Three-transistor modulatoramplifier circuit works with swept-control frequencies

Horia-Nicolai L Teodorescu and Victor Cojocaru, Gheorghe Asachi Technical University, lasi, Romania

aMany applications require a circuit to perform pulse modulation and voltage amplification to drive a load with a train of impulses. A typical application is driving a piezo-
electric generator in a robot. Other applications include driving small motors or LEDs. Echolocation and ultrasound visualization use a sweeping-frequency, or chirp, signal. Nonlinear distor-
tion is not important in these applications. When you drive a piezoelectric load, its natural resonance removes any frequency components other than the fundamental. This circuit combines a modulator and an amplifier into a single stage. The compactness of the circuit makes it appropriate for portablesystem applications.

The load is in series with two switches (Figure 1). The input signal controls $\mathrm{S}_{2}, \mathrm{~S}_{3}$ controls S_{1}, and the modulating signal controls S_{3}. This circuit's mod-

designideas

Figure 1 This simple modulator uses three switches.
ulation operation is similar to that of an AND gate. The switches must have internal resistance to dissipate the harmonics that the resonant load reflects. This circuit uses transistors Q_{1} and Q_{2} as switches, although they operate in the active region (Figure 2). Their operation resembles that of controlled resistors, and they perform voltage and current amplification. You drive Q_{2} with a $42-\mathrm{kHz}$ signal that matches the load's resonance. You modulate the Q_{3} transistor with a periodic low-frequency impulse signal. These impulses open Q_{3}, which drives Q_{1} and Q_{2} toward saturation. When Q_{3} opens, it drops the voltage across the base of Q_{1}, blocking

Figure 2 A three-transistor modulator with a resonant load works over a large input range.

Figure 3 Changing the value of R_{1} yields different response waveforms.

IF THE LOAD IMPEDANCE VARIES, THE CIRCUIT DOES NOT DEGRADE THE IMPULSE SHAPE.

the state of $Q_{2} \cdot Q_{1}$ and Q_{2} operate conjointly; Q_{1} conducts only when Q_{2} is conducting. You can view this scheme as a differential amplifier in which the signal in one branch controls the load of another branch.
Q_{2} and Q_{3} operate over large signals yet remain in the active region most of the time. The resistor values in the base and collector of Q_{1} are critical. When the frequency of the signal is higher than the load's resonant frequency, D_{1} protects Q_{1} from the effects of L_{1} and of harmonics on the LC circuit. The collector voltage has a spectrum rich in harmonics due to the nonlinear behavior of transistors. This characteristic is not a serious disadvantage because the resonant load removes the harmonics.
The value of R_{1} is critical to the current and voltage amplification of the Q_{1} / Q_{2} stage. The swing of voltage in the collector of Q_{1} is sensitive to the value of R_{1} (Figure 3). Q_{1} operates in the active mode because its collector voltage increases slowly toward the maximal value. The significant glitch at small collector voltages shows that the blocking process partly occurs in the active regions of Q_{2} and Q_{3}. If the load impedance varies, the circuit does not degrade the impulse shape. This situation is true even at twice the load's resonant frequency. The circuit functions with input voltages of 4.5 and 11 V . This voltage range allows you to drive the circuit with a 5 V microcontroller (Reference 1).EDN

REFERENCE

[1 Teodorescu, Horia-Nicolai L, "Algorithm for Adaptive Distance Estimators for Echolocation in Air," International Solid-State Circuits Conference, 2009, www.adbiosonar.ugal.ro/ ad/content/funding.

