
 A
variety of peripheral devices in modern em-
bedded systems, such as EEPROMs, ADCs,
DACs, real-time clocks, thermal sensors, and
display and communication controllers, have
synchronous serial interfaces. These interfac-
es’ main benefit is that only a few wires con-

nect peripherals to a processor. Some cases require serial pe-
ripherals—for instance, when the system processor has a low
I/O-pin count. While communicating with a device through
a synchronous serial interface, data and a timing clock trans-
mit over separate wires. The processor acts as the master, and
a peripheral device acts as the slave. Only the master can
initiate communications and generate the timing clock. The
three main synchronous-serial-interface standards are Mi-
crowire from National Semiconductor (www.national.com),
SPI (serial-peripheral-interface) from Motorola (www.mo-
torola.com), and I2C (inter-integrated circuit) from Philips
(www.philips.com). Numerous proprietary synchronous se-
rial interfaces exist, as well. Software in C enables a micro-
controller from the Intel (www.intel.com) MCS-51 family
to access SPI peripherals. This article explains how you can
implement this software.

People often refer to SPI as a three-wire interface, but the
interface bus comprises more than three wires. The three wires
carry input data to that slave and output data from the slave
and the timing clock. The developers from Motorola labeled
the three wires MOSI (master out/slave in), MISO (master
in/slave out, and SCK (serial clock). Multiple slaves can share
these wires (Reference 1 and Figure 1). The SPI slave also
has a select input SS (slave select), and the master must gen-

erate a separate select signal for each slave in the system; a
low-level signal selects most of the available slaves. Occasion-
ally, a select signal also initiates a data transfer. If only one
slave exists, you can sometimes permanently force its select
input to an active level. The slave’s data sheet specifies the
maximum clock-frequency value. The manufacturers of slave
devices also use equivalent labels for bus lines. MOSI is equiv-
alent to SI (slave in) or DI (data in). MISO is equivalent to
SO (slave out) or DO (data out), SCK approximates SCLK
(which also stands for serial clock), and SS is approximate-
ly equivalent to CS (chip select). A high-level signal selects
some serial devices.

SPI OPERATION
SPI’s developers based its operation on the use of two 8-bit

shift registers (Figure 2). While the master communicates
with the selected slave, the two devices’ shift registers connect
in a ring, so both devices always simultaneously send and re-

BY DARIUSZ CABAN, PHD • SILESIAN UNIVERSITY OF TECHNOLOGY

Coding SPI software
THE SPI REQUIRES THREE WIRES FOR DATA TRANSFER PLUS A
DEVICE-SELECT SIGNAL. DESIGNERS CAN IMPLEMENT PERIPHERAL
COMMUNICATIONS USING PROCESSOR-BASED HARDWARE OR THE
SOFTWARE ROUTINES THAT THIS ARTICLE PRESENTS.
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Figure 1 An embedded system comprises a few SPI peripherals
under the control of one master.
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#define uchar unsigned char

void SPI_configuration(uchar configuration)
{
 P1 |= 0xF0;  /* programming SPI pins high */
 SPCR = configuration;

}

#define SPIF 0x80  /* SPI interrupt flag in SPSR */

uchar SPI_transfer(uchar byte)
{
 SPDR = byte;  /* byte to send */
 while(!(SPSR & SPIF));  /* wait until end of transfer */
 return(SPDR);  /* received byte */

}

LISTING 1 CONFIGURATION OF THE SPI PORT

LISTING 2 SENDING AND RECEIVING A BYTE
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ceive. If the dialogue between them requires only half-duplex
communication, each device discards the bytes it received in
the transmitting phase and generates dummy bytes in the re-
ceiving phase. A pair of parameters, CPOL (clock polarity)
and CPHA (clock phase), defines the SPI mode. These pa-
rameters are binary digits, so there are four possible modes.
CPOL selects the level of the SCK line before and after byte
transfer. CPHA determines the edges of the clock on which a
slave latches input-data bits and shifts out bits of output data.
A master/slave pair must use the same mode to communicate.
Figure 3 presents the timing diagrams of a byte transfer in all
modes.

Assume that the clock edges are numbered from one.
When the CPHA equals zero, input-data bits latch onto each
odd clock edge, and output-data bits shift out onto an even
clock edge. The select signal initiates a byte transfer, and the
first bit of output data is available after activating this sig-
nal. When a byte transfer terminates, the select line must de-
activate. When CPHA equals one, input-data bits latch on-
to each even clock edge, and output-data bits shift out onto
each odd clock edge. The first clock edge indicates the start
of a byte transfer. The SS line may remain at its active level
between transfers of successive bytes; a slave considers a byte
transfer complete after the eighth bit latches. If there is one
slave in the system, its select input may sometimes perma-
nently remain at the active level. In 0,0 and 1,1 modes, in-
put-data bits latch on the rising clock edges, and output-data
bits shift out on the falling clock edges. The remaining modes
use falling and rising clock edges.

Numerous available slave devices support both 0,0 and 1,1

modes. You access these devices using commands that often
require the transfer of multiple bytes. You must select these
devices before transfer of each command and deselect them
after transfer of each command.

PORT IMPLEMENTATIONS
Motorola first included a hardware-SPI port in the 68HC11

family of microcontrollers and then extended the port to many
other microcontrollers. Microcontrollers from other manufac-
turers, such as Atmel’s (www.atmel.com) AT89S8253, also sup-
port SPI (Reference 2). This microcontroller is an extended
8052 device with flash program memory, which you can repro-
gram in a target system through SPI. Its SPI port provides mas-
ter or slave operation, normal or enhanced mode, programma-
ble-SPI mode, MSB (most-significant-bit)- or LSB (least-sig-

nificant-bit)-first data trans-
fer, four programmable SCK
frequencies, an end-of-trans-
mission interrupt flag, write-
collision flag protection, a
double-buffered receiver, a
double-buffered transmit-
ter in enhanced mode, and
a wake-up from idle mode in
slave mode.

In normal mode, three
SFRs (special-function reg-
isters) control access to the
port (Figure 4), and the mi-
crocontroller’s data sheet de-
scribes those registers. List-
ings 1 through 7, written in
Keil C51, illustrate the use
of the port (Reference 3).
The header file, which comes
with the compiler, includes a
list of the addresses of SFRs
available on the AT89S8253.
Listing 1 shows the routine
configuring the SPI port. If
you enable the SPI port, it
uses pins of the high nibble
of Port 1 (P1.4 through SS/,
P1.5 through MOSI, P1.6
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Figure 2 Each SPI device contains an 8-bit shift register. The
registers of the master and selected slaves connect in a ring,
allowing full-duplex communication to take place.
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Figure 3 A master/slave pair must use the same mode to communicate. The timing diagrams of a
byte transfer in all modes yield these timing profiles.
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through MISO, and P1.7 through SCK). Atmel recommends
that you set these pins high before writing to the control reg-
ister; otherwise, the SPI port may not operate correctly. You
must program the SPI pins in Listing 1 if you need to recon-
figure the port while the microcontroller executes its program.
You can omit this operation if configuration occurs only once
because a hardware reset sets the SPI pins high.

The AT89S8253 can act as an SPI master or an SPI slave,
but this article considers only master operation. Listing 2 pres-
ents a routine that sends and receives a byte through the SPI
port. Writing to the SPI-data register initiates a transfer, starts
the clock generator, and shifts out the output byte on the MO-
SI pin. Simultaneously, a byte from a slave shifts into the SPI-
data register. The While loop executes until you set the SPI-
interrupt flag in the SFR, which indicates the end of transfer.
You clear this flag by reading the status register by setting the
SPI-interrupt-flag bit and then accessing the data register.

You can generate an interrupt request after the transfer com-
pletes, but this feature is more useful in slave operation. Writ-
ing to the SPI-data register during a transfer sets the WCOL
(write-collision)-flag bit in the SPI-status register. This opera-
tion has no effect, and the result of reading the data register
may be incorrect. Reading the status register with WCOL bit
set, followed by accessing the data register, clears this flag. Us-
ing the SPI-transfer routine only to communicate with slave
devices prevents collisions.

Microcontrollers without hardware support for SPI also can
communicate with SPI devices, because it is feasible to per-
form a “bit-banging,” an all-software port implementation.
Any microcontroller’s general-purpose-I/O pins can serve as
SPI pins. Most slave devices support both 0,0 and 1,1 SPI
modes; to communicate with these devices, you can use one of
the equivalent SPI-transfer routines in Listing 3.

If a slave device supports only one mode, you must ensure
that you forced the SCK line to the proper level before se-
lecting the device. The hardware-SPI port features MSB- or
LSB-first data transfer, and bit-banging routines always send
MSB first. If a slave in the system requires LSB first, you can
inverse the bits’ order in a byte that passes to the SPI-transfer
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SPIE SPE DORD MSTR CPOL CPHA SPR1 SPR0

SPCR-SPI CONTROL REGISTER (ADDRESS D5H)

SPIF WCOL LDEN DISSO ENH

SPSR-SPI STATUS REGISTER (ADDRESS AAH)

SPD7 SPD6 SPD5 SPD4 SPD3 SPD2 SPD1 SPD0

SPDR-SPI DATA REGISTER (ADDRESS 86H)

Figure 4 SFR registers control the hardware-SPI port of the
AT89S8253 microcontroller in normal mode.

TABLE 1 COMMAND SET FOR THE CAT25040

Command
Command’s format

(a�address bit; d�data bit) Operation

WREN 00000110 — — Enable write
operations

WRDI 00000100 — — Disable
write opera-

tions

RDSR 00000101 d7�d0
1 — Read status

register

WRSR 00000001 d7�d0 — Write status
register

READ 0000a8011 a7�a0 d7�d0
1 Read

data from
memory

WRITE  0000a8010 a7�a0 d7�d0
2 Write data

to memory
1  Data bits transfer on MISO line; a single read command can

read any number of bytes.
2  A single write command can write as many as 16 bytes.

sbit MOSI = P1 ^ 0;  /* this declaration assigns pins of */
sbit MISO = P1 ^ 1;  /* Port 1 as SPI pins */
sbit SCK  = P1 ^ 2;

/* a byte transfer in (0,0) mode */

uchar SPI_transfer(uchar byte)
{
uchar counter;

 for(counter = 8; counter; counter--)
 {

 if (byte & 0x80)
 MOSI = 1;

 else
 MOSI = 0;

 byte <<= 1;
 SCK = 1;  /* a slave latches input data bit */
 if (MISO)

 byte |= 0x01;
 SCK = 0;  /* a slave shifts out next output data bit */

 }
 return(byte);

}

/* a byte transfer in (1,1) mode */

uchar SPI_transfer(uchar byte)
{
uchar counter;

 for(counter = 8; counter; counter--)
 {

 if (byte & 0x80)
 MOSI = 1;

 else
 MOSI = 0;

 SCK = 0;  /* a slave shifts out output data bit */
 byte <<= 1;
 if (MISO)
 byte |= 0x01;

 SCK = 1;  /* a slave latches input data bit */
 }
 return(byte);

}

uchar inverse(uchar byte)
{
uchar mask = 1, result = 0;

 while(mask)
 {

 if (byte & 0x80)
 result |= mask;

 mask <<= 1;
 byte <<= 1;

 }
 return(result);

}

LISTING 3 BIT-BANGING SPI-TRANSFER ROUTINES

LISTING 4 BIT’S ORDER INVERSION IN A BYTE
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routine and a byte that this routine returns. The routine in
Listing 4 performs this inversion. If you compare all versions
of the SPI-transfer routine with respect to code-memory occu-
pation and achievable bit rates in both SPI-port implementa-
tions, you will find that the routine that uses hardware-based
SPI occupies 10 bytes of code memory, and the bit-banging
routines occupy 29 bytes each if you pass in the parameters
and place the local variables in the register. The AT89S8253
has one- and two-times clock options, and the machine cycles
for these clocks take 12 and six oscillator periods, respectively.
Maximum SCK frequency is fOSC/N, where fOSC is the oscilla-
tor frequency and N is 4 in the one-times mode and 2 in the
two-times mode. Because it takes one clock cycle to transfer
one data bit, the maximum bit rate equals fOSC/N bps. A byte
transfer using the bit-banging routine takes a minimum of 111
machine cycles, so the maximum bit rate is 8/(111�tCYCLE)
bps, where tCYCLE is the cycle duration. For example, a classic
8051 microcontroller with a 12-MHz crystal can transmit SPI
data at approximately 72 kbps.

SERIAL EEPROM
Designers often use EEPROMs as slave devices in an inex-

pensive approach to storing data in nonvolatile memory. Sev-
eral manufacturers offer serial EEPROMs in capacities of 1 to
64 kbits or more. Listing 5 presents software that allows access
to a Catalyst Semiconductor (www.catsemi.com) CAT25040
device or equivalent (Reference 4). The CAT25040 provides
512 bytes of nonvolatile memory with 100-year data retention.

It provides 1 million write/erase cycles and supports 0,0 and 1,1
SPI modes with a maximum SCK frequency of 10 MHz. In ad-
dition to the SPI pins, the CAT25040 has two other pins. The
Hold pin enables the master to pause communication with the
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#define uint  unsigned int
#define RDSR  5  /* codes of commands  */
#define READ  3

sbit EEPROM_SEL = P1 ^ 4;  /* select pin for the EEPROM */

uchar EEPROM_byte_read(uint address)
{
uchar byte;

 EEPROM_SEL = 0;
 SPI_transfer((address >> 8) ? (READ | 8) : READ);
 SPI_transfer((uchar)address);
 byte = SPI_transfer(0xFF);
 EEPROM_SEL = 1;
 return(byte);

}

void EEPROM_sequential_read(uint address, uchar
*destination,

 uint size)
{
 if (size)
 {

 EEPROM_SEL = 0;
 SPI_transfer((address >> 8) ? (READ | 8) : READ);
 SPI_transfer((uchar)address);
 for( ; size; size--, destination++)
 *destination = SPI_transfer(0xFF);

 EEPROM_SEL = 1;
 }

}

uchar EEPROM_status_read(void)
{
uchar status;

 EEPROM_SEL = 0;
 SPI_transfer(RDSR);
 status = SPI_transfer(0xFF);
 EEPROM_SEL = 1;
 return(status);

}

LISTING 5 CAT25040 READ OPERATIONS

#define WREN  6  /* codes of commands */
#define WRSR  1
#define WRITE 2

bit EEPROM_byte_write(uint address, uchar byte)
{
 EEPROM_SEL = 0;  /* writing enable */
 SPI_transfer(WREN);
 EEPROM_SEL = 1;

 EEPROM_SEL = 0;  /* write data  */
 SPI_transfer((address >> 8) ? (WRITE | 8) : WRITE);
 SPI_transfer((uchar)address);
 SPI_transfer(byte);
 EEPROM_SEL = 1;

 return(programming_status());
}

bit EEPROM_page_write(uint address, uchar *source,
 uchar size)

{
 if (!size || (uchar)(((uchar)address & 15) + size) > 16)

 return(0);  /* invalid number of bytes or they would
 not occupy adjacent locations */

 EEPROM_SEL = 0;  /* writing enable */
 SPI_transfer(WREN);
 EEPROM_SEL = 1;

 EEPROM_SEL = 0;  /* write data  */
 SPI_transfer((address >> 8) ? (WRITE | 8) : WRITE);
 SPI_transfer((uchar)address);
 for( ; size; size--, source++)

 SPI_transfer(*source);
 EEPROM_SEL = 1;

 return(programming_status());
}

bit EEPROM_status_write(uchar status)
{
 EEPROM_SEL = 0;  /* writing enable */
 SPI_transfer(WREN);
 EEPROM_SEL = 1;

 EEPROM_SEL = 0;  /* write status  */
SPI_transfer(WRSR);
 SPI_transfer(status);
 EEPROM_SEL = 1;

 return(programming_status());
}

LISTING 6 CAT25040 WRITE OPERATIONS

#define RDY 1  /* READY bit in the status register
*/

bit programming_status(void)
{
uchar counter;

 for(counter = 16; counter; counter--)
 {

 delay(84);  /* about 0.5 ms, when fosc = 12 MHz
*/

 if (!(EEPROM_read_status() & RDY))
 return(1);  /* OK  */

 }
 return(0);  /* failure */

}

/* suspension of program execution for (number * 6) + 1
 machine cycles */

void delay(uchar number)
{
 while(number--);

}

LISTING 7 PROGRAMMING-STATUS ROUTINE
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EEPROM if another slave requires urgent servic-
ing. The WP (write-protect) pin allows enabling
and disabling writes to the memory array and the
memory’s status register. Enabling writing allows
two or more nonvolatile bits in the status register
to protect all or a portion of the memory array. In
addition, you must set a write-enable latch before
any write operation occurs.

You access the CAT25040 using six commands (Table 1).
The first byte is the command’s code. The codes of the read
and write commands contain the MSB of the location’s ad-
dress. You must select the memory before the transfer of each
command and deselect it after the transfer. Listing 5 presents
sample routines performing read operations. After the EE-
PROM receives the read command’s code and address, the ad-
dress loads into an address counter, and the memory responds
with a byte stored at the given address. The master can read
the sequence of data by continuing to provide clocking. The
address counter automatically increments to the next address
after each byte shifts out. When the EEPROM reaches the
highest address, the next address equals zero. The sequential
read is a convenient way to get multibyte values from the EE-
PROM. You use the separate routine to read the status of the
memory.

Listing 6 provides sample routines performing write opera-
tions. Before any write occurs, the master must set the write-
enable latch in the EEPROM by issuing the write-enable com-

mand. Next, the master sends the write com-
mand’s code, followed by the address, which loads
into the address counter, and the data to write.
The master can write as many as 16 bytes—a page
write—by continuing to provide clocking. Com-
patible EEPROMs offer different page sizes. The
address counter’s bits constitute a page number,
and the remaining bits address bytes within the

page. After the EEPROM receives each byte, it increments on-
ly the address within the page. When the EEPROM reaches
the highest address, the next address is zero, and if the clock
continues, it may overwrite other data. To prevent this situ-
ation, the EEPROM page-write routine checks whether all
bytes to write will occupy an area of consecutive addresses. If
not, the routine does not issue a write command. A separate
routine writes the memory’s status register.

When the master deselects the EEPROM after issuing a
write command, the memory enters the internal programming
cycle. This cycle takes as long as 5 msec. The memory then ig-
nores all commands except the read-status-register command.
The LSB of the memory’s status register indicates whether the
programming cycle is in progress or complete. The program-
ming-status routine checks this bit every 0.5 msec (Listing 7).
The number of checks is limited; exceeding the limit indicates
failure of the write operation. After the end of the program-
ming cycle, the device is write-protected.

A range of serially accessed peripheral devices finds use in
embedded systems. Connecting them to a processor requires a
few wires. Such devices typically include a synchronous inter-
face, of which the SPI is one of the most popular (references
5 and 6).EDN
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