BASICALLY

BASIC

Graham Hall, B. Sc.

BASIC Functions

One of the features of the BASIC language which makes it suitable for
such a wide range of applications, is the set of pre-written instructions that
can perform commonly used operations. These instructions are called
‘Functions’. The functions to be described are the more common ones
available on most personal computer systems. The list is not exhaustive,
and the way in which they are used in the particular version of BASIC used
by your machine may be slightly different from the description here. You
should check the users reference manual, for your computer for the
complete description of functions available in your machines version of
BASIC.

There are three types of functions: math, print and string. Math functions
perform mathematical operations, print functions cause operations on
terminal output and string functions perform operations on quoted strings
or string variables. String functions will be described later in this series.

Math Functions

There are two types of math function - arithmetic and trigonometric.
Table 1 lists and summarises the common math functions which are fully
described below.

ABS Function

To use the ABS (Absolute value) function the function keyword is
followed by an argument enclosed in parenthesis, on a statement line. The
result returned is the magnitude, regardless of sign, of the argument. For
example the absolute value of both +15 and -15 is 15. The following program
demonstrates this:
10 PRINT ABS(15), ABS(-15), ABS(0-10)
20 END RUN
151510
The argument of the function can be any valid BASIC expression, variable
or constant. The ABS function is useful for scientific applications where the
magnitude of a number is required and not its sign.

EXP Function

The EXP (Exponential) function computes the value of the mathematical
constant ‘e’ raised to the power of the numeric argument specified to the
function within parentheses. The constant ‘e’ is the base of natural
logarithms (to six significant digits, e = 2.71828). For example, to raise e to
the power of two the EXP function can be written in a program as: 10 PRINT
EXP(2). The inverse of the EXP function is the LOG function, which computes
the logarithm to the base e of an argument (this is known as the ‘natural
logarithm’). This relationship can be demonstrated by combining the EXP
and LOG functions:

10 PRINT “EXP (2) = " : EXP(2)

20 PRINT "LOG(2) =" ; LOG(2)

30 PRINT “LOG (EXP(2)) =" ; LOG (EXP(2))

40 PRINT "EXP (LOG(2)) =" ; EXP (LOG(2))

50 END RUN

EXP(2) = 7.38906 LOG(2) = 0.69315 LOG(EXP(2)) = 2 EXP(LOG(2)) = 2
Lines 30 and 40 of the above function program are the inverse of each other.
They illustrate how the argument to a function can be another function. The
EXP function is useful for scientific applications.

INT Function

The argument to the INT (Integer) function can be any valid constant,
variable, function or expression. The value returned is the largest integer
less than or equal to the argument, i.e. the integer part of the argument is
separated from the fractional part. For example:
INT (3.142) = 3, INT (0.69) = 0 and INT (-4.15) =-5
Note the value returned for a negative argument is a greater negative integer.

LOG Function
The LOG (Logarithm) function computes the natural logarithm 24
(logarithm to the base e) of its argument. The argument can be any positive

constant, variable, function or expression which evaluates to a positive
number. An error message will be printed if the argument is equal to or less
than zero.

Some versions of BASIC also have a logarithm function which
determines logarithms to the base ten (common logarithm). However, if your
version of BASIC does not include this facility it is possible to convert the
arguments natural logarithm to another base by dividing the natural
logarithm of the argument by the natural logarithm of the new base. For
example to find the logarithm of five to the base ten (common logarithm):
10 PRINT "LOGARITHM TO BASE 10 of 5 = ” ;LOG(5)/LOG(10)

20 END RUN
LOGARITHM TO BASE 10 of 5 = 0.69897

RND Function

The RND (Random) function generates a random number between zero
and one (but not including zero or one). The argument of the RND function
can be any positive integer, zero or negative integer. The way the argument
determines the operation of the RND function differs for different versions
of BASIC. Usually, any positive integer within parentheses gives a new
random number each time the RND function is used in a program. With zero
or a negative integer specified, the same random numbers are generated.
This is useful for debugging a program because if the numbers generated
by the RND function is varied for each execution, program errors would be
difficult to find. Some versions of BASIC do not require the RND function to
be specified with an argument. In this case a RANDOMISE statement is
included in a program before the RND statement, if different random
numbers are required for each program execution. The random numbers
generated by the RND function can be modified by expressions involving
other BASIC functions and operators. For example, to generate a random
integer between one and one hundred:
10 PRINT INT(100 * RND(l)) + 1
The argument of the INT function is 100 * RND(I)’ which is an expression
consisting of a constant, 100, multiplying a random number generated by
the RND function. The result of this combination of functions is a random
integer between zero and ninety-nine. The range, is adjusted from one to a
hundred by adding the constant one to each number generated.

The RND function is especially useful for games programs and
simulations.

SGN Function

The SGN (Sign) function returns a result which depends on the sign of
the argument. The argument can be any valid constant, variable or
expression. If the argument evaluates to a positive value the SGN function
returns a 1; a zero would be returned if the argument evaluates to zero;
otherwise a -1 is returned when the argument evaluates to a negative value.
An example of this is:

10 ON SGN (x) + 2 GOTO 200,300,400

Here the constant two is added to the result returned by the SGN function.
The result is now a positive integer (1,2 or 3) which is used as an argument
to the ON GOTO statement to make a branch.

If X is negative, the result of SGN (X) +2 is 1, which directs program
control to line 200. If X is 0, the result of SGN (X) +2 is 2, which directs
program control to line 300. A branch is made to line 400 when X is positive
because then the result of SGN (X) +2 is 3.

SQR Function

The SQR (Square Root) function determines the square root of its
argument. The argument can be a positive constant, variable or expression.
An error message will be returned if the argument specified is negative.
However, some versions of BASIC convert a negative argument to its
absolute value and return the square root of the converted value. For
example, PRINT SQR(4) will output a 2 to the terminal. The command PRINT
SQR(-4) will cause an error message to be output unless the absolute value
of the argument is taken by the SQR function.

Trigonometric Functions
ATN Function

The ATN (Arctangent) function is a trigonometric function that accepts
a numeric argument. The ATN function computes and returns the principal
value of the arctangent of the argument in radians (or angular measure).
This will be within the range: - T2 < ATN(x) <1t/ 2
The relationship between the radian and degree is:

1 degree = 1 / 180 radians, where T represents the circular constant
3.1415927.

To convert the result of the ATN function from radian measure to
degrees the value returned is multiplied by 180 / 1t (i.e. 57.2957795). For
example, the command PRINT ATN (10)
prints the arctangent of 10 in radians. The command
PRINT ATN (10) * 57.2957795
will print on the terminal the arctangent of 10 in degrees.



B

TR

ABS(X) Returns the absolute value of X.

ATN(X) Returns the arctangent of the value X in radian measure.
COS(X) Returns the cosine of the radian value X.

EXP(X) Returns the constant V (2.72828) raised to the power of
X. INT(X) Returns the largest integer value of X.

LOG(X) Returns the natural logarithm of the value X.

RND(X) Returns pseudo random numbers.

SGN(X) Returns an indication of the sign of X.

SIN(X) Returns the sine of the radian value X.

SQR(X) Returns the square root of X.

TAB(X) Positions output to the terminal beginning at column X on
the output line.

TAN(X) Returns the tangent of the radian value X.

Table 1. Common Math and Print Functions.

The ATN Function is the inverse of the TAN (Tangent) function. This is
shown by the following short program:
10 PRINT “ATN(10) =" ; ATN(10)
20 PRINT “TAN(ATN(10)) =" ; TAN(ATN(10))
30 END
The expression TAN(ATN(10)) will evaluate to 10 because of the inverse
relationship between the ATN and TAN functions.

COS Function

The COS (Cosine) function requires an angular argument in radian
measure and returns the cosine of the angle. To convert an angle from
degrees to radian measure so that it can be used as an argument to the
COS function, the angle in degrees is multiplied by the ratio t / 180 (i.e.
0.0174533).

For example, the command PRINT COS (45 * 0.0174533) will print the
cosine of the 45 degree angle.

SIN Function

The SIN (Sine) function requires an angular argument in radian measure
and returns the sine of the angle. The same method as described above
can be used to convert an angle from degrees to radians. For example, the
command PRINT SIN(45* 0.0174533) will print the sine of the 45 degree
angle.

TAN Function

The TAN (Tangent) function requires an angular argument in radian
measure and returns the tangent of the angle. This is the inverse of the
arctangent (ATN) function previously described. For example, to print the
tangent of a 30 degree angle the command PRINT TAN (30 * 0.0174533)
can be used.

Print Functions
TAB Function

The TAB (Tabular) function is used to position output on the terminal.
The argument that the TAB function is numeric and moves the start of

printing to the specified column. For example, the command PRINT TAB
(20); "MESSAGE" outputs the string MESSAGE beginning at the twenty-first
column. On most personal computer systems an output line is divided into
72 columns numbered from 0.

User Defined Functions

BASIC allows the programmer to name and formulate a function using the
DEF (Define) statement. The DEF statement has the following format:

line number DEF FN n (x) = expression

For example, you may wish to define a function which would return the area
of a circle given the radius. Such a function would be;

10 DEF FN A (x) = 3.1415927 * X 72 (since area of a circle = 1 x radius
squared).

The function name consists of three letters. The first two F and N must
always be present but the last can be any letter from A to Z. This allows
defined functions in one program (although some systems allow a letter
immediately followed by a single number as a function identifier).

The argument to the function is the ‘dummy variable’ within the
parenthesis (x). This reserves memory space for the arguments given to the
function later in the program. Any legal variable name can be used as a
dummy variable.

The expression on the right hand side of the equal sign is the calculation
the function is to perform. The following program demonstrates how the
function would be defined and then used to calculate the area of ten circles:
10 REM - CALCULATE AREA OF CIRCLES OF RADIUS 7-10 cm
20 DEF FN A (x) 3.1415927 * X~ 2
30 PRINT TAB (5); "RADIUS (CM)’; TAB (20); "AREA (CM 2)”

40 FORX =110 10

50 PRINT TAB (8); X; TAB (22); FN A (x)

60 NEXT X

70 END

The program is composed of the following lines:

Line 10 - The REM statement outlines the programs function. The characters
following REM are ignored by the computer.

Line 20- This is the function definition. The function is named FN A and is
equal to the expression 1 X 12, where X is the functions argument. It is
advisable to place all function definitions at the beginning of a program so
that the program is easier to read and follow.

Line 30 - The TAB function is used to format the output to the terminal. The
,heading ‘RADIUS (CM)' will begin at the sixth output line column and ‘AREA
(CM 2)" will begin at the twenty-first column.

Line 40-The FOR statement initialises the loop index to one and sets the
range to ten.

Line 50 - The PRINT statement outputs the value of X (underneath the
heading ‘RADIUS (CM)’ because of the formatting of the TAB function)
followed by the value of the area of the circle of radius X computed by the
FN A function defined on line 20.

Line 60 - The next statement increments the value of X by one and directs
program execution back to line 40.

Line 70 - The END statement signifies program completion.





