CESSO CENTRA CANVILLE READERS SOLVE DESIGN PROBLEMS

Simple toggle circuits illustrate low power-MOSFET leakage

Tom Bruhns, Mukilteo, WA

The novelty circuit in Figure 1 illustrates the extremely low gate-leakage current typical of modern power MOSFETs. You can find parts that, in a moderately dry environment, will hold their state for days at a time. In operation, if MOS-FET Q_1 is off, the load—perhaps a lamp or a buzzer—pulls Q_1 's drain to

Figure 1 This "toggle" circuit demonstrates the low gate leakage of modern power MOSFETs.

Figure 2 This circuit can control higher voltages because it supplements R_2 with a resistor to ground to form a voltage divider, ensuring that C_1 doesn't charge to a voltage that would destroy the gate of Q_1 .

nearly the 12V-dc power-supply voltage. R_2 charges C_1 to practically the same voltage. If you tap momentarycontact switch S_1 , C_2 and the gate of Q_1 charge to about 99% of C_1 's initial voltage, assuming that the tap is short enough that C_1 doesn't discharge significantly back through R_2 to the drain of Q_1 , which is now at a low voltage. During the next couple of seconds, C_1 discharges through R_2 toward the new drain voltage of Q_1 , which now conducts current through load resistor R_1 .

In the construction of the circuit, you must ensure extremely low leakage from the MOSFET's gate node. You can omit C_2 if you use a switch with essentially no leakage, and you may find that the gate capacitance of Q_1 is enough and that the leakage is low enough that days pass before the output changes significantly. If you'd like to ensure a longer hold time, you

DIs Inside

- 72 Circuit adds functions to a monostable multivibrator
- 76 Piezoelectric driver finds buzzer's resonant frequency

78 Low-cost digital DAC provides digital three-phase-waveform synthesis

What are your design problems and solutions? Publish them here and receive \$150! Send your Design Ideas to edndesignideas@ reedbusiness.com.

► To see all of *EDN*'s Design Ideas visit www.edn.com/design ideas.

can increase the value of C₂. A modern polypropylene capacitor should have a self-discharge time constant measured in years if you keep it clean, dry, and not too far above room temperature. If you increase C₂, proportionately increase C₁ and decrease R₂ to maintain

an R_2C_1 time constant of about half a second.

Another curious behavior of this novelty circuit occurs if you hold down S₁ for a few seconds. The gate of Q_1 then goes to a voltage slightly higher than the gate's threshold voltage for Q_1 . If, for example, the power supply is 6V and the load is a 6V incandescent lamp and Q_1 's gate threshold is approximately 3V, the lamp will light dimly. When you release the switch, because a typical power MOS-FET has a high rate of draincurrent change with gate-voltage change-that is, transconductance-you can observe

designideas

the slow change in gate voltage as a change in lamp brightness. Any leakage is inside and external to Q_1 . You may be able to detect a change in lamp brightness within a few seconds. But, even if you don't notice it, some change of voltage will occur. If you tap S₁ several times at intervals of a few seconds, the lamp will soon toggle between full brightness and fully off. To use the circuit to control higher voltages, you can supplement R₂ with a resistor to ground to form a voltage divider to ensure that C₁ doesn't charge to a voltage that would destroy the gate of Q_1 (Figure 2). For a more practical toggle circuit that will indefinitely hold a state, you can add a transistor and some resistors (Figure 3). If Q_1 is on and powers the load, then Q_2 , is also on, holding Q_1 's gate on at about half the power-supply voltage because of the voltage-divider action of R_4 and R_5 . Tapping S_1 toggles the output as before, and, with Q_1 off, Q_2 is also off, allowing R_5 to hold Q_1 's gate near ground potential.EDN