
An Introduction
to Compilers

Part I

Surest? K. Basandra

The subject matter of compiler construction can be
considered as a form of language translation. The
phrase ‘language translation' suggests the exist¬
ence of several languages and, also, the notion oi

translation. By translation we mean a mapping of sentences
of a given language to sentences of another given language.

A necessary aspect of translation is that the mapping
preserves the meaning of the sentence to be translated. Since
this is a very broad constraint, it should be evident that, in
general, translation is a one-to-many mapping.

As we are interested in solving problems by using compu¬
ters, the act of translation can be imperatively expressed as:
Take an arbitrary sentence of some given language, analyse
it and, if possible, synthesise a sentence ol another given
language so that it completely conveys the meaning of the

initial sentence.
To realise this, however, several major problems have to

be carefully considered: What is a language? What do wc
mean by an analysis of statements in a language? Howdo we
ascribe a meaning to a sentence in any language? In any
given language, how do we synthesise sentences which will

have a given meaning? If many sentences can be ascribed the

same meaning, how do we choose amongst them?
The most common languages we know of are the natural

languages such as English. Our understanding of such lan¬
guages is rather loose and cannot be succinctly expressed.
This is not at all surprising, for such languages are usually
very vast. Consequently, the problem of translation between
such languages has mammoth proportions. Fortunately, for
the present, our interests lie in a very specific set of lan¬

guages, the so-called ‘programming languages’.

Mr Basandra, an M. Tech in Computer Technology, unravels the system of
•compilers’ and various other terms like •translators' and ‘interpreters' that
the teadeis may have heard and wondered as to their actual meaning.

Programming languages provide a precise and unambigu¬
ous means for communication between man and machine.
Amongst such languages, we distinguish between those

which are more suited for problem-solving by man from
those which are suited for direct interpretation by a machine.
In this article, we will be concerned with the translators
(agents which perform translation) which translate senten¬
ces from languages in the former class to sentences of lan¬
guages in the latter class. Compilers are such translators.

Compilers and translators

A ‘translator’ is a program that takes as input a program
written in one programming language (the source language)
and produces as output a program in another language (the
object or target language). If the source language is a high-
level language such as FOR I RAN, PI./1 or COBOL, and

the object language is a low-level language such as an assem¬
bly language or machine language, then such a translator is
called a ‘compiler’.

Programs written in source languages are called ‘source
programs'. On the othet hand, object languages are usually
suited for machine interpretation. Programs expressed in
object languages are called ‘object programs’. To translate a
source program, the compiler must analyse it thoroughly
and synthesise an equivalent object program.

The task performed by a compiler is called ‘compilation*.
During compilation, the process of source program analysis
yields a variety of information about source programs. This
information has to be preserved by the compiler for it to
produce an equivalent object program. Various data struc¬
tures, such as tables, lists, trees, etc are employed by the

compiler to preserve this information. The construction of

an equivalent object program is directed by the information

JULY 1886

SOUHC.tr i
PROGRAM ' “*l COMPILER

OLJJLCr
r| OBJECT I

INPUT T PROGRAM I"

OBJECT
PROGRAM

OBJECT
PROGRAM
OUTPUT

Fig. i: (ompiltilion and execution.

preserved in these data structures. All the actions performed
by a compiler are said to occur at ‘compile-time’.

Executing a program written in a high-level programming
language is basically a two-step process, as illustrated in Tig.
I. The source piogram must first he compiled, i.e. translated
into the object program. I hen the resulting object program
is loaded into memory and executed.

be written in the source language.
A programming language is a notation with which people

can communicate algorithms to computers and to one

another.

Syntax

A program in any language can be viewed as a string of
characters chosen from some set, or ‘alphabet’, of charac¬
ters. But how do we prescribe which strings of characters
represent valid programs? The rules that tell us whether a
string is a valid program or not are called the ‘syntax’ of the
language.

It is often almost impossible to state concisely and pre¬
cisely what strings arc valid programs, just as it is hard to
state which sentences of English are proper and which are
not.

Other translators

Certain translators translorm ••. programming language
into a simplified language, called ‘intermediate code', which
can be directly executed living a program called an ‘interpre¬
ter’. We may think of the intermediate code as the machine
language of an abstract computet designed to execute the
source code. Tor example, SNOBOI, is olten interpreted,
the intermediate code being a language called ‘polish postfix
notation'.

In some cases, the source language itself can he the intei-
mediate language I nt example, most ‘command languages',
such as JC’L, in which one communicates directly with the
operating system, arc interpreted with no prior translation at
all.

Interpreters are often smaller than compilers and facilitate
the implementation ot complex programming language con¬
structs. However, the main disadvantage of interpreters is
that the execution time of an inteipretcd program is usually
more than that of a coi responding compiled object program.

There are several other important types of translators,
besides compilers. If the source language is assembly lan¬
guage and the target language is machine language, then the
translator is calltd an ‘assembler’.

The term ‘preprocessor’ is sometimes used for translators
that take programs in a high-level language into equivalent
prograpis in another high-level language. Tor example,
there are many TOR I RAN pteproeessors that map ‘struc¬
tured' versions ot TOR I RAN into conventional
FORTRAN.

Programming languages

Here it is intended to define a programming language
formally. 1 his has to be done beta use, intuitively speaking, a
compiler specifies a relationship between source programs
and object programs. It does this for all source programs,
and hence compilation is really a relationship between two
languages. In other words, a compiler is not concerned with
any specific set of source programs but all programs that can

Semantics

Once we know that we have a valid program, how do we
specify what the program does? It is essential to know what a
program means if we are to compile it faithfully into a
machine language program that does what the programmer
expects. The rules that give meaning to programs are called
the ‘semantics' of the programming language.

I he semantics of a programming language are much
harder to specify than its syntax. No completely satisfactory
means for specifying semantics in a way that helps construct
a correct compiler for the language has been found.

The hierarchical structure of programming languages

A programming language is a notation for specifying a
sequence of operations to be carried out on data objects.
Both the data objects and the operations can be grouped into

PRO|RAM

SUBROUTINES & Bl OCXS

I
STATEMENTS

I
EXPRESSIONS

DATA HEfEHENCES OPERATORS r-UNCTIONS

Fig. 2: Hierarchy of program elements.

a hierarchy that looks like the tree of Fig. 2. Not all lan¬
guages have every one of these features, and some languages
such as ALGOL 68, permit statements to be in expressions.

Nevertheless, the units in this hierarchy are so common that
they should be familiar to all.

At the top of the hierarchy is the program itself. The
program is the basic execution unit. Next comes an entity
that can be compiled but not necessarily executed- the sub¬
routine or block. These are units which may have their own
data (local names).

Subroutines differ from blocks by being callable from

ELECTRONICS FOR YOU

other portions of a program. Both subroutines and blocks
are composed of statements, in turn, statements are fashi¬
oned from expressions which are made up of operators,
function calls, and references to data.

The structure of a compiler

The compiler takes as input a source program and pro¬
duces as output an equivalent sequence of machine instruc¬
tions. This process is so complex that it is not reasonable,
either from a logical point of view or from an implementa¬
tion point of view, to consider the compilation process as
occurring in one single step. For this reason, it is customary
to partition the compilation process into a series of sub-

MOUnCEPROGRAM

Fig. 3: Phases of a compiler.

processes called ‘phases’ as shown in Fig. 3. A phase is a
logically cohesive operation that takes as input one represen¬
tation of the source program and produces as output

another representation.
As input to a compiler, the source program is only a string

of characters. From this linear representation of the pro¬
gram, the process of source program analysis should detect
the structure and meaning of the program.

This is very similar to the actions involved in finding
constituent phrases in a sentence in English, in which case we
do so by making use of the English grammar. In order to
understand an English sentence, we must first know the
meaning of various words used in it; grouping the words into

phrases allows us to ascribe meanings to these phrases; and
finally, combining the meanings of the phrases according to
the grammatical structure of the sentence leads to an under¬

standing of the sentence.
From the above analogy, it is reasonable to assume that

the source language has a grammar which delmes acceptable
grammatical structures for source programs. In order to
analyse the structure of a source program, we have to formu¬
late a strategy for recognising its constituent sub-structures.
Also, we have to detect the methods by means of which these
sub-structures are bound together to form a whole source
program.

Looking at the analogy of grammatical analysis of English
sentences again, we note that we recognise words first and
then we search for the phrases. The first phase consists of the
analysis of the string of characters in the source program so
as to form meaningful primitives (analogous .o words and
punctuation marks in an English sentence).

The first phase, called the ‘lexical analyser’ or ‘scanner’
separates characters of the source language into groups that
logically belong together; these groups are called ‘lexemes’
or ‘tokens'. The usual tokens are keywords such as DO or IF,
identifiers (the equivalent of ‘names’ in programming lan¬
guages) such as X or NUM, operator symbols such as ‘ •
‘ ’, ‘-’ or *+’, and punctuation symbols such as parentheses
or commas.

The output of the lexical analyser is a stream of tokens
which is passed to the next phase. The tokens in this stream
can be represented by codes which we may regard as integ¬
ers. Thus, DO might be represented by I, + by 2. and ‘identi¬
fier’ by 3. In the case of a token like identifier, a second
quantity that indicates which of those identifiers used by the

program is represented by this instance ol token identifier is
passed along with the integer code for identifier.

The task of this first phase is quite simple and straight¬
forward. Subsequent to this phase of analysis, a source
program may be viewed as a sequence of tokens.

Following lexical analysis is the task of recognising gram¬
matical phrases in a source program. T his is a more compli¬
cated task: sequences of lexemes have to be grouped together
to form simple phrases of the source language; these simple

phrases are used to form more complex ones and. ultimately,
source programs.

All these actions are the substance of ‘syntaxanalysis’, the
term usually ascribed to this second phase in the analysis of
source programs. The syntax analyser- groups tokens
together into syntactic structures. For example, the three
tokens representing A+B might be grouped into a syntactic
structure called an ‘expression’. Expressions might further
be combined to form statements.

Often, the syntactic structure can be regarded as a tree
whose leaves are the tokens. The interior nodes of the tree
represent strings of tokens that logically belong together.

The ‘intermediate code generator’ uses the structure pro¬
duced by the syntax analyser to create a stream of simple
instructions. Many styles of intermediate codes are possible.
One common style uses instructions with one operator and a
small number of operands. These instructions can be viewed
as simple macros. The primary difference between interme¬

diate code and assembly code is that the intermediate code

JULY 1906 63

need not specify the registers to be used lor each opciation
'Code optimisation' is an optional phase designed to

improve the intermediate code so that the ultimate oh|ect
program runs faster and oi takes less space Its output is
anothei intermediate code piogram that does the same job
as the original, but perhaps in a wav that saves time and ot

space
1 he tinal phase, known as Voile geueialion', produces the

object code by deciding on the inetnoiy locations lot data,
selecting codes to access each datum, and selecting the icgis-
teis in which each computation is to be done Designing a
code genetatoi that pioduces liulv efficient obicct piogiams
is one ot the most difficult parts ot compilci design, both
practically and theotetically.

I he 'table-management' oi 'book-keeping' poition ol the
comptlei keeps Hack ol the names used by the program and
iccords essential inloimaiion about each, such as its type
(integer, ical etc). I he data structure used to record this
inhumation is called a 'symbol table'

I he 'enoi handler is invoked when a (low in the source
piogram is detected It must warn the piograrnmer by issu¬
ing a diagnostic, and ad|ust the information being passed
from phase to phase so that each phase can proceed

It is desnable that compilation be completed on Hawed
programs, at least thiough the syntax-analysis phase, so that
as many errors as possible can be detected in one compila¬
tion. Both the table-management and error handling iou-

trnes internet with all phases of the compiler.

Passes

In an implementation ol a compilci, portions ol one oi
more phases are combined into a module called a 'pass'. A
pass reads the source piogtatn oi the output ol the pievious
pass, makes the transformation specified by its phases, and
writes output into an intermediate file which may then be
read by a subsequent pass, if several phasesaiegrouped into
one pass, then the operation ol the phases may be inter¬
leaved, with conliol alternating among scvcial phases

I lie number of passes, and the gioupmg ol phases into
passes, are usually dictated by a vauety ol considerations

germane to a particulai language and machine rather than
by any mathematical optimality criterion. I he structure ot
the source language has a strong died on the number of passes.

C'citmn languages require at least two passes to geneiate
code easily, hoi example, languages such as PI I or
A1 CiOl 6K allow the declaiation ol a name to occui after
uses of that name. Code foi expiessions containing such a
name cannot be gcneiated conveniently until the declaration
has been seen.

The environment in which the compiler must operate can
also affect the number of passes. A multi-pass compiler can
be made to use less space than a single-pass compiler, since
the space occupied by the compiler program lor one pass can
be rented by the following pass.
^^l^pUf-pasx compiler is, of course, slower than a single-

64) -

pass compiler, because each pass reads and writes an inter¬
mediate file. Thus, compilers running on computers with
small memory would normally use several passes while, on a
computer with a large random access memory, a compiler
with fewer passes would be possible.

Reducing the number of passes

Since each phase is a transformation on a stream of data
representing an intermediate form of the source program, it
may be wondered how several phases can be combined into
one pass without the reading and writing of intermediate
files. In some cases one pass produces its output with little or
no memory of prior inputs, lexical analysis is typical. In this
situation, a small buffer serves as the interface between
passes. In other cases, we may merge phases into one pass by
means of a technique known as ‘backpatching’. In general
terms, if the output of a phase cannot be determined without
looking at the remainder of the phase’s input, the phase can
generate output with 'slots’ which can be filled in later, after
more of the input is read.

While it is not possible to deal with backpatching in detail,
an example from assemblers will serve as a paradigm. An
assembler might have a statement like

GOTO 1.
which precedes a statement-with label L. A two-pass
assembler uses its first pass to enter into its symbol table a list
of all identifiers (statement labels and data names) together
with the machine address (relative to the beginning of the
program), to which these identifiers correspond. Then a
second pass replaces mnemonic operation codes, such as
GOIO by their machine language equivalent, and replaces
uses of identifiers by their machine address.

A one-pass assembler, on the other hand, could generate a
skeleton of the GOTO machine instruction the first lime it
saw GOT O L. It could then append the machine address for
this instruction to a list of instructions to be backpatched
once the machine address for L is determined. For example,
when the assembler encounters a statement such as

L: ADD X
it scans the list of statements referring to L and places the
machine address for statement 1.: ADD X in the address
field of each such instruction. Subsequent assembly instruc¬
tions referring to L can have the value lor L substituted
immediately.

In a compiler, most of the backpatching that needs to be
done is done over relatively short distances. Labels, for
example normally need to be backpatched as above only
with one procedure or subroutine. The distance over which
backpatching occurs is important since the code to be back-
patched must remain accessible until backpatching is com¬
plete. Even though the object program may fit in memory
when it is produced, intermediate forms of the source pro¬
gram may be too big to fit in memory all at once, especially
as a substantial portion of memory may be occupied by the
compiler program itself. (To be continued)

ELECTRONICS FOR YOU

