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Did you know? 
Some puzzles in radio engineering fundamentals 

by Epsilon 

THE ART of radio engineering is now 
well into its second half- century; many 
of the fundamentals, probably once well 
understood, are perhaps too easily 
accepted today and seldom explained 
adequately in basic engineering 
courses. Take, for example, a capacitor. 
Readers will know that there are quite 
fundamental laws which describe its 
behaviour. These are the laws of charge 
and energy, and they are often used to 
solve certain problems in much the 
same manner as momentum and kinetic 
energy are used in mechanics. 

A typical problem is shown in Fig. 1. 
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Fig. 1. What is the voltage on the 
right -hand capacitor after the switch is 

closed? 

Here a capacitor of capacitance C is 
charged to a voltage V. At a particular 
time, the first capacitor is connected to 
a second capacitor, also of value C, but 
containing no charge. By the law of 
charge conservation, the charge before 
and after the connection is the same, 
and is given by 

Q = CV = 2CV2 
and therefore the voltage V2 is equal to 
V /2. But by the law of energy conser- 
vation, 

E = CV2 /2 = (2C )V,2 
and the voltage V2 is equal to V/ \/2. 

Now since capacitors are essentially 
lossless, energy cannot vanish without 
trace, and so the second answer should 
be the correct one. But this would imply 
that charge had increased by a factor of 
0, thus violating the law of conserva- 
tion of charge. The problem becomes 
really ridiculous if one capacitor is 
charged to + V, the other to -V. The net 
charge is then zero, and the use of one 
method would predict a final voltage of 
zero, the other a finite voltage of in- 
determinate sign. 

Unfortunately, both conservation 
laws happen to be cornerstones of elec- 

trical engineering theory and are not to 
be discarded lightly. Some means must 
be found to reconcile the two laws, but 
how? No doubt readers will reassure 
themselves at this point by claiming 
that all real capacitors have resistance, 
and that the losses associated with this 
account for the discrepancies between 
application of the two laws.* A natural 
reply is to make the capacitors operate 
at superconducting temperatures and 
to reconsider the problem. Another in- 
genious way out might be to note that it 
is very difficult to discharge a capacitor 
without forming an arc (and hence 
getting rid of excess energy). Unfortun- 
ately for this suggestion, semiconductor 
technology does enable an arcless con- 
tact to be made, and so this explanation 
is at best a weak one. Accepting that 
simple measurements with a voltmeter 
show that the charge is conserved, what 
is the explanation of the apparent dis- 
appearance of the energy? 

A_ second example, representing such 
an everyday feature of electronic 
equipment that its correct operation is 
taken for granted, is shown in principle 
in Fig. 2. A coaxial cable takes an r.f. 
signal from one part of a system to 
another. The system has a metallic 
ground plane which can be considered 
as being infinite in extent. Standard 
practice dictates that the outer braid of 
the coaxial cable is connected to the 
ground plane at both ends. An interest- 
ing question now emerges: what path 
does the return current from the load 
take? One answer (which is certainly 
true at d.c.), is that it takes the path of 
least resistance, or rather, it shares itself 
between the outer braid of the coaxial 
cable and the ground plane in the ratio 
of conductances. At a.c., the impedance 
between two points on a ground plane is 
effectively zero, whereas between the 
two . ends of the outer conductor of a 
coaxial cable it is roughtly 

X = 0.21floge(2l /D) 
where I is the length in metres, D is the 
braid radius, and f is the frequency in 
MHz. Clearly the impedance increases 
with length and frequency, and there- 
fore most, if not all, of the return current 
does not flow in the outer conductor at 
all, but in the ground plane. Of course, 
this situation does not happen; if it did, 

*It so happens that this statement is exactly true for 
any finite value of resistance.' 

F'g. 2. Does the return current from the 
load flow in the ground plane or the 
outer braid of the cable? 

Fig. 3. The switch is closed at t = O. 

What is the current in the inductance? 

the outer conductor would be redun- 
dant, the cable would be unscreened, 
and the concept of characteristic 
impedance would be quite meaningless. 
Obviously, no matter what the cable 
length or the frequency, none (well, 
almost none) of the current flows in the 
ground plane. Why? 

A third example is not so much one of 
fundamental principle as one of 
observed fact. It concerns switch -on 
surges in transformers. If a transformer 
(the larger the better) is connected 
directly to a mains supply, a distinctive 
hum is often heard which decays away 
over a period of tens of cycles. If the 
transformer is large enough it may blow 
s quite substantial fuse. Why? Those 
who have experienced the effect will 
mutter "switching -on surge," but that is 
a description of the problem and not a 
quantifiable explanation of its cause. A 
related problem, which will help to 
obtain the answer, concerns the circuit 
shown in Fig. 3. Assuming that the 
switch is closed when the applied sine 
wave is at zero and, for the present, that 
the resistance is zero, is the current in 
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the inductance sinusoidal and does it 
have an average d.c. value of zero? 

Before continuing to two more prob- 
lems less related to real life, let us 
examine the answers to the questions 
already presented. The first example is 
an interesting one, if only because it is 
so fundamental. As a first step it can be 
noted that all capacitors must have 
physical size; it is simply not possible to 
make a finite capacitance of infinitely 
small dimensions; secondly, whenever a 
capacitor is discharged the current 
must flow through a finite distance, and 
thirdly, current flowing through a dis- 
Itance generates a magnetic field, which 
in practical terms means that every 
capacitor possesses a small inductance. 

o - 

(a) 

(b) 

Fig. 4. The solution to Fig. 1 with R = 0 

Fig. 4(a) shows the equivalent circuit 
of Fig. 1, and Fig. 4(b) shows the actual 
voltages of the two capacitors as a 
function of time. The whole circuit is 
resonant at a frequency given by 

w2LC /2 = 1 

V2 starts at zero, oscillating between a 
value of zero and V, the mean value 
being V /2. V1 has the same sinusoidal 
form as V2 but starts at V and decreases 
down to zero. Both charge and energy 
can now be accounted for. The total 
charge in the two capacitors remains 
constant at Q = CV, thus satisfying the 
requirement of conservation of charge, 
but the charge in each separate capaci- 
tor oscillates from one to the other 
about the mean. 

The energy flow is more complicated, 
there being a continual transference 
between capacitive and inductive 
storage. Thus, beginning at time t = 0 in 
Fig. 4(b) capacitor C2 starts with zero 
voltage and zero energy. C1 starts at V. 

One quarter -cycle later both capacitors 
have the same voltage V /2, and there is 

zero voltage across the inductance. 
Since the current in an inductance lags 
the voltage by a phase angle of 90 °, the 
former is now at a maximum and it will 

be found that exactly one half the en- 
ergy resides in the inductance. This 
accounts for the "missing" energy. One 
half a cycle later the voltage across C2 is 
a maximum and equal to V, and that 
across C1 is zero; all the energy has now 
been removed from the inductance and 
resides in C2. The reader can follow the 
remainder of the cycle. 

No matter how small the lead induct- 
ance, the oscillation just described is 
always present, and, taken with the 
steady voltage, it fully accounts for both 
the original charge and the energy. The 
reason that an erroneous result can be 
obtained, in this case by neglecting 
inductance, is because the laws of con- 
servation do not tell us how charge or 
energy may be stored, only that they 
cannot disappear. 

The explanation may now be deve- 
loped a little further, to begin with by 
allowing a small series resistance to be 
present as shown in Fig. 4(a). The 
oscillation, instead of persisting inde- 
finitely as before, now decays exponen- 
tially (the multiplying factor is actually 
exp(- Rt /2L)) and leaves a steady state 
voltage of V/2 on both capacitors. This 
is, of course, the voltage measured by a 
d.c. meter. Taking a further step, just as 
a capacitor possesses inductance, so it 
also possesses radiating properties, and 
there will in general be an apparent 
resistive loss because of this. Taking a 
third step, capacitance, inductance and 
radiation resistance are not lumped 
circuit elements but are distributed, and 
so even the reasoning given above is at 
best an approximation. 

The explanation of the screening 
properties of the coaxial cable concerns 
the self and mutual inductance of the 
two conductors of which it is com- 
prised. Fig. 5 shows a longitudinal cross 
section of the cable, large letters being 
used for the outer conductor and small 
letters for the inner. 

A current i flowing upwards in the 
inner conductor sets up a magnetic field 
whose lines of force go around it. As a 
simplification we shall assume that the 
conductor is straight and long, and then 
these force lines have a magnetic field 
strength of 

h = i /2rx ampere turns per metre 
where x is the distance from the centre 
of the conductor (but note that this 
expression is not applicable when x is 
less than d). A current I flowing down- 
wards in the oúter conductor also 
causes a magnetic field strength, this 
time given by 

H = -I /2rrx, 
where x is measured from the centre of 
the hollow tube which forms the outer 
conductor and I is distributed uniformly 
around the periphery. Inside the tube 
the field due to I is everywhere zero. 

The magnetic fields cause back vol- 
tages to be generated in each conductor 
whenever they change with time. The 
current I causes a large back voltage to 
appear in the outer conductor (the self 
inductance term) but this is cancelled 
by the back voltage caused by the cur- 
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Fig. 5. Fields due to the inner and outer 
conductors of a coaxial cable go 
around the cable. The left and right 
sides show the field separately. 

rent in the inner conductor (the mutual 
inductance term). Now it so happens 
that the magnetic field-inside the outer 
conductor does not have any effect, and 
the total back voltage is thus propor- 
tional to (h -H) or (i- I) /2rrx. If i = I, all 
external magnetic fields are exactly 
,equal to zero (in other words, the cable 
is properly screened) and the back vol- 
tage is also zero. Each end of the cable 
is at exactly the same potential and no 
current flows in the earth plane; if it did, 
a potential in the correct sense to cancel 
it would appear along the cable. We can 
all breathe a sigh of relief at the result, 
because otherwise r.f. engineering 
would be impossible. However, at low 
frequencies, particularly audio, cable 
resistance starts to become important 
and screening against magnetic pick -up 
is not at all so easy. 

The full explanation for the third 
example can only be found satisfactor- 
ily by recourse to differential equations. 
Before giving the solution, it is as well to 
recall that the properties associated 
with inductance are expressed solely in 
terms of the back voltage developed 
when a current experiences a rate of 
change. Specifically: 

V = L x no. of amperes changed per 
second 

It is important to realize that the 
voltage V is not a function of any con- 
stant current, which could be infinite 
without altering V in any way. With this 
in mind, the full solution for the current 
in Fig. 3 becomes understandable. It is 

I = (E /Z) sin (wt - (t.) + (E /Z/ exp 
(Rt /L) sin 4 

where tancp = wL /R and 
Z = + (6)L)2. 

The solution will be seen to consist of 
two terms, the first being the one 
generally used in a.c. impedance calcu- 
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(Q) 

lations, the second being a transient 
term which is d.c.. with an exponen- 
tional decay. 

The solution for the case when R is 
zero is given by: 

I = -(E/Z) cosWt + (E/Z) 

and there is thus a standing d.c. term 
equal in magnitude to the peak altern- 
ating current. The total current starts at 
zero and builds up to twice the value 
normally expected, but it never reverses 
in sign. There is a constant direct cur- 
rent circulating on a nominally a.c. 
supply and this persists indefinitely. In 
real life, resistance is always present 
and the d.c. term decays to zero; the 
lower the resistance, the lower the rate 
of decay. Knowing this, an explanation 
of why a switch -on occurs can now be 
given. 

When a transformer is connected to 
the mains supply, a circulating direct 
current is set up as just described. If the 
switch -on occurs at or near the zero 
voltage point of the a.c. cycle, the d.c. is 
at a maximum, and the total current 
runs up to nearly twice the normal 
value given by I = E /wL. Twice the 
normal magnetization current is often 
more than sufficient to run the iron core 
of the transformer into saturation, and 
the laminations start to protest loudly. 
With the transformer iron saturated, 
the instantaneous value of L is grossly 
reduced and so the magnetizing current 
must increase to generate a back vol- 
tage which is equal to the mains supply. 
The effect persists until the direct cur- 
rent dies away or until the fuse blows. 

After these questions and answers on 
rather everyday topics, here are two 
problems of a more thought -provoking 
nature. 

A small bar magnet is launched into 
outer space, where it can be assumed to 
be free of any external influences. The 
magnet is set spinning about an axis 
which passes through its middle and is 
perpendicular to the line joining the two 
poles. What happens to the rotational 
speed of the magnet with the passage of 
time? No mechanical forces on the 
magnet (such as air resistance) need be 
considered. 

Our second problem is also concerned 

Fig. 6. What is the external magnetic 
field when the last plug (a) is placed 
into the hole in the hollow sphere (c)? 

with permanent magnets. Fig. 6 (a) 
shows a magnet made in the form of a 
six sided tapered plug. The lines of force 
of this magnet run from north to south 
(by convention). A number of these 
plugst can be assembled as in Fig. 6 (b), 
and the result will be part of a hollow 
sphere. Lines of force will emanate from 
the outside of the sphere and will enter 
the inside as shown in Fig. 6 (b). The 
assembly of the sphere can continue 
until the situation in Fig. 6 (c) is 
reached, at which point lines emanating 
from the outer surface still return via 
the single hole to the south pole of the 
inner surface. A compass needle passed 
anywhere near the outer surface would 
record that it behaved as a magnetic 
north pole except near to the hole. The 
final plug is now inserted into the hole. 
What is the external magnetic field of 
the sphere at large, intermediate, and 
zero distances from the surface? 

On a superficial level the two answers 
happen to be rather obvious: the spin- 
ning bar magnet slows down and the 
magnetic field outside the sphere is 
everywhere zero. The more quan- 
titative explanations are as follows. 

The spinning magnet generates an 
alternating magnetic field that gives 
rise to an electromagnetic effect and 
hence to radio waves. The power 
associated with these comes from the 
only available source, the kinetic en- 
ergy of the spinning magnet, which 
therefore slows down. The explanation 
is rather an interesting one, because it 
shows that there is no reason why 
mechanical energy should not be turned 
directly into radiation without the use 
of electronic devices. However, I should 
point out that the idea is intriguing 
rather than practical! 

To carry the explanation a little 
further, the magnet can be assumed to 

fin practice, and in theory, a sphere cannot be 
assembled from six -sided plugs alone. To get a 

perfect fit it must be done with a mixture of 
six -sided and five -sided plugs (see Fig. 6 (b)), as in 
the truncated icosahedron. However, this awkward 
fact should not affect the author's discussion. - Ed. 
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be replaced by a solenoid carrying a 
current I whose field matches that of a 
magnet. Next, the rotating magnetic 
field can equally well be created by two 
such solenoids fixed in an inertial 
reference frame at right angles to one 
another and carrying currents. 

11 = Isin(2'rvot), 

12 = Icos(27vot) 

vo being the speed of the real magnet in 
revolutions per second. By this sub- 
stitution the problem has been reduced 
to one of radio engineering. Each 
solenoid acts as a small loop antenna, 
the radiation from which results in a 
circularly polarized radio wave. Now 
the radiation resistance of an elec- 
trically small loop is given by 

R = 31, 200 A2N2V4/c4 

where A is the area of the solenoid, N is 
the number of turns, V is the frequency 
in cycles per second, and c is the 
velocity of light. By equating the kinetic 
energy stored in the rotating magnet to 
the 12R losses in radiation it can be 
shown that the speed after a time t is 

v = vo(1 + ht)-1/2 

h = 31,200 (IAN)2(217v0)2/(c4W) 

where W is the moment of inertia of the 
magnet. 

The explanation for the magnetic 
field outside the sphere being zero can 
be given by reducing the problem to 
absurdity. Since the sphere is perfectly 
symmetrical in a three -dimensional 
sense there can be no preferred axis of 
magnetization; if lines of force do exist, 
they can only be perpendicular to the 
surface and they must all háve the same 
direction of flow. But then this is tanta- 
mount to saying that the sphere acts as 
if it were a unit magnetic pole. Now man 
has been searching for unit magnetic 
poles for a long time, and, like the 
philosopher's stone, they have never 
been found (except possibly at the sub- 
atomic level). Unless you believe other- 
wise, the only possible solution is for the 
field outside the sphere to be every- 
where zero. A more formal proof exists. 
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