
learn design share

62 January & February 2016 www.elektormagazine.com

Low Energy, 5 µA
In deep-sleep mode, the consumption is only 0.4 µA, but in
this mode it can only be woken up by resetting the module or
by a change of state on an input. Instead, we’re going to be
using the stand-by mode, with a consumption of 5 µA, and
module will be woken up by our program, e.g. by using TIMERs.
To illustrate these explanations, we’re going to be using just
a single LED. If you connect other devices to your BL600,
you’ll need to adapt your program so as to maintain the 5 µA
in stand-by mode. To highlight the module’s low consump-
tion, we’re going to make it operate alternately in normal and
stand-by mode. Connect your (micro-) ammeter as per the
diagram: when the LED is out, the current is 5 µA.

The source code for the bl600-6.sb test program shown below
is available from the Elektor Magazine website [1]. If you want
to alter it, refer to the previous installments which give all the
details on this subject.
The stages:

• Stopping the Bluetooth: the Bluetooth is stopped using
the BleAdvertStop function and woken up again by the
BleAdvertStart function. The alternation will be achieved
using TIMERs (TIMER paragraph for the description of the
code in red and green).

• LED off: Everything connected to the module consumes
power. So our LED will be taken LOW by the GPIOWrite

function. We’ll turn it on when the Bluetooth is running
and turn it off when it is stopped (using functions in the
TIMER – see below).

• UART stopped in NON DEBUG mode: The module’s
serial communication facility also consumes power. We’ll
turn it off using the UartClose function, the TX and RTS
ports will be set to outputs with High and Low states
respectively. Two modifications are needed here to avoid
a ~~~default~~~ error:

 - If we close the serial port when the program is started,
, the serial port buffer in the MAIN program is still full.
Hence for it to be emptied, we shall wait 1000 ms (an
arbitrary duration) before closing it, using a TIMER in the
mauve code.

 - Once the serial port is closed, the HandlerLoop handler
transfers the data received by the Bluetooth to the serial
port and vice-versa using the BleVspUartBridge function.
We’ll put this function as a comment and will compose
our own code in orange (see Data exchange events).

• Measuring: The high internal resistance of some cur-
rent meters can hinder the measurement in awake mode.
For example, with a resistance of 100 Ω, for a current of
10 mA (LED lit) the voltage drop across the meter will
be 1 V: so the module won’t work anymore… Select the
2000 µA range rather than 200 µA.

BL600 e-BoB
Bluetooth Low Energy Module
(part 6)

 - Low Energy, 5 µA
 - The TIMER event
 - Data exchange events
 - The connection event

By Jennifer Aubinais (France) elektor@aubinais.net

In the previous installments, we have
examined together the basics of programming our BL600 e-BoB BL600 and shown how to implement it. In
this the sixth and final installment in the series we take a look at its low consumption (Low Energy) which
is precisely its strong point! Then you’ll be flying solo.

learn design share labs project reader’s project

www.elektormagazine.com January & February 2016 63

The TIMER event
The TIMER, covered in the May 2015 article on the light-chaser
[4], is used to create alternating stops and restarts of the
Bluetooth. To do this, we need to code:

• the declaration of its handle: OnEvent
EVTMR1 Call FuncTimer1

• the function: Function FuncTimer1()
• the trigger for the TIMER: TIMERSTART(1,4000,0)

In order for the module’s low consumption to show up on an
meter, we enable the Bluetooth (LED on) for 25 ms (blead-
vertstop function, code in red), and stop it (LED off) for
4000 ms (bleadvertstart function, code in green).

n = Bleadvertstart(0,Adrt$,25,4000,0)

The TIMER will be used again to delay the closing of the UART port.

Data exchange events
The data received by the Bluetooth and on the serial port are
processed by a handler, just as we did, for example, to inter-
cept the data coming from your phone to control a 3-colour
LED [4]. Here, this poses us a problem, as we have closed the
UART port; this is why we have deleted the BleVspUartBridge
code (put into a comment). To illustrate this example, the text
received in Bluetooth will be sent back in Bluetooth, but with
an offset of one character (I’ll come back to this later).

The connection event
In the previous articles, we’ve already tackled the EVBLEMSG
event in order to be able to handle connection and discon-
nection events. In the thermometer program in the January/
February 2015 article [1], when connecting, the first step is to
recover the value from the NTC, the second is to send this to
the smartphone, and the last, to disconnect the module from
the phone. This time, we’re going to light an LED on output
2 of our module when it is connected; this will be turned off
when disconnected.
Don’t forget the initialization of port 2 when exiting the main
program. We’re going to copy the Bluetooth message handler
EVBLEMSG from the cli.manager.sblib library and create our
own handler, renaming it MyHandlerBleMsg (code in blue).

Creating our program
To end this list of the elements to be recycled in order to cre-
ate our Low Energy program here, we must lastly mention the
upass.vsp.sb program used in other articles as the basis for
the UART services [1][4][6]. This will be reworked and will be
used to modify the data received by our module. To do this,
we rename it BL600-6.sb and change two parameters in this
first version:

• ENABLE_DEBUG_PRINTS: 0 (debug mode disabled)
• DEVICENAME: “JA_TEST”
• You can test the operation of your program by transferring

it to your BL600 e-Bob. It will run automatically, otherwise
enter the command AT+RUN [3]. You can now test your
program’s communication using the SERIAL program from
TOOLKIT on your smartphone [2].

The two TIMERs:

• Code in green:
 - declaring its handle: OnEvent EVTMR1 Call FuncTimer1
 - the function: Function FuncTimer1()
 - turning the LED on: GpioWrite(2,1)
 - starting the Bluetooth: BleAdvertStart
 - the trigger for the next TIMER: TIMERSTART(2,25,0)

BOB-FT232R

VCCIO

MOD1

CBUS4
CBUS3
CBUS2
CBUS1
CBUS0
RESET

VC
CI

O

+3V3

DCD
DSR
DTR

+5V

GND
CTS

RXD
TXD
RTS

USB

CT
S

GN
D

RI

RX TX

BOB-BL600

mA

autorun

MOD2

CTS
RTS
VCC

RES
PGM GND

GND

CMD ota

10

RX
TX 11

12

9
8
3
2

D1

R1

150329 - 11

PC

S1

47
0R

Figure 1. As usual, we’ll be using the Elektor USB-serial FT232 bridge [8]
for communicating with the BL600.

Figure 2. Photo of the experimental assembly on a prototyping board.

Component List
Resistors :
R1 = 470Ω

Semiconductors
D1 = LED, 3mm (select color)

Miscellaneous
KS1 = pushbutton
MOD1 = FT232 e-BoB, ready assembled, Elektor Store # 110553-91 [7]
MOD2 = BL600 e-BoB, ready assembled, Elektor Store # 140270-91 [7]
or printed circuit board # 140270-1 [7]

learn design share

64 January & February 2016 www.elektormagazine.com

• Code in red:
 - declaring its handle: OnEvent EVTMR2 Call FuncTimer2
 - the function: Function FuncTimer2()
 - turning the LED off: GpioWrite(2,0)
 - stopping the Bluetooth: BleAdvertStop
 - the trigger for the next TIMER: TIMERSTART(1,4000,0)

The BleVspUartBridge function must be deleted if we want to close
the UART and hence consume less power. To show the module
is functioning, we send back the received text with an offset of
one character: a becomes b, d becomes e, etc. (code in orange).

• We’ve taken the code for the HandlerLoop function from
the cli.upass.vsp.sblib library. To avoid duplicates that
would cause a compilation error, let’s rename our function
MyHandlerLoop.

• The four handlers that call the HanderLoop function:
 - data arrive at the module’s UART port
 - data arrive at the module’s Bluetooth port
 - the module’s Bluetooth port buffer is empty

 - the module’s UART port buffer is empty

• The BleVspUartBridge function creates a loop between the
phone and the UART port. We put this line of code into a
comment.

• The BleVSpRead function lets us read the data received by
the Bluetooth. Attention, the manufacturer has imposed a
limit of 20 characters.

• The STRPOS function makes it possible to know if the text
received ends with a carriage return.

• To send back the received text with an offset of one char-
acter, we’re going to use the two functions StrGetChr
(convert a character at a given position in a string to a
byte) and StrSetChr (change the value of a character by
the value of a byte at a defined position).

• To end, the text will be transmitted in Bluetooth via the
BleVspWrite function.

Reminder of the BL600 module specifications:

• UART, I2C, SPI interfaces
• 28 general-purpose inputs/outputs (GPIO)
• 6 analog inputs (10-bit ADC)
• consumption:
• 5 µA in stand-by / 0.4 µA in deep-sleep mode
• 10 mA during transmission
• easy programming in smartBASIC
• nRF51822 chip from Nordic Semiconductor.
• compact: 19 × 12.5 × 3 mm
• free-field range: up to 20 m

Bluetooth in BASIC!
The BL6000-SA’s smartBASIC (event-oriented) programming
language simplifies the incorporation of Bluetooth into your
applications by making it easier not only to manage sensors
connected directly to the module, but also to transmit the
measured values to any Bluetooth v4.0 receiver (smartphone
or tablet, computer, bridge, etc.)

U
A
R
T
P
O
W
E
R
R
S
T
P
G
M

S
P
I

I
2
C

A
D
C

7
×
G
P
I
O

e-BoB BL600
ARM Cortex M0

smart Basic

mémoire FLASH

mémoire RAM

Bluetooth
Low Energy

antenne interne

150329 - 12

Specifications of the Elektor e-BoB
breakout board using the BL600-SA:

port K1

serial port used for loading the program into
the BL600

power pins (3.3 V)

reset line (RESET)

PGM pin (for possible updates
to the module’s firmware)

port K2
7 logic
input/
outputs

2 × 10-bit analog inputs (pins 2 and 3)

I²C port (pins 8 and 9)

SPI port (pins 10, 11, and 12)

jumper JP1
cmd: AT commands

autorun

jumper JP2 OTA (Over The Air)

Android application and program
On the BL600 manufacturer’s website [7], you will find the
source code for the Toolkit application for Android (and also
iOS) which includes the following services:

• BPM (blood pressure)
• HRM (heart rate)
• Proximity
• MTH (medical thermometer)
• Serial (UART)
• OTA (Over The Air)
• Batch

e-BoB BL600

learn design share labs project reader’s project

www.elektormagazine.com January & February 2016 65

The program will no longer send data to the UART port, so we
can close the UART port, after an arbitrary delay of 1000 ms
(code in mauve):

• declaring its handle: OnEvent EVTMR0 Call FuncClose

• the function: Function FuncClose()

• closing the port: UartClose()

• the TX and RTS ports will be set to outputs with High and
Low states respectively: GPIOSetFunc

• triggering the TIMER in the MAIN program:
TIMERSTART(0,1000,0)

We want to intercept the status of the connection so as to turn
the LED on when connecting or off when disconnecting (in
reality, the LED will flash as a result of TIMER1 and TIMER2).

The HandlerBleMsg function code in blue comes from the
cli.upass.vsp.sblib library:

• We’ve taken the code for the HandlerBleMsg function from
the cli.upass.vsp.sblib library. To avoid duplicates that
would cause a compilation error, let’s rename our function
MyHandleBleMsg.

• When connecting via BLE_EVBLEMSGID_CONNECT:
 - the TIMERs are stopped: TIMERCANCEL
 - the LED is turned on: GpioWrite(2,1)

We have offered you for download [6] the extremely
simplified source code for an Android phone application
using just the UART service. We have used Android
Studio, available under Windows, MAC OS and Linux
[7]. A reminder that the manufacturer has created a
library laird_library_ver.0.18.1.1.jar in order to
speed up development of Android applications in normal
Bluetooth and Bluetooth Low Energy.

The functions described in this series of articles:

inputs / outputs:
• configuring the pin on the BL600 (nFunction = 1 or 2):
rc = GPIOSETFUNC(nSigNum, nFunction, nSubFunc)

• reading the signal 0 or 1: rc = GPIOREAD(nSigNum)
• writing (nNewValue = 0 or 1): rc =
GPIOWRITE(nSigNum, nNewValue)

analog/digital converter:
• configuring the pin on the BL600 (nFonction = 3) :
rc = GPIOSETFUNC(nSigNum, nFunction, nSubFunc)

• reading the signal (0 to 1023): rc =
GPIOREAD(nSigNum)

I²C port:
• opening the port: rc = I2COpen(nClockHz,
nCfgFlags, nHandle)

• writing an 8-bit value:
rc = I2CWriteReg8(nSlaveAddr, nRegAddr,
nRegValue)

• reading an 8-bit value:
rc = I2CReadReg8(nSlaveAddr, nRegAddr,
nRegValue)

• closing the port: I2Close(handle)

SPI port:
• opening the port: rc = SpiOpen(nMode, nClockHz,
nCfgFlags, nHandle)

• reading / writing: rc = SpiReadWrite(stWrite$,
stRead$)

• closing the port: SpiClose(handle)

Tools for compiling and transferring
All the tools and examples are available for download [7].
When you apply to open an account on the manufacturer’s
website, specify: “Elektor reader”. All you have to do is
download and then unzip the document Firmware Files
version 1.5.70.0 – Revision 5 i which contains:

• program examples in the smartBASIC_Sample_Apps
directory

• the UwTerminal.exe program in the smartBASIC_
Sample_Apps directory

• the library in the smartBASIC_Sample_Apps/lib
directory

• a number of examples (UserManualExampleCode)
• the special Notepad++ configuration for smartBASIC

(smartBASIC(notepad++).xml)

Normal commands
• AT I 0: BL600 revision number
• AT I 3: BL600 firmware version
• AT+DIR: list of the programs in the BL600
• ATZ: reset BL600
• AT&F 1: clear memory and restart BL600
• AT+RUN “xxxx”: run program xxxx

e-BoB BL600

To thrive, connected object networks need low power consumption wireless
communication. This breakout board for the Bluetooth Low Energy module is the
dream accessory for exploring the IoT.

learn design share

66 January & February 2016 www.elektormagazine.com

• When disconnecting via BLE_EVBLEMSGID_DISCONNECT:
 - the LED is turned off: GpioWrite(2,0)
 - the first TIMER is started again: TIMERSTART(1,10,0)

Now all the elements are there for you to create your
own BL600-6.sb program. After checking the low consump-
tion of our module, it’s desirable to modify the value of the
TIMER defined as 1 from 4000 ms to e.g. 300 ms for a better
connection with your smartphone: TIMERSTART(1,300,0). The
moment has come to launch yourself into programming your
BL600, on your own e-BoB, for your ANDROID application; the
information you need is all in last month’s article [6].

Open conclusion
With this summary of what we have described since the initial
Bluetooth thermometer project, we are closing this 6-install-
ment article with double satisfaction: our efforts to facilitate
the implementation of this module have been recognized and

appreciated by not only the Elektor readers who are buying
the e-BoB, but also the manufacturer of the BL600-SA. Other
projects based on the BL600 are waiting in the author’s and
Elektor’s laboratories. What’s more, the BL600 has a cousin,
the BL620, another Bluetooth module, but with the role of Mas-
ter, which makes communication even easier. You’ll be seeing
it soon in Elektor Magazine…

 (150329)

'//***
'// Laird Technologies (c) 2013
'// Jennifer AUBINAIS (c) 2015
'// ++

'//***
'// Definitions
'//***
#define AUTO_STARTUP 1
'//Set this to 0 to disable all debugging messages
#define ENABLE_DEBUG_PRINTS 0
#define DEVICENAME "JA_TEST"
#define DEVICENAME_WRITABLE 1
***** code here *****

'//**
'// Library Import
'//**
#include "lib\cli.upass.vsp.sblib"
'//**
'// Global Variable Declarations
'//**
DIM text$
'//**
'// Function and Subroutine definitions
'//**

'//==
'// CLOSE UART
'//==
Function FuncClose()
 DIM rc
 UartClose()
 rc = GPIOSetFunc(21,2,1) '// TX
 rc = GPIOSetFunc(23,2,0) '// RTS
 TIMERSTART(1,10,0)
ENDFUNC 1

'//==
'// Receive data
'//==
function MyHandlerLoop()
 //BleVspUartBridge()
 DIM n, rc, tempo$, tx$
 DIM pos, return$
 // Wait return from received data
 tx$ = "0D"
 return$ = StrDehexize$(tx$)
 tempo$ = ""
 n = BleVSpRead(tempo$,20)
 text$ = text$ + tempo$
 pos = STRPOS(text$,return$,0)
 IF (pos >= 0) THEN
 DIM i, x
 pos = pos - 1
 FOR i = 0 TO pos
 x = StrGetChr(text$,i)
 rc = StrSetChr(text$,x+1,i)
 NEXT
 rc = BleVspWrite(text$)
 text$ = ""
 ENDIF
endfunc 1

'//==
'// TIMER 1
'//==
FUNCTION FuncTimer1()
 dim rc, Adr$
 Adr$ = ""
 // led on
 GpioWrite(2,1)
 rc = bleadvertstart(0,Adr$,25,25,0)
 TIMERSTART(2,25,0)
ENDFUNC 1

learn design share labs project reader’s project

www.elektormagazine.com January & February 2016 67

Web Links

[1] Elektor January & February 2015
www.elektormagazine.com/140190
Bluetooth Low Energy wireless thermometer
Remote temperature display on your smartphone

[2] Elektor March & April 2015
www.elektormagazine.com/140270
BL600 e-BoB: Part 1:
Wireless communication on a plate

[3] Elektor May & June 2015
www.elektormagazine.com/150014
BL600 e-BoB | Part 2:
Editing, compiling, and transferring a program using the
Bluetooth Low Energy module

[4] Elektor July & August 2015
www.elektormagazine.com/150129

BL600 e-BoB | Part 3:
smartBASIC programming for the Bluetooth Low Energy
module

[5] Elektor September & October 2015
www.elektormagazine.com/150130
BL600 e-BoB | Part 4:
The I²C port and the temperature sensor

[6] Elektor November & December 2015
www.elektormagazine.com/150272
BL600 e-BoB | Part 5:
SPI port & digital/analog converter
Android application

[7] https://laird-ews-support.desk.com/?b_id=1945

[8] www.elektor.com/ft232r-usb-serial-bridge-bob-110553-91

'//==
'// TIMER 2
'//==
FUNCTION FuncTimer2()
 // led off
 GpioWrite(2,0)
 rc = bleadvertstop()
 TIMERSTART(1,4000,0)
ENDFUNC 1
'//==
'// This handler is called when there is a BLE
message
'//==
function MyHandlerBleMsg(BYVAL nMsgId AS INTEGER,
BYVAL nCtx AS INTEGER) as integer
'// Inform libraries
ConnMngrOnBleMsg(nMsgId,nCtx)
AdvMngrOnBleMsg(nMsgId,nCtx)
select nMsgId
 case BLE_EVBLEMSGID_CONNECT
 TIMERCANCEL(2)
 TIMERCANCEL(1)
 DbgMsgVal(" --- Connect : ",nCtx)
 ShowConnParms(nCtx)
 // set at High
 GpioWrite(2,1)
 case BLE_EVBLEMSGID_DISCONNECT
 DbgMsgVal(" --- Disconnect : ",nCtx)
 // set at Low
 GpioWrite(2,0)
 TIMERSTART(1,10,0)
 ***** code here *****
endselect
endfunc 1
'---
'// TIME OUT = nothing
'---

Function MyHandlerTimOut() as integer
 'NOTHING
EndFunc 1
'//***
'// Handler definitions
'//***
ONEVENT EVTMR1 CALL FuncTimer1
ONEVENT EVTMR2 CALL FuncTimer2
OnEvent EVTMR0 Call FuncClose
OnEvent EVBLEMSG call MyHandlerBleMsg //
EVBLEMSG indicate when signifficant BLE event occurs.
OnEvent EVBLE_ADV_TIMEOUT Call MyHandlerTimOut
//all events have the same handler
OnEvent EVVSPRX call MyHandlerLoop //
EVVSPRX is thrown when VSP is open and data has
arrived
OnEvent EVUARTRX call MyHandlerLoop //
EVUARTRX = data has arrived at the UART interface
OnEvent EVVSPTXEMPTY call MyHandlerLoop
OnEvent EVUARTTXEMPTY call MyHandlerLoop
‘//***
‘// main
‘//***
text$ = ““
// pin 2 output at low
rc = GPIOSetFunc(2,2,0)
rc = bleadvertstop()
IF (ENABLE_DEBUG_PRINTS == 1) THEN
 UartRsp(0)
 TIMERSTART(2,10,0)
ELSE
 PRINT “low Energy”
 TIMERSTART(0,1000,0)
ENDIF
WaitEvent

