MicroPython

Python for small systems

By Dogan Ibrahim (UK)

MicroPython is a highly efficient and powerful programming
language derived from Python, and having inherited
a small collection of libraries. MicroPython fits in
a mere 256 KB of code space and 16 KB of RAM,
permitting it to be used on microcontrollers and

other embedded systems with limited

Python is used in many universities and
technical colleges around the world as
the initial programming language for stu-
dents. The large collection of powerful
libraries and the ease of use of Python
make it an ideal language for everyone

Figure 1. The ESP01, a highly practical and
popular ESP8266-based module.

Figure 2. The BBC micro:bit can be programed
online in MicroPython.

118 March & April 2017 www.elektormagazine.com

resources.

new to programming. MicroPython, orig-
inally targeted at 32-bit ARM microcon-
trollers, is compatible with Python and,
thanks to its small size, makes an excel-
lent choice for use on embedded pro-
cessors. With MicroPython complex and
manageable code can be developed to
control embedded systems that would
otherwise require languages such as C or
C++. MicroPython allows experienced as
well as novice Python users to program
small embedded systems.

The main reasons for MicroPython to not
fully support Python 3 are the lack of suf-
ficient memory and missing hardware and
software features (such as multitasking
and multiprocessing) of embedded pro-
cessors. The differences between Python 3
and MicroPython can be found at [1].

Why MicroPython?

MicroPython and Python offer some
unique features compared to other pro-
gramming languages. In a nutshell:

e (Micro)Python is interactive mean-
ing the program is not compiled
and uploaded into the target pro-
cessor, but rather interpreted and
acted upon at runtime. Although
this makes programs run somewhat
slower, it has the advantage of the
user being able to easily experiment
with his/her code. For example, we
can simply do interactive calcula-
tions as if we are using a calcula-
tor, or experiment with parts of the
program until we get the desired
results. This feature, also known as

Read-Evaluate-Print-Loop or REPL, is
not available in compiled languages
such as C or C++.

e In addition to the large number of

built-in functions, an extensive set
of function libraries is available that
can be included in (or imported into)
a program. For example, there are
libraries for random number gener-
ation, trigonometry, making music,
networking, string & file processing,
graphics & gaming, and much more.

e MicroPython can be mixed with other

programming languages such as C
or C++. This gives additional power
and flexibility since parts of the
code that require high speed can be
developed using languages better
suited for such tasks.

e Exceptions and error handling
are supported, which is especially
important in real-time program-
ming. Without proper error handling
a crashed program may stop the
processor in an unknown state which
can have highly undesirable effects.

e It is open source meaning that the
latest release can be downloaded
[2] and run at no cost. The source
code of MicroPython can be modified
and ported to specific processors of
interest.

e Finally, the language is human-read-
able and its syntax is easy to learn
and understand.

What MicroPython can
and can‘t do

MicroPython can, in general, do every-

Figure 3. So you know, the pyboard is the official MicroPython

microcontroller board.

thing other programming languages can
do too, like controlling hardware devices
such as LEDs & displays, switches & but-
tons, sensors, motors and so on. Com-
munication busses such as RS-232, CAN,
I2C, SPI, and others can easily be used
thanks to built-in and external libraries.
Network and Wi-Fi-based programs can
be written to communicate with other
devices on a network, or to develop IoT
systems.

Because MicroPython is an interpreted
language it is slower compared to other
embedded programming languages,
consequently it is not a good choice for
fast digital signal processing or real-time
applications where high execution speeds
are critical. In addition, although less
important nowadays, MicroPython uses
slightly more memory than most other
embedded languages. Since MicroPython
is a subset of Python that does not sup-
port all the Python libraries, a program
developed in Python may not work on an
embedded system running MicroPython.

Boards supported by
MicroPython

The number of development boards sup-
ported by MicroPython is increasing along
with its popularity. Let’s list a few.

ESP8266

Boards fitted with this popular Wi-Fi-ca-
pable MCU (Figure 1) with its built-in
TCP/IP stack and USB interface can be
programed in MicroPython. The MCU is
based on a 32-bit RISC CPU and Micro-
Python offers support for GPIO, SPI, I2C,

Wi

www.pycom.io/gettingstarted

Figure 4. The WiPy is similar to the ESP8266-based NodeMCU board, but

with a CC3200 ARM Cortex M4 instead.

UART, ADC and I2S. This may well be one
of the cheapest ways to start out with if
you wish to experiment with MicroPython.

BBC micro:bit

This credit card sized board (Figure 2)
with its many built-in features such as
25 LEDs, two pushbuttons, an acceler-
ometer, a compass, GPIO, 12C, UART,
and ADC is supported by MicroPython.
Programs can be created online which
removes the need to do any setup or
configuration. The BBC micro:bit is
highly recommended for people new to
programming.

pyboard

Based on the STM32F series Cortex M4
processor this development board (Fig-
ure 3) comes preloaded with MicroPy-
thon. The pyboard can be connected to
a PC through its USB port. The board
features a real-time clock, an acceler-
ometer, GPIO, an ADC, four LEDs, and
a microSD card slot.

WiPy

Like the pyboard this board (Figure 4)
too has built-in MicroPython support.
Its pins are suitable for plugging it on a
breadboard. The board is based on the
CC3200 Cortex M4 processor running
at 80 MHz and includes UART, SPI, I2S,
ADCs, Wi-Fi, GPIO, timers, and hash and
encryption engines.

Some other embedded development
boards of interest that come with Micro-
Python support include: Teensy 3.x,

SAMD21, LoPy, STM32F4-Discovery,
Raspberry Pi and BeagleBone (both run
the full Python 3 code).

MicroPython program example
Here is a simple MicroPython program
that runs on the BBC micro:bit. It's a
thermostat where the CPU temperature
is read continuously and an appropriate
message is displayed on the on-board
LED matrix. When the temperature is
equal to or higher than 25 °C the mes-
sage ‘HIGH’ is displayed. If the tem-
perature is between 20 °C and 25 ©C
‘MEDIUM’ is shown. Otherwise, ‘LOW’
is displayed.

#Simple CPU thermostat program

from microbit import =

while True:
temp = temperature()
If temp >= 25:
display.scroll("HIGH")
elif temp >= 20 and temp < 25:
display.scroll("MEDIUM")
else:
display.scroll("LOW")
) |
(160315)

Web Links

[1] https://github.com/micropython/
micropython/wiki/Differences

[2] https://github.com/micropython/
[3] http://micropython.org/

www.elektormagazine.com March & April 2017 119

