R_{x} and C_{x} - easy-to-build substitution boxes

finally got tired of trying to read the ohmmeter, hold the test leads in place, and turn the potentiometer to find a resistance value that would keep my experimental circuit from going up in smoke.

What I needed was a re-
sistor substitution box. Well, I got out some paper and a pencil and went to work. The circuit shown in Fig. 1 is the result.

By using 28 resistors and switches in the 1-2-3-3 arrangement, I now have at my fingertips - in one-Ohm
steps-resistance values of 1 to 9,999,999 Ohms.

Construction of this unit is simple. The resistors are mounted across the switches^{\prime} terminals. By opening a switch, that resistor is connected in circuit.

The switches are ar-

Fig. 1. Schematic for resistor substitution box.
ranged in rows of seven across and four down (See Fig. 1). Then the resistor/switch combinations are connected in series. I used slide switches in my unit (I happened to have them on hand).

The rectangular openings were cut out with a nibbling tool and the switches were mounted to the box panel with pop rivets.

With the use of 1\% resistors, there is a possible error of $\pm 100 \mathrm{k}$ (that's with all resistors in circuit for a total of 9,999,999 Ohms).

With this circuit, there is a possible monetary advantage over conventional resistance substitution boxes which usually require sixtythree resistors and seven ten-position switches to cover the same range.

A Capacitor

 Substitution BoxA ham shack without a capacitor substitution box?

Fig. 2. Schematic for capacitor substitution box.

I don't believe it. Well, I've been wrong before, so, if yours happens to be without one, build this one.

This capacitor substitution box has a range of from 10 pF to within 10 pF of 1 uF , in $10-\mathrm{pF}$ steps. That amounts to 99,999 possible values. This is done with
only twenty capacitors and switches. Construction of this unit is simple and straightforward. The capacitors are connected between a common line (B1) and one terminal on each switch. The other terminals on the switches are wired to B2. The switches are arranged in rows of four down

Resistor Substitution Box Parts List

R1	1 Ohm
R2	2 Ohm
R3-R4	3 Ohm
R5	10 Ohm
R6	20 Ohm
R7-R8	30 Ohm
R9	100 Ohm
R10	200 Ohm
R11-R12	300 Ohm
R13	1 k Ohm
R14	2 k Ohm
R15-R16	3k Ohm
R17	10 k Ohm
R18	20 k Ohm
R19-R20	30 k Ohm
R21	100 k Ohm
R22	200 k Ohm
R23-R24	300 k Ohm
R25	1 Megohm
R26	2 megohm

R27-R28 3 megohm
S1 through S28-SPST slide or toggle switches
$\mathrm{BPI}, \mathrm{BP} 2-5$-way binding posts Misc.-wire, cabinet, rub-on letters and numbers
and five across (Fig. 2). I used mica (5\%) and polystyrene (2%) capacitors in my unit.

Capacitor Substitution Box
Parts List

	Paris
C1	10 pF
C2	20 pF
C 3	30 pF
C 4	30 pF
C 5	100 pF
C 6	200 pF
C 7	300 pF
C 8	300 pF
C 9	0.001 uF
C 10	0.002 uF
C 11	0.003 uF
C 12	0.003 uF
C 13	0.01 uF
C 14	0.02 uF
C 15	0.03 uF
C 16	0.03 uF
C 17	0.1 uF
C18	0.2 uF
C19	0.3 uF
C20	0.3 uF

S1 through S20-SPST switches (slide or toggle type)
B1, B2-5-way binding posts.
Misc.-wire, cabinet, rub-on letters and numbers

Of course, the tighter the tolerance on the capacitors, the more accurate the unit

