38 A receiver for the 7 MHz amateur band

Introduction

Listening on the 40 metre band (from 7.0 to 7.1 MHz) can be very rewarding – it is a popular haunt for HF Special Event stations, and at night there are signals to be heard from all over Europe. This receiver is designed purely for the 40 m band, and is ideal for those who have built the simpler receivers and are looking for something a little more challenging. The more experienced constructor may prefer to build this on prototype board.

The circuit and its construction

Figure 1 shows the circuit diagram. The receiver will work well with headphones or loudspeaker. Walkman-type headphones and speakers are ideal for use here.

Figure 1 The receiver gives good performance on the 7 MHz amateur band as well as being simple to construct and align

Signals arriving at the aerial are coupled into IC1 via gain control VR1, which also functions as the on/off switch. Tuning is provided by varying the voltage on the *varactor diode* (or varicap), D1. VR3 is the main tuning control, and VR2 is the *bandspread* (fine tuning) control. The varactor diode is supplied as a dual device, which must be cut down the middle *carefully* with a sharp knife; with the lettering upwards, the ground lead (0 V) is on the left-hand side, as Figure 1 illustrates.

Solder in the IC sockets first, followed by the coils. After this come the links, resistors, capacitors and varactor diode. Ensure that IC3, the voltage regulator, is wired correctly, and check the polarity of the electrolytics. The crystal, X1, is very fragile, so take extra care with it. The wiring of the three controls is shown in Figure 2.

Before putting the ICs in their sockets, connect up the battery and check the following voltages with the negative voltmeter lead connected to the negative terminal of the battery:

Pin 8	IC1	5 V
Pin 8	IC2	5 V
Pin 8	IC4	9 V
Pin 1	IC5	9 V

When all these have been found to be correct, switch off and put the ICs carefully into their sockets. Use wire of different-coloured insulation to wire up the front-panel controls.

The case can be a small plastic box of size 22 cm by 15 cm by 8 cm, with three 10.5 mm holes drilled in the front and two 8 mm holes in the side for the aerial and earth connections. On one side are a 6 mm hole for the speaker socket and an 11 mm hole for the optional external power supply.

Testing and tuning

The aerial for the receiver should be between 30 and 70 feet of wire, mounted as high as you can make it, away from trees and buildings if possible. Connect the battery and switch on. Adjust L1 and L2 for the best results. Tune slowly with VR3; you should find CW stations at the lower end of the band (anticlockwise) and SSB stations at the upper end (clockwise). You may find that it is easiest to make these adjustments *before* mounting the board in the case with double-sided sticky tape or pads. If you are planning to use an external DC supply, make sure it is a safety approved stabilised 9 V type, and **disconnect the battery before you use such a supply**!

If you suspect that the tuning doesn't quite cover the lower CW end of the band, try increasing C9 to 1200 pF. If it is the upper SSB end which is missing, decrease C9 to 820 pF.

It is always advisable to use an aerial tuning unit (ATU) between your aerial and the receiver. A suitable design of ATU is included as a project in this book.

Parts list		
Resistors: all	0.25 watt, 5% tolerance	
R1, R4	100 kilohms (k Ω)	
R2, R3	1.5 kilohms (k Ω)	
R5	220 ohms (Ω)	
R6, R7	12 kilohms (k Ω)	
R8	10 kilohms $(k\Omega)$	
VR1	4.7 kilohms (k Ω) linear, with SPST switch	
VR2	4.7 kilohms (k Ω) linear	
VR3	47 kilohms (k Ω) linear	
Capacitors: al	l rated 16 V or more	
Č1	470 picofarads (pF) polystyrene 5%	
C2	47 microfarads (µF) electrolytic	
C3	47 picofarads (pF) polystyrene 5%	
C4, C5	100 picofarads (pF) polystyrene 5%	
C6, C7	100 nanofarads (nF) ceramic	
C8	2.2 nanofarads (nF) polystyrene 5%	
C9, C10	1 nanofarad (nF) polystyrene 5%	
C11, C14	10 nanofarads (nF) ceramic	
C12	470 microfarads (µF) electrolytic	
C13	47 nanofarads (nF) ceramic	
C15	1000 microfarads (µF) electrolytic	
C16	1 microfarad (µF) electrolytic	

Inductors	
L1	Toko KANK3335R
L2	Toko KANK3333R
L3	10 μH 5%, e.g. Toko 283AS-100
Semiconductor	rs
IC1, IC2	NE602 or NE602A
IC3	78L05 5 V, 100 mA
IC4	TL072
IC5	TDA7052
Additional iter	ms
D1	Toko KV1236 cut into two sections (one half used)
X1	4.608 MHz (available from Cirkit)
	$3 \times$ silver knobs, one with pointer
	Plastic case approx. $22 \times 15 \times 8$ cm
	Speaker 8–32 Ω , or headphones
	4×8 -pin DIL sockets for IC1, IC2, IC4, IC5
	2×4 mm sockets (red and black) for aerial and earth
	3.5 mm chassis-mounting jack socket for speaker
	DC power socket for external supply (if required)
	Prototype board
17*1	

Kits

A complete kit is available from JAB Electronic Components.

