
TECHNOLOGY WIRELESS

44 elektor electronics - 3/2007

Wireless
iDwaRF: a network

Dr. Erik Lins and Christian Meinhardt

iDwaRF brings together a Cypress WirelessUSB transceiver and an Atmel AVR microcontroller to create a
networkable 2.4 GHz radio module featuring a free protocol stack and development environment.

Besides standard applications such
as mobile radio, WLAN and Bluetooth,
highly-integrated low power radio de-
vices open up many new possibilities,

including wireless sensor networks
and even radio-controlled robotic foot-
ball teams able to orchestrate an off-
side trap in the blink of an eye! And,
with iDwaRF, we can do all this with-
out complex protocols or licensing
problems.

An alternative to ZigBee
For wireless sensor network applica-
tions ZigBee [1] is often the protocol of
choice. The protocol is relatively com-
plicated, and only members of the Zig-
Bee Alliance are permitted to use it in
commercial products. Cypress [2] offers
a simpler alternative in its WirelessUSB
technology [3]. The devices are cheap
and the radio protocol makes only mod-
erate demands in terms of hardware
and memory in the microcontroller.
WirelessUSB supports wireless many-
to-one links and is thus ideal for use in
wireless sensor networks. The protocol
details are freely available and can be
used without restriction in combina-
tion with Cypress radio chips.

iDwaRF

The iDwaRF-Net software that accom-
panies the iDwaRF-168 module (Fig-
ure 1) is a port of the Cypress Wire-
lessUSB protocol to the ATmega168
AVR-family microcontroller [4]. The
iDwaRF-168 module can be freely re-
programmed and can equally well play
the role of hub or sensor in a many-
to-one wireless sensor network. It is
easy to add extra application-specifi c
functions.

WirelessUSB operates in the 2.4 GHz
ISM band. Each WirelessUSB radio net-
work uses a selection from a total of 79
channels: even when multiple Wireles-
sUSB devices are operating simultane-
ously the protocol will be able to fi nd a
free channel to use.
Transmission uses a robust DSSS (di-
rect sequence spread spectrum) modu-
lation scheme [5]. Even at a 10 % error
rate the data can still be received cor-
rectly, and if there should be long-term
interference the protocol provides for

Figure 1. The iDwaRF radio module with 2.4 GHz WirelessUSB
transceiver and ATmega168 AVR microcontroller.

453/2007 - elektor electronics

USB in miniature
able WirelessUSB radio module

an automatic change of channel. Like
Bluetooth, WirelessUSB comes in short-
range (up to 10 m) and long-range (up
to 50 m) versions. The latter is used in
the iDwaRF-168 module.

Hub and sensors
An iDwaRF module programmed to
act as a hub forms the centre point
of a star-topology many-to-one radio
network, which can consist of many
sensors (Figure 2). Normally the hub
operates continuously and can be con-
nected to a PC or another microcon-
troller, acting as a host, using a se-
rial link. For simple applications the
iDwaRF module itself can be pro-
grammed to carry out the required
dedicated host functions.

Figure 2. The star-topology radio network consists of a hub and several sensors.

R
FI

N
46

RFOUT
5

X1
3

38

X13IN
35

X13OUT
26

/PD
33

/R
ES

ET
14

PACTL
34

D
IO

20
D

IO
VA

L
19

IR
Q

21

M
O

SI
23

M
IS

O
24

SCK
25

/S
S

22

VCC
6

VCC
9

VC
C

16

VCC
28

VCC
29

VCC
32

VC
C

41
VC

C
42

VC
C

44
VC

C
45

G
N

D
13 E

NC
1

NC
2

NC
3

NC
4

NC
7

NC
8

NC
10

NC
11

NC
12

N
C

15

N
C

17

N
C

18

NC
27

NC
30

NC
31

NC
36

N
C

37

N
C

39
N

C
40

N
C

43

N
C

47
N

C
48

U1

CYWUSB6935-48LFX

1
ANT2

ANT_WIGGLE_L

1

ANT1

ANT_WIGGLE_R

ISOMISOM
OSIMOSIM

SCK

SCK

SS/SS/

/PD

/INT0

/INT0

/WUSBRESET

/WUSBRESET

1234567891011121314

CON1

M
IS

O
VC

C
SC

K
M

O
SI

/R
ES

ET
G

N
D

PO
R

T1
PO

R
T0

PO
R

T3
PO

R
T2

PO
R

T1
PO

R
T0

PO
R

T0
PO

R
T7

PO
R

T7

PO
R

T5
PO

R
T4

PORT6
INT1 OC2B PD3

1

XCK T0 PD4
2

GND
3

VCC
4

GND
5

VCC
6

XTAL1 TOSC1 PB6
7

XTAL2 TOSC2 PB7
8

O
C

0B
 T

1
PD

5
9

O
C

0A
 A

IN
0

PD
6

10

A
IN

1
PD

7
11

C
LK

O
 IC

P
PB

0
12

O
C

1A
 P

B
1

13

/S
S

O
C

1B
 P

B
2

14

M
O

SI
 O

C
2

PB
3

15

M
IS

O
 P

B
4

16

PB5 SCK
17

AVCC
18

ADC6
19

AREF
20

GND
21

ADC7
22

PC0 ADC0
23

PC1 ADC1
24

PC
2

A
D

C
2

25
PC

3
A

D
C

3
26

PC
4

A
D

C
4

SD
A

27
PC

5
A

D
C

5
SC

L
28

PC
6

/R
ES

ET
29

PD
0

R
XD

30
PD

1
TX

D
31

PD
2

IN
T0

32

U2
ATmega168-20MI

PORT6

PO
R

T0
PO

R
T1

PO
R

T2
PO

R
T3

PO
R

T4
PO

R
T5

PO
R

T6
PO

R
T7

X13OUT

C1

1p8

C6

100n

C7

100n

C8

100n

C9

100n

C11

100n

C10

100n

VCC
VCC

VCC

C2

NOLOAD

C4

10p

L1

3nH9

X1

13MHz

C12

100n

C14

22p

050402 - 11

X2

xxMHz
C13

22p

VCC

VCC

C15

100n

C5

10u

/RESET

VCC

VCC

Figure 3. Circuit diagram of the iDwaRF module.

TECHNOLOGY WIRELESS

46 elektor electronics - 3/2007

A sensor unit consists of a suitably-
programmed iDwaRF module with
sensors attached. To save power we
use the AVR’s internal RC oscillator.
Also, the module is only activated at
intervals (as determined by the ‘bea-
con time’). Communications are initi-
ated by the sensor and terminated by
the hub; a reverse channel (transmit-
ting information from hub to sensor) is
also available.

Module printed circuit board
Figure 3 shows the circuit diagram
of the iDwaRF-168 module. The Cy-
press CYWUSB6935-LR transceiver is
connected to an ATmega168 micro-
controller over SPI, using the MISO,
MOSI, SCK and /SS (chip select) sig-
nals. An interrupt signal (/INT0) from
the radio device indicates the recep-
tion of data. The ATmega168 can put
the radio chip into power-down mode
using an I/O pin connected to the /
PD signal, and can reset it using the
/WUSBRESET signal. The radio chip
needs just an external 13 MHz crystal
(X1) and decoupling capacitors (C6 to
C11) for operation. The transmit and
receive antennas are separate from
one another and integrated directly
into the circuit board layout as mean-
der lines (Figure 4). Having separate
antennas gives greater range and sim-

Figure 4. The iDwaRF printed circuit board
includes a printed antenna.

MISO
VCC
SCK
MOSI
RST
GND

PORT0
PORT1
PORT2
PORT3
PORT4
PORT5
PORT6
PORT7

GND
RST
MOSI
SCK
VCC
MISO

REGIN
7

VDD
6

GND
3

VBUS
8

D-
5

D+
4

RST
9

SUSPEND
12

SUSPEND
11

RI
2

DCD
1

DTR
28

DSR
27

TXD
26

RXD
25

RTS
24

CTS
23

N
C

10
N

C
13

N
C

14
N

C
15

N
C

16
N

C
17

N
C

18
N

C
19

N
C

20
N

C
21

N
C

22

G
N

D
29

G
N

D
30

U2
CP2102

D+
D-

1
2
3
4
5

9 8
76

CON2

USBMINIB

1
2
3
4
5
6

CON3

1
2
3
4
5
6
7
8
9
10
11
12
13
14

CON1

BYPSS
1

IN
4

G
N

D
3

OUT
5

SNS
6

ERR
7

SH
D

8

NC
2

U1

LP2989IM-3.3C2see text

*
*

10n

C3

10u

050402 - 12

C1

10u

VCC

Vbus
R1

1k
5

green

LED1

SW1

VCC

USB to UART
Bridge C5

100n

C4

1u

Vbus

Figure 5. Circuit of the hub board.
Figure 6. The iDwaRF module is mounted

on the hub printed circuit board.

1

2

BATT

Battery Clip 3xAAA 2479

PORT6

SI
1

SCK
2

RST
3

CS
4

WP
5

VC
C

6
G

N
D

7

SO
8

U3

AT45DB081D-SSU

SDA
1

SCL
2

O.S.
3

G
N

D
4

A2
5

A1
6

A0
7VC

C
8U2

LM75

SCK
OSIMISOM

RST

PORT2
PORT3

PORT0

PORT7

PORT1

MISO
VCC
SCK
MOSI
RST
GND

PORT0
PORT1
PORT2
PORT3
PORT4
PORT5
PORT6
PORT7

GND
RST
MOSI
SCK
VCC
MISO1

2
3
4
5
6

CON3

1
2
3
4
5
6
7
8
9
10
11
12
13
14

CON1

R1

1k
5

green

LED1

VCC

SW1

BYPSS
1

IN
4

G
N

D
3

OUT
5

SNS
6

ERR
7

SH
D

8

NC
2

U1

LP2989IM-3.3C2

10n

C3

10u

C1

10u

VCC

MISO
VCC
SCK
MOSI
RST
GND

PORT0
PORT1
PORT2
PORT3
PORT4
PORT5
PORT6
PORT7

1
2
3
4
5
6
7
8
9
10
11
12
13
14

CON2

R5

1M

R6

1M

R2

1k
5

R3

1k
5

R4

1k
5

C5

100n

C4

100n

VCC

VCC

J2

LDR

R7

4k
7

J1

Vbatt

Vbatt
VCC

PORT5

PORT4

PORT7
VCC

050402 - 13

see text

*

*

*

Figure 7. Circuit diagram of the node board with temperature and light sensors.

473/2007 - elektor electronics

plifi es matching (L1, C1 and C4). The
antennas are laid out in the manner
recommended by Cypress.

The microcontroller is equipped with
a crystal in an HC49 package, and so
it is straightforward to change it for a
different frequency. As supplied the
ATmega168 is confi gured to use its in-
ternal RC oscillator.

A 14-way header (CON1) brings out
the ISP (in-system programming)
signals of the ATmega168 (MOSI,
MISO, SCK and /RST), power, and
eight spare I/O port pins. Some of the
header pins are connected to more
than one signal on the microcontrol-
ler to allow as many as possible of
the peripheral functions of the device
to be used. This means that you must
ensure that any two microcontroller
pins that are connected to the same
header pin are never simultaneously
confi gured as outputs, or damage to
the microcontroller may result. Ta-
ble 1 shows the CON1 pinout and
signals in detail.

Application boards
In the simplest wireless network sce-
nario one iDwaRF-168 module is pro-
grammed as a hub and one or more
modules are programmed as sensors.
It is of course necessary to build the
necessary interfaces to the sensors
themselves and connect them to the
modules. To simplify building such
systems we have developed three ap-
plication boards, to each of which can
be attached an iDwaRF-168 module: a
hub board, a node board and a proto-
typing board.

The hub board supports the iDwaRF
module with a USB interface (the
CP2102), a 3.3 V LDO voltage regula-
tor, button and LED (Figure 5).

The node board is used to make a sen-
sor unit using an iDwaRF module. The
circuit (Figure 6) includes an LDR as
a light sensor, an LM75 temperature
sensor, an (optional) AT45DB801D seri-
al fl ash memory, a button and an LED.
Power is provided by three AAA cells
and a 3.3 V LDO voltage regulator.

The two printed circuit boards (Fig-
ure 7 and Figure 8) are chiefl y popu-
lated using SMD components. Figure 9
shows the boards with iDwaRF-168
modules fi tted.

Table 1. CON1 connection groups
iDwaRF-168 CON1
(port pin)

First connection
(ATmega168 pin number)

Second connection
(ATmega168 pin number)

Third connection
(ATmega168 pin number)

PORT0 OC0B / T1 / PD5 (9) AIN1 / PD7 (11) ADC3 / PC3 (26)

PORT1 OC0A / AIN0 / PD6 (10) ADC2 / PC2 (25) -

PORT2 SCL / ADC5 / PC5 (28) - -

PORT3 SDA / ADC4 / PC4 (27) - -

PORT4 TXD / PD1 (31) - -

PORT5 RXD / PD0 (30) - -

PORT6 INT1 / OC2B / PD3 (1) XCK / T0 / PD4 (2) -

PORT7 CLKO / ICP / PB0 (12) OC1A / PB1 (13) -

Figure 8. The node board converts the iDwaRF module
into a complete sensor unit.

Figure 9. Node board (rear) and hub board (front)
with iDwaRF radio modules fi tted.

TECHNOLOGY WIRELESS

48 elektor electronics - 3/2007

lists for the circuit boards and layouts
available for download from the Ele-
ktor Electronics website.

Software
The iDwaRF-Net software package [6]
includes a library of fi rmware for use
in hub and sensor modules with corre-
sponding header fi les (in the ‘iDwaRF’
directory), along with a few ancillary
functions, for example to support seri-
al communications (‘USART’ directory).
There are also four example programs
which can either be used as they stand
or form the basis for dedicated appli-
cations. Table 2 gives more details of
these example programs.

Each example program consists of hub
source code (userMain_hub.c) and
sensor source code (userMain_sensor.
c). The fi rmware provides the facility
to register so-called ‘callback’ func-
tions, which the fi rmware calls regu-
larly in the course of normal operation.
These functions can be used for appli-
cation-specifi c code. The most impor-
tant callback functions are explained
in the text box.

Ready, steady…
Assembling the hardware is relatively
straightforward. The SMD printed cir-
cuit boards (the iDwaRF module, the
node board and the hub board) are
available as ready-made units (see
the ‘Elektor Shop’ pages at the back of
this issue). A kit of parts is available
for the prototyping board. Separate-
ly-ordered iDwaRF-168 modules are
supplied unprogrammed and without
header or crystal fi tted in order to give
the user maximum fl exibility.

The fi rmware for programming a hub
or sensor module is freely available
[6]. Modules ordered bundled with a

The prototyping board has a gener-
ous area for building your own cir-
cuits and is suitable for creating more
specialised applications using the
iDwaRF-168 module. There are SMD
pads on the reverse of the board. The
only active component in the circuit
(Figure 10) is the LDO voltage regula-
tor, in a TO-92 or TO-220 package ac-
cording to the expected current draw.
As well as the regulator and socket to
accept the iDwaRF-168 module there
is an AVR programming connector, a
battery holder and, as an alternative,
a socket for a mains adaptor with a
reverse polarity protection diode. The
printed circuit board (Figure 11) is
half-Eurocard sized and can be used
in the place of a node board. For rea-
sons of space we have made the parts

Table 2. Example programs
empty Empty program: framework for new applications.

chat Creates a wireless serial connection between two host PCs, allowing ‘chatting’ between two terminal programs.

tutorial
Example program that switches the LEDs on the hub and sensor modules on and off remotely when a button is pressed. The imple-
mentation of this example is explained step-by-step in a separate ‘how to’ document (see text box).

terminal
This basic sensor network application supports the components on the node board or iDwaRFSensorBox. Data packets (including
battery voltage, potentiometer setting, button state and temperature) from several sensors are displayed in plain ASCII text. The ter-
minal program can also send data to individual sensors.

quad_adc This program reads four ADC channels and transmits the readings to the hub at regular intervals.

MISO
VCC
SCK
MOSI
RST
GND

PORT0
PORT1
PORT2
PORT3
PORT4
PORT5
PORT6
PORT7

G
N

D
R

ST
M

O
SI

SC
K

VC
C

M
IS

O
1 2 3 4 5 6

K4

1
2
3
4
5
6
7
8
9
10
11
12
13
14

K2

1
2
3
4
5
6
7
8
9

10
11
12
13
14

K3

1

2

BATT

Battery Clip 3xAAA 2479

D1

1N4001

1 3

2
LF33CV

IC1
LP2950

2

3
1

K1

25V

C1

1u
25V

C2

1u

iDwaRF

AVRISP

EXT

VCC

VCC

050402 - 14

SOIC-24

SOT-23/6

SOT-23/6

VCC

Figure 10. Circuit diagram of the prototyping board for dedicated iDwaRF module applications.

Figure 11. The prototyping board has an experimentation area
with SMD footprints on the reverse.

493/2007 - elektor electronics

node or hub board come ready-pro-
grammed. A crystal is always required
for baud rate generation on the hub
board (a 7.3728 MHz crystal is sup-
plied as standard), and the microcon-
troller must be suitably programmed
for crystal operation. The correct val-
ues for the ATmega168 with a crys-
tal oscillator are: extended byte, 0xF9;
high byte, 0xDF; and low byte, 0xFC.
It is recommended to use the same
values and same crystal frequency for
the sensor, and the fi rmware is cur-
rently set up to work on this assump-
tion. If the frequency is to be changed
(using a different crystal or the inter-
nal RC oscillator) the relevant #defi ne
in the fi rmware must be changed and
the code compiled afresh.

The AVR ISP connectors have to be
soldered on to the node board and
hub board, and the node board also
needs to be connected to the battery
holder. Finally the iDwaRF module can
be fi tted and (in the case of the node
board) the batteries inserted. The
USB connection on the hub board re-
quires the corresponding CP2102 vir-
tual COM port driver to be downloaded
and installed [6]. Drivers are available
for both Windows and Mac OS X. A
CP210x module is provided as stand-

ard in current Linux kernels, allowing
the iDwaRF module to be used with
non-Windows PCs.

The pre-compiled hex fi les [6] for hub
and sensor are downloaded using the
six-pin AVR ISP connector. Note that
the supply voltage for the iDwaRF
module on the node and hub boards is
only 3.3 V, and so care must be taken

to ensure that the programming adap-
tor also works at this voltage. Sim-
ple STK200-compatible programming
adaptors that connect to the PC’s
printer port, which draw power from
the target device, do not always work
reliably at 3.3 V. Modern USB program-
ming adaptors (compatible with the
STK500-V2) such as the CrispAVR-USB
work without problems.

Table 3. Commands available in ‘terminal’ program
Command Description

rst Restarts the hub fi rmware. All sensors are unregistered and lose their ID codes, and must register again with the hub.

gps Returns an internal Cypress fi rmware state variable.

bon
Activates automatic bind mode on the hub. New sensors are probed for using PN code 0 and channel 0. In normal use automatic
bind mode is activated.

bof Deactivates automatic bind mode. New sensors can no longer register with the hub.

enu
Displays a list of the currently registered sensors on the hub. The list includes the sensor ID assigned during registration and the
unique manufacturing ID stored in the radio chip.

cln
Cleans up the hub’s list of registered sensors. Sensors which have registered more than once with the hub and which have there-
fore been assigned different ID codes are removed from the list and only their current ID code remains valid.

cnf

Confi gures network parameters. There are 8 different PN codes and channel subsets, and this command allows the hub to be swit-
ched to a new PN code and channel. The facility to change channel number is for test purposes only, as the channel is changed
automatically in normal operation. The PN code, however, remains fi xed. The format is

cnf <pncode> <channel>

where 0 < pncode < 9 and 0 < channel < 80. The cnf command automatically deletes all registered sensors from the list.

snd

Sends beacon time and other data to a sensor. The data packet is buffered in the hub and when the sensor in question next makes
a transmission the packet is sent back in the back channel to the sensor. All parameters are given in decimal. The format is

snd <sensorid> <beacon time> <data0> <data1> <data2> <data3> ...

A beacon time of -1 indicates that the beacon time is not to be changed.

del
Removes a sensor from the list of registered sensors in the hub. The format is

del <sensorid>

hex Causes sensor data to be displayed in hex rather than as plain text.

Figure 12. Prototyping board with iDwaRF radio module plugged on.

TECHNOLOGY WIRELESS

50 elektor electronics - 3/2007

... go!

The ‘terminal’ example program is
the best one to use to demonstrate
all the important functions of a wire-
less sensor network. iDwaRF mod-
ules programmed as sensors auto-
matically connect to the module pro-
grammed as the hub and transfer
data. With one node board and a hub
board connected to a PC it is possi-
ble to see immediately on the PC’s

Now we can run a terminal program,
set to the relevant port, and talk to the
hub in plain ASCII. If there are no sen-
sors there will initially be no reports
from the hub. The hub is reset by typ-
ing the command ‘rst’ and pressing
‘enter’: the hub will then emit its start-
up message. It is best to confi gure the
terminal program to expect CR+LF at
the end of each line and to enable lo-
cal echo, as the hub does not echo the
characters it receives.

screen when light falls on or is shad-
ed from the light sensor, when the
button is pressed, or when the tem-
perature sensor is warmed or cooled.
Setup proceeds as follows.

Hub board
The virtual COM port driver creates a
virtual COM port when the USB cable
is plugged in. The number of the port
can be obtained from the Device Man-
ager (reached from the Control Panel).

Data format

S5: ID 0 ldr 212 temp 22.5°C batt 2.9V button OFF (5 6 7 8 9 10) : 11

a) b) c) d) e) f) g) h)

Legend:

a) Packet type: S0 (BIND_REQUEST); S1 (BIND_RESPONSE); S2 (PING, hub only); S3 (ACK); S4 (DATA, hub only); S5 (DATA, sensor only)

b) Sensor ID

c) ADC value from the light intensity sensor

d) Temperature

e) Battery voltage

f) Button state (ON or OFF)

g) Six unused bytes displayed as decimal indices

h) Data byte count

The values from c) to g) above form the packet data payload. The standard packet size is set to 17 bytes, of which six are protocol overhead,
leaving 11 bytes of payload.

The principal callback functions
In the hub:
cbSensorPacketReceived(): called when a packet is received from a sensor. Direct access to the current sensor data is possible, although if
lengthy processing is to be carried out the data should be copied into a global buffer and the work done in the main program.

cbSerialDataReceived(): called when a byte is received over the serial interface. Usually the byte is simply stored in a global buffer and its re-
ception signalled using a fl ag, so that more time-consuming processing can be carried out in the main program.

cbProcessRxData(): further processes the bytes received by cbSerialDataReceived(), for example to implement a complex communications pro-
tocol with the host PC. In the ‘terminal’ example the commands entered on the host PC are parsed and processed in this function.

In the sensor:
cbConfi gForSleep(): called shortly before the sensor switches into power-down mode. This allows for particular sensor devices to be switched
off to reduce power consumption.

cbExitFromSleep(): called when the sensor leaves power-down mode. At this point particular sensor devices can be powered up again.

cbTxProcess(): assembles the data packet to be sent to the hub. At this point sensors can be read and the readings stored in the global trans-
mit buffer. The current data packet is then automatically sent to the hub.

cbBackchannelProcess(): called with data received from the hub in the reverse channel. This can be used to create an output signal on the
sensor, or to generate an analogue voltage using PWM. The ‘terminal’ example switches on the LED when a data packet is received.

513/2007 - elektor electronics

Sensor
If a sensor is switched on the data
packets received will be displayed
line-by-line in the terminal window.
The first packet is called a ‘bind re-
quest’ where the sensor registers with
the hub and, in return, receives an ID
code assignment and a value called the
‘beacon time’. This period, which has
a default value of fi ve seconds, is the
interval between the transmission of
successive data packets. The format of
the data packets is described in detail
in the text box ‘Data format’. A brief
fl ash of the LED on the sensor board
shows when it is active; the LED is ex-
tinguished when the sensor returns to
power-down mode.

If the node board is moved to a warm-
er location, or if the ambient light in-
tensity changes, the data packets dis-
played will refl ect the new sensor val-
ues. If the button on the node board is
pressed a data packet is transmitted
immediately: this shows that it is pos-
sible to react immediately to external
events, without waiting for the preset
beacon time to elapse.

Command line
Commands can be typed into the ter-
minal window at any time. Typing ‘enu’
(‘enumerate’) lists the sensors that are
registered with the hub, showing their
ID code and unique serial number.

Our fi rst sensor will appear in this list
with ID ‘0’. To send data to this sen-
sor we use the ‘snd’ command. In its
simplest form this has two parame-
ters: ‘snd 0 40’ sends the value 40 to
the sensor with ID code ‘0’. The fi rst
data byte is always interpreted by
the sensor as a new beacon time, in
units of 125 ms. In this example, the
value of 40 corresponds to the default
beacon time of fi ve seconds. So, if we
type ‘snd 0 8’ we will set the beacon
time for sensor 0 to one second, and
data packets from this sensor will be
displayed in the terminal window at
this rate. The command ‘snd 0 40 1’
sets the beacon time back to fi ve sec-
onds and also sends an extra data
byte with value ‘1’, which will cause
the LED on the node board to light. In
the terminal example the code in the
sensor simply checks whether there is
an extra data byte beyond the beacon
time or not, and sets the LED on or off
accordingly. The actual value of the
extra byte is not taken into account.
The complete set of commands pro-
vided by the hub in the ‘terminal’ ex-

ample is listed in Table 3.
If now a further sensor is activated
another ‘bind request’ packet will ap-
pear among the data packets being re-
ceived from the fi rst sensor, followed
by a series of data packets. The ‘enu’
command can be used to list the regis-
tered sensors, and should now display
two entries with ID codes ‘0’ and ‘1’.
We can test the new sensor by adjust-
ing its beacon time: ‘snd 1 8’ will set
it to one second, and we should now
receive packets from sensor 1 at fi ve
times the frequency of those from sen-
sor 0. If an ‘x’ is used in place of the ID
code in the send command, the beacon
times for all sensors are set simultane-
ously. Using ‘snd x 40’ we can therefore
reset the beacon times for both sensors
to fi ve seconds.

If the data packets are to be proc-
essed on the host PC, the ‘hex’ com-
mand can be used to switch the dis-
play from readable form to pure hex
values. These can easily be read by
another application, for example using
the scanf() function.

Room for expansion
The supplied programs can form the
basis of dedicated applications using
iDwaRF modules: the possibilities are
endless. Often a couple of extra com-
ponents are all that is needed, for ex-
ample to make measurements using an
ADC, generate PWM waveforms, scan
keys or drive an LCD.

The iDwaRF-Net software can in theory
work with up to 255 sensors, although
at present the limit is 32. For larger
sensor networks the xHub is planned,
using an ATmega128 with more fl ash
memory and an external SRAM. An ex-
ternal antenna will increase the range
of the hub.

Users of the iDwaRF radio module [7]
and the iDwaRF-Net fi rmware can use
a forum [8] organised by the author.
This is in addition to the forum on the
Elektor Electronics website. Further ex-
ample programs will of course appear
for download at [6] as soon as they be-
come available.

(050402-I)

References
and links:
[1] www.zigbee.org

[2] www.cypress.com

[3] Thomas Biel: ‘Wireless USB’,
Elektor Electronics, September 2004, p. 8

[4] www.atmel.com/avr

[5] Stefan Tauschek: ‘Wireless Connectivity’,
Elektor Electronics, February 2005, p. 14

[6] www.elektor-electronics.co.uk or
www.chip45.com/iDwaRF-168_Downloads

[7] www.chip45.com/iDwaRF-168

[8] www.chip45.com/iDwaRF-Net

