
ASSEMBLERS

A CCORDING to a recent magazine
Msurvey. one of the most popular ap
plications of personal computers is soft
ware development, or simply writing pro
grams. As anyone who has been bitten
by the programming bug undoubtedly
knows, each new program is always big
ger and fancier than the last. Beyond a
certain point in program complexity,
however, the use of an assembler pro
gram is almost mandatory to eliminate
most of the drudgery associated with
hand coding in octal or hex. This is par
ticularly true when one wishes to make a
"small improvement" to a hand-assem
bled program which otherwise requires it
to be rewritten.

Functions of an Assembler. Using
an assembler in machine language pro
gram development has three important
advantages over hand coding. First, an
assembler allows the programmer to
use operation mnemonics such as
"LDA" for the "load register A" operation
rather than the octal code 072 (8080 mi
croprocessor). When looking at a pro
gram you wrote several weeks ago or
one written by somebody else, the LDA
is much more meaningful than the 072,
which in turn makes the program easier
to understand.

The second and most important
advantage is that the addresses of sec
tions of code and data items can be giv
en symbolic names and referred to by
name. Again, a name like TAXTAB used
to refer to a table of tax rate data is more
meaningful than its address which might
be 005:120. The most important benefit
of symbolic names comes when a pro
gram is changed for some reason. With
a hand-coded program, some of the ad
dresses used in the program would
probably have to change as sections of
the program and data are shuttled
around to make room for additions.
Then, every reference to addresses that
were changed would also have lo be
changed. The resull is that, in a large
program, a considerable number of
changes may be necessary for wh at

JULY1977

By Hal Chamberlin

would otherwise be a minor addition.
With symbolic names, the assembler
can do all of the address shuttling when
the program is reassembled and the
programmer need be concerned only
with the additions. The concept is analo
gous to solving an equation in general
using symbols and algebra and then
substituting actual values into the solu
tion rather than solving the equation for
each set of values needed.

A third advantage is that the use of an
assembler tends to develop good pro
gram documentation habits which adds
to the value of a program. All assem
blers allow the latter part of each state
ment to be used for comments. A well
written program has an English explana
tion of what the machine instructions are
accomplishing as comments on nearly
every statement. A neat assembly listing
of a program is also much easier to re
produce and read than hand scrawls on
coding sheets. Conversely, buying a
machine language program without do
cumentation in the form of commented
assembly listings is like buying electron
ic equipment without a schematic.

Using the assembler program itself is
generally quite simple. First the assem
bly language program which is called a
source program is converted into ma
ch ine readable form . Such a form may
be ASCII characters on paper tape. au
dio or digital cassette records, floppy
disk sector records, or even ASCII data
in memory depending on the system
and assembler used. Usually some kind
of program editor is used to aid in en
tering and editing the source program.
Next the assembler is loaded and ex

. MACRO
MA CRO DEFI NlTION ~OH A DOUBLE ?R"C !S!O i ADD FAOH H~HORY
~J\ CRO- !llST AUCTION

ADDS THE CO NTEfffS OF SADDP AND $A DDH· 1 TO AECISTERS B AND
C WITH THE A~SULT IN B AND C , CONDITION FL AGS UNAFFECTED

ecuted. During execution, the assembler
will scan the source program and pro
duce a listing file containing a copy of
the source program along with the octal
machine codes and an object file con
taining only the machine codes.

The assembler may also flag some
statements as having errors. Common
errors that an assembler can catch in
clude using non-existent instruction
mnemonics and undefined symbols.
The latter is the case when a reference
is made to a symbolic address but an
actual address is never assigned to the
symbol. These and other errors detect
ed by the assembler are usually caused
by typing mistakes. After editing the
source program to eliminate errors and
reassembly , the object program is ready
to be loaded into memory and executed.

Types of Assemblers. Although all
assemblers perform basically the same
function , there is considerable variety in
the implementation and use details. Per
haps the most distinguishing character
istic is the number of scans or passes
over the source code done by the as
sembler.

A classical assembler makes two
passes over the source program. During
the first pass, all symbol definitions are
searched out and placed in a symbol ta
ble maintained by the assembler. During
the second pass. the mnemonics are
translated into their octal equivalents
and the listing file and object file are
generated. The two passes are needed
because a reference to a symbolic ad
dress may occur in the program ahead
of the definition of the symbol. This is
cal led forward referencing. If the assem
bler is to know what octal address to
substitute for the symbol , it will have to
see the definition first.

Several attempts have been made at
one-pass assemblers and a couple of
these are available on hobbyist sys
tems. The advantage of a one-pass as
sembler is increased assembly speed
since the source file, which may be
many thousands of characters in length,
needs to be read only once. Often how
ever the one-pass assembler imposes

s LnL DPAD $ ADDA

?USH H
LllLD $ADDA
DAD !I
.~OI' B , H
HOV C , L
POP H
.l'!E iD

OOUBLE PRf:Ci SfOtl ADD PROT()jYPE

SAVE H AND :.

GET nm BYTES TO ADD IN H AS'.> L
 Fig. 1. E xam7Jle AD D THEM TO B AND C
GO?Y RESULT WT O B AN!l C of mac1·0

defi11i tio n.
RESTORE H A.'iD L.

89

restrictions on program organization and
the free placement of symbols. This is
due to the "look ahead" problem men
tioned earlier. Sometimes a one-pass
assembler is "faked" by a two-pass one.
In this case the source file is read for the
first pass and then saved in memory for
the second pass which is invisible to the
user. The difficulty with this approach is
that a large amount of memory is need
ed to assemble a reasonably large pro
gram.

Ocx:asionally a " three-pass" assem
bler is seen. These are really two-pass
assemblers with the second pass split in
two to accommodate a Teletype with
built-in paper tape. These machines
cannot punch the object file al the same
time as printing the listing fi le so a sepa
rate pass is required for each function.

A conversational assembler is anoth
er variation. Basically a combination of a
simple text editor and a conventional as
sembler, the conversational assembler
is very convenient for experimentation
and testing of short programs and sub
routines. Operation of a conversational
assembler is much like most BASIC lan
guage systems. The program is typed in
line-by-line and edited using line num

-
Money-saving. mulli-elemen! stereo

speaker kils. Build them yourself to save up
lo half the retail cost o f comparable
ready-built syslems. And get great sound
m the bargain.

Send us your name and address and
we'll mall you our free 44-page calalog of
speaker kits. row speakers. crossovers .
enclosures and lips on design and con
struction. ll"s proclicolly o manual on
speaker butldmg.

.I'~!.!~~~!~

bers and simple editing commands.
When a RUN command is given, the
program is quickly assembled directly
into memory and executed. Program
size is limited since the source program
ASCN text, symbol table, and object pro
gram as well as the conversational as
sembler program itself must all fit into
memory at once.

Advanced Assembler Features.
As assembly language programming ex
perience increases, some of the more
sophisticated assembler features avail
able will be appreciated. Although these
features have been rare in hobbyist ori
ented systems, the assemblers being
supplied with recently announced floppy
disk systems generally have most of
them.

One such feature is macro-instruction
capabi lity. A macro-instruction (often ab
breviated as "macro") is one that may
generate many machine language in
structions when assembled. When writ
ing a program, macro-instructions may

EUMP LE PRO GRAH

001 ; 100 1 16 1-\0V C,H
001 :101 0~3 rnx H
001 : 102 106 HOV B,H
001 : 103 DPA D CORR
001 : 10] 3b5 PUSH 11
001 :10 ~ 052 200 001 - LHLD CO RR
001 : 107 01 1 DAD B
001 : 11 0 101 HOV B, H
0 01 : 1 11 1 15 KOV C, L
0 0 1 : 1 12 J b1 POP H
001 :11 3 160 MOV M, B
00 1: 11 ~ 053 DCX Ii
001 : 11 5 161 KOV M, C

same dummy argument in the LHLD in
struction as in the prototype. The
.MEND signals the assembler that the
macro definition is complete. The defini
tion is then saved by the assembler in a
special table in memory reserved for
that purpose .

Figure 2 shows the use of this macro
instruction in a program (octal) . In this
example all of the instructions generated
when the macro was expanded are
shown on lhe listing with a preceding mi
nus sign. Generally the assembler will
have a command that would suppress
printing of these expansion instructions
if desired. With a good library of macro
definitions, assembly language pro
gramming may become almost as easy
as programming in a higher level lan
guage.

Another advanced feature is called
" re locatable object code" capability. An
assembler having this feature supplies
additional information in the object file
so that it may be later loaded into memo
ry anywhere desired completely auto-

SEGMENT ! LL USTRATHlG USE Of !>P AD MllCRO

LOAD OAIGI IAL RAW VA LUE (16 BI TS)

ADD IN CORRECTION FACTOR
SAV E H AND L
GET TWO i.l YTES TO ADD IN H AtlD L
ADD THE/'. TO B AN D C
COPY RESULT ltlTO B AN P C

RESTORE H AND L
UPDATE WI TH CO RR ECTED VA LUE

P.ig. 2. E xample of use of a. macro-insit·uciion.

be used just as if the microprocessor ac
tually had them as real instructions in its
repertoire.

Macros can be defined by the pro
grammer al the beginning or his pro
gram according to his needs. Although
exact details of macro definitions and
usage differ among various assemblers,
a typical macro definition is shown in
Fig. 1. The .MACRO on the first line al
erts the assembler that a macro defini
tion follows rather than ordinary program
instructions. The next line gives the
macro prototype which defines how the
macro-instruction would look in a source
program. The symbols preceded by dol
lar marks are sometimes cal led "dummy
arguments" because, when the macro
instruction is actually expanded by the
assembler. they are effectively replaced
by the actual symbols used in the mac
ro-instruction. Following the prototype
are the actual machine instructions that
wou ld be generated when the macro
instruction is used. Note the use of the

matically without difficulty. A special re
locating loader must be used to interpret
this extra information and load the object
file into memory. Not only are the ad
dresses of all jump. call, and direct ad
dressing instructions changed, but ad
dress constants and other location de
pendent symbolic references are
changed . An additional featu re of the re
locating loader allows several object
files that were generated at different
times to be linked together into a single
coherent program with all calls and
jumps between the separate "modules"
properly adjusted . This feature greatly
facilitates the use of subroutine libraries
withoul having to copy all of the source
code into the program being developed
every time a subroutine from the library
is needed.

With this little bit of background, the
reader should be able to evaluate more
fully the assembly language program
development faci lities of a particular
system. o

POPULAR ELECTRON ICS 90

