic;
36 areset : in std_logic;
37 h_areset : in std_logic);
38 end component;
39 -- END DSP builder top level.
40
41 -- latency : 5 clock cycles (scale for DAC range)
42 component floatingPointMultiplyDedicated IS
43 PORT
44 (
45 aclr : IN STD_LOGIC ;
46 clock : IN STD_LOGIC ;
47 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
48 datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
49 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
50);
51 END component;
52
53 -- latency : 6 clock cycles
54 component floatingPointToFixed IS
55 PORT
56 (
57 aclr : IN STD_LOGIC ;
58 clock : IN STD_LOGIC ;
59 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
60 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
61);
62 END component;
63
64 component floatingPointAddSubtract IS
65 PORT
66 (
67 aclr : IN STD_LOGIC ;
68 add_sub : IN STD_LOGIC ;
69 clk_en : IN STD_LOGIC ;
70 clock : IN STD_LOGIC ;
71 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
72 datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
73 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
74);
75 END component;
76
77 component pulseFSM is port (
78 reset,clock,trigger : in std_logic;
79 pulseOut,pulseOutSingleClockCycle : out std_logic);

190 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

80 end component;
81
82 component dFlipFlopWithAsyncReset is port (
83 clock,reset : in std_logic;
84 d,resetVal : in std_logic_vector(31 downto 0);
85 q : out std_logic_vector(31 downto 0));
86 end component;
87
88 begin
89 reset <= not resetn;
90 -- Euler's method
91 -- We first synchronously update state variables at

781.250 KHz (64 counts of 50 MHz clock)
92 -- Since dt = 1/1024, time scale is actually (780.250e3

/1024) = 762 Hz (approximately)
93
94 -- since synchronous update count is integer, simply use

a process statement
95 process(incrementCountPulseN,resetn)
96 begin
97 if resetn = '0' then
98 countIncrement <= 64;
99 else

100 if falling_edge(incrementCountPulseN) then
101 if incrementCount = '1' then
102 countIncrement <= countIncrement+1;
103 else
104 countIncrement <= countIncrement-1;
105 end if;
106 end if;
107 end if;
108 end process;
109 -- state memory
110 process(clockIn, resetn)
111 begin
112 -- constants (place outside reset and clock to

avoid latches)
113 dt <= X"3A800000"; -- 1/1024
114 -- default values for parameters and synchronous

count
115 beta <= X"3F800000"; -- 1
116 outputScaledBy4 <= X"40800000";
117 a <= X"3D8F5C28"; -- 0.07, approximately 0.069999
118 b <= X"3DCCCCCC"; -- 0.1, approximately 0.099999
119 if resetn = '0' then
120 -- initial state
121 x <= X"3DCCCCCC"; -- 0.1
122 y <= X"00000000"; -- 0
123 z <= X"3DCCCCCC"; -- 0.1
124 count <= 0;
125 else
126 if rising_edge(clockIn) then
127 if count = countIncrement then

Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts 191

128 count <= 0;
129 else
130 count <= count + 1;
131 end if;
132
133 if count = countIncrement-1 then
134 x <= xNew;
135 y <= yNew;
136 z <= zNew;
137 end if;
138 end if;
139 end if;
140 end process;
141
142 incrementAlphaPulse <= not incrementAlphaPulseN;
143 pulseFSMForAlpha : pulseFSM port map (
144 reset => reset,
145 clock => clockIn,
146 trigger => incrementAlphaPulse,
147 pulseOut => incrementDecrementAlphaPulse,
148 pulseOutSingleClockCycle => dFlipFlopClock);
149
150 alphaParameterBifurcation : floatingPointAddSubtract port

map (
151 aclr => reset,
152 add_sub => incrementAlpha, -- '1' = add, '0' =

subtract
153 clk_en => incrementDecrementAlphaPulse,
154 clock => clockIn,
155 dataa => alpha, -- start at 15. Memory implemented

using D flip-flop
156 datab => X"3DCCCCCC", -- increment/decrement by 0.1 =

X"3DCCCCCC"
157 result => alphaSignal);
158
159 -- we will need the flip-flop below to provide a proper

initial state.
160 alphaFlipFlop : dFlipFlopWithAsyncReset port map (
161 clock => dFlipFlopClock,
162 reset => reset,
163 d => alphaSignal,
164 resetVal => X"41700000", -- start at 15
165 q => alpha);
166 --
167 staticNonlinearitiesAndDeltaT :

torusBreakdown_NonlinearSubsystem port map (
168 In_a => a,
169 In_alpha => alpha,
170 In_b => b,
171 In_beta => beta,
172 In_dt => dt,
173 In_x => x,
174 In_y => y,

192 Appendix E: Chapter 4 MATLAB Code, VHDL and ModelSim Scripts

175 In_z => z,
176 Out_x => xNew,
177 Out_y => yNew,
178 Out_z => zNew,
179 clk => clockIn,
180 areset => reset,
181 h_areset => reset);
182 -- END Euler's method
183
184 -- scale outputs
185 scaleX : floatingPointMultiplyDedicated port map (
186 aclr => reset,
187 clock => clockIn,
188 dataa => x,
189 datab => outputScaledBy4,
190 result => xScaled);
191 scaleY : floatingPointMultiplyDedicated port map (
192 aclr => reset,
193 clock => clockIn,
194 dataa => y,
195 datab => outputScaledBy4,
196 result => yScaled);
197 scaleZ : floatingPointMultiplyDedicated port map (
198 aclr => reset,
199 clock => clockIn,
200 dataa => z,
201 datab => outputScaledBy4,
202 result => zScaled);
203
204 --state outputs : convert scaled floating point x,y

variables to 2.30 fixed point for DAC
205 xOutFinal : floatingPointToFixed port map (
206 aclr => reset,
207 clock => clockIn,
208 dataa => xScaled,
209 result => xFixed);
210 yOutFinal : floatingPointToFixed port map (
211 aclr => reset,
212 clock => clockIn,
213 dataa => yScaled,
214 result => yFixed);
215 zOutFinal : floatingPointToFixed port map (
216 aclr => reset,
217 clock => clockIn,
218 dataa => zScaled,
219 result => zFixed);
220
221 xOut <= xFixed(31 downto 16);
222 yOut <= yFixed(31 downto 16);
223 zOut <= zFixed(31 downto 16);
224
225 end behavioral;

Appendix F
Chapter 5 VHDL

F.1 Flip-Flops in VHDL

Listing F.1 VHDL specification of D flip-flop with asynchronous reset
1 library ieee;
2 use ieee.std_logic_1164.all;
3
4 entity dFlipFlopWithAsyncReset is port (
5 clock,reset : in std_logic;
6 d : in std_logic_vector(31 downto 0);
7 q : out std_logic_vector(31 downto 0));
8 end dFlipFlopWithAsyncReset;
9
10 architecture structuralDFlipFlop of dFlipFlopWithAsyncReset

is
11
12 begin
13 process (clock,reset)
14 begin
15 if reset = '1' then
16 q <= X"00000000";
17 else
18 if rising_edge(clock) then
19 q <= d;
20 end if;
21 end if;
22 end process;
23
24 end structuralDFlipFlop;

© Springer International Publishing Switzerland 2015
B. Muthuswamy and S. Banerjee, A Route to Chaos Using FPGAs, Emergence,
Complexity and Computation 16, DOI 10.1007/978-3-319-18105-9

193

194 Appendix F: Chapter 5 VHDL

F.2 VHDL Tapped Delay Line

Listing F.2 Realization of VHDL delay
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 entity addressableShiftRegister is
6 generic (numberOfFlipFlops : integer := 0;
7 delay : integer := 0);
8 port (
9 clk,areset : in std_logic;
10 In_x : in std_logic_vector(31 downto 0);
11 Out_xDelayed : out std_logic_vector(31 downto 0));
12 end addressableShiftRegister;
13
14 architecture behavioral of addressableShiftRegister is
15
16 component dFlipFlopWithAsyncRChap9eset is port (
17 clock,reset : in std_logic;
18 d : in std_logic_vector(31 downto 0);
19 q : out std_logic_vector(31 downto 0));
20 end component;
21
22 type memory is array(0 to numberOfFlipFlops) of

std_logic_vector(31 downto 0);
23 signal internalDataArray : memory;
24
25 begin
26
27 internalDataArray(0) <= In_x;
28 generateFlipFlops:
29 for i IN 0 to numberOfFlipFlops-1 generate
30 nFlipFlops : dFlipFlopWithAsyncReset port map (
31 clock => clk,
32 reset => areset,
33 d => internalDataArray(i),
34 q => internalDataArray(i+1));
35 end generate;
36
37 Out_xDelayed <= internalDataArray(delay-1);
38 end behavioral;

Appendix F: Chapter 5 VHDL 195

F.3 VHDL Specification of Ikeda DDE

Listing F.3 Realization of Ikeda DDE
1 -- In order to implement a DDE, we need to implement two modules:
2 -- 1. An addressable shift register that implements the delay (refer

to addressableShiftRegister subsystem)
3 -- 2. An appropriate clock for the addressable shift register, based

on the global clock divider. The addressableShiftRegisterClock has
2x the count of the clock

4 -- divider. Hence, the rising edge for the addressable shift register
clock occurs whenever the 50 MHz clock divider count overflows.

5
6 library ieee;
7 use ieee.std_logic_1164.all;
8 use ieee.std_logic_signed.all;
9
10 entity ikedaDDESystem is port (
11 resetn, clockIn : in std_logic;
12 xFloatOut,xDelayedFloatOut : out std_logic_vector(31 downto 0);
13 xOut,xDelayedOut : out std_logic_vector(15 downto 0);
14 syncIn : in std_logic_vector(31 downto 0);
15 syncClock : out std_logic);
16 end ikedaDDESystem;
17
18 architecture behavioral of ikedaDDESystem is
19
20 signal reset : std_logic;
21 -- constants
22 signal dt : std_logic_vector(31 downto 0);
23 -- state variables
24 signal x,xDelayed,xNew,xFixed,xDelayedFixed : std_logic_vector(31

downto 0);
25 -- prescalar
26 signal count: integer range 0 to 64;
27 signal addressableShiftRegisterCount : integer range 0 to 128;
28 signal addressableShiftRegisterClock : std_logic;
29 signal internalSyncClockCount : integer range 0 to 2048;
30 signal internalSyncClock : std_logic;
31
32 -- DSP builder top level. Add both the nonlinear subsystem and

nonlinear synthesizable
33 -- subsystem VHDL files to project.
34 component ikedaDDE_NonlinearSubsystem is
35 port (
36 In_dt : in std_logic_vector(31 downto 0);
37 In_sync : in std_logic_vector(31 downto 0);
38 In_x : in std_logic_vector(31 downto 0);
39 In_xDelayed : in std_logic_vector(31 downto 0);
40 y : out std_logic_vector(31 downto 0);
41 clk : in std_logic;
42 areset : in std_logic;
43 h_areset : in std_logic);
44 end component;
45 -- END DSP builder top level.
46
47 component addressableShiftRegister is

196 Appendix F: Chapter 5 VHDL

48 generic (numberOfFlipFlops : integer := 0;
49 delay : integer := 0);
50 port (
51 clk,areset : in std_logic;
52 In_x : in std_logic_vector(31 downto 0);
53 Out_xDelayed : out std_logic_vector(31 downto 0));
54 end component;
55
56
57 -- latency : 6 clock cycles
58 component floatingPointToFixed IS
59 PORT
60 (
61 aclr : IN STD_LOGIC ;
62 clock : IN STD_LOGIC ;
63 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
64 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
65);
66 END component;
67
68 begin
69 reset <= not resetn;
70 -- Euler's method
71 -- We first synchronously update state variables at 781.250 KHz (64

counts of 50 MHz clock)
72 -- Since dt = 1/1024, time scale is actually (781.250e3/1024) = 762

Hz (approximately)
73 -- state memory
74 process(clockIn, resetn)
75 begin
76 -- constants (place outside reset and clock to avoid latches

)
77 dt <= X"3A800000"; -- 1/1024
78 if resetn = '0' then
79 -- initial state
80 x <= X"3DCCCCCC";-- 0.1
81 count <= 0;
82 addressableShiftRegisterCount <= 0;
83 addressableShiftRegisterClock <= '0';
84 else
85 if rising_edge(clockIn) then
86
87 if count = 64 then
88 count <= 0;
89 else
90 count <= count + 1;
91 end if;
92
93 if count = 63 then
94 x <= xNew;
95 end if;
96
97 if addressableShiftRegisterCount = 128 then
98 addressableShiftRegisterCount <= 0;
99 else
100 addressableShiftRegisterCount <=

addressableShiftRegisterCount + 1;

Appendix F: Chapter 5 VHDL 197

101 end if;
102
103 if addressableShiftRegisterCount >= 63 then
104 addressableShiftRegisterClock <= '1';
105 else
106 addressableShiftRegisterClock <= '0';
107 end if;
108
109 -- for synchronizer period
110 if internalSyncClockCount = 2048 then
111 internalSyncClockCount <= 0;
112 else
113 internalSyncClockCount < =
114 internalSyncClockCount + 1;
115 end if;
116
117 if internalSyncClockCount >= 1023 then
118 internalSyncClock <= '1';
119 else
120 internalSyncClock <= '0';
121 end if;
122
123 end if;
124 end if;
125 end process;
126
127 -- this design also includes synchronization
128 -- since y(t+dt)=y(t)+(-alpha*y+mu*sin(y(t-tau))+k(t)(x(t)-y(t)))*

dt,
129 -- we also send in the sync signal into the DSP builder nonlinear

subsystem.
130 staticNonlinearities : ikedaDDE_NonlinearSubsystem port map (
131 In_dt => dt,
132 In_sync => syncIn,
133 In_x => x,
134 In_xDelayed => xDelayed,
135 y => xNew,
136 clk => clockIn,
137 areset => reset,
138 h_areset => reset);
139
140
141 delay : addressableShiftRegister generic map (numberOfFlipFlops =>

2048,delay => 1024)
142 port map (
143 In_x => x,
144 Out_xDelayed => xDelayed,
145 clk => addressableShiftRegisterClock,
146 areset => reset);
147 -- END Euler's method
148
149 --state outputs : convert scaled floating point variables to 5.27

fixed point format DAC (no latency)
150 xOutFinal : floatingPointToFixed port map (
151 aclr => reset,
152 clock => clockIn,
153 dataa => x,

198 Appendix F: Chapter 5 VHDL

154 result => xFixed);
155 xDelayedOutFinal : floatingPointToFixed port map (
156 aclr => reset,
157 clock => clockIn,
158 dataa => xDelayed,
159 result => xDelayedFixed);
160
161 xOut <= xFixed(31 downto 16);
162 xDelayedOut <= xDelayedFixed(31 downto 16);
163
164 xFloatOut <= x;
165 xDelayedFloatOut <= xDelayed;
166 syncClock <= internalSyncClock;
167 end behavioral;

F.4 VHDL Specification of DDE
with Sigmoidal Nonlinearity

Listing F.4 Realization of Sigmoidal DDE
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_signed.all;
4
5 entity sigmoidDDESystem is port (
6 resetn, clockIn : in std_logic;
7 xFloatOut,xDelayedFloatOut : out std_logic_vector(31 downto 0);
8 xOut,xDelayedOut : out std_logic_vector(15 downto 0);
9 syncIn : in std_logic_vector(31 downto 0);
10 syncClock : out std_logic);
11 end sigmoidDDESystem;
12
13 architecture behavioral of sigmoidDDESystem is
14
15 signal reset : std_logic;
16 -- constants
17 signal dt : std_logic_vector(31 downto 0);
18 -- state variables
19 signal x,xDelayed,xNew,xFixed,xDelayedFixed : std_logic_vector(31

downto 0);
20 -- prescalar
21 signal count: integer range 0 to 64;
22 signal addressableShiftRegisterCount : integer range 0 to 128;
23 signal addressableShiftRegisterClock : std_logic;
24 signal internalSyncClockCount : integer range 0 to 2048;
25 signal internalSyncClock : std_logic;
26
27 -- DSP builder top level. Add both the nonlinear subsystem and

nonlinear synthesizable
28 -- subsystem VHDL files to project.
29 component sigmoidalDDE_NonlinearSubsystem is
30 port (
31 In_dt : in std_logic_vector(31 downto 0);
32 In_sync : in std_logic_vector(31 downto 0);

Appendix F: Chapter 5 VHDL 199

33 In_x : in std_logic_vector(31 downto 0);
34 In_xDelayed : in std_logic_vector(31 downto 0);
35 y : out std_logic_vector(31 downto 0);
36 clk : in std_logic;
37 areset : in std_logic;
38 h_areset : in std_logic
39);
40 end component;
41 -- END DSP builder top level.
42
43 component addressableShiftRegister is
44 generic (numberOfFlipFlops : integer := 0;
45 delay : integer := 0);
46 port (
47 clk,areset : in std_logic;
48 In_x : in std_logic_vector(31 downto 0);
49 Out_xDelayed : out std_logic_vector(31 downto 0));
50 end component;
51
52
53 -- latency : 6 clock cycles
54 component floatingPointToFixed IS
55 PORT
56 (
57 aclr : IN STD_LOGIC ;
58 clock : IN STD_LOGIC ;
59 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
60 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
61);
62 END component;
63
64 begin
65 reset <= not resetn;
66 -- Euler's method
67 -- We first synchronously update state variables at 3.125 MHz (16

counts of 50 MHz clock)
68 -- Since dt = 1/1000, time scale is actually (3.125e6/1000) = 3.125

kHz (approximately)
69 -- state memory
70 process(clockIn, resetn)
71 begin
72 -- constants (place outside reset and clock to avoid latches

)
73 dt <= X"3A83126E"; -- 1/1000
74 if resetn = '0' then
75 -- initial state
76 x <= X"3DCCCCCC";-- 0.1
77 count <= 0;
78 addressableShiftRegisterCount <= 0;
79 addressableShiftRegisterClock <= '0';
80 else
81 if rising_edge(clockIn) then
82
83 if count = 16 then
84 count <= 0;
85 else
86 count <= count + 1;

200 Appendix F: Chapter 5 VHDL

87 end if;
88
89 if count = 15 then
90 x <= xNew;
91 end if;
92
93 if addressableShiftRegisterCount = 16 then
94 addressableShiftRegisterCount <= 0;
95 else
96 addressableShiftRegisterCount <=

addressableShiftRegisterCount + 1;
97 end if;
98
99 if addressableShiftRegisterCount >= 7 then
100 addressableShiftRegisterClock <= '1';
101 else
102 addressableShiftRegisterClock <= '0';
103 end if;
104
105 -- for synchronizer period
106 if internalSyncClockCount = 2048 then
107 internalSyncClockCount <= 0;
108 else
109 internalSyncClockCount < =
110 internalSyncClockCount + 1;
111 end if;
112
113 if internalSyncClockCount >= 1023 then
114 internalSyncClock <= '1';
115 else
116 internalSyncClock <= '0';
117 end if;
118
119 end if;
120 end if;
121 end process;
122
123 -- this design also includes synchronization, so we also send in

the sync signal into the DSP builder nonlinear subsystem.
124 staticNonlinearities : sigmoidalDDE_NonlinearSubsystem port map (
125 In_dt => dt,
126 In_sync => syncIn,
127 In_x => x,
128 In_xDelayed => xDelayed,
129 y => xNew,
130 clk => clockIn,
131 areset => reset,
132 h_areset => reset);
133
134 delay : addressableShiftRegister generic map (numberOfFlipFlops =>

4096,delay => 3000)
135 port map (
136 In_x => x,
137 Out_xDelayed => xDelayed,
138 clk => addressableShiftRegisterClock,
139 areset => reset);
140 -- END Euler's method

Appendix F: Chapter 5 VHDL 201

141
142 --state outputs : convert scaled floating point variables to 5.27

fixed point format DAC (no latency)
143 xOutFinal : floatingPointToFixed port map (
144 aclr => reset,
145 clock => clockIn,
146 dataa => x,
147 result => xFixed);
148 xDelayedOutFinal : floatingPointToFixed port map (
149 aclr => reset,
150 clock => clockIn,
151 dataa => xDelayed,
152 result => xDelayedFixed);
153
154 xOut <= xFixed(31 downto 16);
155 xDelayedOut <= xDelayedFixed(31 downto 16);
156
157 xFloatOut <= x;
158 xDelayedFloatOut <= xDelayed;
159 syncClock <= internalSyncClock;
160 end behavioral;

F.5 VHDL Specification of DDE with Signum Nonlinearity

Listing F.5 Realization of Signum DDE
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.std_logic_signed.all;
4
5 entity signumDDESystem is port (
6 resetn, clockIn : in std_logic;
7 xFloatOut,xDelayedFloatOut : out std_logic_vector(31 downto 0);
8 xOut,xDelayedOut : out std_logic_vector(15 downto 0);
9 syncIn : in std_logic_vector(31 downto 0);

10 syncClock : out std_logic);
11 end signumDDESystem;
12
13 architecture behavioral of signumDDESystem is
14
15 signal reset : std_logic;
16 -- constants
17 signal dt : std_logic_vector(31 downto 0);
18 -- state variables
19 signal x,xDelayed,xNew,xFixed,xDelayedFixed,f1,f2,f : std_logic_vector

(31 downto 0);
20 -- prescalar
21 signal count: integer range 0 to 64;
22 signal addressableShiftRegisterCount : integer range 0 to 128;
23 signal addressableShiftRegisterClock : std_logic;
24 signal internalSyncClockCount : integer range 0 to 2048;
25 signal internalSyncClock : std_logic;
26

202 Appendix F: Chapter 5 VHDL

27 -- We do not use DSP builder for the signum system since the signum
function is very easy to implement:

28 -- from http://en.wikipedia.org/wiki/Single-precision_floating-
point_format

29 -- sign bit is MSb, +0 = 0x00000000, -0 = 0x80000000
30 -- System: x'=sgn(x(t-2))-x(t-2), x(t <= 0) = 0.1
31 signal isZero,signbit : std_logic;
32 signal signbitOut : std_logic_vector(31 downto 0);
33
34 component addressableShiftRegister is
35 generic (numberOfFlipFlops : integer := 0;
36 delay : integer := 0);
37 port (
38 clk,areset : in std_logic;
39 In_x : in std_logic_vector(31 downto 0);
40 Out_xDelayed : out std_logic_vector(31 downto 0));
41 end component;
42
43
44 -- latency : 6 clock cycles
45 component floatingPointToFixed IS
46 PORT
47 (
48 aclr : IN STD_LOGIC ;
49 clock : IN STD_LOGIC ;
50 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
51 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
52);
53 END component;
54
55 -- add_sub = '1' for addition, else subtraction
56 component floatingPointAddSubtract IS
57 PORT
58 (
59 aclr : IN STD_LOGIC ;
60 add_sub : IN STD_LOGIC ;
61 clk_en : IN STD_LOGIC ;
62 clock : IN STD_LOGIC ;
63 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
64 datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
65 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
66);
67 END component;
68
69 component floatingPointMultiplyDedicated IS
70 PORT
71 (
72 aclr : IN STD_LOGIC ;
73 clock : IN STD_LOGIC ;
74 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
75 datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
76 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
77);
78 END component;
79
80 begin
81 reset <= not resetn;

Appendix F: Chapter 5 VHDL 203

82 -- Euler's method
83 -- We first synchronously update state variables at 3.125 MHz (16

counts of 50 MHz clock)
84 -- Since dt = 1/1000, time scale is actually (3.125e6/1000) = 3.125

kHz (approximately)
85 -- state memory
86 process(clockIn, resetn)
87 begin
88 -- constants (place outside reset and clock to avoid

latches)
89 dt <= X"3A83126E"; -- 1/1000
90 if resetn = '0' then
91 -- initial state
92 x <= X"3DCCCCCC";-- 0.1
93 count <= 0;
94 addressableShiftRegisterCount <= 0;
95 addressableShiftRegisterClock <= '0';
96 else
97 if rising_edge(clockIn) then
98
99 if count = 16 then

100 count <= 0;
101 else
102 count <= count + 1;
103 end if;
104
105 if count = 15 then
106 x <= xNew;
107 end if;
108
109 if addressableShiftRegisterCount = 16 then
110 addressableShiftRegisterCount <= 0;
111 else
112 addressableShiftRegisterCount <=

addressableShiftRegisterCount + 1;
113 end if;
114
115 if addressableShiftRegisterCount >= 7 then
116 addressableShiftRegisterClock <= '1';
117 else
118 addressableShiftRegisterClock <= '0';
119 end if;
120
121 -- for synchronizer period
122 if internalSyncClockCount = 2048 then
123 internalSyncClockCount <= 0;
124 else
125 internalSyncClockCount <=
126 internalSyncClockCount + 1;
127 end if;
128
129 if internalSyncClockCount >= 1023 then
130 internalSyncClock <= '1';
131 else
132 internalSyncClock <= '0';
133 end if;
134

204 Appendix F: Chapter 5 VHDL

135 end if;
136 end if;
137 end process;
138
139 -- this design could include synchronization
140 delay : addressableShiftRegister generic map (numberOfFlipFlops =>

4096,delay => 2000)
141 port map (
142 In_x => x,
143 Out_xDelayed => xDelayed,
144 clk => addressableShiftRegisterClock,
145 areset => reset);
146
147 -- compute f1=sgn(x(t-2))
148 with xDelayed select
149 isZero <= '1' when X"00000000",
150 '1' when X"80000000",
151 '0' when others;
152 signBit <= xDelayed(31);
153 with signBit select
154 signBitOut <= X"3F800000" when '0', -- +1
155 X"BF800000" when others; -- -1
156 with isZero select
157 f1 <= signBitOut when '0',
158 X"00000000" when others;
159
160 -- compute f2=sgn(x(t-2))-x(t-2)=f1-xDelayed
161 f2Out : floatingPointAddSubtract port map (
162 aclr => reset,
163 add_sub => '0',
164 clk_en => '1',
165 clock => clockIn,
166 dataa => f1,
167 datab => xDelayed,
168 result => f2);
169
170 -- compute f=f2*dt
171 fOut : floatingPointMultiplyDedicated port map (
172 aclr => reset,
173 clock => clockIn,
174 dataa => f2,
175 datab => dt,
176 result => f);
177 -- compute xNew = x+f
178 xNewOut : floatingPointAddSubtract port map (
179 aclr => reset,
180 add_sub => '1',
181 clk_en => '1',
182 clock => clockIn,
183 dataa => x,
184 datab => f,
185 result => xNew);
186 -- END Euler's method
187
188 --state outputs : convert scaled floating point variables to 5.27

fixed point format DAC (no latency)
189 xOutFinal : floatingPointToFixed port map (

Appendix F: Chapter 5 VHDL 205

190 aclr => reset,
191 clock => clockIn,
192 dataa => x,
193 result => xFixed);
194 xDelayedOutFinal : floatingPointToFixed port map (
195 aclr => reset,
196 clock => clockIn,
197 dataa => xDelayed,
198 result => xDelayedFixed);
199
200 xOut <= xFixed(31 downto 16);
201 xDelayedOut <= xDelayedFixed(31 downto 16);
202
203 xFloatOut <= x;
204 xDelayedFloatOut <= xDelayed;
205 syncClock <= internalSyncClock;
206 end behavioral;

F.6 VHDL Specification for Chaotic DDE Synchronization

Listing F.6 VHDL module for implementing synchronization schemes
1 library ieee;
2 use ieee.std_logic_1164.all;
3 use ieee.numeric_std.all;
4
5 entity synchronizer is port (
6 resetn,clockIn,syncMode,xMinusYIn : in std_logic;
7 syncClock : in std_logic;
8 xIn,yIn,yDelayedIn : in std_logic_vector(31 downto 0);
9 syncOut : out std_logic_vector(31 downto 0));

10 end synchronizer;
11
12 architecture synchronizationSystem of synchronizer is
13 -- add_sub = '1' for addition, else subtraction
14 component floatingPointAddSubtract IS
15 PORT
16 (
17 aclr : IN STD_LOGIC ;
18 add_sub : IN STD_LOGIC ;
19 clk_en : IN STD_LOGIC ;
20 clock : IN STD_LOGIC ;
21 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
22 datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
23 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
24);
25 END component;
26
27 component floatingPointMultiplyDedicated IS
28 PORT

206 Appendix F: Chapter 5 VHDL

29 (
30 aclr : IN STD_LOGIC ;
31 clock : IN STD_LOGIC ;
32 dataa : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
33 datab : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
34 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
35);
36 END component;
37
38 component floatingPointCos IS
39 PORT
40 (
41 aclr : IN STD_LOGIC ;
42 clock : IN STD_LOGIC ;
43 data : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
44 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
45);
46 END component;
47
48 component floatingPointAbs IS
49 PORT
50 (
51 aclr : IN STD_LOGIC ;
52 data : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
53 result : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
54);
55 END component;
56
57 signal reset : std_logic;
58 signal xMinusY,yMinusX,kTimesXMinusY,kTimesYMinusX,

kSquareWaveTimesXMinusY,kSquareWaveTimesYMinusX,
kCosineTimesXMinusY,kCosineTimesYMinusX :
std_logic_vector(31 downto 0);

59 signal cosineOut,absOut,k1,cosCoupling : std_logic_vector
(31 downto 0);

60 signal k,alpha,twoTimesMu : std_logic_vector(31 downto 0)
;

61 begin
62 reset <= not resetn;
63 alpha <= X"40A00000"; -- alpha = 5
64 twoTimesMu <= X"42200000"; -- two*mu = 2*20 = 40
65 -- generate x-y and y-x using megaWizard. We chose to use

the megaWizard because DSP builder is too much effort
for something as simple as floating point subtraction

66 xMinusYInstance : floatingPointAddSubtract port map (
67 aclr => reset,
68 add_sub => '0', -- dataa - datab
69 clk_en => '1',
70 clock => clockIn,
71 dataa => xIn,
72 datab => yIn,

Appendix F: Chapter 5 VHDL 207

73 result => XMinusY);
74
75 yMinusXInstance : floatingPointAddSubtract port map (
76 aclr => reset,
77 add_sub => '0', -- dataa - datab
78 clk_en => '1',
79 clock => clockIn,
80 dataa => yIn,
81 datab => xIn,
82 result => YMinusX);
83
84 -- generate square wave based on delayed clock
85 with syncClock select
86 k <= X"00000000" when '0',
87 X"42480000" when others; -- square wave

amplitude is 50
88
89 -- generate k(t) = -alpha+2*mu*|cos(y(t-tau))|
90 -- compute cosine
91 cosineYDelay : floatingPointCos port map (
92 aclr => reset,
93 clock => clockIn,
94 data => yDelayedIn,
95 result => cosineOut);
96 -- compute abs
97 absOfCos : floatingPointAbs port map (
98 aclr => reset,
99 data => cosineOut,
100 result => absOut);
101 -- compute product: 2*mu*|cos(y(t-tau))|
102 cosCouplingProductTerm : floatingPointMultiplyDedicated

port map (
103 aclr => reset,
104 clock => clockIn,
105 dataa => twoTimesMu,
106 datab => absOut,
107 result => k1);
108 -- subtract from alpha
109 cosineCouplingOut : floatingPointAddSubtract port map (
110 aclr => reset,
111 add_sub => '0', -- dataa - datab
112 clk_en => '1',
113 clock => clockIn,
114 dataa => k1,
115 datab => alpha,
116 result => cosCoupling);
117
118 -- generate k*(x-y), k*(y-x) (k is square wave)
119 kSquareWaveTimesXMinusYInstance :

floatingPointMultiplyDedicated port map (
120 aclr => reset,

208 Appendix F: Chapter 5 VHDL

121 clock => clockIn,
122 dataa => k,
123 datab => XMinusY,
124 result => kSquareWaveTimesXMinusY);
125
126 kSquareWaveTimesYMinusXInstance :

floatingPointMultiplyDedicated port map (
127 aclr => reset,
128 clock => clockIn,
129 dataa => k,
130 datab => YMinusX,
131 result => kSquareWaveTimesYMinusX);
132
133 -- generate k*(x-y), k*(y-x) (k is cosine coupling)
134 kCosineTimesXMinusYInstance :

floatingPointMultiplyDedicated port map (
135 aclr => reset,
136 clock => clockIn,
137 dataa => k,
138 datab => XMinusY,
139 result => kCosineTimesXMinusY);
140
141 kCosineTimesYMinusXInstance :

floatingPointMultiplyDedicated port map (
142 aclr => reset,
143 clock => clockIn,
144 dataa => k,
145 datab => YMinusX,
146 result => kCosineTimesYMinusX);
147
148 -- syncMode: '0' - square wave coupling, '1' - cosine

coupling
149 with syncMode select
150 kTimesXMinusY <= kSquareWaveTimesXMinusY when '0',
151 kCosineTimesXMinusY when

others;
152
153 with syncMode select
154 kTimesYMinusX <= kSquareWaveTimesYMinusX when '0',
155 kCosineTimesYMinusX when

others;
156 with xMinusYIn select
157 syncOut <= kTimesXMinusY when '1',
158 kTimesYMinusX when others;
159
160 end synchronizationSystem;

Appendix F: Chapter 5 VHDL 209

F.7 DE2 Chaotic DDE Specification Top Level

Listing F.7 VHDL top level for implementing synchronization scheme for DDEs
1 -- DE2-115 Audio codec interface for analog chaotic signals output

from chaotic DDEs
2 -- Reference design for EPJ-ST paper - "Synchronization in Coupled

Ikeda Delay Differential Equations : Experimental Observations
using Field

3 -- Programmable Gate Arrays", Valli, D. et. al.
4 -- i2c Audio codec interface courtesy of Stapleton, Colin, EE2902

Spring 2011, Milwaukee School of Engineering, 4/15/11
5 -- adc_dac interface courtesy of Chu, Embedded SOPC Design with

VHDL, pp. 545-546, 4/8/13
6 -- Based on chaos engine created by Dr. Muthuswamy (AY 2013-2014),

primarily for the book:
7 -- "A Route to Chaos Using FPGAs - Volumes I and II"
8 -- DSP builder based design
9 -- IMPORTANT : NEED TO SET nCEO as regular I/O via Device and Pin

Options
10 -- KEY(0): global reset
11 -- KEY(1): bifurcation parameter control (see SW(2) below), but

this is not used in this design.
12 -- SW(0) : loopback (switch down or SW(0)='0') or chaotic dynamics

(switch up or SW(0)='1' (default))
13 -- SW(1) : select between drive (switch down or SW(0)='0') and sync

error signal (switch up or SW(0)='1', e(t) for square wave is
on left-channel. e(t) for cosine on right channel)

14 -- SW(2) : bifurcation parameter decrement (switch down or SW(2) =
'0') or increment (switch up or SW(2) = '1'

15 (default)). This is not used in this design.
16 -- left channel data is controlled by SW(4 downto 3)
17 -- right channel data is controlled by SW(6 downto 5)
18
19
20 LIBRARY ieee;
21 USE ieee.std_logic_1164.all;
22 USE ieee.std_logic_signed.all; -- need to subtract

std_logic_vectors for synchronization result
23
24 entity DE2ChaoticDDEs is
25 port(
26 KEY: in std_logic_vector(3 downto 0);
27 CLOCK_50: in std_logic;
28 --I2C ports
29 I2C_SCLK: out std_logic;
30 I2C_SDAT: inout std_logic;
31 --audio codec ports
32 AUD_ADCDAT: in std_logic;
33 AUD_ADCLRCK: out std_logic;
34 AUD_DACLRCK: out std_logic;
35 AUD_DACDAT: out std_logic;
36 AUD_XCK: out std_logic;
37 AUD_BCLK: out std_logic;
38 --select loopback test or neuron model output

210 Appendix F: Chapter 5 VHDL

39 SW: in std_logic_vector(17 downto 0);
40 --output for logic analyzer
41 GPIO: inout std_logic_vector (35 downto 0);
42 HEX3,HEX2,HEX1,HEX0: out std_logic_vector(6 downto 0);
43 LEDG: out std_logic_vector (8 downto 0)
44);
45 end DE2ChaoticDDEs;
46
47 architecture toplevel of DE2ChaoticDDEs is
48
49 --PLL from MegaWizard in Quartus.
50 --both input and output are 50MHz
51 component clockBuffer IS
52 PORT
53 (
54 areset : IN STD_LOGIC := '0';
55 inclk0 : IN STD_LOGIC := '0';
56 c0 : OUT STD_LOGIC
57);
58 END component;
59
60 --I2C controller to drive the Wolfson codec
61 component audioCodecController is
62 port(
63 clock50MHz,reset: in std_logic;
64 I2C_SCLK_Internal: out std_logic;
65 --must be inout to allow FPGA to read the ack bit
66 I2C_SDAT_Internal: out std_logic;
67 SDAT_Control: out std_logic;
68 --for testing
69 clock50KHz_Out: out std_logic
70);
71 end component;
72
73 --generates digital audio interface clock signals
74 component adc_dac is
75 port (
76 clk, reset: in std_logic; -- reset signal starts '0' then goes

to '1' after 40 ms => active low. Hence we will complement
the delayed reset signal

77 dac_data_in: in std_logic_vector(31 downto 0);
78 adc_data_out: out std_logic_vector(31 downto 0);
79 m_clk, b_clk, dac_lr_clk, adc_lr_clk: out std_logic;
80 dacdat: out std_logic;
81 adcdat: in std_logic;
82 load_done_tick: out std_logic
83);
84 end component;
85
86 component topLevelMux is port (
87 loopbackN,chaosSystemSelect : in std_logic;
88 selectLeftChannelBits,selectRightChannelBits : in

std_logic_vector(1 downto 0);
89 leftChannelLoopBackIn,rightChannelLoopBackIn: in

std_logic_vector(15 downto 0);

Appendix F: Chapter 5 VHDL 211

90 chaosX1,chaosY1,chaosZ1,chaosX2,chaosY2,chaosZ2 : in
std_logic_vector(15 downto 0);

91 leftChannelDACRegister,rightChannelDACRegister : out
std_logic_vector(15 downto 0));

92 end component;
93
94 component pulseFSM is port (
95 reset,clock,trigger : in std_logic;
96 pulseOut : out std_logic);
97 end component;
98
99 -- Chaotic system. DSP builder static nonlinearity interface is

inside the module.
100 -- The ikeda DDE subsystem can also implement synchronization
101 component ikedaDDESystem is port (
102 resetn, clockIn : in std_logic;
103 xFloatOut,xDelayedFloatOut : out std_logic_vector(31 downto

0);
104 xOut,xDelayedOut : out std_logic_vector(15 downto 0);
105 syncIn : in std_logic_vector(31 downto 0);
106 syncClock : out std_logic);
107 end component;
108
109 component sigmoidDDESystem is port (
110 resetn, clockIn : in std_logic;
111 xFloatOut,xDelayedFloatOut : out std_logic_vector(31 downto

0);
112 xOut,xDelayedOut : out std_logic_vector(15 downto 0);
113 syncIn : in std_logic_vector(31 downto 0);
114 syncClock : out std_logic);
115 end component;
116
117 component signumDDESystem is port (
118 resetn, clockIn : in std_logic;
119 xFloatOut,xDelayedFloatOut : out std_logic_vector(31 downto

0);
120 xOut,xDelayedOut : out std_logic_vector(15 downto 0);
121 syncIn : in std_logic_vector(31 downto 0);
122 syncClock : out std_logic);
123 end component;
124
125 component synchronizer is port (
126 resetn,clockIn,syncMode,xMinusYIn,syncClock : in std_logic;
127 xIn,yIn,yDelayedIn : in std_logic_vector(31 downto 0);
128 syncOut : out std_logic_vector(31 downto 0));
129 end component;
130 -- end dsp builder top level
131
132 --clock signal from the PLL clockBuffer
133 signal clock50MHz : std_logic;
134
135 --asynchronous reset for the whole project
136 signal reset: std_logic;
137
138 --I2C data and clock lines

212 Appendix F: Chapter 5 VHDL

139 signal i2cData, i2cClock: std_logic;
140
141 --tri-state buffer control
142 signal i2cDataControl: std_logic;
143 signal i2cDataTriState: std_logic;
144
145 --assert signal from delay counter
146 signal codecReset,codecResetn: std_logic;
147
148 --audio codec signals
149 signal clock18MHz : std_logic;
150 signal adcDat_sig: std_logic;
151 signal adcLRCK_sig: std_logic;
152 signal dacLRCK_sig: std_logic;
153 signal dacDat_sig: std_logic;
154 signal bck_sig: std_logic;
155 signal dac_data_in,adc_data_out : std_logic_vector(31 downto 0);
156
157 --nonlinear dynamics model signals
158 signal leftChannelDataRegister,leftChannelADCRegister,

leftChannelDACRegister : std_logic_vector(15 downto 0);
159 signal rightChannelDataRegister,rightChannelADCRegister,

rightChannelDACRegister : std_logic_vector(15 downto 0);
160 signal leftChannelChaos,rightChannelChaos : std_logic_vector(15

downto 0);
161
162 signal chaosXOut,chaosYOut,chaosZOut : std_logic_vector(15

downto 0);
163 signal chaosX1,chaosY1,chaosZ1 : std_logic_vector(15 downto 0);
164 signal chaosX2,chaosX2Temp,chaosY2,chaosZ2 : std_logic_vector(15

downto 0);
165
166 -- 32-bit single-precision floating point data for

synchronization
167 signal chaosXFloatOut,chaosYFloatOut,chaosXDelayedFloatOut,

chaosYDelayedFloatOut,syncSignalXMinusY,syncSignalYMinusX :
std_logic_vector(31 downto 0);

168 signal syncClock,syncClockTemp : std_logic;
169
170 signal trigger,pulseOut : std_logic;
171
172 -- testing
173 signal clock50KHz : std_logic;
174
175 -- select signals
176 signal selectBitsX,selectBitsY : std_logic_vector
177 (1 downto 0);
178 begin
179
180 --keys are active low
181 reset <= not KEY(0);
182
183 --PLL
184 clockBufferInstance: clockBuffer port map(reset,CLOCK_50,

clock50MHz);

Appendix F: Chapter 5 VHDL 213

185
186 --I2C
187 I2CControllerInstance: audioCodecController port map(clock50MHz,

reset, i2cClock, i2cData,i2cDataControl, clock50KHz);
188
189 --Codec Controller
190 dac_data_in <= leftChannelDACRegister&rightChannelDACRegister;
191 leftChannelADCRegister <= adc_data_out(31 downto 16);
192 rightChannelADCRegister <= adc_data_out(15 downto 0);
193 adcDacInterface : adc_dac port map (
194 clk => clock50MHz,
195 reset => reset,
196 dac_data_in => dac_data_in,
197 adc_data_out => adc_data_out,
198 m_clk=>clock18MHz,
199 b_clk => bck_sig,
200 dac_lr_clk => dacLRCK_sig,
201 adc_lr_clk => adcLRCK_sig,
202 dacdat => dacDat_sig,
203 adcdat => adcDat_sig,
204 load_done_tick => open);
205
206 mulitplexers : topLevelMux port map (
207 loopbackN => SW(0),
208 chaosSystemSelect => SW(1),
209 selectLeftChannelBits => SW(4 downto 3), -- SW(2) is used to

increment or decrement bifurcation parameter
210 selectRightChannelBits => SW(6 downto 5),
211 leftChannelLoopBackIn => leftChannelADCRegister,
212 rightChannelLoopBackIn => rightChannelADCRegister,
213 chaosX1 => chaosX1,
214 chaosY1 => chaosY1,
215 chaosZ1 => chaosZ1,
216 chaosX2 => chaosX2,
217 chaosY2 => chaosY2,
218 chaosZ2 => chaosZ2,
219 leftChannelDACRegister => leftChannelDACRegister,
220 rightChannelDACRegister => rightChannelDACRegister);
221
222
223 -- ------------------------ BEGIN DSP BUILDER BASED CHAOTIC

DYNAMICS
224 -- IKEDA DDE SYNCHRONIZATION CURRENTLY DISABLED
225 -- ikedaDDESystemInstance_drive : ikedaDDESystem port map (
226 -- resetn => KEY(0),
227 -- clockIn => clock50MHz,
228 -- xFloatOut => chaosXFloatOut,
229 -- xDelayedFloatOut => chaosXDelayedFloatOut,
230 -- xOut => chaosX1,
231 -- xDelayedOut => chaosY1,
232 -- syncIn => X"00000000", -- k(t)*(y-x)
233 -- syncClock => syncClock);
234 -- chaosZ1 <= X"0000";
235
236 -- ikedaDDESystemInstance_Response : ikedaDDESystem port map (

214 Appendix F: Chapter 5 VHDL

237 -- resetn => KEY(0),
238 -- clockIn => clock50MHz,
239 -- xFloatOut => chaosYFloatOut,
240 -- xDelayedFloatOut => chaosYDelayedFloatOut,
241 -- xOut => chaosX2,
242 -- xDelayedOut => chaosY2,
243 -- syncIn => syncSignalXMinusY, -- k(t)*(x-y)
244 -- syncClock => syncClockTemp);
245 -- --chaosX2 <= chaosX1 - chaosX2Temp; -- synchronization error
246 -- chaosZ2 <= X"0000";
247
248 --
249 -- syncInstanceSquareXMinusY : synchronizer port map (
250 -- resetn => KEY(0),
251 -- clockIn => clock50MHz,
252 -- syncMode => '0',
253 -- xMinusYIn => '1',
254 -- syncClock => syncClock,
255 -- xIn => chaosXFloatOut,
256 -- yIn => chaosYFloatOut,
257 -- yDelayedIn => chaosYDelayedFloatOut,
258 -- syncOut => syncSignalXMinusY);
259 --
260 -- syncInstanceSquareYMinusX : synchronizer port map (
261 -- resetn => KEY(0),
262 -- clockIn => clock50MHz,
263 -- syncMode => '0',
264 -- xMinusYIn => '0',
265 -- syncClock => syncClock,
266 -- xIn => chaosXFloatOut,
267 -- yIn => chaosYFloatOut,
268 -- yDelayedIn => chaosYDelayedFloatOut,
269 -- syncOut => syncSignalYMinusX);
270 --
271
272 sigmoidalDDE : sigmoidDDESystem port map (
273 resetn => KEY(0),
274 clockIn => clock50MHz,
275 xFloatOut => chaosXFloatOut, -- unused
276 xDelayedFloatOut => chaosXDelayedFloatOut,
277 xOut => chaosX1,
278 xDelayedOut => chaosY1,
279 syncIn => X"00000000",
280 syncClock => syncClock);
281 chaosZ1 <= X"0000";
282
283 signumDDE : signumDDESystem port map (
284 resetn => KEY(0),
285 clockIn => clock50MHz,
286 xFloatOut => chaosYFloatOut, -- unused
287 xDelayedFloatOut => chaosYDelayedFloatOut,
288 xOut => chaosX2,
289 xDelayedOut => chaosY2,
290 syncIn => X"00000000",
291 syncClock => syncClockTemp);

Appendix F: Chapter 5 VHDL 215

292 chaosZ2 <= X"0000";
293
294 ------------------------ END DSP BUILDER CHAOTIC DYNAMICS
295
296 --tri-state data output
297 i2cDataTriState <= i2cData when i2cDataControl = '1' else 'Z';
298
299 --I2C output ports
300 I2C_SCLK <= i2cClock;
301 I2C_SDAT <= i2cDataTriState;
302
303 --audio codec input port
304 adcDat_sig <= AUD_ADCDAT;
305
306 --audio codec ouput ports
307 AUD_ADCLRCK <= adcLRCK_sig;
308 AUD_DACLRCK <= dacLRCK_sig;
309 AUD_DACDAT <= dacDat_sig;
310 AUD_XCK <= clock18MHz;
311 AUD_BCLK <= bck_sig;
312
313 --for testing
314 GPIO(5) <= adcLRCK_sig;
315 GPIO(4) <= dacLRCK_sig;
316 GPIO(3) <= bck_sig;
317 GPIO(2) <= adcDat_sig;
318 GPIO(1) <= dacDat_sig;
319 GPIO(0) <= clock18MHz;
320 LEDG(0) <= reset;
321 LEDG(1) <= clock50KHz;
322
323
324 HEX1 <= "1111111";
325 HEX0 <= "1111111";
326
327 HEX2 <= "1111111";
328 HEX3 <= "1111111";
329
330 end toplevel;

The synchronizer functionality for the Ikeda DDE is implemented in Lines 222–
267 in listing F.7. We have commented out the functionality so that the reader can
experiment with synchronization.

1. Lines 222–244 define the Ikeda drive and response system.
2. Lines 247–267 implement two synchronizer modules : one for square wave cou-

pling and the other for cosine coupling. Depending on the syncMode input, either
square wave or cosine coupling is selected (refer to listing F.6).

Within each DDE DSP builder specification, we have included a “syncIn” input
that can be tied to ground for non-synchronous designs.

Glossary

ADC Hardware component for interfacing external analog signals to digital plat-
forms.

DAC Hardware component for converting digital into analog signals. They are usu-
ally at the output-end of digital systems and can be used, for example, to drive
actuators.

DDE Differential equations that incorporate time delays. They usually need a con-
tinuum of initial conditions.

DSP These are digital integrated circuits that are designed for computation-intensive
signal processing applications.

FPGA A massively parallel semiconductor device that can be “programmed” after
manufacturing. The word programmed is in quotes since one should not think
of designing for an FPGA as programming. Rather, one should think about what
hardware one wants to specify for time critical execution on an FPGA. FPGAs
are so named because they can be “programmed” in the field.

FSM Concept from automata theory that is used to describe sequential logic.
HDL Computer languages for specifying physical hardware. VHDL and Verilog

are very popular; there are HDLs such as SystemC that is a set of C++ classes for
event-driven simulation.

LAB Logical Array Blocks consist of groups of Logic Elements on Cyclone IV
FPGAs.

LE Logic Element is the smallest unit of logic on a Cyclone IV FPGA.
LUT Look Up Tables map inputs to outputs and consist of 4 inputs in a Cyclone IV

FPGa. Hence, we can specify 216 = 65536 logic functions in one LUT.
ODE Ordinary Differential Equation is an equation that consists of a function of

one independent variable and its derivatives.
PLL These are nonlinear control systems that generate an output whose phase is

locked with the input. We primarily use these in this book to buffer clock signals
and as clock frequency multipliers.

ROM The data on these integrated circuits cannot be modified by the user, unlike
random access memories.

© Springer International Publishing Switzerland 2015
B. Muthuswamy and S. Banerjee, A Route to Chaos Using FPGAs, Emergence,
Complexity and Computation 16, DOI 10.1007/978-3-319-18105-9

217

218 Glossary

RTL A design abstraction that models a synchronous digital circuit in terms of data
flow between hardware registers and logic operations.

SDC A language for specifying timing constraints.
SDRAM A type of dynamic random access memory that is synchronized with a

system bus.
SMA A type of coaxial connector used for frequencies typically from 0 to 18 GHz.
VHDL Hardware description language that can also beused formixed-signal system

specification and a general purpose parallel programming language.

Solutions

For step-by-step solutions to all problems, please visit the book’s website:
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ARouteTo
ChaosUsingFPGAs.html

© Springer International Publishing Switzerland 2015
B. Muthuswamy and S. Banerjee, A Route to Chaos Using FPGAs, Emergence,
Complexity and Computation 16, DOI 10.1007/978-3-319-18105-9

219

http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ARouteToChaosUsingFPGAs.html
http://www.harpgroup.org/muthuswamy/ARouteToChaosUsingFPGAs/ARouteToChaosUsingFPGAs.html

	Foreword
	Preface
	Acknowledgments
	Contents
	Acronyms
	Mathematical Notations
	Conventions Used in the Book
	1 Introduction
	1.1 An Introduction to Chaos
	1.1.1 A Brief History of Chaos
	1.1.2 An Application of Chaos

	1.2 An Introduction to Field Programmable Gate Arrays
	1.2.1 History of FPGAs
	1.2.2 Why FPGAs?

	1.3 Some Basic Mathematical Concepts
	1.3.1 Linear Versus Nonlinear Equations
	1.3.2 Linear Versus Nonlinear Dynamics
	1.3.3 Fixed (Equilibrium) Points
	1.3.4 System Behaviour Near Fixed Points

	1.4 Conclusions
	References

	2 Designing Hardware for FPGAs
	2.1 The FPGA Development Flow
	2.2 The Architecture of an FPGA
	2.3 An Overview of the Hardware and Software Development Platform
	2.3.1 An Overview of the Terasic DE2-115 Development Board
	2.3.2 VHDL Primer and Using the Quartus Toolset
	2.3.3 Audio Codec Interfacing

	2.4 Timing Closure
	2.5 Conclusions
	References

	3 Chaotic ODEs: FPGA Examples
	3.1 Euler's Method
	3.2 Specifying Chaotic Systems for FPGAs Using DSP Builder
	3.2.1 The Lorenz System

	3.3 Introduction to Functional Simulation and In-System Debugging
	3.4 Functional Simulation of Chaotic Systems
	3.5 Debugging Using SignalTap
	3.5.1 General Concepts---An Illustration Using a Simple Example
	3.5.2 Debugging the Chen System Using SignalTap

	3.6 Hardware Debugging Concepts
	3.6.1 Observing a Problem
	3.6.2 Identifying the Problem
	3.6.3 Sources of Errors in VHDL Designs
	3.6.4 Design Procedure

	3.7 Another Example---A Highly Complex Attractor System
	3.8 Conclusions
	References

	4 Bifurcations
	4.1 The Concept of Bifurcations
	4.2 Routes to Chaos
	4.2.1 Period-Doubling Route to Chaos
	4.2.2 Period-Adding Route to Chaos
	4.2.3 Quasi-Periodic Route to Chaos
	4.2.4 Intermittency Route to Chaos
	4.2.5 Chaotic Transients and Crisis

	4.3 Bifurcation Experiments with an FPGA
	4.3.1 Period-Doubling Route to Chaos
	4.3.2 Period-Adding Route to Chaos
	4.3.3 Quasi-Periodic Route to Chaos

	4.4 Conclusions
	References

	5 Chaotic DDEs: FPGA Examples and Synchronization Applications
	5.1 An Introduction to Time Delay Systems
	5.2 Simulating DDEs in Simulink
	5.3 FPGA Realization of DDEs
	5.4 Applications of (Time Delayed) Chaotic Systems---Synchronization
	5.4.1 Unidirectional Coupling
	5.4.2 Bidirectional Coupling

	5.5 Conclusions
	Lab 5: The Lang-Kobayashi Chaotic Delay Differential Equation
	References

	Appendix A Introduction to MATLAB and Simulink
	Appendix B Chapter 1 MATLAB Code
	Appendix C Chapter 2 VHDL, Simulink DSP Builderand SDC File
	Appendix D Chapter 3 VHDL, MATLAB Codeand ModelSim Scripts
	Appendix E Chapter 4 MATLAB Code, VHDLand ModelSim Scripts
	Appendix F Chapter 5 VHDL
	Glossary
	Solutions

