
projects microcontrollers

56 elektor - 9/2008

The ATmega controller and BASCOM together make a
strong team! Whatever application you have in mind, con-
trollers from the ATmega range are sure to have the majority
of the necessary peripheral hardware already integrated
on-board: ports, timer, A/D converter, PWM output, and
UART are all standard together with a choice of RAM, ROM
and EEPROM size. BASCOM is one of the easier languages
to use and makes interfacing to peripherals using LCDs,
RC5 and I2C a simple task requiring very few instructions.
There is a good range of development hardware for this
microcontroller family. The STK500 from Atmel or the Elektor
CC2 ATM18 AVR board [1] are both suitable platforms for
this course. Alternatively there is no reason why you should
not experiment with your own homebrew design built on a

piece of perfboard. It also makes little difference whether
you choose a Mega8, Mega88 or even the larger Mega16
or Mega32. They all basically have the same core; the
main differences are in the number of port pins and the
amount of internal memory space. In this first instalment
of the course we look at the controller’s UART and A/D
converter.

The serial interface
All of the ATmega series have a built-in serial interface
(UART) using pins RXD (PD0) and TXD (PD1). The signals
are TTL compatible so it is necessary to add an RS232
interface buffer such as the MAX232 to implement a true

BASCOM AVR Course
Programming the ATmega controller

Burkhard Kainka

The AVR series of microcontrollers from Atmel are very popular. Many projects already
featured in Elektor have an ATmega beating away at their heart. In this mini course we
turn the spotlight onto software development for these controllers. BASCOM is an ideal
programming language for the newcomer; it has a steep learning curve ensuring that your
path to success (and a working prototype) is reassuringly short.

Part 1

579/2008 - elektor

RS232 interface. These buffers are already implemented
on the Atmel STK500 development system. A suitable serial
to USB Adapter can be connected directly to the Elektor
ATM18 AVR board for serial communication [2]. The PC
will need to be running a terminal emulator program before
serial communication from the ATmega can be viewed on
the screen. The serial interface is covered here first because
the software routine is very simple and can be easily modi-
fied if required.

Listing 1 shows all the elements necessary for all of the
BASCOM programs. The first line $regfile = “m88def.dat”
indicates which controller the code will be running on; in
this case it is the ATmega88. The line can be omitted and
the controller type specified using the Options/Compiler/
Chip menu but this method will generate an error if a differ-
ent AVR system is used. It is far better to declare the control-
ler type clearly in the program header with any program
that you write. It also has priority and overwrites any setting
defined in the Options menu.
It is also important to specify the crystal frequency ($crystal
= 16000000 for 16 MHz). It influences both the division
ratio necessary to provide the requested communications
baud rate clock (Baud = 9600) and also the timebase used
to count milliseconds in the ‘wait’ statements (Waitms 2000
for 2 s).

One feature of the test program given here is the
use of the unconditional jump instruction

Goto Test1. It is normally good pro-
gramming practice to avoid using

Goto statements because they
interrupt the program struc-
ture. In this instance we have
included several programming

examples in the same source
code so it is only necessary to alter

the first Goto Test1 to Goto Test2 or
3, etc. (depending on which example

you want to run) and then recompile. This
avoids the need to compile individual source

files for each example and reduces the number
of files generated in the compilation process. Additional test
programs can simply be added to the code and run using
an appropriate Goto statement.
The small program example used for Test1 forms an endless
loop between the Do and Loop statements. The program
outputs a ‘hello’ message every two seconds. A terminal
emulator program like HyperTerminal is needed to receive
the message.

Calculating
The program in Listing 2 is used to calculate the area (C)
of a circle where ‘A’ is the given radius:

C = A² * 3.1415

 ‘A’ must be an integer variable, which is dimensioned as
a byte and input via the serial interface. The value of ‘A’
(in the range 0 to 255) is first multiplied by itself. The result-
ant intermediate value ‘B’ can be up to a word long (0 to
65535). The result ‘C’ is a real value and is dimensioned
as single which requires four bytes to store its value.
Anyone familiar with other dialects of BASIC may be won-
dering why the calculation has not been written as C =
3.1415 *A *A or Print 3.1415*A*A.
The reason is that BASCOM only allows one calculation
per expression so it is necessary to break down complex

calculations into series of single steps to avoid violating
this rule.

Procedures
The A/D converter in the ATmega has a 10-bit resolu-
tion. Listing 3 shows an example of how the converter
is initialised:

Config Adc = Single , Prescaler = 64 , Reference = Off.

The converter clock frequency is defined here as 1/64 of
the processor clock, i.e. 250 kHz with a processor clock of

TXD

RXD

RS232 PC

RXD, PD0

TXD, PD1

080330 - 11

Listing 1
Print ‘hello’

‚Bascom ATmega88, Print
$regfile = „m88def.dat“
$crystal = 16000000
Baud = 9600

Goto Test1

Test1:
Do
 Print „hello“
 Waitms 2000
Loop

Test2:
…
Test3:
…
End

100k

1k

TXD

RXD

RS232 PC

PD4

PD3

080330 - 12

Figure 1.
The serial interface.

Figure 2.
The simplest serial
interface without an
inverter.

projects microcontrollers

58 elektor - 9/2008

16 MHz. The internal reference voltage is not used but is
derived externally and applied to pin AREF. In most cases
the 5 V stabilised supply voltage can be used.
A procedure is used to input the ADC measurement and
convert it to a voltage reading. It is only worthwhile using a
procedure if it can be reused by different parts of the main
program body. In this example two voltage measurements
are displayed. The new procedure is called Sub Voltage.
Before the procedure can be called it must first be declared:
Declare Sub Voltage.

The program fragment shown here does not conform to
good software writing practice. In Visual Basic it is usual
to pass the channel parameter ‘N’ when the procedure is
called: Voltage(N). Alternatively a function could be writ-
ten and then called using: U = Voltage(N). In the example
here we are using only global variables so that D, N and U
are accessible from all parts of the program including other
procedures. All of the accepted software guidelines indi-
cate that this is not good programming practice but in this
instance it simplifies the job for the compiler and controller.
Experience has shown that even large programs occupy-
ing 100% of the flash memory of a Mega32 and using a
large number of global variables are completely stable in
operation and run without problem. Passing variables to
procedures can sometimes generate errors which are quite
difficult to trace.

The software serial interface
One of the many highlights of the BASCOM compiler is
its software serial interface. Say you are already using the
hardware serial interface with the RXD and TXD pins and
you require another COM interface? Alternatively it could
be that you do not have any RS232 interface inverter chip
(e.g. a MAX232) on your board but still need to provide
a connection for an RS232 cable. In both cases BASCOM
has a solution to the problem. Any available port pins can
be defined in software as serial interface pins for the soft-
ware serial interface.
The example Listing 4 uses PD3 as a serial output. Com-
munication speed is set to 9600 Baud and the interface
number 2. To output a simple message you can use Print
#2, ‘hello’ for example.
Using the INVERTED parameter allows the interface to be
built without the need for a MAX232 interface inverter.
BASCOM inverts the signal so that inactive level is a logic
Low. The PC interface RXD signal can then be connected
directly. The signal levels are not truly RS232 but it provides
a useable interface solution and can, for example, be used
to interface a USB to serial adapter to the Elektor ATM18
AVR board without the need for a MAX232.

(080330-I)

References
[1] ATM18 AVR Board, Elektor April 2008.

[2] USB <-> RS-232 Cable, Elektor July/August 2008.

Downloads and further
information
The programming examples and more information for this course
can be downloaded from the project page at www.elektor.com.
We also welcome your feedback in the Elektor Forum.

Listing 2
Calculating in BASCOM

Dim A As Byte
Dim B As Word
Dim C As Single

Do
 Print “ input 0...255”
 Input A
 B = A * A
 C = B * 3.1415
 ‘not allowed: C = 3.1415 * A * A
 Print C
Loop

Listing 3
Using a procedure

Declare Sub Voltage
Dim N As Byte
Config Adc = Single , Presca-

ler = 64 , Reference = Off
Start Adc

Do
 N = 0 : Voltage
 Print „ADC(0) = „ ; U ; „ V“ „
 N = 1 : Voltage
 Print „ADC(1) = „ ; U ; „ V“ „
 Print
 Waitms 500
Loop

Sub Voltage
 D = Getadc(n)
 D = D * 5
 U = D / 1023
End Sub

Listing 4
Using the Software UART

Baud = 9600
‚Open „comd.3:9600,8,n,1“ For Output As #2
Open „comd.3:9600,8,n,1,INVER

TED“ For Output As #2
Config Adc = Single , Presca-

ler = 64 , Reference = Off

Do
 N = 0 : Voltage
 Print #2 , „ADC(0) = „ ; U ; „ V“ „
 N = 1 : Voltage
 Print #2 , „ADC(1) = „ ; U ; „ V“ „
 Print #2 ,
 Waitms 500
Loop

projects microcontrollers

50 elektor - 10/2008

A look at the data sheet gives some insight into the com-
plexity of the port architecture of these microcontrollers
(Figure 1). The ports can be configured as output or input
(with or without pull-up resistors). Despite their complexity
they are quite easy to use and only three important registers
are needed to define the port configuration: The Data Direc-
tion Register (DDRx), the Port Output Register (PORTx) and
the Port Input Register (PINx). There is also a single PUD bit

(pull-up disable) which disconnects all pull-ups. The follow-
ing example programs begin by using Port B.

Reading input values
After a reset the internal Data Direction Register is reset
to zero which configures all the ports as inputs. The Port
Register is also reset to zero. In this condition the port pins
look to the outside world like typical high impedance dig-
ital CMOS inputs (Figure 2). With all the inputs open-cir-
cuit the value stored in PINB is random and changes if you
touch the pins with your finger (first discharge any static
charge you may be carrying).
Listing 1 uses Port B as an input port. The following is an
example of values you will see on the screen.
63
0
61
0

The values of PINB are changing but PORTB remains at
zero, which is not surprising because we have not yet
changed the port output register. PORTB is displayed in
this example just to underline the difference between the
PINB and PORTB registers. Experience has shown that this
causes a great deal of frustration for newcomers who con-
fuse the two register names: “how come I get a reading of
zero when there is 5 V on the input pin?” The answer of
course is that you should not read PORTB but PINB (read it
as Port In B) to get the value of the input pin.

BASCOM AVR
Course (2)
Using the ATmega ports
Burkhard Kainka

The port pins are the gateway between real
world events and the microcontroller. The
user can send out control signals and read
back information. Here we give a few simple
programming examples to quickly get you
started inputting and outputting data.

CLK

RPx

RRx

RDx

WDx

PUD

SYNCHRONIZER

WDx: WRITE DDRx

WRx: WRITE PORTx
RRx: READ PORTx REGISTER
RPx: READ PORTx PIN

PUD: PULLUP DISABLE

CLK I/O : I/O CLOCK

RDx: READ DDRx

D

L

Q

Q

RESET

RESET

Q

QD

Q

Q D

CLR

PORTxn

Q

Q D

CLR

DDxn

PINxn

D
AT

A
 B

U
S

SLEEP

SLEEP: SLEEP CONTR OL

Pxn

I/O

WPx

0

1

WRx

WPx: WRITE PINx REGISTER 080551- 11

Figure 1.
The ATmega port

architecture.

5110/2008 - elektor

Writing to an output port
The second example outputs data from Port B. It is neces-
sary to write to the Data Direction Register to configure B
as an output port. In BASCOM-AVR there are two ways
this can be achieved; you can use the Register notation
method (Ddrb=255) or the BASIC version (Config
Portb = Output) either method has the same
effect.
To run this example it’s necessary to change the Goto
instruction at the beginning of the program to read Goto
Test2 and recompile.
To turn on alternate LEDs at the output port the decimal
value 85 is written into Portb. Listing 2 includes the hexa-
decimal (&H55) and binary equivalent (&B01010101) of
this value, they are only included to demonstrate alternate
formats. All of the LEDs on portB are switched (Figure 3) to
produce the lighting effect (the LED boogie-woogie!).
The Mega32 has all eight port lines available for use but
the Mega8 or Mega88 uses port pins PB6 and PB7 for
connection of a crystal. When the fuses are configured to
use an external crystal these two port pins are no longer
available as I/O. The same is true for other dual purpose
pins i.e if the hardware UART is used PD0 and PD1are not
available as I/O pins.

Using the pull-up resistors
When the inputs are connected to devices like switches or
optocouplers (with open-collector outputs requiring a load
resistor connected to VCC) it is ideal to use the built-in pull-
up resistors instead of fitting additional external resistors
(Figure 4). Writing a ‘0’ to any of the DDRx bits config-
ures the port pin as an input and writing a ‘1’ to the cor-
responding PORTx bit connects a pull-up resistor to that pin
(Listing 3).
With nothing connected to the inputs the program
displays:
63
255
63
255

When the pull-ups are used the quiescent state of the input
pin is a logic ‘1’ so external signals must pull the input low.
Connecting PB0 to ground produces an PINB value of 62.
With an input shorted a current of around 100 µA flows to
ground which indicates that the pull-up resistor has a value
of 50 kΩ. This corresponds well with the 20 kΩ to 100 kΩ
range quoted in the datasheet.

measuring Capacitance
The ATmega port architecture is very versatile and allows
a very simple capacitance meter to be built. The capacitor
under test (in the range 1 nF to 10 µF) is simply connected
directly to port PB0 and ground (Figure 5). The program
Test 4 (Listing 4) first discharges the capacitor by output-
ting an active low level. The internal pull-up resistor is then
enabled which charges the capacitor. The program meas-
ures the time taken for the capacitor voltage to reach a
logic ‘1’ (2.5 V approximately). The value of capacitance
is proportional to the charge time.
It is necessary to calibrate the unit because of the manu-
facturing tolerances in the values of both the pull-up resist-
ance and the input voltage threshold. Calibrate using a
close-tolerance capacitor and change the multiplication
factor (0.0730) to obtain a result corresponding to the

Figure 2.
A floating CMOS input.

Listing 1
Port input

‘Bascom ATmega Ports
$regfile = “m88def.dat”
$crystal = 16000000
Baud = 9600
Goto Test1

Test1:
Dim D As Byte
Do
 D = Pinb
 Print D
 D = Portb
 Print D
 Waitms 300
Loop

080551 - 12

Listing 2
Port output

Test2:
Config Portb = Output
‘Ddrb = 255

Do
 Portb = 85
 Portb = &H55
 Portb = &B01010101
 Waitms 200
 Portb = 170
 Portb = &HAA
 Portb = &B10101010
 Waitms 200
Loop

Figure 3.
Connecting an LED.

080551 - 13

47
0

Ω

projects microcontrollers

52 elektor - 10/2008

stated capacitor value. The measurements show some vari-
ation but should be accurate enough for most applications.
Repeated measurements of the same capacitor gave the
following spread:
1009 nF
1001 nF
1005 nF
1002 nF

Driving a stepper motor
Those of you who have a unipolar stepper motor (maybe
salvaged from an old printer or 5.25-inch disk drive) may
wish to experiment using this next example. Here the micro-
controller uses the ULN2003 open-collector driver chip on
the Elektor ATM18 test board (Figure 6). Only four outputs
are required so we use pins PC0 to PC3. When this chip is

required to drive inductive loads (e.g. motors or relays) it
is necessary to connect the common cathode of the chip’s
protection diodes (pin 9 on IC2 or pin 8 on K6) to the load
supply voltage pin 2 on K2 (VIN). The supply voltage on
K2 depends on the type of motor used and can be in the
range 6 V to 12 V.
Two pushbuttons are connected to PB0 and PB1 to provide
direction control of the motor.
The BASCOM program is really simple, it just sequences
through all four phases with four variables Phase(1) to
Phase(4).
In the case where the motor just vibrates instead of rotating
it is a simple job to swap phases in the program and saves
changing the motor connections.
The programming examples Test5 to Test7 in Ports.bas (free
download from www.elektor.com) contain several exercises
to drive a stepper motor one of which shows how to build
an analogue voltmeter where the motor controls the needle
position.

(080551-I)

Listing 3
Using the pull-ups

Test3:
Ddrb = 0
Portb = 255
‘Pullups
Do
 D = Pinb
 Print D
 D = Portb
 Print D
 Waitms 300
Loop

Listing 4
Capacitance measurement

Test4:
‘C-meter 1 nF .. 10µF
Dim T As Word
Dim C As Single
Dim S As String * 10
Do
 T = 0
 Ddrb.0 = 1
 Portb.0 = 0
 ‘low Z, 0 V
 Waitms 1000
 Ddrb.0 = 0
 Portb.0 = 1
 ‘Pullup
 Do
 T = T + 1
 Loop Until Pinb.0 = 1
 C = T * 0.0730
 C = Round(c)
 Print C ; “ nF “
Loop

50
kPullup

080551 - 14

Figure 4.
The internal pull-up

resistors.

50
k

Cx

Pullup

080551 - 15

Figure 5.
The principle used for

capacitance measuring.

stepper motor

M

K6

K2

1

Vin

ULN2003
IC2

2

3

4

5

6

7

8

PC3

PC2

PC1

PC0

PB0

PB1

080551 - 16

K7

1

2

3

4

5

6

7

Figure 6.
Connecting a unipolar

stepper motor to the ATM18
test board.

projects microcontrollers

58 elektor - 11/2008

The ATmega controller’s timer/counter section looks a lit-
tle daunting at first sight (Figure 1). They are highly con-
figurable and require a certain amount of care to ensure
they are set up correctly for your application. For those
programming in Assembler this configuration procedure
is quite involved but as you will see BASCOM simplifies
things a lot.

The first thing to decide is the source of the timer/counter
clock signal. It can come from the internal clock (directly or
via a prescaler) or from an external source (e.g. connect to
pin P1 for Timer 1). The counters can count on either the ris-
ing or falling clock edge and the counter value can be read
or changed at any time via the TCNT1 register. When an
overflow occurs it can generate an interrupt. The counters
are commonly used for generating Pulse Width Modulated
(PWM) signals. This is just a brief outline of some of the
more basic properties of the timer/counters, as you become
more familiar with the controller you will begin to get a bet-
ter appreciation of their versatility.

Reading the timer
For the first exercise we are using the 16-bit timer driven
by the system clock crystal and divided by 256 in the pres-
caler. In BASCOM all this information can be written on
one line: Config Timer1 = Timer , Prescale = 256. The
timer also begins counting so it is not necessary to use
Start Timer1.

Listing 1 is the first test, as before we are using a Goto to
reduce ‘compilation clutter’. The listing as printed will only
ever go to the first example, you will need to change fifth
line to Goto Test2 and recompile for the next exercise.

In Test1 timer/counter1 just runs continuously and the coun-
ter value is displayed five times per second. The values are

in the range from 0 to 65535, and we can see that after
roughly one second an overflow occurs:

088
17864
30706
43547
56389
3695
16471

We know the clock frequency and the counter size so it is
possible to work out the exact time between overflows: the
counter clock is 16 MHz divided by 256 which gives 62.5
kHz. The counter overflows after 65536 clocks so the inter-
val between each overflow is 1.049 s.

In this application the counter produces a precise time ref-
erence. We can now use this information to test how long
the program takes to complete the two instructions: “Print
Timer1” and “Waitms 200”. Using for example the con-
secutive readings 43547 and 30706 the interval is 43547
– 30706 = 12841 clock periods. One clock period equals
1 / 62.5 kHz = 15.267 µs.

The time between the two readings will therefore be 12841
* 15.267 µs = 196 ms and not 200 ms. We can see that
the Waitms instruction should not be used if it is necessary
to make accurate time measurements.

Timer Interrupt
This exercise programs the controller to generate an accu-
rate 1 second clock. The 16-bit Timer 1 is not necessary for
this application; we can use 8-bit Timer 0. The timer will
be programmed to overflow every 1000 µs and generate
an interrupt.

BASCOM AVR
Timers and Interrupts
Burkhard Kainka (Germany)

Many practical tasks can only be solved by using accurate timing. The ATmega controllers are
well equipped in this respect; the Mega8 to Mega32 controllers all have three timers, Timer
0 and 2 are 8-bit while Timer 1 is a full 16 bit wide.

Course (3)

5911/2008 - elektor

An interrupt causes a forced interruption of the main pro-
gram and directs the controller to execute a sub routine
(Interrupt Service Routine or ISR) to service the interrupt.
Different events can be programmed to generate an inter-
rupt and an ISR is required to respond to each type of inter-
rupt. Here Tim0_isr would be the subroutine name but in
this example we have just used Tim0_isr: as a label which
indicates where the program jumps to on interrupt. The last
instruction of the interrupt routine must be a RETURN. In
this example further interrupts will not be serviced until the
return is executed.

Test 2 configures timer 0 with a prescaler of 64, which gives
it a clock frequency of 250 kHz. The counter is 8-bits wide
so without further programming it will generate an overflow
interrupt every 256 clock cycles. We need the counter to
interrupt every 250 clocks for an accurate 1 ms timebase
so it is necessary to load the counter with the value 6 each
time it overflows. A word variable called Ticks is incre-
mented every time the counter overflows. When this vari-
able reaches 1000 it indicates that one second has elapsed
and the variable called Seconds is incremented. The value
of either variable can be read by the main program. In this
example the program sends the value of seconds to the ter-
minal every second starting from zero at program start.
It is necessary to allow the interrupts to occur by enabling
the global interrupt (Enable Interrupts) and also allow the
timer 0 overflow condition to generate an interrupt (Enable
Timer0). The display shows the value of seconds:

0
1
2
3

All interrupt sources can be disabled by using Disable
Interrupts.

Averaged measurements
Measurements made of analogue signal levels are often
affected by a 50 Hz mains signal superimposed on the volt-
age level. The unwanted 50 Hz component can effectively
be cancelled out by sampling the analogue voltage level
several times during a complete cycle of the mains voltage
(20 ms) and then averaging all the measurements.

Clock Select

Timer/Counter

D
AT

A
 B

U
S

OCRnA

ICRn

=

=

TCNTn

Waveform
Generation

Waveform
Generation

OCnA

OCnB

Noise

080672 - 11

Canceler
ICPn

=

Fixed
TOP

Values

Edge
Detector

Control Logic

= 0

TOP BOTTOM

Count

Clear

Direction

TOVn
(Int.Req.)

OCnA
(Int.Req.)

OCnB
(Int.Req.)

ICFn (Int.Req.)

TCCRnA TCCRnB

(From Analog
Comparator Ouput)

Tn
Edge

Detector

(From Prescaler)

clk
Tn

OCRnB

Figure 1. Block diagram of the timers.

Listing 1
Reading the timer registers

‘Bascom ATmega88, Timer
$regfile = “m88def.dat”
$crystal = 16000000
Baud = 9600
Goto Test1

Test1:
Config Timer1 = Timer , Prescale = 256
‘Start Timer1
Do
 Print Timer1
 Waitms 200
Loop

projects microcontrollers

60 elektor - 11/2008

For this exercise we will use a timer interrupt again to gen-
erate an accurate timebase. The average value is achieved
by sampling the analogue signal 25 times in a 20 ms time
window. The sampling interval is therefore 800 µs. Timer 2
will be used with a prescale value of 64. Each time it over-
flows Timer2 is loaded with the value 56 so that the next
overflow occurs 200 clocks later.

800 µs is more than enough time to make the analogue
measurement and calculate the sum and mean value. The
variable Ticks is incremented each time a measurement
is taken every interrupt. After 25 measurements the sum
stored in AD0 is transferred to the variable AD0_mean.
The main program averages the value and then sends it
to the screen.

Averaging in this way gives such good suppression of the
50 Hz components that by using half wave rectification the
system can be used to measure ac signals. The low volt-
age AC signal is connected to the ADC0 input via a 10 k

protection resistor (Figure 2). The program now finds the
average value of the positive half wave which is equal to
half of the absolute average value of the sine wave. A typi-
cal sequence of measurements would be:

226
227
226
226
226

Although there is some variation the measured average
value is mostly 226. This can be converted into a real volt-
age level: 5 V * 226 / 1023 = 1.10 V. The measured alter-
nating voltage therefore has an absolute average value of
2.20 V. For a sine wave this equates to an RMS value of
2.44 V and a peak to peak value of 3.46 Vp-p. The rela-
tionship between the peak and RMS value of a sine wave
is √2 = 1.414. For arithmetic averaging the relationship of
the peak value to the average value is π/2=1.571, so the
absolute average value is 90.03 % of the RMS.

(080672-I)

Downloads and
further information:
The programming examples and more information for this
course can be downloaded from the project page at www.elek-
tor.com. As always we look forward to your feedback in the Elek-
tor forum.

Listing 3
Measuring averages

Test3:
Dim Ad0 As Word
Dim Ad0_mean As Word
Config Adc = Single , Prescaler = 64 , Re-

ference = Off
Config Timer2 = Timer , Prescale = 64
On Ovf2 Tim2_isr
Enable Timer2
Enable Interrupts

Do
 Ad0_mean = Ad0_mean / 25
 Print Ad0_mean
 Waitms 100
Loop

Tim2_isr:
 ‘800 µs
 Timer2 = 56
 Ticks = Ticks + 1
 Ad0 = Ad0 + Getadc(0)
 If Ticks > 24 Then
 Ticks = 0
 Ad0_mean = Ad0
 Ad0 = 0
 End If
Return

Figure 2.
Measuring an ac voltage.

10k ADC0

50Hz

080672 - 12

Listing 2
Exact seconds using interrupts

Test2:
Dim Ticks As Word
Dim Seconds As Word
Dim Seconds_old As Word
Config Timer0 = Timer , Prescale = 64
On Ovf0 Tim0_isr
Enable Timer0
Enable Interrupts

Do
 If Seconds <> Seconds_old Then
 Print Seconds
 Seconds_old = Seconds
 End If
Loop

Tim0_isr:
 ‘1000 µs
 Timer0 = 6
 Ticks = Ticks + 1
 If Ticks = 1000 Then
 Ticks = 0
 Seconds = Seconds + 1
 End If
Return

7712/2008 - elektor

microcontrollers projects

In the first exercise we set up timer 1 to count impulses over
a period of one second. A look at the program Listing 1
indicates that timer 1 is configured as a counter, counting
on the falling edge of the input pulse and with a prescale
value of 1.
The counter input is labelled T1 which for example on the
Mega8 and Mega88 is pin PD5 (Figure 1). In this exer-
cise we connect a low-voltage 50 Hz signal to this input via
a 10 kΩ series resistor. A signal generator is not necessary
here; the input impedance is relatively high so just touch-
ing the input resistor with your finger will inject a signal of
sufficient level from the ambient mains field for measure-
ment. In Europe the signal is 50 Hz, in the USA 60 Hz.
The routine counts the number of pulses in 1 second so the
screen shows:
0
50
100
150
201
251

After the fourth value a slight inaccuracy in the measured
value creeps in. This is because the Waitms 1000 instruc-
tion is not an exact time interval and also we have not taken
into account the time necessary to output values to the dis-
play. To improve the accuracy of frequency measurements
we go on in the next exercise to use timer interrupts.

Frequency measurment
The timer can reliably count external impulses with a repeti-
tion rate of up to 4 MHz. To make accurate frequency meas-
urements we need a precise time window, in this example
we use interrupts from two timers. Each time timer 1 over-
flows, the interrupt is serviced by Tim1_isr which increments
the variable Highword. Without this variable the counter
would only be able to measure frequencies up to 65535 Hz
(Listing 2).
Timer 0 generates an exact time window of one second.
When the variable Ticks = 1, timer 1 is reset and the
measurement begins. Exactly 1000 ms later the counter
value of timer 1 is copied to Lowword and then added to
the number of overflows stored in Highword (multiplied by
65536) before storing the result in Freq. The main pro-

BASCOM AVR Course
Counter and PWM

Burkhard Kainka (Germany)

We have already taken a look at timers in part 3 of the course. The ATmega timer/counters
have far more to offer than just measuring time. Here we look at impulse counting,
frequency measurement and PWM signal generation.

gram outputs Freq (in Hz) to the display every second.
Initialising timer 1 in timer mode with a clock of 16 MHz
(Config Timer1 = Timer , Prescale = 1) would
display a frequency of 16000000 Hz. As a counter how-
ever, timer 1 can run at just a little more than a quarter of
this frequency and its prescaler is synchronised to the proc-
essor clock. When you try to measure a frequency as high
as 6 MHz for example the counter gating runs too slowly
to register every edge of the input pulses so it misses some
and shows a false reading of around 3 MHz. The design
can be used to accurately measure frequencies up to and
just beyond 4 MHz.

PWM outputs
Pulse Width Modulation (PWM) is a technique used in

(4)

Figure 1.
A 50 Hz signal on T1.

Listing 1 Impulse counter

Test1:
Config Timer1 = Counter , Edge = Falling ,

Prescale = 1
Start Timer1
Do
 Print Timer1
 Waitms 1000
Loop

10k

080846 - 12

5V
50Hz

T1
PD5

projects microcontrollers

78 elektor - 12/2008

many applications to provide a quasi-analogue control of
power to a load without the need for a true D/A converter.
Timers in the ATmega controllers can be used to generate

PWM signals. Timer 1 has two independent PWM output
channels with a resolution of 8, 9 or 10 bits.

Listing 3 shows how both channels Pwm1a and Pwm1b
of timer 1 can be programmed to produce output signals
with 10-bit resolution. The signals are output from OC1A
(PB1) and OC1B (PB2). Their electrical characteristics are
the same as other port pins so you can just hang an LED
together with a series current-limiting resistor on the output
or connect the output to a buffer like the ULN2003 fitted
to the Elektor ATM18 AVR board. The program produces
increasing brightness signal from channel A and decreas-
ing brightness signal from channel B.

Listing 2
Frequency measurements up to 4 MHz

Test2:
Dim Lowword As Word
Dim Highword As Word
Dim Ticks As Word
Dim Freq As Long
Config Adc = Single , Prescaler = 32 ,

Reference = Off
Config Timer0 = Timer , Prescale = 64
Config Timer1 = Counter , Edge = Falling ,

Prescale = 1
‘Config Timer1 = Timer , Prescale = 1
On Ovf0 Tim0_isr
On Ovf1 Tim1_isr
Enable Timer0
Enable Timer1
Enable Interrupts

Do
 Print Freq
 Waitms 1000
Loop

Tim0_isr:
 ‘1000 µs
 Timer0 = 6
 Ticks = Ticks + 1
 If Ticks = 1 Then
 Timer1 = 0
 Highword = 0
 End If
 If Ticks = 1001 Then
 Lowword = Timer1
 Freq = Highword * 65536
 Freq = Freq + Lowword
 Ticks = 0
 End If
Return

Tim1_isr:
 Highword = Highword + 1
Return

Listing 3 10-bit PWM

Test3:
Dim Pwm As Word
Config Timer1 = Pwm , Prescale = 8 , Pwm

= 10 , Compare A Pwm = Clear Down ,
Compare B Pwm = Clear Down

Do
 For Pwm = 0 To 1023
 Pwm1a = Pwm
 Pwm1b = 1023 - Pwm
 Waitms 5
 Next Pwm
Loop

Listing 4
Six PWM outputs produce an LED light ‘wave’.

Test4:
Dim A As Single
Dim B As Single
Dim I As Byte
Dim K As Byte

Declare Sub Wave
Config Timer0 = Pwm , Prescale = 8 ,

Compare A Pwm = Clear Down , Compare B
Pwm = Clear Down

Config Timer1 = Pwm , Prescale = 8 , Pwm =
8 , Compare A Pwm = Clear Down , Compare
B Pwm = Clear Down

Config Timer2 = Pwm , Prescale = 8 ,
Compare A Pwm = Clear Down , Compare B
Pwm = Clear Down

Do
 For I = 1 To 60
 K = I
 Wave
 Pwm1a = Pwm
 K = I + 10
 Wave
 Pwm1b = Pwm
 K = I + 20
 Wave
 Pwm0a = Pwm
 K = I + 30
 Wave
 Pwm0b = Pwm
 K = I + 40
 Wave
 Pwm2a = Pwm
 K = I + 50
 Wave
 Pwm2b = Pwm
 Waitms 50
 Next Pwm
Loop

Sub Wave
 A = 6.1415 * K
 A = A / 60
 B = Sin(a)
 B = B + 1
 B = B * B
 B = B * 63
 Pwm = Int(b)
 If Pwm < 2 Then Pwm = 2
End Sub

7912/2008 - elektor

LED control using six PWM channels
The Mega88 provides six PWM outputs signals. Timers 0
and 2 both offer a resolution of eight bits. The individual
outputs are on the following output pins:

OC1A on PB1
OC1B on PB2
OC0A on PD6
OC0B on PD5
OC2A on PB3
OC2B on PD3

In this last exercise we use all six PWM outputs, for the
sake of symmetry in this application, timer 1 is confi gured
with a resolution of only eight bits. The aim of this example
(Listing 4) is to smoothly control the brightness of a row
of LEDs such that a sinusoidal ‘wave’ of light travels along
the row.

A loop with 60 brightness levels per LED is suffi cient to
produce a smooth transition between levels. The value of
variable I is used in the sub Wave to produce the light level
value. It is fi rst multiplied by 2π, divided by 60 and then
its sine function is found. The result in the range ±1 is then
offset to the range 0 to 2. The eye’s perception of bright-
ness is nonlinear so to compensate, the value is squared. It
now lies in the range 0 to 4 so multiplying by 63 converts
to the 0 to 255 range (almost) of PWM values used to con-
trol the LEDs.
The steps at lower values of brightness are quite noticeable
so the lowest possible level is limited to 2.

Figure 2.
Brightness control of six
outputs.

Using this calculation and the corresponding phase shift
generated in the program produces an interesting lighting
effect. The overall result is a wave of brightness moving
along the line of LEDs. The LEDs can be arranged in a line
or as a circle. It is possible to expand the line further by
adding six, twelve or more LEDs.

 (080846-I)

Program downloads and forum
As usual the programming examples and additional info can be
downloaded from the project page at www.elektor.com/080846.
We also welcome your feedback on the Elektor forum.

Advertisement

47
0

Ω

PB2

47
0

Ω

47
0

Ω

47
0

Ω

PD6

47
0

Ω

PB1 PD5

47
0

Ω

PD3PB3

080846 - 11

UK0812_77_79_080846_UK_Bascom_4.79 79 31-10-2008 14:35:07

projects microcontrollers

70 elektor - 1/2009

Software engineers aim to produce efficient code. A sim-
ple routine like reading the value of a switch could be pro-
grammed in such a way that it uses up 100 % of the micro-
controllers processing time. In this case there would be no
capacity spare for the controller to perform any other tasks.
It is important when designing any software that the proces-
sor resources are used efficiently. We expand on this theme
here and give some pointers to how the microcontroller can
be better employed.

BASCOM AVR Course
Memory, switch polling and
time management
Burkhard Kainka (Germany)

In the microcontroller embedded scene, complaints about systems having too much memory
or too much processing power are rare if not non-existent — we never seem to have enough!
Microcontrollers in particular have limited resources with no possibility of expansion, so it’s
important not to squander them by using inefficient programming practices.

RAM and EEPROM
In addition to the 8 kBytes of Flash memory the ATmega88
is fitted with 1024 bytes of RAM and 512 bytes of EEP-
ROM. BASCOM uses the RAM to store variables and vari-
ous stacks so how much memory is left over? To test memory
allocation we will write some data into an array. The array
dimension is given A(500). This is handled as 500 indi-
vidual bytes A(1) to A(500). Note that there is no A(0).
The short test program given in Listing 1 contains a loop
which writes an incrementing data byte to memory. A sec-
ond loop reads the memory and sends it to the PC.
A report file Memory.rpt is generated which gives an overview
of how the memory has been used in the program. The file
is in text file format and can be read using Notepad. The file
shows memory size, exact location of all the variables and
much more; very useful to see how much elbow room you
have in reserve as you progress to writing larger programs.

Test 2 shows how data can be written to and read from
EEPROM. In contrast to RAM the EEPROM will not lose its
data when power is switched off. Data is written using the
format Writeeeprom, Variable, Memory address
and read using Readeeprom, Variable, Memory
address. A wiped EEPROM memory location has the
value FF (255). From this it is possible to determine if any
data has been programmed into the EEPROM. Test 2 (List-
ing 2) first writes 512 Bytes to the EEPROM, reads then
displays them on the PC.

Reading the status of switches
Firmware running in stand-alone equipment will undoubt-
edly need to read the status of switches or pushbuttons so
that the user can control the equipment. Reading the status
of switches would seem at first sight to be quite a trivial
process but there are a number of pitfalls. One problem
is that we do not know when and for how long the button
will be pressed so it is necessary to continuously read (or

(5)

Figure 1.
ATmega88 Block diagram.

711/2009 - elektor

‘poll’) the switch status to ensure we do not miss a press. A
systematic approach to software design is also important; it
can create many problems if you need to add a switch poll
routine to existing software, much better to design it in from
the start where each function can be built up logically.
Another, more practical problem is that most switches suf-
fer from contact bounce. When the contacts come together
they do not switch cleanly but instead bounce, producing
an output that looks like the button has been pressed several
times off and on very quickly. It would therefore not be a
good idea to use the switch input directly to clock a timer
or counter. The bounce time is quite short, one common
debouncing method is to filter out the bounce by reading
the switch status say once every 10 ms.
In the next series of examples we use three pushbuttons
connected on D5, D6 and D7. The corresponding port bits
are set high and the data direction register sets these pins
to inputs so that internal pull-up resistors are connected. An
open circuit input will be read as a ‘1’ and a ‘0’ when the
button is pressed. The port pins are given aliases so that you
can use statements like: If S1 = 0 then (Listing 3).
Test 3 actually uses just two buttons to toggle two outputs.
S1 switches the first output high and the second low while
S2 toggles them back. Each key press sends a message to
the PC screen. The polling is repeated after a 50 ms wait.
When either button is pressed continuously, a message is
sent to the serial interface every 50 ms but the port outputs
do not change state.
Test 4 (Listing 4) uses two buttons to control the mark/
space ratio of a PWM signal OC1A = PB1. One button
increases the PWM value while the other decreases it. An
oscilloscope shows the variation in mark/space ratio and
an LED connected at the output will change in brightness.
Switch debouncing is not necessary here because the rou-
tine only measures the time that the buttons are pressed.
Test 5 (Listing 5) uses two buttons to toggle the state of two
LEDs. Each press of S1 causes the LED on Out1 to change
state; likewise S2 controls the LED on Out2. Once a key

Listing 1 Data storage in RAM

Test1:
Dim A(500) As Byte
Dim N As Word
Do
 For N = 1 To 500
 A(n) = Low(n)
 Next N
 For N = 1 To 500
 Print A(n)
 Waitms 100
 Next N
Loop

Listing 2 The EEPROM

Test2:
 For N = 0 To 511
 Writeeeprom N , N
 Next N
Dim D As Byte
Do
 For N = 0 To 511
 Readeeprom D , N
 Print N , D
 Waitms 100
 Next N
Loop

Listing 3 LED control

Test3:
S1 Alias Pind.6
S2 Alias Pind.5
S3 Alias Pind.7
Out1 Alias Portd.2
Out2 Alias Portd.3
Config Portd = &B00001100
Portd.6 = 1
Portd.5 = 1
Portd.7 = 1

Out1 = 1
Do
 If S1 = 0 Then
 Out1 = 1
 Out2 = 0
 Print “1 on”
 End If
 If S2 = 0 Then
 Out1 = 0
 Out2 = 1
 Print “1 off”
 End If
 Waitms 50
Loop

ATmega88

D6

D5

D2

D3

D7 B1

S1

S2

S3

OUT1

OUT2

PWM

080853 - 12
Figure 2.
Input and output

Listing 4
PWM control

Test4:
Dim Pwmold As Integer
Pwma = 0
Do
 If S1 = 0 Then Pwma = Pwma + 1
 If Pwma > 1023 Then Pwma = 1023
 If S2 = 0 Then Pwma = Pwma - 1
 If Pwma < 0 Then Pwma = 0
 If S3 = 0 Then Pwma = 0
 Waitms 20
 Pwm1a = Pwma
 If Pwma <> Pwmold Then
 Print Pwma
 End If
 Pwmold = Pwma
Loop

projects microcontrollers

72 elektor - 1/2009

Listing 5 Two toggle flipflops

Test5:
Do
 If S1 = 0 Then
 If Out1 = 0 Then
 Out1 = 1
 Else
 Out1 = 0
 End If
 Waitms 10
 End If
 Do
 Loop Until S1 = 1
 If S2 = 0 Then
 If Out2 = 0 Then
 Out2 = 1
 Else
 Out2 = 0
 End If
 Waitms 10
 End If
 Do
 Loop Until S2 = 1
 Waitms 100
Loop

Listing 6
Two counters

Test6:
Dim Count1 As Word
Dim Count2 As Word
Do
 If S1 = 0 Then
 Count1 = Count1 + 1
 Print “Count1 “;
 Print Count1
 Waitms 50
 Do
 Loop Until S1 = 1
 End If
 If S2 = 0 Then
 Count2 = Count2 + 1
 Print “Count2 “;
 Print Count2
 Waitms 50
 Do
 Loop Until S2 = 1
 End If
Loop

Listing 7 Switch polling using interrupt

Test7:
Dim Ticks As Byte
Dim Sw1 As Byte
Dim Sw2 As Byte
Dim Sw3 As Byte
Dim Sw4 As Byte
Dim Pwm1 As Integer
Dim Pwm1old As Integer
Dim Ledtimer As Byte
Dim Ledblink As Byte

Ledblink = 1
Enable Timer0
Enable Interrupts
Cls
Lcd 0

Do
 If Ticks = 1 Then Out1 = 1
 If Ticks = 5 Then Out1 = 0
Loop

Timer0isr:
 Ticks = Ticks + 1
 If Ticks = 1 Then
 If S1 = 0 Then Sw1 = Sw1 + 1 Else Sw1

= 0
 If Sw1 > 100 Then Sw1 = 100
 If S2 = 0 Then Sw2 = Sw2 + 1 Else Sw2

= 0
 If Sw2 > 100 Then Sw2 = 100
 If S3 = 0 Then Sw3 = Sw3 + 1 Else Sw3

= 0
 If Sw3 > 100 Then Sw3 = 100
 End If
 If Ticks = 2 Then
 If Sw1 = 3 Then
 Pwm1 = Pwm1 + 1

 If Pwm1 > 1023 Then Pwm1 = 1023
 End If
 If Sw1 = 100 Then
 Pwm1 = Pwm1 + 1
 If Pwm1 > 1023 Then Pwm1 = 1023
 End If
 If Sw2 = 3 Then
 Pwm1 = Pwm1 - 1
 If Pwm1 < 0 Then Pwm1 = 0
 End If
 If Sw2 = 100 Then
 Pwm1 = Pwm1 - 1
 If Pwm1 < 0 Then Pwm1 = 0
 End If
 If Pwm1 <> Pwm1old Then
 Print Pwm1
 End If
 Pwm1a = Pwm1
 Pwm1old = Pwm1
 End If
 If Ticks = 3 Then
 If Sw3 = 3 Then
 If Ledblink = 1 Then
 Ledblink = 0
 Else
 Ledblink = 1
 End If
 End If
 End If
 If Ticks = 4 Then
 Ledtimer = Ledtimer + 1
 If Ledtimer > 100 Then Ledtimer = 0
 If Ledtimer = 1 Then
 If Ledblink = 1 Then Out2 = 1
 End If
 If Ledtimer = 50 Then Out2 = 0
 End If
 If Ticks = 10 Then Ticks = 0
Return

731/2009 - elektor

press is detected the program switches the LED and loops
until the switch is released. A 10 ms wait is used to fi lter
any bounce otherwise the LED would change state on every
edge of the switch bounce waveform, leaving the LED ran-
domly on or off.
The same routine can be used to increment the values of
two counters (Test 6). Each time a counter value changes,
its value is sent to the PC.

Switch polling using timer interrupt
All of the preceding methods of switch polling do not use
the processor resources effi ciently, it spends its time either
waiting or reading the switch inputs. In reality there will
be more switches to read and other tasks for the fi rmware
to take care of. The next stage is to take a more structured
approach to software design so that resources are better
managed. Test 7 (Listing 7) shows one method of how this
can be achieved. Switch polling occurs in the background
in a timer interrupt routine. The main program is now free
to take care of other tasks.
For each button S1, S2 and S3 there is an associated vari-
able Sw1, Sw2 and Sw3. While a button is not pressed its
variable has the value zero. As long as a button is pressed
the variable is incremented up to 100 where it stops. The
variable indicates how long the key has been pressed, so
you may for example wish to initiate some process only
when its value reaches three. A long key press gives a
value of 100.
The timer routine uses a counter to produce short time inter-
vals Ticks which is incremented each time the timer inter-

rupts (it is reset when it reaches 10). The three switches are
read only once every ten Ticks (when Ticks = 1). The
interval takes care of switch debouncing and occurs often
enough not to miss any press.
At other tick values different duties are performed. When
Ticks = 2 switch counters are read and a PWM signal
is generated. When Ticks = 3 the switch counter is read
and Ledblink is toggled to switch a fl ashing LED. The LED
output is produced when Ticks = 4. The sequential dis-
tribution of tasks gives the impression that all the activities
are performed simultaneously. The processor still has ample
processing power in reserve for many additional tasks. The
main program switches output Out1 high for fi ve ticks and
low for fi ve ticks. An LED connected to this output appears
slightly dim; the on/off repetition rate is so fast that you can-
not see any fl ickering. The LED brightness is constant, indicat-
ing that the program is maintaining a 50:50 output clock.
The mark/space ratio of the PWM output is controlled by
buttons Sw1 and Sw2. The software determines if there is a
short button press or a long one. A short press changes the
value by one, a longer press changes the counter value con-
tinuously. This allows the user to quickly reach the desired
value.

(080853-I)

Downloads and further
information
The programming examples and more information for this course
can be downloaded from the project page at www.elektor.com.
We also look forward to your feedback on the Elektor forum.

Advertisement

Further information and ordering at www.elektor.com/arm-kit

a low cost entry into
ARM development

Flowcode 3 for ARM (CD-ROM) £119.00

E-blocks ARM board £89.20

E-blocks LED board £15.15

E-blocks LCD board £20.00

E-blocks Switch board £15.15

USB cable £3.70

Power supply £12.30

Total value £274.50

Special offer £162.00

Starter Kit Professional
for ARM

40% DISCOUNT!
Order now at

www.elektor.com/arm-kit
This bundle is perfect for low cost entry into ARM develop-
ment and is great for engineers who need to develop
prototypes of electronic systems quickly using the super fast
ARM 7 core from Atmel. The pack is fully compatible with
the range of E-block accessories. Datasheets on each
individual item are available separately.

Elektor
Regus Brentford
1000 Great West Road
Brentford TW8 9HH
United Kingdom
Tel. +44 20 8261 4509

Free P&P!

UK0901_70_73_080853_UK_Bascom_5.73 73 28-11-2008 14:10:13

- low pooling prices
- wide pooling choices
- 1 – 8 layers

- full options service
- 1 - 16 layers
- UL marking

- no tooling charges
- no minimum order
- from 3 working days
- 100% DRC verification

All services

Order pooling

On demand

Prototype & small series PCB specialists

www.eurocircuits.com
Call us: 020 8816 7005 Email: euro@eurocircuits.com

Simple online pricing
Fast online ordering
Clear online order tracking

