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FRACTAL ANTENNAS 
PART 1 
Introduction and the Fractal Quad 

T he objective of an antenna is to efficiently 
radiate or receive a signal, presumably 
with significant directivity and gain. That 

goal has always been at odds with the physical 
restrictions of the design, especially at HF and 
MF. In effect, every antenna incorporates some 
compromise-playing off gain with size, effi- 
ciency with bandwidth, and so on. Through the 
years, the exploration of these compromises has 
produced some useful design solutions. How- 
ever, as antenna design has become a mature 
field, it's rare that a new approach comes to 
light. Here I describe a new approach that uses 
fractal geometry to produce very small antennas 
of high efficiency, with other useful attributes. 
Some shrunken single-element fractal antennas 
appear to have gain over their classic full-sized 
counterparts. These antennas demonstrate that a 
deeper investigation of electromagnetics and 
antennas is necessary in the context of simple 
and complex fractal structures and arrays. 

In Part 1, I'll present a practical design for 
very small area single-element cubical "quads," 
along with their comparative results. In Part 2, 
I'll elaborate upon several more examples of 
fractal antennas and their expected applications. 

Antennas and geometry 

Antenna users place great emphasis on reso- 
nance and power patterns. The philosophy has 
been to pick a geometric construction and 
explore its radiation characteristics, rather than 
to shape an antenna around certain radiation 
and/or physical characteristics. Thus structures, 
almost all simple in design, are made and stud- 
ied. Simple is a key word here: constructions of 
"classic" (Euclidean) geometry have dominated 

Figure 1. A fractal taken from Walnut Creek's CD-ROM Fractal 
Frenzy, "Visions of Chaos: Volume 1," by Lee H. Skinner. 

Figure 2. A second fractal from Fractal Frenzy. 
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of the antenna. aren't limited to simvle struc- 

Figure 3. Another fractal taken from Fractcrl Frenzy. 

Figure 4. The fourth in a series of fractal images found on the CD-ROM 
Fractal Frenzy, which illustrate the different types of fractals. 

antenna design. Note that the mathematics 
needed to explore the radiation pattern of 
Euclidean designs is relatively straightforward, 
and provides a comfortable predictive tool. 

In increasing sophistication, we build anten- 
nas out of: lines, planes, circles, triangles, 
squares, ellipses, rectangles, hemispheres, 
paraboloids, and so on. Antennas look like pro- 
jects from an introductory Euclidean geometry 
class. However, it is important to remember 
that Maxwell's equations, whose forms ulti- 
mately determine the radiation characteristics 

tures. It has been our desire for simplicity that 
has dominated antenna construction, and not 
the electromagnetics. 

In 1985. Landstorfer and Sacherl uublished a 
monogra*'h on antennas that demonstrated this 
point about Maxwell's equations and ques- 
tioned the assumptions about simple geometry 
and antenna resonance. They found that if one 
reversed the process and looked at what shapes 
give dipoles and verticals higher gain, the 
results look far from Euclidean. Instead, ran- 
domly bent wires and waved crimps produce 
far better results. The clear implication is that 
simple geometric shapes don't necessarily pro- 
duce the best antennas. Thus, there appears to 
be, a defined advantage to exploring non-clas- 
sic geometric designs and patterns in making 
antennas. This provided motivation, in part, to 
use a branch of geometry that has been virtual- 
ly unexploited in antenna design. 

Fractal geometry 

Geometry branches far beyond its Euclidean, 
classic roots. For example differential 
(Riemann) geometry, a nonlinear variant, actu- 
ally describes the fabric of the Universe, and it 
is a bent, distorted one with nary a sphere or a 
straight line to describe it.2 Following in that 
tradition of nonlinearity, the newest branch of 
geometry is called fractal geometry. Here, a 
complex structure is built up through the repeti- 
tion of a design or motif (sometimes called a 
generator) on a series of different size scales. 
Such structures are called self-similar. 
Mathematically, they can comprise very com- 
plex constructs, while being described by very 
simple equations that "nest" or iterate upon 
themselves. They are the mathematical equiva- 
lent of the Russian wooden dolls, each of which 
contains another doll, and so on. 

Examples of fractals abound. Artist M.C. 
Escher used self-similar designs to produce 
many of his intriguing pictures and drawings. 
Benoit Mandlebrot, the scientist who defined 
the field, found examples of fractals over 100 
years old in the mathematical literature. Their 
iterative feature makes them especially con- 
ducive to computation, since computers do sim- 
ple math tasks over and over again very effec- 
tively. Fractals now dominate screen savers, 
graphic and art programs, and data compression 
methods. In nature, many dozens of objects, 
from ferns to clouds to mountain ranges have 
been found to be fractal. Figures 1 through 4 
are examples of several fractals. 

To illustrate how a fractal is constructed 
we'll use the simple motif, built on a line seg- 
ment, given in Figure 5. This is called a von 
Koch f r a ~ t a l . ~  Placing this triangle on a line 



segment seems simple enough; but after doing 
this, we can continue with another iteration and 
put a triangle on each one of those line seg- 
ments. For the third iteration we put triangles 
on top of each of those line segments, and so 
on, ad infinitum. The result is a structure that 
on every scale has triangles, and looks the same 
at all magnifications. 

One can construct a star-like structure by 
attaching several iterated Koch fractal ends into 
a closed unit, which for obvious reasons mathe- 
maticians call "islands." Figure 6 is a Koch 
island star, the result of this amusing labor. 

Now let's consider a strange trick of fractals. 
Looking at the star reveals that the perimeter is 
unrelated to the area of the island. In fact, as 
the number of iterations becomes large, the 
perimeter of the star has triangles on triangles 
down to an infinitesimal scale, and the perime- 
ter goes on to infinity! Contrast this to a circle, 
square, or other closed Euclidean shape: the 
area and perimeter are intimately related, and 
it's impossible to have a large perimeter with- 
out a large area. This distinguishing character- 
istic of a fractal is one of many that I'll 
describe as "commandments" relevant to frac- 
tals and antennas. Thus we arrive at 
"Commandment 1" for fractals: 

"Thou shall not relate perimeter as proportional 
to area." 

An important corollary to Commandment 1 
(which 1'11 call Commandment 2) occurs when 
the argument is reversed: 

" For a given perimeter, the enclosed area of a 
multi-iteration fractal island will always be 
smaller or equal to that of any Euclidean 
Island." 

Both of these Commandments are key to the 
use of fractals as antennas. 

An additional fractal attribute is that it has a 
dimension, much like a Euclidean structure. 
However, mathematicians characterize their 
fractals by the "fractal dimen~ion."~ This is 
given by a simple ratio (actually a limit to a 
ratio), representing the one-dimensional initial 
length of a structure compared to its length in 
one dimension after the fractal is applied and is 
obtained by: 

where L is the total length before applying the 
motif and r is the one-dimensional length after 
applying it. To simplify: if you take a line or 
curve and scrunch it by shaping it into a given 
fractal, it will be compressed in the dimension 
you measured it in at first. It will be "folded" or 
"accordioned," and D gives you a measure of 

Figure 5. A von Koch fractal for iteration 0, 1,2, and 3. 

I I 

Figure 6. A Koch Star is an enclosed island for some real 
stars. 

this. We'll see that fractal antennas, unlike 
mathematical fractals, are not characterized 
solely by D. Hence, the fractal dimension is a 
useful measure of the compactness of a fractal, 
but not of a fractal antenna. 

One final aspect to note in this brief descrip- 
tion of fractals is that they break down into two 
general types: deterministic and chaotic frac- 
tals. Deterministic fractals are those where the 
motif replicates at the 100 percent level on all 
size scales, while chaotic fractals have a ran- 
dom, noise component thrown in. Thus, while 
the Koch star is a good example of a determin- 
istic fractal, a good example of a chaotic one 

P . , .  - 



Figure 7. Minkowski (box) fractal for iterations O , 1 ,  and 2. 

would be the fluctuating price of the Dow 
Jones Industrial Average, or a drunkard's "ran- 
dom walk." There's an error of uncertainty in 
the chaotic fractal that can make it wildly 
changeable in its shape as it's constructed on 
different scales. 

Fractal antenna prehistory 

Why should antennas-and more generally 
resonant structures-be limited to Euclidean 
designs? Oddly, this question has seldom been 
posed, nor has its answer been found. 
Certainly, as an example, one could work very 
hard to build a drum shaped like the Koch 
star-and then see if beating on it produced 
sounds. You could then relate its resonance 
nodes to those of a circular drum. Does it 
"beat?" Is it louder or softer than the round 
drum? How are its pitches of resonance relat- 
ed? It's an interesting question; however, con- 
sider the work needed to make that star-shaped 
drum, with its huge perimeter. 

Mathematically, the same problem arises. 
M.V. Berry5 considered the calculation of frac- 
tal resonances so difficult that he attacked a 
similar, but simpler, problem-how fractals 
change waves that hit them. This process of dif- 
fraction (and what Berry called "diffractals") 
upon a fractal structure does bend waves, much 

as a Euclidean shape does. In the late 1980s, 
this simulation manifested as the first fractal 
product: a series of block sound diffusers for 
recording studios and  auditorium^.^ 

In the 1960s, a European ham made the first 
clear use of self-similarity for an antenna array. 
I've been unable to find the article that describes 
his work, but my memory (from age 12) clearly 
recalls a huge 2-meter "quad," where each end 
of the spreaders supported another quad, which 
supported another quad, for a total of at least 48 
quad elements. There was no electromagnetic 
motivation in choosing one geometry over 
another, simply a desire to find an efficient way 
of distributing the weight of all these antennas. 
Any way it's analyzed, this was an array that 
was fractally filled-and huge! 

D.L. Jaggard was the first to deliberately 
apply the concept of fractals to  antenna^.^ His 
objective, like that of the anonymous ham men- 
tioned above, was to see if one could use frac- 
tals to spread out elements in a sparse 
microwave array (in synthetic aperture radar, 
for example). This means that the sidelobes of 
the array could be kept small without filling the 
entire array up with elements. His results were 
promising, but not necessarily better than other 
techniques, such as a totally random spreading 
of elements. Jaggard didn't apply the fractal 
condition to the elements themselves; his array 
wasn't any smaller, only differently patterned. 
No attempt was made to minimize the total area 
of the array. 

Perhaps this wasn't too surprising. Fractals 
had been used before for purposes that exclude 
shrinking down the antenna size. We now 
know, for example, that a spiral is a type of 
continuous, deterministic fractal, whose motif 
keeps expanding continuously as the distance 
increases from a central point. Cones, Vs, and 
so on, meet the same criteria. A log-periodic 
antenna is a type of continuous fractal (see sec- 
ond sidebar) because it's built from a radially 
expanding structure. Its broadbandedness is a 
result of its continuous expansion and therefore 
its fractality. However, a log periodic isn't nec- 
essarily smaller than a Yagi of similar gain. 
Landstorfer and Sacher used another uninten- 
tional fractal approach (see third sidebar). By 
letting dipoles and verticals distort in shape to 
produce higher gain, they obtained some 
bizarre designs. Most notably, the optimum 
shape they found for their vertical antenna 
resembles what happens to towers that snap 
their guys in a tornado. Such shapes are defined 
as "Brownian  fractal^,"^ a specific form of 
chaotic fractal. Here, finally, is a resonant frac- 
tal that actually affords higher gain than a 
straight-line design (its Euclidean counterpart). 

Of course, fractals have been used, uninten- 
tionally, to shrink antennas down in size. Horn 



antennas use "double ridges" to decrease the 
resonant f requen~y.~  A variety of shrunken 
quads (the Maltese quad, for example), delta 
loops, and other useful antennas all incorporate 
some type of loading using rectangles, boxes, 
and triangles to shorten the element dimen- 
sions. Pfeiffer brought this to a logical limit 
recently with a fan-shaped quad design of unre- 
ported gain and impedance.8 Yet all of these 
designs use a fractal motif of thefirst iteration; 
they basically load Euclidean structures with 
another Euclidean structure in a repetitive fash- 
ion, using the same size in the repetition. They 
do not exploit the multiple scale self-similarity 
of real fractals. They could just be an exotic 
loading scheme and, therefore, of no particular 
importance when compared to other (lossy) 
methods of shrinking antennas, such as loading 
with LC circuits, capacitive hats, dielectrics, 
and so on. Thus, there has never been a con- 
vincing case of a deliberately multi-iterative 
single-elementfiactal structure-that is, a 
structure immediately and uniquely identifiable 
as a fractal--being resonant, nor has any such 
structure been explored from the point of view 
of impedance, gain,,frequency resonance 
nodes,,shrinking ability: and other radiation 
characteristics. It may be a quirk of these pre- 
vious structures that allows them to radiate, as 
opposed to a useful applied property of fractals. 
Which is it? 

Resonant fractal structures 

My objective in studying fractals as antennas 
was three-fold. First, I wanted to show that 
wire, slot, and other types of antennas shaped 
like multi-iteration fractals resonate. Second, I 
wanted to show that these structures, or at least 
a class of these structures, radiate. Third, I 
wanted to identify which fractals will shrink the 
size of an antenna and determine by how much. 
To a certain degree, this invites an infinitely 
difficult task. Fractals, unlike Euclidean struc- 
tures, come in an infinite variety. No one will 
ever explore every fractal from the point of 
view of radiation characteristics. The hope of 
finding the "ultimate" fractal antenna is also a 
false one, just because of this complexity. It 
seemed most prudent to take a variety of multi- 
iteration fractals of simple and/or well-known 
motifs and investigate these. 

My initial goal was simple (albeit tedious). I 
built several fractals of wire and/or made them 
into slot antennas, attached to 50-ohm coax, 
and explored them with an SWR/resistance 
analyzer. Surprisingly, I found that virtually all 
of the fractals resonate in at least one position 
of the feed~oint. All of the multi-iteration frac- 
tals resonate at multiple frequencies, in a non- 
harmonic fashion. 

Table 1. Some resonant fractals. 

Figure 8. Zero iteration Minkowski Island-a quad. 

For the sake of this analysis, resonance was 
defined as a total impedance that fell between 
20 and 200 ohms, with medium, to high Q. In 
other words, the fractal had to manifest a radia- 
tive impedance that was frequency dependent. 
Ohmic resistances were measured to be a few 
ohms or less, confirming that the resonance 
nodes were not of a "dummy load." Of course, 
one could define resonance with an arbitrary 
impedance (75 or 600 ohms, for example). The 
consideration was to look for something that 
would be easy to match to 50-ohm coax. Table 
1 lists several well-known fractal types, that 
were found to resonate on at least one frequen- 
cy, among many others. 

There were two outstanding characteristics of 
fractals that emerged from my work. First, I 
found that fractals, when shaped into islands, 
do not experience significantdrops in radiation 
resistance for their size (area). Many of these 
fractals were quite tiny (less than a foot across), 
but resonated at 60 to 100 MHz. Point 3 
(shrinkage) was justly demonstrated. I'll dis- 
cuss this paradox of a medium impedance in 
context to a small loop later. 



I also noted that the perimeters do not corre- 
spond to the lengths expected from the mea- 
sured resonant frequencies. Instead, the lengths 
were always longer. There appears to be some 
effective velocity change of the wave caused by 
the fractality of the antenna. Pfeifferg also 
noted this increased length when he shrank a 
full-sized quad using a first-order fractal. 
However, this effect is a property of fractals as 
radiators and not as geometric constructions. It 
seems that the fractal dimension, which other- 
wise might indicate a sense of how the shrunk- 
en the "side" of a fractal becomes (as with 
Commandment 2), isn't a good indicator of 
how much smaller an antenna may be made by 
using a fractal design, because it doesn't incor- 
porate the perimeter lengthening of the radiator. 

Instead, I define a new quantity called 
"perimeter compression," or PC. PC is, literally, 
a ratio of a full-sized antenna's side to that of 
the shrunken version's side. If you measure the 
physical size and compare it to the size expected 
for the fractal resonator's lowest resonant be- 

quency, you'll measure the PC. A PC of 1, for 
example, represents the full-sized antenna, while 
a PC of 3 represents one shrunken by a factor of 
three on a side. It may be empirically represent- 
ed by the fractal dimension with the equation: 

where A and C are constant coefficients for that 
given fractal motif, N is the iteration number, 
and D is the fractal dimension. Thus, the PC 
becomes asymptotic to a real number for each 
fractal and does not approach infinity as the 
number of iterations becomes very large. This 
result is not a representation of a purely geo- 
metric fractal. Hence another commandment, 
Commandment 3, comes to light: 

"The PC of a fractal radiator will asymptoti- 
cally approach a noninfinite limit in a finite 
number of fractal iterations." 

This immediately helps define which fractals 



are better resonators than others through 
Commandment 4: 

"Optimized fractal antennas approach their 
asymptotic PCs in fewer iterations than nonop- 
timized ones." 

In other words, the "best" fractals for anten- 
nas have large values of A and C. They shrink 
the most and the fastest. 

Finally, the odd property of non-small radia- 
tion resistance invites yet another command- 
ment, Commandment 5: 

" The radiation resistance of a fractal antenna 
drops as some small power of the perimeter 
compression, PC. A fractal island always has a 
substantially higher radiation resistance than a 
small Euclidean loop of equal size." 

Also a Commandment 6: 

"The number of resonant nodes of a fractal 
island increases with the iteration number and 
is always equal to or greater than the number of 
resonant nodes of a Euclidean Island with the 
same area." 

Finally, the change in perimeter leads to 
Commandment 7: 

" A fractal resonator has an increased effec- 
tive wavelength." 

Because several of the attributes of fractal 
resonators conflict with accepted behaviors of 
antennas, I decided to illustrate a specific frac- 
tal antenna and elaborate upon both the conflict 
and the true fractal antenna characteristics. I 
compared Euclidean and fractal quad loop(s) to 
demonstrate my points. 

The problem of loop antennas 

Most of the fractal resonators I tested were 
shaped into closed loops (islands). My previous 
knowledge of these loops as antennas indicated 
that they shouldn't have produced resonance 
voints at all. 

It has long been known that small antennas 
don't work well. A compelling reason for this 
is that their radiation resistance, R, drops dra- 
matically when shortened. A short dipole or 
tiny loop will experience the radiation pattern 
of a 112 wave and quad, respectively, if the 
impedance isn't swamped by the ohmic losses. 
Minimization of theselosses is verv difficult 
and requires the use of expensive matching net- 
works. Also, these matched mini-loops are 
inherently very high Q (greater than 50). 
Commercial versions of the G3KPV (and oth- 
ers) loop9 are limited examples of tiny loops of 

Figure 9. First iteration Minkowski Island (MI1). 

Figure 10. Second iteration Minkowski Island (MI2). 

minimal ohmic losses, allowing great efficien- 
cy (50 to 85 percent). While these antennas 
have found a limited niche, they don't apply to 
the vast majority of antenna applications, 
because of their cost, complexity, and very lim- 
ited effective radiated power. 

While the trend for dramatically reducing 
radiation resistances with small area Euclidean 
loops is well-known experimentally, few real- 
ize the theoretical basis for it. Foster conducted 
the analysis in 1944 and it has been used as a 
basis by Kraus.1° Its generalizations have 
become "laws" by which all small antennas 
designs have been defined. 

Foster and Kraus looked at a circular loop 
with uniform current. This simple structure 
afforded simple solutions to radiation equa- 



Table 2. ELNEC derived resonances for Minkowski Island Quads. 

Table 3. Ratio of resonant frequencies from ELNEC. 

tions. The gain of such a single loop makes a 
surprising limit of 1.8 dB over an isotropic 
radiator, as the area falls below that of a loop of 
1 wavelength-squared aperture. However, the 
radiation resistance is very small for a small- 
area loop (A<X2 /loo), and is given by: 

where K is a constant, A is the loop's enclosed 
area, and X is wavelength. The radiation resis- 
tance can easily be less than an ohm for a small 
loop antenna. 

While this analysis is, strictly speaking, for 
circular loops, Kraus made two generalizations: 
1) the calculations can be defined by area, 
rather than perimeter and; 2) the analysis is cor- 
rect for any geometric shape for small loops. 
Hence, we have the predicted death knell for 
small loops of other shapes-including fractal 
ones-because these antennas will supposedly 

have such a small radiation resistance that their 
ohmic resistances will be larger, and the effi- 
ciency will be very small. A bizarre spin-off of 
this analysis is that some have suggested build- 
ing small antennas out of superconducting 
material, to drop the ohmic losses to zero. 

Fractal antennas, however, don't obey these 
generalizations of small loops. To demonstrate - 
this, and explore a useful fractal antenna, I'll 
describe an in-depth summary of work on sim- 
ple, but real fractal antennas. 

Practical fractal: The Minkowski 
Island 

Compelling evidence for radiation from a 
fractal antenna must start with a simple fractal 
motif and demonstrate the effects caused by 
successive iterations. This is actually a philoso- 
phy of approach dictated by Occam's Razor. 
Here, simplicity will make the case for a fractal 
antenna. I've chosen the Minkowski motif for 
this reason. It's also believed that exact analyti- 
cal solutions for Maxwell's equations will be 
derived easily for this fractal motif, and, as we 
shall see, its orthogonal line segment design 
made it readily acceptable to numerical study 
with ELNEC and other modeling schemes. 

The Minkowski motif I've chosen is a three- 
sided box placed on top of a line segment.' ' 



Freq = 42.3 HHz 
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Outer Ring = 2.091 dBi 
Hax. Gain = 2.091 dBi Azimuth fingle = 0 . 0  Deg. 

Figure 11. Free-space pattern for MI2 from ELNEC. This p: 
less front to side and 1 dB less forward gain; a little lower th 

The box sides can be any arbitrary length; for 
the sake of this example, I'll use side lengths 
giving the box a height and width of 2, and the 
two remaining sides a length of 3. This 
Minkowski fractal has a fractal dimension of 
1.2-not very high compared to other deter- 
ministic fractals, but useful in making a case 
for a simple fractal antenna. 

Application of the motif to the line segment 
can be most simply expressed by the piecewise 
function: 

where x,,, is the largest continuous value of x 
on that line segment. The second iteration can 
be expressed as relative to the first by: 

where xmax is defined by Equation 4. Note that 
each separate horizontal line segment has a dif- 
ferent lower value of x and x,,,. Relevant off- 
sets from zero may be entered as needed. The 
vertical segments may be boxed by rotating 
them 90" and applying the methodology above. 
Further iterations extend from Equation 5. 

The Minkowski fractal quickly begins to 

attern is very similar to that of a quad, except with 2 dB 
an measurements show. 

Photo A. A picture of MI3 for 2 meters-about 8 inches on a side. Now 
to stick it out the window! 

look like a Moorish design pattern (see Figure 
7). However, each successive iteration eats up 
more and more perimeter, thus squashing the 
overall length of the original line segment. 
Combining four of these fractals of the same 



Photo B. A picture of MI2 for 6 meters-about 30 inches on 
a side. Ready for an efficiency measurement. Note easy sup- 
port to spreaders at many points. 

iteration number makes a Minkowski fractal 
island and a bona fide, "fractalized" cubical 
quad that can be built, tested, and simulated. 

Minkowski Island Quads: 
ELNEC 

ELNEC is a graphics/PC version of 
MININEC, which is itself a PC version of 
NEC. It's a numerical tool using the method of 
moments for estimating power patterns, and has 
demonstrated success with simple wire geome- 
tries. Because ELNEC wasn't designed for 
complex antenna geometries, per se, I used it 
here only as a guide to far-field power patterns, 
resonant frequencies, and SWRs of Minkowski 
Island fractal antennas up to iteration 2. Since I 
ran out of line segments and pulses after a sec- 
ond iteration Minkowski fractal, a NEC-based 
comparison isn't available for the third or high- 
er iteration at this time. Because the emphasis 
in this study was to demonstrate working fractal 
antennas. ELNEC results are viewed here as a 

general corroboration. Note that measurements 
of the Minkowski fractal antennas were in hand 
before ELNEC models were run. 

I ran ELNEC in a straightforward fashion. 
One source was attached and each line segment 
was divided into at least two pulses. Higher 
pulse densities couldn't be achieved for the sec- 
ond iteration Minkowski fractal because of 
memory and software limitations. The goal was 
to keep the pulse densities consistent among the 
various iterations. So, while a second iteration 
Minkowski Island had only two pulses per seg- 
ment, each segment occupied less than 2 per- 
cent of a wavelength. The number of total puls- 
es was thus very high. In Figures 8 through 10, 
I show the antenna designs used in ELNEC to 
derive the lowest resonances and power pat- 
terns, up to and including iteration 2. All 
designs were constructed on the x,y axis. For 
convenience, each iteration will be designated 
MI (for Minkowski Island) followed by an iter- 
ation number; MI1, for example (Minkowski 
Island iteration 1). Also, the outer length was 
kept the same (42 inches) for each iteration. 
Thus, the frequency of lowest resonance 
decreased with the MI models compared to the 
quad. Put the opposite way, for a particular fre- 
quency of resonance, the quad size shrinks with 
the MI antennas. 

The results of ELNEC demonstrate that far- 
field patterns of Minkowski Island Quads differ 
little from cubical quads, at their lowest reso- 
nant frequency. Table 2 summarizes the radia- 
tion characteristics for each iteration, for the 
first four resonances. Figure 11 contains repre- 
sentative free-space power patterns of MI frac- 
tals, in this case for MI2's lowest resonance. 

Table 2 reveals that Minkowski Islands are 
multi-resonant structures with virtually the 
same gain as full-sized quads. 

Although I must caution that these are "free- 
space" values of gain, in the absence of any 
ground plane, the simulations over a perfect 
ground at 1 wavelength provided similar rela- 
tive gain results. Keep in mind that discrepan- 
cies in frequencies and SWRs-as well as 
gain-were found when comparing the actual 
measurements. Roundoff, undersampling of ' 
pulses, and any of a variety of other reasons 
may contribute to the inaccuracy of the ELNEC 
results. Roughly, they are a good guide to 
demonstrate the fractal antenna phenomenon. 
You should also keep in mind the ratio of reso- 
nant frequencies, which for these first four res- 
onance nodes are given in Table 3. 

Thus, ELNEC confirms two commandments: 
the shrinking of the antenna and an increase in 
its number of resonance points. Indeed, MI2 
had four resonance nodes before the reference 
quad experienced its second resonance! 

The near-fields of these antennas are also 



Table 4.2-meter antenna measurements. 

very important, for it is the near fields by which 
multiple element antennas add to achieve high 
gain arrays. ELNEC was of little help in this 
regard because of the aforementioned program- 
ming limitations. However, I have built several 
different high-gain fractal arrays that exploit 
the near field and will discuss them in Part 2. 

Minkowski Island Quads: 
measurements 

I built three Minkowski.Island fractal anten- 
nas to study the gain of the Minkowski motif. 
These antennas were made of aluminum 
groundwire (no. 8) and/or thinner galvanized 
groundwire (no. 12). The antennas were cut for 
2 meters to facilitate relative gain measure- 
ments of 2-meter FM reDeaters. All measure- 
ments were performed in receive mode. 

All of the antennas were cut so their lowest 
operating frequency fell close to the operating 
frequency. They were mounted for vertical 
polarization and placed so their center points 
were the highest practical point above the 
mounting platform (see Figure 12). I also built 
a vertical ground plane with three radials, and a 
reference quad, for gain comparisons, of the 
same size wire as the particular fractal being 
tested. 

Few radio amateurs appreciate the difficulties 
of measuring gain properly. For example, there 
is virtually no way of avoiding multi-path 
reception. I chose my location specifically to 
minimize the effect from skewed angles. 
Located in Belmont, Massachusetts, on top of 
the highest hill near Boston, I had a clear line 
of sight to the Derry repeater KlMNS (146.85 
MHz) in southern New Hampshire, about 45 
miles. Still, multipath was evident in the form 
of "stationary picket fencing" with the gain 
changing as a function of vertical and horizon- 
tal position. By placing a vertical ground plane 

(114 wave) on a pole, I was able to locate posi- 
tions for the measurements where these fluctua 
tions were changing more slowly. 

I experienced great difficulty making mea- 
surements with a low (less than l wavelength) 
test platform above a ground plane, on the 
ground. Measurements were especially sensi- 
tive to height and position above the plane (by 
values of 0.1 wavelengths). Indeed, because thc 
bottoms of the fractal antennas were higher 
than that of the reference quad, there were 
clearly height-dependent effects being mani- 
fested, perhaps (favorably) biasing the fractal 
antennas in some way. Instead, I opted to 
remove the low-height effects by mounting the 
test platform at the edge of a third-story win- 
dow, affording 3.5 wavelength height above 
ground and line of sight to the Derry repeater. 
This more closely replicates the results for free 
space. I stuck the antennas out the window 
about 0.8 wavelengths away from the house 
and any metallic material (such as window 
frames). I performed measurements on 5 differ 
ent occasions, from various windows on the 
same floor, obtaining results within 112 dB of 
each trial. On two occasions, I made confirm- 
ing measurements using the Waltham, 
Massachusetts repeater (146.64). 

This type of and its caveats, is 
discussed at length in K r a ~ s . ~  It will definitely 
be worthwhile to retest these antennas in an 
anechoic chamber, should one ever be avail- 
able. However, real communication requires 
real results, which these findings present. 

I attached each antenna to a short piece of 
9913 coax (50 ohms) fed at a right angle to the 
antenna. I used two precision attenuators in the 
circuit: 1) 6 dB steps from 0 to 30 dB and, 2) 1 
dB steps from 0 to 10 dB. Then I fed the signal 
with more 9913 to a Drake TR-22C transceiver 
I tapped the meter circuit from the receiver and 
attached it to a VOM reading as an ammeter. 

S-meter measurements are notoriously inac- 



Table 5. MI2, MI3 efficiencies. 
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Figure 12. Strange gain changes with iteration for lowest res- 
onance of the MI fractal antennas. This may be a diffraction 
phenomenon and is not due to losses from inefficiency. 

curate. The problem can be especially prevalent 
on 2-meter FM, because the signal saturates the 
meter as full quieting is achieved. Even when 
signals aren't full quieting, the S-meter read- 
ings are highly nonlinear. I avoided these prob- 
lems by inserting some initial attenuation with 
the rotary attenuators. Then I quickly switched 
in each test antenna for an ammeter measure- 
ment, and added or subtracted attenuation to 
obtain the same meter reading found with the 
reference quad. Every test antenna measure- 
ment had a successive comparison to the refer- 
ence quad. I corrected all readings for SWR 

attenuation, which was 2.4: 1 (120 ohms imped- 
ance) for the reference quad, but less than 1.5: 1 
at resonance for the fractal quads. I made no 
attempt to measure the efficiency of these par- 
ticular antennas, because of the unavailability 
of a noise bridge that worked on 2 meters. 

With this process, 112 dB differences pro- 
duced quite noticeable meter deflections, while 
several dB differences produced substantial 
ones. Removal of the antenna demonstrated in 
excess of a 20 dB drop in received signal. In 
this way, I was able to cancel out systemic dis- 
tortions in my readings and compare the results 
in a meaningful way. 

For each antenna, I measured relative for- 
ward gain and optimized physical orientation. I 
made no attempt to correct for launch-angle, 
nor to measure power patterns other than to 
demonstrate the broadside nature of the gain. 
The results of the measurements are summa- 
rized in Table 4. Note that the SWRs at the res- 
onant frequency weren't corrected with a balun, 
but gain measurement values were corrected 
for the loss. All dB values have a conservative 
uncertainty of 0.5 dB RMS. Perimeter com- 
pression, PC, indicates the amount of side 
"squashing," while PL represents the perimeter 
length normalized to a full-sized cubical quad 
(114 wave on a side). MI3, as shown by the side 
length, is 1/10 of a wavelength on a side. 

Discussion 

There are clearly some surprising and 
important results shown in Table 4. First, note 
that for the vertical configuration being tested, 
the fractal quad versions either exceeded the 
gain of the cubical quad or fell within about I 
dB of it. This points out a key fact: a cubical 
(square) quad is not an optimized antenna for 
gain. In other words, you can get higher gain 
out of a quad by fractally shrinking it by a 
factor of two. If you need to shrink it further, 
you may still experience marginal (1 to 2 dB) 
losses. These results may actually be more 
favorable as other fractal motifs are explored 
for quads. Yet even MI3 generates an impres- 
sive quad. A 20-meter version about 7.5 feet 

Table 6. MI2, MI3 resonances and bandwidths. 



on a side will be discussed in Part 2. 
At this point, it's important to know the effi- 

ciencies of MI2 and MI3, because these com- 
pact designs offer real advantages over a full- 
sized quad element. As I stated, it wasn't possi- 
ble to attempt this for the 2-meter versions, but 
I built and tested 6-meter versions of MI2 and 
MI3 (see Figure 13). I attached an RX-noise 
bridge between these antennas and a JST 245 
transceiver. By nulling the receiver at about 54 
MHz, and calibrating the 50-ohm resistance 
bridge with 5 and 10-ohm resistors, I obtained 
the results of Table 5. 

Efficiency was defined as: 

where Z is the measured impedance. R was 
obtained by subtracting the ohmic and reactive 
impedances (0) from the measured impedance. 

Apparently, with their 1.2: 1 SWRs and low 
ohmic and reactive impedances, these anten- 
nas are extremely efficient-in excess of 90 
percent. Again, this goes against common 
sense arguments inculcated through the mod- 
eling of small loop antennas. In fact, this is 
compelling evidence that the "law" of low 
radiation impedances for small loops must be 
abandoned and only be invoked when dis- 
cussing small Euclidean loops. It also 
advances the exciting case for highly efficient 
fractal loops of "micro~sized" area. MI3, at a 
tenth of a wavelength per side, and an area of 
about X2/1000, has not signaled the onset of 
inefficiency with smaller size. 

If these antennas are efficient, how is it pos- 
sible to explain the results of Table 4? Since 
MI3 has a drop of almost 3 dB from MI2 in 
gain, it's reasonable to assume that MI3 is 
(finally) manifesting some inefficiency due to 
its midget size. This explanation must be aban- 
doned given the low ohmic loss of M13. 
Although no unique explanation can be pre- 
sented at this time, Figure 14 plots the gain fig- 
ures as a function of iteration. It wasn't physi- 
cally possible to bend wire for a 4th or 5th iter- 
ation 2-meter Minkowski fractal (note that at 
lower frequencies this isn't a physical prob- 
lem), but machines and printed circuit etchings 
can accomplish this to extend the graph. Figure 
14 reveals that the gain undergoes a possible 
sinusoidal beating characteristic of a diffraction 
process. This effect is seen in Foster's analysis 
for loops of increasing area. Perhaps this dif- 
fraction phenomenon has been pushed forward 
to far smaller areas by using a Minkowski frac- 
tal. I predict that a Minkowski Island will, in 
fact, reach the theoretical gain limit of 1.8 dB lo 
seen for subwavelength loops, but not until 
later iterations. At that point, its efficiency may 
drop below 3dB. Conservatively, a 4th iteration 

Figure 13. PC has not topped out with iteration 3 of the MI 
fractal antennas. There's further shrinkage to be had! 
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Minkowski Island quad should provide a factor 
of about 3 value of PC without suffering sub- 
stantial inefficiency. 

Is there any point to going to higher order 
iterations with the Minkowski Island fractal for 
greater shrinkage? In Figure 15, I've plotted 
the PC value for Mikowski Island fractal anten- 
nas of 0 to 3 iterations. As Commandment 3 
states, this PC should approach an asymptotic 
limit that is not infinite. Figure 15 roughly pro- 
jects that any advantages beyond iteration 6 or 
so will be modest to the shrinking amount. 
Certainly the PC won't become asymptotic for 
iterations 4 or 5. Of course, further iterations 
will lead to a 2-meter quad smaller than 3 inch- 
es on a side and a 20-meter quad less than a 
yard on a side. 

It's important to keep in mind that the 
Minkowski motif isn't demonstrated here as the 
optimized fractal for a fractal island quad, and 
that other motifs are more likely to keep high 
efficiencies while collapsing even more with 
each iteration. 

The bandwidths and the multi-frequency res- 
onances of these antennas are especially inter- 
esting. In Table 4, I've listed the resonant fre- 
quencies, and bandwidths and Qs for each node 
found between 30 to 175 MHz for 6-meter ver- 
sions of MI2 and M13. The bandwidths are 
SWR 3: 1 bandwidths in MHz, irrespective of 
the resonant frequency SWR. Qs are estimated 
by dividing the resonant frequency by the 3: 1 
SWR bandwidth. Frequency ratio is the relative 
scaling of the resonance nodes. 
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The Qs of these nodes clearly show that MI2 
and MI3 are viable multiband antennas. They 
don't display the very high Qs seen in small, 
tuned loops. A mathematical application to 
electromagnetics doesn't exist that can predict 
these resonances or Qs. One way to approach 
the problem is to estimate the scalar and vector 
potentials in Maxwell's equations by regarding 
each Minkowski Island iteration as series of 
vertical and horizontal line segments with off- 
set positions. Summing them up leads to the 
Poynting vector calculation and power 

pattern.7 My colleagues and I are performing 
this calculation as one of several methods to 
model fractal antennas, in order to predict their 
characteristics and achieve optimized shapes. 
Perhaps the best "basis functions" in these cal- 
culations are themselves fractal. 

The discrepancies between ELNEC and mea- 
surements must finally be noted. A comparison 
of Table 6 with Table 2 demonstrates minor 
inconsistencies in modeling of ratios of resonant 
frequencies, PCs, SWRs, and gains. Further 
work must be done on both to fine-tune their 



accuracy; however, it appears that, from the any case, these Minkowski Island fractal anten- 
point of view of SWR, PC, gain, and frequency na efforts convincingly assert that fractals offer 
resonance ratios, actual MI antennas work a profound new approach to antenna design with 
slightly better than these ELNEC predictions. In unusual practical value in shrinking antennas. 



Part 2 will continue this intriguing saga of tiny, 
multiband fractal antennas and arrays. 
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