
COBOL PROGRAMMING (4)
R. Ramaswamy and T. V. Krishnamurthy

ADD Statement
The Add statement enables us to find the sum of two or

more numeric fields and store the result. The Add format
can be given in the following two forms:
Add (literal-1 j Tliteral-2 1

[identifier-11 , [identifier-2 J
.. .TO (identifier-mi)- [identifier-nj

Add (literal-1) (literal-2)
(. identifier-1 _) [identifier-2 j

...GIVING (identifier-m), [identifier-n]
In the first format all the operands preceding the word TO
are added together and the result is added to each of the
item following the word TO and stored in the respective
fields. For example, if we write.

ADD OLD-STOCK TO MEAN-STOCK
the old stock will be added to the value already in the mean
stock and the result stored in the mean stock field. The
value of the field preceding the word TO is left unchanged.
If we write

ADD ALLOWANCE, SPECIAL-PAY TO SALARY
the value of allowance and special pay will be added to¬
gether and the same will be added to the salary and stored
in the field of the salary.If the values of the three fields
before computation are 23.00, 47.00 and 200.00 respec¬
tively, their values after computation will become 23.00,
47.00 and 270.00 respectively. Suppose, we write

ADD ALLOWANCE TO SPECIAL-PAY, SALARY
the value of the three fields after computation will become
23.00, 70.00 and 223.00 respectively.

In the second format also the operands preceding the
word GIVING are all added together and the result is
stored in each of the fields succeeding the word GIVING.
The difference is that there is no further addition with the
values already present in the fields succeeding the word
GIVING. The old values, if any, are simply replaced by the
total obtained from the fields on the left of the word GIV¬
ING. Suppose, we write

ADD A, B GIVING C
and if the original values of the three fields are 23,47 and
200 respectively, the values of the three fields after compu-

Thi* is the fourth part of the serial on Cobol Programming being published
regularly since January 1978. Mr R. Ramaswamy is lecturer in physics at
Thiagarajar College of Engineering, Madurai and Mr TV. Krishnamurthy

is system programmer with the K. C.P. Limited, Madras.
Earlier they co-authored a serial on ‘Computer Language: Fortran IV

which was published in the January 1976 to May 1976 issues of EFY.
Their first co-authored serial on ‘Computer Languages' in EFY appeared
in the May 1974 to April 1975 issues. They have also jointly authored a
book entitled ‘Teach Yourself Computers.'

tation will become 23, 47 and 70 respectively. Another
advantage in this format is that the giving field or the
storing field can be given editing specifications so that the
result can be stored in the edited form.

Note: Braces ([}) enclosing a number of items in¬
dicate that one of the items must be used. Square
brackets indicate that the enclosed items are op¬
tional as required by the program. When the
brackets contain more than one item, one or
more may be used as required.

Rounded option
When an arithmetic operation is performed the result

may contain more decimal places than provided in that
field. For example, if the result of a calculation comes out as
450.376 and if the field has provision for only two decimals,
the number will be stored as 450.37 after truncating the last
digit. It is more accurate to round off the number to the
second decimal place, and this can be specified by the
ROUNDED option. Rounded specifications prevent trun¬
cation after decimal point alignment, if the number of digits
to the right of the decimal place exceeds the number of
positions allotted in the result item. When ROUNDED is
specified the least significant digit of the retained result is
incremented by 1 if the most significant of the excess digit is
5 or greater. The following examples will show the use of
ROUNDED option.

Result of Result without Result with
calculation option Rounded

option

523.467 523.46 523.47
276.985 276.98 276.99
256.301 256.30 256.30

In a typical ADD statment, the ROUNDED option is
given as follows:

ADD A, B, C GIVING S ROUNDED
ADD A, B, C TO D ROUNDED

Six* error option
A size error condition is said to exist if after decimal

point alignment, the value of the result cannot be contained
in the result item. This applies only to the integer part of the
answer and not to the decimal position, since excess deci¬
mal places wi|I be truncated. If a result 2579 is to be placed
in a field will) only three digits capacity, a size error condi¬
tion arises. Checking for size error condition is carried out

APRIL 1978 47

only on the final result of the calculation and is done after
rounding if the rounded option has been specified.

Rounding option precedes the checking for the size error
condition. If a size error occurs during the execution of a
statement not specifying the size error option, the result is

unpredicatable. A size error option does not alter the re¬
sult. By giving this option the computer is instructed as to
what.is to be done in case the size error condition arises
during computation. One specification may be to ask the

computer to stop. Another specification may be to ask
the computer to stop. Another specification may be to ask
the computer to go to some other statement somewhat as
follows:

ADD TO B ON SIZE-ERROR GO TO OVER¬
FLOW

ADD A TO B ON SIZE-ERROR STOP

Subtract statement
Thisstatment is used to subtract one or more values from

another value. The Subtract statement can be written in the
following two formats:
SUBTRACTf identifier-1) [identifier-:]

(literal-1) [J',era'‘- J
. . .FROM{identifier-m,] Qdcntifier-n]
SUBTRACT (identifier-1) [identifier-2]

[literal-1) [jiteral-2 J
.. ,FROM(identifier -m) GIVING(identifier-n.)

In the first format, all the operands preceding the word
FROM are added together. This total is then subtracted
from the item following the word FROM and the result is
stored in each of the operands. For example, if we write

SUBTRACT A, B, C FROM D. E, F
the values of the first three fields will be added together and
this sum will be subtracted from each of remaining fields in

turn. Results stored in D. E and F are (D-(A + B + C)), (E
— (A + B + C))and(F - (A+ B +C))respectively.The
values originally stored in D. E and F are lost. In the second
format all the operands preceding the word FROM are
added together. This total is then subtracted from the
operand immediately following the word FROM and the
result is stored in the data item specified following the word
GIVING. It must be noted that the value of the
identifier-m is not changed.

In the previous example, if we want to retain the value of

D, we can write
SUBTRACT A, B, C FROM D GIVING K

The above statement causes the computation (D— (A + B
+C)) and storage of the result in the location K. Only the
initial value of K is lost, but not the values of A, B, C and D.
Only one identifier may appear after the word FROM and
one after the word GIVING. In some computers more than
one identifier can be present after the word GIVING. In
that case each identifier will store only the value of K as
computed above. Rounded specification and size error op¬
tion can be given to the result of computation. For example,

one can write

SUBTRACT A, B, C FROM D GIVING K
ROUNDED, ON SIZE ERROR GO TO PARA-2.

Multiply statement
This statement is used to obtain the product of two data

item values. The Multiply statement can be written in the
following two forms;
MULTIPLY

BY

MULTIPLY

BY

GIVING

i identifier-1^
(literal-1)
(identifier-2), tidentifier-3fl

(id

(id

(

identifier-1
literai-1

identifier-2

literal-2
identifier-3

l
In the first format, the value in the identifier-1 or the value
of the literal-1 is multiplied by the value of the identifier-2
and the result is stored in the identifier-2. Similarly, the
identifier-1 is multiplied by the identifier-3 and the product
is stored in the identifier-3. That is, each product replaces
the corresponding multiplier. For example, if we write

MULTIPLY A BY B, C, D

The products AB, AC arid AD are stored in the locations

B, C and D respectively.
In the second format, the single product is stored in each

of the identifier following the word GIVING. The value of
the first two fields are not changed by the execution of the
statements. Suppose we write

MULTIPLY A BY B GIVING C, D, E.
the product AB is stored in each of the locations C, D and
E, removing the original contents of C, D and E. Rounded
specifications and size error option can be given for the final
result.

Divide statement
This statement is used to divide one data item by another

data item and calculate the quotient and the remainder if
required. The DIVIDE statement can be written in the
following five forms:

DIVIDE f identifier- 11INTO (indentifer-2), (identifier-3)

f literal-1)

DIVIDEf indentifier-ljlNTO
literal-1

DIVIDE (identifier-1
£ literal-1

DIVIDEf identifier-

| literal-1)

DIVIDEf identifier
^ literal-1

\

(identifier-2), GIVING

identifier-3

INTO (identifier-2), GIVING

identifier-3

REMAINDER (identifier-4)

BY (identifier-2) GIVING

(identifier-3)

BY (identifier-2) GIVING
identifier-3

REMAINDER identifier-4

48 ELECTRONICS FOR YOU

In the first format, the value in the identifier-1 is divided
into the identifier-2 and the quotient replaces the value of
the identifier-2 discarding the remainder. The calculation
can be summarised as follows:

identifier-2
identifier-2

identifier-1
Similarly, the identifier-3 is divided by the identifier-1 and

the quotient is stored in the identifier-3, discarding the
remainder. In the second format the single quotient ob¬
tained by dividing the identifier-2 by the identifier-1 is
stored in each data item specified following the word GIV¬
ING. In the third format both the quotient and the remain¬
der are produced. The fourth and the fifth formats use the
word BY instead of the word INTO. This causes the
identifier-1 to be divided by the identifier-2. In the fourth
format the quotient alone is stored in each of the identifiers
following the word GIVING. In the fifth format both the
quotient and the remainder are produced. When we use the
GIVING form both the dividend and the divisor are saved,
whereas in other cases, the dividend is replaced by the
quotient. Rounded and size error options can be given for
the result in all cases. The following are examples of valid
DIVIDE statements:

1. DIVIDE A INTO B

2. DIVIDE A INTO B GIVING C, D, E
3. DIVIDE B BY A GIVING C, D, E
4. DIVIDE B BY A ON SIZE ERROR GO TO

OVERFLOW
5. DIVIDE B BY A GIVING C, D, E ROUNDED
6. DIVIDE B BY A GIVING C REMAINDER D

Accept statement
The Accept statement is used to read low-volume data

from a designated low-speed hardware device. The general

format is as follows:
ACCEPT (identifier) FROM (mnemonic-name-1)

The mnemonic name is the programmer assigned name for
the hardware device which is to accept the data. This name
must have appeared in the Special Names paragraph of the
environment division before it is used in the procedure
division. The maximum length of data which the hardware
device can transfer through this statement depends on the

implementor.

This statement is usually used to give the computer mes¬
sages from console. Occasionally this statement can also be
used to give the computer messages from the card reader.
With an accept statement only one card can be read at a
time and after executing it the computer will output a
message ‘Awaiting Reply', and wait until the operator gives
the next instruction manually. Thus we see that there is a
wastage of computer time in using the Accept Statement

and so this statement is used very sparingly except when the
operator wants to give some special message to the compu¬

ter.

Display statentoftt
The Display statement is used to write a low-volume data

on a designated low-speed hardware device. The general
format is as follows:

DISPLAY f literal-1)

\ identifier-1 $
UPON mnemonic-name-1
This mnemonic name is the programmer assigned name for
the line printer which is to display the identifier-1 or the
literal-1. If UPON and the succeeding words aie not given,
the display is made on the console typewriter. If the
mnemonic name is given in the statement, it must have
occurred in the special names paragraph of the environ¬
ment divison. The Display statement is usually used in
conjunction with the Accept statement. The Display and
the Accept statements must be restrictively used, firstly
because they take lot of computer time for execution, and
secondly because they require the attention of the opeiator
every time a line is accepted or displayed. The following are
some of the valid Accept and Display statements:

ACCEPT KARD-IN FROM CARD-READER-1
DISPLAY KARD-IN UPON PRINTER-1
DISPLAY KARD-IN
ACCEPT KARD-IN

In the last two statements the transfer is through the con¬
sole typewriter.

Move statement
The MOVE statement is used to transfer data or copy

data from one computer storage location (identified by
data name) to another storage location (identified by
another data name). The general form of the statement is as
follows:

MOVE \ data-name-1
(literal

TO (data-name-2) [data-name-3j...
The operand to the left of TO is referred to as the sending
area, while the operands to the right of TO are referred to
as the receiving areas. It must be noted that the contents of
the sending area remain unchanged by the MOVE opera¬
tion. The following arc some examples of valid MOVE
statements:

MOVE PAY-IN TO PAY-OUT
MOVE AREA-1, TO AREA-2, AREA-3, AREA-4
MOVE ‘GAIN’ TO FIELD-1

When one moves one data item to another data item, the
size of the receiving field must be as large as the field being
sent, otherwise the data will be truncated. Truncation is
determined by the receiving field. When the receiving field
is alphanumeric and smaller than the sending field, the
excess right-hand characters of the sending field wilt be
truncated. When the receiving field is numeric and smaller,
excess left-hand characters of the sending field will be
truncated. When the receiving field is alphanumeric and

APRIL 1978 49

larger, the dats is placed in the leftmost positions of the
receiving field. The remaining receiver positions are au¬
tomatically filled with spaces. When the receiving field is
computational and larger, the data is placed in the right¬
most positions of the receiving field (rightmost sending
digit goes to rightmost receiving digit etc). The remaining
receiver positions are automatically filled with zeros.
Numeric data moved into a field with edit symbols is hand-
lfd according to the rules for numeric fields which we will
be seeing later.

The following table summarises the valid and the invalid
data movements:

Sending field Receiving field Legality

Alphabetic

Alphabetic
Numeric
Numeric
Alphanumeric
Alphanumeric

Numeric
Alphanumeric

Alphanumeric
Alphabetic
Numeric
Alphabetic

Illegal

Legal
Legal for intege rs only

Illegal
Legal for integers only
Legal for alphabetic
characters only

Stop Statement
The STOP statement is used to make either a temporary

stop or a permanent stop of the computer processing of a
particular program. The general form is

When a literal is used, the literal will be displayed on the
conso>' typewriter, so that the operator may know where

the program has halted and take appropriate action for its
further continuance. When the statement is given as STOP
RUN the processing of the program is terminated perma¬
nently.

To be continued next month

Please note down this number:

635283
You can ring up this number
now to contact Electronics For
You.

* RADIOS. CAR RADIOS * TRAN¬

SISTORS * AMPLIFIERS * T V*

* TAPE RECORDERS * BATTERY

ELIMINATORS * TELECOMMUNI¬

CATION, TEST and other ELECTRO¬

NIC EQUIPMENTS are PAR EXCEL-

LENCE, manufactured from the bast

quality Indian Copper Clad sheet,

and supplied to suit your NEEDS, at

lowest possible price

If THANStORMER

rSa1icc
SALICO ELECTRONICS

£ 2 1 KRISHAN NAGAR DELHI 51 PHONl 21J004

Wanted:
Technical Penpushers

EFY is on the lookout for people who
have the knack to simplify (not over-)
technical matters so that these can be
understood by a larger cross-section of
readers, people who can write from
their own experiences, people who
(really) have something to say.

The articles may be constructional,
practical or those having some appli¬
cation in industry, trade, education or
R&D.

Honorarium will, of course, be paid
for such articles at the normal rates. •

—^Managing Editor

50 ELECTRONICS FOR YOU

