
BASICALLY
BASIC Graham Hall Bsc.

Files
BASIC has three methods of supplying data to a program:

1. The INPUT statement - the user interacts with the computer while
the program is running. Each time the program is run new data is
requested and is input from the terminal.
2. The READ, DATA and RESTORE statements - the READ statement
directs the program to read from a list of values built into a data block by
a DATA statement. In terms of program execution time, it is much more
efficient to use READ and DATA statements than INPUT statements
because the user does not have to interact with the program when it is
run. The RESTORE statement enables the same data to be used more
than once during the execution of the program.
3. The file statements - data can be accessed from or written to a
uniquely named file which is separate from the main program. The
computer system stores a file on peripheral devices such as disks or
magnetic tapes. As the file is stored under its own name separate from
the program which created it, different programs can use the file name
to make that file's data available.

The use of the INPUT, READ, DATA and RESTORE statements has
already been described. Now the BASIC statements used to create a
file, place data into it, and make itavailabletoa program are described.
Since files are externally stored and program independent, their
configuration and characteristics such as size and data access depend
on the computer system and peripheral device that you use. For these
reasons the description.to follow will be general and serves only as an
introductory explanation. For a specific and more complete description
refer to your systems user guide.

Most personal computer systems use 'sequential files'. These files
are usually terminal - format files in which the contents consist of a
collection of ASCII characters stored in lines of various lengths exactly
as they would appear on the terminal. A sequential file is one in which
the data assigned to the file is arranged one item after another from the
beginning of the file. To retrieve an item from the file all items
preceding it must be retrieved first. Some systems also allow virtual
array files and record files to be created but these will not be described
here.

All versions of BASIC have statements to:
i) create a new file and to assign it a unique name,
ii) place data into a file (writing to a file),
iii) access data from a file (reading a file),
iv) close a file which has previously been opened by a program.
These will now be described.

Creating and Opening a File
The OPEN statement enables a new file, or an existing file, to be

opened and associated with a file number which establishes a
communication channel between the program and the file. Some
versions of BASIC only allow one file at once to be used by a program so
it is not required to associate a file number since this will be a system
default.

Usually the OPEN statement performs several functions which
include naming the file, designating the operations to be performed
and opening a communication channel. An example of this would be:
10 OPEN "string" FOR INPUT AS FILE # expression

{FOR OUTPUT
The OPEN "string" component of this statement either references a
file which already exists, in which case the file name enclosed within
quotation marks is used to locate the file or names a new file. The file
name is a string of alpha -numeric characters enclosed within quotation
marks. Usually it must be less than a certain maximum number of
characters depending on the system being used. It could also be a
string variable.

The FOR INPUT or FOR OUTPUT component of the open statement
is optional - one or neither of these portions can be used. When the
FOR INPUT option is used BASIC opens the file specified as the file
name and allows the data it contains to be used by the program. An
error message is returned and displayed on the terminal if BASIC tries
to open a file which does not<exist. The FOR OUTPUT option creates a
new file and allows the program to write data to it. If neither is specified
BASIC searches for a file with the name specified in "string". If the file is
found it is opened; otherwise a new file assigned to that name is
created.

Part 14

The AS FILE # expression portion of the OPEN statement associates
the file and the program with a common communication channel. This
enables the file, which is stored on a peripheral device, to be associated
with the current program which is in the computer's main memory
area. The location associated with the file name is called a channel
number and is specified in the expression part of the AS FILE # portion.
This location can then be accessed by the program.

The following examples show how the OPEN statement is used:
20 OPEN "SUBJECT" FOR INPUT AS FILE # 1
This statement opens the file named SUBJECT. The FOR INPUT portion
shows that the file already exists and that the data is to be read from the
file. The AS FILE # portion establishes communication channel 1 as the
link between the program in main memory and the file on a peripheral
device.
20 OPEN "INFORM" AS FILE # 3
This statement causes BASIC to search for the file named INFORM. If
the file exists it is opened and the program can access its data; if the file
is not found a new file is created and assigned to the file name INFORM.
The program can then write data to this file. The file is accessed by
channel number 3.
10 OPEN "RESULTS" FOR OUTPUT AS FILE # 2
This statement creates a new file which is assigned to the file name
RESULTS. The FOR OUTPUT portion of the statement notifies BASIC
that this is a new file to which data can be written. The AS FILE # 2
portion of the OPEN statement establishes communication channel 2
as the link between the program in main memory and the file on a
peripheral device.

Some versions of BASIC have different OPEN statements to open a
file for reading and to open a file for writing. For example, to open a file
to accept data the statement could be WOPEN (write open) but to open
a file to retrieve data the statement could be ROPEN (read open). This
depends on the system you are usingand will be explained in the user's
guide for your system.

Closing a File
All files opened by a program should be closed before the program

terminates execution. Unless they are closed the file may become
'corrupt', that is some of the contents may be spuriously altered or
destroyed. The CLOSE statement is used to close a file and dissociate it
from a communication channel. After a file has been closed it cannot
be accessed until it has been re -opened.

The general format of the CLOSE statement is:
line number CLOSE ([] expression list)
where expression list may be one file number or a list of opened file
numbers separated by commas. The part of the CLOSE statement
shown within square brackets is usually optional. If no expressions are
specified all files opened by the program are closed.

The following examples illustrate the use of the CLOSE statement:
10 CLOSE # 1:REM CLOSE FILE ASSOCIATED WITH CHANNEL 1
20 X=3
30 CLOSE 2,X,3+2:REM CLOSE FILES 2,3&5
40 CLOSE:REM CLOSE ALL FILES

Writing to a File
To write data to the terminal the BASIC PRINT statement is used.

The PRINT statement can also be used to write data to a file. The
general format is:
PRINT (#) channel number, list
where channel number can be the communication channel number
associated with a file that has been opened with the OPEN statement or
zero. If zero is specified the output is to the terminal. The # character
preceding the channel number is usually optional. List can be any
numeric or string expression or a numeric or string variable. Each item
in the list must be separated with a comma or a semicolon. Also the first
item in the list must be separated from the channel number by
a comma.

The following short program opens a file called EXAMPLE for output
and then writes the string "FIRST LINE OF FILE EXAMPLE" to the file
when the program is executed.
10 OPEN "EXAMPLE" FOR OUTPUT AS FILE # 1
20 PRINT # 1, "FIRST LINE OF FILE EXAMPLE"
30 CLOSE # 1
40 END

52 Maplin Magazine December 1982

The same result would be achieved by assigning the string to a
string variable and then printing the string variable, i.e. line 20 could be
substituted with the lines:
15 LET M$ = "FIRST LINE OF FILE EXAMPLE"
20 PRINT # 1, M$

The next section shows how this data can be retrieved from the file.

Reading from a File
To input data to a program from the terminal the BASIC INPUT

statement is used. The INPUT statement can also be used to retrieve
data from a file to use as input to the program. The general format is:
INPUT (#) channel number, list
where channel can be the communication channel number associated
with a file previously opened using the OPEN statement, or zero. If zero
is specified the input is from the terminal as for the program INPUT
statement.

List can be a single string or numeric variable or a list of variables
separated by commas. Also the first item in the list must be separated
from the channel number by a comma. The '41' character precedingthe
channel number is usually optional.

The INPUT # statement line that retrieves data from a file must
duplicate the format of the PRINT # statement that wrote the data. Also
the type of variable used to store the retrieved data must correspond to
the type of data item being retrieved. When the INPUT # statement is to
request more than one data item, the data must have been written to
the file separated by a string constant comma. This is because the
INPUT # statement reads data in the file in the same manner as a
program INPUT statement (where the data following a DATA statement
is separated by commas). For example, the statement which writes the
integers 1 and 2 and the string "THREE" to the file assigned to channel
number 1 is:
10 PRINT # 1, 1, ",", , 2, ",", "THREE"
The program line retrieving this data would be:
20 INPUT # 1, A, B, Z$

When this statement is executed the first data item retrieved from
the file is assigned to the variable A, the nextto variable B and finally the
string is assigned to the string variable Z$. These variables can then be
used in other BASIC statements to perform any desired operation on
the data within the program.

The following programs demonstrate how data can be written to and
retrieved from a file using BASIC file statements.
10 REM FILE EUROTEMPS TO BE WRITTEN TO
20 OPEN "EUROTEMPS" FOR OUTPUT AS FILE # 1
30 READ P$, C, F
40 IF P$ = "" THEN GOTO 130
50 PRINT # 1, P$; ",'; C; " F
60 GOTO 30
70 DATA "LONDON", 18.7, 65.7
80 DATA "AMSTERDAM", 21.0, 69.8
90 DATA "EDINBURGH", 17.8, 64.0
100 DATA "PARIS", 22.8, 73.0
110 DATA "MUNICH", 22.8, 73.0
120 DATA "", 0, 0
130 PRINT # 1, P$; ",'; C; ",'; F
140 CLOSE # 1
150 END

' The program consists of the following lines:
Line 10 - The REM statement serves only as a comment. The
characters after REM are ignored.
Line 20 - The OPEN FOR OUTPUT statement creates a new file and
assigns it the name "EUROTEMPS". The AS FILE # 1 portion establishes
communication channel number 1 as the link between the program in
main memory and the file on a peripheral device.
Lines 30, 70 to 120 - The READ statement on line 50 is associated with
the DATA statements on lines 70 to 120. When it is executed the READ
statement assigns data from the DATA statements to the variables P$,
C and F. Each data line is a string followed by two numeric constants.
Lines 40, 120-The end of the data is signalled by a null string followed
by two zeros. The IF THEN statement tests the string assigned to P$ to
see if it is null. If the condition is true the program control is directed to
the CLOSE statement on line 140 which closes the file. Some versions
of BASIC have file statements which test whether the end of the file has
been reached. If this facility was available on your system it would not
be necessary to set up a dummy data item to signify the end of file.
Line 50 - The PRINT # statement writes the variables P$, C and Fto the
file associated with channel 1. The data is written to the file separated
by string constant commas. This is to enable the data to be retrieved
using the INPUT # statement.
Line 60 - The GOTO statement repeats lines 30, 40 and 50 to write all
the data contained in the DATA statements to the file.
Line 130 - The PRINT # statement writes the null string and zeros to
the file.
Line 140 - The CLOSE statement closes the file EUROTEMPS and
disassociates it from communication channel 1.
Line 150 - The END statement signifies program.completion.

To write the data to the file EUROTEMPS the program must be
executed by typing RUN. After program execution is complete the data
contained in the file EUROTEMPS can be made available to any BASIC
program.

A program to retrieve the data contained in the file EUROTEMPS is:
10 REM DATA TO BE RETRIEVED FROM FILE EUROTEMPS AND

DISPLAYED ON THE TERMINAL
20 OPEN "EUROTEMPS" FOR INPUT AS FILE # 1
30 INPUT # 1, C$, C, F
40 IF C$ = "" THEN GOTO 70
50 PRINT C$, C, F
60 GOTO 30
70 CLOSE # 1
80 END

RUN

LONDON 18.7 65.7
AMSTERDAM 21.0 69.8
EDINBURGH 17.8 64.0
PARIS 22.8 73.0
MUNICH 22.8 73.0
The program consists of the following lines:
Line 10 - The REM statement serves only as a comment.
Line 20 - The OPEN statement causes BASIC to locate the file
EUROTEMPS on the peripheral storge device. The FOR INPUT portion
of the statement shows that the file already exists and that the data it
contains is to be retrieved. AS FILE # 1 associates the file with
communication channel number 1.
Line 30 - The INPUT # statement reads the data items from the file
and stores them in variables. This duplicates the format of the PRINT#
statement on line 50 of the program that created the file. That is, the
variables match in type and number, and a comma separates the data
items in the file. If this was not the case, BASIC would display an error
message when the program is executed.
Line 40 - The IF THEN statement tests for the end of the file. The last
data line written to the file consisted of a null string followed by two
zeros. When a null string is retrieved from the file the condition is
satisfied and the program is directed to the CLOSE statement on
line 70.
Line 50 - The PRINT statement outputs the contents of the file as
stored in the variables C$, C and F to the terminal. The variables are
separated by commas so each argument is output to its own field. The
output from the program is shown after the RUN command.
Line 60 - The GOTO statement repeats lines 30, 40 and 50 until all of
the data are read.
Line 70 - The CLOSE statement closes the file EUROTEMPS and
disassociates it from communication channel number 1.
Line 80 - The END statement signifies program completion.

BASIC programs are also stored in files. The BASIC commands to
store and retrieve programs in files from a peripheral device (the SAVE
and LOAD, or OLD commands) have been described previously. There
are also BASIC commands to delete files which are no longer required.

RUIN

December 1982 Maplin Magazine 53

