
I decided to use an Altera (www.
altera.com) FPGA as the central con-
troller chip. The FPGA connected
through an FTDI (Future Technology
Devices International, www.ftdichip.
com) USB (universal-serial-bus) chip
to the PC on which the application
software was running. The develop-
ment ran smoothly, and we could soon
read and write data through the USB
to and from the FPGA. Unfortunately,
though, after a few seconds, the board
hung up. I restarted it, and everything
was fine—again for about 10 seconds.
It soon became clear that the FPGA
wasn’t properly responding to the
USB chip.

The design operated with eight par-
allel data lines and four control signals
that resided between the FPGA master
and the USB-chip slave. The USB
chip indicated when received data was
ready for pickup by sending a receiver-
flag signal. Using a transmitter-enable
signal, it indicated whether the USB
chip’s transmitter FIFO had enough
room for data to write to it.

When the system hung up, I hooked
up a scope and saw that the USB chip
indicated receive data by pulling the
receiver-flag signal, but the FPGA didn’t
pick it up. Not being an experienced
digital designer, I couldn’t figure out
the problem by examining the Verilog

code. Simulations didn’t show any
issues, either. The beauty of an FPGA,
however, is that it is programmable, so
I could connect virtually any internal
node to free I/Os and probe them with
the scope. Luckily, I didn’t have to wait
too long for the hang-up; I could count
on it. By probing all sorts of nodes, the
scope showed that almost everything
inside—except the interface to the
USB—was running correctly. I could
even probe the 4-bit state machine of
the interface controller. In the case of
the hang-up, it was in an undefined
state—that is, one that wasn’t encoded
in the state table. How did it get there?

I consulted an experienced engineer
on our memory-design team, and, after
a long session with him, it became
clear: The controller state machine
depended on the flags of the USB
chip. If the state machine is idle and
the receiver flag is zero, the machine
can issue a read transaction. So, I
typed my Verilog code exactly like that
statement: If (RX_flag#��0)state��
RxTransaction, where RX_flag# is the
receiver flag. In Verilog, that code all
looks fine; in hardware, however, my
state machine had 10 states. Therefore,
4 bits, or four flip-flops, represent the
current state. Each of the flip-flops
had its own combinational logic to
encode when to transition, and the
flag goes to all of them. Some of those
combinational blocks are longer and
slower than the others, and the flag
occasionally transitions at just the
wrong moment. It happened that only
three of the flip-flops recognized that
the flag sampled at zero, but the fourth,
slower one sampled it at one, and the
state machine became lost.

Thanks to the experienced engi-
neer, I learned that I had committed
one of the big no-nos in digital design:
using an external signal directly with-
out synchronizing it with a flip-flop to
the internal clock. That lesson really
helped!EDN

Holger Steffens is project manager
at Ident Technology AG (Munich,
Germany). You can reach him at
Holger.Steffens@googlemail.com.

BY HOLGER STEFFENS • IDENT TECHNOLOGYT A L E S F R O M T H E C U B E

 I
recently was a product engineer in a DRAM company
and usually spent my time hunting bugs in other people’s
designs. Two years ago, however, I got an additional task: I
had to design a measurement board with a couple of ICs, an
ADC, and a DAC to set and measure voltages, clocks, and
temperature. I figured that this task would give me a good

chance to gain some additional design experience.

Flip-flop flap

D
A

N
IE

L
V

A
S

C
O

N
C

E
LL

O
S

APRIL 9, 2009 | EDN 65

edn090401tales_id 65edn090401tales_id 65 3/25/2009 2:57:19 PM3/25/2009 2:57:19 PM

