
f E A T U A E

ie's
• u

• ramm1
Looking for something hotter than BASIC for those

technical programs? Try the power of C.

rogramming is a lot like hardware
design, really1 - except that you
can't burn your fmgers on the
soldering iron. Much of the

process of getting a program together
is similar - at least in concept - to
designing circuitry. Of course,

programming offers you considerably
more choices to cloud the issue with at the
onset.

One of the obvious choices is that of
the language you're going to program in. If
you're predominately interested in
hardware, and have only gotten into
programming so much as it has supported
your hardware efforts, you've probably
developed what code you've needed in
BASIC. While good for the odd ten line
test routine, BASIC has more limitations
than most wombats have fleas.

Wombats have a lot of fleas.
There are better development tools

than BASIC - in fact, come to think of it,
there arc few worse ones that spring readi­
ly to mind. As you might have gathered, I
consider that one of the best ones going is
the C language. As we'll get into, it's a
powerful platform on which to develop
hardware related code - and just about
anything else.

In addition to this, it looks cryptic and
scares people who don't know what it's
about. For example, if I park Horatio, the

18

SHVf RIMMfR
office cat, in front of a monitor full of C
code, he just runs away.

This is the first of a series of features
about C programming for technicians -
don't sweat it, we're not going to blast
through the entire ordeal in this magazine.
It's based on Borland's Turbo C running
on a PC compatible, which is a really
handy development system and extremely
cheap. However, one of the principal at­
tributes of C is its lack of dependence on
any one compiler or, to a large degree, on
any specific sort of computer. As such,
what we discuss here will be largely ap­
plicable to whatever computer and com­
piler you happen to have on hand.

I Don't Lila Mondays
There are several strata of languages,

and, as with most things, each stratum en­
tails some trade ofis. BASIC might be
regarded as the highest stratum in a sense.
It offers you complete protection from the
nastiness of the system - you can't, in
theory, crash your computer from BASIC.
It's very easy to use. However, it arrives at
this state by being tediously slow and by
denying you access to about ninety percent
of what your computer is capable of.

A pox on BASIC.
The other end of the spectrum is oc­

cupied by assembly language, which invol­
ves programming in the computer's native

tongue. Assembly language programming
allows you to make the computer do ab­
solutely everything it can possible get up to,
but you have total responsibility for han­
dling the machine. Assembly language
programs under development crash a lot,
and when assembly language programmers
get together for a brew and a few laughs
after a long day down in the pits, they often
talk about how colourfully they can blow up
a program. Weird souls, these.

In addition to all this, assembly lan­
guage code takes ages to develop, because
you have to write stuff for absolutely every
tedious little function you want to include
in your program.

The middle ground is occupied by a
plethora of languages, of which C is
probably the most popular. These lan­
guages represent a trade off. They give you
much of the speed of assembly language,
some of the protection of BASIC and
what are called "libraries". A library is a
collection of low level routines which you
can include in programs you write to keep
you from having to re-invent the wheel
every time you start a new project.

Pascal is another of these languages,
by the way. We could just as easily be talk­
ing about Pascal here, except that nobody
really likes it and it involves a lot more
typing than C. It has been said that real
men don't program in Pascal. Far be it for

E&'nJ..-y1-

17w ilustratioiiS in 01is mticle show Ow development of a program in the C language.

me to argue with such obvious wisdom.
Unlike BASIC, C is a compiler lan­

guage. This may take a bit of explaining.
When you run a BASIC program under
BASICA or GWBASIC or whatever hap­
pened to come with your DOS disk, the
BASIC language walks through your
program inte1preting everything line. If it
fmds a line that says

PRINT "ZEBRA LUST"

it trucks off somewhere in the inter­
preter, fmds the routine that prints, tells it
where the string to be printed is and does
the deed Then it finds the next line to in­
terpret.

This process is very slow.
Under a compiler, you write the

program as a text file using a word proces­
sor or, in the case of something like Turbo
C, with the text editor built into the lan­
guage system. You then run the compiler
program, which translates each action in
your program into corresponding machine
code. When the compiler is done, you
have an authentic EXE file, all ready to
run from MS-DOS.

This makes the code a lot faster than it
would have been under an interpreter.
However, the process of getting into the text ·
editor, editing your program, getting out of
the text editor again, running the compiler,
running the EXE program and then
repeating the process is a bit deadly. While I
learned to program in C this way, you won't
have to because integrated environments

E&TT J...ary 1-

like Turbo C mash the whole ugly process
together. We'll get into this in greater detail
in a future installment of this series . .

In addition to this, because the result
of a compilation is effectively machine lan­
guage, we can write what are called
"hybrid" programs, that is, ones which are
comprised of both C language and as­
sembly language routines. This allows you
to have the ease of development of C and
the speed of assembly language in those
few cases that you really need it. We'll get
into this in a future article as well.

The most important feature of C,
however, is a bit intangible. Cis structured.
BASIC can be structured, and some of the
newer BASIC environments, such as
QuickBASIC, have lifted quite a lot of
structure from C in an effort to overcome
the tendency of BASIC programmers to
write spaghetti code. However, C is in­
herently structured, and by simply letting
its normal structure flow out through your
fmgers and into your computer, you'll
write tight, easy understandable programs
and dance past about three quarters of the
bugs that BASIC programs are heir to.

Trust me.

No Deposit. No Return
A C program consists entirely of functions.
Under BASIC, a function is, by definition, a
pretty simple thing. Under C, it's the essen­
tial building block of any program.

Under C, a function is a routine which
takes in zero or more arguments, does
something and optionally returns a result.
Functions can call other functions, which in
turn can call still other functions. When a C
program runs, it starts off by calling a func­
tion named main, which in turn calls all the
other functions of the program.

This is a very simple C program.

#include "stdio.h"

mainO
{
I* print a string, Billy *I
printf("Hello, planet");
}

The Techie's Guide to C Programming

~nd when print finishes doing its stuff,
they'll disappear. If plint is called a second
time, they'll come back. Another function
could also have two ints called i and /, but
they'd be different variables, and the two
functions would not interact. This
elin1inates an additional hive of bugs that
pL'l6'1le BASIC progran15, wherein all vari­
abks are global.

The C language allows for global vari­
ables as well - ones which can be ac­
cessed by all functions - but we'll check
them out another time.

Under C, we pass small objects to
functions directly. For instance, an int is a
small object. A string is a big object, and,
while I suppose we could pass it in its en­
tirety, this would make our programs slow
and ugly. As such, we pass pointers to
strings in most cases.

Pointers are one of the things under C
which crawl into the inner ears of beginning
C progran1mers and sing off key into their
brains until they go mad. No foolin'. They're
a bit hard to get your head around at first,
and you'll have to use a bit of faith in this
case to understand what this one is up to.

Under C, the notation *s, as it's used
in the second line of the plint function, tells
C that what is going to be passed to plint
should be regarded as a pointer to a string,
or, more properly, to an array of chars.
Thereafter, the variable s will stand in for
the string that was passed to plint. In this
case, print has to trust that it was actually
passed a string.

A pointer is sin1ply an object which
says where something is, rather than being
the something itself. As a simple example,
you probably know that the memory for
the first character on the screen of a PC
usually lives at location zero in segment
BSOOH - you might have experimented
with POKEing data to this location to see
the screen contents change. If we create a
pointer to this location under C, we can
alter the screen contents by altering what
the pointer points to. This is actually a very
useful way to directly access the screen
under C.

The first actual line in plint that does
anything is the one which assigns I the
value of stn'en(s). Thestrlen call is a library
function which returns an int value con­
taining the length of the string passed to it.
Under C - by convention - a string
consists of any number of characters ter­
minated by a zero byte, or "null". As such,
what stn'en actually does is to start with the
first location pointed to by s and keep
counting 'til it finds a zero byte.

The next line is a for loop, the
18

equivalent of a FOR NEXT loop under
BASIC. As is typical of C, it's a bit cryptic
at first. It translates as follows. Ftrst, set the
value of i to zero. Repeat the loop while i
is less than I. With each iteration of the
loop, increase the value of i by one.

That last one might not be quite as
easy to understand as were the first two. In
programming, incrementing and
decrementing values by one is a common
occurrence, so C gives a short hand way of
expressing it. The notation + + i means to
increment i, and -i means to decrement it.
W ait'll we get into how you increment i by
two.

The for loop executes whatever's in
the set of curly brackets associated with it
for each iteration of the loop. In this case,
we call another library routine called
putchar, which prints a single character to
the screen. We pass it, in turn, each ele­
ment of the array of characters that com­
prises our string. Ifs points to a string,s[O]
is the first element, s [1 J is the second, and
so on. Everything starts with zero in C -
there seems to be little point in wasting
perfectly good numbers by starting with
one.

Unlike as with BASIC, we don't have
to tell a C function to return when it's
done with. After the last statement inside
the outer set of curly brackets of the plint
function has been completed, it will
automatically return to whatever called it.

Extra Texture
The print function we've looked at

was - hopefully - fairly easy to under­
stand. It was, however, very clunky and
awkward by C standards. Not only was it
inelegant, but it would execute much more
slowly than needs be. Here's a quick look
at how Creal/y parties before we split.

This is the p1int function, version two.
print(s)
char *s;
{
while(putchar(*s+ +));
}
There's nothing up my sleeve

that's all of it. Let's see how it works.
In order to know what this is up to,

you'll have to know a few more things
about how C gets its act together. One of
the concepts which C is very fond of is that
of truth and falsehood, which is very
philosophical, of course. Under C, zero is
false and everything else is true. In the case
of a string, then, all of the characters in the
string represent true conditions, except for
the zero byte at the end. Very useful, this.

This version of print uses a new C
construct, the while loop. This is of the
form

while(whatever is true) < do this>

The notation *s + +, designating
what gets passed to putchar, is splendidly
cryptic. It tells C to extract the number
which s is pointing to, pass it to putchar
and then to increment s to point to the
next location in memory, that is, the next
character in the string. Under C, if we say

E&TTJ....-y1-

This program defines a function
called main, which, as we said, will
automatically be called by the computer
when the program is run. A function
under C is always written with parentheses
after it. These contain any arguments
passed to the function. In this case, you
might think that main will always have an
empty argument list. In does in this case,
but it needn't always. C allows for com­
mand line arguments to be passed to main
- but more on this another time.

The working bits of a function under
C are always contained in curly brackets.
As we'll get into, a function can have
smaller bits of itself enclosed in still more
curly brackets - indenting and nesting
pairs of curly brackets is an art form under
C, and makes even fairly sloppy code look
very elegant.

This main function calls one other
function, called printf. The plintf function is
a standard C function, and is provided
with the library of the compiler. It's amaz­
ingly powerful, as we'll get to anon. In this
case, though, we've used it in a very simple
sense. It prints a string to the screen.
Strings in C are contained in double
quotes, just like under BASIC.

Every line in a C function is ended by
a semicolon, and leaving the semicolon off
is one of the most common mistakes for
beginning C programmers. Except in spe­
cial cases, a C compiler ignores line
returns when it's scanning a program. This
function could be written as

E&TT J...ary 1-

mainO { printf("Hello, planet"); }

as far as the compiler is concerned.
The former version is a lot easier to read,
though.

The very first line of the program is a
compiler directive. It tells C to read in and
compile a file called STDIOH before it
does anything else. This is called a
"header" file. This one is also provided
with the compiler, and includes some
basic definitions to tell the compiler things
like how to fmd the screen. It's included
with every program you write, and you'll
probably find that lots of other headers
want including too, as you get into more
complex programs.

Finally, just above the printf call
there's a comment. Under C, anything
which is enclosed in/* and */is a com­
ment, and will be ignored by the compiler.
This is useful to add comments to your
code - C is a little terse, and very hard to
read all by itself without a few prompts
from the real world It's also handy for
temporarily "commenting out" blocks of
code in a program under development.

One of the justifications for not put­
ting comments in your code in C is that
anything which is difficult to write should
also be difficult to read. You can take this
any way you feel like.

One last note before we move on -
don't mix up slashes and backslashes
under C - they mean different things. In
fact, it's worth observing that C uses every

one of the normal printable ASCII
characters for something. Further, C is
case sensitive. The compiler regards plintf,
PRINTF and Printf as being three dif­
ferent things. C programs are traditionally
written in lower case.

This next program is a bit more com­
plicated Note that rve left off the inchuie
directive at the beginning - we won't
bother with these in future, as they can be
assumed to be there.

mainO
{
print("There once was a Hermit

named Dave");
}

print(s)
char *s;
{
int i,l;

l = strlen(s);
for(i = O;i; + + i) {
putchar(s[i]);
}
}

In this program, we use both library
functions and one of our own. The func­
tion print is defined here as being some­
thing which prints a string to the screen -
essentially what printf was up to in the last
example. This one, however, lets us see
how the whole thing works.

There's a lot going on here.
Under C, data is stored in dillerent

sorts of variables, called types. Simple
numbers are stored as integers, or ints. An
int is a signed sixteen bit number on a PC.
Strings, such as the one we're going to
print, are stored as arrays of characters. A
single character is of the type dtar. As
such, a string is contained in a buffer of se­
quential chars.

Under C - unlike BASIC - every
variable you use must be explicitly
declared before you use it. You must tell
the compiler it exists, and you must say
what it will be used for. In plint, we have
declared two ints called i and /. Because
we must declare what type of variables
these are, C will not allow use to casually
put the wrong sort of data in them, a com­
mon failing under BASIC. This is called
"strong type checking''. We can over-ride
this when we need to, but it catches a
whole seething hive of potential bugs in
the normal development of a program.

The two ints in print are "local" vari­
ables. They exist only within this function,

18

The Techie's Guide to C Programming

Value Priced OsciiiQscopes
20 MHz DUAL TRACE
OUR MOST POPULAR SCOPE!
Features built-in component tester ideal
for troubleshooting solid state circuits and
components with no circuit power; 80 x
100 mm high luminence CRT; TV sync
measurement for vertical and horizontal
circuitry. Sensitivity 1 mV/div.
Dimensions: 6.4"x11.5"x14". $595 MODEL NO. 33330 •

15 MHz PORTABLE
Dual trace, rechargeable battery or
AC operation, 3.5" CRT, TV video
sync filter, sensitivity 2mV/div.,
carry handle.
MODEL NO. OS615S $829.
35 MHz DUAL TRACE
Features fast sweep time, r.igh brightness
80 x 1 00 mm CRT display, stable display
of Ch.A and Ch.B waveforms, single trace
viewing, sensitivity 1 mV/div. $849_
MODEL NO' 08635
Set of 1 :1/10:1 switchable probes $59.

50 MHz also available. Please add $15 for shipping and handling.
Order by phone or mail. Credit card, money order, cert. cheque or C.O.D.
Ontario residents add 7% P.S. T.

~ KB ELECTRONICS
~ 355 Iroquois Shore Road, Oakville, Ontario L6H 1M3
~ Tel: (416) 842-6888 • Telex: 06-982396 KBELOKVL

20 Circle No. 2 on Reader Service Card

+ + s we're telling C to increment s and
then do something. If we says + + , we arc
telling C to do something and then incre­
ment s - which, in this case, means
something slightly different, as you can
see.

The asterisk may also be confusing, as
it appears to mean different things in dif­
fcn:nt contexts. There's a reason for this,
actually - it does. If s is a pointer to a
string, *sis the first byte of the string. But
wait, you cry- Ithoughtthats[Ojwasthc
first byte of the string. It is - the two
notations are equivalent in this case. We
can usc either, although in this version of
plint the one with the asterisk allows us to
do less typing and write tighter code.

The library function putchar prints its
argument to the screen and, for the sake of
code like this, also returns it. As such, test­
ing the truth of putchar, in this case, is just
as good as testing the truth of each byte of
the string. This means that putclzar will
print the zero byte when it gets there, of
course, but since zero bytes aren't print­
able, nothing will happen.

What this function is actually saying,
then is this. While putclzar has not printed
a zero byte, get the next byte of the string,
increment the string pointer for the suc­
cessive iteration and print that byte. We
can write this in less compact C notation
as

while(*s) {
putchar(*s);
+ +s;
}

This is easier to read, and, in fact,
results in no less acceptable code than our
really compressed version above.

No Clgarattas, No Matches
The weird, compact notation of C takes
some getting used to, and you shouldn't
worry too much about not being able to
write fluently in it at first. If you're used to
BASIC, learning C will be a bit of a brain
trauma to begin with. Stick with it -
you'll fmd that it gets a lot easier as you go.
In time, you'll wonder how you could ever
have gotten anything to work in a language
as funky and unnatural as BASIC.

In the next installment of this series,
we'll look briefly at a few of the compiler
packages available to let you do some real
experimenting .in C, talk about some of the
better reference books about and look at a
bit more of the esoteric little world of C
code.

Same time, same station. •

E&rrJ___,,.

