The lazy person's

The oscillator generates a square wave at approximately 2 kHz to provide the lest signal that is applied to the diode.

The form of the signat that appears at the input to the signal steering, rectification and smoothing circuit will depend on whether the diode is functioning correctly or not. The signal steering, rectification and smootining circuit generates from this input signal two other signals that allow the unit to differentiate

The logíc and LED driver section decodes these signals and switches on the green LED if the diode under test is OK or the red LED if it is faulty and not rectifying ie either open circuit, short circuit, or acting as a resistance or impedance.

The next sections describe how each part of the circuit works. The circuit diagram is shown in figure 2. Dual Vottage Supply
whether the $p-n$ junction is operating correctly by deciphering the resistance reading on a multimeter. This device will test whether or not a diode does just what a diode is supposed to dorectify.

As well as being an extremely useful device in its own right the circuit uses several principles that it is instructive to see employed in a practical situation.

Functional Description

The circuit is composed of
five main blocks:

- dyal voltage supply
- oscillator
- signal steering, rectification and'smoothing.
- amplification
* logic and LED drivers
(See figure 1).
The dual voltage supply converts a single 9 V supply into a regulated and smoothed $\pm 4.5 \mathrm{~V}$ supply for the circuit.

Block diagram of the Laty Person's Diodi= Tester

Betweèn a faulty ärid àn OK.diof́e.
Before the voltages can be applied to the logic decoding part of the circuit they must be 'standardised'. This is the role of the amplification stage.

The amplification stage converts the signals into either a OV or a +4.5 V level. These are then effecitively '0' or 'I' logic signals which can be applied to the next and final section.

As the intention of the circuit to to test a diode without having to worry about which way round it is connected into the circuit atest signal that flips between a positive and a negative voltage is used. This means that the circuit must be powered by ooth a positive and a negative supply voltage. Obtaining two voltages from a single battery is straightforward - the mid-point

dual voltage supply

Figure 2 Gircuil Diagram
of a two-resistor voltage divider between the positive and negative terminals of the battery provides a zero volt reference point arid an op-amp voltage follower maintains this.
reference voltage even under varying supply current demands on both supply rails. The capacitors provide smoothing to prevent any spikes or dips appearing on the supply volfage
rails that might be generated by the square wave oscillator or that are introduced by the power supply if one is used instead oi a battery

Oscillator

The oscillator is an op-amp astable multivibrator operating at around 2 kHz a frequency that will test audio frequency, redio frequency, signal and rectinication diodes. It also means that extreme values are not required for the oscillator and smoothing and rectification components.

Signal Steering. Rectification and Smoothing

This section generates one of four possible combinations of voitage on points Al and Bl depending on the four possible states of the diode under test, namely:

- non-conducting in both directions, ie open circuit (faulty)
- conducting in both directions, ie shorat circuit or acting as a resistance or in?pedance (iaulty)
- rectifying in one orientation (OK)
- rectiiying in the other orientation (OK) D1 and D2 rectify any non-rectified signal present, for example if the diode under test is short-circuited. Otherwise they pass on unchanged (other than introducing a further diode voltage drop) any signal already rectified by the test diode. The signals are 'steered' by the respective diodes to C4/R6 or C5/R7. The time constant for these capacitor/resistor pairs is long compared to the period of the astable waveiorm thus smoothing it and

Figure 3. Waveforms at Al and 81 .

Figure 4 Wiveforms at A 2 and È2
providing a $D C$ output. The resistors also provide a discharge path to allow the outpul voltages to sink to zero when there is no signal present.

Figure 3 shows the waveiorms that result at Al and Bl for each of the possibilities.

Amplification

It can be seen thait the signal at Al is always zero or positive, and that at $B 1$ is always zero or negative. Their magnitude is around 1 to 1.5 volts, due to the astable output voltage being 'dropped' across the diode under test' and D1 or D2. To 'standardise' these signals to form the basis of logic signals two amplifiers are used, both with a gain of around 10, one being inverting (ICld) and one non-inverting (IClC). Thus the signals at A2 and B 2 are either at around $V \div$ (logic ' 1 '), gently 'saturating' at the maximum op-amp output, or $0 V$ (logic ' 0 '). In fact logic ' 0 ' is likely to be not exactly zero, byt a iew millivolts positive or negative due to anjy op=amp offset current present. This however is still a great deal less than the voltage necessary to give a false ? ? namely the ± 700 millivolts it would need to cause any of the diodes D3 to D6 to conduct.

Figure 4 illustrates the signals at A2 and B2; table I shows these represented as logic signals.

Diode Under Test	A2	B2	Green LED	Red LFD
Open Circuit	0	0	Off	On
OK (fonvard)	0	1	On	Oif
OK (reverse)	1	0	On	Off
Short Circuit	1	1	Off	On

Tacte 1
This demonstrates that the green LED needs to light, indicating that the diode is OK , when A 2 and B 2 are in opposite logic states, but to not light if they are in the same logic. state. This is the logic 'exclusive OR^{\prime} or 'XORR' function. The table also shows what is perhaps obvious, that the red LED, indicating: that the diode is iaulty, needs to light when the green LED does not. The final section of the circuit implements both the logic and diode driver functions.

Logic and LED Drivers

To implement logic and diode driver functions together it is practical to use a circuit employing transistors, resistors and diodes instead of using integrated circuits (ICs) containing committed logic gates in combination with a transistor current drivet, This avoids the special power supply requirements that are necessary when interfacing logic gates with op-amp circuitry.

One realisation of an XOR function is shown in figure 5 and this is implemented in this section as follows.

Having the green 'OK' LED in series with transistors Trl and Tr 2 means that it will only
light when
transistor Tri AND. transistor Tr 2 are both conducting. This is equivalent to gate G3.

Tr1, being a PNP type, will conduct in this arrangement when its base is ' 0 '. D3, D4, R12, R14 and Tr 1 therefore act as a negated input OR gate (gate G1).

Figure 5. Exclusiva-OR Implementation

Tr2, being an NPN type, will conduct in this arrangement when its base is ' $\mathrm{I}^{\prime} . \mathrm{D5}, \mathrm{D} 6, \mathrm{Rl} 3, \mathrm{R16}$ and Tr 2 thereiore act as an OR gate (gate G2).
If either $A 2$ or $B 2$ is exclusively ' 1 ', ie the other is ' 0 ', then V1 will be ' 0 ' and Trl will. conduct. V_{2} will be ' 1 ' and $\operatorname{Tr} 2$ will also. conduct, hence the OK LED will light. However if both A 2 and $B 2$ are ' 1 ' then V_{1} will be ' I ' and Tr 1 will not conduct. The OK LED will not light.
If both A 2 and B 2 are ' 0 ' then V_{2} will be ' 0^{2} and Tr2 will not conduct. Again: the OK LED will nof light.

By virtue of the fact that there will be a voltage drop across it when conducting, diode D7 eifectively reduces $V+$ slightly to this section of the circuit and so ensures that $\operatorname{Tr} 1$ Will switch off fully when $A 2$ or $B 2$ is '19:

The 'Faulty' LED

Through the voitage divider action of R18 and R19, V3 is fixed at around $1 V$. T 3 will therefore conduct, lighting the 'Fauity' LED D9, if the voltage between the base and emitter is around 0.7 V , which it will be if the OK LED is not lii. But if the green OK LED lights the current through R17 increases, increasing the voltage drop across the resistor. This reduces the voltage between the base and emitter of Tr3 to less than the 0.7 V required for it to conduct, switching it off and extinguishing D9. The 'Faulty' LED therefore lights whenever trie OK LED is not lit, in other words the 'Faulty' LED always lights unless the diode under test is functioning correcily as a rectifier.

Construction

A suitable strip board leyout for this project is shown in figure 6 , and the appropriate track cuts necessary are shown in figure 7 . Note that The characters ' k ' and 'a' associated with Dl and D2 shown in figure 6 indicate that the cathode and anode respectively for these vertically positioned components are uppermost.

Figure 6, Strip Ẽoardlajout (compenentside)

Figure 7. The īrack Cuts Required On The Strip Board Laybut (Irack side view).

LEDs (from below)
TLG114A and TLPA14A

c collector
b base
e emitier

TO18 transistor can (from below) - BC109C

BC179

a anode
k cathode.

IN4001 diode

Figure $\overline{8}$. Componentiorientations

The correct orientation of the transistors, diodes and LEDs, and electrolytic capacitors needs tö bè observed. The polarity of an electrolytic capacitor is marked on its cover; figure 8 gives details of the physical conifiguration oi the other components.

The usual order of mounting components should be followed, though it's not critical ior this project. Fit the links and horizontal components first, then the capacitors and vertically mounted components, and finally the semiconductors, the IC last of all. An IC socket can be used if it is preferred not to solder the IC in place directly.

Terminate the test leads with smáll crocodile or test clips fôr convenience of testing. Colour coding the leads is not important:as the project is of course designed for a "one-stop test with the test diode connected either way round.

As hinted at earlier the device could be powered from a power supply instead of a battery. The supply voliage of 9 V should be kept though to ensure correct operation of the 'Faulty Diode' indicator.

Fina lly, if the project were to be housed in a box it would of course be necessary to fix the LEDs into the lid and attach them to the strip board by extra viring.

In Use

Simply connect the diode under test to the test leads, either way round, and note which LED lights. Throw away any faulty diodes!

Parts List

Resistors. (metal film. $0.6 \mathrm{~W}, 1 \%$)
R1. R2
20 k
R3. R4. R5. R9. R14.
R15, R19. R20 ik
R6. R7. R11 100k
R8 9k1
RiO 10k
R12. R13 2k
R16. R17 100R
R183k
Capacitors
electrolytic
C1. C2 polyester film
C3. C4. C5 220 nF
Semiconductörs

IC1	LM324
TR 1	BC179
TR2. TR3	BC109C
DI - D7	1N4001
D8	TLG 114 A green LED
D9	TLR 11.14A red LED

Miscellaneous
Swl
SPD̄T switch
Strip boärd
Batlery clip (for PP3'power súpply bàtery)
Tést clips or small crocodile clips
Box to suit

