
projects   i2c

52 elektor  -  1/2009

I2C Slave Kernel for ATtiny13 and ’2313
Stir in BascomAVR, add a pinch of assembly code

Vladimir Mitrovic (Croatia)

With all the processing power under the hood of the Atmel ATtiny13 and ATtiny2313 micros, it’s not too 
difficult to get them interfaced to the I2C bus: some Basic and embedded assembly code will do just nicely.

The I2C bus (a.k.a. IIC or inter-IC bus) 
as well as integrated circuits designed 
to work on it, have been described 
numerous times in this magazine, just 
look at references [1] and [2] for two 
recent articles. Although there exist 
hundreds of ICs with I2C compatibility, 
each and every one of these will have 
one specific function it was designed 
to handle. For example, humidity sens-
ing, relay driving, LCD controlling, 
data memorising, push button activity 
detection, keyboard decoding, bus cur-
rent boosting — you mention it, it’s all 
available, and cheap too! However, the 
true electronics enthusiast is creative 
and wants to be able to
1.	 glue home-brew things to the I2C 

bus;
2.	 design his/her own I2C 

peripheral(s) to do just what’s 
desired using preferred 
components.

For both, it is necessary to have a mini-
mum of I2C slave functionality and then 
take it from there with all levels of flex-
ibility. If this sounds like ‘software’, it 
is: if you can program it, just do it.

Project outline and hardware
The AVR microcontroller is pro-
grammed to act as an I2C slave. The 
write address of this slave is memo-
rised in its internal EEPROM, at the 
address 0, bits 7-1. Bit 0 should be 
zero. The most important I2C rules are 
implemented in the program: it rec-
ognizes multiple STARTs as well as 
unexpected START and STOP signals 
in the middle of a data sequence and 
keeps the SCL line Low while prepar-

ing the byte to be sent to the master. 
The program is optimised for speed 
and with an 8 MHz oscillator it will 
accept an I2C clock with a frequency 
of up to 400 kHz. This means that the 
ATtiny2313 or ATtiny13 can make do 
with their internal oscillators.
As everything is realised in software, 
no external components are needed 
and we arrive at bare-bones circuit dia-
grams shown in Figure 1 and Figure 2. 
The pull-up resistors on the SCL and 
SDA lines may be omitted if they are 
provided elsewhere on the I2C bus. For 
hardware, it doesn’t get simpler than 
that.

The kernel
The program has several time-criti-
cal routines that are written in assem-
bler. These routines constantly monitor 
the traffic on the I2C bus and call the 
appropriate subroutines if a valid write 
or read address is recognized. The 
program kernel acts as any other I2C 
slave, with the following conditioned 
functionality.

1. If the first byte following the START 
signal is recognized as its own write 
address (bit 0 = 0), it will:
- confirm it with ACK;
- accept up to two following bytes, con-
firming each of them with ACKs;
wait for RESET (any additional byte 
before RESET is ignored);
- call the ‘Process_received_data’ sub-
routine after RESET;
- wait for the next START.

2. If the first byte following the START 
signal is recognized as its own read 
address (bit 0 = 1), it will:
- confirm it with ACK;
- pull down the SCL line to signal 
the I2C master that data is prepared 
(delayed SCL);
- call the ‘Prepare_data_for_master’ 
subroutine;
- free the SCL line to enable further 
communication;
- send one byte of data contained in 
the ‘Data_for_master’ variable to the 
master;
- wait for the next START.

3. If the first byte following the START 
signal is not recognised as its own 
write or read address, it will ignore all 
communication on the I2C bus until the 
new START signal.

It is the programmer’s (i.e. your!) 
responsibility — and challenge — to 
provide the code for the ‘Process_
received_data’ and ‘Prepare_data_for_
master’ subroutines in order to proc-
ess received data or to prepare data to 
be sent to the host. In order to facili-
tate programming even for a not very 
skilled programmer, the assembler ker-

Technical Spec
• Atmel ATtiny13 or ATtiny2313 

programmed to act as a slave 
device on the I2C bus

• Mix of BascomAVR and assembly 
code

• Software open-ended and free to 
community

• No fixed device address
• Learning mode and hardware 

activation built in



531/2009  -  elektor

I2C Slave Kernel for ATtiny13 and ’2313
Stir in BascomAVR, add a pinch of assembly code

nel is embedded in the BascomAVR 
structure. So, the programmer may use 
BascomAVR from MCS Electronics [3] 
(even the demo version) to adjust the 
program to his/her own needs.

Examples
Two examples are provided to get 
cracking: ‘I2C_slave_ATtiny13_Ele-
ktor.bas’ and ‘I2C_slave_ATtiny2313_
Elektor.bas’. The examples differ only 
in details specific to the microcontrol-
ler used: ATtiny13 or ATtiny2313. The 
kernel is placed before the ‘End’ state-
ment, and the user subroutines and 
any data for the user to adjust, after 
the ‘End’ statement.
In these examples the microcontrol-
lers act like an AT24C0x serial EEP-
ROM with its internal address set 
to $EA (write) and $EB (read). Write 
address $EA should be programmed in 
the first location of EEPROM (address 
0). The BascomAVR compiler will pro-
duce an ‘.eep’ file for the programmer, 
like this:

$eeprom
Data &HAE   ‚address 
of this I2C slave
$data

The ‘Process_received_data’ subrou-
tine is called after the STOP signal if a 
valid write address of this I2C slave is 
recognised before. Up to two bytes of 
data following the address are memo-
rised as shown in Table 1.
In this example, I2C_b1 is used as the 
address of the internal EEPROM and 
I2C_b2 as data to be written — be 
careful not to rewrite address 0!

Process_received_data:
   Writeeeprom I2c_b2 , I2c_
b1  ‘I2C_b2 byte is written to
‘internal eeprom at I2C_b1
   Waitms 5  ‘wait until written
Return

The ‘Prepare_data_for_master’ sub-
routine is called immediately after the 
valid read address of this I2C slave is 
recognised. No data are passed to the 
subroutine, but the subroutine should 
prepare one byte of data to be sent to 
the master in the variable ‘Data_for_
master’. Keep in mind, however, that 
preparing data for the master should 
be as quick as possible because the 
master usually does not wait for data 
indefinitely.
In this example, one byte is read from 
the internal EEPROM from the address 
in I2C_b1 (received before, accord-
ing to the communication protocol for 
AT24C0x):

Prepare_data_for_master:

   Readeeprom Data_for_master , 

I2c_b1   ‘1B is read from internal 

eeprom at I2C_b1

Return

The examples were tested on the 
circuits in Figures 1 and 2 and have 
worked well with an SCL of up to 
400 kHz. Bear in mind that the ATtiny13 
has only 64 bytes of internal EEPROM, 
while ATtiny2313 has 128 bytes, so 
theoretically the ATtiny2313 could 
replace an AT24C01. However, the 
real advantage of this program is that 
the microcontroller may play the role 
of any ‘new’ I2C slave with specific 
address, according to one’s needs. For 
example, it may be used as an inter-
face between the I2C master and any 
equipment.

Learning mode

It was explained before that the I2C 
address of this I2C slave is memorised 
as the first byte in the internal EEP-

ATtiny13

IC1
RST

PB3

PB4

8

4

1

2

3

R2

4k
7

R1

4k
7

+5V

C1

100n

SDA

SCL

080613 - 11

* *

*optional

Figure 1. ATtiny13 as an I2C slave.

ATtiny2313

IC1
RST

PB3

PB4

20

10

1

15

16

R2

4k
7

R1

4k
7

+5V

C1

100n

SDA

SCL

080613 - 12

* *

*optional

Figure 2. ATtiny2313 as I2C slave.

Table 1. Data byte memory

variable name variable type description

I2C_b1 Byte
1st byte after I2C address, = 0 if not received (i.e. if 
STOP signal occurred first)

I2C_b2 Byte
2nd byte after I2C address, = 0 if not received (i.e. 
if STOP signal occurred first)

I2C_stop Byte
= 255 if STOP signal received, = 0 if not (only for 
debugging purposes, should always be = 255)



PROJECTS   I2C

54 elektor  -  1/2009

ROM. It may be defined in the pro-
gram and programmed in EEPROM 
after programming the fl ash memory 
as explained in the example. As an 
additional benefit, the microcontrol-
ler may be set in ‘learning mode’ and 
accept and memorise the new address 
from the I2C bus. There are two ways 
to activate the learning mode, soft-
ware and hardware. In both cases, 
the ‘Learning_mode’ flag is set and 
the fi rst I2C address (1st byte after the 
next START signal) will be accepted 
and memorized as the new I2C address 
of this slave. Immediately after this 
procedure the ‘Learning_mode’ fl ag is 
erased and the microcontroller acts as 
explained before. The whole procedure 
is already programmed in the kernel; 
you only have to set the fl ag!
An example of software activation 
of the learning mode is given below. 
Here, we check if a specifi c data com-
bination is received and set the ‘Learn-
ing_mode’ fl ag if it is:

Process_received_data:
   ...
   ...

   Config Pinb.0 = Output 
   If Pinb.0 = 0 Then
      Learning_mode = 1
   End If
Return

Resources
The Basic programs (written in Bas-
comAVR) and hex object code fi les for 
the microcontrollers are available as a 
free download from the Elektor website 
[4]. Due care should be taken with the 
hex fi les as they may not be compat-
ible with every programming system 
for the ATtiny13 and ‘2313 microcon-
trollers. In case of doubt, compile the 
.bas fi les locally and work out the com-
patibility with your programmer.

(080613-I)

References and 
Internet Links
[1] The Secrets of I2C, Elektor March 2008.

[2] Bits on Parade, Elektor December 2008.

[3] www.mcselec.com

[4] www.elektor.com/080613

   If I2c_b1 = xxx and I2c_b2 
= yyy Then  ‘check if specific 
key combination is received
      Learning_mode = 1 
‘set learning flag
   End If
   ...
   ...
Return

hardware activation
Use any free I/O pin, e.g. PINB.0 and 
provide a jumper or pushbutton to con-
nect it to the GND. When you want to 
reprogram the I2C address of this slave, 
keep the pushbutton pressed for two 
seconds at power-up or reset. At the 
beginning of the program the ‘Learn-
ing_mode_hw_activation’ subroutine 
is called. This subroutine is normally 
empty (i.e. it contains no more than 
‘Return’). If you want to enable hard-
ware activation of the learning mode, 
you should check the state of the cho-
sen I/O pin (Pinb.0 in this example) 
and set the Learning_mode fl ag if the 
expected condition occurs (Pinb.0 = 0 
in this example):

Learning_mode_hw_activation:

Advertisement

See your design in print!

Elektor Electronics (Publishing)

are looking for

Freelance Technical Authors/Designers

If you have
an innovative or otherwise original design you would like to see in print 
in Europe’s largest magazine on practical electronics

above average skills in designing electronic circuits
experience in writing electronics-related software
basic skills in complementing your design with an explanatory text
a PC, email and Internet access for efficient communication with our in-house design staff;

then do not hesitate to contact us for exciting opportunities in getting your designs published on a regular basis.

Elektor Electronics
Jan Buiting, Editor
P.O. Box 11,  NL-6141-AV  Susteren,  The Netherlands,  Fax: (+31) 46 4370161
Email: editor@elektor.com

UK0901_52_54_080613-UK I2C Slave54   54 27-11-2008   14:21:52




