

Contents

Foreword
Why C? .. 4

C Basics

The structure of a C program... 6
The main function... 6

Comments in C .. 6
The #include directive .. 7

Keywords in C .. 7

Constants and Variables

Number systems .. 8
Data types .. 8
Constants ... 9
Variables .. 9

Operators in C

Arithmetic operators ... 11
Relational operators ... 11
Logical operators.. 11
Shortcuts .. 12

Functions in C

The function concept.. 13
Declaring a function ... 13
Calling a function.. 14

Program Control

If ... 16
if...else.. 16
switch ... 17
for ... 18
while ... 19
do...while .. 20

Appendix

Header file sfr_r813.h... 21
Header file math.h.. 23

elektor electronics 3

Foreword

Why C?

Many electronics hobbyists have used microcontrollers successfully, and they have

also written wonderful programs in assembly language. As the size and complexity of

an assembly-language program increase, the desire for a more effective

programming environment also increases. Anyone who has tried to implement a

mathematical function in assembly language, such as 1/x, sin(x) or the like, knows

the problems. Here a high-level language such as C, which is the industry standard

in the microcontroller and microprocessor world, offers decisive advantages. C

programs are portable, which means the program structure can be transferred to

other types of microcontrollers after it has been written. The only things that have to

be modified are the port assignments and the settings for the special function

registers.

Professional programmers claim that an assembly-language program that would take

14 days to generate can be generated in 2 to 3 days in C. What’s more, an

increasing number of semiconductor manufacturers are making highly effective

development environments available at no charge. That’s another good reason to

start using C.

But there’s a hitch. As we all know, the gods have ordained that success doesn’t

come without hard work. An introductory course in the C language and sample

programs from technical magazines can help you overcome the initial hurdles, but

will take a while before you can write you own programs. You will also have to master

a certain amount of specialist vocabulary. As can be seen from contributions to

microcontroller forums and questions asked in these forums, that forms a significant

problem for many electronics hobbyists.

This booklet is limited to the basic elements of the C language. We have intentionally

omitted complex C structures such as pointers, arrays, strings, structures, unions and

the like. This booklet is intended to serve as a reference for beginners. It cannot

replace a basic course in C, nor is it intended to do so.

4 elektor electronics

C Basics

The structure of a C program

All C programs consist of several parts, such as comments, preprocessor
instructions, declarations, definitions, expressions, assignments and functions. The
following listing shows a simple example.

 /* FILE :my1c.c */
 /* DATE :Wed, Nov 23 2005 */
 /* DESCRIPTION :Program toggles leds on port_1 */
 /* CPU TYPE :R8C */

 #include "sfr_r813.h"

 long t;

 setup_r8c()
 {
 prc0 = 1; /* Protect off */
 cm13 = 1; /* Xin Xout */
 cm15 = 1; /* XCIN-XCOUT drive capacity: HIGH */
 cm05 = 0; /* Xin on */
 cm16 = 0; /* Main clock = No Division mode */
 cm17 = 0;
 cm06 = 0; /* CM16 and CM17 enable */
 asm("nop"); /* Waiting for stable oscillation */
 asm("nop"); /* Assembly-language code
 asm("nop");
 asm("nop");
 ocd2 = 0; /* Change main clock */
 prc0 = 0; /* Protection on */
 pd1 = 0x0F; /* Set ports 1.0-1.3 to output*/
 }

 toggle_leds()
 {
 while (1)
 {
 p1 = 0x00;

 for (t=0; t<150000; t++);

 p1 = 0x0F;

 for (t=0; t<150000; t++);
 }
 }

 void main(void)

 { setup_r8c();
 toggle_leds();
 }

main function

function calls

value
assignment

timing loop

endless loop

function 2

function 1

value
assignment

comments

compiler directive

variable
declaration

assembly-language code

elektor electronics 5

The main function

Every C program must include at least one function, which is called the main

function. This is the primary function in a C program, and it is always the first function
to be called when the program is run. It’s considered good programming style to have
the main routine consist primarily or entirely of function calls, instead of containing
the entire code of the program. That makes the program a lot easier to understand
and maintain, and it allows the programming effort to be divided among several
programmers for large projects. The main function is declared in the same manner

as any other function.

All instructions and functions belonging to main are enclosed in curly brackets

{…} . This is called ‘block building’. In the above example, void means ‘empty’

and indicates that the main function does not require any input parameters and

does not return any result after the instructions are executed. The two instances of
the void keyword can also be omitted if desired.

Comments in C

All text strings and phrases that don’t form part of the actual program are called
‘comments’. Comments are ignored by the compiler, which means they do not
occupy any space in memory. However, they are quite valuable for explaining the
program (or important parts of the program) to other people. And of course, they’re
very useful for the author of the program as well. In many cases, you may not
remember why you wrote the code in a particular manner when you look at your
program several days later. And no matter how appropriate the saying ‘lean is
keen’ may be in other contexts, it certainly doesn’t apply to computer programs.

Single-line comments begin with two diagonal slashes and end automatically at
the end of the line.

A semicolon (;) is usually used to designate a comment in assembly-language

programming, but in the C language it marks the end of an instruction.

void main(void)
{
 /* Your program

 code goes here */
}

main()
{
 /* Your program

 code goes here */
}

/*
Comments are
enclosed between
diagonal slashes
and asterisks. */

// This is a single-line comment.

markers

block

6 elektor electronics

#include

There are many declarations and functions that are not included in the ANSI
standard for the C language, even though they may be necessary or very useful.
They are commonly ‘hidden’ in libraries. You have to tell the compiler to include
these library files, which are called ‘header files’, so it can use these declarations
and functions when it compiles your C source code. You can recognise header
files by the .h file extension.

Examples:

Used in C programs intended to be run on a PC.
[Standard input/output; includes the print function printf() .]

The Renesas library. The names and bits of the registers of the R8C
microcontroller, such as p1, pd1 , p1_7 etc., are defined here.

Keywords in C

A total of 32 terms known as ‘keywords’ are defined in the ANSI standard for the C
language. These keywords are reserved for the compiler. All keywords must be
written in lower-case characters, and they are not allowed to be used for other
purposes (such as naming variables).

Many C compilers add supplementary keywords to those defined in the ANSI
specification in order to make best use of the features of the compiler or
microcontroller. The terms listed below are also designated as keywords for the
R8C family of microcontrollers.

auto
break
case
char
const
continue
default
do

double
else
enum
extern
float
for
goto
if

int
long
register
return
short
signed
sizeof
static

struct
switch
typedef
union
unsigned
void
volatile
while

#include "stdio.h"

#include "sfr_r813.h"

asm
_Bool
far

_asm
_far
_near

near
restrict
inline

elektor electronics 7

Constants and Variables

Number systems

The C language can work with several different number systems (number bases):
decimal, octal, and hexadecimal.
Numbers stated without any special identification (notation) are interpreted as
decimal numbers by default. Numbers in all other number systems must be
specially identified. Octal numbers begin with 0, hexadecimal numbers with 0x ,

and binary numbers with 0b.

The English (US) convention is always used for numerical notation. That means a
full stop (‘period’) is used as the decimal marker for floating-point numbers. In C,
the comma is used in as a separator in lists of numbers or variables. A colon
marks a range of numbers.

Examples:

Data types

In C, the type of a variable must be declared before it can be used. Otherwise the
compiler will not know how much memory to allocate for the variable. Basically,
you should always select a type that is adequate for the intended purpose and
requires the least amount of memory space. The most important data types are
listed below.

Decimal(10) – 0123456789 5

Octal(8) 0… 01234567 05

Hexadecimal(16) 0x… 0123456789ABCDEF 0x5

Binary (2) 0b 0 1 0b11110000

3.14159
3,4 3 and 4
0:3 0->3, thus 0, 1, 2, and 3

USA

_Bool 8 0, 1
char 8 0 -> +255
signed char 8 -128 -> +127
int, short 16 -32768 -> +32767
unsigned int 16 0 -> +65535
long 32 -2147483648 -> +2147483647
float 32 -1.17..e-38F -> +3.4..e-38F

Base Notation Available characters Example

Type Memory space Value range

8 elektor electronics

Examples:

_Bool stop_button // button has only two states: on & off
unsigned int _year // 0 -> 65535 sufficient for year numbers
float _volume // floating-point number for calculations

Constants

Constants are numbers that cannot be changed in the program. That also includes
all ‘normal’ numbers. Whole numbers (integers, or int) are written without a

decimal marker (decimal point). Floating-point numbers (float) have a decimal

point followed by additional digits. Characters (char) are enclosed between

single quotation marks ('). Constants are declared using the #define

keyword.

Examples:

#define true 1 // 1 = true
#define false 0 // 0 = false
#define pi 3.14159 // the factor �
#define letter_1 'A' // 'A' key on the keyboard

The names of constants, variables and functions can be freely selected, but
they are not allowed to contain any keywords or operator symbols.
Basically, only the letters of the English alphabet, numerals and the
underscore (_) are used for names. You should chose names that give a

good indication of the practical meaning of the constant. For instance,
alarm_btn is much more meaningful than t1 .

Variables

A variable is an item stored in memory that can be changed in the program.
Variables can be numbers, letters, or text strings. In C, all variables must be
declared before they can be used. Variables are considered to be ‘statements’,
which means variable declarations must be terminated with a semicolon (;).

Variables are defined as follows:

Examples:

_Bool keypress ;

long counter ;

float radius ;

#define <label> value
No ; because this is

only relevant for the
compiler

type <label> ;

; because this is a

processor instruction

elektor electronics 9

Variables are assigned values as follows:

Examples:

keypress = 1 ; min_val = counter - 50 ;

keypress = false ; max_val = counter * counter ;

counter = 100 ; _circum = radius * 2 * pi ;

Commands and instructions for the processor, which are called
‘statements’, are terminated with a semicolon (;).

!

<label> = value ;

;

10 elektor electronics

Operators in C

Arithmetic operators

The symbols for arithmetic operators in C correspond to the familiar symbols used
on pocket calculators:

The equal sign has a different meaning in C than in ordinary mathematics. In C, it
is called the ‘assignment operator’. That means the expression to the right of the
equal sign is computed and the result is assigned to the variable to the left of the
equal sign. The following expressions are thus allowed in C, but not in normal
mathematics:

x = x+y ; // compute x + y and store the result in x
x = -x ; // change the sign of the variable x

Relational operators

Relational operators are used to compare variables. They return the result true

or false , depending on the event.

Logical operators

The logical operators AND, OR and NOT can be used to execute the familiar
operations of digital logic.

!

+ addition // examples: y = x + 3 ;
- subtraction // y = x – b ;
* multiplication // y = a * b ;
/ division // Y = a / b ;

> greater than == equal
>= greater tnan or equal != not equal
< less than
<= less than or equal

0 0 0 0 1
0 1 0 1 0
1 0 0 1 1
1 1 1 1 0

 AND OR NOT
 b a a && b a || b !a

elektor electronics 11

Example:

if(_price <= max_price && _account > 1000)
 _buy();

/* The function _buy() will only be called if _price is less
than or equal to max_price and _account contains more than
1000 pounds */

The Renesas C compiler for the R8C has several additional logical operators that
can be used for bitwise operations on variables:

Examples:

Shortcuts

Americans are masters at inventing shortcuts. That’s especially true for Dennis
Ritchie and Brian Kernigham, the inventors of the C language. Many programmers
type in their programs using the ‘hunt-and-peck’ system, so they try to avoid any
unnecessary typing effort.

Example:

for(t=0, t<100000, t++); /* timer loop */

& for bitwise AND operations b a a^b
 0 0 0
| for bitwise OR operations 0 1 0
 1 0 0
^ for bitwise XOR operations 1 1 1

a = 10011010
b = 11000011
a&b = 10000010

a = 10011010
b = 11000011
a|b = 11011011

a = 10011010
b = 11000011
a^b = 01011001

a*=b a = a*b a<<=b a = a<<b
a/=b a = a/b a>>=b a = a>>b
a+=b a = a+b a&=b a = a&b
a-=b a = a-b a|=b a = a|b
a%=b a = a%b a^=b a = a^b

a++ a = a+1 (increment)
a-- a = a-1 (decrement)

Shortcut Normal Shortcut Normal

12 elektor electronics

Functions in C

The function concept

Functions are the essence of the C programming language. A function can be
called from the main routine or from any other function. Every C program must
include at least one function, which is called main() . It is automatically called

when the program is started.
Functions are individual program segments (blocks) that perform specific activities
(operations), such as the familiar operations performed by pocket calculators:

 clears the input memory of a pocket calculator. In C, it would be described
as a function that does not require any numerical input (parameters) and does not
return any sort of number.

 expects to receive a number as input in order to calculate its inverse value.
In C, this is described as a function with an input parameter.

, by contrast, requires two parameters as input, and ,
 the summation function, requires several parameters.

 and , on the other hand, are functions that require one input

parameter.

Declaring a function

The general form of a C function is:

Examples:

A function with no input or output parameters:

The word void tells the compiler that the function wait_1 does not require any

input parameters and does not return any result. The void keywords can also be

omitted:

wait_1()
 asm("nop");

;

CE

1/x

+ - * / S

sin log

type function_name(type var1,type var2,type var3,...) ;

;

return
type

input parameter with
type declaration

void wait_1(void)
 asm("nop"); // Call no operation in assembly language

elektor electronics 13

If a function contains more than one instruction, the instructions must grouped into
a block by enclosing them in curly brackets ({ }). In that case the semicolon at

the end must be omitted.

A function with an input parameter but no return parameters:

/* The for loop increases the value of t stepwise
(increments t) starting from 0 until it reaches the
value of the input several_times (time delay) */

A function with input parameters and a return parameter:

/* This function expects three inputs, which are stored
in the variables length, width and height. The product
of these three variables is then calculated and returned
to the caller as a floating-point number */.

Calling a function

Functions are called by simply stating their names. This can be done at any
location in the program. After the function has been processed, which can be
recognised by the ; in case of a function containing only one instruction or the

curly bracket } in case of a function containing several instructions, a return to the

calling location occurs automatically. The keyword return has a different

meaning in C than in assembly language. In C, it designates the return value
instead of the end of a subroutine or function.

Multiple-level function nesting is allowed. ‘Function nesting’ means that one
function calls a second function, which in turn calls a third function, and so on.

wait_2()
{

asm("nop") // Wait three times
 asm("nop")

asm("nop")
}

no ;

no ;

int t;

wait_3(int several_times)
 for(t=0;,t<= several_times;t++);

float _volume(float length, float width, float height)
 return length*width*height;

14 elektor electronics

Examples:

Calling a function from the main routine without any input or return parameters:

Calling a function from the main routine with an input parameter but no return
parameters:

// The constant 100 is passed to function wait_3 .

Calling a function from the main routine with input and return parameters:

/* The values of the variables a, b, and c are passed to the
function _volume. The function then calculates the volume of
a body and returns the result to the variable no_of_litres.

void main(void)
{

wait_1();
}

void main(void);
{

wait_3(100);
}

void main(void);
{

no_of_litres = _volume(a,b,c);
}

elektor electronics 15

Program Control

if

It frequently happens that an instruction or block of instructions should only be
executed if a certain condition is satisfied. A condition is satisfied if a test of the
condition returns the value true . Every number except zero is regarded as

true ; zero is regarded as false .

The general form is:

If several instructions are to be executed when the condition is satisfied, they must
be grouped into a block.

Examples:

if...else

If one instruction or block of instructions is to be executed when a condition is
satisfied, while an another instruction of block of instructions is to be executed
when the condition is not satisfied, an if...else conditional statement is

used.
The general form is:

If several instructions are to be executed, they must be grouped into a block.

if(button == 3)
{
 grn_led = _off;
 red_led = _on;
}

if (condition) statement ;

;

if (condition)
{

statement_1
statement_2
statement_3
// . . .

}

no ;

no ;

if (condition) statement_1 ; else statement_2 ;

;
;

if(button == 3)
 red_led = _on;

16 elektor electronics

Examples:

switch

If a conditional statement has more than one or two possible outcomes, it is very
tedious to implement it using the if...else structure. In that case it’s better to

use the switch /case structure with multiple alternatives. This type of program

control can be compared to a rotary selector switch with multiple positions (cases).

The general form is:

The switch function compares the content of variable to the value of a

constant (constant_x) for each of the defined cases (case). If the result of

the comparison is positive, the corresponding instruction (instruction_x) or

if(button == 3)
 red_led = _on;
else
 grn_led = _on;

if(button == 3)
{
 grn_led = _off;
 red_led = _on;
}
else
{
 grn_led = _on;
 red_led = _off;
}

if(button == 3)
{
 grn_led = _off;
 red_led = _on;
}
else
 grn_led = _on;

;

;

switch (variable)
{

case constant_1 ;
 instruction_1;
 break;

case constant_2;
 instruction_2
 break;

case constant_3;
 instruction_3

case // . . .
 break;

default instruction_x;
}

==

markers

block

no ;

elektor electronics 17

block of instructions is executed. Program control returns to the caller of the case

statement when the break keyword is reached. If none of the cases listed in the

case statement is found, the instruction following default is executed. The

default portion can be omitted if it is not necessary.

Example:

/* Enable the red LED if the value of _button = 1, the yellow
LED if it is 2, and the green LED if it is 3. If the variable
_button does not contain 1, 2, or 3 (e.g. 4), enable the blue
LED */

for

A for loop is used if part of a program must be executed multiple times.

The general form is:

When the for loop is called, start_value is assigned to a previously defined

count variable. The count variable is then incremented or decremented by the
value of step_size each time the loop is executed, until the test of

end_condition yields the logical value true .

If several instructions are to be executed, curly brackets ({ }) must be used to

group them into a function block.

markers

block

for(start_value; end_condition; step_size)
 instruction_1;

;

switch (_button)
{

case 1:
 red_led = _on;
 break;

case 2:
 yel_led = _on;
 break;

case 3:
 grn_led = _on;

default blu_led = _on;
}

may be
omitted

18 elektor electronics

Examples:

/* Integer variable t is assigned the value 0 when the for
loop is entered. Next, the function blink_led() is called.
After the first pass through the loop, the variable t is
incremented (t++) to the value 1. As 1 is less than 10, the
process continues until t = 9. The loop is thus executed ten
times. */

/* This loop is executed only two times. */

while

A while loop is used when execution is tied to a condition.

The general form is:

When the while loop is called, the value of the condition (_condition) is first

tested. If the result is positive (true), the instructions (instruction_x) are

executed repeatedly until the result of the test is false.

a = 2;
b = 10;
c = 4;

int i;

for(i = a; i < b; i+ = c)
{
 red_led = _on;
 red_led = _off;
}

count variable

variables

while(_condition)
{
 instruction_1;
 instruction_2;
 // . . .
}

no ;

no ;

int t;

for(t=0, t < 10, t++)
 blink_led();

elektor electronics 19

Example:

/* The function blink_led is executed until the function
button_pressed no longer returns the value 1 to variable i.

do...while

A while loop will not be executed if the condition is not satisfied at the

beginning of the loop. If it is necessary for instructions to be executed at least
once, the condition must be tested at the end instead. A do...while loop is

used in such cases.

The general form is:

Example:

/* The function blink_led is executed at least once */

do
{
 instruction_1;
 instruction_2;
 instruction_3;
 // . . .
}
while(_condition);

#define true 1

while(i == true)
{
 i = button_pressed();
 blink_led();
}

==

no ;

no ;

;

#define true 1

do
{
 i = button_pressed();
 blink_led();
}
while(i == true);

==

20 elektor electronics

Appendix

Header file sfr_r813.h

The header file sfr_r813.h provides access to the special function registers

(SFRs) of the R8C microcontroller. These registers contain the basic settings for
the microcontroller, such as the port directions (in/out), timer settings, A/D
converter settings, UART settings, and so on.
The R8C microcontroller has more than 50 SFRs. That means we have to limit
ourselves here to a selection of the most important SFRs. Refer to the R8C/13
Group Hardware Manual for detailed information on all of the SFRs.

Port registers (P0, P1, P2, P3 and P4)

A port is a memory location that is connected to the pins of the microcontroller and
is thus externally accessible. Ports are used for inputting and outputting data. A
port can be either an input or an output. When the microcontroller is started up, all
ports are configured as inputs by default. The direction (input or output) can be
changed using the Port Direction (PD) registers.

The following example shows how to change the port direction:

… and the following example shows how to output data via a port:

/* If a 1 is written to a port register, the supply voltage (e.g.,
+5 V) will be present on the corresponding pin. A 0 causes the pin
to be at ground potential (0 V) */

Examples:

pd1 = 0x0F;
/* port1, bits 0:3 = output
 bits 4:7 = input */

pd2_3 = 1;
/* port2,bit3 = output */

Examples:

p1 = 0x0F;
/* port1, bits 0:3 = 1
 bits 4:7 = 0 */

pd2_3 = 0;
/* port2,bit3 = 0 */

elektor electronics 21

Protection registers (PRCR)

The PRCR registers can be used to protect the contents of other important
registers against overwriting (if the program goes out of control, for instance).

System Clock Control registers (CM1, CM2 and OSD)

The R8C microcontroller has two oscillators to provide the clock for the CPU. One
oscillator is internal and is called ‘on-chip oscillator’, while the other is external and
is called ‘main clock’. The ‘main clock’ oscillator uses a quartz crystal connected to
the Xin and Xout pins.
The CM registers determine how the microcontroller clock signal is generated. In
addition, a prescaler can be enabled and configured to reduce the frequency of the
processor clock.

Bit b0 is the write-protect
bit for CM0, CM1, OCD,

HR0 and HR1

Examples:

prc0 = 1;
/* write protection disabled */

prc0 = 0;
/* write protection enabled */

Examples:

cm13 = 1;
/* Xin/Xout on ports p46 and p47
= ext. xtal */

cm15 = 1;
/* Xin/Xout driver high */

cm16 = 0;
/* prescaler for CPU clock */

cm17 = 0;
/* prescaler for CPU clock */

prescaler
setting

external crystal
oscillator mode

oscillator gain

cyrstal oscillator enabled CM1 prescaler
bits 6 & 7 set

Examples:

cm05 = 0;
/* enable Xin/Xout on ports p4.6
and p4.7 */

cm06 = 0;
/* enable prescaler */

22 elektor electronics

The Oscillator Stop Detection (OSD) register is used together with the other
registers to select the clock source, and it is also responsible for monitoring the
clock signal.

Header file math.h

The header file math.h contains the library of mathematical functions for the

R8C. Here we describe some of the most important functions.

system clock
select bit

Examples:

osd2 = 0;
/* enable external xtal osc. as
CPU clock source */

osd2 = 1;
/* disable external xtal osc. */

Functions of type double
f_name(double x);

sin();
cos();
tan();

asin();
acos();
atan();

sinh();
cosh();
tanh();

sqrt();

exp();
log();
log10();

mod();

fabs();
floor();
ceil();

Functions of type float
f_name(float x);

sinf();
cosf();
tanf();

asinf();
acosf();
atanf();

sinhf();
coshf();
tanhf();

sqrtf();
powf();

expf();
logf();
log10f();

fabsf();
floorf();
ceilf();

Functions of type double
f_name(double x, double y);

pow();

fmod();

atan2();

fmod(); powf();

atan2f();

fmodf();

Functions of type float
f_name(float x, float y);

elektor electronics 23

