

AP Basic Language Manual

AP Basic

S
y

s
t

e
m

 A
u

t
o

m
a

t
io

n

AP Basic
Language Manual

User’s Guide and Language Reference for

AP Basic, the programming language for

Audio Precision test and measurement instruments

No part of this manual may be reproduced or transmitted in any
form or by any means, electronic or mechanical, including
photocopying, recording, or by any information storage and
retrieval system, without permission in writing from the
publisher.

Audio Precision®, System One®, System Two™, System Two
Cascade™, System Two Cascade Plus™, Cascade™,
Cascade Plus™, System One + DSP™, System Two + DSP™,
Dual Domain®, FASTTEST®, APWIN™, ATS™ and
ATS-2™are trademarks of Audio Precision, Inc. Windows is a
trademark of Microsoft Corporation.

Printed in the United States of America

Copyright � 2003 Audio Precision, Inc.

All rights reserved.

PN 8211.0089 Revision 4

III0820161119

5750 SW Arctic Drive
Beaverton, Oregon 97005
Tel: 503-627-0832
Fax: 503-641-8906
US Toll Free: 1-800-231-7350
email: info@audioprecision.com
Web: audioprecision.com

Contents

Chapter 1
Introduction . 1

AP Basic Documentation . 2

AP Basic Language Manual . 2

AP Basic Extensions . 2

Chapter Overviews . 2

Manual Conventions . 3

Terminology . 4

Sample Files and Examples . 4

Using Online Help. 5

Getting Started In AP Basic . 5

Macro Editor Overview . 5

Sheets. 6

Entering and Editing Code with the Macro Editor . 7

Find Out More About Visual Basic . 7

… for Experienced VB Programmers . 7

Chapter 2
Fundamentals of AP Basic . 9

What is an AP Basic Program? . 9

Using Subroutines . 10

Elements of a Subroutine . 10

Arguments . 11

How to Use Subroutines. 13

Calling Subroutines . 14

Calling Subroutines from Other Modules . 15

Objects, Methods, and Properties . 17

What Are Objects?. 17

Working With Objects . 18

Properties of an Object . 18

Using the Methods of an Object . 19

The Object Browser . 20

Chapter 3
Writing An AP Basic Macro . 23

Using Learn Mode . 23

AP Basic Language Manual i

Example AP Basic macro . 25

Macro Structure . 27

Commenting Code. 28

Keywords and Commands . 29

Using Variables and Constants . 29

Declaring Variables . 30

Scope of Variables. 31

Data Types. 33

The Variant Data Type . 34

Constants . 34

Controlling Macro Flow . 35

Control Structures . 36

If...Then . 36

If...Then...Else . 37

Select Case . 37

Loop Structures . 38

For...Next . 38

Do...Loop . 39

Chapter 4
Testing and Debugging. 41

Types of Programming Errors . 41

Debugging Tools on the Toolbar . 42

Break Mode . 43

Accessing Break Mode . 43

Stepping Through Code . 44

Using The Debug Window. 45

Error Handling . 47

AP Basic Error Handling Commands . 48

Chapter 5
Creating Custom User Interfaces . 51

Chapter 6
Language Reference . 55

Introduction . 55

Groups. 55

Operators . 57

Data Types. 58

Keywords . 60

Language Commands . 61

Abs . 61

AppActivate . 61

Array . 62

Asc. 62

Atn . 62

ii AP Basic Language Manual

Contents

Attribute . 63

Beep . 63

Begin Dialog . 63

Call. 64

CallByName . 65

CallersLine . 65

CancelButton Dialog Item . 66

CBool . 67

CByte . 68

CCur . 68

CDate . 68

CDbl . 69

ChDir . 69

ChDrive . 69

CheckBox . 70

Choose . 70

Chr$. 71

CInt . 71

Class. 72

Class_Initialize . 73

Class_Terminate . 73

Clipboard . 74

CLng . 74

Close . 74

Code . 75

ComboBox . 75

Command$. 76

Const . 77

Cos . 77

CreateObject . 77

CSng . 78

CStr . 78

CurDir$. 79

CVar . 79

CVErr . 80

Date . 80

DateAdd . 81

DateDiff . 82

DatePart . 82

DateSerial . 83

DateValue . 83

Day. 84

dBToPowerRatio . 84

dBToVoltageRatio. 84

DDEExecute . 85

Contents

AP Basic Language Manual iii

DDEInitiate . 85

DDEPoke . 86

DDERequest$. 86

DDETerminate. 87

DDETerminateAll . 87

Debug . 88

Declare . 88

Def . 89

DeleteSetting . 91

Dialog . 91

DialogFunc . 92

Dim . 94

Dir$. 94

DlgControlId . 95

DlgCount . 96

DlgEnable . 96

DlgEnd. 97

DlgFocus . 98

DlgListBoxArray . 99

DlgName . 101

DlgNumber . 101

DlgSetPicture . 102

DlgText . 104

DlgType . 105

DlgValue . 106

DlgVisible . 108

Do . 109

DoEvents . 110

DropListBox . 110

End . 111

Enum . 111

Environ . 112

Eof . 113

Erase . 113

Err . 113

Error . 114

Exit . 114

Exp . 116

Exp10 . 116

FileAttr . 116

FileCopy . 117

FileDateTime . 117

FileLen . 118

Fix . 118

For . 119

iv AP Basic Language Manual

Contents

For Each . 119

Format$. 120

FreeFile . 123

Function . 124

Get . 125

GetAllSettings . 125

GetAttr . 126

GetFilePath$. 126

GetObject . 127

GetSetting . 128

Goto . 128

GroupBox Dialog Item . 129

Hex$. 129

Hour . 130

If . 130

IIf . 131

Input . 131

Input$. 132

InputBox$. 132

InStr . 133

InStrRev . 133

Int . 134

Is . 134

IsArray . 134

IsDate . 135

IsEmpty . 135

IsError . 136

IsMissing . 137

IsNull . 137

IsNumeric . 138

IsObject . 139

Kill . 139

LBound. 140

LCase$. 140

Left$. 141

Len . 141

Let . 141

Like . 142

Line Input . 142

ListBox Dialog Item . 142

Loc . 143

Lock . 144

LOF . 145

Log . 145

Log10. 145

Contents

AP Basic Language Manual v

LSet . 146

LTrim$. 146

MacroDir$. 147

MacroRun . 147

MacroRunThis . 147

Main . 148

Me . 148

Mid$. 149

Minute . 150

MkDir . 150

Month . 150

MonthName . 151

MsgBox . 151

Name . 152

Now. 152

Oct$. 152

Object . 153

Object_Initialize Sub . 154

Object_Terminate Sub . 154

Oct$. 155

OKButton Dialog Item . 155

On Error . 156

Open . 156

Option . 157

OptionButton Dialog Item. 157

OptionGroup . 158

Pow . 159

Picture Dialog Item . 159

PowerRatioTodB. 160

Print . 160

Private . 161

Private . 162

Property . 162

Public . 163

Public . 163

PushButton Dialog Item. 163

Put . 164

QBColor . 165

Randomize . 167

ReDim . 167

Reference . 167

Rem . 168

Replace . 168

Reset . 169

Resume . 169

vi AP Basic Language Manual

Contents

RGB . 170

Right$. 170

RmDir . 171

Rnd . 171

Round . 172

RSet . 172

RTrim$. 172

SaveSetting . 173

Second . 173

Seek . 174

Seek . 174

Select Case . 174

SendKeys . 175

Set . 177

SetAttr . 177

Sgn . 178

Shell . 178

Sin . 179

Space$. 179

Sqr . 180

Static . 180

Stop . 180

Str$. 181

StrComp$. 181

StrConv$. 182

StrReverse$. 183

String$. 183

Sub . 184

Tan . 185

Text Dialog Item . 186

TextBox Dialog Item . 187

Time . 187

Timer . 188

TimeSerial . 188

TimeValue . 188

Trim$. 189

Type . 189

TypeName . 190

UBound . 191

UCase$. 192

Unlock . 192

Uses . 193

Val . 194

VarType. 194

VoltageRatioTodB . 195

Contents

AP Basic Language Manual vii

Wait . 196

WaitAndDoEvents . 196

Weekday . 196

WeekdayName . 197

While . 197

With. 197

WithEvents . 198

Write . 198

Year. 199

Appendix A
Terms. 201

Appendix B
Error Codes . 209

viii AP Basic Language Manual

Contents

Chapter 1

Introduction

Welcome to the AP Basic Language Manual, your guide to creating custom

test programs for Audio Precision’s PC-controlled measurement instruments,

including

� System One

� System Two

� System Two Cascade

� System Two Cascade Plus

� the 2700 series, and

� the ATS-2.

These will be referred to collectively as “instruments” or “systems”

throughout this guide.

AP Basic is a powerful and easy-to-use programming language compatible

with Microsoft’s Visual Basic for Applications (VBA). In this book, you’ll

learn how to create AP Basic programs called macros (sometimes called pro-

cedures) that can load and run tests, automate repetitive tasks, and add custom

features and functions to your system’s control software to suit your measure-

ment needs.

AP Basic macros are lists of commands that tell the control software

(APWIN, ATS, AP2700, etc.) what to do. Included with AP Basic are many

extension commands you can use in your programs to automate control of your

Audio Precision instrument. You do not need to develop any special com-

mands to automate the control software or the instrument; all of these com-

mands are available when you begin using AP Basic.

One of the most exciting features in AP Basic is its support of ActiveX Auto-

mation. ActiveX Automation is used with Microsoft Windows to allow

ActiveX-compliant applications to share information. Using the ActiveX

Automation features in AP Basic it is possible, for example, to take the results

from a system measurement, move the data into any Microsoft Excel spread-

sheet where it can be further manipulated, then take these results into

Microsoft Word where they can be inserted into a report form. All of this can

AP Basic Language Manual 1

be automated and run entirely from within AP Basic. The results of your Word

document can even be printed from inside AP Basic.

NOTE: Earlier software versions and older documentation will refer to an

Microsoft Windows protocol called OLE Automation, which shares many fea-

tures with ActiveX Automation and accomplished the same tasks in AP Basic.

All of this power and functionality might lead you to think AP Basic is a

difficult and complex programming language. In fact, AP Basic is one of the

easiest development environments to use. Even if you have never programmed

before, you will be surprised how quickly you will begin developing interest-

ing and powerful programs.

AP Basic Documentation

AP Basic Language Manual

This book provides an introduction to programming in AP Basic. Chapters

1–5 are intended as a tutorial to help beginning users understand what AP Ba-

sic is and how to use it to develop programs.

Chapter 6 is a Language Reference and lists the generic commands avail-

able in AP Basic. These are the same commands you will find available in any

Visual Basic (VB) compatible application.

AP Basic Extensions

Extensions to the generic commands detailed in Chapter 6 are documented

in Basic Extensions Reference manuals specific to each Audio Precision in-

strument. Extension Reference manuals include:

� AP Basic Extensions Reference for System One

� AP Basic Extensions Reference for System Two

� AP Basic Extensions Reference for System Two Cascade

� AP Basic Extensions Reference for System Two Cascade Plus

� AP Basic Extensions Reference for 2700 Series Instruments

� AP Basic Extensions Reference for ATS-2

Chapter Overviews

Chapter 1 provides a general overview of Audio Precision control software

to help the first-time user get started quickly.

Chapter 1: Introduction AP Basic Documentation

2 AP Basic Language Manual

Chapter 2 provides an introduction to the fundamentals of AP Basic. Sev-

eral of the key concepts in Visual Basic are introduced, including objects,

methods and properties, and the use of macros.

Chapter 3 moves beyond the concepts of Visual Basic and jumps into the

fundamentals of writing a program. Working from a simple example, each of

the key elements of a program is introduced and discussed. Some of the key

topics discussed in this chapter include the structure of a program, syntax, and

an introduction to commonly used commands.

Chapter 4 describes how to test and debug a program. AP Basic provides a

number of tools to assist in verifying correct operation of a program. Addi-

tional topics include tips for simplifying the debugging process, common pro-

gramming mistakes to avoid, and error handling.

Chapter 5 provides an introduction to the AP Basic Dialog Editor. The Dia-

log Editor provides an easy way of creating a user interface consisting of

menus, and other dialogs that an operator can interact with to control your pro-

gram.

Chapter 6 is a listing of generic commands available whenever you use AP

Basic, regardless of instrument. These commands are used by all applications

which utilize Visual Basic-compatible commands.

Manual Conventions

This manual uses the following typographic conventions.

Example Description

event, var, arg For the syntax part of each command, italicized
words indicate placeholders where the user must
enter additional information.

FILENAME.TXT Words in all CAPITAL letters indicate file names.

This font is used in all example macros and code
modules.

[expressionlist] In syntax, items inside square brackets are optional.

{While | Until} In syntax, braces and a vertical bar indicate a choice
between two or more items.

AP Basic Documentation Chapter 1: Introduction

AP Basic Language Manual 3

Sub Main
AP.Gen.Amp = 1.0
End Sub

Command For the syntax part of each command, the bold
characters identify the part of the command that
must be entered.

The line continue character (_) is used to indicate
that the code from one line to the next should be
typed on one line.

Terminology

Audio Precision has used the term procedure since our first product to iden-

tify a facility that will automatically run a sequence of tests; in other words, an

automation program or script. This was in line with test and measurement in-

dustry usage, where the process of performing one or more tests or measure-

ments has long been called a test procedure.

However, software programmers refer to such programs and scripts as mac-

ros, reserving the term procedure to identify specific parts of programs or

subprograms.

Audio Precision is now adopting the term macro as the name for the AP Ba-

sic programs that automate our control software, and we are deprecating the

use of the term procedure for this use.

In short, what were called procedures in older Audio Precision documenta-

tion and user interface are now called macros. However, you will find embed-

ded references, folder names, etc. that continue to use the term procedure.

Sample Files and Examples

We have designed and written many sample macros for your instrument that

you may choose to study or include as part of macros you may write. These

samples are available in the Samples area under Support at our Web site at

audioprecision.com.

AP Basic macros for System One, System Two, System Two Cascade and

2700 series instruments have the filename extension *.apb; AP Basic macros

for the ATS-2 have the filename extension *.atsb.

These samples are excellent learning tools and are representative of the type

of programs you are likely to develop. You can load these macros into the

Macro Editor where you can edit them or even use them in part or entirely

within your own program.

Chapter 1: Introduction AP Basic Documentation

4 AP Basic Language Manual

AP.Prompt. _
Text "This _
is just an _
example."

Using Online Help

Audio Precision includes extensive online help with the control software to

assist you in developing AP Basic programs. Help is accessible in the follow-

ing ways:

� Choose Help from the Main menu in the control software. If you have

already opened the Macro Editor panel, you can select between AP Basic

Language, AP Basic Extensions, or Macro Editor help.

� Highlight a command or keyword in the Macro Editor and press F1 for

context-sensitive help.

� Click the Browse Object button on the Macro Editor toolbar, and then

select the method or property you need information about. The Object

Browser provides information about all of the classes and objects avail-

able in the control software.

� Highlight a specific AP Basic extension command and click the Browse

Object button on the Macro Editor toolbar for information about the

methods and properties of the command.

Getting Started In AP Basic

AP Basic is automatically installed on your computer when you install the

Audio Precision control software for your instrument. There are no extra in-

stallation steps necessary to use AP Basic. See the “Getting Started” manual

included with your instrument for instruction on installing your control soft-

ware.

To begin using AP Basic, open the Macro Editor panel in the control soft-

ware. Open this panel by choosing Macro Editor in the Panels menu or by

clicking the Macro Editor button on the toolbar. See Figure 1.

Macro Editor Overview

The Macro Editor offers a number of menu options and buttons to make it

easier to use.

The Main menu runs across the top of the Macro Editor, offering access to

all the editor functions through seven submenus. If you right click within the

edit window, a popup menu will appear, offering the same choices as the Main

menu.

Below the Main menu is the Toolbar, with one-button access to many of the

editor functions. Each of the buttons is explained in detail in the on-line help.

You can also get information about a specific button by pausing the mouse

pointer over a button for a moment. A Tool Tip will pop up indicating the pur-

pose of the button.

Getting Started In AP Basic Chapter 1: Introduction

AP Basic Language Manual 5

Click the mouse on any of the available menu options to select the option

you want. To open an AP Basic macro, click the Open button or choose File >

Open.

Sheets

You can use the Macro Editor to open several macros at one time. Each time

a macro is opened, a new sheet is created and the macro is placed on the sheet.

You can select between sheets by clicking the number on the sheet toolbar

(running along the left edge of the Macro Editor, as shown in Figure 1) corre-

sponding to the macro you want.. This enables you to quickly switch between

macros when you want to cut and paste code. Close a sheet by double-clicking

on the sheet number or by choosing Sheet > Close.

Once you have loaded or entered a macro, you can run it by clicking the

Start/Resume button on the toolbar.

When you run a macro, AP Basic will execute the commands that make up

the macro. If you have several sheets open at one time, AP Basic will only run

the macro that is currently shown when the Start/Resume button is clicked.

To run a different open macro, select the sheet number of the macro by click-

ing on the sheet toolbar on the left side of the Macro Editor, as shown in Fig-

ure 1.

The Macro Editor can also be used to diagnose and fix errors in your pro-

gram. To use the debug features choose Debug from the Main menu or click

Chapter 1: Introduction Getting Started In AP Basic

6 AP Basic Language Manual

Figure 1. The Macro Editor

one of the debug buttons on the toolbar. See Chapter 4 for detailed information

on testing and debugging macros.

Entering and Editing Code with the Macro Editor

In programming, the raw text that comprise the program is called code. To

enter new code (text) or edit existing code with the Macro Editor, use the

mouse to position the cursor to where you want to begin, and start typing. You

will find the Macro Editor operates much like other text editors. You can cut,

copy and paste code using the Ctrl-X, Ctrl-C and Ctrl-V hot keys that are

standard in Microsoft Windows, or you can choose Edit > Cut and Edit >

Paste from the Main menu.

It is also possible to copy text from a different Windows application and

paste it onto a sheet. For example, you can copy sample code fragments from

the AP Basic Help screen and paste these into your program.

To learn more about editing code or how to use the Macro Editor in general,

choose Help > Editor Help. See Chapter 3 for detailed information on writing

a macro.

Find Out More About Visual Basic

There are several good references available to help you learn Visual Basic.

We recommend you consider the following:

� Running Visual Basic for Windows by Ross Nelson

� The Microsoft Visual Basic Programmer’s Guide

� The Microsoft Excel Visual Basic User’s Guide

� The Microsoft Word Developer’s Kit 6.0

This manual provides command reference and other information needed

to communicate with Microsoft Word in order to produce reports or other

documentation via OLE automation.

… for Experienced VB Programmers

An experienced Visual Basic programmer may need to understand in what

ways AP Basic differs from Microsoft Visual Basic.

Currently, Visual Basic exists in three editions: a Professional edition, a

Standard edition, and an Applications edition, known as Visual Basic for Ap-

plications or VBA. VBA is a subset of the Professional and Standard editions

of VB and is designed to be embedded within an application.

Getting Started In AP Basic Chapter 1: Introduction

AP Basic Language Manual 7

Figure 2. The Debug Buttons: Show Current Statement,

Step In, Step Over, Step Out.

AP Basic is compatible only with VBA. It can only be run from within the

control software and does not include the forms package included with the full

Professional or Standard editions of Visual Basic.

For information on specific AP Basic commands that may differ from stan-

dard Microsoft Visual Basic, consult the online help.

Chapter 1: Introduction Getting Started In AP Basic

8 AP Basic Language Manual

Chapter 2

Fundamentals of AP Basic

This chapter begins our discussion of AP Basic. First we look at subrou-

tines, one of the most fundamental elements in an AP Basic program. Subrou-

tines are used to group commands together that when combined perform a

specific task. Collections of subroutines are often organized to form a com-

plete macro. We will look at how subroutines are structured and how they are

used in programs.

In the second half of this chapter, we move from subroutines to study how

data is represented in AP Basic. Objects are introduced as a way to organize

collections of code and data that are related. Properties are characteristics of

objects that can be used to change the attributes of an object. Methods are an-

other characteristic of objects that can perform a function. Although subrou-

tines and objects may at first seem to be related in how they group together

common commands and data, they are distinctly different parts of a program.

In this chapter we will examine subroutines and objects more closely.

A complete discussion of the different parts of a program is postponed until

Chapter 3. If you discover while reading this chapter that you need an example

of a program to work from, you can flip to the beginning of Chapter 3 where a

complete program example is given.

What is an AP Basic Program?

A program is a collection of one or more AP Basic macros. Each macro can

contain zero or more subroutines. Each subroutine contains commands that do

something useful.

For example, a program might be written to load and run a number of tests

in the control software. Another program might be written to combine the re-

sults of several tests and extract common trends in the data. Yet another pro-

gram might offer a dialog box from which a user can select between different

programs to run. There is no requirement on what a program must do other

than it must consist of valid AP Basic commands that can be executed.

A program can be as big or as small as you choose. Since programmers of-

ten want to combine several different operations into one program, programs

AP Basic Language Manual 9

tend to become large and complex fairly quickly. Subroutines are used to help

organize programs into sections of similar code.

Using Subroutines

Subroutines are collections of AP Basic commands that are executed as a

unit. When the control software executes a subroutine, it starts with the first

command in the subroutine and proceeds from top to bottom, one line at a

time. A well written subroutine should accomplish a single task. For example,

a subroutine might load and run a test, alter how the control software is config-

ured, or collect information from a user. Complicated tasks should be broken

down into several subroutines. A complete program may use any number of

subroutines.

There are three main benefits of programming with subroutines.

� Subroutines allow you to break your application into separate, logical el-

ements, each of which you can understand and debug more easily.

� Subroutines can simplify and condense code by combining repeated or

common tasks into just one piece of code.

� Subroutines used in one program can be copied and used as building

blocks for another program. Once you have a subroutine that works well,

you will want to use this subroutine in other programs rather than spend-

ing the time to re-write code.

AP Basic uses two main types of subroutines: subroutines and functions

subroutines. A subroutine performs a specific task but does not return a result.

A function is similar to a subroutine except that it can return a result. Each of

these types of subroutines is discussed in more detail below.

Elements of a Subroutine

Before exploring the differences between subroutines and functions, it’s in-

structive to look at the elements common to all subroutines. A clear under-

standing of a subroutine’s structure will help you avoid common mistakes that

often frustrate beginning programmers. It will also help you to read and under-

stand other examples of AP Basic code.

All subroutines have the following parts:

� Begin and End statements at the top and bottom of the subroutine, re-

spectively.

� A label that uniquely identifies the subroutine.

� Arguments that follow the subroutine label.

� AP Basic code.

Chapter 2: Fundamentals of AP Basic Using Subroutines

10 AP Basic Language Manual

The beginning and end statements for a sub subroutine follow the general

form:

Sub Label(arguments)

…

End Sub

The first line of a subroutine always begins with the Sub statement, the

label of the subroutine, and a set of parentheses in which arguments are placed.

If the subroutine doesn’t require any arguments, the parenthesis are not re-

quired. The label of a subroutine is a unique name you choose that allows you

to refer to the subroutine. Typically, you should choose subroutine labels that

describe what the subroutine does. For example, a subroutine that prompts the

user for their initials might use the following first line:

Sub PromptForInitials ()

A subroutine label can be almost any combination of characters and num-

bers except that it must start with a character and not contain any spaces.

Arguments

The arguments that follow a subroutine label allow the programmer to pass

specific information to the subroutine. During a typical program, a subroutine

may be executed from several different points in the code, but the data used by

the subroutine may need to change. Arguments provide a means to vary the in-

formation used in a subroutine. The topic of arguments and how and when to

use them in subroutines is not difficult but has some subtleties and variations

that are beyond the scope of this tutorial. Refer to any of the Visual Basic pro-

gramming manuals mentioned in the introductory chapter for more informa-

tion on using arguments in subroutines.

The bulk of a subroutine consists of the code. These are commands that tell

AP Basic what to do. There are a large number of commands available in AP

Basic and almost all of them may be used in subroutines. Any command you

want to use in a subroutine must be placed within the Sub and End Sub state-

ments.

Technically, the number of commands you can place in a subroutine is quite

large; practically, however, you will want to limit the number of commands in

any one subroutine. Your goal when writing a subroutine should be to use only

the commands you need to accomplish a specific task. If your program needs

to do several different tasks, then you should write several different subrou-

Using Subroutines Chapter 2: Fundamentals of AP Basic

AP Basic Language Manual 11

tines, one for each task. It is much easier to understand and debug small blocks

of code than to try and sift your way through an unnecessarily large and com-

plex subroutine.

The second type of subroutines used in AP Basic are functions. They are

similar to subroutines and follow the general form:

Function FunctionLabel(arguments)

…

End Function

Functions are written in the same way as subroutines but with one important

difference. The commands inside a function should assign a return value to the

label you gave the function. When the function is finished executing, AP Basic

will return the value assigned to the function label to the line of code that

called the function.

For example, you could write a function that calculates the value of a num-

ber in decibels (dB).

Function TodB (num)

TodB = 20*Log10(num)

End Function

You call a function the same way you call any of the built-in functions in

AP Basic.

result = TodB (data)

Here is the previous example together with sample code that calls the func-

tion. In this example, two channels of data are converted, one element at a

time, to a dB format.

Sub convertData(numPoints)

For n = 0 To numPoints

dataCh1(n) = TodB(dataCh1(n))

dataCh2(n) = TodB(dataCh2(n))

Next n

End Sub

Chapter 2: Fundamentals of AP Basic Using Subroutines

12 AP Basic Language Manual

Function TodB (num)

TodB = 20*Log10(num)

End Function

The techniques for calling all types of subroutines are discussed in the sec-

tion Calling Subroutines beginning on page 14.

Subroutines and functions are the building blocks of any AP Basic applica-

tion. They can be combined and used in any way you choose to make your ap-

plication useful. The next section looks more closely at some of the different

ways to use subroutines.

How to Use Subroutines

In order to develop an AP Basic program, you must first understand how to

use subroutines. In this section we look at some of the different uses of subrou-

tines and how they can be combined to form a menu.

One key use of subroutines is to define where program execution begins. A

typical AP Basic program may have several different subroutine and functions.

In order to begin running the program, AP Basic must know which of these to

start from.

In AP Basic, program execution starts with the first line of code in the Main

subroutine. The Main subroutine is just like any other subroutine. You can use

any commands you want in any order you choose. What’s special about the

Main subroutine is that execution will always start with the first line of code.

Here is an example of a Main subroutine.

Sub Main

Call runTest()

Call processResults()

Call printResults()

End Sub

In this example, the only code in the Main sub subroutine are calls to other

subroutines. In this way, the Main subroutine is used to organize how program

execution flows through the code.

All AP Basic programs you write will need to have a Main subroutine. If

you try to run your program without a Main subroutine, or with two subrou-

tines using the Main label, you will get an error.

Using Subroutines Chapter 2: Fundamentals of AP Basic

AP Basic Language Manual 13

Unless your program is very simple, you’re likely to want to use several

subroutines in addition to the Main subroutine. As shown below, you access

additional subroutines and functions by calling them from within another sub-

routine.

Calling Subroutines

The techniques for calling subroutines vary, depending on the type of sub-

routine, where it’s located, and how it’s used.

A subroutine is called by a stand-alone statement. Unlike a function, a sub-

routine does not return a value, but can modify the values of any variables

passed to it.

There are two ways to call subroutines.

Call MySubroutine (argument1, argument2)

-OR-

Mysubroutine argument1, argument2

Note that when the Call syntax is used, the arguments passed to the subrou-

tine must be enclosed in parentheses. When the Call syntax is not used, the pa-

rentheses can be omitted.

A call to a function is made in the same way you call any intrinsic Visual

Basic function, like Log10, that is, by using its name in an expression.

'The following statement calls the TodB function

result = TodB (data)

It is also possible to call a function just like you would a subroutine.

Chapter 2: Fundamentals of AP Basic Using Subroutines

14 AP Basic Language Manual

Sub Main
Statement
Call Label

Statement
End sub

Sub Pro2
Statement
Call Label

Statement
End Sub

Sub Pro1
Statement
Call Label

Statement
End Sub

Figure 3.

Call TodB (data)

-OR-

TodB data

When functions are called this way, AP Basic discards the return value.

Shown in Figure 4 is an example of an AP Basic program that calls two dif-

ferent subroutines. Note how program execution returns from each called sub-

routines.

Calling Subroutines from Other Modules

A subroutine or function can also be called from another macro or code

module. It is possible to call subroutines in other macros from anywhere in

your program.

To call a subroutine or function in another macro, also known as another

code module, you must include a reference to the code module in your macro.

Using Subroutines Chapter 2: Fundamentals of AP Basic

AP Basic Language Manual 15

AP Basic Application

M
ai

n
M

ac
ro

S
ub

ro
ut

in
e

B
S

ub
ro

ut
in

e
A

Sub Main
...
Statement
Call MySubR1
Statement
...

End Sub

Sub MySubR1
...
Statement
Call MySubR2
Statement
...

End Sub

Sub MySubR2
...
Statement
...

End Sub

Figure 4.

You make the reference to the code module with the '#uses statement.

The '#uses statement has the following syntax.

'#uses “MODULENAME.APB"

An alternative statement to call a subroutine or function in another macro

that is also compatible with Microsoft Visual Basic is '$Include:

The '$Include: statement has the following syntax.

'$Include: "MODULENAME.APB"

There are several important steps you must follow to use the ‘#uses state-

ment correctly.

� Make sure to include the “' ” character in front of the “# ” character.

� Add the '#uses statement on the first line of your program

� Include the path to the code module you want to include within the

quotes if the code module exists in another directory.

Note that the “' ” character is normally used to add comments to your code.

It is needed here since the '#uses statement is not a normal AP Basic com-

mand and is not compatible with Visual Basic, which uses another form of in-

clude.

When you add the '#uses statement to your macro, all of the subroutines

and functions of the code module are available to your macro. You call these

included subroutines just as you would a normal subroutine.

The following line of code would include all of the subroutines and func-

tions of MYDEMO.APB in your program.

'#uses "C:\APWIN\DEVELOPMENT\MYDEMO.APB"

-or-

'$Include: "C:\APWIN\DEVELOPMENT\MYDEMO.APB"

One reason for including subroutines and functions from other code mod-

ules is that you can create a library of commonly used subroutines. Once you

have a library, any program that wants to use a library subroutine just needs to

include the appropriate '#uses statement.

Chapter 2: Fundamentals of AP Basic Using Subroutines

16 AP Basic Language Manual

To learn more about including subroutines from code modules in your pro-

gram, refer to the online help.

Objects, Methods, and Properties

In this section we shift from an introduction to subroutines and present

some of the more conceptual ideas behind Visual Basic. Much of this concep-

tual framework centers around how data is represented. For those of you who

are new to object-oriented programming, or are new to programming in gen-

eral, these ideas may seem strange and even confusing. Fortunately, it is not

necessary for you to master this section to begin developing AP Basic pro-

grams. Instead, the concepts introduced here are intended to expose you to

some of the vocabulary and ideas which more experienced programmers use

when working with Visual Basic.

What Are Objects?

An object is a combination of code and data that can be treated as a unit. An

object may be a part of your program or even the entire program. An object

may even represent something physical, like the analog generator of an Audio

Precision instrument. Almost anything you want to represent in Visual Basic,

either real or imaginary, can be expressed as an object.

Some examples of objects available to you in AP Basic are described in the

table below.

Example Description

Dialog Box A dialog box that reports information to the
user or prompts the user for data is an object.

Chart A chart in Microsoft Excel is an Object

Database Databases are objects that can contain other
objects, like fields and indexes.

DCX-127 Hardware Audio Precision’s DCX-127 is represented in
AP Basic as a library of objects that are
contained in the AP class AP.Dcx

Objects are used in AP Basic to make your work as a programmer easier.

Since objects can represent complex data structures and code, they can sim-

plify your program by allowing you to use them rather than requiring you to

write your own code. For example, you could write your own code to create a

chart similar to one you might find in Microsoft Excel, but you don’t have to.

Instead, you can use Excel to create your chart and then you can manipulate it

with the properties of the Chart object.

Objects, Methods, and Properties Chapter 2: Fundamentals of AP Basic

AP Basic Language Manual 17

Usually, when you develop programs in AP Basic, you will only need the

objects that are already provided as standard pieces of Visual Basic and AP

Basic. However, it is also possible to create your own objects to simplify your

code. For more information on creating your own objects refer to any of the

suggested texts mentioned in the section Find Out About Visual Basic on

page 7.

There are three things you can do with objects in AP Basic that make them

useful.

� You can set the value of an object’s property.

� You can return the value of an object’s property.

� You can use a method of the object to perform a task.

In the last few sections of this chapter we will look more closely at how to

use properties and methods to change and control objects.

Working With Objects

Objects in AP Basic support properties, methods, and events. The settings

and attributes of an object are called its properties, and the subroutines that op-

erate on an object are called its methods. An event is an action, like pressing a

key or clicking the mouse, that is recognized by an object. You can write code

to control how an object responds to an event.

Properties of an Object

Properties are special attributes of an object. You use properties to control

the appearance of an object, its behavior, or both. A property has a value asso-

ciated with it that can be read to learn about the condition of an object or set to

change the object. For example, an object may have an enabled property you

set to True to activate the object. To turn Channel A of the analog generator on

you would use the AP Basic extension command:

AP.Gen.ChAOutput = True

To turn the generator off, you set the property to False. Sometimes, you

may need to know the value of a property without wanting to change the prop-

erty. To determine the value of property without changing it you assign the

value of the property to a variable:

variable = AP.Gen.ChAOutput

Chapter 2: Fundamentals of AP Basic Objects, Methods, and Properties

18 AP Basic Language Manual

You can now test the variable without altering the property. An alternate

way to check a property without changing it is to test the property in more

complex expression.

If AP.Gen.ChAOutput = True Then

AP.Gen.ChBOutput = True

Else

AP.Gen.ChBOutput = False

End If

Some objects may also require a parameter be specified to determine the

value of a specific property. For example, to determine the amplitude of Chan-

nel A on the analog generator of System Two you would use the statement:

variable = AP.Gen.ChAAmpl ("V")

The (“V”) parameter tells AP Basic that you want the answer to be specified

in volts.

Objects often have several properties, some of which may be common to

more than one object, while other properties are unique to a single object. A

specific set of properties and methods are what makes one object different

from another object.

Using the Methods of an Object

Methods are another characteristic of objects. When you use a method asso-

ciated with object you make the object perform a specific task. To call a

method, you use the object name and the method name, separated by a period.

For example, using AP Basic code you can open a previously saved test using

the OpenTest method associated to the File object in the AP class.

AP.File.OpenTest "analog THD measurement.at27"

An object may have a number of different methods associated with it. An

example of using a second method associated with the File object is:

AP.File.OpenWfm "ISO 31 tone generator waveform.aas"

Like properties, methods are part of what defines an object. They are useful

because they allow you to perform specific tasks without having to write the

code yourself.

Objects, Methods, and Properties Chapter 2: Fundamentals of AP Basic

AP Basic Language Manual 19

The Object Browser

The instrument control software is filled with objects you can use in your

AP Basic code. To help you search through all the available objects to see

what might be useful to you, AP Basic provides a special dialog box called the

Object Browser. You can open the Object Browser by pressing the Browse Ob-

ject button on the subroutine Editor panel. Figure 5 shows what the Object

Browser looks like:

The Object Browser is a source of useful information about the objects and

the code in your application. You can use the Object Browser to learn more

about:

� The OLE object libraries available to you.

� The names of all the objects in a given object library.

� The name of all the methods and properties for any object.

� The parameters for a particular method or property.

In addition to the information displayed by the Object Browser, it can also

be used to insert an object and its appropriate method or property directly into

your code. When you double-click on a method or property in the Object

Browser, it will be inserted into your code where the cursor is placed.

Chapter 2: Fundamentals of AP Basic Objects, Methods, and Properties

20 AP Basic Language Manual

Figure 5.

All of the methods and properties available in the Object Browser are dis-

cussed in greater detail in the Extensions Reference manual for your instru-

ment.

Objects, Methods, and Properties Chapter 2: Fundamentals of AP Basic

AP Basic Language Manual 21

Chapter 2: Fundamentals of AP Basic Objects, Methods, and Properties

22 AP Basic Language Manual

Chapter 3

Writing An AP Basic Macro

Chapter 1 introduced the fundamentals of AP Basic. The theory of macros,

objects, methods and properties were discussed in Chapter 2 along with simple

examples to familiarize you with the key concepts of Visual Basic

programming. Here, in chapter 3, these concepts are applied to create an AP

Basic macro.

A complete macro is written with a specific structure and uses keywords

and commands to accomplish tasks. Using a simple macro as an example, we

will examine what pieces are necessary in an AP Basic macro. Some of the

key topics discussed include:

� Using Learn Mode to enter commands directly into your code.

� Macro structure.

� Adding comments to your code.

� Keywords and commands.

� Creating and declaring variables and constants.

� Using conditional statements to control macro flow.

Using Learn Mode

New macros, or additions to existing macros, may be generated by two dif-

ferent techniques. One method, suitable for those with some experience with

programming techniques and knowledge of the specific syntax and commands

of AP Basic or other forms of Visual Basic, is by typing and modifying text in

the Macro Editor. The second method, suitable even for users with little or no

experience in programming or AP Basic, is via the LEARN mode (macro

Learn Mode menu command) available in the Audio Precision control soft-

ware. Starting Learn Mode causes each ensuing user mouse click and key-

board entry to write a line of AP Basic code into the Macro Editor. Simple

macros may be completely generated in Learn Mode. More sophisticated mac-

ros with branching, calling of subroutines or other macros, processing of data

results, etc., can have their core created in Learn Mode but will typically re-

quire further commands to be added in the Macro Editor.

AP Basic Language Manual 23

The Learn Mode Toolbar contains icons to start or stop Learn Mode. When

Learn Mode is activated, operator actions including the result of mouse clicks,

menu selections, and text or numeric entries into panel fields, will result in

lines of AP Basic language code being automatically written into the Macro

Editor. The resulting macro can then be run to re-create the series of actions.

Learn Mode is started by clicking on the Learn button on the Learn Mode

toolbar, or by selecting from the menus Macro > Learn Mode or Utilities >

Learn Mode selections. Once Learn mode has been started, user actions will

result in one or more lines of macro code written into the Macro Editor until

Learn Mode is halted. If a macro has already been loaded into the Macro Edi-

tor, the commands created by Learn Mode will be inserted at the cursor posi-

tion in the Macro Editor. If no macro has been loaded, the Macro Editor will

be opened with a new (blank) macro ready for recording of the Learn Mode

commands. To stop Learn Mode, click on the Stop Learning button or use the

macro Learn Mode or Utilities Learn Mode menu selections again to toggle

Learn Mode off. To temporarily suspend the learning of commands, hold down

the Ctrl and Shift keys while clicking the mouse to make changes which will

not be learned.

For a Learn Mode example, assume the following list of user actions:

� Click on Start Learn Mode button.

� Click on New Test button.

� Click on analog generator OUTPUTS ON/OFF button..

� Click on analog analyzer Ch A input and select GenMon instead of XLR

Bal.

� Click on Page 2 tab.

� Click on the GO button (or press F9).

� Click on Stop Learn Mode button.

� Opening the Macro Editor should show the macro listing as illustrated in

Figure 6. This macro will duplicate all the actions above if the Run

macro icon is clicked.

Chapter 3: Writing An AP Basic Macro Using Learn Mode

24 AP Basic Language Manual

Example AP Basic macro

This macro is written especially for Audio Precision’s APWIN control soft-

ware.

' This macro is designed to assist in creating limit
' files for FFT tests. It Is intended to be executed
' after a test has already been setup and run.
'
' Functionally, this macro will take the results of
' a sweep and limit the low amplitude data points to
' a specific value. This is particularly useful for
' limit files based on FFT sweeps where the low
' amplitude data is often near the noise floor and
' varies from sweep to sweep.
'
' Algorithmically, the macro operates by
' transferring the sweep data into an array in APWIN
' Basic. This array is scaled from linear units into
' decibels. Each data point in the array is tested
' against a specific limit and if the data is above
' the limit it is left untouched. If it is equal to ' or
below the limit, it is forced equal to the
' limit. Once all the data has been processed it is
' transferred back to APWIN and redisplayed. A limit '
file can then created from this data.

Const Ch1_limit = -110 ' units for limit are in dB

Const Ch2_limit = -110 ' units for limit are in dB

Example AP Basic macro Chapter 3: Writing An AP Basic Macro

AP Basic Language Manual 25

Figure 6.

Sub Main

Call scale_low_amplitudes

End Sub

Sub scale_low_amplitudes

size = AP.Sweep.Source1.Steps + 1 ' determine
number _ of elements in data arrays

data1 = AP.Data.XferToArray(0, 1)

data2 = AP.Data.XferToArray(0, 2)

For i = 0 To size ' convert data to dB format

data1(i) = TodB(data1(i))

data2(i) = TodB(data2(i))

Next i

For i = 0 To size ' limit minimum values to -110
dB

If data1(i) < Ch1_limit Then

data1(i) = Ch1_limit

End If

If data2(i) < Ch2_limit Then

data2(i) = Ch2_limit

End If

Next i

For i = 0 To size ' convert data back from dB

data1(i) = ToExp(data1(i))

data2(i) = ToExp(data2(i))

Next i

For i = 0 To size ' write data back to AP

AP.Data.Value(0,1,i) = data1(i)

AP.Data.Value(0,2,i) = data2(i)

Next i

AP.Data.UpdateDisplay(0)'Show updated results on
graph

End Sub

Function TodB(x)

TodB = 20*Log10(x)

End Function 'TodB

Function ToExp(x)

Chapter 3: Writing An AP Basic Macro Example AP Basic macro

26 AP Basic Language Manual

ToExp = Exp10(x/20)

End Function 'ToExp

Macro Structure

AP Basic macros can be broken down into three main sections:

� a header section.

� the Main subroutine.

� additional subroutines and functions.

The header section of a macro can contain several different parts. Any vari-

ables, constants, arrays, and other data types that must be accessible to other

code modules should be declared in the header section. The amount of macro

code in the header section can vary significantly depending on whether the

macro is self contained, or includes other code modules and public variables.

You will learn more about how and where to define variables later in this chap-

ter.

A second and often neglected use of the header section is for comments. A

good macro header should have a few sentences that identify who wrote the

macro, when it was written, what the macro does, and maybe a few words

about how it works. Taking the time to add comments to the header section

will help you to quickly identify what your macro does and how it works

months or even years later when you need to make a change. A more thorough

discussion of how and when to use comments is covered in the next section.

Experienced Visual Basic programmers may recognize that it isn’t strictly

necessary to have a header section for a macro. If you have developed a very

simple macro that doesn’t use public variables or include other code modules,

it is possible to have the first line of your macro begin with the Sub Main dec-

laration. While this minimalist approach will work, it tends to lead to code that

is poorly commented and should be avoided.

The Sub Main subroutine was introduced in chapter 1. Its purpose is to

identify where macro execution begins and every AP Basic macro must in-

clude a Sub Main subroutine to run. Depending on the complexity of your

macro, you may only need this one subroutine. More typically, however, the

Main subroutine is used as the “top” level of the macro from which other sub-

routines and functions are called.

Subroutines can be listed in your macro in any order you choose. Consider

placing the Sub Main subroutine as the first subroutine in your macro to help

others quickly identify where the macro starts. Also, if you are using the main

subroutine as the “top” level of your macro, placing it at the start of the macro

code will help others to quickly identify the how your macro flows through the

various subroutines and functions.

Macro Structure Chapter 3: Writing An AP Basic Macro

AP Basic Language Manual 27

After the Sub Main subroutine, you should place the additional subroutines

and functions used in your macro. Again, there are some tricks you can use to

help keep your macro as understandable as possible. Structure the subroutines

and functions so that they roughly follow the same order as they are used. In

complex macros where the same subroutines may be called several different

times it may not be possible to follow this rigorously. Your goal in structuring

your code should be to keep it as simple and easy to understand as you can

make it.

Commenting Code

Properly commented code is an essential part of good programming tech-

nique. Code which is not properly documented can be hard to read and diffi-

cult to modify. In this section we look briefly at some of the reasons to

comment your code as well as some useful guidelines.

One of the biggest temptations to resist when developing code is neglecting

to take the time to comment a subroutine you just developed for fear you will

loose your train of thought or fall behind schedule. This is usually a mistake.

Very few programmers possess the discipline to return to their code when it is

finished and add the proper comments. Even worse, after you’ve been away

from your code for a while, it may be difficult to remember how everything

works. You may not even remember the reasons why you chose one particular

way to implement your code over another.

There are several good reasons to add comments to your code. Among the

most compelling are:

� Properly commented code will enable you to quickly identify what a

macro does without having to read through the code.

� Comments can help to identify what types of arguments and what ranges

of values can be passed to a macro. This will help you to determine

where your code can be re-used.

� Comments are the best chance another programmer has for understand-

ing your code. Code which is not commented or commented poorly is of-

ten overlooked by other programmers regardless of how well the code

may work. If someone else can’t easily understand how your code works,

they won’t use it.

Some of the goals you should work towards when commenting code in-

clude:

� Include general comments about a macro that allows other macros to

quickly and easily identify what the macros does.

Chapter 3: Writing An AP Basic Macro Commenting Code

28 AP Basic Language Manual

� Identify what input arguments your macro accepts and what outputs it

produces. You should also identify any non-local variables that are used

or changed.

� Avoid comments that explain what each line of code does. Anyone who

understands AP Basic will be able to tell that. What programmers want

to see are comments on why your code works the way it does. For exam-

ple, a For...Next loop that counts from one to the number of data

points minus one doesn’t need a comment saying how many points are

counted. What is needed are comments saying why you count up to the

number of data points minus one and not all the data points.

Commenting code may seem like an added burden that will slow down code

development, but any experienced programmer will tell you that well docu-

mented code goes a long way towards developing bug free and re-usable code.

Keywords and Commands

At the beginning of this chapter there is an example of an AP Basic macro.

If you study this macro, you will notice that there are several keywords and

commands that are used to tell AP Basic what to do. For example, notice the

If...Then command used at several points in the code. This command,

and others like it, are easily identified in the editor by the different color text.

The Macro Editor automatically changes the color of keywords and commands

as they are entered. You’ll find this coloring scheme makes it much easier to

read the code and identify the keywords and commands that control macro op-

eration.

A careful observer may have also noticed that none of the variable or con-

stant names are the same as any of the keywords or commands. This is be-

cause keywords are reserved in AP Basic. If you try to create a variable with

the name end, AP Basic will recognize end as one of its keywords. When you

try to run a macro with a variable named end AP Basic will refuse to continue

and issue an error message.

For an overview of the different keywords available in AP Basic, select the

AP Basic Language option under the Help menu in your Audio Precision con-

trol software.

AP Basic offers a large number of keywords and commands to provide you

flexibility in creating macros. In the next few sections we will study more

closely how to use these to create your own AP Basic macros.

Using Variables and Constants

As you develop an AP Basic macro, you will often need to store informa-

tion in your macro, even if only temporarily. For example, you might need to

calculate a running sum of data and you want to be able to store this value

Keywords and Commands Chapter 3: Writing An AP Basic Macro

AP Basic Language Manual 29

while your code loops through all the data. AP Basic, like other programming

languages, uses variables for storing information. Depending on the type of

variables you use, the information stored in a variable may only be available

during the short time in which your macro uses it, or the information may be

preserved during the entire time the macro is executed.

A variable stores information which may change as your macro is run. In

order to use variables, Visual Basic must know something about the type of

data the variable will store, known as the data type. It must also have a name,

or label it uses to refer to the value the variable contains.

A constant is similar to a variable except its value does not change as the

macro is executed. You use constants to simplify your code and make it easier

to read. Like variables, constants have specific names and data types.

Declaring Variables

Before AP Basic can use a variable, that variable must first be declared. De-

claring a variable means that AP Basic reserves a location in memory to store

information that is assigned to the variable. The amount of memory reserved

depends on the data type used.

Variables can be declared in one of two ways, either explicitly or implicitly.

An explicitly declared variable is created by a specific line of code that identi-

fies the variable name and, optionally, its data type. An implicitly declared

variable is not specifically identified in a separate line of code, but is used just

as if it had been explicitly declared.

There a several statements used in AP Basic to declare variables. The fol-

lowing table briefly describes these statements and when they should be used.

Declaration Statement Description

Dim Used to declare variables within subroutines
or functions that have local scope.

Static Used to declare variables within a subroutine
or function block that will retain its value over
multiple sub or function calls.

Public Used to declare variables shared by all files in
a project. A project may contain several
different files.

Private Used to declare variables available only to the
current file (module).

Variables declared with the Dim statement follow the general form:

Chapter 3: Writing An AP Basic Macro Using Variables and Constants

30 AP Basic Language Manual

Dim VariableName As DataType

All other variable types are declared in the same way, by adding the declara-

tion statement before the variable name.

Public VariableName As DataType

Private VariableName As DataType

Static VariableName As DataType

Note that any variables declared as Public should be placed at the begin-

ning of your (file) macro before any sub or function macros. Public variables

cannot be declared within a subroutine or function block..

Scope of Variables

Variables can be created that are accessible to all subroutines or function

blocks in a macro, or they can be restricted to use only in a specific sub or

function. How visible a variable is to different macros is known as the scope of

the variable. There are three levels of scope:

� Local.

� Module (file) level.

� Public.

Local variables have the narrowest scope. They are only visible to the sub

or function where they are declared and used. This means you can have several

variables in your macro, each with the same name, as long as they are declared

locally in separate sub and functions..

To ensure a variable is local, declare it either implicitly or explicitly inside a

sub or function. Here is an example subroutine with three locally declared

variables, two of which are declared explicitly (A1 and A2) and one of which

is declared implicitly (A3):

Sub DoSomething

Dim A1 As String

Static A2 As Integer

A3 = 4.0

...

End Sub

Using Variables and Constants Chapter 3: Writing An AP Basic Macro

AP Basic Language Manual 31

Local variables are useful when you need to temporarily store information

in a sub or function. A local variable declared implicitly or with the Dim
statement will be removed from memory when the sub or function is finished

executing. A Static variable will remain in memory and retains its value

next time the function or sub is called. By definition, all local variables are pri-

vate to the macro in which they are used.

Module level variables have a much broader scope than local variables. A

module level variable is visible to all sub or functions in the module (remem-

ber, a module is the same as a .apb file, and you can link together several dif-

ferent code modules with the '#uses command discussed in the previous

chapter).

To create a module level variable it must be declared outside of any sub or

function. Typically, you should place these in the header section of your mod-

ule and declare them public or private..

The primary advantage of module-level variables is that they can be used to

easily share information between different subs or functions. When one mod-

ule assigns a public value to a module-level variable, a second module can

access and use that same information.

Public variables have the broadest scope and are visible to all sub and func-

tions in an application, regardless of the module that contains them. They are

declared using the Public statement and should be placed at the top of a

module prior to the first sub or function. Here is a simple example of declaring

and using a Public variable.

Public Y As Integer

Sub Main

Y = 1

Y = Y + 10

...

End Sub

Chapter 3: Writing An AP Basic Macro Using Variables and Constants

32 AP Basic Language Manual

Macro Variable visible to macro

1 A, B, C

2 A, B, D

3 A, E, F

Figure 7 shows how the scope and visibility of variables change depending

on how and where they are declared.

When AP Basic is executing code, it evaluates variables starting from the

narrowest scope to the broadest. Therefore, if your code contains a local vari-

able, a module level variable, and a public variable each with the same

name, AP Basic will look first for a local variable with the desired name, then

for the module level variable, and finally, it will check for a public variable.

Data Types

When you declare a variable, you can optionally supply a data type. A data

type is a property that identifies what type of data is stored in a variable. The

data type specifies two things:

Data Types Chapter 3: Writing An AP Basic Macro

AP Basic Language Manual 33

Sub Main
Dim C As Integer
...
Call MyProc1
...

End sub

Sub MyProc1
Dim D As Integer
...
Call LibraryProc1
...

End sub

Sub LibraryProc1
Dim F As Integer
...

End sub

AP Basic Program

S
ub

ro
ut

in
e

3

S
ub

ro
ut

in
e

2
S

ub
ro

ut
in

e
1

Public A As Integer
Dim B As Integer

Dim E As Integer

Macro Code Module

Figure 7.

� the type of data (i.e. text, numeric, object)

� the range of values for the data

The following table describes a few of the more common data types avail-

able in AP Basic.

Data Type Storage Size Range

Integer 2 bytes –32,768 to 32,767

Single 4 bytes ±3.4 E38 to ±1.4 E-45

String 1 byte per character 0 to approximately 65,500
characters

Boolean 2 bytes True or False

Variant 16 bytes + 1 byte depends on data type assumed for
each character.

You can learn more about all of the available data types in the online help.

The Variant Data Type

The variant data type is a special data type. By default, any variable that is

not explicitly assigned a data type will be assumed to be variant. It is the most

flexible data type available in AP Basic since it can assume the value of any

other data type. The particular data type a variant assumes depends on how the

variable is used. For example, a variable with the variant data type can be as-

signed an integer value at the start of a macro, and then be reassigned to a

string value later in the code. It changes data types depending on how it is

used. Consider the following example:

Dim FFTSize ' Variant data type by default

FFTSize = "1024" ' FFTSize is a string data type

FFTSize = FFTSize * 8
' FFTSize changes to a numeric

' data type equal to 8192

FFTSize = “Big” & FFTSize
' FFTSize is now a string
' again containing “Big8192"

Constants

A constant is a name you choose to replace a value used in your macro.

They are used to help make code both easier to read and to modify.

For example, suppose you need to use the value of Pi = 3.145926535 at sev-

eral different places in your code. You could type in the value of Pi each time

Chapter 3: Writing An AP Basic Macro Data Types

34 AP Basic Language Manual

you need it, but this takes time and is prone to error. Instead, using a constant

with the name Pi will be faster and easier to read. Later in your code if you de-

termine you wanted to use 2*Pi instead, you only need to change the value of

the constant.

You declare constants with the Const statement:

Const name = value

Here is how to use Pi as a constant:

Const Pi = 3.145926535

You don’t need to declare the data type for a constant because AP Basic

simply determines the data type based on its value. For the example shown

above, Pi is assigned the double data type.

Controlling Macro Flow

In this section you will learn how to write macros that can test conditions

and run certain branches of code depending upon the results. The AP Basic

commands that make decisions and alter code flow are called control struc-

tures. A second class of commands known as loop structures can be used to

execute the same section of code multiple times.

Earlier, when introducing macros it was said that code is executed in a

macro from top to bottom, one line at a time. Although simple macros can be

written using such linear flow, much of the power and utility of AP Basic co-

mes from its ability to use control structures to change the order in which code

is run.

The diagram in Figure 8 illustrates the three most common types of macro

control flow.

Controlling Macro Flow Chapter 3: Writing An AP Basic Macro

AP Basic Language Manual 35

Control Structures

If...Then

The If...Then structure is used to run a section of code depending on the

evaluation of a test expression. The test expression must be either true or false.

When the expression is true, the section of code inside the If...Then structure is

run. If the expression is false, the code is skipped.

You can use either a single-line syntax or a multiple-line syntax.

If FFTSize 2048 Then MsgBox “Use a larger FFT Size”

- OR -

If FFTSize < 2048 Then

MsgBox "Use a larger FFT Size"

End If

Notice that the multiple-line syntax uses the End If statement to identify

where the code section ends. If you want to run more than one line of code

when the condition is true, you must use the multiple-line syntax.

Chapter 3: Writing An AP Basic Macro Control Structures

36 AP Basic Language Manual

Linear Flow Conditional Branching Looping

Statement

Statement

Statement

If expression

Then statement Else Statement

End If

Statements

Do

Loop

True False

Figure 8.

If FFTSize < 2048 Then

FFTSize = 2048

MsgBox "FFT Size has been increased to 2048"

End If

If...Then...Else

This is a more flexible form of the If...Then structure. It allows you define

more than one section of code, one of which is always run.

If Age 18 Then

MsgBox "You are too young to vote."

Else

MsgBox "You are old enough to vote."

End If

You can add the Else If statement within the If..Then structure for

even more flexibility.

If Season = "Summer" Then

Temperature = "hot"

Else If Season = "Spring" Or "Fall" Then

Temperature = "mild"

Else

Temperature = "cold"

End If

Notice that last possible season, “Winter” was not tested with an Else If
statement. If the season is neither summer, spring, or fall, then it must be win-

ter. It is possible to use the Else If statement to test for winter, but you

would get the same result.

Select Case

AP Basic provides the Select Case statement as an alternative to

If...Then...ElseIf. The select case statements searches for matching

values to an expression instead of testing whether the expression is true or

false. Often, it is used to make code more efficient and readable.

Select Case Percentile

Case Is > 50

MsgBox "Above the 50th percentile"

Case 50

Control Structures Chapter 3: Writing An AP Basic Macro

AP Basic Language Manual 37

MsgBox "perfectly average"

Case Else

MsgBox "Below the 50th percentile"

End Select

Notice the use of the Is operator to compare a range of values to the initial

expression.

The first line of code in a select case statement identifies the expression to

be evaluated. For the example just given, the expression is Percentile. The se-

lect case statement can be used to evaluate only one expression, unlike the

If...Then...Else structure which can test several different, even unre-

lated, expressions.

Loop Structures

For...Next

The For...Next structure is used to loop through a section of code a spe-

cific number of times. It uses a variable to count the number of times the loop

has been run. Depending on how you want the code to run, the variable is in-

cremented or decremented on each loop through the code. Execution stops

when the variable reaches a predetermined value.

For y = 1 To 10

MsgBox "The count is currently " & CStr (y)

Next y

In this example, y is the count variable. It is initialized to 1 at the start of the

loop and is incremented on each pass. A message box indicates the value of

the y. When y is equal to 10 a final message is given and the loop terminates.

You can make the For...Next structure more flexible by counting ei-

ther up or down and by using a variable step size.

For i = 16 To 4 Step -2

MsgBox “The count is currently ” & CStr (i)

Next i

This example will count down from 16 to 4 by steps of two.

Chapter 3: Writing An AP Basic Macro Loop Structures

38 AP Basic Language Manual

Do...Loop

The Do...Loop structure is used to count an indeterminate number of

times. Instead of a count variable, it uses a test expression to determine when

execution should stop. In this way, a Do...Loop structure will run until the

expression is satisfied.

Sub IncrementByTwo (x)

Dim LimitReached As Boolean

LimitReached = False

loopCount = 0

Do Until LimitReached

x = x + 2

If x > 100 Then

MsgBox "The limit was reached in " & _

CStr(loopCount) & " loops"

LimitReached = True

Else

loopCount = loopCount + 1

End If

Loop

End Sub

This subroutine accepts an unknown input x from the calling macro. It then

increments the value of x by two until x is greater than 100. When the test con-

dition is satisfied the boolean expression LimitReached is changed from

false to true and a message is given reporting the number of times the loop was

run.

An alternate way to use the Do...Loop structure is use the Do While
clause instead of the Do Until clause. If you use the Until clause, the

loop runs as long as the expression is false. When you use the While clause

the loop runs as long as the expression is true. Its important that the code in a

Do...Loop structure provides a means to alter the test expression. If the test

expression can’t change, AP Basic will not be able to exit the loop.

Loop Structures Chapter 3: Writing An AP Basic Macro

AP Basic Language Manual 39

User Notes

Chapter 3: Writing An AP Basic Macro Loop Structures

40 AP Basic Language Manual

Chapter 4

Testing and Debugging

Once you have written an AP Basic application, you need to determine if

your application runs properly. This is part of testing your code. If it does not

run correctly, you need a means to fix these errors, also known as debugging

your code. AP Basic cannot diagnose or fix errors for you, but it does provide

a number of tools to help you analyze how your code operates.

AP Basic uses an Interactive Design Environment (IDE) to assist in detect-

ing and fixing errors in your program. In this environment it is possible to stop

your code at any point during execution and display the state of variables and

properties. You can also step through your code one line at a time while watch-

ing how settings change. The ability to interact with your code as it is execut-

ing is a powerful debugging tool.

Unfortunately, there are no magic tricks to debugging, and there are no steps

that always catch errors. Debugging is really part of a process to help you

better understand how your code is operating. Using the debugging tools pro-

vided in the Interactive Design Environment it is possible to more easily iden-

tify and correct the problems that keep your application from running properly.

Types of Programming Errors

Before exploring how to test and debug code, consider the kinds of errors

you might encounter.

� Syntax errors occur when code is improperly written. For example, in-

correctly typing a keyword, using incorrect punctuation, and omitting

key words are all forms of syntax errors. AP Basic will detect and flag

these errors before the code is run.

� Run-time errors result when a section of code is impossible to execute. A

common example you may have encountered before is a divide by zero

error. These types of errors cannot be detected until the code is executed.

When AP Basic encounters a run-time error, program execution is halted.

� Logic errors are the most common and can be one of the most difficult

types of errors to fix. A logic error occurs when code doesn’t operate the

way it was intended. Even though the code may be syntactically correct

and will run without errors, it may not produce the results you expect.

Audio Precision 2700 Series User’s Manual 41

AP Basic cannot detect logic errors since it can’t know how your pro-

gram should work. It does, however, provide a number of tools to help

you diagnose logic errors.

As you first develop your code, you’re likely to create a number of syntax

errors. These are easy to detect since AP Basic will point them out to you by

highlighting the affected line in red and placing the cursor close to the sus-

pected error when you run the macro. As you become more proficient in AP

Basic, you will tend to make fewer syntax errors.

Once your program is syntactically correct, you can execute it. At this point,

you may or may not encounter run-time errors. These errors often occur only

for certain types of input data, so you may or may not see them the first time

your program runs. In fact, you may have to run your code several different

times and with several different sets of data before you see a run-time error.

Lastly, you may notice logic errors when your program runs but behaves

differently than you expected. Any of these three types of errors will require

you to review your code, identify the source of the bug, and re-write your code

to fix the error.

Debugging Tools on the Toolbar

The Macro Editor has a number of buttons used for debugging code. These

buttons are found near the top of the Macro Editor panel.

The following table describes the function of each button:

Debugging Tool Purpose

Breakpoint Used to mark a line in the code where
Visual Basic will suspend execution.

Quick Watch Displays the value of the expression under
the cursor while in break mode.

Step Into Executes the next line of code in the
application and steps into subroutines.

Step Over Executes the next line of code in the
application without stepping into
subroutines.

Step Out Steps out of the current subroutine or
function.

These debugging tools are designed to help you observe the behavior of

your code and enable you to diagnose and fix run-time and logic errors. In or-

Chapter 4: Testing and Debugging Debugging Tools on the Toolbar

42 AP Basic Language Manual

der to use these tools effectively, you need to understand how they can be uti-

lized during program operation.

Break Mode

Break mode is a special operating mode of AP Basic that allows you to halt

program execution and examine the state of variables and expressions in your

code. When you enter break mode:

� The Debug window automatically appears in the Macro Editor panel as

shown in Figure 10. The Debug window includes several different win-

dow panes that provide useful debugging information.

� You are temporarily prevented from editing your code. Since you have

actually just suspended execution but not stopped execution, AP Basic

does not allow you to add and remove commands from your program.

Once you have entered break mode, the value of all variables and expres-

sions is preserved, so you can check their current state. Depending on whether

or not your program is running correctly, you may want to change the value of

several variables and expressions as well. In break mode it is possible to inter-

act with program operation in several ways.

While in break mode you can:

� Check the value of variables, expressions, and properties.

� Modify the value of variables and expressions.

� Use the immediate pane in the Debug window to run AP Basic com-

mands not included in your program.

� Step through operation of your code one line or one subroutine at a time.

Accessing Break Mode

AP Basic will enter break mode when any of the following occur:

� Execution reaches a line of code with a breakpoint.

� Execution reaches a Stop statement.

� A line of code generates a run-time error.

� Program execution is started by pressing either the Step Into, Step Over,

or Step Out buttons.

The most common technique for accessing break mode is to add break-

points to your code. AP Basic will enter break mode and suspend execution on

the line of code just before the breakpoint.

Debugging Tools on the Toolbar Chapter 4: Testing and Debugging

AP Basic Language Manual 43

To add a breakpoint, move the cursor to the line of code where you want to

place a breakpoint and press the toggle breakpoint button. When you set a

breakpoint, AP Basic will mark the selected line of code by highlighting the

line and adding a dot to the left of it, as shown in Figure 9. To remove a break-

point, select the desired line of code and press the toggle breakpoint button.

A second way of entering break mode is to add the Stop command to your

code. This is most useful when you need to ensure program execution halts at

a particular point. Notice, there is an important difference between breakpoints

and the Stop command. Breakpoints are lost when you close and reload your

program, but Stop statements stay in the code until you remove them.

Regardless of how you entered break mode, you can always resume execu-

tion by pressing the run/resume button or by continuing to step through your

code.

Stepping Through Code

Once you’ve identified a potential trouble spot in your code, it is useful to

continue executing your code one line at a time. This allows you to see how

each line affects the behavior of the application as well as the values of vari-

ables and other data. Executing code one line at a time is called stepping

through code. AP Basic provides three different tools to step through your

code.

� Step Into

� Step Over

Chapter 4: Testing and Debugging Debugging Tools on the Toolbar

44 AP Basic Language Manual

Figure 9.

� Step Out

These three tools operate nearly the same. When you press any of them, AP

Basic will execute the next line of code and then return to break mode. They

differ in how they execute a line of code that either calls another subroutine or

that exists inside of a called subroutine.

For example, if the current line of code to be executed is a call to another

subroutine, Step Into will move into that next subroutine. Step Over, on the

other hand, will not descend into the called subroutine. Instead, it executes all

the commands in the called subroutine and halts immediately after returning to

the calling subroutine. This is useful if you are reasonably certain that the bug

you’re looking for isn’t in the called subroutine and you don’t want to take the

time to step through it.

Step Out will execute all the commands in the current subroutine until it has

returned to the calling subroutine. Once it has reached the calling subroutine it

halts execution and returns to Break Mode. You should use Step Out if you

have stepped through all the code in the current subroutine you are interested

in and you want to return to the calling subroutine. Note, if you press Step Out

from the Main subroutine, and you have not added any additional breakpoints

to your code, the program will run to completion.

Using The Debug Window

In the Debug window, you can monitor the values of expression and vari-

ables while stepping through the statements in your code. There are four win-

dow panes available in the Debug window, the Immediate, Watch, Stack, and

Loaded. Each of these window panes can provide useful debugging informa-

tion about your program.

You display the debug window by:

� Entering Break Mode. The Debug window is automatically opened when

AP Basic enters Break Mode.

� Choosing View and then Always Split from the menu options available

when you right-click the mouse in the main editor window.

This will leave the Debug window visible in the Macro Editor panel as

shown in Figure 10.

Using The Debug Window Chapter 4: Testing and Debugging

AP Basic Language Manual 45

The Watch pane displays information about expressions and variables you

tell the control software to monitor as your code is executing. The Immediate

pane allows you to enter additional AP Basic commands to learn more about

your code. Typically, you use the Immediate pane to change the value of a

variable or expression. The Stack pane shows you information about what line

of code is currently active and what subroutines have been called to reach the

current line. Finally, the Loaded pane indicates all the .apb files that have been

loaded and are being used by the current program.

Additional information about all of the window panes shown in the Debug

window is available in the online help.

Chapter 4: Testing and Debugging Using The Debug Window

46 AP Basic Language Manual

Figure 10.

Normally, the Debug window automatically displays when the macro is run.

If you want the Debug wind to be displayed when the macro is not running,

simply click the right mouse button and select View, Always Split from the

menu as shown Figure 11.

Error Handling

In addition to testing and debugging your code, it is valuable to consider the

different ways you can develop code to handle errors that occur while your

program is running. When a run-time error occurs, AP Basic will usually gen-

erate an error message that halts your code. Often, there’s nothing the user can

do to resume running the application. Other errors might not interrupt execu-

tion, but they may cause it to act unpredictably. From a programmers stand-

point, it’s important to know how to write code that can detect run-time errors

and branch to special code that will recover from the errors without halting

your program. Adding code to recover from errors is known as error handling.

There are several different ways run-time errors can be generated. Earlier,

when discussing the different types of errors, it was mentioned that code at-

tempting a divide by zero will generate a run-time error. More generally, a

run-time error occurs whenever your code attempts an invalid instruction. For

Error Handling Chapter 4: Testing and Debugging

AP Basic Language Manual 47

Figure 11.

example, you might have a subroutine that prompts the user to enter the name

of a test file to run. If the user enters an invalid name or a name that does not

exist, AP Basic will not be able to continue. In this section, we consider differ-

ent techniques you can use to recover from run-time errors.

AP Basic Error Handling Commands

AP Basic provides a number of commands to allow you to detect and handle

run-time errors before they halt your program (a program that abruptly halts

operation and won’t continue is said to have crashed). Intercepting an error is

also known as trapping an error. You can use the following statements to trap

and then respond to run-time errors:

� The On Error Goto command can be used to branch in your code when

an error is detected. It must be set up before the run-time error occurs.

� The Err function returns the number corresponding to the most recent

run-time error.

� The Error function returns message text corresponding to an error num-

ber. Every run-time error has a corresponding error number that identi-

fies it.

The following example uses all three types of error handing commands:

Sub Main

X = 1

Y = 0

On Error GoTo ErrorMessage

Z = X/Y ‘ create a divide by zero error

' At this point the code moves to the _
ErrorMessage section

Exit Sub ' leave the subroutine at this
point

ErrorMessage:

MsgBox "The most recent error number is " _

& Err & ". The error message is: " & Error(Err)

Resume Next ' return to next line of code
after the error occurred

End Sub

When you run this program, it will generate a message box that says, “The

most recent error number is 10061. The error message is: Divide by zero.”

Notice that this example has introduced several new programming tech-

niques. The first technique to consider is the use of the Goto command. When-

Chapter 4: Testing and Debugging Error Handling

48 AP Basic Language Manual

ever the Goto command is used, it must refer to a line label in your program.

In the preceding example, the line label used in the Goto command was

“ErrorMessage:” All line labels must follow the standard AP Basic naming

conventions and must end with a colon.

The second technique to notice is the use of the line continuation command.

This is the underscore character “_”, seen at the end of the line beginning with

the MsgBox command. The line continuation command tells AP Basic to wrap

the next line of code into the current line of code.

Lastly, the Resume Next command is used to return from error branching.

It allows your program to continue normal operation after handling the error

condition.

The process of trapping errors can be summarized as:

� Setting an error trap.

� Writing code to handle to the error.

� Returning to normal program execution.

Error Handling Chapter 4: Testing and Debugging

AP Basic Language Manual 49

User Notes

Chapter 4: Testing and Debugging Error Handling

50 AP Basic Language Manual

Chapter 5

Creating Custom User Interfaces

Many of the macros you are likely to develop in AP Basic will be designed

to assist in automating tests and simplifying complex measurements. One of

the most powerful ways to simplify using a macro is to include a custom user

interface (UI). You create a custom UI by adding code that will create dialog

boxes and custom menus when your macro is executed.

A custom user interface can be very useful when you want to guide a novice

user through running a number of different tests. For example, a macro might

begin by presenting the user with a custom menu that offers several different

tests to run. Different tests can be linked to different menu options depending

on the type of measurement needed. The user can only select from the tests

available. When a chosen test is complete, the results can be printed out or

logged to a file and the macro then returns to the initial custom menu as shown

in Figure 12.

This section explains how to use dialog boxes and menus to customize the

user interface to your macros. The different tasks you can complete with dia-

log boxes and menus include:

� Getting information from the user. A typical example might include que-

rying the user for their initials which can be logged in the test report.

� Displaying information to the user. Message boxes can be developed in-

dicating how the hardware should be connected or what errors may have

occurred while testing.

AP Basic Language Manual 51

Figure 12.

� Simplifying the interface of the control software with custom menus.

With a properly constructed custom interface, a user does not need to be

familiar with the subtleties of the control software.

To assist in developing custom dialog boxes and menus, AP Basic includes

a User Dialog Editor shown in Figure 13. To access the User Dialog Editor

click the Edit UserDialog button in the Macro Editor. This will open a default

template for a dialog box. You can select from the menu bar on the left of the

dialog box editor to define regions of text in your message box as well as loca-

tions for push-button controls or user input. Figure 14 shows the highlighted

code for a previously created dialog box. Once highlighted, click the Name

button to edit the dialog box.

Chapter 5: Creating Custom User Interfaces

52 AP Basic Language Manual

Figure 13.

An example of implementing a custom user interface is shown below. No-

tice that when the macro is run, the code remains in a loop waiting for the user

to select a menu option. When a particular option is selected, the Macro Run

command is used to launch a second macro that executes the desired test.

When complete, the macro will close and return to the main loop.

Sub Main

Start:

ChDir MacroDir

Begin Dialog UserDialog 430,105,"User Dialog Example"
' %GRID:10,7,1,1

PushButton 20,28,180,28,"Sample Test Macros",.Field1

PushButton 230,28,180,28,"Demo Test Macros",.Field2

PushButton 130,70,180,28,"Exit to Control_

Software",.Field3

Text 240,7,170,14,"Instrument NOT Required",.Field4

Text 10,7,210,14,"Instrument and DUT_
Required",.Field5,2

End Dialog

Dim Main_Menu As UserDialog

Chapter 5: Creating Custom User Interfaces

AP Basic Language Manual 53

Figure 14.

Select Case Dialog(Main_Menu)

Case 1

AP.Config.DisplayDataOnTestOpen = False

MacroRun MacroDir & "\2700\" & "2700-MENU.apb"

Case 2

AP.Config.DisplayDataOnTestOpen = True

MacroRun MacroDir & "\2700\DEMO\" & _

"2700-DEMO.apb"

Case Else

End

End Select

GoTo Start:

End Sub

Chapter 5: Creating Custom User Interfaces

54 AP Basic Language Manual

Chapter 6

Language Reference

Introduction

Groups

Declaration #Reference, #Uses, Attribute, Class Module, Code Module, Const, Declare,
Deftype, Dim, Enum...End Enum, Function...End Function, Object Module,
Option, Private, Property...End Property, Public, ReDim, Static, Sub...End Sub,
Type...End Type, WithEvents.

Assignment Erase, Let, LSet, RSet, Set.

Flow Control Call, CallByName, Do...Loop, End, Exit, For...Next, For Each...Next, GoTo,
If...ElseIf...Else...EndIf, MacroDir, MacroRun, MacroRunThis, Select
Case...End Case, Stop, While...Wend,

Error Handling Err, Error, On Error, Resume.

Conversion Array, CBool, CByte, CCur, CDate, CDbl, CInt, CLng, CSng, CStr, CVar,
CVDate, CVErr, Val.

Variable Info IsArray, IsDate, IsEmpty, IsError, IsMissing, IsNull, IsNumeric, IsObject,
LBound, TypeName, UBound, VarType.

Math Abs, Atn, Cos, dBToPowerRatio, dBToVoltageRatio, Exp, Exp10, Fix, Int, Log,
Log10, Pow, PowerRatioTodB, Randomize, Rnd, Round, Sgn, Sin, Sqr, Tan,
VoltageRatioTodB.

String Asc, AscB, AscW, Chr, ChrB, ChrW, Format, Hex, InStr, InStrB, InStrRev,
LCase, Left, LeftB, Len, LenB, LTrim, Mid, MidB, Oct, Replace, Right,
RightB, RTrim, Space, String, Str, StrComp, StrReverse, StrConv, Trim, UCase.

Object CreateObject, GetObject, Me, With...End With.

Time/Date Date, DateAdd, DateDiff, DatePart, DateSerial, DateValue, Day, Hour, Minute,
Month, MonthName, Now, Second, Time, Timer, TimeSerial, TimeValue,
Weekday, WeekdayName, Year.

File ChDir, ChDrive, Close, CurDir, Dir, EOF, FileAttr, FileCopy, FileDateTime,
FileLen, FreeFile, Get, GetAttr, Input, Input, Kill, Line Input, Loc, Lock, LOF,

AP Basic Language Manual 55

MkDir, Name, Open, Print, Put, Reset, RmDir, Seek, Seek, SetAttr, Unlock,
Write.

User Input Dialog, GetFilePath, InputBox, MsgBox.

User Dialog Begin Dialog...End Dialog, CancelButton, CheckBox, ComboBox,
DropListBox, GroupBox, ListBox, OKButton, OptionButton, OptionGroup,
Picture, PushButton, Text, TextBox.

Dialog Function Dialog Func, DlgControlId, DlgCount, DlgEnable, DlgEnd, DlgFocus,
DlgListBoxArray, DlgName, DlgNumber, DlgSetPicture, DlgText, DlgType,
DlgValue, DlgVisible.

DDE DDEExecute, DDEInitiate, DDEPoke, DDERequest, DDETerminate,
DDETerminateAll.

Settings: DeleteSetting, GetAllSettings, GetSetting, SaveSetting

Miscellaneous AppActivate, Attribute, Beep, CallersLine, Choose, Clipboard, Command,
Debug.Print, DoEvents, Environ, IIf, MacroDir, QBColor, Rem, RGB,
SendKeys, Shell, Wait, WaitAndDoEvents.

Operator Operators: +, -, ^, *, /, \, Mod, +, -, &, =, <>, <, >, <=, >=, Like, Not, And, Or,
Xor, Eqv, Imp, Is.

56 AP Basic Language Manual

Chapter 6: Language Reference

Operators

Syntax ^ Not * / \ Mod + - & < <= > >= = <> Is And Or Xor
Eqv Imp

Description These operators are available for numbers n1 and n2 or strings s1 and s2. If any
value in an expression is Null then the expressions value is Null. The order of
operator evaluation is controlled by operator precedence.

Operator Description

-n1 Negate n1.
n1 ^ n2 Raise n1 to the power of n2.
n1 * n2 Multiply n1 by n2.
n1 / n2 Divide n1 by n2.
n1 \ n2 Divide the integer value of n1 by the integer value of n2.
n1 Mod n2 Remainder of the integer value of n1 after dividing by the integer

value of n2.
n1 + n2 Add n1 to n2.
s1 + s2 Concatenate s1 with s2.
n1 - n2 Difference of n1 and n2.
s1 & s2 Concatenate s1 with s2.
n1 < n2 Return True if n1 is less than n2.
n1 <= n2 Return True if n1 is less than or equal to n2.
n1 > n2 Return True if n1 is greater than n2.
n1 >= n2 Return True if n1 is greater than or equal to n2.
n1 = n2 Return True if n1 is equal to n2.
n1 <> n2 Return True if n1 is not equal to n2.
s1 < s2 Return True if s1 is less than s2.
s1 <= s2 Return True if s1 is less than or equal to s2.
s1 > s2 Return True if s1 is greater than s2. \
s1 >= s2 Return True if s1 is greater than or equal to s2.
s1 = s2 Return True if s1 is equal to s2.
s1 <> s2 Return True if s1 is not equal to s2.
Not n1 Bitwise invert the integer value of n1. Only Not True is False.
n1 And n2 Bitwise and the integer value of n1 with the integer value n2.
n1 Or n2 Bitwise or the integer value of n1 with the integer value n2.
n1 Xor n2 Bitwise exclusive-or the integer value of n1 with the integer value

n2.
n1 Eqv n2 Bitwise equivalence the integer value of n1 with the integer value

n2 (same as Not (n1 Xor n2)).
n1 Imp n2 Bitwise implicate the integer value of n1 with the integer value n2

(same as (Not n1) Or n2).

Example Sub Main

N1 = 10

N2 = 3

S1$ = "asdfg"

S2$ = "hjkl"

Debug.Print -N1 '-10

Chapter 6: Language Reference

AP Basic Language Manual 57

Debug.Print N1 ^ N2 ' 1000

Debug.Print Not N1 '-11

Debug.Print N1 * N2 ' 30

Debug.Print N1 / N2 ' 3.3333333333333

Debug.Print N1 \ N2 ' 3

Debug.Print N1 Mod N2 ' 1

Debug.Print N1 + N2 ' 13

Debug.Print S1$ + S2$ '"asdfghjkl"

Debug.Print N1 - N2 ' 7

Debug.Print N1 & N2 '"103"

Debug.Print N1 < N2 'False

Debug.Print N1 <= N2 'False

Debug.Print N1 > N2 'True

Debug.Print N1 >= N2 'True

Debug.Print N1 = N2 'False

Debug.Print N1 <> N2 'True

Debug.Print S1$ < S2$ 'True

Debug.Print S1$ <= S2$ 'True

Debug.Print S1$ > S2$ 'False

Debug.Print S1$ >= S2$ 'False

Debug.Print S1$ = S2$ 'False

Debug.Print S1$ <> S2$ 'True

Debug.Print N1 And N2 ' 2

Debug.Print N1 Or N2 ' 11

Debug.Print N1 Xor N2 ' 9

Debug.Print N1 Eqv N2 ' -10

Debug.Print N1 Imp N2 ' -9

End Sub

Data Types

Any, Boolean, Byte, Currency, Date, Double, Integer, Long, Object, Single,
String, String*n, Variant, user type.

Type Description

Any Any variable expression (Declare only).
Boolean A True or False value.
Byte An 8 bit unsigned integer value.
Cdec Convert a number or string value to a 96 bit scaled real.
Currency A 64 bit fixed point real. (A twos complement binary value scaled

by 10000.)

58 AP Basic Language Manual

Chapter 6: Language Reference

Date A 64 bit real value. The whole part represents the date, while the
fractional part is the time of day. (December 30, 1899 = 0.) Use
#date# as a literal date value in a macro.

Double A 64 bit real value.
Integer A 16 bit integer value.
Long A 32 bit integer value.
Object An object reference value. (see Objects)
PortInt A portable integer value.

For Win16: A 16 bit integer value.
For Win32: A 32 bit integer value.

Single A 32 bit real value.
String An arbitrary length string value.
String*n A fixed length (n) string value.
UserDialog A usertype defined by Begin Dialog UserDialog.
Variant An empty, numeric, currency, date, string, object, error code, null

or array value.

Chapter 6: Language Reference

AP Basic Language Manual 59

Keywords

Empty, False, Nothing, Null, True. Win16, Win32.

Word Description

Empty A variantvar that does not have any value.
False A condexpr is false when its value is zero. A function that returns

False returns the value 0.
Nothing An objexpr that does not refer to any object.
Null An variant expression that is null. A null value propagates through

an expression causing the entire expression to be Null.
Attempting to use a Null value as a string or numeric argument
causes a run-time error. A Null value prints as #NULL#.

Example Sub Main

X = Null

Debug.Print X = Null '(even this expression is Null)

Debug.Print IsNull(X) '(use IsNull to test for a _
Null value)

End Sub

Example Output Null

True

True A conditional expression is true when its value is non-zero. A
function that returns True returns the value -1.

Win16 True if running in 16 bits. False if running in 32 bits.
Win32 True if running in 32 bits. False if running in 16 bits.

60 AP Basic Language Manual

Chapter 6: Language Reference

Language Commands

Abs Function

Syntax Abs(num)

Parameters Name Description

num Return the absolute value of this number value.

Description Return the absolute value.

Example Sub Main

Debug.Print Abs(9)

Debug.Print Abs(0)

Debug.Print Abs(-9)

End Sub

Example Output 9

0

9

AppActivate Instruction

Syntax AppActivate title$

-or-

AppActivate TaskID

Parameters Name Description

title$ The name shown in the title bar of the window.
TaskID This numeric value is the task identifier.

Description Form 1: Activate the application top-level window titled Title$. If no window
by that title exists then the first window with a title that starts with Title$ is
activated. If no window matches then an error occurs.

Form 2: Activate the application top-level window for task TaskID. If no
window for that task exists then an error occurs.

See Also SendKeys, Shell().

Example Sub Main

'Make ProgMan the active application

AppActivate "Program Manager"

End Sub

Abs Chapter 6: Language Reference

AP Basic Language Manual 61

Array Function

Syntax Array([expr[, ...]])

Description Return a variant value array containing exprs.

Example Sub Main

X = Array(0,1,4,9)

Debug.Print X(2)

End Sub

Example Output 4

Asc Function

Syntax Asc(string$)

Parameters Name Description

string$ Return the ASCII value of the first char in this string value.

Description Return the ASCII value.

Note: A similar function, AscB, returns the first byte in S$. Another similar
function, AscW, returns the Unicode number.

See Also Chr$().

Example Sub Main

Debug.Print Asc("A")

End Sub

Example Output 65

Atn Function

Syntax Atn(num)

Parameters Name Description

num Return the arc tangent of this number value. This is the number of
radians. There are 2*Pi radians in a full circle.

Description Return the arc tangent.

Example Sub Main

Debug.Print Atn(1)*4

End Sub

Example Output 3.14159265358979

62 AP Basic Language Manual

Chapter 6: Language Reference Array

Attribute Definintion/Statement

Syntax Attribute name = value

Description All attribute definitions and statements are ignored except for:

� Public varname As Type

Attribute varname.VB_VarUserMemId = 0

Declares Public varname as the default property for a class module or object
module.

� Property [Get|Let|Set] propname (...)

Attribute propname.VB_UserMemId = 0

...

End Property

Declares Property propname as the default property for a class module or object
module.

Beep Instruction

Syntax Beep

Description Sound the bell.

Example Sub Main

Beep 'Beep the bell.

End Sub

Begin Dialog Definition

Syntax Begin Dialog UserDialog [x, y,] dx, dy[, title$][,

.dialogfunc]

User Dialog Item
[User Dialog Item]...

End Dialog

Parameters Name Description

x This number value is the distance from the left edge of the screen
to the left edge of the dialog box. It is measured in 1/8ths of the
average character width for the dialog's font. If this is omitted then
the dialog will be centered.

y This number value is the distance from the top edge of the screen
to the top edge of the dialog box. It is measured in 1/12ths of the

Attribute Chapter 6: Language Reference

AP Basic Language Manual Page 63

average character width for the dialog's font. If this is omitted then
the dialog will be centered.

dx This number value is the width. It is measured in 1/8ths of the
average character width for the dialog's font.

dy This number value is the height. It is measured in 1/12ths of the
character height for the dialog's font.

title$ This string value is the title of the user dialog. If this is omitted
then there is no title.

dialogfunc This is the function name that implements the DialogFunc for this
UserDialog. If this is omitted then the UserDialog doesn't have a
dialogfunc.

User Dialog
Item One of: CancelButton, CheckBox, ComboBox, DropListBox,

GroupBox, ListBox, OKButton, OptionButton, OptionGroup,
PushButton, Text, TextBox.

Description Define a UserDialog type to be used later in a Dim As UserDialog statement.

See Also Dim As UserDialog.

Example Sub Main

Begin Dialog UserDialog 200,120

Text 10,10,180,15,"Please push the OK button."

OKButton 80,90,40,20

End Dialog

Dim dlg As UserDialog

Dialog dlg show dialog (Wait for OK)

End Sub

Call Instruction

Syntax Call name[(arglist)]

-or-

name[arglist]

Description Evaluate the arglist and call subroutine (or function) name with those values.
Sub (or function) name must be previously defined by either a Sub (or
Function) definition. If name is a function then the result is discarded. If Call is
omitted then name must be a subroutine and the arglist is not enclosed in
parens.

See Also Declare, Sub.

Example Sub Show(Title$,Value)

Debug.Print Title$;" =";Value

End Sub

Sub Main

64 AP Basic Language Manual

Chapter 6: Language Reference Call

Call Show("2000/9",2000/9)

Show "1",1<2 'True

End Sub

Example Output 222.2222222222

True

CallByName Instruction

Syntax CallByName(Obj,ProcName,CallType,[expr[, ...]])

Description Call an Obj’s method/property, ProcName, by name. Pass the exprs to the
method/property.

Parameters Name Description

Obj Call the method/property for this object reference.
ProcName This string value is the name of the method/property to be called.
CallType Type of method/property call. See table below.
expr These expressions are passed to the obj’s method/property.

CallType Value
Effect

vbMethod 1 Call or evaluate the method.

vbGet 2 Evaluate the property’s value.

vbLet 4 Assign the property’s value.

vbSet 8 Set the property’s reference.

Example Sub Main

On Error Resume Next

CallByName Err, "Raise", vbMethod, 1

Debug.Print CallByName(Err, "Number", vbGet) ' 1

End Sub

CallersLine Function

Syntax CallersLine[(Depth)]

Description Return the caller’s line as a text string.

The text format is: "[macroname|subname#linenum] linetext".

CallByName Chapter 6: Language Reference

AP Basic Language Manual 65

Parameter Description

Depth This integer value indicates how deep into the stack to get the
caller’s line. If Depth = 0 then return the current line. If Depth = 1
then return the calling subroutine’s current line, etc. If Depth is
greater than the call stack then a null string is returned. If this
value is omitted then the depth is 1.

Example Sub Main

A

End Sub

Sub A

Debug.Print CallersLine ' "[(untitled 1)|Main# 2] A"

End Sub

CancelButton Dialog Item Definition

Syntax CancelButton x, y, dx, dy[, .field]

Parameters Name Description

x This number value is the distance from the left edge of the dialog
box. It is measured in 1/8ths of the average character width for
the dialog's font.

y This number value is the distance from the top edge of the dialog
box. It is measured in 1/12ths of the character height for the
dialog's font.

dx This number value is the width. It is measured in 1/8ths of the
average character width for the dialog's font.

dy This number value is the height. It is measured in 1/12ths of the
character height for the dialog's font.

field This identifier is the name of the field. The dialogfunc receives this
name as string. If this is omitted then the field name is Cancel.

Description Define a cancel button item. Pressing the Cancel button from a Dialog
instruction causes a run-time error. (Dialog() function call returns 0.)

See Also Begin Dialog, Dim As UserDialog.

Example Sub Main

Begin Dialog UserDialog 200,120

Text 10,10,180,30,"Please push the Cancel button"

OKButton 40,90,40,20

CancelButton 110,90,60,20

End Dialog

Dim dlg As UserDialog

Dialog dlg show dialog (wait for cancel)

Debug.Print "Cancel was not pressed"

66 AP Basic Language Manual

Chapter 6: Language Reference CancelButton Dialog Item

End Sub

CBool Function

Syntax CBool(num|$)

Parameters Name Description

num Any number.
$ The string must be either a number in quotes, or True or False in

quotes (not case sensitive).

Description Convert to a boolean value. Zero converts to False, while all other values
convert to True.

Example Sub Main

Debug.Print CBool(-1)

Debug.Print CBool(0)

Debug.Print CBool(1)

End Sub

Example Output True

False

True

CBool Chapter 6: Language Reference

AP Basic Language Manual 67

CByte Function

Syntax Byte(num|$)

Parameters Name Description

num|$ Convert a number or string value to a byte value.

Description Convert to a byte value.

Example Sub Main

Debug.Print CByte(1.6)

End Sub

Example Output 2

CCur Function

Syntax CCur(num|$)

Parameters Name Description

num|$ Convert a number or string value to a currency value.

Description Convert to a currency value.

Example Sub Main

Debug.Print CCur(1E6)

End Sub

Example Output 1000000

CDate Function

Syntax CDate(num|$)
-or-

CVDate(num|$)

Parameters Name Description

num|$ Convert a number or string value to a date value.

Description Convert to a date value.

Example Sub Main

Debug.Print CDate(2)

End Sub

Example Output 1/1/00

68 AP Basic Language Manual

Chapter 6: Language Reference CByte

CDbl Function

Syntax CDbl(num|$)

Parameters Name Description

num|$ Convert a number or string value to a double precision real.

Description Convert to a double precision real.

Example Sub Main

Debug.Print CDbl("1E6")

End Sub

Example Output 1000000

ChDir Instruction

Syntax ChDir name$

Parameters Name Description

name$ This string value is the path and name of the directory.

Description Change the current directory to Name$.

See Also ChDrive, CurDir$().

Example Sub Main

ChDir "C:\"

Debug.Print CurDir$()

End Sub

Example Output C:\

ChDrive Instruction

Syntax ChDrive drive$

Parameters Name Description

drive$ This string value is the drive letter.

Description Change the current drive to dfrive$.

See Also ChDir, CurDir$().

Example Sub Main

ChDrive "B"

Debug.Print CurDir$()

Example Output B:\

CDbl Chapter 6: Language Reference

AP Basic Language Manual 69

CheckBox Dialog Item Definition

Syntax CheckBox x, y, dx, dy, title$, .field[, Options]

Parameters Name Description

x This number value is the distance from the left edge of the dialog
box. It is measured in 1/8ths of the average character width for
the dialog's font.

y This number value is the distance from the top edge of the dialog
box. It is measured in 1/12ths of the character height for the
dialog's font.

dx This number value is the width. It is measured in 1/8ths of the
average character width for the dialog's font.

dy This number value is the height. It is measured in 1/12ths of the
character height for the dialog's font.

field The value of the check box is accessed via this field. Checked is
1, and unchecked is 0.

Options If this numeric value is zero or omitted then an
checked/unchecked checkbox is created. If it is one then a
checked/unchecked/grayed checkbox is created. If it is two then a
checked/unchecked/grayed checkbox is created and the user can
cycle through all three states.

Description Define a checkbox item.

See Also Begin Dialog, Dim As UserDialog.

Example Sub Main

Begin Dialog UserDialog 200,120

Text 10,10,180,15,"Please push the OK button."

CheckBox 10,25,180,15,"&Checkbox",.Check

OKButton 80,90,40,20

End Dialog

Dim dlg As UserDialog

dlg.Check = 1

Dialog dlg 'Show dialog (wait for OK)

Debug.Print dlg.Check

End Sub

Example Output 0

or

1

Choose Function

Syntax Choose(index, expr[, ...])

70 AP Basic Language Manual

Chapter 6: Language Reference CheckBox

Parameters Name Description

index The numeric value indicates which expr to return. If this value is
less than one or greater than the number of exprs then Null is
returned.

expr All expressions are evaluated.

Description Return the value of the expr indicated by Index.

See Also If, Select Case, IIf().

Example Sub Main

Debug.Print Choose(2,"Hi","there")

End Sub

Example Output there

Chr$ Function

Syntax Chr[$](num)

Parameters Name Description

num Return one char string for this ASCII number value.

Description Return a one char string for the ASCII value.

Note: A similar function, ChrB, returns a single byte ASCII string. Another
similar function, ChrW, returns a single char Unicode string.

See Also Asc().

Example Sub Main

Debug.Print Chr$(48)

End Sub

Example Output 0

CInt Function

Syntax CInt(num|$)

Parameters Name Description

num|$ Convert a number or string value to a 16 bit integer.

Description Convert to a 16 bit integer. If num|$ is too big (or too small) to fit then an
overflow error occurs.

Example Sub Main

Debug.Print CInt(1.6)

End Sub

Chr$ Chapter 6: Language Reference

AP Basic Language Manual 71

Example Output 2

Class Module

Description: (The Class module feature is not implemented in version 1.5 of AP Basic)

A class module implements an OLE Automation object.

� Has a set of Public properties, functions and subroutines accessible from

other macros and modules.

� These public symbols are accessed via an object variable.

� Public Consts, Types, arrays, fixed length strings are not allowed.

� A class module is similar to a object module except that no instance is

automatically created.

� To create an instance use:

Dim Obj As classname

Set Obj = New classname

See Also Code Module, Object Module, Uses.

Example 'A.WWB

'#Uses "File.CLS"

Sub Main

Dim File As New File

File.Attach "C:\AUTOEXEC.BAT"

Debug.Print File.ReadLine

End Sub

'File.CLS

'File|New Module|Class Module

'Edit|Properties|Name=File

Option Explicit

Dim FN As Integer

Public Sub Attach(FileName As String)

FN = FreeFile

Open FileName For Input As #FN

End Sub

Public Sub Detach()

If FN <> 0 Then Close #FN

FN = 0

End Sub

72 AP Basic Language Manual

Chapter 6: Language Reference Class

Public Function ReadLine() As String

Line Input #FN,ReadLine

End Function

Private Sub Class_Initialize()

Debug.Print "Class_Initialize"

End Sub

Private Sub Class_Terminate()

Debug.Print "Class_Terminate"

Detach

End Sub

Class_Initialize Sub

Syntax Private Sub Class_Initialize()

...

End Sub

Description Class module initialization subroutine. Each time a new instance is created for a
class module the Class_Initialize sub is called. If Class_Initialize is not defined
then no special initialization occurs.

See Also Code Module, Class_Terminate.

Class_Terminate Sub

Syntax Private Sub Class_Terminate()

...

End Sub

Description Class module termination subroutine. Each time an instance is destroyed for a
class module the Class_Terminate sub is called. If Class_Terminate is not
defined then no special termination occurs.

See Also Code Module, Class_Initialize.

Class_Initialize Chapter 6: Language Reference

AP Basic Language Manual 73

Clipboard Instruction/Function

Syntax Clipboard text$

-or-

Clipboard[$][()]

Parameters Name Description

text$ Put this string value into the clipboard.

Description Form 1: Set the clipboard to Text$. This is like the Edit|Copy menu command.

Form 2: Return the text in the clipboard.

Example Sub Main

Debug.Print Clipboard$()

Clipboard "Hello"

Debug.Print Clipboard$()

End Sub

Example Output Hello

CLng Function

Syntax CLng(num|$)

Parameters Name Description

num|$ Convert a number or string value to a 32 bit integer.

Description Convert to a 32 bit long integer. If num|$ is too big (or too small) to fit then an
overflow error occurs.

Example Sub Main

Debug.Print CLng(1.6)

End Sub

Example Output 2

Close Instruction

Syntax Close [[#]streamnum][, ...]

Parameters Name Description

streamnum Streams 1, 2, 3 and 4 are available in each macro. If this is
omitted then all open streams for the current macro are closed.

Description Close streamnums.

See Also Open, Reset.

74 AP Basic Language Manual

Chapter 6: Language Reference Clipboard

Example Sub Main

'Read the first line of XXX and print it.

Open "C:\APWIN\SAMPLES\SYSTEM1.APB" For Input As #1

Line Input #1,L$

Debug.Print L$

Close #1

End Sub

Code Module

Description (The Code module feature is not implemented in version 1.5 of AP Basic). A
Code module implements a code library.

� Has a set of Public properties, functions and subroutines accessible from

other macros and modules.

� The public symbols are accessed directly.

See Also Class Module, Object Module, Uses.

ComboBox Dialog Item Definition

Syntax ComboBox x, y, dx, dy, strarray$(), .field$

Parameters Name Description

x This number value is the distance from the left edge of the dialog
box. It is measured in 1/8ths of the average character width for
the dialog's font.

y This number value is the distance from the top edge of the dialog
box. It is measured in 1/12ths of the character height for the
dialog's font.

dx This number value is the width. It is measured in 1/8ths of the
average character width for the dialog's font.

dy This number value is the height. It is measured in 1/12ths of the
character height for the dialog's font.

strarray$() This one-dimensional array of strings establishes the list of
choices. All the non-null elements of the array are used.

field$ The value of the combo box is accessed via this field. This is the
text in the edit box .

Description Define a combobox item. Combo boxes combine the functionality of an edit
box and a list box.

See Also Begin Dialog, Dim As UserDialog.

Example Sub Main

Code Chapter 6: Language Reference

AP Basic Language Manual 75

Dim combos$(3)

combos$(0) = "Combo 0"

combos$(1) = "Combo 1"

combos$(2) = "Combo 2"

combos$(3) = "Combo 3"

Begin Dialog UserDialog 200,120

Text 10,10,180,15,"Please push the OK button"

ComboBox 10,25,180,60,combos$(),.combo$

OKButton 80,90,40,20

End Dialog

Dim dlg As UserDialog

dlg.combo$ = none

Dialog dlg 'show Dialog (Wait For ok)

Debug.Print dlg.combo$

End Sub

Example Output Combo 0

or

Combo 1

or

Combo 2

or

Combo 3

Command$ Function

Syntax Command[$]

Description Contains the value of the MacroRun parameters.

See Also MacroRun

Example Sub Main 'Macro 1 Calling Macro.

MacroRun "MACRO2.APB 1,2,3"

End Sub

Sub Main 'Macro 2 "MACRO2.APB"

Debug.Print "Command line parameter is: ";

Debug.Print Command$;

End Sub

Example Output Command line parameter is: 1,2,3

76 AP Basic Language Manual

Chapter 6: Language Reference Command$

Const Definition

Syntax [Private|Public] Const name[type] [As type] = expr[,
...]

Description Define name as the value of expr. The expr may refer to other constants or
built-in functions. If the type of the constants is not specified, the type of expr is
used. Constants defined outside a Sub, Function or Property block are
available in the entire macro.

Private is assumed if neither Private or Public is specified.

Note: Const statements in a Sub, Function or Property block may not use
Private or Public.

Example Sub Main

Const Pi = 4*Atn(1), e = Exp(1)

Debug.Print Pi

Debug.Print e

End Sub

Example Output 3.14159265358979

2.71828182845905

Cos Function

Syntax Cos(num)

Parameters Name Description

num Return the cosine of this number value. This is the number of
radians. There are 2*Pi radians in a full circle.

Description Return the cosine.

Example Sub Main

Debug.Print Cos(1)

End Sub

Example Output 0.54030230586814

CreateObject Function

Syntax CreateObject(class$)

Parameters Name Description

class$ This string value is the applications registered class name. If this
application is not currently active it will be started.

Const Chapter 6: Language Reference

AP Basic Language Manual 77

Description Create a new object of type Class$. Use Set to assign the returned object to an
object variable.

See Also Objects

Example Sub Main

Dim Excel As Object

Set Excel = CreateObject("Excel.Application")

With Excel

Excel.Visible = True

Excel.Quit

End With

Set Excel = Nothing

End Sub

CSng Function

Syntax CSng(num|$)

Parameters Name Description

num|$ Convert a number or string value to a single precision real.

Description Convert to a single precision real. If num|$ is too big (or too small) to fit then an
overflow error occurs.

Example Sub Main

Debug.Print CSng(Sqr(2))

End Sub

Example Output 1.414214

CStr Function

Syntax CStr(num|$)

Parameters Name Description

num|$ Convert a number or string value to a string value.

Description Convert to a string.

Example Sub Main

Debug.Print CStr(Sqr(2))

End Sub

Example Output 1.4142135623731

78 AP Basic Language Manual

Chapter 6: Language Reference CSng

CurDir$ Function

Syntax CurDir[$]([drive$])

Parameters Name Description

drive$ This string value is the drive letter. If this is omitted or null then
return the current directory for the current drive.

Description Return the current directory for Drive$.

See Also ChDir, ChDrive.

Example Sub Main

Debug.Print CurDir$()

End Sub

Example Output C:\

CVar Function

Syntax CVar(num|$)

Parameters Name Description

num|$ Convert a number or string value (or object reference) to a variant
value.

Description Convert to a variant value.

Example Sub Main

Debug.Print CVar(Sqr(2))

End Sub

Example Output 1.4142135623731

CurDir$ Chapter 6: Language Reference

AP Basic Language Manual 79

CVErr Function

Syntax CVErr(num|$)

Parameters Name Description

num|$ Convert a number or string value to an error code.

Description Convert to a variant that contains an error code. An error code cant be used in
expressions.

See Also IsError.

Example Sub Main

Debug.Print CVErr(1)

End Sub

Example Output Error 1

Date Function

Syntax Date[$]

Description Return today's date as a date value.

See Also Now, Time, Timer.

Example Sub Main

Debug.Print Date

End Sub

Example Output 2/8/96

80 AP Basic Language Manual

Chapter 6: Language Reference CVErr

DateAdd Function

Syntax DateAdd(inteval, number, dateexpr)

Description Return a date value a number of intervals from another date.

Parameter Description

interval This string value indicates which kind of interval to add.
number Add this many intervals. Use a negative value to get an earlier

date.
dateexpr Calculate the new date relative to this date value. If this value is

Null then Null is returned.

Interval Description

yyyy Year
q Quarter
m Month
d Day
w Weekday
ww Week
h Hour
m Minute
s Second

See Also DateDiff, DatePart.

Example Sub Main

Debug.Print DateAdd("yyyy",1,#1/1/2000#) '1/1/2001

End Sub

DateAdd Chapter 6: Language Reference

AP Basic Language Manual 81

DateDiff Function

Syntax

DateDiff(inteval, dateexpr1, dateexpr2)

Description Return the number of intervals between two dates.

Parameter Description

interval This string value indicates which kind of interval to subtract.
dateexpr1 Calculate the from this date value to dateexpr2. If this value is

Null then Null is returned.
dateexpr2 Calculate the from dateexpr1 to this date value. If this value is

Null then Null is returned.

Interval Description

yyyy Year
q Quarter
m Month
d Day
w Weekday
ww Week
h Hour
m Minute
s Second

See Also DateAdd, DatePart.

Example Sub Main

Debug.Print DateDiff("yyyy",#1/1/1990#,#1/1/2000#) '
10

End Sub

DatePart Function

Syntax DatePart(inteval, dateexpr)

Description Return the number from the date corresponding to the interval.

Parameter Description

interval This string value indicates which kind of interval to extract.
dateexpr Get the interval from this date value. If this value is Null then Null

is returned.

Interval Description (return value range)

yyyy Year (100-9999)
q Quarter (1-4)
m Month (1-12)

82 AP Basic Language Manual

Chapter 6: Language Reference DateDiff

d Day (1-366)
w Weekday (1-7)
ww Week (1-53)
h Hour (0-23)
m Minute (0-59)
s Second (0-59)

See Also DateAdd, DateDiff.

Example Sub Main

Debug.Print DatePart("yyyy",#1/1/2000#) ' 2000

End Sub

DateSerial Function

Syntax DateSerial(year, month, day)

Parameters Name Description

year This numeric value is the year (0 to 9999). (0 to 99 are interpreted
as 1900 to 1999.)

month This numeric value is the month (1 to 12).
day This numeric value is the day (1 to 31).

Description Return a date value.

See Also DateValue, TimeSerial, TimeValue.

Example Sub Main

Debug.Print DateSerial(1996,2,8)

End Sub

Example Output 2/8/9

DateValue Function

Syntax DateValue(date$)

Parameters Name Description

date$ Convert this string value to the day part of date it represents.

Description Return the day part of the date encoded as a string.

See Also DateSerial, TimeSerial, TimeValue.

Example Sub Main

Debug.Print DateValue("2/8/1996 12:00:01 AM")

End Sub

Example Output 2/8/96

DateSerial Chapter 6: Language Reference

AP Basic Language Manual 83

Day Function

Syntax Day(dateexpr)

Parameters Name Description

dateexpr Return the day of the month for this date value.

Description Return the day of the month (1 to 31).

See Also Date(), Month(), Weekday(), Year().

Example Sub Main

Debug.Print Day(#1/1/1900#)

End Sub

Example Output 1

dBToPowerRatio Function

Syntax dBToPowerRatio(num)

Parameters Name Description

num dB number

Description Return the power ratio of num to 1.

Example Sub Main

Debug.Print Format(dBToPowerRatio(-3), "#.0000")

End Sub

Example Output .5012

Equation PowerRatio = Exp10(num / 10)

dBToVoltageRatio Function

Syntax dBToVoltageRatio(num)

Parameters Name Description

num dB number

Description Return the voltage ratio of num to 1.

Example Sub Main

Debug.Print Format(dBToVoltageRatio(-6), "#.0000")

End Sub

Example Output .5012

Equation VoltageRatio = Exp10(num/20)

84 AP Basic Language Manual

Chapter 6: Language Reference Day

DDEExecute Instruction

Syntax DDEExecute channum, command$[, timeout]

Parameters Name Description

channum This is the channel number returned by the DDEInitiate function.
Up to 10 channels may be used at one time.

command$ Send this command value to the server application. The
interpretation of this value is defined by the server application.

timeout The command will generate an error if the number of seconds
specified by the timeout is exceeded before the command has
completed. The default is five seconds.

Description Send the DDE Execute Command$ string via DDE Channum.

Example Sub Main

ChanNum = DDEInitiate(PROGMAN,"PROGMAN")

DDEExecute ChanNum,"[CreateGroup(XXX)]"

DDETerminate ChanNum

End Sub

DDEInitiate Function

Syntax DDEInitiate(app$, topic$)

Parameters Name Description

app$ Locate this server application.
topic$ This is the server applications topic. The interpretation of this

value is defined by the server application.

Description Initiate a DDE conversation with App$ using Topic$. If the conversation is
successfully started then the return value is a channel number that can be used
with other DDE instructions and functions.

Example Sub Main

ChanNum = DDEInitiate (PROGMAN, PROGMAN)

DDEExecute ChanNum,"[CreateGroup(XXX)]"

DDETerminate ChanNum

End Sub

DDEExecute Chapter 6: Language Reference

AP Basic Language Manual 85

DDEPoke Instruction

Syntax DDEPoke channum, item$, data$[, timeout]

Parameters Name Description

channum This is the channel number returned by the DDEInitiate function.
Up to 10 channels may be used at one time.

item$ This is the server applications item. The interpretation of this
value is defined by the server application.

data$ Send this data value to the server application. The interpretation
of this value is defined by the server application.

timeout The command will generate an error if the number of seconds
specified by the timeout is exceeded before the command has
completed. The default is five seconds.

Description Poke Data$ to the Item$ via DDE Channum.

Example Sub Main

ChanNum = DDEInitiate(PROGMAN,"PROGMAN")

DDEPoke ChanNum,"Group","XXX"
progman doesn't support poke

DDETerminate ChanNum

End Sub

DDERequest$ Function

Syntax DDERequest[$](channum, item$[, timeout])

Parameters Name Description

channum This is the channel number returned by the DDEInitiate function.
Up to 10 channels may be used at one time.

item$ This is the server applications item. The interpretation of this
value is defined by the server application.

timeout The command will generate an error if the number of seconds
specified by the timeout is exceeded before the command has
completed. The default is five seconds.

Description Request information for Item$. If the request is not satisfied then the return
value will be a null string.

Example Sub Main

ChanNum = DDEInitiate(PROGMAN,"PROGMAN")

Debug.Print DDERequest$(ChanNum,"Groups")

DDETerminate ChanNum

End Sub

86 AP Basic Language Manual

Chapter 6: Language Reference DDEPoke

DDETerminate Instruction

Syntax DDETerminate channum

Parameters Name Description

channum This is the channel number returned by the DDEInitiate function.
Up to 10 channels may be used at one time.

Description Terminate DDE Channum.

Example Sub Main

ChanNum = DDEInitiate(PROGMAN,"PROGMAN")

DDEExecute ChanNum,"[CreateGroup(XXX)]"

DDETerminate ChanNum

End Sub

DDETerminateAll Instruction

Syntax DDETerminateAll

Description Terminate all open DDE channels.

Example Sub Main

ChanNum = DDEInitiate(PROGMAN,"PROGMAN")

DDEExecute ChanNum,"[CreateGroup(XXX)]"

DDETerminateAll

End Sub

DDETerminate Chapter 6: Language Reference

AP Basic Language Manual 87

Debug Object

Syntax Debug.Print [expr[; ...][;]]

Description Print the expr(s) to the output window. Use ; to separate expressions. A num is
automatically converted to a string before printing (just like Str$()). If the
instruction does not end with a ; then a newline is printed at the end.

Example Sub Main

X = 4

Debug.Print "X/2 ="; X/2

Debug.Print "Start..."; 'Dont Print
a newline

Debug.Print "Finish" 'Print a newline"

End Sub

Example Output X/2 = 2

Start...Finish

Declare Definition

Syntax [Private|Public] Declare Sub name Lib dllname _
[Alias modulename] [([param[, ...]])]

-or-

[Private|Public] Declare Function name[type] Lib _
dllname [Alias modulename] [([param[, ...]])] As _

type]

Parameters Name Description

name This is the name of the subroutine/function being defined.
dll name This is the DLL file where the modules code is.
module name This is the name of the module in the DLL file. If this is #number

then it is the ordinal number of the module. If it is omitted then
name is the module name.

params A list of zero or more params that are used by the DLL subroutine
or function. (Note : A ByVal strings value may be modified by the
DLL.)

Description Interface to a DLL defined subroutine or function. The values of the calling
arglist are assigned to the params.

Public is assumed if neither Private or Public is specified.

WARNING! Be very careful when declaring DLL subroutines or functions. If
you make a mistake and declare the paremeters or result incorrectly then

88 AP Basic Language Manual

Chapter 6: Language Reference Debug

Windows might halt. Save any open documents before testing new DLL
declarations.

See Also Function, Sub, Call.

Example Declare Function GetActiveWindow& Lib "user32" ()

Declare Function GetWindowTextLength% Lib "user32" _ (ByVal
hwnd&)

Declare Sub GetWindowText Lib "user32"
(ByVal hwn&%, _ ByVal lpsz$, ByVal cbMax&)

Function ActiveWindowTitle$()

ActiveWindow = GetActiveWindow()

TitleLen = GetWindowTextLength(ActiveWindow)

Title$ = Space$(TitleLen)

GetWindowText ActiveWindow,Title$,TitleLen+1

ActiveWindowTitle$ = Title$

End Function

Sub Main

Debug.Print ActiveWindowTitle$()

End Sub

Def Definition

Syntax Def{Bool|Cur|Date|Dbl|Int|Lng|Obj|Sng|Str|Var}
letterrange[, ...]

Parameters Name Description

letterrange letter, or letter-letter: A letter is one of A to Z. When letter-letter is
used, the first letter must be alphabetically before the second
letter. Variable names that begin with a letter in this range default
to declared type.
If a variable name begins with a letter not specific in any
letterrange then the variable is a Variant. The letterranges are not
allowed to overlap.

Description Define untyped variables as:

DefBool - Boolean

DefByte - Byte

DefCur - Currency

DefDate - Date

DefDbl - Double

DefInt - Integer

Def Chapter 6: Language Reference

AP Basic Language Manual 89

DefLng - Long

DefObj - Object

DefSng - Single

DefStr - String

DefVar - Variant

See Also Option Explicit.

Example DefInt A,C-W,Y 'Integers

DefBool B 'Boolean

DefStr X 'String

'All others(Z) are Variant.

Sub Main

B = 1 'B Is an Boolean.

Debug.Print B

X = "A" 'X Is a String.

Debug.Print X

Z = 1 'Z Is a Variant (anything).

Debug.Print Z

Z = "Z"

Debug.Print Z

End Sub

Example Output 1

A

1

Z

90 AP Basic Language Manual

Chapter 6: Language Reference Def

DeleteSetting Instruction

Syntax DeleteSetting AppName$, Section$[, Key$]

Description Delete the settings for Key in Section in project AppName. Win16 and Win32s
store settings in an .ini file named AppName. Win32 stores settings in the
registration database.

Parameter Description

AppName$ This string value is the name of the project that has this Section
and Key.

Section$ This string value is the name of the section of the project settings.

Key$ This string value is the name of the key in the section of the
project settings. If this is omitted then delete the entire section.

Example Sub Main

SaveSetting "MyApp","Font","Size",10

DeleteSetting "MyApp","Font","Size"

End Sub

Dialog Instruction/Function

Syntax Dialog dialogvar[, default]

-or-

Dialog(dialogvar[, default])

Parameters Name Description

dlgvar This variable that holds the values of the fields in a dialog. Use
.field to access individual fields in a dialog variable.

default This numeric value indicates which button is the default button.
(Pressing the Enter key on a non-button pushes the default
button.) Use -2 to indicate that there is no default button. Other
possible values are shown the result table below. If this value is
omitted then the first PushButton, OKButton or CancelButton is
the default button.

Result

Value Description

-1 OK button was pressed.
0 Cancel button was pressed
n Nth push button was pressed.

Description Display the dialog associated with dialogvar. The initial values of the dialog
fields are provided by dialogvar. If the OK button or any push button is
pressed then the fields in dialog are copied to the dialogvar. The Dialog()

DeleteSetting Chapter 6: Language Reference

AP Basic Language Manual 91

function returns a value indicating which button was pressed. (See the result
table below.)

See Also Begin Dialog, Dim As UserDialog.

Example Sub Main

Begin Dialog UserDialog 200,120

Text 10,10,180,15,"Please push the OK button."

OKButton 80,90,40,20

End Dialog

Dim dlg As UserDialog

Dialog dlg 'Show Dialog (Wait For OK)

End Sub

DialogFunc Prototype

Syntax Function Dialogfunc(dlgitem$, action%, suppvalue%) _ As
Boolean

Select Case Action%

Case 1 Dialog box initialization
...
Case 2 Value changing or button pressed
...
Case 3 TextBox or ComboBox text changed
...
Case 4 Focus changed
...
Case 5 Idle
...
End Select

End Function

Parameters Name Description

dlgitem This string value is the name of the user dialog items field.
action This numeric value indicates what action the dialog function is

being asked to do.
suppvalue This numeric value provides additional information for some

actions.

Action Description

1 Dialog box initialization. DlgItem is a null string. SuppValue is
zero.

2 CheckBox, DropListBox, ListBox or OptionGroup: DlgItems
value has changed. SuppValue is the new value.

92 AP Basic Language Manual

Chapter 6: Language Reference DialogFunc

CancelButton, OKButton or PushButton: DlgItems button was
pushed. SuppValue is meaningless. Set dialogfunc = True to
prevent the dialog from closing.

3 ComboBox or TextBox: DlgItems text changed and losing focus.
SuppValue is the number of characters.

4 Item DlgItem is gaining focus. SuppValue is the item that is losing
focus. (The first item is 0, second is 1, etc.)

5 Idle processing. DlgItem is a null string. SuppValue is zero. Set
dialogfunc = True to continue receiving idle actions.

Description A dialogfunc implements the dynamic dialog capabilities.

See Also Begin Dialog.

Example Sub Main

Begin Dialog UserDialog 200,120,.DialogFunc

Text 10,10,180,15,"Please push the OK button."

TextBox 10,40,180,15,.Text

OKButton 30,90,60,20

PushButton 110,90,60,20,"&Hello"

End Dialog

Dim dlg As UserDialog

Debug.Print Dialog(dlg)

End Sub

Function DialogFunc%(DlgItem$, Action%, SuppValue%)

Debug.Print "Action =";Action%

Select Case Action%

Case 1

Beep

Case 2

If DlgItem$ = "Hello" Then

MsgBox "Hello"

DialogFunc% = True 'do not exit the dialog

End If

Case 3

Debug.Print DlgItem$;"=""";DlgText$(DlgItem$);""""

Case 4

Debug.Print "DlgFocus =""";DlgFocus();""""

End Select

End Function

DialogFunc Chapter 6: Language Reference

AP Basic Language Manual 93

Dim Definition

Syntax Dim name[type][([Dim[,...]])][As type][, ...]

Description Dimension var array(s) using the dims to establish the minimum and maximum
index value for each dimension. If the dims are omitted then a scalar (single
value) variable is defined. A dynamic array is declared using () without any
dims. It must be ReDimensioned before it can be used.

See Also Begin Dialog, Dialog, Private, Public, ReDim, Static.

Example Sub DoIt(Size)

Dim C0,C1(),C2(2,3)

ReDim C1(Size) 'Dynamic Array

C0 = 1

C1(0) = 2

C2(0,0) = 3

Debug.Print C0;C1(0);C2(0,0)

End Sub

Sub Main

DoIt 1

End Sub

Example Output 1 2 3

Dir$ Function

Syntax Dir[$]([pattern$], [attribmask])

Parameters Name Description

pattern$ This string value is the path and name of the file search pattern. If
this is omitted then continue scanning with the previous pattern.
Each macro has its own independent search. A path relative to
the current directory can be used.

attribmask This numeric value controls which files are found. A file with an
attribute that matches will be found.

Description Scan a directory for the first file matching Pattern$.

See Also GetAttr().

Example Sub Main

F$ = Dir$("*.*")

While F$ <> ""

Debug.Print F$

F$ = Dir$()

Wend

94 AP Basic Language Manual

Chapter 6: Language Reference Dim

End Sub

Example Output SNR.APB

FRQ-RESP.AT1

READINGS.APB...

DlgControlId Function

Syntax DlgControlId(dlgitem|$)

Parameters Name Description

dlgitem|$ If this is a numeric value then it is the dialog item number. The
first item is 0, second is 1, etc. If this is a string value then it is the
dialog items field name.

Description Return the fields window id.

This instruction/function must be called directly or indirectly from a dialogfunc.

Example Sub Main

Begin Dialog UserDialog 200,120, .DialogFunc

Text 10,10,180,15,"Please push the OK button."

TextBox 10,40,180,15,.Text

OKButton 30,90,60,20

PushButton 110,90,60,20,"&Hello"

End Dialog

Dim dlg As UserDialog

Debug.Print Dialog(dlg)

End Sub

Function DialogFunc%(DlgItem$, Action%, SuppValue%)

Debug.Print "Action =";Action%

Select Case Action%

Case 1 'Dialog box initialization

Beep

Case 2 'Value changing Or button pressed

If DlgItem$ = Hello Then

DialogFunc% = True 'Do Not Exit the Dialog

End If

Case 4 'Focused changed

Debug.Print "DlgFocus = """;DlgFocus();""""

Debug.Print "DlgControlId("; DlgItem$;") =";

Debug.Print DlgControlId(DlgItem$)

End Select

End Function

DlgControlId Chapter 6: Language Reference

AP Basic Language Manual 95

DlgCount Function

Syntax DlgCount()

Description Return the number of dialog items in the dialog. This instruction/function must
be called directly or indirectly from a dialogfunc.

Example Sub Main

Begin Dialog UserDialog 200,120,.DialogFunc

Text 10,10,180,15,"Please push the OK button."

TextBox 10,40,180,15,.Text

OKButton 30,90,60,20

End Dialog

Dim dlg As UserDialog

Dialog dlg

End Sub

Function DialogFunc%(DlgItem$, Action%, SuppValue%)

Debug.Print "Action =";Action%

Select Case Action%

Case 1 'Dialog box initialization

Beep

Debug.Print "DlgCount =";DlgCount()3

End Select

End Function

DlgEnable Instruction/Function

Syntax DlgEnable dlgitem|$[, enable]
-or-
DlgEnable(dlgitem|$)

Parameters Name Description

dlgitem|$ If this is a numeric value then it is the dialog item number. The
first item is 0, second is 1, etc. If this is a string value then it is the
dialog item’s field name.
Note: Use -1 to enable or disable all the dialog items at once.

enable It this numeric value is True then enable DlgItem|$. Otherwise,
disable it. If this omitted then toggle it.

Description Instruction: Enable or disable DlgItem|$.

Function: Return True if DlgItem|$ is enabled.

This instruction/function must be called directly or indirectly from a dialogfunc.

96 AP Basic Language Manual

Chapter 6: Language Reference DlgCount

Example Sub Main

Begin Dialog UserDialog 200,120,.DialogFunc

Text 10,10,180,15,"Please push the OK button to
exit."

TextBox 10,40,180,15,.Text

OKButton 30,90,60,20

PushButton 110,90,60,20,"&Disable"

End Dialog

Dim dlg As UserDialog

Debug.Print Dialog(dlg)

End Sub

Function DialogFunc%(DlgItem$, Action%, SuppValue%)

Debug.Print "Action =";Action%

Select Case Action%

Case 1 'Dialog box initialization

Beep

Case 2 'Value changing Or button pressed

Select Case DlgItem$

Case "Disable"

DlgText DlgItem$,"&Enable"

DlgEnable Text,False

DialogFunc% = True 'Do not exit the dialog.

Case "Enable"

DlgText DlgItem$,"&Disable"

DlgEnable Text,True

DialogFunc% = True 'Do not exit the dialog.

End Select

End Select

End Function

DlgEnd Instruction

Syntax DlgEnd ReturnCode

Description Set the return code for the Dialog Function and close the user dialog.

This instruction/function must be called directly or indirectly from a dialogfunc.

Parameters Parameter Description

ReturnCode Return this numeric value.

Example Sub Main

Begin Dialog UserDialog 210,120,.DialogFunc

DlgEnd Chapter 6: Language Reference

AP Basic Language Manual 97

Text 10,10,190,15,"Please push the Close
button"

OKButton 30,90,60,20

CheckBox 120,90,60,20,"&Close",.CheckBox1

End Dialog

Dim dlg As UserDialog

Debug.Print Dialog(dlg)

End Sub

Function DialogFunc%(DlgItem$, Action%, SuppValue%)

Debug.Print "Action=";Action%

Select Case Action%

Case 1 ' Dialog box initialization

Beep

Case 2 ' Value changing or button pressed

Select Case DlgItem$

Case "CheckBox1"

DlgEnd 1000

End Select

End Select

End Function

DlgFocus Instruction/Function

Syntax DlgFocus dlgitem|$

-or-

dlgfocus[$]()

Parameters Name Description

dlgitem|$ If this is a numeric value then it is the dialog item number. The
first item is 0, second is 1, etc. If this is a string value then it is the
dialog items field name.

Description Instruction: Move the focus to this DlgItem|$.

Function: Return the field name which has the focus as a string.

This instruction/function must be called directly or indirectly from a dialogfunc.

Example Sub Main

Begin Dialog UserDialog 200,120,.DialogFunc

Text 10,10,180,15,"Please push the OK button"

TextBox 10,40,180,15,.Text

OKButton 30,90,60,20

98 AP Basic Language Manual

Chapter 6: Language Reference DlgFocus

PushButton 110,90,60,20,"&Hello"

End Dialog

Dim dlg As UserDialog

Debug.Print Dialog(dlg)

End Sub

Function DialogFunc%(DlgItem$,Action%,SuppValue%)

Debug.Print "Action =";Action%

Select Case Action%

Case 1 'Dialog box initialization

Beep

Case 2 'Value changing Or button pressed

If DlgItem$ = "Hello" Then

MsgBox "Hello Button Pressed"

DialogFunc% = True 'Do Not Exit the Dialog

End If

Case 4 'Focus changed

Debug.Print "DlgFocus =""";DlgFocus();""""

End Select

End Function

Example Output

DlgListBoxArray Instruction/Function

Syntax DlgListBoxArray dlgitem|$, strarray$()

-or-

DlgListBoxArray(dlgitem|$[, strarray$()])

Parameters Name Description

dlgitem|$ If this is a numeric value then it is the dialog item number. The
first item is 0, second is 1, etc. If this is a string value then it is the
dialog items field name.

strarray$() Set the list entries of DlgItem|$. This one-dimensional array of
strings establishes the list of choices. All the non-null elements of
the array are used.

Description Instruction: Set the list entries for DlgItem|$.

Function: Return the number entries in DlgItem|$s list.

This instruction/function must be called directly or indirectly from a dialogfunc.
The DlgItem|$ should refer to a ComboBox, DropListBox or ListBox.

Example Dim lists$()

Sub Main

DlgListBoxArray Chapter 6: Language Reference

AP Basic Language Manual 99

ReDim lists$(0)

lists$(0) = "List 0"

Begin Dialog UserDialog 200,119,.DialogFunc

Text 10,7,180,14,"Please push the OK button."

ListBox 10,21,180,63,lists(),.list

OKButton 30,91,40,21

PushButton 110,91,60,21,"&Change"

End Dialog

Dim dlg As UserDialog

dlg.list = 2

Dialog dlg 'Show Dialog (Wait For ok)

Debug.Print dlg.list

End Sub

Function DialogFunc%(DlgItem$, Action%, SuppValue%)

Select Case Action%

Case 2 'Value changing Or button pressed

If DlgItem$ = "Change" Then

Dim N As Integer

N = UBound(lists$) + 1

ReDim Preserve lists$(N)

lists$(N) = "List " & N

DlgListBoxArray "list",lists$()

DialogFunc% = True 'Do Not Exit the Dialog

End If

End Select

End Function

100 AP Basic Language Manual

Chapter 6: Language Reference DlgListBoxArray

DlgName Function

Syntax DlgName[$](dlgitem)

Parameters Name Description

dlgitem This numeric value is the dialog item number. The first item is 0,
second is 1, etc.

Description Return the field name of the DlgItem number. This instruction/function must be
called directly or indirectly from a dialogfunc.

Example Sub Main

Begin Dialog UserDialog 200,120,.DialogFunc

Text 10,10,180,15,"Please push the OK button.",.Text

TextBox 10,40,180,15,.TextBox

OKButton 30,90,60,20,.OKButton

End Dialog

Dim dlg As UserDialog

Dialog dlg

End Sub

Function DialogFunc%(DlgItem$, Action%, SuppValue%)

Debug.Print "Action =";Action%

Select Case Action%

Case 1 'Dialog box initialization.

Beep

For I = 0 To DlgCount()-1

Debug.Print I ;" = ";DlgName(I)

Next I

End Select

End Function

Example Output Action = 1

0 = Text

1 = TextBox

2 = OKButton

Action = 4

Action = 5

Action = 4

Action = 2

DlgNumber Function

Syntax DlgNumber(dlgitem$)

DlgName Chapter 6: Language Reference

AP Basic Language Manual 101

Parameters Name Description

dlgitem$ This string value is the dialog items field name.

Description Return the number of the DlgItem$. The first item is 0, second is 1, etc. This
instruction/function must be called directly or indirectly from a dialogfunc.

Example Sub Main

Begin Dialog UserDialog 200,120,.DialogFunc

Text 10,10,180,15,"Please push the OK button."

TextBox 10,40,180,15,.Text

OKButton 30,90,60,20

End Dialog

Dim dlg As UserDialog

Dialog dlg

End Sub

Function DialogFunc%(DlgItem$, Action%, SuppValue%)

Debug.Print "Action =";Action%

Select Case Action%

Case 1 'Dialog box initialization

Beep

Case 4 'Focus changed

Debug.Print DlgItem$;" =";DlgNumber(DlgItem$)

End Select

End Function

Example Output Action = 1

Action = 4

Text = 1

Action = 5

Action = 4

OK = 2

Action = 2

DlgSetPicture Instruction

Syntax: DlgSetPicture DlgItem|$, FileName, Type

Description Instruction: Set the file name for DlgItem|$.

This instruction/function must be called directly or indirectly from a dialogfunc.

102 AP Basic Language Manual

Chapter 6: Language Reference DlgSetPicture

Parameters Parameter Description

DlgItem|$ If this is a numeric value then it is the dialog item number. The
first item is 0, second is 1, etc. If this is a string value then it is the
dialog item’s field name.

FileName Set the file name of DlgItem|$ to this string value.
Type This numeric value indicates the type of bitmap used. See

below.

Type Effect

0 FileName is the name of the bitmap file. If the file does not exist
then "(missing picture)" is displayed.

3 The clipboard’s bitmap is dispalyed. Not supported.
+16 Instead of displaying "(missing picture)" a run-time error occurs.

Example Sub Main

Begin Dialog UserDialog 200,120,.DialogFunc

Picture 10,10,180,75,"",0,.Picture

OKButton 30,90,60,20

PushButton 110,90,60,20,"&View"

End Dialog

Dim dlg As UserDialog

Debug.Print Dialog(dlg)

End Sub

Function DialogFunc%(DlgItem$, Action%, SuppValue%)

Debug.Print "Action=";Action%

Select Case Action%

Case 1 ' Dialog box initialization

Beep

Case 2 ' Value changing or button pressed

Select Case DlgItem$

Case "View"

FileName = GetFilePath("Bitmap","BMP")

DlgSetPicture "Picture",FileName,0

DialogFunc% = True 'do not exit the dialog

End Select

End Select

End Function

DlgSetPicture Chapter 6: Language Reference

AP Basic Language Manual 103

DlgText Instruction/Function

Syntax DlgText dlgitem|$, text

-or-

DlgText[$](dlgitem|$)

Parameters Name Description

dlgitem|$ If this is a numeric value then it is the dialog item number. The
first item is 0, second is 1, etc. If this is a string value then it is the
dialog items field name. Note: Use -1 to access the dialog’s title.

text Set the text of DlgItem|$ to this string value.

Description Instruction: Set the text for DlgItem|$.

Function: Return the text from DlgItem|$.

This instruction/function must be called directly or indirectly from a dialogfunc.

Example Sub Main

Begin Dialog UserDialog 200,120,.DialogFunc

Text 10,10,180,15,"Please push the OK button."

TextBox 10,40,180,15,.Text

OKButton 30,90,60,20

PushButton 110,90,60,20,"&Now"

End Dialog

Dim dlg As UserDialog

Debug.Print Dialog(dlg)

End Sub

Function DialogFunc%(DlgItem$, Action%, SuppValue%)

Debug.Print "Action =";Action%

Select Case Action%

Case 1

Beep

Case 2

Select Case DlgItem$

Case "Now"

DlgText "Text",CStr(Now)

DialogFunc% = True 'Do not exit the dialog

End Select

End Select

End Function

Example Output Action = 1

Action = 4

Action = 5

104 AP Basic Language Manual

Chapter 6: Language Reference DlgText

Action = 4

Action = 2

-1

DlgType Function

Syntax DlgType[$](dlgitem|$)

Parameters Name Description

dlgitem|$ If this is a numeric value then it is the dialog item number. The
first item is 0, second is 1, etc. If this is a string value then it is the
dialog items field name.

Description Return a string value indicating the type of the DlgItem|$. One of:
CancelButton, CheckBox, ComboBox, DropListBox, GroupBox, ListBox,
OKButton, OptionButton, OptionGroup, PushButton, Text, TextBox.
This instruction/function must be called directly or indirectly from a dialogfunc.

Example Sub Main

Begin Dialog UserDialog 200,120,.DialogFunc

Text 10,10,180,15,"Please push the OK button."

TextBox 10,40,180,15,.Text

OKButton 30,90,60,20

End Dialog

Dim dlg As UserDialog

Dialog dlg

End Sub

Function DialogFunc%(DlgItem$, Action%, SuppValue%)

Debug.Print Action=;Action%

Select Case Action%

Case 1 Dialog box initialization

Beep

For I = 0 To DlgCount()-1

Debug.Print I;" ";DlgType(I)

Next I

End Select

End Function

Example Output Action = 1

0 Text

1 TextBox

2 OKButton

Action = 4

DlgType Chapter 6: Language Reference

AP Basic Language Manual 105

Action = 5

Action = 4

Action = 2

DlgValue Instruction/Function

Syntax DlgValue dlgitem|$, value

-or-

DlgValue(dlgitem|$)

Parameters Name Description

dlgitem|$ If this is a numeric value then it is the dialog item number. The
first item is 0, second is 1, etc. If this is a string value then it is the
dialog items field name.

text Set the text of DlgItem|$ to this string value.

Description Instruction: Set the numeric value DlgItem|$

Function: Return the numeric value for DlgItem|$.

This instruction/function must be called directly or indirectly from a dialogfunc.
The DlgItem|$ should refer to a CheckBox, DropListBox, ListBox or
OptionGroup.

Example Sub Main

Begin Dialog UserDialog 150,147,.DialogFunc

GroupBox 10,7,130,77,"Direction",.Field1

PushButton 100,28,30,21,"&Up"

PushButton 100,56,30,21,"&Dn"

OptionGroup .Direction

OptionButton 20,21,80,14,"&North",.North

OptionButton 20,35,80,14,"&South",.South

OptionButton 20,49,80,14,"&East",.East

OptionButton 20,63,80,14,"&West",.West

OKButton 10,91,130,21

CancelButton 10,119,130,21

End Dialog

Dim dlg As UserDialog

Dialog dlg

MsgBox "Direction = " & dlg.Direction

End Sub

Function DialogFunc%(DlgItem$, Action%, SuppValue%)

Select Case Action%

Case 1 'Dialog box initialization.

106 AP Basic Language Manual

Chapter 6: Language Reference DlgValue

Beep

Case 2 'Value changing Or button pressed.

Select Case DlgItem$

Case "Up"

DlgValue "Direction",0

DialogFunc% = True 'Do Not Exit the Dialog.

Case "Dn"

DlgValue "Direction",1

DialogFunc% = True 'Do Not Exit the dialog.

End Select

End Select

End Function

DlgValue Chapter 6: Language Reference

AP Basic Language Manual 107

DlgVisible Instruction/Function

Syntax DlgVisible dlgitem|$, visible

-or-

DlgVisible(dlgitem|$)

Parameters Name Description

dlgitem|$ If this is a numeric value then it is the dialog item number. The
first item is 0, second is 1, etc. If this is a string value then it is the
dialog items field name.

enable It this numeric value is non-zero then show DlgItem|$. Otherwise,
hide it.

Description Instruction: Show or hide DlgItem|$.

Function: Return True if DlgItem|$ is visible.

This instruction/function must be called directly or indirectly from a dialogfunc.

Example Sub Main

Begin Dialog UserDialog 200,120,.DialogFunc

Text 10,10,180,15,"Please push the OK button"

TextBox 10,40,180,15,.Text

OKButton 30,90,60,20

PushButton 110,90,60,20,"&Hide"

End Dialog

Dim dlg As UserDialog

Debug.Print Dialog(dlg)

End Sub

Function DialogFunc%(DlgItem$, Action%, SuppValue%)

Debug.Print "Action =";Action%

Select Case Action%

Case 1 'Dialog box initialization

Beep

Case 2 'Value changing Or button pressed

Select Case DlgItem$

Case "Hide"

DlgText DlgItem$,"&Show"

DlgVisible "Text",False

DialogFunc% = True 'Do Not Exit the Dialog

Case "Show"

DlgText DlgItem$,"&Hide"

DlgVisible "Text",True

DialogFunc% = True 'Do Not Exit the Dialog

108 AP Basic Language Manual

Chapter 6: Language Reference DlgVisible

End Select

End Select

End Function

Do Statement

Syntax Do
statements

Loop
-or-

Do {Until|While} condexpr

statements

Loop

-or-

Do

statements

Loop {Until|While} condexpr

Description Form 1: Do statements forever. The loop can be exited by using Exit or Goto.
Form 2: Check for loop termination before executing the loop the first time.
Form 3: Execute the loop once and then check for loop termination.

Loop Termination:

Until condexpr: Do statements until condexpr is True.

While condexpr: Do statements while condexpr is True.

See Also For, For Each, Exit Do, While.

Example Sub Main

I = 2

Do

I = I*2

Loop Until I > 10

Debug.Print I

End Sub

Example Output 16

Do Chapter 6: Language Reference

AP Basic Language Manual 109

DoEvents Instruction

Syntax DoEvents

Description This instruction allows other applications to process events.

Example Sub Main

DoEvents 'let other apps work

End Sub

DropListBox Dialog Item Definition

Syntax DropListBox x, y, dx, dy, strarray$(), .field _

[, Options]

Parameters Name Description

x This number value is the distance from the left edge of the dialog
box. It is measured in 1/8ths of the average character width for
the dialog's font.

y This number value is the distance from the top edge of the dialog
box. It is measured in 1/12ths of the character height for the
dialog's font.

dx This number value is the width. It is measured in 1/8ths of the
average character width for the dialog's font.

dy This number value is the height. It is measured in 1/12ths of the
character height for the dialog's font.

strarray$() This one-dimensional array of strings establishes the list of
choices. All the non-null elements of the array are used.

field The value of the drop-down list box is accessed via this field. It is
the index of the StrArray$() var.

Options If this numeric value is zero or omitted then the drop-down list is
not editable. If it is non-zero then the drop-down list is also an edit
box.

Description Define a drop-down listbox item.

See Also Begin Dialog, Dim As UserDialog.

Example Sub Main

Dim lists$(3)

lists$(0) = "List 0"

lists$(1) = "List 1"

lists$(2) = "List 2"

lists$(3) = "List 3"

Begin Dialog UserDialog 200,120

Text 10,10,180,15,"Please push the OK button."

110 AP Basic Language Manual

Chapter 6: Language Reference DoEvents

DropListBox 10,25,180,60,lists$(),
.list

OKButton 80,90,40,20

End Dialog

Dim dlg As UserDialog

dlg.list = 2

Dialog dlg 'show Dialog (Wait For OK)

Debug.Print dlg.list

End Sub

End Instruction

Syntax End

Description The end instruction causes the macro to terminate immediately. If the macro
was run by another macro using the MacroRun instruction then that macro
continues on the instruction following the MacroRun.

Example Sub DoSub

L$ = UCase$("InputBox$ (Enter End:)")

If L$ = "END" Then End

Debug.Print "End was Not entered."

End Sub

Sub Main

Debug.Print "Before DoSub"

DoSub

Debug.Print "After DoSub"

End Sub

Example Output Before DoSub

End was Not entered.

After DoSub

Enum Definition

Syntax [| Private | Public] Enum name

elem [= value]

[...]

End Enum

End Chapter 6: Language Reference

AP Basic Language Manual 111

Description Define a new userenum. Each elem defines an element of the enum. If value is
given then that is the element’s value. The value can be any constant integer
expression. If value is omitted then the element’s value is one more than the
previous element’s value. If there is no previous element then zero is used.

Enum defaults to Public if neither Private or Public is specified.

Example Enum Days

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

End Enum

Sub Main

Dim D As Days

For D = Monday To Friday

Debug.Print D ' 0 through 4

Next D

End Sub

Environ Instruction/Function

Syntax Environ[$](Index)

-or-

Environ[$](Name)

Description Return an environment string.

Parameters Parameter Description

Index Return this environment string’s value. If there is no environment
string at this index a null string is returned. Indexes start at one.

Name Return this environment string’s value. If the environment string
can’t be found a null string is returned.

Example Sub Main

Debug.Print Environ("Path")

End Sub

112 AP Basic Language Manual

Chapter 6: Language Reference Environ

Eof Function

Syntax Eof(streamnum)

Parameters Name Description

streamnum Streams 1, 2, 3 and 4 are available in each macro.

Description Return True if Streamnum is at the end of the file.

Example Sub Main

Open XXX For Input As #1

While Not Eof(1)

Line Input #1,L$

Debug.Print L$

Wend

Close #1

End Sub

Erase Instruction

Syntax Erase array[, ...]

Description Reset array to zero. (Dynamic arrays are reset to undimensioned arrays.) String
arrays values are set to a null string. Array must be declared as an array using
Dim, Private, Public or Static.

Example Sub Main

Dim X%(2)

X%(1) = 1

Erase X%

Debug.Print X%(1) '" 0"

End Sub

Example Output 0

Err Variable

Syntax Err = errorcode

Description Set it to zero to clear the last error condition. Use Error to trigger an error
event. Err in an expression returns the current error code.

Example Sub Main

On Error GoTo Problem

Error 1 'simulate Error #1

Eof Chapter 6: Language Reference

AP Basic Language Manual 113

Exit Sub

Problem: 'Error handler

Debug.Print "Error Number =";Err

Debug.Print "Error String = ";Error$

Resume Next

End Sub

Example Output Error Number = 1

Error String = Application specific error #1.

Error Instruction/Function

Syntax Error errorcode

-or-

Error[$]([errorcode])

Parameters Name Description

errorcode This is the error number.

Description Instruction: Signal error ErrorCode. This triggers error handling just like a real
error. The current procedures error handler is activated, unless it is already
active or there isnt one. In that case the calling procedures error handler is tried.
If no available error handler is found in any of the calling procedures of the
current macro, the macro is halted.

Function: The Error() function returns the error text string.

Example Sub Main

On Error GoTo Problem

Error 1 'simulate Error #1

Exit Sub

Problem: 'Error handler

Debug.Print "Error Number =";Err

Debug.Print "Error String = ";Error$

Resume Next

End Sub

Example Output Error Number = 1

Error String = Application specific error #1.

Exit Instruction

Syntax Exit {All|Do|For|Function|Property|Sub|While}

114 AP Basic Language Manual

Chapter 6: Language Reference Error

Parameters Exit Description

All Exit all macros.
Do Exit the Do loop.
For Exit the For of For Each loop.
Function Exit the Function block. Note: This instruction resets Err to zero

and Error$ to null.
Property Exit the Property block. Note: This instruction resets Err to zero

and Error$ to null .
Sub Exit the Sub block. Note: This instruction resets Err to zero and

Error$ to null.
While Exit the While loop.

Description The exit instruction causes the macro to continue without doing some or all of
the remaining instructions.

Example Sub DoSub(L$)

Do

If L$ = "DO" Then Exit Do

I = I+1

Loop While I < 10

If I = 0 Then Debug.Print "Do was entered"

For I = 1 To 10

If L$ = "FOR" Then Exit For

Next I

If I = 1 Then Debug.Print "For was entered"

I = 10

While I > 0

If L$ = "WHILE"Then Exit While

I = I-1

Wend

If I = 10 Then Debug.Print "While was entered"

If L$ = "SUB" Then Exit Sub

Debug.Print "Sub was Not entered."

If L$ = "ALL" Then Exit All

Debug.Print "All was Not entered."

End Sub

Sub Main

L$ = InputBox$("Enter Do, For, While,Sub Or All:")

Debug.Print "Before DoSub"

DoSub UCase$(L$)

Debug.Print "After DoSub"

End Sub

Example Output Before DoSub

Do was entered

Exit Chapter 6: Language Reference

AP Basic Language Manual 115

Sub was Not entered.

All was Not entered.

After DoSub

Exp Function

Syntax Exp(num)

Parameters Name Description

num Return e raised to the power of this number value. The value e is
approximately 2.71 8282.

Description The Exp function computes the exponential of the variable num.

Example Sub Main

Debug.Print Exp(1)

End Sub

Example Output 2.71828182845905

Exp10 Function

Syntax Exp10(num)

Parameters Name Description

num Return 10 raised to the power of this number value.

Description The Exp10 function computes the base-10 exponential of the variable num.

Example Sub Main

Debug.Print Exp10(1)

End Sub

Example Output 10

FileAttr Function

Syntax FileAttr(StreamNum, ReturnValue)

Description Return StreamNum’s open mode or file handle.

Parameter Description

StreamNum Streams 1 through 255 are private to each macro. Streams 256
through 511 are shared by all macros.

116 AP Basic Language Manual

Chapter 6: Language Reference Exp

ReturnValue 1 - return the mode used to open the file: 1=Input, 2=Output,
4=Random, 8=Append, 32=Binary

2 - return the file handle

See Also Open.

Example Sub Main

Open "XXX" For Output As #1

Debug.Print FileAttr(1,1) ' 2

Close #1

End Sub

FileCopy Instruction

Syntax FileCopy FromName$, ToName$

Description Copy a file.

Parameters Parameter Description

FromName$ This string value is the path and name of the source file. A path
relative to the current directory can be used.

ToName$ This string value is the path and name of the destination file. A
path relative to the current directory can be used.

Example Sub Main

FileCopy "C:\AUTOEXEC.BAT","C:\AUTOEXEC.BAK"

End Sub

FileDateTime Function

Syntax FileDateTime(name$)

Parameters Name Description

name$ This string value is the path and name of the file. A path relative to
the current directory can be used.

Description Return the date and time file Name$ was last changed as a date value. If the file
does not exist then a run-time error occurs.

Example Sub Main

F$ = Dir$("*.*")

While F$ <> ""

Debug.Print F$;" ";"";FileDateTime(F$)

F$ = Dir$()

Wend

FileCopy Chapter 6: Language Reference

AP Basic Language Manual 117

End Sub

Example Output SNR.APB 12/22/95 4:21:06 PM

FRQ-RESP.AT1 12/22/95 4:21:06 PM

FileLen Function

Syntax FileLen(name$)

Parameters Name Description

name$ This string value is the path and name of the file. A path relative to
the current directory can be used.

Description Return the length of file Name$. If the file does not exist then a run-time error
occurs.

Example Sub Main

F$ = Dir$("*.*")

While F$ <> ""

Debug.Print F$;" ";"";FileLen(F$)

F$ = Dir$()

Wend

End Sub

Example Output SNR.APB 311

FRQ-RESP.AT1 31744

Fix Function

Syntax Fix(num)

Parameters Name Description

num Return the integer portion of this number value. The number is
truncated. Positive numbers return the next lower integer.
Negative numbers return the next higher integer.

Description Return the integer value.

Example Sub Main

Debug.Print Fix(9.9)

Debug.Print Fix(0)

Debug.Print Fix(-9.9)

End Sub

118 AP Basic Language Manual

Chapter 6: Language Reference FileLen

Example Output 9

0

-9

For Statement

Syntax For num = first To last [step Inc]

statements

Next [num]

Parameters Name Description

num This is the iteration variable.
first Set num to this value initially.
last Continue looping while num is in the range. See Step below.
step If this number value is greater than zero then the for loop

continues as long as num is less than or equal to Last. If this
number value is less than zero then the for loop continues as long
as num is greater than or equal to Last. If this is omitted then one
is used.

Description Execute statements while num is in the range First to Last.

See Also Do, For Each, Exit For, While.

Example Sub Main

For I = 0 To 300 Step 100

Debug.Print I;I+I;I*I

Next I

End Sub

Example Output 0 0 0

100 200 10000

200 400 40000

300 600 90000

For Each Statement

Syntax For Each var In items

statements

Next [var]

Parameters Name Description

var This is the iteration variable.
items This is the collection of items to be done.

Description Execute statements for each item in Items.

For Chapter 6: Language Reference

AP Basic Language Manual 119

See Also Do, For, Exit For, While.

Example Sub Main

Dim Document As Object

For Each Document In MicroSoft.Word.Documents

Debug.Print Document.Title

Next Document

End Sub

Format$ Function

Syntax Format[$](expr[, form$])

Description Return the formatted string representation of expr.

Parameters Name Description

expr Return the formatted string representation of this number value.
form Format expr using to this string value. If this is omitted then return

the expr as a string.
See below: Predefined Date Format, Predefined Number Format,
User defined Date Format, User defined Number Format, User
defined Text Format.

Format Predefined Date

Description The following predefined date formats may be used with the Format function.
Predefined formats may not be combined with user defined formats or other
predefined formats.

Form Description

General Date Same as user defined date format "c"
Long Date Same as user defined date format "dddddd"
Medium Date Not supported at this time.
Short Date Same as user defined date format "ddddd"
Long Time Same as user defined date format "ttttt"
Medium Time Same as user defined date format "hh:mm AMPM "
Short Time Same as user defined date format "hh:mm"
Format Predefined Number

Description The following predefined number formats may be used with the Format
function. Predefined formats may not be combined with user defined formats or
other predefined formats.

Form Description

General
number Return number as is.
Currency Same as user defined number format

" $#,##0.00;($#,##0.00)"
Not locale dependent at this time.

120 AP Basic Language Manual

Chapter 6: Language Reference Format$

Fixed Same as user defined number format "0.00".
Standard Same as user defined number format "#,##0.00".
Percent Same as user defined number format "0.00%".
Scientific Same as user defined number format "0.00E+00".
Yes/No Return No if zero, else return "Yes".
True/False Return True if zero, else return "False".
On/Off Return On if zero, else return "Off".

Example Sub Main

Debug.Print Format$(2.145,"Standard")

End Sub

Example Output 2.15

Format User Defined Date

Description The following date formats may be used with the Format function. Date
formats may be combined to create the user defined date format. User defined
date formats may not be combined with other user defined formats or
predefined formats.

Form Description

: insert localized time separator
/ insert localized date separator
c insert ddddd ttttt, insert date only if t=0, insert time only if d=0
d insert day number without leading zero
dd insert day number with leading zero
ddd insert abbreviated day name
dddd insert full day name
ddddd insert date according to Short Date format
dddddd insert date according to Long Date format
w insert day of week number
ww insert week of year number
m insert month number without leading zero insert minute number

without leading zero (if follows h or hh)
mm insert month number with leading zero insert minute number with

leading zero (if follows h or hh)
mmm insert abbreviated month name
mmmm insert full month name
q insert quarter number
y insert day of year number
yy insert year number (two digits)
yyyy insert year number (four digits, no leading zeros)
h insert hour number without leading zero
hh insert hour number with leading zero
n insert minute number without leading zero
nn insert minute number with leading zero
s insert second number without leading zero
ss insert second number with leading zero
ttttt insert time according to time format

Format$ Chapter 6: Language Reference

AP Basic Language Manual 121

AM/PM use 12 hour clock and insert AM (hours 0 to 11) and PM (12 to
23)

am/pm use 12 hour clock and insert am (hours 0 to 11) and pm (12 to 23)

A/P use 12 hour clock and insert A (hours 0 to 11) and P (12 to 23)
a/p use 12 hour clock and insert a (hours 0 to 11) and p (12 to 23)
AMPM use 12 hour clock and insert localized AM/PM strings
\c insert character c
"text" insert literal text

Format User Defined Number

Description The following number formats may be used with the Format function. Number
formats may be combined to create the user defined number format. User
defined number formats may not be combined with other user defined formats
or predefined formats.
User defined number formats can contain up to four sections separated by a
semi-colon (;):

form;format for non-negative expr, -format for negative expr, empty and
null expr return

form;negform - negform: format for negative expr

form;negform;zeroform - zeroform: format for zero expr

form;negform;zeroform;nullform - nullform: format for empty or null
expr

Form Description

digit, don't include leading/trailing zero digits (all the digits left of
decimal point are returned)
eg. Format(19,"###") returns "19"
eg. Format(19,"#") returns "19"

0 digit, include leading/trailing zero digits
eg. Format(19,"000") returns "019"
eg. Format(19,"0") returns "19"

. decimal, insert localized decimal point
eg. Format(19.9,"###.00") returns "19.90"
eg. Format(19.9,"###.##") returns "19.9"

, thousands, insert localized thousand separator every 3 digits xxx,
or xxx,. mean divide expr by 1000 prior to formatting two adjacent
commas ",," means divide expr by 1000 again
eg. Format(1900000,"0,,") returns "2"
eg. Format(1900000,"0,,.0") returns "1.9"

% percent, insert %, multiply expr by 100 prior to formatting
: insert localized time separator
/ insert localized date separator
E+ e+ E- e- use exponential notation, insert E (or e) and the signed exponent

eg. Format(1000,"0.00E+00") returns "1.00E+03"
eg. Format(.001,"0.00E+00") returns "1.00E-03"

122 AP Basic Language Manual

Chapter 6: Language Reference Format$

+ $ ()space insert literal char
eg. Format(10,"$#") returns "$10"

\c insert character c
eg. Format(19,"\####\#") returns "#19#"

"text" insert literal text
eg. Format(19,"""##""###""##""") returns "##19##"

Example Sub Main

Debug.Print Format$(2.145,"#.00")

End Sub

Example Output 2.15

Format User Defined Text

Description The following text formats may be used with the Format function. Text formats
may be combined to create the user defined text format. User defined text
formats may not be combined with other user defined formats or predefined
formats.
User defined text formats can contain one or two sections separated
by a semi-colon (;):

form - format for all strings
form;nullform - nullform: format for null strings

Form Description

@ char placeholder, insert char or space
& char placeholder, insert char or nothing
< all chars lowercase
> all chars uppercase
! fill placeholder from left-to-right (default is right-to-left)
\c insert character c
"text" insert literal text

Example Sub Main

Debug.Print Format("123","ab@c")

Debug.Print Format("123","!ab@c")

End Sub

Example Output 12ab3c

ab1c23

FreeFile Instruction

Syntax FreeFile[()]

Description Return the next unused stream number. Streams 1, 2, 3 and 4 are available in
each macro.

FreeFile Chapter 6: Language Reference

AP Basic Language Manual 123

Example Sub Main

Debug.Print FreeFile '1

Open XXX For Input As #1

Debug.Print FreeFile '2

Close #1

Debug.Print FreeFile '1

End Sub

Example Output

Function Definition

Syntax [Private|Public|Friend] Function name[type][([param[,

…]])] [As type]

statements

End Function

Description User defined function. The function defines a set of statements to be executed
when it is called. The values of the calling arglist are assigned to the params.
Assigning to name[type] sets the value of the function result.

Function defaults to Public if Private, Public or Friend are not is specified.

See Also Declare, Property, Sub.

Example Function Power(X,Y)

P = 1

For I = 1 To Y

P = P*X

Next I

Power = P

End Function

Sub Main

Debug.Print Power(2,8)

End Sub

Example Output 256

124 AP Basic Language Manual

Chapter 6: Language Reference Function

Get Instruction

Syntax Get StreamNum, [RecordNum], var

Parameters Name Description

StreamNum Streams 1 through 255 are private to each macro. Streams 256
through 511 are shared by all macros.

RecordNum For Random mode files this is the record number. The first record
is 1. Otherwise, it is the byte position. The first byte is 1. If this is
omitted then the current position (or record number) is used.

var This variable value is read from the file. For a fixed length variable
(like Long) the number of bytes required to restore the variable
are read. For a Variant variable two bytes are read which describe
its type and then the variable value is read accordingly. For a
usertype variable each field is read in sequence. For an array
variable each element is read in sequence. For a dynamic array
variable the number of dimensions and range of each dimension
is read prior to reading the array values. All binary data values are
read from the file in little-endian format.

Note: When reading a string (or a dynamic array) from a Binary mode file the
length (or array dimension) information is not read. The current string length
determines how much string data is read. The current array dimension
determines how may array elements are read.

Description Get a variable’s value from StreamNum.

See Also Open, Put.

Example Sub Main

Dim V As Variant

Open "SAVE_V.DAT" For Binary Access Read As #1

Get #1, , V

Close #1

End Sub

GetAllSettings Function

Syntax GetAllSettings(AppName$, Section$, Key$)

Parameters Name Description

AppName$ This string value is the name of the project which has this Section
and Key.

Section$ This string value is the name of the section of the project settings.

Description Get all of Section’s settings in project AppName. Settings are returned in a
Variant. Empty is returned if there are no keys in the section. Otherwise, the
Variant contains a two dimension array: (I,0) is the key and (I,1) is the setting.

Get Chapter 6: Language Reference

AP Basic Language Manual 125

Win16 and Win32s store settings in a .ini file named AppName. Win32 stores
settings in the registration database.

Example Sub Main

SaveSetting "MyApp","Font","Size",10

SaveSetting "MyApp","Font","Name","Courier"

Settings = GetAllSettings("MyApp","Font")

For I = LBound(Settings) To UBound(Settings)

Debug.Print Settings(I,0); "="; Settings(I,1)

Next I

DeleteSetting "MyApp","Font"

End Sub

GetAttr Function

Syntax GetAttr(Name$)

Parameters Name Description

Name$ This string value is the path and name of the file. A path relative to
the current directory can be used.

Description Return the attributes for file Name$. If the file does not exist then a run-time
error occurs.

Example Sub Main

F$ = Dir$("*.*")

While F$ <> ""

Debug.Print F$;"";GetAttr(F$)

F$ = Dir$()

Wend

End Sub

Example Output SNR.APB 32

FRQ-RESP.AT1 32

GetFilePath$ Function

Syntax GetFilePath[$]([defname$], [defext$], [defdir$], _

[title$], [option])

Parameters Name Description

defname$ Set the initial File Name to this string value. If this is omitted then
*.DefExt$ is used.

126 AP Basic Language Manual

Chapter 6: Language Reference GetAttr

defext$ Initially show files whose extension matches this string value.
(Multiple extensions can be specified by using ";" as the
separator.) If this is omitted then * is used.

defdir$ This string value is the initial directory. If this is omitted then the
current directory is used.

title$ This string value is the title of the dialog. If this is omitted then
Open" is used.

option This numeric value determines the file selection options. If this is
omitted then zero is used. See table below.

Option Effect

0 Only allow the user to select a file that exists.
1 Confirm creation when the user selects a file that does not exist.
2 Allow the user to select any file whether it exists or not.
3 Confirm overwrite when the user selects a file that exists.

Description Put up a dialog box and get a file path from the user. The returned string is a
complete path and file name. If the cancel button is pressed then a null string is
returned.

Example Sub Main

Debug.Print GetFilePath$("*.*")

End Sub

Example Output C:\APWIN\Samples\S1\Snr.apb

GetObject Function

Syntax GetObject(file$[, class$])

Parameters Name Description

filename$ This is the file where the object resides. If this is omitted then the
currently active object for Class$ is returned.

class$ This string value is the applications registered class name. If this
application is not cu rrently active it will be started. If this is
omitted then the application associated with the files extension
will be started.

Description Get an existing object of type Class$ from File$. Use Set to assign the returned
object to an object variable.

Example Sub Main

Dim App As Object

Set App = GetObject(,"??????.Application")

App.Move 20,30 move icon to 20,30

Set App = Nothing

App.Quit 'run-time error (no object)

End Sub

GetObject Chapter 6: Language Reference

AP Basic Language Manual 127

GetSetting Function

Syntax GetSetting[$](AppName$, Section$, Key$)

Description Get the setting for Key in Section in project AppName. Win16 and Win32s
store settings in a .ini file named AppName. Win32 stores settings in the
registration database.

Parameter Description

AppName$ This string value is the name of the project which has this Section
and Key.

Section$ This string value is the name of the section of the project settings.

Key$ This string value is the name of the key in the section of the
project settings.

Example Sub Main

SaveSetting "MyApp","Font","Size",10

Debug.Print GetSetting("MyApp","Font","Size") ' 10

End Sub

Goto Instruction

Syntax GoTo label

Description Go to the label and continue execution from there. Only labels in the current
user subroutine. Function or property are accessible.

Example Sub Main

X = 2

Label:

X = X*X

If X <= 100 Then GoTo Label

Debug.Print X

End Sub

Example Output 256

128 AP Basic Language Manual

Chapter 6: Language Reference GetSetting

GroupBox Dialog Item Definition

Syntax GroupBox x, y, dx, dy, title$[, .field]

Parameters Name Description

x This number value is the distance from the left edge of the dialog
box. It is measured in 1/8ths of the average character width for
the dialog's font.

y This number value is the distance from the top edge of the dialog
box. It is measured in 1/12ths of the character height for the
dialog's font.

dx This number value is the width. It is measured in 1/8ths of the
average character width for the dialog's font.

dy This number value is the height. It is measured in 1/12ths of the
character height for the dialog's font.

title$ This string value is the title of the group box.
field This identifier is the name of the field. The dialogfunc receives this

name as string. If this identifer is omitted then the first two words
of the title are used.

Description Define a groupbox item.

See Also Begin Dialog, Dim As UserDialog.

Example Sub Main

Begin Dialog UserDialog 200,120

Text 10,10,180,15,"Please push the OK button."

GroupBox 10,25,180,60,"Group box"

OKButton 80,90,40,20

End Dialog

Dim dlg As UserDialog

Dialog dlg 'Show Dialog (Wait For OK)

End Sub

Hex$ Function

Syntax Hex[$](num)

Parameters Name Description

num Return a hex encoded string for this number value.

Description Return a hex string.

See Also Oct$(), Str$(), Val().

Example Sub Main

Debug.Print Hex$(15)

End Sub

GroupBox Dialog Item Chapter 6: Language Reference

AP Basic Language Manual 129

Example Output F

Hour Function

Syntax Hour(dateexpr)

Parameters Name Description

dateexpr Return the hour of the day for this date value.

Description Return the hour of the day (0 to 23).

See Also Minute(), Second(), Time().

Example Sub Main

Debug.Print Hour(#12:00:01 AM#)

End Sub

Example Output 0

If Statement

Syntax If condexpr Then [instruction] [Else instruction]

-or-

If condexpr Then
statements

[ElseIf condexpr Then

statements...]

[Else

statements]

End If

Description Form 1: Single line if statement. Execute the instruction following the Then if
condexpr is True. Otherwise, execute the instruction following the Else. The
Else portion is optional.

Form 2: The multiple line if is useful for complex ifs. Each if condexpr is
checked in turn. The first True one causes the following statements to be
executed. If all are False then the Elses statements are executed. The ElseIf and
Else portions are optional.

See Also Select Case, Choose(), IIf().

Example Sub Main

S = InputBox("Enter hello, goodbye, dinner Or
sleep:")

S = UCase(S)

130 AP Basic Language Manual

Chapter 6: Language Reference Hour

If S = "HELLO" Then Debug.Print "Come In"

If S = "GOODBYE" Then Debug.Print "See you later"

If S = "DINNER" Then

Debug.Print "Please come In."

Debug.Print "Dinner will be ready soon."

ElseIf S = "SLEEP" Then

Debug.Print "Sorry."

Debug.Print "We are full For the night"

End If

End Sub

IIf Function

Syntax IIf(condexpr, truepart, falsepart)

Parameters Name Description

condexpr If this value is true then return TruePart. Otherwise, return
FalsePart.

truepart Return this value if condexpr is True.
falsepart Return this value if condexpr is False.

Description Return the value of the indicated by condexpr. Both TruePart and FalsePart are
evaluated.

See Also If, Select Case, Choose().

Example Sub Main

Debug.Print IIf(1 > 0,"True","False")

End Sub

Example Output True

Input Instruction

Syntax Input [#]streamnum, var[, ...]

Description Get input from Streamnum and assign it to vars. Input values are comma
delimited. Leading and trailing spaces are ignored. If the first char (following
the leading spaces) is a quote (") then the string is terminated by an ending
quote. Special values #NULL#, #FALSE#, #TRUE#, #date# and #Error
number# are converted to their appropriate value and data type.

See Also Line Input, Print, Write.

Example Sub Main

Open XXX For Input As #1

IIf Chapter 6: Language Reference

AP Basic Language Manual 131

Input #1,A,B,C$

Debug.Print A;B;C$

Close #1

End Sub

Input$ Function

Syntax Input[$](n, streamnum)

Parameters Name Description

n Read n chars. If fewer than n chars are left before the end of file
then a run-time error occurs.

streamnum Streams 1, 2, 3 and 4 are available in each macro.

Description Return N chars from Streamnum.

Example Sub Main

Open XXX For Input As #1

L = Lof(1)

T$ = Input$(L,1)

Close #1

Debug.Print T$;

End Sub

InputBox$ Function

Syntax InputBox[$](Prompt$[, title$]

[, default$][, xpos, ypos])

Parameters Name Description

prompt$ Use this string value as the prompt in the input box.
title$ Use this string value as the title of the input box. If this is omitted

then the input box does not have a title.
default$ Use this string value as the initial value in the input box. If this is

omitted then the initial value is blank.
xpos When the dialog is put up the left edge will be at this screen

position. If this is omitted then the dialog will be centered.
ypos When the dialog is put up the top edge will be at this screen

position. If this is omitted then the dialog will be centered.

Description Display an input box where the user can enter a line of text. Pressing the OK
button returns the string entered. Pressing the Cancel button returns a null
string.

Example Sub Main

132 AP Basic Language Manual

Chapter 6: Language Reference Input$

L$ = InputBox$("Enter some Text:","Input Box
�Example","Example text")

Debug.Print L$

End Sub

Example Output Example text

InStr Function

Syntax InStr([index,]String1$, String2$)

Parameters Name Description

index Start searching for S2$ at this offset in S1$. If this is omitted then
start searching from the beginning of S1$.

string1$ Search for S2$ in this string value.
string2$ Search S1$ for this string value.

Description Return the index where S2$ first matches S1$. If no match is found return 0.

See Also Left$(), Len(), Mid$(), Right$().

Example Sub Main

Debug.Print InStr("Hello","l")

End Sub

Example Output 3

InStrRev Function

Syntax InStrRev(S1$, S2$[, Index])

Description Return the index where S2$ last matches S1$. If no match is found return 0.

Parameters Name Description

S1$ Search for S2$ in this string value. If this value is Null then Null is
returned.

S2$ Search S1$ for this string value. If this value is Null then Null is
returned.

Index Start searching for S2$ ending at this index in S1$. If this is
omitted then start searching from the end of S1$.

See Also Left$(), Len(), Mid$(), Replace$(), Right$().

Example Sub Main
Debug.Print InStrRev("Hello","l") ' 4

End Sub

InStr Chapter 6: Language Reference

AP Basic Language Manual 133

Int Function

Syntax Int(num)

Parameters Name Description

num Return the largest integer which is less than or equal to this
number value.

Description Return the integer value.

Example Sub Main

Debug.Print Int(9.9)

Debug.Print Int(0)

Debug.Print Int(-9.9)

End Sub

Example Output 9

0

-10

Is Operator

Syntax expr Is expr

Description Return the True if both exprs refer to the same object.

See Also Objects.

Example Sub Main

Dim X As Object

Dim Y As Object

Debug.Print X Is Y

End Sub

Example Output True

IsArray Function

Syntax IsArray(var)

Parameters Name Description

var A array variable or a variant var can contain multiple values.

Description Return the True if var is an array of values.

134 AP Basic Language Manual

Chapter 6: Language Reference Int

See Also TypeName, VarType.

Example Sub Main

Dim X As Variant, Y(2) As Integer

Debug.Print IsArray(X)

X = Array(1,4,9)

Debug.Print IsArray(X)

X = Y

Debug.Print IsArray(X)

End Sub

Example Output False

True

True

IsDate Function

Syntax IsDate(expr)

Parameters Name Description

expr A variant expression to test for a valid date.

Description Return the True if expr is a valid date.

See Also TypeName, VarType.

Example Sub Main

Dim X As Variant

X = 1

Debug.Print IsDate(X)

X = Now

Debug.Print IsDate(X)

End Sub

Example Output False

True

IsEmpty Function

Syntax IsEmpty(variantvar)

Parameters Name Description

variantvar A variant var is Empty if it has never been assigned a value.

Description Return the True if variantvar is Empty.

IsDate Chapter 6: Language Reference

AP Basic Language Manual 135

See Also TypeName, VarType.

Example Sub Main

Dim X As Variant

Debug.Print IsEmpty(X)

X = 0

Debug.Print IsEmpty(X)

X = Empty

Debug.Print IsEmpty(X)

End Sub

Example Output True

False

True

IsError Function

Syntax IsError(expr)

Parameters Name Description

expr A variant expression to test for an error code value.

Description Return the True if expr is an error code.

See Also TypeName, VarType.

Example Sub Main

Dim X As Variant

Debug.Print IsError(X)

X = CVErr(1)

Debug.Print IsError(X)

End Sub

Example Output False

True

136 AP Basic Language Manual

Chapter 6: Language Reference IsError

IsMissing Function

Syntax IsMissing(variantvar)

Parameters Name Description

variantvar Return True if this parameters argument expression was not
specified in the Sub, Function or Property call.

Description Return the True if Optional parameter variantvar did not get a value. An
Optional or ParamArray parameter may be omitted in the Sub, Function or
Property call.

Example Sub Main

Opt 'IsMissing(A)=True

Opt "Hi" 'IsMissing(A)=False

Many 'No args

Many 1,"Hello" 'A(0)=1 A(1)=Hello

End Sub

Sub Opt(Optional A)

Debug.Print "IsMissing(A) = ";IsMissing(A)

End Sub

Sub Many(ParamArray A())

If LBound(A) > UBound(A) Then

Debug.Print "No args"

Else

For I = LBound(A) To UBound(A)

Debug.Print "A(" & I & ") = " & A(I) & " "

Next I

Debug.Print

End If

End Sub

Example Output IsMissing(A) = True

IsMissing(A) = False

No args

A(0) = 1

A(1) = Hello

IsNull Function

Syntax IsNull(expr)

Parameters Name Description

expr A variant expression to test for Null.

IsMissing Chapter 6: Language Reference

AP Basic Language Manual 137

Description Return the True if expr is Null.

See Also TypeName, VarType.

Example Sub Main

Dim X As Variant

Debug.Print IsNull(X) '(IsEmpty, but not IsNull)

X = 1

Debug.Print IsNull(X)

X = "1"

Debug.Print IsNull(X)

X = Null

Debug.Print IsNull(X)

X = X*2

Debug.Print IsNull(X)

End Sub

Example Output False

False

False

True

True

IsNumeric Function

Syntax IsNumeric(expr)

Parameters Name Description

expr A variant expression is a numeric value if it is numeric or string
value that represents a number.

Description Return the True if expr is a numeric value.

See Also TypeName, VarType.

Example Sub Main

Dim X As Variant

X = 1

Debug.Print IsNumeric(X)

X = "1"

Debug.Print IsNumeric(X)

X = "A"

Debug.Print IsNumeric(X)

End Sub

Example Output True

138 AP Basic Language Manual

Chapter 6: Language Reference IsNumeric

True

False

IsObject Function

Syntax IsObject(var)

Parameters Name Description

var A var contains an object reference if it is objexpr reference.

Description Return the True if var contains an object reference.

See Also TypeName, VarType.

Example Sub Main

Dim X As Variant

X = 1

Debug.Print IsObject(X)

X = 1"

Debug.Print IsObject(X)

Set X = Nothing

Debug.Print IsObject(X)

End Sub

Example Output False

False

True

Kill Instruction

Syntax Kill Name$

Parameters Name Description

name$ This string value is the path and name of the file. A path relative to
the current directory can be used.

Description Delete the file named by name$.

Example Sub Main

Kill "FILENAME.EXT"

End Sub

IsObject Chapter 6: Language Reference

AP Basic Language Manual 139

LBound Function

Syntax LBound(var[, dimension])

Parameters Name Description

var Return the lowest index for this array variable.
dimension Return the lowest index for this dimension of var. If this is omitted

then return the lowest index for the first dimension.

Description Return the lowest index.

See Also UBound().

Example Sub Main

Dim A(-1 To 3,2 To 6)

Debug.Print LBound(A)

Debug.Print LBound(A,1)

Debug.Print LBound(A,2)

End Sub

Example Output -1

-1

2

LCase$ Function

Syntax LCase[$](string$)

Parameters Name Description

string$ Return the string value of this after all chars have been converted
to lowercase.

Description Return a string from string$ where all the uppercase letters have been
lowercased.

See Also UCase$().

Example Sub Main

Debug.Print LCase$("Hello")

End Sub

Example Output hello

140 AP Basic Language Manual

Chapter 6: Language Reference LBound

Left$ Function

Syntax Left[$](string$, len)

Parameters Name Description

string$ Return the left portion of this string value.
len Return this many chars. If string$ is shorter than that then just

return string$.

Description Return a string from S$ with only the Len chars.

See Also InStr(), Len(), Mid$(), Right$().

Example Sub Main

Debug.Print Left$("Hello",2)

End Sub

Example Output He

Len Function

Syntax Len(string$)

Parameters Name Description

string$ Return the number of chars in this string value.

Description Return the number of characters in string$.

See Also InStr(), Left$(), Mid$(), Right$().

Example Sub Main

Debug.Print Len("Hello")

End Sub

Example Output 5

Let Instruction

Syntax [Let] var = expr

Description Assign the value of expr to var. The keyword Let is optional.

Example Sub Main

Let X = 1

X = X*2

Debug.Print X

End Sub

Left$ Chapter 6: Language Reference

AP Basic Language Manual 141

Example Output 2

Like Operator

Syntax str1 Like str2

Description Return the True if str1 matches pattern str2. The pattern in str2 is one or more of
the special character sequences shown in the following table.

Char(s) Description

? Match any single character.
* Match zero or more characters.
Match a single digit (0-9).
[charlist] Match any char in the list.
[!charlist] Match any char not in the list.

Example Sub Main

Dim X As Object

Dim Y As Object

Debug.Print X Is Y ' True

End Sub

Line Input Instruction

Syntax Line Input [#]streamnum, string$

Description Get a line of input from Streamnum and assign it to string$.

See Also Input, Print, Write.

Example Sub Main

Open "FILENAME.EXT" For Input As #1

Line Input #1,S$

Debug.Print S$

Close #1

End Sub

Example Output

ListBox Dialog Item Definition

Syntax ListBox x, y, dx, dy, strarray$(), .field

142 AP Basic Language Manual

Chapter 6: Language Reference Like

Parameters Name Description

x This number value is the distance from the left edge of the dialog
box. It is measured in 1/8ths of the average character width for
the dialog's font.

y This number value is the distance from the top edge of the dialog
box. It is measured in 1/12ths of the character height for the
dialog's font.

dx This number value is the width. It is measured in 1/8ths of the
average character width for the dialog's font.

dy This number value is the height. It is measured in 1/12ths of the
character height for the dialog's font.

strarray$() This one-dimensional array of strings establishes the list of
choices. All the non-null elements of the array are used.

field The value of the list box is accessed via this field. It is the index of
the StrArray$() var.

Description Define a listbox item.

See Also Begin Dialog, Dim As UserDialog.

Example Sub Main

Dim lists$(3)

lists$(0) = "List 0"

lists$(1) = "List 1"

lists$(2) = "List 2"

lists$(3) = "List 3"

Begin Dialog UserDialog 200,120

Text 10,10,180,15,"Please push the OK button"

ListBox 10,25,180,60,lists$(),.list

OKButton 80,90,40,20

End Dialog

Dim dlg As UserDialog

dlg.list = 2

Dialog dlg ' show dialog (wait for ok)

Debug.Print dlg.list

End Sub

Example Output

Loc Function

Syntax Loc(streamnum)

Parameters Name Description

streamnum Streams 1, 2, 3 and 4 are available in each macro.

Description Return Streamnum file position.

Loc Chapter 6: Language Reference

AP Basic Language Manual 143

Example Sub Main

Open "FILENAME.EXE" For Input As #1

L = Loc(1)

Close #1

Debug.Print L

End Sub

Example Output 1

Lock Instruction

Syntax Lock StreamNum

-or-

Lock StreamNum, RecordNum

-or-

Lock StreamNum, [start] To end

Parameters Name Description

StreamNum Streams 1 through 255 are private to each macro. Streams 256
through 511 are shared by all macros.

RecordNum For Random mode files this is the record number. The first record
is 1. Otherwise, it is the byte position. The first byte is 1.

start First record (or byte) in the range.
end Last record (or byte) in the range.

Description Form 1: Lock all of StreamNum.

Form 2: Lock a record (or byte) of StreamNum.

Form 3: Lock a range of records (or bytes) of StreamNum. If start is omitted
then lock starting at the first record (or byte).

Note: Be sure to Unlock for each Lock instruction.

Note: For sequential files (Input, Output and Append) lock always affects the
entire file.

See Also Open, Unlock.

Example Sub Main

Dim V As Variant

Open "SAVE_V.DAT" For Binary As #1

Lock #1

Get #1, 1, V

V = "Hello"

Put #1, 1, V

144 AP Basic Language Manual

Chapter 6: Language Reference Lock

Unlock #1

Close #1

End Sub

LOF Function

Syntax Lof(streamnum)

Parameters Name Description

streamnum Streams 1 through 255 are private to each macro. Streams 256
through 511 are shared by all macros.

Description Return StreamNum file length (in bytes).

Example Sub Main

Open "FILENAME.EXT" For Input As #1

L = Lof(1)

Close #1

Debug.Print L

End Sub

Example Output Length of file value.

Log Function

Syntax Log(num)

Parameters Name Description

num Return the natural logarithm of this number value. The value e is
approximately 2.718282.

Description Return the natural logarithm.

Example Sub Main

Debug.Print Log(1)

End Sub

Example Output 0

Log10 Function

Syntax Log10(num)

Parameters Name Description

num Return the base-10 logarithm of this number value.

LOF Chapter 6: Language Reference

AP Basic Language Manual 145

Description Return the base-10 logarithm.

Example Sub Main

Debug.Print Log10(24)

End Sub

Example Output 1.38021124171161

LSet Instruction

Syntax LSet strvar = str

-or-

LSet usertypevar1 = usertypevar2

Description Form 1: Assign the value of str to strvar. Shorten str by removing trailing chars
(or extend with blanks). The previous length strvar is maintained.

Form 2: Assign the value of usertypevar2 to usertypevar1. If usertypevar2 is
longer than usertypevar1 then only copy as much as usertypevar1 can handle.

See Also RSet.

Example Sub Main

S$ = "123"

LSet S$ = "A"

Debug.Print ".";S$;"."

End Sub

Example Output .A .

LTrim$ Function

Syntax LTrim[$](string$)

Parameters Name Description

string$ Copy this string without the leading spaces.

Description Return the string with string$s leading spaces removed.

See Also Trim$(), RTrim$().

Example Sub Main

Debug.Print ".";LTrim$(" x ");"."

End Sub

Example Output .x .

146 AP Basic Language Manual

Chapter 6: Language Reference LSet

MacroDir$ Function

Syntax MacroDir[$]

Description Return the directory of the current macro. A run-time error occurs if the current
macro has never been saved.

See Also MacroRun.

Example Sub Main

' Open the file called Data that is in the

' same directory as the macro

Open MacroDir & "\Data" For Input As #1

Line Input #1, S$

Close #1

End Sub

MacroRun Instruction

Syntax MacroRun command$

Parameters Name Description

command$ Start the macro named by this string value. That macros
Command$ is assigned the text following first space in this value.

Description Play a macro. Execution will continue at the following statement after the
macro has completed.

See Also Command$.

Example Sub Main

Debug.Print "Before Demo"

MacroRun "APDEMO.APB"

Debug.Print "After Demo"

End Sub

MacroRunThis Instruction

Syntax MacroRunThis MacroCode$

Description Play the macro code. Execution will continue at the following statement after
the macro code has completed. The macro code can be either a single line or a
complete macro.

MacroDir$ Chapter 6: Language Reference

AP Basic Language Manual 147

Parameter Description

MacroName$ Run the macro named by this string value.

See Also Command$, MacroDir$, MacroRun.

Example Sub Main

Debug.Print "Before Demo"

MacroRunThis "MsgBox ""Hello"""

Debug.Print "After Demo"

End Sub

Main Sub

Syntax Sub Main()

...

End Sub

-or-

Private Sub Main()

...

End Sub

Description Form 1: Each macro must define Sub Main. A macro is a "program". Running a
macro starts the Sub Main and continues to execute until the subroutine
finishes.

Form 2: A code module may define a Private Sub Main. This Sub Main is the
code module initialization subroutine. If Main is not defined then no special
initialization occurs.

See Also Code Module.

Me Object

Syntax Me

Description Me references the current macro/module. It can be used like any other object
variable, except that it’s reference can’t be changed.

See Also Set.

Example Sub Main

DoIt

148 AP Basic Language Manual

Chapter 6: Language Reference Main

Me.DoIt ' calls the same sub

End Sub

Sub DoIt

MsgBox "Hello"

End Sub

Mid$ Function/Assignment

Syntax Mid[$](string$, index[, len])
-or-

Mid[$](strvar, index[, len]) = string$

Parameters Name Description (Mid Function)

string$ Copy chars from this string value.
index Start copying chars starting at this index value. If the string is not

that long then return a null string.
len Copy this many chars. If the string$ does not have that many

chars starting at Index then copy the remainder of string$.

Name Description (Mid Assignment)

strvar Change part of this string.
index Change strvar starting at this index value. If the string is not that

long then it is not changed.
len The number of chars copied is smallest of: the value of Len, the

length of string$ and the remaining length of strvar. (If this value is
omitted then the number of chars copied is the smallest of: the
length of string$ and the remaining length of strvar.)

string$ Copy chars from this string value.

Description Function: Return the substring of S$ starting at Index for Len chars.

Instruction: Assign string$ to the substring in strvar starting at Index for Len
chars.

Example Sub Main

S$ = "Hello There"

Mid$(S$,7) = "?????????"

Debug.Print S$ '"Hello ?????"

Debug.Print Mid$("Hello",2,1)

End Sub

Example Output Hello ?????

e

Mid$ Chapter 6: Language Reference

AP Basic Language Manual 149

Minute Function

Syntax Minute(dateexpr)

Parameters Name Description

dateexpr Return the minute of the hour for this date value.

Description Return the minute of the hour (0 to 59).

See Also Hour(), Second(), Time().

Example Sub Main

Debug.Print Minute(#12:15:01 AM#)

End Sub

Example Output 15

MkDir Instruction

Syntax MkDir name$

Parameters Name Description

name$ This string value is the path and name of the directory. A path
relative to the current directory can be used.

Description Make directory name$.

See Also RmDir.

Example Sub Main

MkDir "C:\APTEMP"

End Sub

Month Function

Syntax Month(dateexpr)

Parameters Name Description

dateexpr Return the month of the year for this date value.

Description Return the month of the year (1 to 12).

See Also Date(), Day(), Weekday(), Year().

Example Sub Main

Debug.Print Month(#1/1/1900#)

End Sub

Example Output 1

150 AP Basic Language Manual

Chapter 6: Language Reference Minute

MonthName Function

Syntax MonthNamw(NumZ{day}[, CondZ{abbrev}])

Parameters Name Description

day Return the month of the year for this date value.
abbrev If this conditional value is True then return the abbreviated form of

the month name.

Description Return the localized name of the month.

See Also Month().

Example Sub Main

Debug.Print MonthName(1) 'January

Debug.Print MonthName(Month(Now))

End Sub

MsgBox Instruction/Function

Syntax MsgBox message$[, type][, title$]

-or-

MsgBox(message$[, type][, title$])

Parameters Name Description

message$ This string value is the text that is shown in the message box.
type This number value controls the type of message box. See the

table below.
title$ This string value is the title of the message box.

Category Type
Effect (result)

Buttons 0 OK(1) button
1 OK(1) and Cancel(2) buttons
2 Abort(3), Retry(4), Ignore(5) buttons
3 Yes(6), No(7), Cancel(2) buttons
4 Yes(6) and No(7) buttons

5 Retry(4) and Cancel(2) buttons
Icons 0 No icon

16 Stop icon
32 Question icon
48 Attention icon
64 Information icon

Default 0 First button
256 Second button
512 Third button

Mode 0 Application modal
4096 System modal

MonthName Chapter 6: Language Reference

AP Basic Language Manual 151

Description Show a message box titled Title$. Type controls what the message box looks
like (choose one value from each category). Use MsgBox() if you need to know
what button was pressed. The result indicates which button was pressed.

Example Sub Main

If MsgBox("Please press OK button",1) = 1 Then

Debug.Print "OK was pressed"

Else

Debug.Print "Cancel was pressed"

End If

End Sub

Name Instruction

Syntax Name oldname$ As newname$

Parameters Name Description

oldname$ This string value is the path and name of the file. A path relative to
the current directory can be used.

newname$ This is the new file name. The file remains in its original directory.

Description Rename file oldname$ as newname$.

Example Sub Main

Name "AUTOEXEC.BAK" As "AUTOEXEC.SAV"

End Sub

Now Function

Syntax Now

Description Return the current date and time as a date value.

See Also Date, Time, Timer.

Example Sub Main

Debug.Print Now

End Sub

Example Output 2/9/96 7:59:26 AM

Oct$ Function

Syntax Oct[$](num)

152 AP Basic Language Manual

Chapter 6: Language Reference Name

Parameters Name Description

num Return an octal encoded string for this number value.

Description Return a octal string.

See Also Hex$(), Str$(), Val().

Example Sub Main

Debug.Print Oct$(15)

End Sub

Example Output 17

Object Module

Description (The Object module feature is not implemented in version 1.5 of AP Basic)

An object module implements an OLE Automation object.

� It has a set of Public properties, functions and subroutines accessible from

other macros and modules.

� These public symbols are accessed via the name of the object module or

an object variable.

� Public Consts, Types, arrays, fixed length strings are not allowed.

� An object module is similar to a class module except that one instance is

automatically created. That instance has the same name as the object

module’s name.

� To create additional instances use:

Dim Obj As objectname

Set Obj = New objectname

See Also Class Module, Code Module, Uses.

Example 'A.WWB

'#Uses "System.OBM"

Sub Main

Debug.Print Hex(System.Version)

End Sub

'System.OBM

Option Explicit

Declare Function GetVersion16 Lib "Kernel" _

Alias "GetVersion" () As Long

Declare Function GetVersion32 Lib "Kernel32" _

Object Chapter 6: Language Reference

AP Basic Language Manual 153

Alias "GetVersion" () As Long

Public Function Version() As Long

If Win16 Then

Version = GetVersion16

Else

Version = GetVersion32

End If

End Function

Object_Initialize Sub

Syntax Private Sub Object_Initialize()

...

End Sub

Description Object module initialization subroutine. Each time a new instance is created for
a Object module the Object_Initialize sub is called. If Object_Initialize is not
defined then no special initialization occurs.

Note: Object_Initialize is also called for the instance that is automatically
created.

See Also

Object Module, Object_Terminate.

Object_Terminate Sub

Syntax Private Sub Object_Terminate()

...

End Sub

Description Object module termination subroutine. Each time an instance is destroyed for a
Object module the Object_Terminate sub is called. If Object_Terminate is not
defined then no special termination occurs.

See Also Object Module, Object_Initialize.

154 AP Basic Language Manual

Chapter 6: Language Reference Object_Initialize Sub

Oct$ Function

Syntax Oct[$](Num)

Description Return a octal string.

Parameter Description

Num Return an octal encoded string for this number value.

See Also Hex$(), Str$(), Val().

Example Sub Main

Debug.Print Oct$(15) '17

End Sub

OKButton Dialog Item Definition

Syntax OKButton x, y, dx, dy[, .field]

Parameters Name Description

x This number value is the distance from the left edge of the dialog
box. It is measured in 1/8ths of the average character width for
the dialog's font.

y This number value is the distance from the top edge of the dialog
box. It is measured in 1/12ths of the character height for the
dialog's font.

dx This number value is the width. It is measured in 1/8ths of the
average character width for the dialog's font.

dy This number value is the height. It is measured in 1/12ths of the
character height for the dialog's font.

field This identifier is the name of the field. The dialogfunc receives this
name as string. If this identifer is omitted then the first two words
of the title are used. If this is omitted then the field name is OK.

Description Define an OK button item. Pressing the OK button updates the dlgvar field
values and closes the dialog. (Dialog() function call returns -1.)

See Also Begin Dialog, Dim As UserDialog.

Example Sub Main

Begin Dialog UserDialog 200,120

Text 10,10,180,30,"Please push the OK button"

OKButton 80,90,40,20

End Dialog

Dim dlg As UserDialog

Dialog dlg 'Show dialog (Wait for OK)

End Sub

Oct$ Chapter 6: Language Reference

AP Basic Language Manual 155

On Error Instruction

Syntax On Error GoTo 0
-or-

On Error GoTo label

-or-

On Error Resume Next

Description Form 1: Disable the error handler (default).

Form 2: Send error conditions to an error handler.

Form 3: Error conditions continue execution at the next statement.

On Error sets or disables the error handler. Each user defined subroutine,
function or property has its own error handler. The default is to terminate the
macro on any error. The Err variable is set whenever an error occurs. Once an
error has occurred and the error handler is executing any further errors will
terminate the macro, unless Err has been set to zero.

Note: This instruction resets Err to zero and Error$ to null.

Example Sub Main

On Error Resume Next

Error 1

Debug.Print "RESUMING, Err=";Err

On Error GoTo X

Error 1

Exit Sub

X: Debug.Print "Err=";Err

Err = 0

Resume Next

End Sub

Example Output RESUMING, Err= 1

Err= 1

Open Instruction

Syntax Open name$ For mode As [#]streamnum

Parameters Name Description

name$ This string value is the path and name of the file. A path relative to
the current directory can be used.

mode May be Input, Output or Append.
streamnum Streams 1, 2, 3 and 4 are available in each macro.

156 AP Basic Language Manual

Chapter 6: Language Reference On Error

Description Open file Name$ for mode as Streamnum.

See Also Close, Reset.

Example Sub Main

Open "FILENAME.EXT" For Output As #1

Print #1,"1,2,""Hello"""

Close #1

End Sub

Option Definition

Syntax Option Explicit

Description Require all variables to be declared prior to use. Variables are declared using
Dim, Private or Public or Static.

See Also Option Explicit

Example Option Explicit

Sub Main

Dim A

A = 1

B = 2 'B has not been declared.

End Sub

OptionButton Dialog Item Definition

Syntax OptionButton x, y, dx, dy, title$[, .field]

Parameters Name Description

x This number value is the distance from the left edge of the dialog
box. It is measured in 1/8ths of the average character width for
the dialog's font.

y This number value is the distance from the top edge of the dialog
box. It is measured in 1/12ths of the character height for the
dialog's font.

dx This number value is the width. It is measured in 1/8ths of the
average character width for the dialog's font.

dy This number value is the height. It is measured in 1/12ths of the
character height for the dialog's font.

title$ The value of this string is the title of the option button.

Description Define an option button item.

See Also Begin Dialog, Dim As UserDialog, OptionGroup.

Option Chapter 6: Language Reference

AP Basic Language Manual 157

Example Sub Main

Begin Dialog UserDialog 200,120

Text 10,10,180,15,"Please push the OK button."

OptionGroup .options

OptionButton 10,30,180,15,"Option &0"

OptionButton 10,45,180,15,"Option &1"

OptionButton 10,60,180,15,"Option &2"

OKButton 80,90,40,20

End Dialog

Dim dlg As UserDialog

dlg.options = 2

Dialog dlg 'Show dialog (Wait for OK)

Debug.Print dlg.options

End Sub

OptionGroup Dialog Item Definition

Syntax OptionGroup .field

OptionButton x, y, dx, dy, title$[, .field]

OptionButton x, y, dx, dy, title$[, .field]

...

Parameters Name Description

field The value of the option group is accessed via this field. This first
option button is 0, the second is 1, etc.

x This number value is the distance from the left edge of the dialog
box. It is measured in 1/8ths of the average character width for
the dialog's font.

y This number value is the distance from the top edge of the dialog
box. It is measured in 1/12ths of the character height for the
dialog's font.

dx This number value is the width. It is measured in 1/8ths of the
average character width for the dialog's font.

dy This number value is the height. It is measured in 1/12ths of the
character height for the dialog's font.

title$ The value of this string is the title of the option button.

Description Define a optiongroup and option button items.

See Also Begin Dialog, Dim As UserDialog, OptionButton.

Example Sub Main

Begin Dialog UserDialog 200,120

Text 10,10,180,15,"Please push the OK button."

158 AP Basic Language Manual

Chapter 6: Language Reference OptionGroup

OptionGroup .options

OptionButton 10,30,180,15,"Option &0"

OptionButton 10,45,180,15,"Option &1"

OptionButton 10,60,180,15,"Option &2"

OKButton 80,90,40,20

End Dialog

Dim dlg As UserDialog

dlg.options = 2

Dialog dlg 'Show dialog (Wait for OK)

Debug.Print dlg.options

End Sub

Pow Function

Syntax Pow(numx, powery)

Parameters Name Description

numx Number X to be rased.
powery Power of Y.

Description Return the value of a number (NumX) raised to the power of (PowerY).

Example Sub Main

Debug.Print Pow(3,3)

End Sub

Example Output 27

Picture Dialog Item Definition

Syntax Picture X, Y, DX, DY, FileName$, Type[, .Field]

Description Define a picture item. The bitmap is automatically sized to fit the item’s entire
area.

Parameter Description

X This number value is the distance from the left edge of the dialog
box. It is measured in 1/8 ths of the average character width for
the dialog’s font.

Y This number value is the distance from the top edge of the dialog
box. It is measured in 1/12 ths of the character height for the
dialog’s font.

DX This number value is the width. It is measured in 1/8 ths of the
average character width for the dialog’s font.

Pow Chapter 6: Language Reference

AP Basic Language Manual 159

DY This number value is the height. It is measured in 1/12 ths of the
character height for the dialog’s font.

FileName$ The value of this string is the .BMP file shown in the picture
control.

Type This numeric value indicates the type of bitmap used. See below.
Field This identifier is the name of the field. The dialogfunc receives this

name as string. If this identifer is omitted then the first two words
of the title are used.

Type Effect

0 FileName is the name of the bitmap file. If the file does not exist
then "(missing picture)" is displayed.

3 The clipboard’s bitmap is displayed. Not supported.
+16 Instead of displaying "(missing picture)" a run-time error occurs.

See Also Begin Dialog, Dim As UserDialog.

Example Sub Main

Begin Dialog UserDialog 200,120

Picture 10,10,180,75,"SAMPLE.BMP",0

OKButton 80,90,40,20

End Dialog

Dim dlg As UserDialog

Dialog dlg ' show dialog (wait for ok)

End Sub

PowerRatioTodB Function

Syntax PowerRatioTodB(num)

Parameters Name Description

num

Description Return the value in dB of the power ratio of num to 1.

Example Sub Main

Debug.Print Format(PowerRatioTodB(.5), "#.0000")

End Sub

Example Output -3.0103

Equation PowerRatioTodB = 10 * Log10(Num)

Print Instruction

Syntax Print #streamnum, [expr[; ...][;]]

160 AP Basic Language Manual

Chapter 6: Language Reference PowerRatioTodB

Description Print the expr(s) to Streamnum. Use ; to separate expressions. A num is
automatically converted to a string before printing (just like Str$()). If the
instruction does not end with a ; then a newline is printed at the end.

See Also Input, Line Input, Write.

Example Sub Main

A = 1

B = 2

C$ = Hello

Open "FILENAME.EXT" For Output As #1

Print #1,A;",";B;",""";C$;""""

Close #1

End Sub

Private Definition

Syntax Private name[type][([Dim[, …]])] [As type][, ...]

Description Create arrays (or simple variables) which are available to the entire macro, but
not other macros. Dimension var array(s) using the dimlist to establish the
minimum and maximum index value for each dimension. If the dims is omitted
then a scalar (single value) variable is defined. A dynamic array is declared
using () without any dims. It must be ReDimensioned before it can be used.
The Private statement must be placed outside of Sub, Function or Property
blocks.

See Also Dim, Public, ReDim, Static.

Example Private A0,A1(1),A2(1,1)

Sub Init

A0 = 1

A1(0) = 2

A2(0,0) = 3

End Sub

Sub Main

Init

Debug.Print A0;A1(0);A2(0,0)

End Sub

Example Output 1 2 3

Private Chapter 6: Language Reference

AP Basic Language Manual 161

Private Keyword

Description Private Consts, Declares, Functions, Privates, Propertys, Subs and Types are
only available in the current macro.

Property Definition

Syntax [Private|Public] Property Get name[type][([param[, _

]])] [As type]

statements

End Property

-or-

[Private|Public] Property [LetSet] name[([param[, _

]])]

statements

End Property

Description User defined property. The property defines a set of statements to be executed
when its value is used or changed. A property acts like a variable, except that
getting its value calls Property Get and changing its value calls Property Let (or
Property Set). Property Get and Property Let with the same name define a
property that holds a value. Property Get and Property Set with the same name
define a property that holds an object reference. The values of the calling arglist
are assigned to the parameters in the params.

For Property Let and Property Set the last parameter is the value on the right
hand side of the assignment operator.

Public is assumed if neither Private or Public is specified.

See Also Function, Sub.

Example Dim X_Value

Property Get X()

X = X_Value

End Property

Property Let X(NewValue)

If Not IsNull(NewValue) Then X_Value = NewValue

End Property

Sub Main

X = "Hello"

Debug.Print X

X = Null

162 AP Basic Language Manual

Chapter 6: Language Reference Private

Debug.Print X

End Sub

Example Output Hello

Null

Public Definition

Syntax Public name[type][([Dim[, …]])] [As type][, ...]

Description Create arrays (or simple variables) which are available to the entire macro and
other macros. Dimension var array(s) using the dims to establish the minimum
and maximum index value for each dimension. If the dims are omitted then a
scalar (single value) variable is defined. A dynamic array is declared using ()
without any dims. It must be ReDimensioned before it can be used. The Public
statement must be placed outside of Sub, Function or Property blocks.

See Also Dim, Private, ReDim, Static.

Example Public A0,A1(1),A2(1,1)

Sub Init

A0 = 1

A1(0) = 2

A2(0,0) = 3

End Sub

Sub Main

Init

Debug.Print A0;A1(0);A2(0,0)

End Sub

Example Output 1 2 3

Public Keyword

Description Public Consts, Declares, Functions, Propertys, Publics, Subs and Types in
hidden macros are available in all other macros.

PushButton Dialog Item Definition

Syntax PushButton x, y, dx, dy, title$[, .field]

Public Chapter 6: Language Reference

AP Basic Language Manual 163

Parameters Name Description

x This number value is the distance from the left edge of the dialog
box. It is measured in 1/8ths of the average character width for
the dialog's font.

y This number value is the distance from the top edge of the dialog
box. It is measured in 1/12ths of the character height for the
dialog's font.

dx This number value is the width. It is measured in 1/8ths of the
average character width for the dialog's font.

dy This number value is the height. It is measured in 1/12ths of the
character height for the dialog's font.

title$ The value of this string is the title of the push button control.
field This identifier is the name of the field. The dialogfunc receives this

name as string. If this identifer is omitted then the first two words
of the title are used.

Description Define a push button item. Pressing the push button updates the dlgvar field
values and closes the dialog. (Dialog() function call returns the push buttons
ordinal number in the dialog. The first push button returns 1.)

See Also Begin Dialog, Dim As UserDialog.

Example Sub Main

Begin Dialog UserDialog 200,120

Text 10,10,180,30,"Please push the DoIt button"

OKButton 40,90,40,20

PushButton 110,90,60,20,"&Do It"

End Dialog

Dim dlg As UserDialog

Debug.Print Dialog(dlg)

End Sub

Put Instruction

Syntax Put StreamNum, [RecordNum], var

Parameters Name Description

StreamNum Streams 1 through 255 are private to each macro. Streams 256
through 511 are shared by all macros.

RecordNum For Random mode files this is the record number. The first record
is 1. Otherwise, it is the byte position. The first byte is 1. If this is
omitted then the current position (or record number) is used.

var This variable value is written to the file. For a fixed length variable
(like Long) the number of bytes required to store the variable are
written. For a Variant variable two bytes which describe its type
are written and then the variable value is written accordingly. For
a usertype variable each field is written in sequence. For an array

164 AP Basic Language Manual

Chapter 6: Language Reference Put

variable each element is written in sequence. For a dynamic array
variable the number of dimensions and range of each dimension
is written prior to writing the array values. All binary data values
are written to the file in little-endian format.

Note: When a writing string (or a dynamic array) to a Binary mode file the
string length (or array dimension) information is not written. Only the string
data or array elements are written.

Description Write a variable’s value to StreamNum.

See Also Get, Open.

Example Sub Main

Dim V As Variant

Open "SAVE_V.DAT" For Binary Access Write As #1

Put #1, , V

Close #1

End Sub

QBColor Function

Syntax QBColor(num)

Parameters num color

0 black
1 blue
2 green
3 cyan
4 red
5 magenta
6 yellow
7 white
8 gray
9 light blue
10 light green
11 light cyan
12 light red
13 light magenta
14 light yellow
15 bright white

Description Return the appropriate color defined by Quick Basic.

See Also RGB().

Example Sub Main

Debug.Print Hex(QBColor(1))

Debug.Print Hex(QBColor(7))

QBColor Chapter 6: Language Reference

AP Basic Language Manual 165

Debug.Print Hex(QBColor(8))

Debug.Print Hex(QBColor(9))

Debug.Print Hex(QBColor(10))

Debug.Print Hex(QBColor(12))

Debug.Print Hex(QBColor(15))

End Sub

Example Output 800000

C4C4C4

808080

FF0000

FF00

FF

FFFFFF

166 AP Basic Language Manual

Chapter 6: Language Reference QBColor

Randomize Instruction

Syntax Randomize

Description Randomize the random number generator.

See Also Rnd().

Example Sub Main

Randomize

Debug.Print Rnd

End Sub

Example Output 0.84881130405591

ReDim Instruction

Syntax ReDim [Preserve] name[type][([Dim[, …]])] [As _
type][, ...]

Description Redimension a dynamic array. Use Preserve to keep the array values.
Otherwise, the array values will all be reset. When using Preserve only the last
index of the array may change. The number of indexes may not. (A
one-dimensional array cant be redimensioned as a two-dimensional array.)

See Also Dim, Private, Public, Static.

Example Sub Main

Dim X()

ReDim X(3)

Debug.Print UBound(X)

ReDim X(200)

Debug.Print UBound(X)

End Sub

Example Output 3

200

Reference Comment

Syntax '#Reference
{uuid}#vermajor.verminor#lcid#[path[#name]]

Randomize Chapter 6: Language Reference

AP Basic Language Manual 167

Description The Reference comment indicates that the current macro/module references the
type library identified. Reference comment lines must be the first lines in the
macro/module (following the global Attributes). Reference comments are in
reverse priority (from lowest to highest). The IDE does not display the reference
comments.

Parameters Name Description

uuid Type library’s universally unique identifier.
vermajor Type library’s major version number.
verminor Type library’s minor version number.
lcid Type library’s locale identifier.
path Type library’s path.
name Type library’s name.

Example '#Reference
{00025E01-0000-0000-C000-000000000046}#4.0#0#C: _

\PROGRAM FILES\COMMON FILES\MICROSOFT SHARED\DAO_
DAO350.DLL#Microsoft DAO 3.5 Object Library

Rem Instruction

Syntax Rem ...
-or-

'...

Description Both forms are comments. The Rem form is an instruction. The form can be
used at the end of any macro line. All text from either " ' " or Rem to the end of
the line is part of the comment. That text is not executed.

Example Sub Main

Debug.Print "Hello" 'Prints to the output window.

Rem the macro terminates at Main’s End Sub

End Sub

Example Output Hello

Replace Function

Syntax Replace[$](S, Pat, Rep, [Index], [Count])

Description Replace Pat with Rep in S.

Parameters Name Description

S This string value is searched. Replacements are made in the
string returned by Replace.

Pat This string value is the pattern to look for.
Rep This string value is the replacement.

168 AP Basic Language Manual

Chapter 6: Language Reference Rem

Index This numeric value is the starting index in S.
Replace(S,Pat,Rep,N) is equivalent to
Replace(Mid(S,N),Pat,Rep). If this is omitted use 1.

Count This numeric value is the maximum number of replacements that
will be done. If this is omitted use -1 (which means replace all
occurrences).

See Also InStr(), InStrRev(), Left$(), Len(), Mid$(),
Right$().

Example Sub Main
Debug.Print Replace$("abcabc","b","B") '"aBcaBc"
Debug.Print Replace$("abcabc","b","B",,1) '"aBcabc"
Debug.Print Replace$("abcabc","b","B",3) '"caBc"
Debug.Print Replace$("abcabc","b","B",9) '""

End Sub

Reset Instruction

Syntax Reset

Description Close all open streams for the current macro.

See Also Close, Open.

Example Sub Main

' Read the first line of XXX and print it.

Open "FILENAME.EXT" For Input As #1

Line Input #1,L$

Debug.Print L$

Reset

End Sub

Resume Instruction

Syntax Resume label

-or-

Resume Next

Description Form 1: Resume execution at label.

Form 2: Resume execution at the next statement.

Once an error has occurred, the error handler can use Resume to continue
execution. The error handler must use Resume or Exit at the end. Executing an
End Sub (or End Function) while in an error handler causes a run-time error.

Note: This instruction resets Err to zero and Error$ to null.

Reset Chapter 6: Language Reference

AP Basic Language Manual 169

Example Sub Main

On Error GoTo X

Error 1

Debug.Print "RESUMING"

Exit Sub

X: Debug.Print "Err=";Err

Resume Next

End Sub

Example Output RESUMING

RGB Function

Syntax RGB(red, green, blue)

Description Return a color.

See Also QBColor().

Example Sub Main

Debug.Print Hex(RGB(255,0,0))

End Sub

Example Output FF

Right$ Function

Syntax Right[$](string$, len)

Parameters Name Description

string$ Return the right portion of this string value.
len Return this many chars. If string$ is shorter than that then just

return string$.

Description Return the last Len chars of string$.

See Also InStr(), Left$(), Len(), Mid$().

Example Sub Main

Debug.Print Right$(Hello,3)

End Sub

Example Output Llo

170 AP Basic Language Manual

Chapter 6: Language Reference RGB

RmDir Instruction

Syntax RmDir name$

Parameters Name Description

name$ This string value is the path and name of the directory. A path
relative to the current directory can be used.

Description Remove directory Name$.

See Also MkDir.

Example Sub Main

RmDir "C:\APTEMP"

End Sub

Rnd Function

Syntax Rnd([num])

Parameters Name Description

num This number value is ignored.

Description Return a random number greater than or equal to zero and less than one.

See Also Randomize.

Example Sub Main

Debug.Print Rnd()

End Sub

Example Output 0.95883053071688

RmDir Chapter 6: Language Reference

AP Basic Language Manual 171

Round Function

Syntax Round([Num][, Places])

Parameters Name Description

num Round this numeric value. If this value is Null then Null is
returned.

Places Round to this number of decimal places. If this is omitted then
round to the nearest integer value.

Description Return the number rounded to the specified number of decimal places.

Example Sub Main

Debug.Print Round(.5) ' 0

Debug.Print Round(.500001) ' 1

Debug.Print Round(1.499999) ' 1

Debug.Print Round(1.5) ' 2

Debug.Print Round(11.11) ' 11

Debug.Print Round(11.11,1) ' 11.1

End Sub

RSet Instruction

Syntax RSet strvar = str

Description Assign the value of str to strvar. Shorten str by removing trailing chars (or
extend with leading blanks). The previous length strvar is maintained.

See Also LSet.

Example Sub Main

S$ = "123"

RSet S$ = "A"

Debug.Print ".";S$;"."

End Sub

Example Output . A.

RTrim$ Function

Syntax RTrim[$](string$)

Parameters Name Description

string$ Copy this string without the trailing spaces.

Description Return the string with string$s trailing spaces removed.

172 AP Basic Language Manual

Chapter 6: Language Reference Round

See Also LTrim$(), Trim$().

Example Sub Main

Debug.Print ".";RTrim$(" x ");"."

End Sub

Example Output . x.

SaveSetting Instruction

Syntax SaveSetting AppName$, Section$, Key$, Setting

Description Save the Setting for Key in Section in project AppName. Win16 and Win32s
store settings in a .ini file named AppName. Win32 stores settings in the
registration database.

Parameter Description

AppName$ This string value is the name of the project which has this Section
and Key.

Section$ This string value is the name of the section of the project settings.

Key$ This string value is the name of the key in the section of the
project settings.

Setting Set the key to this value. (The value is stored as a string.)

Example Sub Main

SaveSetting "MyApp","Font","Size",10

End Sub

Second Function

Syntax Second(dateexpr)

Parameters Name Description

dateexpr Return the second of the minute for this date value.

Description Return the second of the minute (0 to 59).

See Also Hour(), Minute(), Time().

Example Sub Main

Debug.Print Second(#12:00:01 AM#)

End Sub

Example Output 1

SaveSetting Chapter 6: Language Reference

AP Basic Language Manual 173

Seek Instruction

Syntax Seek [#]streamnum, count

Parameters Name Description

streamnum Streams 1, 2, 3 and 4 are available in each macro.
count This number value is the number of bytes to skip over from the

beginning of the file.

Description Position Streamnum for input Count.

See Also Seek().

Example Sub Main

Open "FILEMANE.EXT" For Input As #1

Line Input #1,L$

Seek #1,0 ' Rewind to start of file.

Input #1,A

Close #1

Debug.Print A

End Sub

Seek Function

Syntax Seek(streamnum)

Parameters Name Description

streamnum Streams 1, 2, 3 and 4 are available in each macro.

Description Return StreamNum current position.

See Also Seek.

Example Sub Main

Open "FILENAME.EXT" For Input As #1

Line Input #1,L$

Debug.Print Seek(1)

Close #1

End Sub

Select Case Statement

Syntax Select Case expr

Case caseexpr[, ...]

statements

174 AP Basic Language Manual

Chapter 6: Language Reference Seek

[Case Else

statements]

End Select

Parameters caseexpr Description

expr Execute if equal.
Is < expr Execute if less than.
Is <= expr Execute if less than or equal to.
Is > expr Execute if greater than.
Is >= expr Execute if greater than or equal to.
Is <> expr Execute if not equal to.
expr1 To
expr2 Execute if greater than or equal to expr1 and less than or equal to

expr2.

Description Select the appropriate case by comparing the expr with each of the caseexprs.
Select the Case Else part if no caseexpr matches. (If the Case Else is omitted
then skip the entire Select...End Select block.)

See Also If, Choose(), IIf().

Example Sub Main

S$ = InputBox$("Enter hello, goodbye, dinner or
sleep:")

Select Case UCase$(S$)

Case "HELLO"

Debug.Print "come in"

Case "GOODBYE"

Debug.Print "see you later"

Case "DINNER"

Debug.Print "Please come in."

Debug.Print "Dinner will be ready soon."

Case "SLEEP"

Debug.Print "Sorry."

Debug.Print "We are full for the night"

Case Else

Debug.Print "What?"

End Select

End Sub

Example Output

SendKeys Instruction

Syntax SendKeys keys$[, wait]

SendKeys Chapter 6: Language Reference

AP Basic Language Manual 175

Parameters Name Description

keys$ Send the keys in this string value to Windows.
wait If this is not zero then the keys are sent before executing the next

instruction. If this is omitted or zero then the keys are sent during
the following instructions.

Keys$ Description

+ Shift modifier key: the following key is a shifted key
^ Ctrl modifier key: the following key is a control key
% Alt modifier key: the following key is an alt key
~ Enter key
(keys) Modifiers apply to all keys
{special n} special key (n is an optional repeat count)
k k Key (k is any single char)
K Shift k Key (K is any capital letter)

Description Send Keys$ to Windows.

Special Keys: Key Description

k k Key (any single char)
Cancel Break Key
Esc or
Escape Escape Key
Enter Enter Key
Menu Menu Key (Alt)
Help Help Key (?)
Prtsc Print Screen Key
Print ?
Select ?
Execute ?
Tab Tab Key
Pause Pause Key
BS, BkSp or
BackSpace Back Space Key
Del or
Delete Delete Key
Ins or
Insert Insert Key
K shift k Key
Left Left Arrow Key
Right Right Arrow Key
Up Up Arrow Key
Down Down Arrow Key
PgUp Page Up Key
PgDn Page Down Key
Home Home Key
End End Key
Clear Num Pad 5 Key
Pad0 to Pad9 Num Pad 0 to 9 Keys
Pad* Num Pad * Key

176 AP Basic Language Manual

Chapter 6: Language Reference SendKeys

Pad+ Num Pad + Key
PadEnter Num Pad Enter Key
Pad- Num Pad - Key
Pad. Num Pad . Key
Pad/ Num Pad / Key
F1 to F24 F1 to F24 Keys

See Also AppActivate, Shell().

Example Sub Main

SendKeys "%S" ' send Alt-S (Search)

SendKeys "GoTo~~" ' send G o T o {Enter} {Enter}

End Sub

Set Instruction

Syntax Set objvar = objexpr

-or-

Set objvar = New objtype

Description Form 1: Set objvars object reference to the object reference of objexpr.

Form 2: Set objvars object reference to the a new instance of cotype (a
component object type.)

The Set instruction is how object references are assigned.

Example Sub Main

Dim Excel As Object

Set Excel = CreateObject("Excel.Application")

End Sub

SetAttr Instruction

Syntax SetAttr name$, attrib

Parameters Name Description

name$ This string value is the path and name of the file. A path relative to
the current directory can be used.

attrib Set the files attributes to this numeric value.

Description Set the attributes for file Name$. If the file does not exist then a run-time error
occurs.

Example Sub Main

Attrib = GetAttr("FILENAME.EXT")

SetAttr "FILENAME.EXE",1 'Readonly

Set Chapter 6: Language Reference

AP Basic Language Manual 177

Debug.Print GetAttr("FILENAME.EXE")

SetAttr "FILENAME.EXE",Attrib

End Sub

Example Output 1

Sgn Function

Syntax Sgn(num)

Parameters Name Description

num Return the sign of this number value. Return -1 for negative.
Return 0 for zero. Return 1 for positive.

Description Return the sign.

Example Sub Main

Debug.Print Sgn(9)

Debug.Print Sgn(0)

Debug.Print Sgn(-9)

End Sub

Example Output 1

0

-1

Shell Function

Syntax Shell(name$[, windowtype])

Parameters Name Description

name$ This string value is the path and name of the program to run.
Command line arguments follow the program name. (A long file
name containing a space must be surrounded by literal double
quotes.)

windowtype This controls how the applications main window is shown. See the
table below.

WindowType Effect

1, 5, 9 Normal Window
2 Minimized Window (default)
3 Maximized Window
4, 8 Normal Deactivated Window
6, 7 Minimized Deactivated Window

178 AP Basic Language Manual

Chapter 6: Language Reference Sgn

Description Execute program Name$. This is the same as using File|Run from the Program
Manager. This instruction can run .COM, .EXE, .BAT and .PIF files. If
successful, return the task ID.

See Also AppActivate, SendKeys.

Example Sub Main

X = Shell("Calc",4) 'Run the calc program.

AppActivate "Calculator"

SendKeys "10{+}30*2=",1 '70

End Sub

Sin Function

Syntax Sin(num)

Parameters Name Description

num Return the sine of this number value. This is the number of
radians. There are 2*Pi radians in a full circle.

Description Return the sine.

Example Sub Main

Debug.Print Sin(1)

End Sub

Example Output 0.841470984807897

Space$ Function

Syntax Space[$](len)

Parameters Name Description

len Create a string this many spaces long.

Description Return the string Len spaces long.

See Also String$().

Example Sub Main

Debug.Print ".";Space$(3);"."

End Sub

Example Output . .

Sin Chapter 6: Language Reference

AP Basic Language Manual 179

Sqr Function

Syntax Sqr(num)

Parameters Name Description

num Return the square root of this number value.

Description Return the square root.

Example Sub Main

Debug.Print Sqr(9)

End Sub

Example Output 3

Static Definition

Syntax Static name[type][([Dim[, …]])] [As type][, ...]

Description A static variable retains it value between procedure calls. Dimension var
array(s) using the dims to establish the minimum and maximum index value for
each dimension. If the dims is omitted then a scalar (single value) variable is
defined. A dynamic array is declared using () without any dims. It must be
ReDimensioned before it can be used.

See Also Dim, Private, Public, ReDim.

Example Sub A

Static X

Debug.Print X

X = "Hello"

End Sub

Sub Main

A

A ' prints "Hello"

End Sub

Example Output Hello

Stop Instruction

Syntax Stop

Description Pause macro execution. If execution is resumed then it starts at the next
instruction. Use End to terminate the macro completely.

180 AP Basic Language Manual

Chapter 6: Language Reference Sqr

Example Sub Main

For I = 1 To 10

Debug.Print I

If I = 3 Then Stop

Next I

End Sub

Example Output 1

2

3

Str$ Function

Syntax Str[$](num)

Parameters Name Description

Len Return the string representation of this number value. Positive
values begin with a blank. Negative values begin with a dash -.

Description Return the string representation of num.

See Also CStr(), Hex$(), Oct$(), Val().

Example Sub Main

Debug.Print Str$(9*9)

End Sub

Example Output 81

StrComp$ Function

Syntax StrComp(Str1,Str2,Comp)

Description Compare two strings.

Parameter Description

Str1 Compare this string with Str2. If this value is Null then Null is
returned.

Str2 Compare this string with Str1. If this value is Null then Null is
returned.

Comp This numeric value indicates the type of comparison. If this is
omitted or zero then binary comparison is used. Otherwise, text
comparison is used. (Text comparison is not case sensitive.)

Result Description

-1 Str1 is less than Str2.

Str$ Chapter 6: Language Reference

AP Basic Language Manual 181

0 Str1 is equal to Str2.
1 Str1 is greater than Str2.
Null Str1 or Str2 is Null.

See Also LCase$(), StrConv$(), UCase$().

Example Sub Main

Debug.Print StrComp("F","e") ' -1

Debug.Print StrComp("F","e",1) ' 1

Debug.Print StrComp("F","f",1) ' 0

End Sub

StrConv$ Function

Syntax StrConv[$](Str,Conv)

Description Convert the string.

Parameter Description

Str Convert this string value. If this value is Null then Null is returned.

Conv This numeric value indicates the type of conversion. See
conversion table below.

Conv
Value Effect

vbUpperCase 1 Convert to upper case.
vbLowerCase 2 Convert to lower case.
vbProperCase 3 Convert to proper case. (Not supported.)
vbWide 4 Convert to wide. (Only supported for

Win32 in eastern locales.)
vbNarrow 8 Convert to narrow. (Only supported for

Win32 in eastern locales.)
vbKatakana 16 Convert to Katakana. (Only supported for

Win32 in Japanese locales.)
vbHiragana 32 Convert to Hiragana. (Only supported for

Win32 in Japanese locales.)
vbUnicode 64 Convert to Unicode. (Only supported for

Win32.)
vbFromUnicode 128 Convert from Unicode. (Only supported

for Win32.)

See Also LCase$(), StrComp(), UCase$().

Example Sub Main

Dim B(1 To 3) As Byte

182 AP Basic Language Manual

Chapter 6: Language Reference StrConv$

B(1) = 65

B(2) = 66

B(3) = 67

Debug.Print StrConv$(B,vbUnicode) '"ABC"

End Sub

StrReverse$ Function

Syntax String[$](S)

Parameters Name Description

S Return this string with the characters in reverse order.

Description Return the string with the characters in reverse order.

Example Sub Main

Debug.Print StrReverse$("ABC") 'CBA

End Sub

String$ Function

Syntax String[$](len, CHAR|$)

Parameters Name Description

len Create a string this many chars long.
char|$ Fill the string with this char value. If this is a number value then

use the ASCII char equivalent. If this is a string value use the first
char of that string.

Description Return the string Len long filled with Char or the first char of Char$.

See Also Space$().

Example Sub Main

Debug.Print String$(4,65)

Debug.Print String$(4,"ABC")

End Sub

Example Output AAAA

AAAA

StrReverse$ Chapter 6: Language Reference

AP Basic Language Manual 183

Sub Definition

Syntax [Private|Public] Sub name[([param[, …]])]

statements

End Sub

Description User defined subroutine. The subroutine defines a set of statements to be
executed when it is called. The values of the calling arglist are assigned to the
params. A subroutine does not return a result. Every macro has at least one
subroutine. Sub Main must be defined. The macros execution begins at Sub
Main. Sub Main must not have any params.

Public is assumed if neither Private or Public is specified.

See Also Declare, Function, Property.

Example Sub IdentityArray(A()) ' A() is an array of numbers

For I = LBound(A) To UBound(A)

A(I) = I

Next I

End Sub

Sub CalcArray(A(),B,C) ' A() is an array of numbers

For I = LBound(A) To UBound(A)

A(I) = A(I)*B+C

Next I

End Sub

Sub ShowArray(A()) ' A() is an array of numbers

For I = LBound(A) To UBound(A)

Debug.Print "(";I;")=";A(I)

Next I

End Sub

Sub Main

Dim X(1 To 4)

IdentityArray X() ' X(1)=1, X(2)=2, X(3)=3, X(4)=4

CalcArray X(),2,3 ' X(1)=5, X(2)=7, X(3)=9, X(4)=11

ShowArray X() ' print X(1), X(2), X(3), X(4)

End Sub

Example Output (1)= 5

(2)= 7

(3)= 9

(4)= 11

184 AP Basic Language Manual

Chapter 6: Language Reference Sub

Tan Function

Syntax Tan(num)

Parameters Name Description

numReturn the tangent of this number value.

Description Return the tangent.

Example Sub Main

Debug.Print Tan(1)

End Sub

Example Output 1.5574077246549

Tan Chapter 6: Language Reference

AP Basic Language Manual 185

Text Dialog Item Definition

Syntax Text x, y, dx, dy, title$[, .field]

Parameters Name Description

x This number value is the distance from the left edge of the dialog
box. It is measured in 1/8ths of the average character width for
the dialog's font.

y This number value is the distance from the top edge of the dialog
box. It is measure d in 1/12ths of the character height for the
dialog's font.

dx This number value is the width. It is measured in 1/8ths of the
average character width for the dialog's font.

dy This number value is the height. It is measured in 1/12ths of the
character height for the dialog's font.

title$ The value of this string is the title of the text control.
field This identifier is the name of the field. The dialogfunc receives this

name as string. If this identifer is omitted then the first two words
of the title are used.

Description Define a text item.

See Also Begin Dialog, Dim As UserDialog.

Example Sub Main

Begin Dialog UserDialog 200,120

Text 10,10,180,15,"Please push the OK button."

OKButton 80,90,40,20

End Dialog

Dim dlg As UserDialog

Dialog dlg 'Show dialog (Wait for OK)

End Sub

186 AP Basic Language Manual

Chapter 6: Language Reference Text Dialog Item

TextBox Dialog Item Definition

Syntax TextBox x, y, dx, dy, .field$[, options]

Parameters Name Description

x This number value is the distance from the left edge of the dialog
box. It is measured in 1/8ths of the average character width for
the dialog's font.

y This number value is the distance from the top edge of the dialog
box. It is measured in 1/12ths of the character height for the
dialog's font.

dx This number value is the width. It is measured in 1/8ths of the
average character width for the dialog's font.

dy This number value is the height. It is measured in 1/12ths of the
character height for the dialog's font.

field The value of the text box is accessed via this field.
options If this numeric value is zero or omitted then a single line of text

can be entered. If it is less than zero then a hidden password can
be entered. If it is greater than zero then multiple lines of text can
be entered.

Description Define a textbox item.

See Also Begin Dialog, Dim As UserDialog.

Example Sub Main

Begin Dialog UserDialog 200,120

Text 10,10,180,15,"Please push the OK button"

TextBox 10,25,180,20,.Text$

OKButton 80,90,40,20

End Dialog

Dim dlg As UserDialog

dlg.Text$ = "none"

Dialog dlg ' show dialog (wait for ok)

Debug.Print dlg.Text$

End Sub

Time Function

Syntax Time[$]

Description Return the current time as a date value.

See Also Date, Now, Timer.

Example Sub Main

Debug.Print Time

TextBox Dialog Item Chapter 6: Language Reference

AP Basic Language Manual 187

End Sub

Example Output 12:04:25 PM

Timer Function

Syntax Timer

Description Return the number of seconds past midnight. (This is a real number, accurate to
about 1/18th of a second.)

See Also Date, Now, Time.

Example Sub Main

Debug.Print Timer

End Sub

Example Output 45284.53

TimeSerial Function

Syntax TimeSerial(hour, minute, second)

Parameters Name Description

hour This numeric value is the hour (0 to 23).
minute This numeric value is the minute (0 to 59).
second This numeric value is the second (0 to 59).

Description Return a date value.

See Also DateSerial, DateValue, TimeValue.

Example Sub Main

Debug.Print TimeSerial(13,30,0)

End Sub

Example Output 1:30:00 PM

TimeValue Function

Syntax TimeValue(date$)

Parameters Name Description

date$ Convert this string value to the time part of date it represents.

Description Return the time part of date encoded as a string value.

See Also DateSerial, DateValue, TimeSerial.

188 AP Basic Language Manual

Chapter 6: Language Reference Timer

Example Sub Main

Debug.Print TimeValue("1/1/2000 12:00:01 AM")

End Sub

Example Output 12:00:01 AM

Trim$ Function

Syntax Trim[$](string$)

Parameters Name Description

string$ Copy this string without the leading or trailing spaces.

Description Return the string with S$s leading and trailing spaces removed.

See Also LTrim$(), RTrim$().

Example Sub Main

Debug.Print ".";Trim$(" x ");"."

End Sub

Example Output .x.

Type Definition

Syntax [Private|Public] Type name

elem [(Dim[, …])] As type[...]

End Type

Description Define a new usertype. Each elem defines an element of the type for storing
data. As type defines the type of data that can be stored. A User-defined type
variable has a value for each elem. Use .elem to access individual element
values.

Public is assumed if neither Private or Public is specified.

Example Type Employee

Name As String

Title As String

Salary As Double

End Type

Sub Main

Dim e As Employee

e.Name = "John Doe"

e.Title = "President"

Trim$ Chapter 6: Language Reference

AP Basic Language Manual 189

e.Salary = 100000

Debug.Print e.Name '"John Doe"

Debug.Print e.Title '"President"

Debug.Print e.Salary ' 100000

End Sub

Example Output John Doe

President

100000

TypeName Function

Syntax TypeName[$](var)

Parameters Name Description

var Return a string indicating the type of value stored in this variable.

Result

Value Description

Empty Variant variable is empty. It has never been assigned a value.
Null Variant variable is null.
Integer Variable contains an integer value.
Long Variable contains a long value.
Single Variable contains a single value.
Double Variable contains a double value.
Currency Variable contains a currency value.
Date Variable contains a date value.
String Variable contains a string value.
Object Variable contains a object reference that is not Nothing. (An

object may return a type name specific to that type of object.)
Nothing Variable contains a object reference that is Nothing.
Error Variable contains a error code value.
Boolean Variable contains a boolean value.
Variant Variable contains a variant value. (Only used for arrays of

variants.)
Unknown Variable contains a non-OLE Automation object reference.
Byte Variable contains a byte value.
() Variable contains an array value. The TypeName of the element

followed by ().

Description Return a string indicating the type of value stored in var.

See Also VarType.

Example Sub Main

Dim X As Variant

190 AP Basic Language Manual

Chapter 6: Language Reference TypeName

Debug.Print TypeName(X)

X = 1

Debug.Print TypeName(X)

X = 100000

Debug.Print TypeName(X)

X = 1.1

Debug.Print TypeName(X)

X = "A"

Debug.Print TypeName(X)

Set X = CreateObject("Word.Basic")

Debug.Print TypeName(X)

X = Empty

X = Array(0,1,2)

Debug.Print TypeName(X)

End Sub

Example Output Empty

Integer

Long

Double

String

wordbasic

Variant()

UBound Function

Syntax UBound(var[, dimension])

Parameters Name Description

var Return the highest index for this array variable.
dimension Return the highest index for this dimension of var. If this is omitted

then return the highest index for the first dimension.

Description Return the highest index.

See Also LBound().

Example Sub Main

Dim A(3,6)

Debug.Print UBound(A)

Debug.Print UBound(A,1)

Debug.Print UBound(A,2)

End Sub

UBound Chapter 6: Language Reference

AP Basic Language Manual 191

Example Output 3

3

6

UCase$ Function

Syntax UCase[$](string$)

Parameters Name Description

string$ Return string value after all chars have been converted to
uppercase.

Description Return a string from S$ where all the lowercase letters have been uppercased.

See Also LCase$().

Example Sub Main

Debug.Print UCase$("Hello")

End Sub

Example Output HELLO

Unlock Instruction

Syntax Unlock StreamNum

-or-

Unlock StreamNum, RecordNum

-or-

Unlock StreamNum, [start] To end

Parameters Name Description

StreamNum Streams 1 through 255 are private to each macro. Streams 256
through 511 are shared by all macros.

RecordNum For Random mode files this is the record number. The first record
is 1. Otherwise, it is the byte position. The first byte is 1.

start First record (or byte) in the range.
end Last record (or byte) in the range.

Description Form 1: Unlock all of StreamNum.

Form 2: Unlock a record (or byte) of StreamNum.

Form 3: Unlock a range of records (or bytes) of StreamNum. If start is omitted
then unlock starting at the first record (or byte).

192 AP Basic Language Manual

Chapter 6: Language Reference UCase$

Note: For sequential files (Input, Output and Append) unlock always affects the
entire file.

See Also Lock, Open.

Example Sub Main

Dim V As Variant

Open "SAVE_V.DAT" For Binary As #1

Lock #1

Get #1, 1, V

V = "Hello"

Put #1, 1, V

Unlock #1

Close #1

End Sub

Uses Comment

Syntax '#Uses "module"

-or-

'$Include: "module"

Description The Uses comment indicates that the current macro/module uses public symbols
from the module.

See Also Class Module, Code Module, Object Module.

Example 'Macro A.WWB

'#Uses "B.WWB"

Sub Main

Debug.Print BFunc$("Hello") '"HELLO"

End Sub

'Module B.WWB

Public Function BFunc$(S$)

BFunc$ = UCase(S$)

End Sub

Uses Chapter 6: Language Reference

AP Basic Language Manual 193

Val Function

Syntax Val(string$)

Parameters Name Description

string$ Return the number value for this string value. A string value
beginning with &O is an octal number. A string value beginning
with &H is a hex number. Otherwise it is decimal number.

Description Return the value of the string$.

Example Sub Main

Debug.Print Val("-1000")

End Sub

Example Output -1000

VarType Function

Syntax VarType(var)

Parameters Name Description

var Return a number indicating the type of value stored in this
variable.

Result

Value Description

0 Variant variable is empty. It has never been assigned a value.
1 Variant variable is null.
2 Variable contains an integer value.
3 Variable contains a long value.
4 Variable contains a single value.
5 Variable contains a double value.
6 Variable contains a currency value.
7 Variable contains a date value.
8 Variable contains a string value.
9 Variable contains a object reference.
10 Variable contains a error code value.
11 Variable contains a boolean value.
12 Variable contains a variant value. (Only used for arrays of

variants.)
13 Variable contains a non-OLE Automation object reference.
17 Variable contains a byte value.
+8192 Variable contains an array value. Use VarType() And 255 to get

the type of element stored in the array.

Description Return a number indicating the type of value stored in var.

See Also TypeName.

194 AP Basic Language Manual

Chapter 6: Language Reference Val

Example Sub Main

Dim X As Variant

Debug.Print VarType(X)

X = 1

Debug.Print VarType(X)

X = 100000

Debug.Print VarType(X)

X = 1.1

Debug.Print VarType(X)

X = "A"

Debug.Print VarType(X)

Set X = CreateObject("Word.Basic")

Debug.Print VarType(X)

X = Empty

X = Array(0,1,2)

Debug.Print VarType(X)

End Sub

Example Output 0

2

3

5

8

9

8204

VoltageRatioTodB Function

Syntax VoltageRatioTodB(num)

Parameters Name Description

num

Description Return the value in dB of the voltage ratio of num to 1.

Example Sub Main

Debug.Print Format(VoltageRatioTodB(2), "#.0000")

Sub

Example Output 6.0206

Equation VoltageRatio = 20 * Log10(num)

VoltageRatioTodB Chapter 6: Language Reference

AP Basic Language Manual 195

Wait Function

Syntax Wait Delay

Description Wait for Delay seconds.

Example Sub Main

Wait 5 'Wait for 5 seconds.

End Sub

WaitAndDoEvents Instruction

Syntax WaitAndDoEvents Delay

Description Wait for Delay seconds while giving other events on the computer time to
continue. This is the preferred over Wait if any other activity needs to be kept
running efficiently (such as APWIN sweeps). Because other events are kept
running, timing will be slightly less accurate than if Wait is used.

See Also Wait.

Example Sub Main

WaitAndDoEvents 5 ' wait for 5 seconds

End Sub

Weekday Function

Syntax Weekday(dateexpr)

Parameters Name Description

dateexpr Return the weekday for this date value.

Description Return the weekday (1 to 7). Sunday=1, Monday=2, Tuesday=3, Wednesday=4,
Thursday=5, Friday=6 and Saturday=7.

See Also Date(), Day(), Month(), Year().

Example Sub Main

Debug.Print Weekday(#1/1/1996#)

End Sub

Example Output 2

196 AP Basic Language Manual

Chapter 6: Language Reference Wait

WeekdayName Function

Syntax WeekdayNamw(NumZ{day}[, CondZ{abbrev}])

Parameters Name Description

day Return the month of the year for this date value.
abbrev If this conditional value is True then return the abbreviated form of

the month name.

Description Return the localized name of the weekday.

See Also Month().

Example Sub Main

Debug.Print WeekdayName(1) 'Sunday

Debug.Print WeekdayName(Weekday(Now))

End Sub

While Statement

Syntax While condexpr

statements
Wend

Description Execute statements while condexpr is True.

See Also Do, For, For Each, Exit While.

Example Sub Main

I = 2

While I < 10

I = I*2

Wend

Debug.Print I

End Sub

Example Output 16

With Statement

Syntax With objexpr

statements

End With

WeekdayName Chapter 6: Language Reference

AP Basic Language Manual 197

Description Method and property references may be abbreviated inside a With block. Use
.method or .property to access the object specified by the With objexpr.

Example Sub Main

Dim Excel As Object

Set Excel = CreateObject("Excel.Application")

With Excel

Excel.Visible = True

Excel.Quit

End With

Set Excel = Nothing

End Sub

WithEvents Definition

Syntax [Dim | Private | Public] _

WithEvents name As objtype[, ...]

Description Dimensioning a module level variable WithEvents allows the macro to
implement event handling Subs. The variable’s As type must be a type from a
referenced type library (or language extension) which implements events.

Remarks This keyword is supported by the single DLL IDE/interpreter (aka the
Enterprise edition). It is not supported by the interpreter implemented in
WW_CU516.DLL or WW_CU532.DLL.

See Also Dim, Private, Public.

Example Dim WithEvents X As Thing
Sub Main

Set X = New Thing
X.DoIt ' DoIt method raises DoingIt event

End Sub
Private Sub X_DoingIt

Debug.Print "X.DoingIt event"
End Sub

Write Instruction

Syntax Write #streamnum, expr[, ...]

Description Writes expr(s) to Streamnum. String values are quoted. Null values are written
as #NULL#. Boolean values are written as #FALSE# or #TRUE#. Date values
are written as #date#. Error codes are written as #Error number#.

See Also Input, Line Input, Print.

Example Sub Main

198 AP Basic Language Manual

Chapter 6: Language Reference WithEvents

A = 1

B = 2

C$ = "Hello"

Open "FILENAME.EXT" For Output As #1

Write #1,A,B,C$

Close #1

End Sub

Year Function

Syntax Year(dateexpr)

Parameters Name Description

dateexpr Return the year for this date value.

Description Return the year.

See Also Date(), Day(), Month(), Weekday().

Example Sub Main

Debug.Print Year(#1/1/1996#)

End Sub

Example Output 1996

Year Chapter 6: Language Reference

AP Basic Language Manual 199

User Notes

200 AP Basic Language Manual

Chapter 6: Language Reference Year

Appendix A

Terms

arglist [|expr|param:=expr][, ...]

A list of zero or more exprs that are assigned to the
parameters of the sub, function or property.

� A positional parameter may be skipped by omitting

the expression. Only optional parameters may be

skipped.

� Positional parameter assignment is done with expr.

Each parameter is assigned in turn. By name

parameter assignment may follow.

� By name parameter assignment is done with

param:=expr. All following parameters must be

assigned by name.

As [New] type Dim, Private, Public and Static statements may declare
variable types using As type or As New objtype. A
variable declared using As New objtype is automatically
created prior to use, if the variable is Nothing.

As type Variable and argument types, as well as, function and
property results may be specified using As type: Boolean,
Byte, Currency, Date, Double, Integer, Long, Object,
Single, String, String*n, UserDialog, Variant, usertype.

attribute A file attribute is zero or more of the following values
added together.

Value Description

0 Normal file.
1 Read-only file.
2 Hidden file.
4 System file.
8 Volume label.
16 MS-DOS directory.
32 File has changes since last backup.

big-endian Multiple byte data values (not strings) are stored with the
highest order byte first. For example, the long integer

AP Basic Language Manual 201

&H01020304 is stored as this sequence of four bytes:
&H01, &H02, &H03 and &H04. A Binary or Random file
written using Put uses little-endian format so that it can be
read using Get on any machine. (Big-endian machines,
like the Power-PC, reverse the bytes as they are read by
Get or written by Put.)

See Also: Dir(), GetAttr(), SetAttr().

charlist A group of one or more characters enclosed by [] as part
of Like operator’s right string expression.

� This list contains single characters and/or character

ranges which describe the characters in the list.

� A range of characters is indicated with a hyphen (-)

between two characters. The first character must be

ordinally less than or equal to the second character.

� Special pattern characters like ?, *, # and [can be

matched as literal characters.

� The] character can not be part of charlist, but it can

be part of the pattern outside the charlist.

condexpr An expression that returns a numeric result. If the result is
zero then the conditional is False. If the result is non-zero
then the conditional is True.

0 false

-1 true

X > 20 true if X is greater than 20

S$ = hello true if S$ equals hello

dateexpr An expression that returns a date result. Use #literal-date#
to express a date value.

#1/1/2000# Jan 1, 2000

Now+7 seven days from now

DateSerial(Year(Now)+1,Month(Now),Day(Now))
one year from now

dialogfunc A dialog function executes while a UserDialog is visible.

dim [lower To] upper

Array dimension. If lower is omitted then the lower bound
is zero. upper must be at least as big as lower.

Dim A(100 To 200) ‘101 values

Note: For ReDim the lower and upper may be any valid
expression. Otherwise, lower and upper must be constant
expressions.

Appendix A: Terms

202 AP Basic Language Manual

dlgvar A dialog variable holds values for fields in the dialog.
Dialog variables are declared using Dim dlgvar As
UserDialog.

expr An expression that returns the appropriate result.

field Use .field to access individual fields in a dialog variable.

dlg.Name$

dlg.ZipCode

instruction A single command.

Beep

Debug.Print Hello

Today = Date

Multiple instructions may be used instead of a single
instruction by separating the single instructions with
colons.

X = 1:Debug.Print X

If X = 1 Then Debug.Print X=;X:Stop

Beep must resume from Stop to get to here

label An identifier that names a statement. Identifiers start with
a letter. Following chars may be a letter, an underscore or a
digit.

little-endian Multiple byte data values (not strings) are stored with the
lowest order byte first. For example, the long integer
&H01020304 is stored as this sequence of four bytes:
&H04, &H03, &H02 and &H01. A Binary or Random file
written using Put uses little-endian format so that it can be
read using Get on any machine. (Big-endian machines,
like the Power-PC, reverse the bytes as they are read by
Get or written by Put.)

macro A macro is like an application. Execution starts at the
macro’s Sub Main.

method An object provides methods and properties. Methods can
be called as subs (the return value is ignored), or used as
functions (the return value is used).

If the method name contains characters that are not legal in
a name, surround the method name with [].

App.[Title$]

module A file with public symbols that are accessible by other
modules/macros via the #Uses comment.

� A module is loaded on demand.

� A code module is a code library.

Appendix A: Terms

AP Basic Language Manual 203

� An object module or class module implements an

OLE automation object.

� A module may also access other modules with its

own #Uses comments.

name An identifier that names a variable or a user defined
subroutine, function or property. Identifiers start with a
letter. Following chars may be a letter, an underscore or a
digit.

Count

DaysTill2000

Get_Data

num An expression that returns a numeric result. Use &O to
express an octal number. Use &H to express a hex number.

10236

3.14159

1.2E12

Count

Count-1

InStr(S$,"A")

&O100 64

&H100 256

numvar A variable that holds one numeric value. The name of a
numeric variable may be followed by the appropriate type
char.

objexpr A expression that returns a reference to an object.

CreateObject(WinWrap.CDemoApplication)

objtype A specific OLE type defined by your application, another
application or by an object module or class module.

See Also: Objects, CreateObject(), GetObject().

objvar A variable that holds a objexpr which references an object.
Object variables are declared using As Object in a Dim,
Private or Public statement.

param [[Optional] [| ByVal | ByRef] | ParamArray]
param[type][()] [As type]

The param receives the value of the associated expression
in the subroutine, function or property call. (See arglist.)

An Optional param may be omitted from the call. It must
be a Variant type. All parameters following an Optional
parameter must also be Optional.

Appendix A: Terms

204 AP Basic Language Manual

ParamArray may be used on the final param. It must be an
array of Variant type. It must not follow any Optional
parameters. The ParamArray receives all the expressions
at the end of the call as an array. If LBound(param)
UBound(param) then the ParamArray didn’t receive any
expressions.

If the param is not ByVal and the expression is merely a
variable then the param is a reference to that variable
(ByRef). (Changing param changes the variable.)
Otherwise, the parameter variable is local to the
subroutine, function or property, so changing its value
does not affect the caller.

Use param() to specify an array parameter. An array
parameter must be referenced and can not be passed by
value. The bounds of the parameter array are available via
LBound() and UBound().

Property Get, Let and Set blocks do not allow Optional or
ParamArray parameter types.

precedence When several operators are used in an expression, each
operator is evaluated in a predetermined order. Operators
are evaluated in this order:

^(power)

- (negate)

* (multiply), / (divide)

\ (integer divide)

Mod (integer remainder)

+ (add), - (difference)

& (string concatenate)

= (equal), <> (not equal), < (less than), > (greater than),
<= (less than or equal to), >= (greater than or equal to), Is
(object equivalence)

Not (logical bitwise invert)

And (logical bitwise and)

Or (logical or bitwise or)

Xor (logical or bitwise exclusive-or)

Eqv (logical or bitwise equivalence)

Imp (logical or bitwise implication)

Appendix A: Terms

AP Basic Language Manual 205

Operators shown on the same line are evaluated from left
to right.

property An object provides methods and properties. Properties may
be used as values (like a function call) or changed (using
assignment syntax).

If the property name contains characters that are not legal
in a name, surround the property name with [].

App.[Title$]

statement One or more instructions. A statement is at least one
macro line long. Begin Dialog, Do, For, If (multiline),
Select Case, While and With statements are always more
than one line long. A single line statement continues on the
next line if it ends a line with a space and an underscore _.

S$ = This long string is easier to read, +
_

if it is broken across two lines.

Debug.Print S$

str An expression that returns a string result.

Hello

S$

S$ + GoodbyeS$ & Goodbye

Mid$(S$,2)

strarray A variable that holds an array of string values. The name
of a string variable may be followed by a $.

strvar A variable that holds one string value. The name of a
string variable may be followed by a $.

FirstName$

type Variable and argument types, as well as, function and
property results may be specified using a type character as
the last character in their name.

Type char As Type

% Integer
& Long
! Single
Double
@@ Currency
$ String

userenum User defined enums are defined with Enum.

usertype User-defined types are defined with Type.

Appendix A: Terms

206 AP Basic Language Manual

usertypevar A user-defined type variable holds values for elements of
the user-defined type. Use r-defined types are defined
using Type. User-defined variables are declared using
Dim, Private or Public.

var A variable holds either a string, a numeric value or an
array of values depending on its type.

variantvar A variant variable holds any type of value (except String*n
or usertypevar).

Appendix A: Terms

AP Basic Language Manual 207

User Notes

Appendix A: Terms

208 AP Basic Language Manual

Appendix B

Error Codes

The following table lists all error codes with the associated
error text.

Error # Description

10000 Macro execution interrupted.
10001 Out of memory.
10008 Invalid ‘#Uses “module” comment.
10009 Invalid ‘#Uses module dependency.
10010 Macro is already running.
10011 Cant allocate memory to macro.
10012 Macro has syntax errors.
10013 Macro does not exist.
10014 Another macro is paused and cant

continue at this time.
10017 No macro is currently active.
10018 Subroutine does not exist.
10019 Wrong number of parameters.
10021 Cant allocate large array.
10022 Array is not dimensioned.
10023 Array index out of range.
10024 Array lower bound is larger than upper

bound.
10025 Array has a different number of indexes.
10030 User dialog has not been defined.
10031 User pressed cancel.
10032 User dialog item id is out of range.
10033 No UserDialog is currently displayed.
10034 Current UserDialog is inaccessible.
10035 Wrong with, don't GOTO into or out of

With blocks.
10040 Module could not be loaded.
10041 Function not found in module.
10048 File not opened with read access.
10049 File not opened with write access.
10050 Record length exceeded.
10051 Could not open file.
10052 File is not open.
10053 Attempt to read past end-of-file.

Audio Precision 2700 Series User’s Manual 209

10054 Expecting a stream number 1, 2, 3 or 4.
10055 Input does not match var type.
10056 Expecting a length in the range 1 to

32767.
10057 Stream number is already open.
10058 File opened in the wrong mode for this

operation.
10059 Error occurred during file operation.
10060 Expression has an invalid floating point

operation.
10061 Divide by zero.
10062 Overflow.
10063 Expression under flowed minimum

representation.
10064 Expression loss of precision in

representation.
10069 String value is not a valid number.
10071 Resume can only be used in an On Error

handler.
10075 Null value cant be used here.
10080 Type mismatch.
10081 Type mismatch for parameter #1.
10082 Type mismatch for parameter #2.
10083 Type mismatch for parameter #3.
10084 Type mismatch for parameter #4.
10085 Type mismatch for parameter #5.
10086 Type mismatch for parameter #6.
10087 Type mismatch for parameter #7.
10088 Type mismatch for parameter #8.
10089 Type mismatch for parameter #9.
10090 OLE Automation error.
10091 OLE Automation: no such property or

method.
10092 OLE Automation: server cannot create

object.
10093 OLE Automation: server cannot load file.
10094 OLE Automation: Object var is Nothing.
10095 OLE Automation: server could not be

found.
10096 OLE Automation: no object currently

active.
10097 OLE Automation: wrong number of

parameters.
10098 OLE Automation: bad index.
10099 OLE Automation: no such named

parameter.
10100 Directory could not be found.
10101 File could not be killed.
10102 Directory could not be created.
10103 File could not be renamed.
10104 Directory could not be removed.

Appendix B: Error Codes

210 AP Basic Language Manual

10105 Drive not found.
10106 Source file could not be opened.
10107 Destination file could not be created.
10108 Source file could not be completely read.
10109 Destination file could not be completely

written.
10110 Missing close brace }.
10111 Invalid key name.
10112 Missing close paren).
10113 Missing close bracket].
10114 Missing comma ,.
10115 Missing semi-colon ;.
10116 SendKeys couldn’t install the Windows

journal playback hook.
10119 String too long (too many keys).
10120 Window could not be found.
10130 DDE is not available.
10131 Too many simultaneous DDE

conversations.
10132 Invalid channel number.
10133 DDE operation did not complete in time.
10134 DDE server died.
10135 DDE operation failed.
10140 Cant access the clipboard.
10150 Window style must be in the range from 1

to 9.
10151 Shell failed.
10160 Declare is not implemented.
10200 Basic is halted due to an unrecoverable

error condition.
10201 Basic is busy and can’t provide the

requested service.
10202 Basic call failed.
10203 Handler property: prototype specification

is invalid.
10204 Handler is already in use.

Appendix B: Error Codes

AP Basic Language Manual 211

User Notes

Appendix B: Error Codes

212 AP Basic Language Manual

Index

A
AP Basic Editor 5

arguments . 11

B
Break mode . 43

breakpoint . 42

C
calling subroutines 14

Case, Select . 37

code module . 15

commands . 29

commenting code 28

constants. 29

control structures 36

custom dialog boxes and menus 52

custom user interface 51

D
data types . 33

debug window 43

Debug window 45

debugging tools 42, 43, 44

debugging your code 41

declaring variables 30

Dim statement 30

Do While . 39

Do...Loop . 39

E
editing code . 7

Err . 48

Error . 48

error handling 47, 48, 49, 50

F
For...Next . 38

function subroutine. 10, 12

G
Goto command 48

I
If...Then . 36

If...Then...Else 37

Immediate pane 46

implicitly declared variable 34

Interactive Design Environment (IDE) 41

K
keywords. 29

L
Learn Mode . 24

line label . 49

loaded pane . 46

logic errors . 41

Logic errors 42, 43, 44

loop structures 38

M
macro. 1, 4

macro editor 5, 7

Main sub procedure 13

manual conventions. 3

Methods . 9, 19

MsgBox . 49

AP Basic Language Manual 1

O
object . 9, 17

Object Browser 20

On Error Goto 48

online help. 5

P
Private statement 30

procedure . 4

program structure 27

programming errors 41

Properties . 9, 18

Public statement 30

Q
Quick Watch . 42

R
Resume Next command 49

run-time errors 41

S
sample programs 4

Select Case . 37

sheet . 6

stack panel. 46

Static statement 30

Step Into . 42, 44

Step Out . 42, 45

Step Over . 44

Stepping Through Code 44

Stop command. 44

subroutine . 11

subroutine label 10

syntax errors . 41

T
testing your code. 41

V
Variables . 29

Variant data type 34

VB . 1

VBA . 1

Visual Basic 1, 7

Visual Basic for Applications 7

W
Watch pane . 46

Index

2 AP Basic Language Manual

	Contents
	Chapter 1
	Introduction 1
	AP Basic Documentation 2
	AP Basic Language Manual 2
	AP Basic Extensions 2
	Chapter Overviews 2
	Manual Conventions 3
	Terminology 4
	Sample Files and Examples 4
	Using On line Help 5

	Getting Started In AP Ba sic 5
	Macro Ed i tor Over view 5
	Sheets 6
	Entering and Editing Code with the Macro Editor 7
	Find Out More About Vi sual Ba sic 7
	– for Ex pe ri enced VB Pro gram mers 7

	Chapter 2
	Fundamentals of AP Basic 9
	What is an AP Basic Program? 9
	Using Subroutines 10
	Elements of a Sub rou tine 10
	Arguments 11
	How to Use Subroutines 13
	Calling Subroutines 14
	Calling Subroutines from Other Modules 15

	Objects, Methods, and Properties 17
	What Are Objects? 17
	Working With Objects 18
	Properties of an Object 18
	Using the Methods of an Object 19
	The Object Browser 20

	Chapter 3
	Writing An AP Basic Macro 23
	Using Learn Mode 23
	Example AP Basic macro 25
	Macro Struc ture 27
	Com menting Code 28
	Key words and Com mands 29
	Using Vari ables and Con stants 29
	De claring Vari ables 30
	Scope of Vari ables 31

	Data Types 33
	The Vari ant Data Type 34
	Con stants 34

	Con trolling Macro Flow 35
	Control Structures 36
	If...Then 36
	If...Then...Else 37
	Se lect Case 37

	Loop Struc tures 38
	For...Next 38
	Do...Loop 39

	Chapter 4
	Testing and Debugging 41
	Types of Programming Errors 41
	Debugging Tools on the Toolbar 42
	Break Mode 43
	Accessing Break Mode 43
	Stepping Through Code 44

	Using The Debug Window 45
	Error Handling 47
	AP Basic Error Handling Commands 48

	Chapter 5
	Creating Custom User Interfaces 51

	Chapter 6
	Language Reference 55
	Introduction 55
	Groups 55
	Operators 57
	Data Types 58
	Keywords 60
	Language Commands 61
	Abs 61
	AppActivate 61
	Array 62
	Asc 62
	Atn 62
	Attribute 63
	Beep 63
	Begin Dialog 63
	Call 64
	CallByName 65
	CallersLine 65
	CancelButton Dialog Item 66
	CBool 67
	CByte 68
	CCur 68
	CDate 68
	CDbl 69
	ChDir 69
	ChDrive 69
	CheckBox 70
	Choose 70
	Chr$ 71
	CInt 71
	Class 72
	Class_Initialize 73
	Class_Terminate 73
	Clipboard 74
	CLng 74
	Close 74
	Code 75
	ComboBox 75
	Command$ 76
	Const 77
	Cos 77
	CreateObject 77
	CSng 78
	CStr 78
	CurDir$ 79
	CVar 79
	CVErr 80
	Date 80
	DateAdd 81
	DateDiff 82
	DatePart 82
	DateSerial 83
	DateValue 83
	Day 84
	dBToPowerRatio 84
	dBToVoltageRatio 84
	DDEExecute 85
	DDEInitiate 85
	DDEPoke 86
	DDERequest$ 86
	DDETerminate 87
	DDETerminateAll 87
	Debug 88
	Declare 88
	Def 89
	DeleteSetting 91
	Dialog 91
	DialogFunc 92
	Dim 94
	Dir$ 94
	DlgControlId 95
	DlgCount 96
	DlgEnable 96
	DlgEnd 97
	DlgFocus 98
	DlgListBoxArray 99
	DlgName 101
	DlgNumber 101
	DlgSetPicture 102
	DlgText 104
	DlgType 105
	DlgValue 106
	DlgVisible 108
	Do 109
	DoEvents 110
	DropListBox 110
	End 111
	Enum 111
	Environ 112
	Eof 113
	Erase 113
	Err 113
	Error 114
	Exit 114
	Exp 116
	Exp10 116
	FileAttr 116
	FileCopy 117
	FileDateTime 117
	FileLen 118
	Fix 118
	For 119
	For Each 119
	Format$ 120
	FreeFile 123
	Function 124
	Get 125
	GetAllSettings 125
	GetAttr 126
	GetFilePath$ 126
	GetObject 127
	GetSetting 128
	Goto 128
	GroupBox Dialog Item 129
	Hex$ 129
	Hour 130
	If 130
	IIf 131
	Input 131
	Input$ 132
	InputBox$ 132
	InStr 133
	InStrRev 133
	Int 134
	Is 134
	IsArray 134
	IsDate 135
	IsEmpty 135
	IsError 136
	IsMissing 137
	IsNull 137
	IsNumeric 138
	IsObject 139
	Kill 139
	LBound 140
	LCase$ 140
	Left$ 141
	Len 141
	Let 141
	Like 142
	Line Input 142
	ListBox Dialog Item 142
	Loc 143
	Lock 144
	LOF 145
	Log 145
	Log10 145
	LSet 146
	LTrim$ 146
	MacroDir$ 147
	MacroRun 147
	MacroRunThis 147
	Main 148
	Me 148
	Mid$ 149
	Minute 150
	MkDir 150
	Month 150
	MonthName 151
	MsgBox 151
	Name 152
	Now 152
	Oct$ 152
	Object 153
	 Object_Initialize Sub 154
	Object_Terminate Sub 154
	Oct$ 155
	OKButton Dialog Item 155
	On Error 156
	Open 156
	Option 157
	OptionButton Dialog Item 157
	OptionGroup 158
	Pow 159
	Picture Dialog Item 159
	PowerRatioTodB 160
	Print 160
	Private 161
	Private 162
	Property 162
	Public 163
	Public 163
	PushButton Dialog Item 163
	Put 164
	QBColor 165
	Randomize 167
	ReDim 167
	Reference 167
	Rem 168
	Replace 168
	Reset 169
	Resume 169
	RGB 170
	Right$ 170
	RmDir 171
	Rnd 171
	Round 172
	RSet 172
	RTrim$ 172
	SaveSetting 173
	Second 173
	Seek 174
	Seek 174
	Select Case 174
	SendKeys 175
	Set 177
	SetAttr 177
	Sgn 178
	Shell 178
	Sin 179
	Space$ 179
	Sqr 180
	Static 180
	Stop 180
	Str$ 181
	StrComp$ 181
	StrConv$ 182
	StrReverse$ 183
	String$ 183
	Sub 184
	Tan 185
	Text Dialog Item 186
	TextBox Dialog Item 187
	Time 187
	Timer 188
	TimeSerial 188
	TimeValue 188
	Trim$ 189
	Type 189
	TypeName 190
	UBound 191
	UCase$ 192
	Unlock 192
	Uses 193
	Val 194
	VarType 194
	VoltageRatioTodB 195
	Wait 196
	WaitAndDoEvents 196
	Weekday 196
	WeekdayName 197
	While 197
	With 197
	WithEvents 198
	Write 198
	Year 199

	Appendix A
	Terms 201

	Appendix B
	Error Codes 209

	Index
	A
	AP Basic Editor 5
	arguments 11

	B
	Break mode 43
	breakpoint 42

	C
	calling subroutines 14
	Case, Select 37
	code module 15
	commands 29
	commenting code 28
	constants 29
	control structures 36
	custom dialog boxes and menus 52
	custom user interface 51

	D
	data types 33
	debug window 43
	Debug window 45
	debugging tools 42, 43, 44
	debugging your code 41
	declaring variables 30
	Dim statement 30
	Do While 39
	Do...Loop 39

	E
	editing code 7
	Err 48
	Error 48
	error handling 47, 48, 49, 50

	F
	For...Next 38
	function subroutine 10, 12

	G
	Goto command 48

	I
	If...Then 36
	If...Then...Else 37
	Immediate pane 46
	implicitly declared variable 34
	Interactive Design Environment (IDE) 41

	K
	keywords 29

	L
	Learn Mode 24
	line label 49
	loaded pane 46
	logic errors 41
	Logic errors 42, 43, 44
	loop structures 38

	M
	macro 1, 4
	macro editor 5, 7
	Main sub procedure 13
	manual conventions 3
	Methods 9, 19
	MsgBox 49

	O
	object 9, 17
	Object Browser 20
	On Error Goto 48
	online help 5

	P
	Private statement 30
	procedure 4
	program structure 27
	programming errors 41
	Properties 9, 18
	Public statement 30

	Q
	Quick Watch 42

	R
	Resume Next command 49
	run-time errors 41

	S
	sample programs 4
	Select Case 37
	sheet 6
	stack panel 46
	Static statement 30
	Step Into 42, 44
	Step Out 42, 45
	Step Over 44
	Stepping Through Code 44
	Stop command 44
	subroutine 11
	subroutine label 10
	syntax errors 41

	T
	testing your code 41

	V
	Variables 29
	Variant data type 34
	VB 1
	VBA 1
	Visual Basic 1, 7
	Visual Basic for Applications 7

	W
	Watch pane 46

