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6
Circuit Fundamentals

6.1 Introduction
Electronic circuits are composed of elements such as resistors, capacitors, inductors,
and voltage and current sources, all of which may be interconnected to permit the
flow of electric currents. An element is the smallest component into which circuits
can be subdivided. The points on a circuit element where they are connected in a cir-
cuit are called terminals.

Elements can have two or more terminals, as shown in Figure 6.1. The resistor, ca-
pacitor, inductor, and diode shown in the Figure 6.1a are two-terminal elements; the
transistor in Figure 6.1b is a three-terminal element; and the transformer in Figure 6.1c
is a four-terminal element.

Circuit elements and components also are classified as to their function in a circuit.
An element is considered passive if it absorbs energy and active if it increases the level
of energy in a signal. An element that receives energy from either a passive or active el-
ement is called a load. In addition, either passive or active elements, or components,
can serve as loads.

The basic relationship of current and voltage in a two-terminal circuit where the
voltage is constant and there is only one source of voltage is given in Ohm’s law. This
states that the voltage V between the terminals of a conductor varies in accordance with
the current I. The ratio of voltage, current, and resistance R is expressed in Ohm’s law as
follows:

E I R= × (6.1)

Using Ohm’s law, the calculation for power in watts can be developed from P = E × I
as follows:

P
E

R
and P I R= = ×

2
2 (6.2)
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Acircuit, consisting of a number of elements or components, usually amplifies or
otherwise modifies a signal before delivering it to a load. Theterminal to which a signal
is applied is aninput port, or driving port. The pair or group of terminals that delivers a
signal to a load is the output port. An element or portion of a circuit between two termi-
nals is a branch. The circuit shown in Figure 6.2 is made up of several elements and
branches. R1 is a branch, and R1 and C1 make up a two-element branch. The secondary
of transformer T, a voltage source, and R2 also constitute a branch. The point at which
three or more branches join together is a node. A series connection of elements or
branches, called a path, in which the end is connected back to the start is a closed loop.

6.2 Circuit Analysis
Relatively complex configurations of linear circuit elements, that is, where the signal
gain or loss is constant over the signal amplitude range, can be analyzed by simplifi-
cation into the equivalent circuits. After the restructuring of a circuit into an equiva-
lent form, the current and voltage characteristics at various nodes can be calculated

Figure 6.1 Schematic examples of circuit elements: (a) two-terminal element, (b)
three-terminal element, (c) four-terminal element.

Figure 6.2 Circuit configuration composed of several elements and branches, and a
closed loop (R1, R, C1, R2, and Ls).

(a)

(c)(b)
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using network-analysis theorems, including Kirchoff’s current and voltage laws,
Thevenin’s theorem, and Norton’s theorem.

• Kirchoff’s current law (KCL). The algebraic sum of the instantaneous currents
entering a node (a common terminal of three or more branches) is zero. In other
words, the currents from two branches entering a node add algebraically to the
current leaving the node in a third branch.

• Kirchoff’s voltage law (KVL). The algebraic sum of instantaneous voltages
around a closed loop is zero.

• Thevenin’s theorem. The behavior of a circuit at its terminals can be simulated
by replacement with a voltage E from a dc source in series with an impedance Z
(see Figure 6.3a).

• Norton’s theorem. The behavior of a circuit at its terminals can be simulated by
replacement with a dc source I in parallel with an impedance Z (see Figure 6.3b).

6.2.1 AC Circuits

Vectors are used commonly in ac circuit analysis to represent voltage or current val-
ues. Rather than using waveforms to show phase relationships, it is accepted practice
to use vector representations (sometimes called phasor diagrams). To begin a vector
diagram, a horizontal line is drawn, its left end being the reference point. Rotation in a
counterclockwise direction from the reference point is considered to be positive. Vec-
tors may be used to compare voltage drops across the components of a circuit contain-
ing resistance, inductance, and/or capacitance. Figure 6.4 shows the vector relation-
ship in a series RLC circuit, and Figure 6.5 shows a parallel RLC circuit.

Power Relationship in AC Circuits

In a dc circuit, power is equal to the product of voltage and current. This formula also
is true for purely resistive ac circuits. However, when a reactance—either inductive or
capacitive—is present in an ac circuit, the dc power formula does not apply. The prod-
uct of voltage and current is, instead, expressed in volt-amperes (VA) or
kilovoltamperes (kVA). This product is known as the apparent power. When meters

Figure 6.3 Equivalent circuits: (a) Thevenin’s equivalent voltage source, (b) Norton’s
equivalent current source. (After [1].)

(a) (b)
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are used to measure power in an ac circuit, the apparent power is the voltage reading
multiplied by the current reading. The actual power that is converted to another form
of energy by the circuit is measured with a wattmeter, and is referred to as the true
power. In ac power-system design and operation, it is desirable to know the ratio of
true power converted in a given circuit to the apparent power of the circuit. This ratio
is referred to as the power factor.

6.2.2 Complex Numbers

A complex number is represented by a real part and an imaginary part. For example,
in A = a + jb, A is the complex number; a is the real part, sometimes written as Re(A);
and b is the imaginary part of A, often written as Im(A). It is a convention to precede
the imaginary component by the letter j (or i). This form of writing the real and imagi-
nary components is called the Cartesian form and symbolizes the complex (or s)
plane, wherein both the real and imaginary components can be indicated graphically

Figure 6.5 Current vectors in a parallel RLC circuit.

Figure 6.4 Voltage vectors in a series RLC circuit.
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[2]. To illustrate this, consider the same complex number A when represented graphi-
cally as shown in Figure 6.6. A second complex number B is also shown to illustrate
the fact that the real and imaginary components can take on both positive and negative
values. Figure 6.6 also shows an alternate form of representing complex numbers.
When a complex number is represented by its magnitude and angle, for example, A =
rA∠θA, it is called the polar representation.

To see the relationship between the Cartesian and the polar forms, the following
equations can be used:

r a bA = +2 2 (6.3)

θA

b

a
= −tan 1 (6.4)

Conceptually, a better perspective can be obtained by investigating the triangle
shown in Figure 6.7, and considering the trigonometric relationships. From this figure,
it can be seen that

Figure 6.6 The s plane representing two complex numbers. (From [2]. Used with per-
mission.)
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( )a A rA A= =Re( ) cos θ (6.5)

( ) ( )b A rA A= =Im sin θ (6.6)

The well-known Euler’s identity is a convenient conversion of the polar and Carte-
sian forms into an exponential form, given by

( )exp cos sinj jθ θ θ= + (6.7)

6.2.3 Phasors

The ac voltages and currents appearing in distribution systems can be represented by
phasors, a concept useful in obtaining analytical solutions to one-phase and
three-phase system design. A phasor is generally defined as a transform of sinusoidal
functions from the time domain into the complex-number domain and given by the
expression

V = ( ) ( ){ }V j P V t Vexp cosθ ω θ θ= + = ∠ (6.8)

where V is the phasor, V is the magnitude of the phasor, and θ is the angle of the
phasor. The convention used here is to use boldface symbols to symbolize phasor
quantities. Graphically, in the time domain, the phasor V would be a simple sinusoidal
wave shape as shown in Figure 6.8. The concept of a phasor leading or lagging an-
other phasor becomes very apparent from the figure.

Phasor diagrams are also an effective medium for understanding the relationships
between phasors. Figure 6.9 shows a phasor diagram for the phasors represented in Fig-
ure 6.8. In this diagram, the convention of positive angles being read counterclockwise
is used. The other alternative is certainly possible as well. It is quite apparent that a
purely capacitive load could result in the phasors shown in Figures 6.8 and 6.9.

Figure 6.7 The relationship between Cartesian and polar forms. (From [2]. Used with
permission.)
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6.2.4 Per Unit System

In the per unit system, basic quantities such as voltage and current are represented as
certain percentages of base quantities. When so expressed, these per unit quantities do
not need units, thereby making numerical analysis in power systems somewhat easier
to handle. Four quantities encompass all variables required to solve a power system
problem. These quantities are

• Voltage

• Current

• Power

• Impedance

Out of these, only two base quantities, corresponding to voltage (Vb) and power (Sb),
are required to be defined. The other base quantities can be derived from these two.
Consider the following. Let

Figure 6.9 Phasor diagram showing phasor representation and phasor operation.
(From [2]. Used with permission.)

Figure 6.8 Waveforms representing leading and lagging phasors. (From [2]. Used with
permission.)
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Vb = voltage base, kV
Sb = power base, MVA
Ib = current base, A
Zb = impedance base, Q

Then,

Z
V

S
b

b

b

=
2

Ω (6.9)

I
V

Z
b

b

b

=
10 3

A (6.10)

6.2.5 Principles of Resonance

All RF systems rely on the principles of resonance for operation. Three basic systems
exist:

• Series resonance circuits

• Parallel resonance circuits

• Cavity resonators

Series Resonant Circuits

When a constant voltage of varying frequency is applied to a circuit consisting of an
inductance, capacitance, and resistance (all in series), the current that flows depends
upon frequency in the manner shown in Figure 6.10. At low frequencies, the capaci-
tive reactance of the circuit is large and the inductive reactance is small, so that most
of the voltage drop is across the capacitor, while the current is small and leads the ap-
plied voltage by nearly 90°. At high frequencies, the inductive reactance is large and
the capacitive reactance is low, resulting in a small current that lags nearly 90° behind
the applied voltage; most of the voltage drop is across the inductance. Between these
two extremes is the resonant frequency, at which the capacitive and inductive
reactances are equal and, consequently, neutralize each other, leaving only the resis-
tance of the circuit to oppose the flow of current. The current at this resonant fre-
quency is, accordingly, equal to the applied voltage divided by the circuit resistance,
and it is very large if the resistance is low.

The characteristics of a series resonant circuit depend primarily upon the ratio of in-
ductive reactance ωL to circuit resistance R, known as the circuit Q:

Q
L

R
= ω

(6.11)

The circuit Q also may be defined by:
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Q
E

E
s

d

= 





2π (6.12)

Where:
Es = energy stored in the circuit
Ed = energy dissipated in the circuit during one cycle

Most of the loss in a resonant circuit is the result of coil resistance; the losses in a
properly constructed capacitor are usually small in comparison with those of the coil.

The general effect of different circuit resistances (different values of Q) is shown in
Figure 6.10. As illustrated, when the frequency differs appreciably from the resonant
frequency, the actual current is practically independent of circuit resistance and is
nearly the current that would be obtained with no losses. On the other hand, the current
at the resonant frequency is determined solely by the resistance. The effect of increas-
ing the resistance of a series circuit is, accordingly, to flatten the resonance curve by re-

Figure 6.10 Characteristics of a series resonant circuit as a function of frequency for a
constant applied voltage and different circuit Qs: (a) magnitude, (b) phase angle.

(b)

(a)
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ducing the current at resonance. This broadens the top of the curve, giving a more uni-
form current over a band of frequencies near the resonant point. This broadening is
achieved, however, by reducing the selectivity of the tuned circuit.

Parallel Resonant Circuits

A parallel circuit consisting of an inductance branch in parallel with a capacitance
branch offers an impedance of the character shown in Figure 6.11. At low frequen-
cies, the inductive branch draws a large lagging current while the leading current of
the capacitive branch is small, resulting in a large lagging line current and a low lag-
ging circuit impedance. At high frequencies, the inductance has a high reactance
compared with the capacitance, resulting in a large leading line current and a corre-
sponding low circuit impedance that is leading in phase. Between these two extremes
is a frequency at which the lagging current taken by the inductive branch and the lead-
ing current entering the capacitive branch are equal. Being 180° out of phase, they

Figure 6.11 Characteristics of a parallel resonant circuit as a function of frequency for
different circuit Qs: (a) magnitude, (b) phase angle.

(a)

(b)
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neutralize, leaving only a small resultant in-phase current flowing in the line; the im-
pedance of the parallel circuit is, therefore, high.

The effect of circuit resistance on the impedance of the parallel circuit is similar to
the influence that resistance has on the current flowing in a series resonant circuit, as is
evident when Figures 6.10 and 6.11 are compared. Increasing the resistance of a paral-
lel circuit lowers and flattens the peak of the impedance curve without appreciably al-
tering the sides, which are relatively independent of the circuit resistance.

The resonant frequency F0 of a parallel circuit can be taken as the same frequency at
which the same circuit is in series resonance:

F
LC

0

1

2
=

π
(6.13)

Where:
L = inductance in the circuit
C = capacitance in the circuit

When the circuit Q is large, the frequencies corresponding to the maximum imped-
ance of the circuit and to unity power factor of this impedance coincide, for all practical
purposes, with the resonant frequency defined in this way. When the circuit Q is low,
however, this rule does not necessarily apply.

6.3 Passive/Active Circuit Components
A voltage applied to a passive component results in the flow of current and the dissi-
pation or storage of energy. Typical passive components are resistors, coils or
inductors, and capacitors. For an example, the flow of current in a resistor results in
radiation of heat; from a light bulb, the radiation of light as well as heat.

On the other hand, an active component either (1) increases the level of electric en-
ergy or (2) provides available electric energy as a voltage. As an example of (1), an am-
plifier produces an increase in energy as a higher voltage or power level, while for (2),
batteries and generators serve as energy sources.

Active components can generate more alternating signal power into an output load
resistance than the power absorbed at the input at the same frequency. Active compo-
nents are the major building blocks in system assemblies such as amplifiers and oscilla-
tors.
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