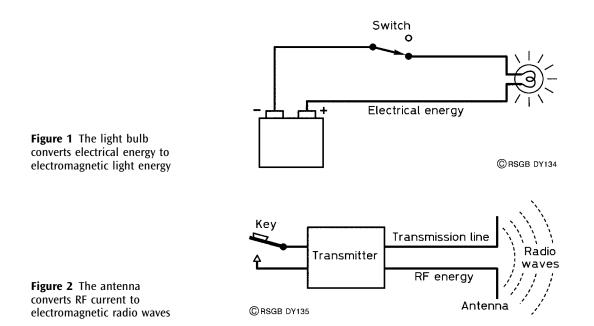
49 Standing waves


Introduction

Everyone has, or *should* have, a standing-wave ratio (SWR) meter as part of his/her array of test gear. Most people know how to use it, but what does it really do?

Before attempting to answer that question, we need to look at some aerial fundamentals. An aerial is a *transducer*, the word meaning 'to lead across'. We use it whenever one form of energy is converted into another form. A bulb is a transducer; it converts electrical energy in the filament to radiated heat and light energy. **Figure 1** shows the situation.

An aerial, or antenna, is also a transducer; it converts radio-frequency (RF) energy in the feeder (or *transmission line*, to give it its proper name) into radiated electromagnetic energy, in the manner shown in Figure 2. The aerial has resistance, just like the bulb filament, and if the filament had zero resistance, there would be no radiated energy. In the same way, if the aerial had no resistance, there would be no radiation from it.

Transmission lines should convey RF energy from transmitter to aerial with the minimum power loss. A common form of transmission line is the *coaxial*

cable. As you might expect, any feeder cable has a DC resistance caused by the resistance of the copper wire from which it is made. It also has an AC resistance, caused by the capacitance between the centre conductor and the braid, and by the inductance of the cable itself. This means that the feeder has an *impedance*, which is constant for the particular type of cable. This is what we call the *characteristic impedance* and, for the cables used in most amateur radio applications, it is 50 Ω .

If this impedance can be made the same as that of the aerial (it is already the same as the impedance of the transmitter output), then the transfer of energy will occur with minimum loss. If the aerial and cable impedances are *not* the same, then there is a *mismatch*, which causes some of the RF energy to be reflected back towards the transmitter. We now have a situation where RF energy is flowing along the cable from the transmitter to the aerial (the *forward* wave) and, at the same time, flowing from the aerial to the transmitter (the *reflected* wave). The two waves interact along the cable and form a stationary pattern of voltage and current. The pattern is known as a *standing wave*, and can be visualised from the waveforms in Figure 3. The ratio of the maximum voltage to the minimum voltage on a given wave defines the *voltage standing-wave ratio* (VSWR), or just *standing-wave ratio* (SWR) for short.

The SWR meter is easy to use. It is positioned in the feeder between the transmitter and the aerial tuning unit (ATU) if there is one, or between the transmitter at the aerial otherwise. Most meters have a single meter and a four-position switch. The transmitter is first keyed and, with the switch in

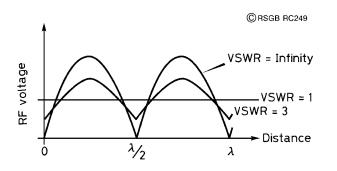


Figure 3 Standing waves on a transmission line

the 'calibrate' position, the sensitivity control is adjusted to give full-scale deflection on the meter. The switch is then changed to 'forward' to read the forward power, to 'reflected' to read the reflected power, and to 'SWR' to read the value of the standing-wave ratio. When there is no reflection (see Figure 3), the meter should read 1:1 or, simply, 1.

Most SWR meters remain in the feeder line while the transmitter is operating, so the condition of the aerial and feeder can be constantly monitored. Problems with the aerial (such as water entering the feeder at its junction with the driven element) are immediately shown up. Without the use of the SWR meter, the situation would slowly deteriorate over several months and you would be left wondering why so few stations were answering your calls!