
f [A T U R [

ie's
• u

• ramm1
Part4

Meeting and getting to know the intenupt.

f the structure of C programs is a tad
daunting when you first come upon it,
the structure of the data they use is very
nearly overpowering. Whereas just
about everything under BASIC is hand­
led with real numbers and occasional
string<;, C has a plethora of data types.
Furthermore, if you don't find a data

type you fancy after a casual browse
through the manual you can easily add your
own - Coffers facilities to do this.

Now, you might well be thinking that
this obsession with data is some sort of
brain problem on the part of bald headed
programmers in white lab coats, and noth­
ing you should really be concerned about.
To some extent this is true, at least for
simple programming, but much of the
power of C is in how it deals with data.
Once again, we see in C an example of
language efficiency at the expense of con­
venience. By forcing you to think about
data types, rather than thinking about
them for you, as in the case of BASIC, C
creates faster, tighter programs.

It's not the fault of C that you haven't
got sixteen fmgers.

This month we're going to look at
data and how it's handled under C.

E&TT Aprl1989

SHV[RIMM[R
chars, ints and floats
There are those who would have said that
the best thing to do with an int if you hap­
pened across one would be to step on it
and brush the remains under the television
set. This is probably a wise move.

The basic unit of data under C -
and, in fact, under any language running
on a PC - is a byte. A byte is eight bits
wide, and, as such, can represent numbers
from zero to two hundred and fifty five.
This is not a great range of numbers, and
bytes all by themselves aren't much use,
except for holding fixed range data like
ASCII text.

Under C, a byte is called a char, for
character... indicating its relationship with
text.

The most usual data type found under
C isint, for integer. We should qualify this a
bit: it's actually a signed integer. This is a 16-
bit number - two bytes - and can hold
numbers from -3?:767 to 3?:768. We can also
declare an int as being unsigned, which
means that it can hold numbers in the range
of zero through 65535.

We can move data between ints and
chars freely so long as we're conscious of
what we're doing. For example, if we have

a char which contains the letter "A", which
is the ASCII value of 65, and make an int
equal to this, the value of the int will be 65.
The lower of the two bytes comprising the
int will be loaded with the value of the char
and the upper byte will be loaded with
zero.

If we have an int which holds the
value of one thousand and we make a char
equal to this, the value of the char will be
two hundred and thirty two. This is a bit of
a head scratcher; the two numbers don't
really seem to have a lot to so with each
other. Actually, they do, but only to a com­
puter.

If you could look at the aforemen­
tioned int as the computer does, you'd see
that it consists of the value three stored in
its upper byte and two hundred and thirty
two stored in its lower byte. When we try
to store it in a char, the upper byte gets
thrown away.

Moving data between variables of dif­
fering types is called "casting''. Moving
data between ints and chars is the only
case in which C allows us to cast data free­
ly without explicitly telling it what we're up
to. Here's a more formal example of cast-
ing.

33

The Teachie's Guide to C Programming

r::=1
t.:.:::J char

(8 bits I 8 bits) int

(8 bits I 8 bits I 8 bits I 8 bits) long

Numeric data types under C.

When 16-bits just aren't enough, and
this happens quite frequently when you're
dealing with large numbers, C offers
another data type called long, for long in­
teger. This is a 32-bit number, with your
choice of signed or unsigned operation.
The unsigned version can hold numbers
up to 4,294,967 ,295, or roughly the number
of shoes that Mila Mulroony buys in an
average afternoon's shopping.

If you cast an int to a long just by
making one equal to the other, Cis not
obliged to fill the upper part of the long
with zeros, so the actual value of the lol)g
may be undefined The proper syntax to
make sure that the long represents the
same thing as the int is this:

inti;
long~

1 = (long)i;

There are several more complex
situations wherein this becomes still more
important. For example, consider that we
have two int, called m and n, and that they
each hold sort of large numbers, such that
if they're multiplied together the result will
require a long to hold it. This expression

longl;
intm,n;

1 = (long)m * n;

will avail of us of an erroneous result.
The two ints will be multiplied together as
16-bit numbers, they'll overflow and the
resulting 16-bit mistake will be cast to along.
What we really wanted to say was this.

1 = (long)m * (long)n;
34

Up until now, all the numbers we've
dealt with have been integers of one sort or
another. C also has floating point variables,
and the performance of the floating point
packages of various C compilers is the sub­
ject of much contention and bench mark­
ing. Floating point variables are of the types
float or double, depending on their pre­
cision. In fact, on most PC compiler pack­
ages, all floating point numbers are treated
as doubles. A double is a 64-bit number.

You can cast between integers and
floating point numbers with the same syn­
tax as you would between ints and longs,
although you should be aware that when
you do Cis installing some fairly elaborate
code to translate between its floating point
representation and straight machine level
integers.

If you've done any BASIC program­
ming you might well look at all this and
wonder why anyone would want to pound
his or her head against such a hard, poorly
mortared wall, juggling all these variable
types, when you can just let a language like
BASIC take care of them for you. The
reason is fairly simple. Under BASIC, vari­
ables default to floating point, with integer
numbers optional. Floating point numbers
are hundreds of times slower to work with
than are integers. Long integers are slower
than short, 16-bit, ones, and short integers
are correspondingly slower than are chars.

If you let the language choose your
variables for you, it will have to choose the
ones which can handle the most complex
numbers possible, as it cannot know the
use to which you intend to put the num­
bers. You, hopefully, can figure this out in
advance, and in forcing you to chose the
precise data type for every variable in your
program, C allows you to optimize things

in a way that it cannot. This contributes
greatly to the ultimate speed and size of
your final program.

Pointers from Hell
So far, all we've looked at have been
simple numbers. Anyone can cope with
numbers. Under C, however, we also have
pointers. Pointers are dreadful, horrible,
ugly, repulsive, demonic things which will
crawl into your head and wrap their slime
encrusted tails about your brain, muttering
insanely into your ear until you go mad.
Nofoolin'.

Regrettably, you can't really get into
C without them.

Under C, there is no data type which
can hold strings. Instead, C forces us to
treat strings as what they really are, that is,
a collection of bytes. Hence, a string under
C is defined as an array of chars.

This is how we define a string.

char s[65];

Having done this, the variable s is a
sixty five byte string. Under C, all strings
are terminated by a zero, so for practical
purposes, we must be sure not to try to
store more than sixty four bytes of text in
this string, to leave room for the null at the
end.

Here's a typical application of this
string.

strcpy(s,'Wombats in love");

This will copy the second string into
the first. We are passing two strings to the
functionstn::py ... almost.

When we pass integers to a function,
we really pass the actual numbers. The
mechanism for doing this is to push the
numbers up on the stack, call the function
and then pop them back off the stack
again. The function peeks at the stack to
fmd rhe numbers it was passed. Don't
worry if you aren't really into stacks just
yet - the internal workings are not all that
important just yet.

The meaningful bit to consider,
though, is that to pass a sixty five byte string
in the same way as we'd pass an integer,
we'd have to save an awful lot of data some­
where before we called the function it's
being passed to. This would be very, very in­
efficient, and C won't let you do it just on
principal As such, when we talk about
passing a string, what we really mean is that
we pass a pointer to a string.

A pointer is simply a number which
represents the location in memory where a

E& TT April1989

AMAZING
SCIENTIFIC & ELECTRONIC

PRODUCTS
PLANS -IJ<jdY""""'- All PartsAvaiablo;, Stock
• m--auFtlm currm C02 LASER $20.00
• RIJBA-.-PC.41TABLE LASER RAY PISTQ $20.00
• TCC1---l SEPARATE TESLACotL PLANS TO 1.5 MEV $25.00
• KlGI-I::N RAY GIJII ... $10.00
• GRA1-GRAVITY GEt-ERA TOR•............. $10.00
• EML1-a.EC1RO MAGNET COIL GUIIVI.AIJIICHER $8.00

KITS Wih AI NecessaJy P1ans
• MFT3K--fM VOCE 1RANSMITTER 3 Ml RANGE $49.50
• ~ TElEPf()t£ TRANSMITTER 3 Ml RANGE $39.50
• BTC~.oo VQ T 10-14" SPARK TESLA COIL $249.50
• 1.}«;21<-St.lllATED t.fJlllXX.OR LASER $44.50
• BLS1K-100,000 WATT BLASTER DEFEI'K:E DEVK:E $69.50
• ITM1K--100,000VQT20' AFFECTIVE

RANGE NTt.lVA TOO .. $69.50
• PSP4K--TIME VARIANT SHXK WAVE PISTQ $59.50
• STA 1"-Al.l.r-eY SPACE AGE ACTIVE P1.ASMA SABER .$59.00
• MVP1K--SEE N DARK Krr .. $199.50
• PTG1K--SPECTACllAR PLASMA

TOONAOOGENERATOR .. $149.50

ASSEMBLED Wih AI NecessaJy km.r:tions
• BTC111-$,000 VQ T-W)RI..ll'S SMAllEST

TESI.A COL ... $54.50
• LGU40-1MW HeNo VISillE RED LASER GIJII $249.50
• TAT30-ALrrO TElEPf()t£ RECOODII'G DEVK:E $24.50
• GVP10--SEE N TOTAL DARKNESS 11 VEWER $349.50
• LISTtO-SNOOPER PHOOE NFNITY 1RANSMITTER $169.50
• FG70--IWISI!l.E PAN FIB.D GENERA TOR-

MUL n MotDE S74.50

• CATALOG CONTAINING DESCRIPTlONS OF ABOVE PLUS
HIJIIDREDS MORE AVALABLE FOO $1.00 00 II'K:LUDED FREE
wrrH ALL ABOVE OODERS.

PLEASE NCLUDE $3.00 PH ON ALL Krrs Ai'IJ PRODUCTS. PLANS
ARE F>a;T AGE PAID. SEND Cf£CK, MO, VISA, MC N US FIJIIDS.

INFORMATION UNUMITED
P.O. BOX 716, DEPT. ET AMHERST, NH 03031

Circle No. 13 on Reader Service Card

Portable ferrite loop antennas for long
distance radio broadcast reception avail­
able. Also tubes and other radio parts.
Write: ELDON ELECTRONIC
ENTERPRISES, BOX 713, Port
Coquitlam, B.C. B3B 6H9.

Modems for PC/Xf/AT HaHcard 2400B
-$230., 1200B - $110. 2 year warranty
with cable software, C.O.D., Plus $8.00
S&H, H.E.S. P.O. Box 2752, Station B,
Kitchener, ON N2H 6N3.

Monitors Sony 7' B&W with audio video
input. Operates on AC/DC (horne/car)
cigarrette lighter adaptor. 1 year warran­
ty. $59.00 Ontario residents add aoA>
sales tax & Shipping $5.00.
R2 ELECTRONICS, 48 Torrance Wcxx's,
Brcunpton, ON L6Y 2V1 453-6319.

SURVEILLANCE, Debugging, Protection
World's largest new catalogue -
$5.00U.S. Kits- Assembled - All price
ranges. Latest High Tech.
829 Ginette, Gretna, La. 70056.

36

The Techie's Guide to C Programming

thing lives, as opposed to the thing itself. If
the string "Wombats in love" lived at loca­
tion one thousand, then we would, in ef­
fect, be passing the number one thousand
as a pointer to it. A function which expects
a pointer to something will know to look at
where the pointer points to get at
whatever it is being passed.

Since strings are always passed
around as pointers, it's quite painless to
deal with them as such. Wait a sec ... we'll
get into pointers to other things shortly.

If p is a pointer to the string 'W om­
bats in love", then p[O] will be a char of the
value eighty seven... the ASOI value for
"W". If you recall our discussion of this
notation a few months back, the value of
*p will also be 87 - the two repre­
sentations are equivalent in this case.

The important thing to note about
passing values versus passing pointers is
this. If you pass an int to a function and the
function changes it, it will not affect the
value of the int in the function which called
the function that did the changing. When
you pass a variable to a function, you are
passing a copy of that variable. If you pass a
pointer to a variable, however, the called
function has access to the actual number in
the calling function, and it can affect the
value of it.

As such, consider this function.

strupr(s)
char *s;
{
int ij;

i = strlen(s);
forG =O;j;+ +j)s[jj=toupper(s[j]);
}

This bit of C code will translate any
string passed to it into all upper case. The
function it calls, toupper, is a hbrary func­
tion which returns the upper case version
of any alphabetic character passed to it.
The important part to observe about this
function, however, is that it doesn't return
an upper case string; it changes the actual
string passed to it.

Now, to finish things off, we're going
to look at a slightly more obtuse bit of
pointer notation. .. pointers to ints.

Writing a function to exchange · the
vaJnP.s of two integers is a classic C lan­
guage problem. Here's how it isn't done.

swap(ij)
int ij;
{
int t;

t=i;
i=j;
j=t;
}

This doesn't work because the i and j
that this function gets to work with are
copies if the i and j in the function which
calls it, and those copies get thrown away
when this function is finished This is the
correct function

swap(ij)
int *~ *j;
{
intt;

t=*i;
*i=j;
*j=t;
}

We must call this a bit differently too.

int ij;

swap (&~&j);

The & ,operator tells C to pass the ad­
dress of the thing it's in front of, rather
than the thing itself. Declaring i and j as
being pointers to ints rather than the ints
themselves in the swap function allows us
to deal with the actual contents of the
numbers. Just as we said that the notation
*p got at the first byte in our string, above,
so too does *i get at the value of the in­
teger pointed to by i.

Pointing out
If this all seems a bit obtuse, don't let it
bother you too much at this stage. Because
it forces you to deal with the real world in
its handling of data, C makes very clever
use of its numbers but it also requires that
you think a lot more about what you really
want to do.

Data type errors are amongst the
most common problems in writirig C
programs, and, as such, the latest genera­
tion of compilers are very good at spotting
them. If you try to do anything untoward
the compiler probably will help you avert
it. This is extremely useful while you're
getting your mind around just how all this
peculiar notation goes together.

Next month we're going to look at
complex data. You proba~ly thought that
all this was quite complex enough. Wait 'til
you find out about strncts - they make
pointers look almost civilized •

E& TT Aprl1989

