UNIVERSAL HIGH-RESISTANCE VOLTMETER

he full-scale deflection of the universal high-input-resistance voltmeter circuit shown in the figure

D1 1N4001

IN4001

IN4

depends on the function switch position as follows:

- (a) 5V DC on position 1
- (b) 5V AC rms in position 2
- (c) 5V peak AC in position 3
- (d) 5V AC peak-to-peak in position 4

The circuit is basically a voltage-tocurrent converter. The design procedure is as follows: Calculate R_I according to the application from one of the following equations:

- (a) DC voltmeter: R_{IA} = full-scale E_{DC}/I_{FS}
 - (b) RMS AC voltmeter (sine wave only): $R_{\rm IB}$ = 0.9 $\,$ full-scale $E_{\rm RMS}/$ $I_{\rm FS}$
 - (c) Peak reading voltmeter (sine wave only): $R_{_{\rm IC}}$ = 0.636 full-scale $E_{_{PK}}/I_{_{\rm FS}}$
 - (d) Peak-to-peak AC voltmeter (sine wave only): $R_{ID} = 0.318$ full-scale $E_{DM, TO, DM} / I_{DO}$

full-scale $E_{\rm PK-TO-PK}/I_{\rm FS}$ The term $I_{\rm FS}$ in the above equations refers to meter's full-scale deflection current rating in amperes.

It must be noted that neither meter resistance nor diode voltage drops affects meter current.

Note: The results obtained during practical testing of the cir-

cuit in EFY lab are tabulated in Tables I through IV.

A high-input-resistance op-amp, a bridge rectifier, a microammeter, and a few other discrete components are all that are required to realise this versatile circuit. This circuit can be used for measurement of DC, AC RMS, AC peak, or AC peak-to-peak voltage by simply chang-

 $\mathbf{E}_{ ext{dc}}$ input Meter Current

 $\mathbf{E}_{\mathrm{rms}}$ input Meter Current

 E_{Pk} input Meter Current

 $E_{\mathrm{Pk:To:Pk}}$ Meter Current

ing the value of the resistor connected between the inverting input terminal of the op-amp and ground. The voltage to be measured is connected to non-inverting input of the op-amp.