
118 March & April 2017 www.elektormagazine.com

Python is used in many universities and
technical colleges around the world as
the initial programming language for stu-
dents. The large collection of powerful
libraries and the ease of use of Python
make it an ideal language for everyone

Read-Evaluate-Print-Loop or REPL, is
not available in compiled languages
such as C or C++.

• In addition to the large number of
built-in functions, an extensive set
of function libraries is available that
can be included in (or imported into)
a program. For example, there are
libraries for random number gener-
ation, trigonometry, making music,
networking, string & file processing,
graphics & gaming, and much more.

• MicroPython can be mixed with other
programming languages such as C
or C++. This gives additional power
and flexibility since parts of the
code that require high speed can be
developed using languages better
suited for such tasks.

• Exceptions and error handling
are supported, which is especially
important in real-time program-
ming. Without proper error handling
a crashed program may stop the
processor in an unknown state which
can have highly undesirable effects.

• It is open source meaning that the
latest release can be downloaded
[2] and run at no cost. The source
code of MicroPython can be modified
and ported to specific processors of
interest.

• Finally, the language is human-read-
able and its syntax is easy to learn
and understand.

What MicroPython can
and can’t do
MicroPython can, in general, do every-

new to programming. MicroPython, orig-
inally targeted at 32-bit ARM microcon-
trollers, is compatible with Python and,
thanks to its small size, makes an excel-
lent choice for use on embedded pro-
cessors. With MicroPython complex and
manageable code can be developed to
control embedded systems that would
otherwise require languages such as C or
C++. MicroPython allows experienced as
well as novice Python users to program
small embedded systems.
The main reasons for MicroPython to not
fully support Python 3 are the lack of suf-
ficient memory and missing hardware and
software features (such as multitasking
and multiprocessing) of embedded pro-
cessors. The differences between Python 3
and MicroPython can be found at [1].

Why MicroPython?
MicroPython and Python offer some
unique features compared to other pro-
gramming languages. In a nutshell:

• (Micro)Python is interactive mean-
ing the program is not compiled
and uploaded into the target pro-
cessor, but rather interpreted and
acted upon at runtime. Although
this makes programs run somewhat
slower, it has the advantage of the
user being able to easily experiment
with his/her code. For example, we
can simply do interactive calcula-
tions as if we are using a calcula-
tor, or experiment with parts of the
program until we get the desired
results. This feature, also known as

MicroPython
Python for small systems
By Dogan Ibrahim (UK)

MicroPython is a highly efficient and powerful programming
language derived from Python, and having inherited
a small collection of libraries. MicroPython fits in
a mere 256 KB of code space and 16 KB of RAM,
permitting it to be used on microcontrollers and
other embedded systems with limited resources.

Figure 1. The ESP01, a highly practical and
popular ESP8266-based module.

Figure 2. The BBC micro:bit can be programed
online in MicroPython.

www.elektormagazine.com March & April 2017 119

thing other programming languages can
do too, like controlling hardware devices
such as LEDs & displays, switches & but-
tons, sensors, motors and so on. Com-
munication busses such as RS-232, CAN,
I²C, SPI, and others can easily be used
thanks to built-in and external libraries.
Network and Wi-Fi-based programs can
be written to communicate with other
devices on a network, or to develop IoT
systems.
Because MicroPython is an interpreted
language it is slower compared to other
embedded programming languages,
consequently it is not a good choice for
fast digital signal processing or real-time
applications where high execution speeds
are critical. In addition, although less
important nowadays, MicroPython uses
slightly more memory than most other
embedded languages. Since MicroPython
is a subset of Python that does not sup-
port all the Python libraries, a program
developed in Python may not work on an
embedded system running MicroPython.

Boards supported by
MicroPython
The number of development boards sup-
ported by MicroPython is increasing along
with its popularity. Let’s list a few.

ESP8266
Boards fitted with this popular Wi-Fi-ca-
pable MCU (Figure 1) with its built-in
TCP/IP stack and USB interface can be
programed in MicroPython. The MCU is
based on a 32-bit RISC CPU and Micro-
Python offers support for GPIO, SPI, I²C,

SAMD21, LoPy, STM32F4-Discovery,
Raspberry Pi and BeagleBone (both run
the full Python 3 code).

MicroPython program example
Here is a simple MicroPython program
that runs on the BBC micro:bit. It’s a
thermostat where the CPU temperature
is read continuously and an appropriate
message is displayed on the on-board
LED matrix. When the temperature is
equal to or higher than 25 ºC the mes-
sage ‘HIGH’ is displayed. If the tem-
perature is between 20 ºC and 25 ºC
‘MEDIUM’ is shown. Otherwise, ‘LOW’
is displayed.

#Simple CPU thermostat program
from microbit import *

while True:
 temp = temperature()
 If temp >= 25:
 display.scroll("HIGH")
 elif temp >= 20 and temp < 25:
 display.scroll("MEDIUM")
 else:
 display.scroll("LOW")

(160315)

Web Links

[1] https://github.com/micropython/
micropython/wiki/Differences

[2] https://github.com/micropython/

[3] http://micropython.org/

UART, ADC and I²S. This may well be one
of the cheapest ways to start out with if
you wish to experiment with MicroPython.

BBC micro:bit
This credit card sized board (Figure 2)
with its many built-in features such as
25 LEDs, two pushbuttons, an acceler-
ometer, a compass, GPIO, I²C, UART,
and ADC is supported by MicroPython.
Programs can be created online which
removes the need to do any setup or
configuration. The BBC micro:bit is
highly recommended for people new to
programming.

pyboard
Based on the STM32F series Cortex M4
processor this development board (Fig-
ure 3) comes preloaded with MicroPy-
thon. The pyboard can be connected to
a PC through its USB port. The board
features a real-time clock, an acceler-
ometer, GPIO, an ADC, four LEDs, and
a microSD card slot.

WiPy
Like the pyboard this board (Figure 4)
too has built-in MicroPython support.
Its pins are suitable for plugging it on a
breadboard. The board is based on the
CC3200 Cortex M4 processor running
at 80 MHz and includes UART, SPI, I²S,
ADCs, Wi-Fi, GPIO, timers, and hash and
encryption engines.

Some other embedded development
boards of interest that come with Micro-
Python support include: Teensy 3.x,

Figure 4. The WiPy is similar to the ESP8266-based NodeMCU board, but
with a CC3200 ARM Cortex M4 instead.

Figure 3. So you know, the pyboard is the official MicroPython
microcontroller board.

