
Basic
plain talk for your home computer

Modern Electronics' easy -to -understand primer on how to teach the most
popular language to your home computer.

by Peter A. Stark
Contributing Editor

Basic is probably the most popular and widely used
computer language for small computer hobbyists, and
with good reason-it is powerful, yet simple. I'm sure
you're ready to learn more about what Basic is and
what it can do.

Originally invented at Dartmouth College in the
early 60s, it was intended to bring the computer to the
average Dartmouth student in a way that had never
been tried before. The traditional approach was to
place a large computer center in the corner of the
campus and then force students to go to the center to
run their computer programs.

Dartmouth tried the exact opposite. It placed com-
puter terminals throughout the campus, even in dor-
mitories, within easy reach of every student and then
tempted students to use them, not only by having the
terminals easy to get to but also by having a simple
computer language to program the computer with.
That was the beginning of Basic!

Unlike earlier languages such as Fortran or Cobol,
which were intended for large programs, Basic was
intended for the small uses. A Fortran and Cobol user
had to prepare his programs on punched cards away
from the computer. Only when he had the entire set of
cards ready, would he go into the computer room and
enter the cards into the computer. His problem would
be run on the computer, his results printed or punched
back into cards, and then he would be encouraged to
leave to make room for the next user. In other words,
these languages kept the user away from the computer
as much as possible.

Basic, on the other hand, was designed for use with
terminals, such as teletypewriters, which were con-
nected to the computer and actually using the com-
puter for extended periods of time. A student could sit

One popular computer terminal is the CRT or Cathode Ray Tube
which displays a program and its results on a screen similar to a
tv set.

down at a terminal and play a game against the com-
puter for hours on end.

To make this entire idea practical in the days of mil-
lion -dollar computers required the use of time-sharing,
where dozens or perhaps even hundreds of terminals
were connected to the computer at the same time.
Since the computer is so fast, it easily could take care
of many students using the computer at the same time,
with each student having the impression he was the
only user.

But now, in 1978, the entire approach has changed.
For just a few hundred dollars, you can buy a small
computer which can run Basic programs. Since it is no
longer necessary to time-share, the computer system
can be quite simple and cheap, and yet still be power -

46 MODERN ELECTRONICS

ful enough to run sizable programs, although only one
at a time.

To see just what Basic is and what we can do with it,
let's sit down at a computer terminal and type in some
commands, seeing what the computer does. These
examples were run on a Southwest Technical Products
MP -6800 home computer, but would be the same with
any small home computer system.

The first thing we notice is the terminal has a key-
board similar to a typewriter, except some symbols are
in new places and some keys have symbols not found
on a typewriter.

For instance, above the comma is the symbol <, and
above the period is the symbol >. Of special impor-
tance is a key labelled CR or RETURN, which means
carriage return. This key means you are finished with a

line and want to return the carriage, the part that
prints on the paper, to the left, ready for the next line.
Every line you enter into the computer must be fol-
lowed by a CR to tell the computer you are done.

Let's sit down at the terminal and start with a CR.
The computer responds with
READY
and returns to the beginning of the next line. Some-
times the computer will print a #,> or ? on the next
line. This is the prompting character and its purpose is to
tell you it's your turn to type something and the com-
puter is waiting.

In our case we get the message
READY

which tells us the computer is ready, and waiting for a
command. Let's enter a simple program telling the
computer to print something:

10 PRINT 2+3
A one -line program like this is about as simple as

you can get. Don't forget the carriage return or CR at
the end. This simply tells the computer to add 2 and 3

and print the result.
Notice the number 10 in front. Every instruction of a

Basic program must have a line number before it, and
this is line number 10. The 10 does not necessarily
mean that this is the tenth line of a program; it just
means that we have decided to give this line the
number 10. We could have just as well numbered it 1 or
500. The point behind line numbers is that every line
of a program has a different line number, so at some
later time we can go back and remove or change lines
at will, referring to them by line numbers.

Once we have typed in a program such as this one,
we can do two things with it-get a listing of it on the
printer to check that we have typed it correctly, or run
it. To get a listing, we type the word
LIST
and, as soon as we hit the CR, the computer responds
with
0010 PRINT 2+3
READY

With minor changes, the computer simply types the
program as we have entered it.

Notice that, up until now, we have not gotten the
actual answer of 5, which the computer is supposed to
print. We merely have entered the program and

checked it. To actually perform it and get our answer,
we type
RUN
and the computer prints
5
READY

Notice that there is a difference between lines of a

program, which always get a line number, and com-

mands to the computer telling it what to do with the
program, which never get a line number. The com-
mands we use most often are LIST and RUN, but each
computer system has a number of other commands
such as:

NEW or CLEAR-Erase the program
SAVE-Save the program on tape or other storage

for later use
LOAD-Load a program previously saved back

into the computer
Let's erase the simple program we wrote and enter a

new one:
NEW
READY
#10 LET I = 3
#20 LET J=I+17
#30 PRINT I, J

46.

With one exception, every program instruction
starts with a short word such as LET or PRINT right
after the line number. The one exception is that the
word LET may be omitted. Notice that each line has a
line number. We could have numbered the lines 1, 2, 3

but this is a bad habit to get into. Very often we find,
after trying to run the program, we made a mistake
and have to add a few lines. With lines numbered 10,

20, 30, and so on, it's easy to slip in extra lines such as
line 15 or 18. Even though we may enter them at a later
time, giving them a line number between 10 and 20
will automatically tell the computer that we want them
placed in that order.

In the above program, lines 10 and 20 mean just
what they say. Line 10 says to let a number I be equal
to 3. We have to learn the difference between constants,
which are constant and never change, and variables
which can vary and change. In this line, the number 3

is a constant while I is a variable. We could, for exam-
ple, insert another line into the program as follows:
22 LET I = 5

I thus changes-it was equal to 3 at line 10, but
becomes equal to 5 at line 22. We could now get a
listing of the program as follows:
LIST
0010 LET I = 3
0020 LET J = I + 17
0022 LET I = 5
0030 PRINT I, J

READY

Notice the computer automatically put line 22 in the
right place, between 20 and 30.

Constants are plain numbers such as 3, 5, 17, or
-12.597. There is a way of expressing very large or very
small constants by using powers of 10, but that does

MAY 1978 47

not concern us at this point. By their very nature, they
obviously never change.

Variables, on the other hand, are represented by let-
ters such as I or J. In fact, any of the letters A through Z
can be used for variables. Since this only would allow
26 different variables, Basic also allows variables to be
represented by a letter followed by a number from 0
through 9. This is very convenient for calculations on
electrical circuits, since the values of resistors can be
represented by the variables R1, R2, and so on.

Let's take the above program and run it.
RUN
5 20
READY

To understand what has happened, we have to
examine the above program line by line. Line 10 told
the computer to let the variable I equal 3. Line 20 says
to add I (which is 3) to 17, and let J be the answer. Thus
J becomes equal to 20. Then, line 22 says to let I equal
5. From this point on, I is 5, not 3, so that line 30 prints
5 for I and 20 for J.

As you can see, the computer performs these
instructions in the order of their line numbers, not in
the order we typed them in. This is another important
use of line numbers-they specify the order in which
the computer will perform its instructions.

The opposite of a PRINT statement is an INPUT. For
an INPUT, the computer stops, prints a ? prompting
character, and then waits for you to type in something.
Let's write a short program to allow you to type in a
number, have the computer multiply it by 3, and print
out the answer. First erase the old program:
NEW
READY

Now enter a new program:
#10 INPUT N
#20 S = 3 * N
#30 PRINT S

Line 10 allows you to type in a number, which
becomes the variable N. Line 20 multiplies it by 3;
notice how a star * is used to mean times. Finally, line
30 prints out the product. If we now type:
#RUN
the computer prompts with

and we supply a number, such as
1.2
the computer comes back with
3.6
READY

This would not be much fun if we could only enter
and print numbers, but Basic also allows us to use let-
ters and words. For example, let's add the line:
#5 PRINT "TYPE IN A NUMBER AND I WILL MUL-
TIPLY IT BY 3"
and change line 30 to read
#30 PRINT "THE ANSWER IS", S
If we list it, we get the printout
#LIST
0005 PRINT "TYPE IN A NUMBER AND I WILL MUL-
TIPLY IT BY 3"

0010 INPUT N
0020 S = 3 * N
0030 PRINT "THE ANSWER IS", S
Now try running it:
#RUN
TYPE IN A NUMBER AND I WILL MULTIPLY IT BY
3
?7
THE ANSWER IS 21
READY

As you can see, enclosing a message in quotes " and
placing it in the PRINT statement makes the computer
print it exactly as it stands.

Another type of variable is the string variable. It is
signified by a letter A through Z, followed by the $
sign. Its function is to hold a string of letters or other
characters from the keyboard, but allow them to be
changed, like variables, throughout a program. To
illustrate, let's try a new program:
#NEW
READY
#10 PRINT "WHAT IS YOUR NAME?"
#20 INPUT N$
#30 PRINT N$, "IS A NICE NAME"

Line 20 lets us input a string of letters, while line 30
prints them out again. Watch what happens when we
run the program:
#RUN
WHAT IS YOUR NAME?
? PETE
PETE IS A NICE NAME
READY

IS A NICE NAME
IS A NICE NAME
IS A NICE NAME
IS A NICE NAME
IS A NICE NAME
IS A NICE NAME
IS A NICE NAME
IS A NICE NAME

Computer experts would now say the computer is
stuck in a loop. It would keep on printing out the same
line over and over if we didn't stop it by pushing a

After inputing the name PETE, the computer
printed it out again, followed by the words IS A NICE
NAME. There is a large space after PETE which is put
in by the computer because Basic normally prints its
output spread out across the page to be in nice col-
umns if numbers are being printed. In this case it
makes the output look messy, but that is easy to get
around if we use a semicolon ; in line 30 instead of a
comma. This is one of the fine points in Basic, which
are of little interest to the beginner but are very useful
to the expert.

The tremendous power of the computer comes from
the fact that programs, or portions of them, can be
repeated over and over. Suppose we add one more
line to the above program:
#40 GO TO 30
and run it again:
#RUN
WHAT IS YOUR NAME?
? PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE
PETE

48 MODERN ELECTRONICS

button on the control panel. Our last line, line 40, is
the culprit. It told the computer to go back to line 30
and repeat from there. Thus the computer does the
printout in line 30, and the very next line sends it right
back to do another printout, and so on. This is an infi-
nite loop, since it never stops-unless we push a button
to stop it, that is.

A better way of controlling a GO TO is with an IF
instruction. For example, we can say IF X=3 GO TO
30, and the GO TO will only be done by the computer
if the value of the variable X happens to be 3.

Let's change the above program so it will ask for a
name, and will only print out "IS A NICE NAME" if
the name happens to be PETE; otherwise, the com-
puter will answer that the name is a poor one:
#10 PRINT "WHAT IS YOUR NAME?"
#20 INPUT N$
#30 IF N$ = "PETE" GO TO 60
#40 PRINT N$, "IS A POOR NAME"
#50 GO TO 10
#60 PRINT N$, "IS A NICE NAME"
#70 GO TO 10

As before, the computer asks WHAT IS YOUR
NAME. If you answer PETE, then line 30 tells the com-
puter to go to line 60, so that it will print the name
again, followed by the words IS A NICE NAME. For
any other name, the computer will not go to line 60,
but will instead continue to line 40 and print IS A
POOR NAME. Either way, a GO TO 10 returns to the
top, so the computer asks for another name. Let's run
it to see what happens:
#RUN
WHAT IS YOUR NAME?
? SAM
SAM IS A POOR NAME
WHAT IS YOUR NAME?
? GEORGE
GEORGE IS A POOR NAME
WHAT IS YOUR NAME?
? PETE
PETE IS A NICE NAME
WHAT IS YOUR NAME?
2

As before, the computer is stuck in a loop since it
keeps returning to step 10. This is usually not quite
what we want. A good loop is one which has an end to
it. In some way, we like to tell the computer when to
get out of the loop. One common way is to count the
repetitions of the loop, and stop at some predeter-
mined number of them. For example, the following
program prints out the numbers from 1 to 12 and their
squares:
#NEW
READY
#10 LET N = 1

#20 LET S = N * N
#30 PRINT N, S
#40 LET N = N + 1

#50 IF N < 13 GO TO 20
Line 10 starts the number N at 1; line 20 squares it by

multiplying it by itself; line 30 then prints the number
N and its square S. Now, line 40 says something a bit
different from what a mathematician would expect

A computer terminal's keyboard has several added keys you
won't find on an ordinary typewriter. Otherwise it's similar. An
important key always used is the CR or Carriage Return key,
shown at right.

from N = N + 1 (which is not really a good equation
after all.) What it means is that the computer should
take the value of N, add 1 to it, and then place the
result back as a new N. In other words, line 40 adds 1

to N. Since N started at 1, it is now 2. But since this is
in a loop, in a little while N will go to 3, and then 4,
and so on, all the way up to 12.

The symbol < in line 50 means less than, so this line
says "if N is less than 13, go back to line 20." But even-
tually N will go from 12 to 13, and when that happens,
line 50 no longer sends the computer back to line 20.
So we have here a loop which is repeated exactly 12
times.

The IF statement is very useful, since it allows
checking whether two things are equal or not. In addi-
tion to the less than or < symbol, we also use > which
means greater than. The combination <> means less
than or greater than, which is the same as saying not
equal, so IF X <> 5 GO TO 300 means that if X is not
equal to 5 the computer should go to line 300. More-
over, instead of ending the IF with a GO TO, we can
also end with the word THEN followed by any other
valid Basic instruction. Our program to judge whether
a name is nice or not could have been written with
these two IFs:
#40 IF N$ = "PETE" THEN PRINT N$, "IS A NICE
NAME"
#50 IF N$ <> "PETE" THEN PRINT N$, "IS A POOR
NAME"

Two other combinations are <= which means less
than or equal, and >= which means greater than or
equal.

The idea of using a variable to count the repetitions
of a loop is so common and useful that Basic has a
special pair of instructions just for that purpose-the
FOR and NEXT pair. These always go together, the
FOR at the start of the loop and the NEXT at the end.
To see how they work, let's rewrite the program to
square the numbers from 1 to 12:
#NEW
READY

MAY 1978 49

#10 FOR N = 1 TO 12

#20 LET S = N * N
#30 PRINT N, S
#40 NEXT N

Line 10 tells the computer that N is the counter, and
it is supposed to vary from 1 to 12. Initially, N starts at
1, and the computer continues down through the fol-
lowing steps until it gets to NEXT N. Now it adds 1 to
N, and goes back to the first statement inside the loop,
which is line 20. It will repeat the loop, adding 1 to N
each time, until N reaches 12. When N tries to go to 13,
the loop ends.

There is a variation on the FOR which lets N change
in different ways; this is done by adding one more
word to the line:
#10 FOR N = 1 TO 12 STEP 1

This specifies that N is supposed to go from 1 to 12 in
steps of 1. If we said
#10 FOR N = 1 TO 12 STEP 3

then N would go up in steps of 3. Or if we said
#10 FOR N = 12 TO 1 STEP -1
it would go from 12 back to 1 in steps of -1. That is, N
would go 12,11,10, 9, 8, and so on, all the way to 1. Just
to see what happens, let's try running the program:
RUN
12 144
11 121
10 100
9 81
8 64
7 49
6 36
5 25
4 16
3 9
2 4
1 1

READY

Basic has several more possible instruction types.
Some, like REM (remark) and STOP, are useful to the
beginner and we will see them later in some of the
demonstration programs. Others are for more
advanced users and we will skip them here.

In addition to the various instruction types, Basic
also has functions which perform specific math calcula-
tions or some other operations. For example, a mathe-
matician or engineer might use the SIN or COS func-
tions when working with angles. The functions likely
to be used by the beginner, out of the dozen or more
most computers have, are these:

INT () converts whatever is placed inside the
parentheses into the next lower integer (whole
number). For example, saying
#10 LET J = INT(3.14)
would make J equal to 3.

RND (0) makes the computer invent a random
number between 0 and 1. This is usually used in games
for coming up with random moves or random
numbers. For instance,
#10 LET J = RND(0)

would result in J becoming equal to some unknown
value between 0 and 1.

Sometimes we combine the RND and INT functions
to generate other random numbers. For instance, sup-
pose we are writing a game where the computer is
supposed to pick a card from a deck of cards and print
out what it is. Since there are 13 cards in a suit, we
need a random number which is a whole number
between 1 and 13.

If we use RND to make a number from 0 to 1, and
then multiply it by 13, the result will be a number from
0 to 13. Add 1 to this, and you have a random number
between 1 and 14, but always just a bit smaller than 14.
Convert it to an integer with INT, and you have a
whole number ranging from 1 to 13 (and never equal to
14.) The result of putting all this into one line is
#100 LET C=INT(RND(0) * 13+1)

One more function useful to beginners is the
TAB(); which makes the terminal's printer or display
move over to the right to the position indicated by
whatever is inside the parenthesis. For example
#50 PRINT TAB(15); I

would print the value of I fifteen places from the left
end of a line on the printer. Note that the TAB is used
in a PRINT statement, and that it is usually followed
by a semicolon.

Finally we are ready to put all this together into sev-
eral simple programs. How about a program to pick
five cards at random and print out what they are? We
will program it as a loop which is repeated five times,
use the RND function to pick a random number, and
use IF statements to print out words like
JACK or KING:
#NEW
READY
#10 FOR I=1 TO 5
#20 LET C = INT(RND(0)*13+1)
#30 IF C<11 THEN PRINT C
#40 IF C=11 THEN PRINT "JACK"
#50 IF C=12 THEN PRINT "QUEEN"
#60 IF C=13 THEN PRINT "KING"
#70 NEXT I

#RUN
1

7
QUEEN
7
2
READY

Now let's add a few more steps to add the suit. We
will use RND again to pick a number between 1 and 4,
and use it to print out the suit. Add the following
steps:
#25 LET S=INT(RND(0)*4+1)
#62 IF S=1 THEN PRINT TAB(6); "OF HEARTS"
#63 IF S=2 THEN PRINT TAB(6); "OF
DIAMONDS."
#64 IF S=3 THEN PRINT TAB(6); "OF CLUBS"
#65 IF S=4 THEN PRINT TAB(6); "OF SPADES"

50 MODERN ELECTRONICS

To see what the program now is, we list it:
#LIST
0010 FOR I=1 TO 5
0020 LET C=INT(RND(0)*13+1)
0025 LET S=INT(RND(0)*4+1)
0030 IF C<11 THEN PRINT C
0040 IF C=11 THEN PRINT "JACK"
0050 IF C=12 THEN PRINT "QUEEN"
0060 IF C=13 THEN PRINT "KING"
0062 IF S=1 THEN PRINT TAB(6); "OF HEARTS"
0063 IF S=2 THEN PRINT TAB(6); "OF
DIAMONDS"
0064 IF S=3 THEN PRINT TAB(6); "OF CLUBS"
0065 IF S=4 THEN PRINT TAB(6); "OF SPADES"
READY
#RUN
KING

OF HEARTS
5

OF DIAMONDS
JACK

OF CLUBS
6

OF DIAMONDS
JACK

OF CLUBS
READY

We could neaten the output so each card is printed
on one line, but that's more complicated. Let's do
another example. How about a program to input the
names of two people and print them out in alphabeti-
cal order?
#NEW
READY
#10 PRINT "ENTER TWO NAMES"
#20 INPUT A$, B$
#30 IF A$<B$ THEN PRINT A$, B$
#40 IF B$<A$ THEN PRINT B$, A$
#RUN
ENTER TWO NAMES
? SMITH,JONES
JONES SMITH
READY

Notice how we are comparing two strings of letters
as if they were two numbers; whichever is less is
printed first. Although this example only sorts two
names, we could do it for more names with a more
complicated program.

Suppose a math student needs to plot an equation
for his homework. The equation is y=x2-10x+26, and
he is supposed to find y for x going from 0 to 10. This
program would do it:
#NEW
READY
#5 REM THIS IS A REMARK
#7 REM LET X GO FROM 0 TO 10
#10 FOR X=0 TO 10
#20 LET Y=X*X -10*X+26
#25 REM PRINT BOTH X AND Y
#30 PRINT X, Y

#35 REM END OF LOOP
#40 NEXT X
#50 REM WHEN LOOP IS DONE, STOP
#60 STOP
#RUN
0 26
1 17
2 10
3 5
4 2
5 1

6 2
7 5
8 10
9 17
10 26
READY

Better yet, why not have the computer draw a pic-
ture? Change line 30 to
#30 PRINT TAB(Y); "*"
and run:
#RUN

The computer draws a picture, as instructed in a program, to
solve a math equation.

READY

The graph may be sideways and a little coarse, but it
certainly gives the picture.

With this introduction to Basic, you're on the way to
writing your own programs. El

MAY 1978 51

