
AN INTRODUCTION TO 
COBOL PROGRAMMING (2) 

R. Ramaswamy and T.V. Krlshnamurthy 

Cobol data consist of variables and constants. Data names, 
procedure names, condition names etc, can be treated as 
variables, since their values vary during the progress of a 
program. A constant is a predetermined unit of data whose 

value does not change during a particular program. There 
are two types of constants, namely, literal and figurative. 

Literals 
A literal is a constant, i.g., it consists of a string of 

characters which represent themselves. A program may 
demand the use of a data name to have a constant value 
throughout the run-time of the program. For example, if 
we have a factory code number to be output by the prog¬ 
ram, then the factory code number can be fed into the 
computer as a data name with a constant value throughout. 
This is done by defining the factory code as a literal before 
the factory name is used in the program. There are two 
types of literals, namely, numeric literal and non-numeric 
literal. 

Numeric literals 
Constants consisting only of numbers are called numeric 

literals. They can be used in a mathematical operation in a 

program without being defined previously, though the gen¬ 
eral rule is that all data names shall be defined earlier to 

their being used in the program. For example, in the state¬ 

ment 
ADD 10 TO A or (MOVE 10 TO A) 

A is a data name representing a definite value. The number 
10 in the instruction is a numeric literal. When A is defined 

previously, 10 is taken as a constant for this mathematical 

operation. The second instruction, MOVE 10 TO A, 
causes a number 10 to be moved into the location A. 
Suppose we want to multiply the contents of a location B by 

a constant and store the result in another location C, the 
instruction for this can be as 

MULTIPLY B BY 5 GIVING C 
vyhere B and C are defined previously, before they are used 
in this instruction. The constant 5 is used without being 

defined previously. Such numeric constants used in the 
program without being defined prior to their being used are 
known as1 numeric literals.’ A numeric literal shall conform 

to the following rules: 
1. It shall contain up to a maximum of 16 digits. (Count 

does not include decimal point or sign) 
2. A positive or a negative sign can be given preceding the 

first digit in the literal. An unsigned numeric literal is 
taken as positive. If a sign is shown as the left-most 

character, there must be no blank left between it and the 
literal’s next symbol. 

3. A decimal point can lie within the literal. The decimal 
point shall not be the last character of the literal. 
Numeric literals without decimal point are treated as 
integers. Twentyfive can be written as 25 or 25.0, but not 

as 25. 
4. A literal shall not contain alphabets or any special 

characters. 
5. There are no double precision or complex literal con¬ 

stants. 
6. Only numeric literals may be used in arithmetic. 

The following are examples of valid numeric literals: 
+3245 
-32.90 

3456 

23.09 
-.00089 

The following are examples of invalid numeric literals: 
3245 + The * sign cannot be at the end 
2345. The last character shall not be a decimal point 
32/23 There shall not be any special character 
23A45 There shall not be any alphabets 

Non-numeric literate 
A non-numeric literal is a string of characters enclosed 

with quotation marks. In a program it may be necessary to 
use certain constants which contain alphabets or special 
characters as well. For example, it may be necessary to 
output a certain value as CR-AMOUNT = 326.20, where 
326.20 is the amount computed by the program. If the 
result is just output as 326.20, it becomes difficult to de¬ 
cipher as to what it stands for. To cause the output to be 
meaningful, the word CR-AMOUNT followed by a = sign 

is also ouput. This word CR-AMOUNT and the sign = are 
called non-numeric literals. These non-numeric literals are 
moved into a previously defined location and the contents 
of the location are output. That is, one writes 

MOVE “CR-AMOUNT - ” TO X 
The above instruction causes the word “CR-AMOUNT = 
” to be moved to a location X which has been defined 
previously. Here the word “CR-AMOUNT = is treated as 
a non-numeric literal constant. It is essential that the non¬ 
numeric literal constant shall be enclosed by a set of quota¬ 

tion marks. The following are the rules to be observed in 
forming a non-numeric literal. 
I. It can contain up to a maximum of 120 characters includ¬ 

ing blanks. 

FEBRUARY 1978 37 



2. It shall contain only the characters in the Cobol charac¬ 

ter set. 
3. The constant shall be enclosed with quotation marks. 

The following are examples of valid non-numeric literals: 
“ ITEM DESCRIPTION” 
“JANUARY 24, 1978” 

"25.5” 
“ERROR-MESSAGE" 
The computer on sensing the quote marks recognises the 
characters following it (until it senses a closing quote mark) 
as forming a non-numeric literal. The name non-numeric 
literal must not be understood as only defining alphabets 
and special characters as constants, but it can also define a 
numeric field. For example, if one writes 

MOVE “001" TO C 
this causes 001 to be moved into a previously defined 

location C. rhe difference between such a non-numeric 
literal defining a numeric field and a numeric literal 
defining a numeric field lies in the fact that the latter is 
subject to any mathematical operation such as addition, 
subtraction, division or multiplication whereas the former 
is not. Consider the following two instructions 

MOVE 10 TO A 
MOVE “001” TO C 

With the first instruction it must be possible to give another 
instruction as ADD 1 TO A at a later stage in the program. 
This causes the value of A to be increased to 11. With the 

second instruction it is not possible to give an ADD instruc¬ 

tion at any later stage. If C is to assume a value 5 at any 
stage, an instruction as, MOVE “005" TO C shall be 
specified. Thus it is not possible to subject locations whose 
contents are nom-numeric literals to any mathematical op¬ 
erations. 

Figurative constants 
Some constants are so frequently used that reserved 

words have been assigned to them. They are referred to as 
figurativeconstants.lt may be necessary to move zeros to a 
location or more spaces to a location. It is not necessary to 
use zeros or spaces as literals. Instead we would use the 

figurative constants. A figurative constant is a Cobol re¬ 
served word which has a value assigned by the Cobol lan¬ 

guage itself. Zeros and Spaces are examples of figurative 
constants. When a particular location A is to be filled with 
zeros, one writes. 

MOVE ZEROS TO A 
This results in the previously defined data field A to be 
filled by all zeros. This has the status of both the numeric 
and non-numeric literal in the sense that the data name A 
can be subject to further mathematical operations. Simi¬ 

larly, when a location A is to be filled with spaces an 
instruction as MOVE SPACES TO A will fill the data field 
A with blanks. This helps us to clear and initialise data 
fields. There are many figurative constants like Upper- 

Bound, Lower-Bound, High-Value, Low-Value, Quote 

etc. 

Cobol oontoncos, statement^, paragraphs and 
divisions 

In natural languages the sentence is the smallest con¬ 

struct capable of expressing ideas and in computer lan¬ 
guages the constructs analogous to sentences are called 
statements. All computer programs are made up of combi¬ 
nation of statements. A statement indicates some instruc¬ 

tion or command. The following are examples of some 
valid Cobol statements 

ADD 7 TO X 
COMPUTE X = A +B 
IF A EQUALS B 

A statement is also called a clause in Cobol. A Cobol 

sentence consists of one or more consecutive statements or 
clauses ending with a period. A Cobol sentence is also 
called an entry. Only blanks and commas are used to sepa¬ 

rate the statements. The next sentence in Cobol must be 
started after leaving one or more blanks after the period 
which terminates the previous sentence. The following are 
examples of valid Cobol sentences. 

ADD 7 TO Y, GO TO END-PARA. 
COMPUTE X - A + B. 
IF A EQUALS B MOVE C TO D. 

It must be noted that the statements do not have any ending 
periods whereas sentences end in periods. Statements are 
separated either by a space or by a comma. 

In Cobol a sentence by itself has no syntactic meaning. It 
is merely a convenience to the programmer. A group of 
sentences that may be related in function form a paragraph. 

In Cobol only a paragraph represents a syntactic unit which 
can be referred to in a transfer of control statement. In 
Cobol only a paragraph can be labelled (and not each 
statement as in Fortran). Of course a paragraph can contain 
only one statement or sentence, but normally a paragraph 
contains more slatcments or sentences which pertain to the 
same though or computation. Cobol allows structures cal¬ 
led sections. A section is a group of paragraphs and is 
headed by a label called a section name followed by the 
word SECTION and a period. A section ends at the next 

section name or at the ned of the program. Paragraphs are 
physically separated by line spaces as in English language. 

Fortran has no larger structure than a statement except a 

program itself or subprograms. A Cobol program has got 
named divisions, which are composed of named sections, 
which in turn are composed of named paragraphs consist¬ 
ing of sentences or entries which in turn are composed of 
statements or clauses. These formalisms will be discussed in 
greater detail when the actual programs are explained. 

Cobol coding form 
Cobol programs are punched in K()-column cards accord¬ 

ing to a special format. A standard coding sheet for writing 

38 ELECTRONICS FOR YOU 



Cobol programs is provided to reflect the 80 column card. 
Qolumns 1 to 3 are used for page numbers, columns 4 to 6 
are used for line numbers in that page and columns 73 to 80 
are used for some identifying information meaningful to 
the programmers. None of the above columns need be used 
and, in general, the beginners can ignore them. Only col¬ 
umns 7 to 72 are used for punching Cobol programs. Two 
margins are indicated in the coding form. TTie A-margin is 
at the column 8 and the B-margin is at the column 12. 
Procedure names or paragraph names are written begin¬ 
ning from the A-margin, but other lines of paragraphs are 

written from the B-margin. 
Sentences are not written beyond column 72, but may be 

continued on the next line if necessary, and also on addi¬ 

tional lines if necessary. If a sentence is to continue on the 
next line, it may be broken between words or data names, 
leaving one or more blanks at the end of the line. The 
continuation of the sentence is begun from the B-margin on 
the next line after placing a hyphen in column 7 of the 
continuation line. Each sentence is written in each line in 
the coding form and each line in the coding form is punched 
on one card. Though more than one sentence can be 
punched in one card, provided the total length does not 
exceed 66 columns, it is good practice to punch only one 
sentence per card, since it is more difficult to correct a 
key-punch error in the middle of a paragraph than in the 

middle of a sentence. □ 
To be continued next mot.th 

HIGH QUALITY 

TV COMPONENTS 
EHT Valve Bun for DY 802 
IHT Connectors with Lead 
Solldstate EHT Rectifier Bates 
8-pin and 8-pln Valve Bases 
Aluminium Caps for EHT Transformer 
Plastic Covers for OY 802 
Grid Caps, and 
Rectifier Fittings for Solldstate 31cm TV 

TELEVISION SERVICE CENTRE (Refld.) 
Saraswati Marg (Below Telegraph Office), 

Karol Bagh, New Delhl-110005 
Phones : 567552/560076 

MULTICHANNEL 
COMMUNICATIONS 
TAPE RECORDERS 
SHR SERIES 
The Multichannel Communications Tape Recorders developed 
by the BRG Hungary enauras the continuous and reliable re¬ 
cording of Informations, reports and Instructions In the follow¬ 
ing fields of application: 

- civil and military aviation 
- municipal emergency 
centres as police, 
firebrigade and first aid 
headquarters 

- railway, ports and harbour 
traffic control centres 

- radio and TV broadcasting 
stations 

■ communications’ head¬ 
quarters of Armed Forces 

■ congresses and Courts of 
Justice 

VIDEOTON — INDUSTRIAL FOREIGN TRADING CORPORATION 
isn SucHpH r.o.s wr IMSBudapaat VI. 8*ofU u* Mon*: SHU, teal. OHM T«t»» Tap* Haconiar Oapartmanf 

HIGH RELIABILITY 
PRECISION TAPE GUIDING 
LOW TAPE SPEED 
OVERALL CONTROL AND 
MONITORING SYSTEM 

TIME INJECTION 
REPRODUCING 
Bulk eraser, remote control 

unit 

FEBRUARY 1978 39 




