
FEATURE

CPro
for

•

Bits, the most fundamental element of data, can be tricky to
deal with. While Coffers some bitwise operators, unless you

have a clear fix on what they're up to, bits may still escape you.

B itwise manipulations under C
language progran1s can be con­
fusing. In many applications it
would be convenient to deal

with byte oriented data objects as bit
fields ... something C isn't really set up
to let you do. However, if you really
understand what's happening at the bit
level of C's operations you can make it
do a lot of clever, and hitherto unex­
plored, things.

Unfortunately, bitwise operations are
exceedingly hard to fathom at first, and
their operators under C are among the
most obtuse.

TI1is month we're going to look at
some of the mechanics of bits and C.

Bits of Data
A bit is, of course, a simple binary ob­
ject. Bits can be either on or off. In
binary notation ... something which C
doesn't actually support ... a bit that's
off is represented by zero and a bit
that's on is represented by one.

In microprocessor based computers a
byte has largely standardized on being
eight bits wide. This isn't true in other
environments. If you read through some
of the obscure parts of Kemighan and
Ritchie's book The C Language, you'll
find reference to mainframe environ­
ments with odd sized bytes. However,
you can probably ignore the pos-

Electronics & Technology Today

by Steve Rimmer

sibilities of a mainframe system in your
basement for the tin1e being.

An eight bit byte can be regarded as
being comprised of two nybbles, each

·having four bits. This works out well
when you look at the hexadecim.al nota­
tion for a byte... something most PC
based C compilers do support. Here's
the binary representation of a byte:

11000111

and here's its hexadecimal repre­
sentation:

Oxc7

TI1is works out to two nybbles in both
cases. The upper nybble of the byte is
1100 in binary and Oxc in hexadecimal.
TI1is is twelve in human numbers.

You only really need to know sixteen
values, then, as both nybbles work the
san1e way.

DecimalBinaryHex
000000
100011
200102
300113
401004
501015
601106
701117

810008
910019
101010A
111011B
121100C
131101D
1 4111 OE
151111F

C provides a rich set of operators to
deal with bits. These bitwise, or
boolean operators allow you to both test
and manipulate bits. However, using
them effectively calls for a bit of cun­
ning.

The most commonly used ... and most
frequently misapplied... operator is
AND, represented by &. The AND
operator will return a value which con­
tains those bits which are common in
the two objects being ANDed together.
As with all C language bitwise
operators, you can AND chars, ints and
longs. For the moment, we'll work with
chars, which are equivalent to bytes.

Here's an example of the use of
AND.

int a=Oxc7, b=Ox7f;

print£ ("a ANDb = %X",a & b);

January 1991 • 23

Let's see what this should do. The
binary representation of this expression
would be:

a = 11 000111
b=01111111

The result will be a byte having its
bits set in those positions where both a
and b also have them set.

r=01000111

1l1is has a hexadecimal value of
Ox47.

1l1ere are a number of obvious uses
for the AND operator. It works as a
crude ... but fast ... fom1 of modulus
operator if you want to take the
modulus of an integer and the modules
happens to be an even power of two.
For example, you could replace n % 8
with n & 7.

1l1e AND operator is also used to
mask off unwanted bits. For exan1ple,
older versions of W ordStar produced ·
text files which were essentially pure
ASCII save that some of the characters
had their most significant bits set as a
signal to some of WordStar's intcmals.
You could tum a W ordStar file back
into an ASCII file by ANDing every
byte with Ox7f. This value has all its bits
set save for the most significant one.

It's probably worth pointing out the
difference between the bitwise AND
operator and the logical one under C.
1l1e fonner is & and the latter is&&.
1l1is often sneaks up and bites you
somewhere private if you forget about
it. For exan1ple, consider this condition­
al statement.

if (a && b) {
I* some code goes here *I
}

1l1is means to do whatever's in the
conditional if both a and b are non-zero.
Occasionally people forget the second
an1persand.

if(a&b) {
I* some code goes here *I
}

1l1is means to do whatever is in the
conditional if a AND b works out to a
non-zero value, that is, if a and b have

24 • January 1991

some bits in common. 1l1is can be a
very hard bug to track down.

1l1e OR operator is represented by
the vertical rule character, f. It will
retum a value which contains set bits in
all those positions which had them set
in either argument to it. For example,

int a=Ox38, b=Ox81 ;

print£ ("a ORb= %X" ,a I b);

Once again, we can see how this
works if we look at the two values in
question in binary.

a=00111000
b = 10000001

1l1e result, then, would be

r = 1 0111 001

1l1is works out to Oxb9.
Once again, there's a logical OR

operator,//, which should not be con­
fused with the bitwise one.

1l1e exclusive 0 R operator is perhaps
the most confusing and the least used.
It's represented by the carat character,
A. Fotiunately, there is no logical ex­
clusive OR operator to muddy the
waters. The operation of the exclusive
OR function is to invert bits.

If a and b are bytes, a A b will cause
all the bits in a to be inverted wherever
there are set bits in b. Let's see how that
works.

int a=OxOf, b=Ox55;

print£ ("a XOR b =%X", a A b);

o ·nce again, we can work out the
whole seething mess in binary.

a=00001111
b=01010101

The result would be

r=01011010

1l1is anwunts to Ox5a in
hexadecimal.

1l1e exclusive OR operator is useful
for toggling bits.

. Finally, there's the neg at ion operator,
which is represented by the tilde char­
acter,-. 1l1is simply inverts all the bits
in a byte. These two expressions will
produce the same result ... you might
want to stop and see if you can figure
out why.

b =-a;
b =a A Oxff;

1l1is assumes in both cases that a is a
char.

Aside from being able to manipulate
bits under C, you can alter their posi­
tions in a byte. There are two operators
for this, the left shift operator, < < and
the right shift operator, >>.These often
get confused with the greater than and
lesser than logical operators, with the
san1e sorts of results as the confusion
about the logical and bitwise AND
operators discussed above.

Shifting bits involves moving all the
bits in an object left or right by a defined
anwunt. For example,

int a=Ox34;

print£ ("a shifted left
one = %X\n", a << 1) ;
print£ ("a shifted right
one= %X\n", a >> 1) ;

Tuming once more to the binary rep­
resentation of things,

a=00110100

In order to shift a left, we must lose
the leftmost bit and add a zero bit onto
the right end of the byte.

r=01101000

1l1is works out to Ox68.
To shift a right by a bit, you would do

the opposite, that is, throw away the
rightmost bit and add a zero bit to the
left end.

r=00011010

1l1is works out to Oxla.
1l1e decimal values for these num­

bers may be more enlightening. The
original value of a was 52. Shifted left
by one it became 104. Shifted right it
becan1e 26.

Electronics & Technology Today

Each time you shift a value left by
•ne place, you multiply it by two. Each
ime you shift it right by one place you
ivide it by two. If you have to pelform
1teger multiplication or division by
ven powers of two, using bit shifts is
minently more desirable than using
om1al integer math. A bit shift will
rpically take about a fiftieth of the
rocessor time of a multiplication or

division instruction.

Plowing the Bit Fields
In working with applications which re­
quire a lot of bitwise manipulation ...
especially in dealing with bitmapped
graphics ... you will usually find that
you have to treat a string of bytes as a
string of bits. For example, if you want
to set a pixel on a graphics screen, you
must locate the pixel in question in the
line of bytes which makes up the screen
line in memory.

In the following examples, n will be
the location of the bit to be dealt with a
p will point to the line of bytes which
contains the bits in question.

Finding the byte which contains bit n
in the bit field is easy. Since there are
eight bits in a byte, bit ll must reside
somewhere in the byte numbered n I 8.
Because eight is an even power of two ...
the third power ... we can make this cal­
culation much faster by representing it
as n >> 3. The byte in question, then is
p[n>>J}.

Finding the bit in question in the
specific byte requires a bit more stealth.
We wish to create what's called a mask,
a byte having a single bit set repre­
senting the position of the bit in ques­
tion. This can be done using the expres­
sion (Ox80 >> (n & 7)).

Let's see what's going on here. The
value Ox80 is a byte having one bit set,

this being its most significant bit. The
expression n & 7 is, in fact, n mod eight,
or the portion of the bit position value n
which represents the bit position in the
byte in question. Note that when we
found the byte by shifting n right by
three, the bits masked by the value
seven... the first three... are the ones
which were thrown away.

This is how you would tum on bit n
in bit field p.

p[n»3] I= (Ox80 » (n & 7));

This expression will locate the byte
which bit n resides in and create a mask
to represent the appropriate bit. It will
then OR the byte with the mask. The
single bit which is set in the mask will
tum on the corresponding bit in the byte
in question. If the bit is already on,
nothing will happen.

This is how you would tum off bit n
in bitfield p. It's a bit more involved.

p [n»3] &=- (Ox80 » (n & 7));

To tum off a bit, we must mask off
that bit. You could so this by ORing the
bit to make sure it was on and the ex­
clusive ORing it to tum it off. An easier
way is to use the same mask as we did
in turning the bit on and inverting it,
such that it becomes a mask selecting
all the bits except for the one in ques­
tion. If we AND this with the byte in
question, the bit to be turned off will be
masked, or set to zero.

Finally, this will toggle bit n in bit­
field p. Note that this expression does
not know the state of bit n ... it sunply
inverts it.

p [n»3] ~= (Ox80 » (n & 7));

Just a Bit Faster
Code optin1ization ... the process of
trying to streamline a program to make
it run faster. .. wouM look at the forego­
ing expressions a bit suspiciously. Bit­
field operations usually involve a lot of
bits, and there seem to be more opera­
tions in these expressions than there
need be. Code optin1ization invariably
tries to pre-package some of the com­
putations in a complex expression into
a table. This is one of those cases
wherein you can speed things up with
one.

Consider the expression (OxBO > > (n
& 7)). It has two actual operations going
on, to wit, ANDing n by seven and then
shifting Ox80 right by the result. It can
only produce eight possible results. We
can speed up all the aforementioned bit­
field operations by creating a table of
mask values. Here it is.

char mask table [8] =
Ox80,0x40;0x20,0x10,0x08 ,0x0
4,0x02,0x01;

.We can the reduce the expression by
one operation. It becomes masktable[n
& 7]. Hence, to tum on bit n in bitfield
p, you would say

p[n»3] l=masktable[n & 7];

As you begin to work with bitwise
operators under C you '11 probably find
a wealth of uses for them. Aside from
speeding up some multiplication and
division operations, they provide a
powerful way to compress the space
you need to store flags, small numbers,
pixels and other things which don't fit
neatly into the rigid confines of a byte.
0

You don't have to be a genius to use Paradise Computers!

Each system comes complete with: AMI Bios, 1/0 -Serial, Parallel & Game ports,
101 Enhanced Keyboard, Floppy Controller and Drive, Monochrome Card &
Hercules compatible Monitor,

8086 XT System $475 80386-33 64KB CACHE $1,769
80286-121 MBATSystem $585 Upgra~e:

80386-SX lMB System · · · · · · · · · · · · $950 Miniscribe 8051A 42MB 28MS

8800338866-2255 6S4yKsBteCmAC . . H. E $$1 ,300 with 32KB CACHE $399
- 1,489

All units have a 2 Year Warranty on parts & labour.

For more information or to order, call Electronic Publishers of Canada, (416) 665-3480

Electronics & Technology Today January 1991 • 25

