
projects microcontrollers

32 elektor - 3/2008

The Secrets of I2C
An I2C bus analyser to let
you satisfy your curiosity
Etienne Boyer

In this article, we propose a microcomputing instrument that’s valuable – not to say indispensable
– when it comes to analysing what’s happening on the I2C bus. It lets you examine the most
interesting signals carried by this very common, easy-to-implement interconnection
bus.

The I2C bus analyser in this article
connects to the I2C bus of an applica-
tion in order to extract from it, for the
purpose of examination, the character-
istic information of the signals it’s car-
rying; in particular, the START, STOP,
ADDRESS, DATA, and ACKNOWL-
EDGE signals.

It can be used to troubleshoot a reluc-
tant proprietary application or to ‘re-
verse engineer’ existing applications.
The device communicates with a PC
via a USB link configured as a virtu-
al port (COMx) and so is powered di-
rectly from the USB, avoiding the need
for an external mains adaptor (or even
batteries).

Block diagram
Figure 1 gives the block diagram. As
already explained, the I2C bus analys-
er is inserted between the subject be-
ing examined, using the application’s
I2C bus, and the ‘watchful’ PC. The
analyser can have a maximum of three
I2C modules connected to it.

The heart and brain of the circuit
are combined in a single PIC, a
PIC18F4520, the USB link achieved by
the standard means of an FT232BM [1]
from FTDI (hi Fred) – an IC that you’ll
already have encountered in many
Elektor projects whenever they have
anything to do with USB.

Electronics
Before taking a closer look at the
actual circuit, we thought it might be
a good idea to highlight certain spe-
cific points of the circuit, by way of a
little reminder. The box ‘The secrets
of I2C and its bus’ recaps the most
important elements of the I2C bus
specifications.
So now let’s get back to our circuit.
In I²C, the START procedure consists
of detecting a negative edge on the
SDA while the SCL signal is high (‘1’),
performed via monostable IC2a of the
4538 IC configured as per the detail
from the circuit in Figure 2.
The monostable time-constant R2*C2
produces an 8.2 µs pulse that faithful-
ly mimics the I²C bus Start procedure.
This pulse width is quite compatible
with the reaction time of a microcon-
troller, but not with the persistence of
the human eye! To display the pres-
ence of a Start using an LED requires
a second monostable. IC2b lengthens
the pulse to around 150 ms to produce
visible illumination of the green LED
D2.
The same goes for the STOP proce-
dure, this time with the help of the
monostables in IC1 and the red LED
D1. The timing diagram in Figure 3
shows the two START and STOP sig-
nals thus generated.
Note: the two pulses have different du-
rations, as the START pulse ends ear-

Figure 1. Block diagram of the I2C bus analyser stripped to its
bare essentials.

I2C
device 1

I2C
device 2

I2C
device 3

I2C bus

USB
link

070600 - 12

START

SCAN

PIC18F4520
FT232BM

DISPLAY

STOP

I2C bus
analyser

333/2008 - elektor

ly because o f t h e
signal SCL going high. In prac-
tice, the START pulse lasts 3 µs, and
the STOP pulse is longer than in the-
ory (8.2 µs) as the circuit doesn’t op-
erate within the recommended range
(100 µs – 1 second).

Studying the circuit in Figure 4 shows
that there’s really very little in the way
of electronics: a PIC, a USB interface
IC from FTDI, and a pair of 4538 dual
monostable ICs. Let’s look at their
functions a little more closely.

The heart of the circuit takes the form
of a microcontroller from Microchip.
The PIC18F4520 [2] is an improved
version of the 18F452, but is still pin-
compatible, not only with the latter,
but also with the famous 16F877. Its
function is to analyse, by scanning, in-
put lines RC3 and RC4 of the PIC, di-
rectly driven by the SCL (Serial CLock)
and SDA (Serial DAta) signals. Push-
button S3 (SCAN) starts the analysis.
Closer examination of the circuit leads
us to ask the inevitable question:

does the mi-
crocontroller have

the time to scan the I²C
bus?

The answer is a bit “yes and no”: the
duration of the instruction is 0.2 µs,
representing around 12 times the du-
ration of a bit (the maximum standard
data rate is 400 kbit/s); however, this
doesn’t leave much room for manœu-
vre to carry out the full processing.
What’s more, the START and STOP
procedures are recognized via edge-
detection, which complicates the soft-
ware. So the microcontroller does not
have the time to scan the I²C bus. So
a hardware solution comes along to
back up the software solution, through
the use of edge-detecting monosta-
bles (see details in the inset ‘The se-
crets of I2C and its bus’).

Now that START detection has taken
place, all we have to do is detect each
SCL clock pulse and sample the data
SDA at this moment. Once the signals
have been analysed, the microcon-
troller will store each event in memo-
ry in the same way as a data logger.
The four events are START, BYTE, AC-
KNOWLEDGE, and STOP. The memory
gets filled up at the rate of the traffic on
the bus, and once full is transferred by
a serial link to the PC (USB is by defini-
tion a serial link, not a parallel one).

If the traffic on the bus is too slow,
push-button S2 (DISPLAY) lets us
purge the memory to the PC so as to
display the result without having to
wait until the buffer is completely full.

Communication with the PC is
achieved by means of the now-stand-
ard FT232 IC from FTDI, which uses
the USB in the CDC (Communication
Device Class) mode. There are just a
very few components around this IC,
principally a 6 MHz crystal and its two
colleagues C7 and C8, and the type B
4-pin USB socket.
A pair of red and green LEDs are asso-

Figure 2. A monostable triggered by a falling edge.

IC2.A

RCX CX

≥1

2 1

4

3

R

6

75

C2

1n

R2

8k
2

VCC

START

SDA SCL

Technical spec
• Analyses 100 and 400 kbit/s I²C bus

• Stores 620 contiguous I²C events

• Hardware detection of START and STOP.
Display on 2 LEDs

• USB communication by virtual com port

• Self-powered at 5 V via USB port

• PIC programmed in C (CCS compiler)

• Windows man/machine interface in
C++ Builder V5 (Borland)

projects microcontrollers

34 elektor - 3/2008

ciated with the events STOP (D1) and
START (D2) respectively.
Two 27 Ω resistors protect the Data+
and Data– lines. The FT232BM IC
switches +5 V to resistor R16, indicat-
ing two things to the host USB (PC):
first of all, presence of the peripheral,
and secondly recognition of the Full
Speed mode, since R16 is connected
to Data+.
One interesting component is induc-
tor L1, a ferrite bead intended to sup-
press high-frequency interference. Its
impedance goes from 0.15 Ω at dc to
70 Ω at 100 MHz, thereby dissipat-
ing any electromagnetic interference
(EMI) as heat. In addition, it acts as a
fuse if you have the misguided idea of
short-circuiting our circuit’s +5 V sup-

Figure 3. Creation of the Start and Stop.

Figure 4. The circuit electronics don’t amount to very much: a PIC/USB chip double-act surrounded by a handful of connectors of all types…

X1

20MHz

X2

6MHz

C5

22p

C6

22p

C7

22p

C8

22p

K3
1

2

3

4

5

6

K4
1

2

3

4

5

6

K5
1

2

3

4

5

6

K1
1

2

3

4

5

6

VCCVCC

K2

+5V

GND

USB

D–

D+

1

2

3

4

C12

33n

C11

33n

RC0/T1OSO/T1CKI

RC1/T1OSI/CCP2

RA3/AN3/VREF+

RA2/AN2/VREF-

RC3/SCK/SCL

RC4/SDI/SDA

RA5/AN4/SS

RE0/RD/AN5

RE1/WR/AN6

RE2/CS/AN7

PIC18F4520

RA4/T0CKI

RC7/RX/DT

RC6/TX/CK

MCLR/VPP

RC2/CCP1

RD0/PSP0

RD1/PSP1

RD2/PSP2

RD3/PSP3

RD7/PSP7

RD4/PSP4

RD5/PSP5

RD6/PSP6

RB0/INT

RB3/PGM

RA0/AN0

RB7/PGD

RB6/PGC

RA1/AN1

RC5/SDO

IC3

OSC1 OSC2

RB1

RB2

RB5

RB4

11

15

40

39

38

37

35

36

34

33

3112

10

32

16

17

18

19

20

21

22

13 14

26

25

24

23

30

27

28

29

1

3

2

4

6

5

7

8

9 FT232BM

PWRCTL

EEDATA

3V3OUT

RSTOUT

RESET

USBDP

USBDM

RXLED

TSLED

SLEEP

PWREN

TXDEN

VCCIO

TEST

EECS

IC4EESK

XOUT

AGND

AVCC

XIN

DCD

DSR

RXD RTS

TXD CTS

DTR

26

32

1727 28

29

14

11

12

10

31

30

19

20

24 23

25 22

21

RI
18

15

16

13

3

1

9

5

2

4

6

7

8
R14

27Ω

R15

27Ω

R16

1k5

R11

1k

R12

1k

S3

SCAN

S2

DISPLAY

VCC

VCC

VCC

R9

10
k

R10

10
k

VCC

S1

RESET

R7

47
0

Ω

R8

4k
7

VCC

TP6

SCOPE-
TRIGGER

SDA

SCL

TP4

TP5
Tx

Rx

JP1

C9

10n

L1

VCC

TP3C10

100n

R13

47
0

Ω

VCC

070600 - 11

IC2.A

RCX CX

≥1

2 1

4

3

R

6

75 IC2.B

RCX CX

≥1

14 15

12

13

R

10

911

IC1.A

RCX CX

≥1

2 1

4

3

R

6

75 IC1.B

RCX CX

≥1

14 15

12

13

R

10

911

C2

1n

C4

100n

C1

1n

C3

100n

R2

8k
2

R4

1M
5

R1

8k
2

R3

1M
5

T2

2N7000

R6

33
0

Ω

D2

vert

START

VCC

T1

2N7000

R5

33
0

Ω

D1

rouge

STOP

VCC

IC1

16

8

IC2

16

8

VCC

IC1, IC2 = 4538

TP7
START

TP8
STOP

START

STOP

ISP ICD

2I C

2I C

2I C

SDA SCL

SDA

SCL

TP1

TP2

VCC

VCC

353/2008 - elektor

ply, thereby protecting the power sup-
ply from the PC. In connection with
this, note the presence of a header +
jumper JP1, which makes it possible
to disconnect the PC supply.

PCB
It goes without saying that such a cir-
cuit merits a PCB. The screen-print-
ed component overlay is shown in
Figure 5.

The first step, and also the trickiest,
consists of fitting IC4, the only SMD
IC used in this project. As always
with SMDs, soldering it requires a
bit of care and a steady hand. The
pads of IC4’s LQFP-32 pinout have
been lengthened to make it easier
to solder this device using a solder-
ing iron. Start by getting the orienta-
tion correct (pin 1 is the one immedi-
ately to the left of the round indent).
On the component overlay, the posi-
tion of pin 1 is identified by a small
‘1’. Start by soldering the two diago-
nally opposite legs. If the remaining
legs line up properly with the remain-
ing solder pads, they can be soldered
quickly using a fine-tipped soldering
iron and fine-gauge solder. Use a mag-
nifying glass to check the quality of
the soldered joints and that there are
no shorts here. You can then go on to
fit the remaining SMD components, in
1206 packages, followed by the small
solder-through components, resistors,
crystal, capacitors, LEDs and transis-
tors (paying attention to polarities).
Then you can fit the sockets (good
quality ones!) for IC1, IC2, and IC3,
and finish by installing the various
sockets, RJ-11 for K1, K3, K4, and K5,
and USB type B for K2.

All that then remains will be to fit
push-buttons S2 and S3, and the re-
set button (S1).

Important: if you are powering the
circuit via the analyser’s USB port,
which is the usual case, you need to
fit the jumper in the ‘on’ position on
header JP1.

After one last glance at the project to
ensure there are no errors or shorts,
now comes the moment to connect
the board to the PC via a USB cable, to
check for the presence of supply volts
at the appropriate points on the sock-
ets, with the aid of a multimeter. If
everything is OK, you can disconnect
the analyser and then fit the last ICs,

IC1–IC3, watching out for their polar-
ity. The board includes a number of
test points (TP1–TP8 on the compo-
nent overlay, test points TP1, TP2, TP4
and TP5 corresponding to the SCL,
SDA, Rx, and Tx lines respectively),
which can if desired be fitted with
pins, as in our prototype.

For testing, the circuit can be powered
at 5 V from the I²C bus connector or by
wires soldered directly to the board.

Trouble-shooting the hardware part
is made easier because the monosta-
bles are independent of the software:
when the circuit is connected to an

Figure 5. Component overlay for the I2C bus analyser.

COMPONENTS LIST
Resistors
R1,R2 = 8kΩ2
R3,R4 = 1MΩ5
R5,R6 = 330Ω
R7,R13 = 470Ω
R8 = 4kΩ7
R9,R10 = 10kΩ
R11,R12 = 1kΩ
R14,R15 = 27Ω
R16 = 1kΩ5

Capacitors
C1,C2 = 1nF
C3,C4,C10 = 100nF
C5-C8 = 22pF
C9 = 10nF
C11,C12 = 33nF

Semiconductors
D1 = LED, 3mm, red
D2 = LED, 3 mm, green
T1,T2 = 2N7000

IC1,IC2 = 4538
IC3 = PIC18F4520, programmed, Elektor

shop item # 070600-41
IC4 = FT232BM (FTDI)

Miscellaneous
K1 = 6-way RJ-11 socket (vertical)
K3,K4,K5 = 6-way RJ-11 socket (horizontal)
K2 = USB socket, male, type B
L1 = ferrite bead
X1 = 20MHz quartz crystal, HC 49/4H case
X2 = 6 MHz quartz crystal, HC 49/4H case
S1 = miniature pushbutton
S2,S3 = ‘D6’ pushbutton (red and black)
JP1 = 3-way SIL pinheader with jumper
PCB, item # 070600-1
PCB artwork, free download from www.

elektor.com
Project software (PC executable and .hex

file), item # 070600-11, free download
from www.elektor.com

projects microcontrollers

36 elektor - 3/2008

existing I²C bus, the four monostables
ought to react to the arrival of a Start
and a Stop by lighting the green and
red LEDs respectively.
Then the PIC can be programmed.

Software
The microcontroller source program
is written in C and compiled with the

C++ Builder V5 (Borland). The soft-
ware for Windows can also compile
under CodeGear 11, the latest IDE
from Borland, available in 30-day
evaluation version. And there you
have it all.
An ISP connector K1 is fitted in the
middle of the circuit to allow debug-
ging (ICD = In-Circuit Debugging) and
in situ programming (ISP = In System
Programming) of the microcontroller.

A quick glance at the software
Though the electronics are simple, the
program loaded into the microcontrol-
ler needs to be all the more powerful.
You can download it from our web-
site (www.elektor.com) as archive file
070600-11.zip. Let’s take a look at a
few of its practical aspects.

The man/machine inter face:
installation
This application, written in C++
Builder V5.0, runs under Windows
and is easy to install by copying the
executable monitor_I2C.exe. This
application requires prior installation
of drivers on the PC. To do this, it’s
worth consulting the FTDI [3] web-
site and the previous Elektor articles
on this subject.

RS-232 configuration
At start-up, an initial dialogue box lets
you select the Virtual Com Port via
which the USB link is going to receive
the data sent by the PIC in the form
of a standard asynchronous serial link
(transfer speed 128,000 baud).
Then the status bar indicates that the
serial port has been opened properly.

Displaying the results
Scanning is started by operating push-
button S3 (SCAN). The I²C events are
then recorded by the circuit and ap-
pear according to a colour code cor-
responding to the I²C event. Screen
dump Figure 6 shows the main screen
when acquisition is finished; in it you
will be able to recognize the STARTs
in green, the STOPs in red, the ad-
dresses in ultramarine blue, and the
data in royal blue. However, this dis-
play will be modified by the value of
the acknowledge bit: if it is present,
we see these two in blue, but if it is
absent, they will be greyed out.
The status bar also shows the format
of the codes transmitted on the serial
link between the circuit and the PC
(ASCII coding).
Example:

help of cross-compiler PCH compiler
V4.010 from CCS (Custom Computer
Services). This compiler tolerates a
certain flexibility in the academic C
language, and so is very well suit-
ed to programming by electronics
technicians.
Development is carried out under
MPLAB V.7.62. The program, which
runs under Windows, is written in

Figure 6. Screen dump of Monitor I2C program.

Figure 7. Scope_trigger screen dump

373/2008 - elektor

->S00 for the START
->V20 for an acknowledged byte with
a value of 20 (HEX)
->v20 for an unacknowledged byte
with a value of 20 (HEX)
->P00 for the STOP.

Oscil loscope synchronization
function
This utility lets us configure the set-
up with a synchronization byte, which
when it is present in the frame trig-
gers a synchronization pulse on the

SCOPE_TRIGGER pin to synchro-
nize a scope in external trigger mode.
This makes it possible to display the
shapes of the SDA and SCL signals
just at that instant. For example, the
screen dump in Figure 7 represents
the SCOPE_TRIGGER signal for the
sync byte 21 (HEX). The top part of
the trace clearly shows how each time
this byte occurs, the signal toggles
for the duration of the next byte. The
central section shows the magnified
portion with a zoom factor of 10 and

reveals the transition of the SCOPE_
TRIGGER signal at the moment of the
ninth SCL clock pulse. This instant,
which normally corresponds to the
reply from the receiver, enables us
to read a ‘1’ on SDA, indicating that
there has been no acknowledgment:
from that moment on, the I²C circuit
with the address 10 (HEX) for which
data bytes 21 22 23 were intended
is considered as absent from the bus
or defective.

The I2C (Inter Integrated Circuit) bus was dreamt up by Philips, at the
time when they were one of the leading manufacturers of audio equip-
ment. Its major fields of application were home automation and home
electronics in the early 80s. Microprocessors were putting in an ap-
pearance in TVs, and they needed to find a cheap, easy technique for
interconnecting the various electronic sub-assemblies in such devices.

The I2C bus is a synchronous serial bus with just 3 lines: Data, (SDA),
Clock (SCL), and ground (used as a reference).

Operation of the bus is based on the concept of master (the peripheral
that manages the communication, generates the clock, and transmits
the data) and slave (the peripheral that receives the data and confirms
reception by an ‘acknowledge’ signal). But don’t let’s be deceived:
despite its rustic simplicity, this bus can handle several microcontrollers
without conflicts, as long as certain rules are properly obeyed.

The four most important situations in this protocol are illustrated below.

1) Transfer of a bit onto the I2C bus (Figure A).

The clock doesn’t really have the ‘form’ of a real clock, since it can
have variable mark/space ratios (within constraints).

2) START and STOP conditions (Figure B).

At the start of communication, the SDA line goes to ‘0’ while the SCL
lines is at ‘1’. This is the StartBit. At the end of communication, when

the SDA line has gone back to ‘1’ and the SCL line is also at ‘1’, we
have the StopBit.

3) Transfer of data onto the I2C bus (Figure C).

This condition having been defined, the master places the MSB on the
SDA line. It validates the data by briefly forcing the SCL line ‘high’. It
continues in the same way for the various bits right down to the LSB.
The transmission over, the slave forces the SDA line low, this is the…

4) Acknowledge signal on the I2C bus (Figure D).

The slave component issues this signal to indicate reception of all the
data. If everything is OK, it forces the line to ‘0’.

Despite its simplicity, the I2C bus allows handling of relatively complex
operations. The various scope traces given in the article illustrate this
operation very well.

It’s worth noting that a master-component can also receive data from
a slave (master-receiver).

If you want to find out more, all is explained in the I2C bus specifica-
tions from January 2000:

http://www.nxp.com/acrobat_download/literature/9398/39340011.
pdf

(Illustrations: Philips Semiconductors)

data line
stable;

data valid

change
of data
allowed

SDA

SCL

SDA

SCL
P

STOP condition

SDA

SCL
S

START condition

Sr
or
P

SDA

Sr

P

SCL

STOP or
repeated START

condition

S
or
Sr

START or
repeated START

condition

1 2 3 - 8 9

ACK

9

ACK

7 81 2

MSB acknowledgement
signal from slave

byte complete,
interrupt within slave

clock line held low while
interrupts are serviced

acknowledgement
signal from receiver

S

START
condition

9821

clock pulse for
acknowledgement

not acknowledge

acknowledge

DATA OUTPUT
BY TRANSMITTER

DATA OUTPUT
BY RECEIVER

SCL FROM
MASTER

The secrets of I2C and its bus

A B

C D

projects microcontrollers

38 elektor - 3/2008

Delay function
Another utility function makes it pos-
sible to delay the start of recording
of a certain number of events; in this
case they are replaced on the display
by a dot.

I²C summary
A built-in help page includes a brief
summary of a few definitions of events
present on an I2C bus. In addition, it
shows the recording of real signals.
To transmit data over the I²C bus, it is
necessary to monitor two specific con-
ditions: Start and Stop. The Start con-

dition corresponds to a falling edge on
SDA while SCL is high.
The Stop condition corresponds to
a rising edge on SDA while SCL is
high.
Then, eight pulses supplied by the
clock allow sampling of the eight bits
of the byte, starting with the MSB.
The ninth clock pulse allows a re-
sponse, an acknowledgement by the
receiving component of the preced-
ing byte. If the component is present,
then it acknowledges by taking the
SDA line low. This is the principle of
‘handshaking’. If not, the line remains
high, and the transmitter of the byte
may react.

And what else?
Not a lot! All you have to do is connect
an application’s I2C bus to the I2C bus

Web Links and
bibliography
[1] FT232BM Data Sheet:
www.ftdichip.com/Documents/DataSheets/
ds232b18.pdf

[2] PIC18F4520 Data Sheet:
ww1.microchip.com/downloads/en/
DeviceDoc/39631a.pdf

[3] FTDI website:

www.ftdichip.com

[4] CCS compiler:
www.ccsinfo.com

analyser, connect the latter to a PC,
start the monitor_I2C.exe program,
press the SCAN button, followed a
few moments later by a press on S2,
DISPLAY, and wait for the first data to
appear on the screen.

Conclusion
This simple-to-use circuit using stand-
ard components (CMOS logic ICs, PIC
microcontroller, USB interface) makes
it possible to analyse the signals
present on an I²C bus. One further de-
velopment of the circuit might be to fit

a PIC with a USB stack (PIC18F4550).
This solution would simplify the hard-
ware (by eliminating the USB interface
IC and the 6 MHz crystal) and improve
speed, as the PIC 18F4550 uses a PLL
to generate a clock at 48 MHz. The dis-
advantage would be in the increased
complexity of the software. Libraries
provided by the publishers of C cross-
compilers do exist and provide numer-
ous source files (MPLABC18Compiler,
CCS) but overall debugging is likely to
be trickier.

This practical tool will let you to see
what’s happening on the bus of the
datalogger project described else-
where in this issue, as it too has an
I2C bus interconnecting the real-time
clock to the rest of the system. Happy
hunting!

(070600-I)

The author

The author studied as an engineer at the
INSA in Lyons and then moved into teach-
ing, passing the competitive examination
for National Education.

Teaching electronics to students in the BTS
(Higher Technician’s Certificate) section
for many years, he has experienced and
passed on the fantastic evolution in tech-
nology: discrete components (2N2646
unijunction transistor!), memories, micro-
processors, mainframes, then the arrival
of personal computing.

Training has also evolved, nowadays rely-
ing on an understanding of complex elec-
tronic systems: installation, configuration,
and troubleshooting.

And sometimes even now, faced with a
successful project, he still feels that good
old maxim: What a fine profession it is to
be a teacher!

Etienne Boyer

Photo of the prototype. Note that component designations have been changed in the final version.

